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ABSTRACT

COPPER-CATALYZED SYNTHESIS OF BENZO-BIMANE
DERIVATIVES

1,5-Diazabicyclo[3.3.0]octadienediones  (shortly ~ 9,10-dioxabimanes  or
"bimanes”) are small heterocyclic structures which have important chemical,
photochemical and photophysical properties. There are two existing structural isomers
for bimane compounds (""syn" and "anti"). The syn-isomers have strong UV absorption
properties and high quantum yields and are highly fluorescent. Bimane compounds are
widely used for fluorescent labelling in biological systems because of their high photo-
stability and bio-compatibility. Despite their unique properties, there is very few
examples of study in literature. Because of synthetic difficulties of literature examples
and their requirements such as hazardous chemicals, new methodologies are in high

demand.

In this study, new methods utilising metal catalysis for the effective synthesis of
bimane compounds have been developed. Bimanes, which in the literature are
synthesised with extreme difficulties and low yields, were synthesised in this work
through simple and efficient protocols that employ metal, ligand and base. We further
investigated the photophysical properties for all newly synthesized bimane derivatives.

In the course of thesis study, a new and efficient method have been developed
and optimised for the facile synthesis of benzo-bimane compound via the copper(l)
catalyzed intramolecular C-N bond formation reaction. Moreover, with the aid of this
new methodology, various analogues of benzo-bimane compound were synthesized in
moderate to good yields under mild reaction conditions . Also, photophysical properties

of benzo-bimanes were investigated carefully.

Keywords : BIMANE, Copper, Ullmann reactions



OZET
BAKIR KATALIZLI BENZO-BIMAN TUREVLERININ SENTEZi

1,5-Diazabisiklo[3.3.0]oktadiendion (kisa adiyla 9,10-diokzabiman ya da
“biman”) yapilar1 6nemli kimyasal, foto-kimyasal ve foto-fiziksel 6zelliklere sahip
kiigiik heterosiklik yapidaki bilesiklerdir. Biman bilesiklerinin iki yapisal izomeri (“sin”
ve “anti”’) bulunmaktadir. “Sin” yapisindaki biman bilesikleri yiiksek kuantum
verimlerine sahiptir ve giiclii floresan 1s1mas1 yapmaktadirlar. Biman bilesikleri oldukca
foto-kararli ve biyo-uyumlu olmalar1 sebebiyle biyolojik sistemlerde floresan
isaretleyici olarak siklikla kullanilmaktadir. Oldukga {istiin 6zellikleri bulunmasina
ragmen biman sentez yOntemleri iizerine olduk¢a az ¢alisma bulunmaktadir. Mevcut
yontemlerin zorlugu ve tehlikeli kimyasal gerektirmeleri yeni yontemlere duyulan

ithtiyact artirmigtir.

Bu projede farkli kimyasal yapilarda biman bilesiklerinin sentezlenebilmesi i¢in
metal katalizorlerinin kullanilacagi yeni ve 6zgilin yontemler tasarlanmistir. Literatlirde
son derece gii¢ yontemlerle ve ¢ok diisiik verimlerle sentezlenebilen biman bilesikleri
bu ¢aligmada metal ve organik/anorganik bazlar kullanilarak ¢ok daha basit yontemlerle
yiiksek verimlerle sentezlenmistir. Sentezlenen her yeni biman bilesiginin foto-fiziksel
ozellikleri dikkatli bir sekilde incelenmistir.

Proje kapsaminda benzo yapisindaki biman bilesikleri bakir katalizorleri ve
cesitli ligantlar varliginda basarili bir sekilde sentezlenmis ve {iriin cesitliligi
saglanmistir. Ayrica elde edilen bilesiklerin foto-fiziksel 6zellikleri de dikkatli bir

sekilde incelenmistir.

Anahtar Kelimeler : BIMAN, Bakir, Ullmann reaksiyonlari
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CHAPTER 1

INTRODUCTION

In 1958, at first 1,5-Diazabicyclo[3.3.0]octadienedione (shortly “’9,10-
dioxabimane’” or "bimane™) compounds had been serendipitiously synthesized by
Carpino and co-workers in synthesis of 2-alkynoic acid derivatives via the treatment of
4.,4-dichloro-3-pyrazolin-5-one compound with base (Figure 1.1). However, Carpino
did not spend any effort to understand the structure of this side product. The structure of
bimane compound was fully clarified by Kosower and co-workers in 1977. With this
invention, synthetic and photophysical studies of bimane compounds and its derivatives
were fulfilled through Carpino procedure in 1978. It has been an important milestone
for the synthesis of highly stable and fluorescent molecule in literature (Carpino et al.,

1958).
0 o] o]
0]
Cl \ NH  Dbase | . \ N/
L}
R
H H

R

0.1 % yield

Figure 1.1. Synthesis of Bimane compounds
(Source: Carpino et al., 1958)

1,5-Diazabicyclo[3.3.0]octadienediones  (shortly  <’9,10-dioxabimanes’”  or
"bimanes") are small heterocyclic structures having important chemical, photochemical
and photophysical properties. There are two types of structural isomers of bimane
compounds as "syn" and "anti" (Figure 1.2). The syn isomers are strongly fluorescent
by reason of having strong UV absorption properties and high quantum yields. Bimane
compounds are often used for fluorescent labelling procedures in biological systems

because of their high photo-stability and bio-compatibility (Pazhenchevsky et al., 1978).
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Figure 1.2. “Syn” ve “anti” bimane compounds

(Source: Pazhenchevsky et al., 1978)

Although bimanes have extraordinary photophysical properties, there are only
two synthesis methods in hand to get bimane compounds. These methods requires the
usage of highly expensive and hazardous chemicals. In addition, the high prices of
commercially available bimane derivatives, that are because of diffuculties of synthetic
methodology, limits the usage of these compunds in many applications. Because of
these limitations, development of new and effective methods are in high demand.

In this study , a new and efficient method have been developed for the synthesis
of benzo-bimane compounds via the copper(l) catalyzed intramolecular C-N bond
formation reaction. With the aid of this new methodology, substituted benzo-bimane

compounds were synthesised in moderate to good yields under mild reaction conditions.



CHAPTER 2

BACKGROUND INFORMATION

2.1 Studies over Bimane Compounds in Literature

Bimane compounds are small fluorescent molecule bearing exceptional
photophysical and chemical properties. They are used in several areas such as labelling
agents, and sensors. Although bimane compounds are very useful for various
applications, there are only two methods to obtain them. The first method was
developed by Kosower and co-workers in 1977 (Figure 2.1). As shown in “’Figure 2.1,
this approach requires highly reactive alkoxide compounds and extremely hazardous
chlorine gas. Therefore, new reaction pathways excluding these reactive and toxic

substances are required for facile synthesis (Kosower et al., 1980).

IS P
I e A 2
-OCZHS C2H50H \No
cl,
CICH,CH,CI
b2 0
4 L4
N/ \ N € NH
\ CH2C12 \N'
0]
"Syn" "anti"

Figure 2.1. Synthesis of Bimane compounds fulfilling Kosower’s method
(Source: Kosower et al., 1980)
In another approach, Fischer carbenes are exploited to synthesise bimane

compounds (Figure 2.2). However, as shown below, “’Figure 2.2’ various pyrazol

3



derivatives are afforded in this reaction as side products. In addition to the non-
selectivity of this method, utilisation of a stoichiometric amount of chromium and
tungsten metal compounds is a prerequisite. Moreover, carbene compounds are very air
sensitive and difficult to handle which renders this method useless and vulnerable
(Zheng et al., 2006).

M=Cr,W R R’
OEt THF, 50°C A _R o e
COM= — N + U YYR R\(S;O
\\ Dioxane, 65°C N N~N
(COM= _ ° cojm &
~ %n —( (COMANp, (copm=A N
- Ph
Rl
0\ m-CPBA m-CPBA
. N, R PNO,OTHF CH,Cl, CH,Cl,
H 50°C 0°C-RT 0°C-RT
R R’ R'
o
NOYR L ON)R L R\(S;o
N N~N N~N
o< © ES S o\
_<=< Ph =N ph
Ph

Figure 2.2. Synthesis of Bimane compounds with Fischer carbene complexes
(Source: Zheng et al., 2006)

The bimane compounds synthesised by the methods mentioned above have
widespread applications in numerous fields in the literature. In 1979, Kosower and co-
workers used bimane compounds as fluorescent labelling agents. With the aid of this
study, reactive thiol species of haemoglobin and, glutathione compounds inside
membrane proteins and red blood cells are labelled along with both mono/dibromo
bimanes and monobromo trimethyl ammonium bimane under physiological conditions
(Figure 2.3) (Ranney et al., 1979).
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Figure 2.3. Bimane fluorescent labels

(Source: Ranney et al., 1979)

In this study, Kosower and co-workers not only synthesised different bimane
compounds but also elucidated their structures and established all their photophysical
properties (Shoshan et al., 1996). Moreover, in a further study, Kosower and co-workers
elaborated kinetic studies of reactions between halogenated bimane compounds and

various thiols (Radkowsky et al., 1986).
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Figure 2.4. Total synthesis of mycothiol bimane
(Source: Nicholas et al.; 2002)

At the beginning of 2002, an article published by Bewley and co-workers
described the total synthesis of mycothiol bimane. Acetyl-glucopyranoside amine
hydrochloride initially reacts with N-acetyl-L-cysteinyl monobimane in the presence of
diethylphosphoryl cyanide and, diisopropylethylamine reagents in dimethylformamide,
followed by the addition of Mg(OMe), in methanol to form mycothiol bimane
(Nicholas et al.; 2002).



After a detailed literature investigation, it can be observed that bimane
compounds have been particularly used as fluorescent labelling agents. In 2004, a study
performed by Mansoor and Farrens effectively illustrated that the secondary structures
of 25 different T4 lysozyme proteins could be readily determined by labelling with a (2-
pyridyl)dithiobimane fluorophore (Figure 2.5) (Mansoor et al., 2004).

Figure 2.5. a) Reaction of (2-pyridyl)dithiobimane fluorophore with thiols. b) Seconder
structure model of T4 lyzozyme protein after the reaction with (2-pyridyl)dithiobimane
fluorophore
(Source: Mansoor et al., 2004)
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Figure 2.6. Quenching mechanism of fluorescent bimane molecule by electron transfer
from tryptophan
(Source: Islas and Zagotta, 2006)

Research conducted by Islas and Zagotta in 2006 employed fluorescent bimane
molecules to observe short-range molecular rearrangements in ion channels. Utilising a
quenching mechanism of bimane fluorescence by electron transfer from tryptophan, the
structure and dynamics of short-range interactions in the channel can be measured.
Moreover, it is stated that this approach is applicable to a variety of gating
rearrangements and suggests promising results to determine the gating rearrangements
in the channels of well-known structures (Islas and Zagotta, 2006).

Monobromobimane

N\
/N\
| O
0

Sulphide dibimane

o o]
\
i
o o Acetonitrile, NN/
N /4 HEPES pH 8
2 \ 1\ + H§ ——————P S + HBr+Br
Br

Figure 2.7. Reaction of monobromobimane with sulphide to form sulphide dibimane
(Source: Wintner et al., 2010)




The article published by Wintner and co-workers in 2010, describes the
development of a novel type of pharmacological method covering non-fluorescent
monobromobimane. By exploiting the formation of highly fluorescent sulphide
dibimane after the reaction of monobromobimane and sulphide, the pharmacokinetic
profile of reactive sulphide species in blood can be measured. The method employed in
this study could potentially be used to determine the cysteine residues of one or more
proteins (Wintner et al., 2010).

Br N ]
SN H,S M o5
N~N > . N~N SH . N=N g
O=N\A 0=\~ o=\~
Br Br
"dBBr" - N

Figure 2.8. Fluorescent sensor application of Bimane compounds for H,S
(Source: Montoya et al., 2014)

In addition to their usage as labelling agents, it is also possible to use bimane
compounds as fluorescent sensors (Figure 2.8). In 2014, Pluth and Kevil published an
article that describes a method to detect H,S by using monobimane and dibromo bimane
derivatives. In their study, H,S was selectively detected with a low detection limit
(Montoya et al., 2014).

Bimane compounds, having widespread applications by virtue of their unique
photophysical and chemical properties, cannot be efficiently synthesised using current
method. Therefore, new methods to synthesise bimanes are of vital importance for new
developments. In addition to the unique properties of these compounds, the principal
factor for a compound to be commonly used is the ease of its production or synthesis.
However, the harsh reaction conditions for the synthesis of bimane compounds, as
discussed above, result in high prices and inadequate scope of reactions for these
compounds. The prices of bimane compounds used as commercial labelling agents are
tabulated in “’Table 2.1°°. These high prices affect the supply and effective use of

bimane compunds (www.sigmaaldrich.com).



Table 2.1. Commercial bimane derivatives (Source: www.sigmaaldrich.com)

Commercial Names

Price; Aldrich

1 3-Aminomethyl-2,5,6-trimethyl-
1H,7H-pyrazolo[1,2-a]pyrazole-1,7-
dione, Aminobimane

2 2,3,5,6-Tetramethyl-1H,7H-
pyrazolo[1,2-a]pyrazole-1,7-dione,
3,4,6,7-Tetramethyl-1,5-
diazabicyclo[3.3.0]octa-3,6-diene-
2,8-dione

3 3-Azidomethyl-2,5,6-trimethyl-
1H,7H-pyrazolo[1,2-a]pyrazole-1,7-
dione, Azidobimane

4 Monobromobimane

5 Chlorobimane

(0] o]
N
\_N_/
NH,

5mg; 354 euro

10 mg; 54 euro

5mg; 204 euro

100 mg; 386 euro

100 mg; 791 euro

To come up with this problem, a new synthetic method have been described for

“syn” benzo-bimanes and in the course of this study, different analogues of benzo-

bimanes have been synthesised.
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2.2 Ullmann Reactions

For many vyears, there has been a high demand for catalytic synthesis of
molecules, which incorporate unique structures and have a wide range of application
areas in industries (such as diaryl ethers, alkylaryl ethers, diaryl amines, alkylaryl
amines, diaryl thioethers, and alkylaryl thioethers). To synthesise these molecules, the
typical copper-catalysed Ullmann reaction has frequently been used in methods reported
in the literature (Ley et al., 2003).

Ullmann reactions initially employed extremely harsh reaction conditions
(temperatures of up to 200°C or 300°C, strong bases, stoichiometric amounts of copper
or copper salts, activated aryl halides and, long reaction times) which generally affected
the scope and yields of the reactions. Because of these handicaps, Ullmann reactions
could not be employed effectively until the 2000s (Ley et al., 2003; Ullmann, 1904).

The first example of this type of reactions was demonstrated by Ullman and co-
workers in 1901. This reaction was the pioneering example in the area of copper
catalyst. In addition, copper catalyzed C-X or C-C coupling reactions are called Ullman
reactions after the report of Ullman in 1901. In the subject of study, Ullman
demonstrated the copper catalyzed synthesis of biaryls from aryl halides via C-C
coupling mechanism. Among various transition metal catalysts, copper catalysts were

the most effective for this reaction (Ullmann, 1901).

Ulimann

1901
< O - O~

R1 R2 R R2
X= Halide

Figure 2.9. Synthesis of biaryls by Ullmann in 1901
(Source: Ley et al., 2003)
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Ullmann condensation reaction is a good tool for the synthesis of diaryl ethers,
diaryl amines, or diaryl thioethers. Via copper catalyst, the reaction in between an aryl
halide and a phenol, an aniline, or a thiophenol forms a C(aryl)-O, a C(aryl)-N, or a
C(aryl)-S bond, respectively (Ullmann, 1903).

Ullmann
1903
X + YH Y
R? R? R
X= Halide Y= NH, O’ S
RZ

Figure 2.10. Synthesis of diaryl ethers, diaryl amines, or diaryl thioethers by Ullmann
(Source: Ley et al., 2003)

In the 2000s, there have been three major breakthroughs which facilitates
Ullmann reactions to be employed under mild reaction conditions. These developments
have generally been facile methods for products which have importance in the
pharmaceutical and industrial-scale applications and are synthesised via C-N coupling

mechanism (Ley et al., 2003).

Initial of these methods have been proposed in 2001 by Buchwald and co-
workers. Coupling reactions of lactams, primary amides, and formamides derived from
primary amines and acetanilide with a variety of aryl iodides have been succesfully
demonstrated in this study. Generally, the required reagents for an effective synthesis
are 1 mol % of air stable Cul along with 10 mol % of economic racemic trans-
cyclohexanediamine (1a) in the presence of K3sPO,4 The products are synthesized in 23 h
at 110°C in moderate to excellent yields under comparatively milder reaction conditions

than previously reported methods in the literature (Klapars et al., 2001).
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Cul %1
(o) ligand 1a %10 (o)
Z—R 2 equiv K;PO, V—r
Arl + HN, P  Ar=N,
RHN  NHR R 23 h.110°C R
1a, R=H dioxane (1 M)

Figure 2.11. Copper-Catalyzed Amidation of Aryl lodides
(Source: Klapars et al., 2001)

Another method has been offered in 2003 by Ma and co-workers. In the course
of this study, mild method for Ullmann coupling reaction of amines and aryl halides
have been developed. By employing Cul as catalyst and either N-methylglycine or L-
proline as the ligand in the presence of K,COs3, Ullmann-type aryl amination of aryl
iodides and aryl bromides afforded the corresponding N-arylamines or N,N-
diarylamines which have yields ranging from good to excellent in DMSO at 40-90°C
(Ma et al., 2003).

.R Cul %10,K,CO; DMSO(3mL)
HN
Y + R R
%20 L-proline or N-methyl glycine
40-90°C

X=l, Br; R or R'=H, alkyl, aryl

Figure 2.12. Coupling Reaction of Aryl Halides with Amines under the Catalysis of Cul
and L-Proline
(Source: Ma et al., 2003)

The last of these methods have been suggested in 2004 by Taillefer and co-
workers. In this study, highly efficient and mild method has been developed for nitrogen
heterocycles, amides and carbamates with copper catalyzed N- and C-arylation process.
Via economic, air stable copper salts or oxides as catalyst in combination with

structurally unpretentious chelating ligands in the presence of Cs,COs in acetonitrile,
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the N-arylation of imidazole with aryl iodides or bromides is discovered to be
thoroughly sped up in 24-100 h at 50-82°C (Cristau et al., 2004).

X Cu,0 %S5, ligand %20 R
N\ . | N R Cs,CO; 2 eq , MeCN N/§|
EN> > > \=N
H 24-100 h 50-82°C
\H, oH
N . . N
Q Ligands in D
OH the reaction OH

Figure 2.13. Copper-catalyzed N-arylation of imidazole with functionalized aryl
bromides or iodides under mild conditions and ligands employed
(Source: Cristau et al., 2004)

® ® cat
RX + MNu (or HNu + base) —= RNu

Figure 2.14. Overall equation for Ullmann reactions
(Source: Beletskaya et al., 2004)

Generally, Ullmann reactions occur in between an electrophilic aryl halide and a
nucleophile. This type of reactions, which are accelarated and employed in the presence
of catalyst (copper or palladium catalyst), are so-called as cross-coupling reactions and

approved as nucleophilic substitution reactions in literature (Beletskaya et al., 2004).
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~ MMNu or

"N
l}///r_0uy HNu + base

Y
R—Cu—X

CuX
RX

8/\

CuNu

MNu or
HNu + base

\

RNu RX

wu
R—Cu—X

Figure 2.15. A rough picture of the possible catalytic cycle driven by Cu
(Source: Beletskaya et al., 2004)

There is no consensus on the exact mechanism of the Ullmann reaction;
however, there are two possible approaches to predict the reaction pathway. One
approach assumes that the copper catalyst forms a complex with the electrophilic aryl
halide, forming a copper-nucleophile-electrophilic aryl halide complex in the presence
of base and thereby succesfully completing the synthesis of the final product. Another
approach supposes that the copper catalyst forms a complex with the nucleophile, also
forming a copper-nucleophile-electrophilic aryl halide complex in the presence of base
and thereby succesfully implementing the synthesis of the target product. In the
literature, both pathways are considered to be acceptable and valid (pathways A or B
in Figure 2.15, omitting all details such as ligands, etc). As a general consideration, the
catalyst is predicted to take roles in successive oxidative addition, transmetallation, and

reductive elimination reactions (Beletskaya et al., 2004).

Nowadays, there is a great variety of applications utilising Ullmann reactions.

Some modern techniques of Ullmann reactions are demonstrated below.
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o)
T Cul(0.5%), Py
N N° °R L-proline(20% N
) H proline(20%) .~ x NH
s L 4
Y™ "Cl Y N
K,CO;(2 equiv) R
DMSO0,90°C
24 h
X= substituents; Y=CH or N; R=alkyl, aryl

Figure 2.16. Synthesis of substituted indazolone derivatives

(Source: Tanimori et al., 2012)

Tanimori and co-workers have described an efficient and favourable method for
the synthesis of derivatised indazoles, many of which display analgesic, antitumour,
anticancer, anti-inflammatory, and antifertility activities, from 2-chloroarenes via an
intramolecular C-N bond formation at low catalyst loading (effective even at a 0.5
mol% loading of copper (I) iodide). The products are synthesised under mild reaction
conditions, employing Cul (0.5 mol%) associated with L-proline (20 mol%) in the
presence of two equivalents of potassium carbonate in dimethylsulfoxide, for 24 h at
90°C in moderate to excellent yields. The syntheses in our research are principally
derived from this method (Tanimori et al., 2012).

o PhCONHNHAr
| Cul(10%),4-hydroxy-L-proline(20%) R
N R K,CO;, dioxane, 60-125°C, 30 h AT\
X - X N
z7 Br 7PN
then HOAc, 60 °C .
Ar
X=substituents; Z=CH or N; R= alkyl, aryl, OH, CO,Et

Figure 2.17. One-pot reaction process for assembly of 1-aryl-1H-indazoles
(Source: Xiong et al., 2012)

In this scientific study, Ma and co-workers have enhanced a facile strategy for

the assembly of N,N-disubstituted hydrazines, -which are bioactive as sensory neuron
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inhibitors, cell harm inhibitors, a-adrenoceptor antagonists and, potential agents for the
treatment of thrombolic disease, and as well as practical intermediates for assembling
azo heterocycles, such as indazoles, indoles-, and 1-aryl-1H-indazoles via copper-
catalysed Ullmann coupling reactions. Initially, an efficient pathway is found for
assembling N,N-diaryl hydrazines to synthesise N-acyl-N’,N’-disubstituted hydrazines
by reacting N-acyl-N -substituted hydrazines and aryl iodides at 60 °C -90 °C via copper
catalysed Ullmann coupling (ligand-free media including Cul catalyst in the presence of
K,COg3 in DMSO). Moreover, via a catalytic system of Cul/4-hydroxy-L-proline in the
presence of K,CO3; and HOAc, respectively in dioxane, N-acyl-N’-substituted
hydrazines react with 2-bromoarylcarbonylic compounds at 60 °C-125 °C to afford 1-
aryl-1H-indazoles (Xiong et al., 2012).

T s O
d\ /& ©,Br Cul/L-proline /Q
|
N Hz CSZCOS ﬁ

Figure 2.18. Synthesis of Benzimidazo[1,2-a]quinazoline derivatives
(Source: Li et al., 2014)

In this study, Wang and co-workers have improved a straightforward method for
the synthesis of benzimidazo[1,2-aJquinazoline analogues, which are of considerable
interest because of their assorted anticancer activities, by drawing upon a domino
reaction of N-(2-benzimidazolyl)-2-aminobenzamide and 2-halogenated benzaldehydes
using a copper catalyst. This effective method, based on a consecutive Cul-catalysed
Ullmann reaction (C—N bond formation) exploits a Cul catalyst in conjunction with L-
proline as a ligand in the presence of caesium carbonate and gives moderate to good
yields for the target products (Li et al., 2014).
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CHAPTER 3

EXPERIMENTAL METHODS

3.1. General Methods

All reagents were purchased from commercial suppliers (Aldrich and Merck).
Dimethylsulfoxide was used without further purification. Tetrahydrofuran and
dichloromethane were used after drying with Molecular Sieves 3A at 400°C. *H NMR
and *C NMR were measured on a Varian VNMRJ 400 Nuclear Magnetic Resonance
Spectrometer and chemical shifts were calibrated using residual solvents signals
(CDCls: & (H)=7.26, 6 (C)= 77, CD3SOCD3. 6 (H)= 2.49, § (C)= 39.7) or TMS. UV
absorption spectra were measured on Shimadzu UV-2550 Spectrophotometer.
Fluorescence experiments were performed by using Varian Cary Eclipse Fluorescence
spectrophotometer. Infrared spectra were obtained using a Perkin—Elmer Spectrum 100
by ATR method with neat samples. The synthesized compounds were analyzed by GC-
MS (HP 6890/5973N) and isolated by column chromatography using a hexane-ethyl
acetate system.

3.2. Synthetic Methods

3.2.1. Synthesis of Terminal Alkynes (Sonogashira Coupling Reaction)

All reactions were conducted at 50°C under argon gas. Firstly, aryl halides (5.8
mmol) were dissolved with degased triethylamine (25 ml) in two-necked glass flask. To
this solution, Pd(PPh3)s;Cl, (79 mg, 0.12 mmol) and Cul (11 mg, 0.06 mmol) in catalytic
amounts were added in return under argon atmosphere and were stirred for 10 minutes.
Then, 1.2 equivalent of trimethylsilylacetylene were added and stirred until completion
of all reactants. The reaction monitored by TLC was quenched at the time of starting

material consumption. After the solvent was removed in vacuo under reduced pressure
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the crude product was extracted with dichloromethane. The organic phase was dried
with anhydrous Na,SO, and then concentrated in vacuo. The re-concentrated crude
mixture was purified by column chromatography on silica gel (Cheng et al., 2015;
Tanaka et al., 2004; O’Rourke et al., 2014).

The purified silylated product was dissolved in 25 ml methanol and stirred for
two hours by adding 97 mg, 0.7 mmol K,COj3 to the reaction media under argon gas.
When all starting material was consumed the reaction was quenched and solvent was
vaporised. Terminal alkynes were afforded purely by column chromatography (Cheng
et al., 2015; Tanaka et al., 2004; O’Rourke et al., 2014).

|
X \ \Si

- /

N ~Si.. Sonogashira =N =
| . //3'~ gashi ~N~ Desilylation ("
R 74 Coupling ReactlonR|JJ P RJJ /

Figure 3.1. Synthesis of terminal alkynes

All synthesised terminal alkynes employing this method were tabulated below
(Table 3.1).

Table 3.1. Terminal alkynes synthesized in this study
jogiNe d Q/
ogi¥ed
MeO Cl
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3.2.2. (1)_ Synthesis of Propiolates

Literature procedure was employed to synthesise propiolates. Terminal alkyne
(7.7 mmol) was taken into two-necked glass flask by dissolving with dried
tetrahydrofurane and was cooled to -78°C. To reaction medium, (1.6M in hexane
solution, 8.1 mmol, 5.1 mL) butyl lithium solution was added drop by drop and stirred
vigorously for 1 hour at that temperature. Then, by keeping the temperature same as
-78°C, ethyl chloroformate was added drop by drop and reaction was stirred for 2 hours.
The reaction which was quenched with distilled water was extracted with diethylether
and dried with Na SO, Propiolates were afforded purely by column chromatography
(Cheng et al., 2015; Tanaka et al., 2004; O’Rourke et al., 2014).

0]
gz 1) n-BulLi l
~ - o7
RN 2) Ethylchloroformate A
-78°C 'S
R

Figure 3.2. Synthetic route to propiolates

All synthesised propiolates employing this method were tabulated below (Table
3.2).

Table 3.2. Propiolates synthesized in this study

R R
/\ /\
MeO Cl
1c 1d
q T q
/\ /\ /\
1e 1f 19
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3.2.3. (2)_ Synthesis of Pyrazoles

The reaction was performed with condenser at reflux under argon atmosphere.

The synthesised propiolate was dissolved in ethanol and mixture was stirred at reflux.
Then, 0.4 mL hydrazine hydrate (NH,NH,.H,0, 50-60% v/v) were added to the reaction

medium and stirred vigorously overnight. The afforded precipitate in consequence of

reaction was filtrated with cold ethanol and dried under vacuum. The desired pyrazoles

were synthesised purely without further purification.

3.3).

;
N
A

R

NH,NH,.H,0

EtOH, reflux

R

(o)

Y/
L
N
H

Figure 3.3. Synthesis of pyrazoles

All synthesised pyrazoles employing this method were tabulated below (Table

Table 3.3. Pyrazoles synthesized in this study

O
/ )E Va
| NH | NH | _NH
N N N
H H3;C(HC) H H
~o
(2a) (2b) (2¢)
O
/ 5 Va
| NH | NH | NH
N N N
H H H
(o]
(2d) (2e) (2f)
0
| NH
N
H
(29)
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3.2.4. (3)_ Synthesis of 2-halobenzoyl chloride

The reaction was performed with condenser at reflux under argon atmosphere.
2-halobenzoic acid (1.6 g, 6.6 mmol) was dissolved in dichloroethane (5 mL) and
thionylchloride was added to the reaction media. The reaction was stirred vigorously for
3 hours at reflux and then, the solvent was removed in vacuo after completion of the

reaction. The afforded product was used without further purification.

/0

socl, cl

|

7 N\

DCE, reflux X=\ _ < R

()

Figure 3.4. Synthesis of 2-halobenzoyl chlorides

3.2.5. (4)_ Synthesis of (2-halobenzoyl)-pyrazoles

Method A:

The reactant number (4) to be employed in cyclisation reaction was synthesised
via the reaction of pyrazole (2) and 2-halobenzoic acid with ratios 1:1.1 in the presence
of 0.3 equivalent of 4-dimethylaminopyridine and 1.2 equivalent of N,N'-
dicyclohexylcarbodiimide reagents in dichloromethane overnight at RT (Figure 3.5).
The afforded product was purified by column chromatography in dichloromethane

eluent.
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*“\=s'r, DCM

(2) (4)
Figure 3.5. Synthesis of (2-halobenzoyl)-pyrazoles via 2-halobenzoic acid

Method B:

The reactant number (4) to be employed in cyclisation reaction was synthesised
via the reaction of pyrazole (2) and 2-halobenzoyl chloride with ratios 1:1.2 in the
presence of 1 equivalent of caesium carbonate reagent in dichloromethane overnight at
RT (Figure 3.6). The afforded product was purified by column chromatography in

dichloromethane eluent.

(2)

Figure 3.6. Synthesis of (2-halobenzoyl)-pyrazoles via 2-halobenzoyl chloride

All synthesised (2-halobenzoyl)-pyrazoles employing this method were
tabulated below (Table 3.4).
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Table 3.4. (2-halobenzoyl)-pyrazoles synthesized in this study

o 0
| /
N
So g
HyC(H,O)y | !
(4aa) (4ba) (4ca)
-0
O o O o O o
| / | / | /
N N N
S \N'Hb L
I I I
(4da) (4ea) (4fa)
Cl
| /O
N
\ N
I
(4ga)
o 0]
| /
N
I
(4ab) (4ac) (4ad)
fﬁa, gﬁa
(4cd) (o] (4dd)
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3.2.6. (5)_Synthesis of Benzo-Bimanes

Firstly, 2-iodo-benzoyl-pyrazole (0.3 mmol) was dissolved in DMSO (2 mL). To
the reaction, 1 mol% copper at first, 40 mol% ligand (triphenylphosphine) 3 minutes
later and K,CO3 (0.6 mmol) 30 minutes later were added respectively and stirred
vigorously. The reaction was monitored by thin layer chromatography until the
completion of the reaction. After the solvent was removed in vacuo the afforded product

was isolated by column chromatograhy using hexane-ethyl acetate system.

(o) /0
Cu(l), ligand ) N
: \
Base, DMSO N l
R4 —~' R,
(4) (5)

Figure 3.7. Synthetic route to Benzo-Bimanes

All synthesised benzo-bimanes employing this method were tabulated below
(Table 3.5).
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Table 3.5. Benzo Bimanes synthesized in this study

(5aa) (Sbha)

0 0 0 0
\ / \ /
N N
O 5O
CSHll

0] 0 (o} o
\ / \ /
N N
‘o ¢
(5da) (Sea)
Cl
o 0]
\ /
N
\_ N
(5ga)

(5ab) Br

(0) (0] (0} (0]
\ / \ /
N N
\ Nb N
(5ac)

0o 0
\ /
N
\_ N
bo’
(5¢d)
~0

Cl

(0)

(5ad)

0] o)

\ /
N’>C
\_ N

é ’

0)
\ /
N
\_ N
bo’
(5dd)
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3.3. Characterization of Pyrazoles, Reactants and Products

All synthesised pyrazoles, reactants and products were characterized by *H and
3C NMR spectroscopies. NMR data of all novel pyrazoles, reactants and products for

literature were given below.

Figure 3.8. 5-phenyl-1H-pyrazol-3(2H)-one

2a: 'H NMR (400 MHz, DMSO-dg) &: 11.16 (bs, 2H), 7.66 (d, J= 7.6 Hz, 2H),
7.38 (t, J=7.6 Hz, 2H), 7.28 (t, J= 7.6Hz, 1H), 5.89 (s, 1H). *C NMR (100 MHz,
DMSO-dg) 8: 166.2, 148.6, 135.7, 134.0, 132.52, 132.9, 129.69, 129.9, 92.0.

(0

/
ﬁNH
N

H;C(HC)y H

Figure 3.9. 5-pentyl-1H-pyrazol-3(2H)-one

2b: 'H NMR (400 MHz, DMSO-dg) &: 10.37 (bs, 2H), 5.22 (s, 1H), 2.41 (t,
J=7.6 Hz, 2H), 1.51 (pent, J= 7.6 Hz, 2H), 1.30-1.22 (m, 4H), 0.84 (t, J=6.8 Hz, 3H).
3C NMR (100 MHz, DMSO-d) 5: 161.4, 144.8, 88.4, 31.2, 28.8, 26.0, 22.2, 14.3.
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Iz

o

Figure 3.10. 5-(4-methoxyphenyl)-1H-pyrazol-3(2H)-one

2c: 'H NMR (400 MHz, DMSO-dg) &: 10.83 (bs, 2H), 7.58 (d, J= 8.4 Hz, 2H),
6.95 (d, J=8.8 Hz, 2H), 5.78 (s, 1H), 3.76 (s, 3H). **C NMR (100 MHz, DMSO-ds) §:
161.5, 159.3, 143.5, 126.6, 123.5, 114.6, 86.7, 55.6.

Iz

Cl

Figure 3.11. 5-(4-chlorophenyl)-1H-pyrazol-3(2H)-one

2d: 'H NMR (400 MHz, DMSO-dg) &: 11.86 (bs, 2H), 7.68 (d, J= 8.8 Hz, 2H),
7.44 (d, J= 8.4 Hz, 2H), 5.89 (s, 1H). *C NMR (100 MHz, DMSO-dg) &: 161.0, 142.9,
132.5, 132.52, 130.2, 129.2, 129.2, 126.9, 87.2.

Iz

Figure 3.12. 5-(m-tolyl)-1H-pyrazol-3(2H)-one

2e: *H NMR (400 MHz, DMSO-dg) &: 11.73 (bs, 1H), 9.87 (bs, 1H), 7.47 (s,
1H), 7.44 (d, J= 7.6 Hz, 1H), 7.27 (t, J=7.6 Hz, 1H), 7.10 (d, J= 7.6 Hz, 1H), 5.85 (s,
1H), 2.32 (s,3H). *C NMR (100 MHz, DMSO-dg) 5: 161.4, 143.9, 138.4, 130.8, 129.1,
128.9, 125.8, 122.3, 87.3, 21.5.
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Iz

Figure 3.13. 5-(o-tolyl)-1H-pyrazol-3(2H)-one

2f: 'H NMR (400 MHz, DMSO-dg) &: 10.52 (bs, 2H), 7.39-7.37 (m, 1H), 7.24-
7.20 (m, 3H), 5.64 (s, 1H), 2.35 (s, 3H). *C NMR (100 MHz, DMSO-dg) &: 161.1,
143.1, 135.6, 131.2, 131.0, 128.8, 128.4, 126.3, 90.6, 21.1.

Iz

Figure 3.14. 5-(p-tolyl)-1H-pyrazol-3(2H)-one

29: 'H NMR (400 MHz, DMSO-dg) &: 11.71 (bs, 1H), 9.81 (bs, 1H), 7.52
(d, J= 8.4 Hz, 2H), 7.18 (d, J= 7.6 Hz, 2H), 5.81 (s, 1H), 2.28 (s, 3H). *C NMR (100
MHz, DMSO-dg) 8: 161.5, 143.6, 137.5, 129.7, 128.1, 125.1, 87.0, 21.2.

Figure 3.15. 2-(2-iodobenzoyl)-5-phenyl-1H-pyrazol-3(2H)-one

4aa: 'H NMR (400 MHz, DMSO-dg) 8: 13.23 (s, 1H), 8.14 (d, J= 7.6 Hz, 1H),
8.02 (d, J=8.0 Hz, 1H), 7.79 (d, J=7.6 Hz, 2H), 7.63 (t, J=7.2 Hz, 1H), 7.50 (t, J=7.4 Hz,
2H) , 7.40 (t, J=7.6 Hz, 2H), 6.71 (s, 1H). *C NMR (100 MHz, DMSO-ds) 5: 164.2,
155.7, 143.7, 141.7, 134.4, 134.0, 131.6, 129.5, 129.1, 129.0, 125.5, 95.6, 93.6.
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Br

Figure 3.16. 2-(4-bromo-2-iodobenzoyl)-5-phenyl-1H-pyrazol-3(2H)-one

4ab: *H NMR (400 MHz, CDCls) 8: 12.39 (s, 1H), 7.94 (d, J=8 Hz, 1H), 7.64
(d, J=1.6 Hz, 1H), 7.62 (d, J=7.6 Hz, 2H), 7.46 (dd, J=8.8, 1.6 Hz, 1H), 7.35 (t, J=7.2
Hz, 2H), 7.26 (t, J=7.2 Hz, 1H), 6.50 (s, 1H) *C NMR (100 MHz, CDCls) &: 161.5,
155.6, 143.9, 135.8, 134.1, 133.3, 130.1, 129.4, 128.9, 128.5, 127.5, 127.2, 125.4, 92.9.

Figure 3.17. 2-(2-iodo-5-metylbenzoyl)-5-phenyl-1H-pyrazol-3(2H)-one

4ac: "H NMR (400 MHz, CDCls) &: 10.78 (s, 1H), 7.86 (d, J=6 Hz, 1H), 7.60 (d,
J=8 Hz, 3H), 7.38 (t, J=7.6 Hz, 2H ), 7.34 (t, J=7.6 Hz, 1H), 7.21 (dd, J=8 Hz, 1H), 6.65
(s, 1H), 2.35 (s, 3H) **C NMR (100 MHz, CDCl3) 8: 162.7, 144.4, 137.5, 134.5, 134.4,
132.8,129.7,129.1, 128.9, 128.6, 125.4, 119.4, 93.9, 20.7.
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Figure 3.18. 2-(2-iodo-5-methoxybenzoyl)-5-phenyl-1H-pyrazol-3(2H)-one

4ad: 'H NMR (400 MHz, CDCls) 8: 12.33 (s, 1H), 7.62 (d, J=6.8 Hz, 2H),
7.54 (s, 1H), 7.53 (d, J=5.2 Hz, 1H), 7.35 (t, J=8 Hz, 2H), 7.27 (t, J=7.2 Hz, 1H), 6.91
(dd, J=8.4, 3.2 Hz, 1H), 6.52 (s, 1H), 3.78 (s, 3H) *C NMR (100 MHz, CDCls) &:
162.7, 158.6, 135.3, 130.9, 129.4, 128.9, 128.4, 125.4, 119.9, 116.8, 112.8, 93.0, 55.7.

(o) (o]
\ )
N
%¢
|

CsHq4

Figure 3.19. 5-pentyl-2-(2-iodobenzoyl)-1H-pyrazol-3(2H)-one

4ba: *H NMR (400 MHz, CDCls) 8: 11.01 (s, 1H) , 8.04 (t, J=7.6 Hz, 2H), 7.45
(t, =7.6 Hz, 1H), 7.20 (t, J=7.6 Hz, 1 H), 6.11 (s, 1H), 2.58 (t, J=7.6 Hz, 2H), 1.54
(pent, J=10.8 Hz, 2H), 1.21-1.11 (m, 4H), 0.79 (t, J=7.2 Hz, 3H) *C NMR (100 MHz,
CDCl3) &: 163.2, 155.2, 145.9, 141.8, 133.5, 133.26, 131.7, 128.1, 94.9, 93.8, 31.2,
28.4, 26.2, 22.3, 14.0.
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Figure 3.20. 2-(2-iodobenzoyl)-5-(4-methoxyphenyl)-1H-pyrazol-3(2H)-one

4ca: *H NMR (400 MHz, CDCl5) §: 10.85 (s, 1H), 8.08 (d, J=7.6 Hz, 1H), 7.71-
7.63 (m, 1H), 7.52 (d, J=9.2 Hz, 2H), 7.46 (t, J=7.6 Hz, 1H), 7.22 (td, J=8.0, 1.6 Hz
1H), 6.94 (d, J=9.2 Hz, 2H), 6.55 (s, 1H), 3.83 (s, 3H) *C NMR (100 MHz, CDCls) &:
163.0, 160.2, 156.1, 144.3, 141.8, 133.5, 132.9, 131.9, 128.1, 126.9, 121.7, 114.5, 95.1,
93.2, 55.4.

Cl

Figure 3.21. 2-(2-chlorobenzoyl)-5-(4-iodophenyl)-1H-pyrazol-3(2H)-one

4da: *H NMR (400 MHz, CDCl3) &: 10.37 (s, 1H), 8.08 (d, J=7.6 Hz, 1H), 7.97
(d, J=8 Hz, 1H), 7.54 (d, J=8 Hz, 2H), 7.44 (t, J= 7.6 Hz, 1H), 7.30 (d, J=7.6 Hz, 2H),
7.23 (t, J=7.6, 1H), 6.61 (s, 1H) *C NMR (100 MHz, CDCls) &: 162.9, 155.9, 143.5,
141.9, 134.8, 133.6, 132.7, 131.9, 129.3, 128.1, 127.5, 126.8, 95.1, 93.9.
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Figure 3.22. 2-(2-iodobenzoyl)-5-(m-tolyl)-1H-pyrazol-3(2H)-one

4ea: 'H NMR (400 MHz, CDCls) &: 10.63 (s, 1H), 8.07 (t, J=6.8 Hz, 2H), 7.45
(t, J=8 Hz, 1H), 7.40 (s, 1H), 7.39 (s, 1H), 7.29 (t, J=8 Hz, 1H), 7.24 (td, J=7.6, 1.6 Hz,
1H), 7.16 (d, J=8 Hz, 1H), 6.64 (s, 1H), 2.38 (s,3H) **C NMR (100 MHz, CDCls) &:
163.0, 156.2, 144.6, 141.9, 138.9, 133.5, 132.9, 131.9, 129.8, 129.0, 128.1, 126.2,
122.5,95.1, 93.8, 21.4.

Figure 3.23. 2-(2-iodobenzoyl)-5-(o-tolyl)-1H-pyrazol-3(2H)-one

4fa: 'H NMR (400 MHz, CDCl3) &: 10.11 (bs, 1H), 8.13-8.08 (m, 2H), 7.48 (t,
J=8Hz, 1H), 7.41 (d, J= 6.8 Hz, 1H), 7.32-7.22 (m, 4H), 6.49 (s,1H), 2.45 (s, 3H) *C
NMR (100 MHz, CDCls) &: 163.0, 155.7, 143.6, 141.9, 136.1, 133.6, 132.9, 132.1,
131.1, 129.2, 129.0, 128.7, 128.1, 126.3, 96.8, 95.1, 20.7.
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Figure 3.24. 2-(2-iodobenzoyl)-5-(p-tolyl)-1H-pyrazol-3(2H)-one

4ga: 'H NMR (400 MHz, CDCls) §: 10.68 (bs, 1H), 8.07 (t, 2H), 7.50-7.43 (m,
3H), 7.25-7.19 (m, 3H), 6.60 (s, 1H), 2.35 (s, 3H) *C NMR (100 MHz, CDCls) §:
163.0, 156.2, 144.5, 141.9, 139.1, 133.5, 132.9, 132.0, 129.8, 128.1, 126.2, 125.3, 95.1,

93.6, 21.3.

Figure 3.25. 2-(2-iodo-5-methoxybenzoyl)-5-(4-methoxyphenyl)-1H-pyrazol-3(2H)-one

4cd: *H NMR (400 MHz, CDCl3) &: 10.84 (bs, 1H), 7.59 (d, J= 8.8 Hz, 1H),
7.53-7.51 (m, 3H), 6.96 (dd, J=3.2, 2.8 Hz, 1H), 6.90 (d, J= 8.4 Hz, 2H), 6.54 (s, 1H),
3.81 (s, 3H), 3.79 (s, 3H) *°C NMR (100 MHz, CDCls) &: 162.5, 160.1, 158.6, 156.1,
144.4,135.4, 130.6, 126.8, 121.7, 120.3, 116.7, 114.5, 113.1, 93.1, 55.7, 55.3.
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Figure 3.26. 5-(4-chlorophenyl)-2-(2-iodo-5-methoxybenzoyl)-1H-pyrazol-3(2H)-one

4dd: 'H NMR (400 MHz, CDCls) &: 10.99 (bs, 1H), 7.61 (d, J= 9.2 Hz, 1H),
7.54 (s, 1H), 7.52-7.51 (m, 2H), 7.35 (d, J= 8.4 Hz, 2H), 6.98 (dd, J= 3.2, 3.2 Hz, 1H),
6.62 (s,1H), 3.83 (s5,3H) *C NMR (100 MHz, CDCl3) &: 162.5, 158.6, 156.0, 143.5,
135.5, 135.0, 130.5, 129.4 127.5, 126.7, 120.2, 116.9, 113.0, 94.2, 55.7.

Figure 3.27. (5aa) 3-phenylpyrazolo[1,2-a]indazole-1,9-dione

5aa: *H NMR (400 MHz, CDCls) &: 8.39 (d, J=6.8 Hz, 1H), 8.00 (d, J=6.4
Hz, 2H), 7.78 (t, J=7.2 Hz, 1H), 7.44 (d, J=7.2 Hz, 5H), 6.43 (s, 1H). *C NMR (100
MHz, CDCl3) &: 156.1, 153.8, 153.6, 152.0, 135.9, 131.5, 129.8, 128.7, 126.7, 125.1,
116.9, 114.1, 86.6.
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Figure 3.28. 6-bromo-3-phenylpyrazolo[1,2-a]indazole-1,9-dione

5ab: 'H NMR (400 MHz, CDCls) &: 8.22 (d, J=8.4 Hz, 1H), 7.96 (dd, J=2, 0.8
Hz, 2H), 7.61 (d, J=1.6 Hz, 1H), 7.56 (dd, J=7.2, 1.6 Hz, 1H), 7.46-7.39 (m, 3H), 6.42
(s, 1H) **C NMR (100 MHz, CDCls) &: 156.2, 153.7, 152.9, 151.7, 131.2, 130.3, 129.9,
129.8, 128.7, 126.7, 120.2, 113.1, 87.0.

Figure 3.29. 7-methyl-3-phenylpyrazolo[1,2-a]indazole-1,9-dione

5ac: *H NMR (400 MHz, CDCls) 8: 8.18 (d, J=8 Hz, 1H), 8.00 (dd, J=8, 1.2 Hz,
2H), 7.58 (dd, J=8.4, 2 Hz, 1H), 7.48-7.42 (m, 3H), 7.34 (d, J=8.8 Hz, 1H), 6.41 (s, 1H),
2.48 (s, 3H) *C NMR (100 MHz, CDCly) &: 156.0, 153.8, 152.2, 151.9, 136.9, 135.2,
131.6, 129.8, 128.7, 128.1, 126.7, 116.6, 113.7, 86.4, 20.7.
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Figure 3.30. 7-methoxy-3-phenylpyrazolo[1,2-a]indazole-1,9-dione

5ad: '"H NMR (400 MHz, CDCls) &: 8.00 (d, J=6 Hz, 2H), 7.75 (d, J=2.8 Hz,
1H), 7.48-7.42 (m, 3H), 7.39-7.32 (m, 2H), 6.40 (s, 1H), 3.92 (s, 3H) **C NMR (100
MHz, CDCls) &: 156.7, 156.1, 153.7, 152.1, 148.3, 131.6, 129.8, 128.7, 126.7, 125.2,
118.2, 114.4, 108.4, 86.2, 56.2.

Figure 3.31. 3-pentylpyrazolo[1,2-a]indazole-1,9-dione

5ba: 'H NMR (400 MHz, CDCls) &: 8.37 (d, J= 8.4 Hz, 1H), 7.76 (t, J=8 Hz,
1H), 7.43 (t, J=8.4 Hz, 2H), 6.94 (s, 1H), 2.76 (t, J=7.6 Hz, 2H), 1.73 (pent, J= 5.6 Hz,
2H), 1.42-1.25 (m, 4H), 0.90 (t, J= 7 Hz, 3H) *C NMR (100 MHz, CDCls) &: 159.9,
153.8, 153.5, 151.5, 135.7, 128.6, 124.9, 116.8, 88.2, 31.5, 29.4, 28.5, 22.4, 13.9.
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Figure 3.32. 3-(4-methoxyphenyl)pyrazolo[1,2-a]indazole-1,9-dione

5ca: *H NMR (400 MHz, CDCls) §: 8.38 (dd, J=8.4, 2 Hz, 1H), 7.93 (d, J=9.2
Hz, 2H), 7.76 (t, J=8 Hz, 1H), 7.44 (d, J=5.6 Hz, 1H), 7.43 (d, J=7.2 Hz, 1H), 6.96 (d,
J=9.2 Hz, 2H), 6.36 (s, 1H), 3.85 (5, 3H) *C NMR (100 MHz, CDCls) &: 160.9, 155.9,
153.7, 153.6, 151.0, 135.7, 128.6, 128.2, 124.9, 124.1, 116.8, 114.2, 114.1, 86.2, 55.3.

Cl

Figure 3.33. 3-(4-chlorophenyl)pyrazolo[1,2-a]indazole-1,9-dione

5da: '"H NMR (400 MHz, CDCls) &: 8.40 (d, J=6.4 Hz, 1H), 7.93 (d, J=8.8 Hz,
2H), 7.79 (t, J=8 Hz, 1H), 7.48-7.41 (m, 4H), 6.40 (s, 1H) *C NMR (100 MHz, CDCls)
8: 154.9, 153.8, 153.5, 152.1, 135.9, 135.8, 123.0, 128.9, 128.7, 127.9, 125.2, 116.9,
114.1, 86.5.
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Figure 3.34. 3-(m-tolyl)pyrazolo[1,2-a]indazole-1,9-dione

Sea: 'H NMR (400 MHz, CDCl3) 8: 8.35 (dd, J= 7.6, 1.6 Hz, 1H), 7.85 (s, 1H),
7.76 (d, J=1.6 Hz, 1H), 7.22 (t, J=7.2 Hz, 1H), 7.43 (s, 1H), 7.40 (d, J=8 Hz, 1H), 7.31
(t, =7.2 Hz, 1H), 7.20 (d, J=8 Hz, 1H), 6.38 (s, 1H), 2.39 (s, 3H) *C NMR (100 MHz,
CDCly) 8: 156.1, 153.7, 153.6, 151.9, 138.4, 135.8, 133.6, 131.3, 130.6, 128.6, 127.2,
124.9, 123.9, 116.8, 114.1, 86.6, 21.3.

Figure 3.35. 3-(o-tolyl)pyrazolo[1,2-a]indazole-1,9-dione

5fa: *H NMR (400 MHz, CDCls) &: 8.42 (dd, J= 2.0, 1.6 Hz, 1H), 7.82-7.77 (m,
1H), 7.68 (d, J=7.2 Hz, 1H), 7.48-7.45 (m, 2H), 7.34-7.28 (m, 3H), 6.31 (s,1H), 2.55 (s,
3H) ©*C NMR (100 MHz, CDCly) &: 157.0, 153.8, 153.6, 151.4, 136.7, 135.9, 131.6,
130.9, 129.8, 129.2, 128.7, 125.9, 125.0, 116.9, 114.2, 89.7, 21.1.
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Figure 3.36. 3-(p-tolyl)pyrazolo[1,2-a]indazole-1,9-dione

5ga: "H NMR (400 MHz, CDCl3) &: 8.40 (dd, J= 1.6 Hz, 1.2 Hz, 1H), 7.90 (d,
J= 8.0 Hz, 2H), 7.80-7.76 (m, 1H), 7.47-7.44 (m, 2H), 7.27 (d, J= 6.4 Hz, 2H), 6.41 (s,
1H), 2.40 (s, 3H) *C NMR (100 MHz, CDCl3) &: 156.2, 153.8, 153.6, 152.0, 140.0,
135.8, 129.4, 128.7, 128.6, 126.6, 125.0, 116.9, 114.1, 86.5, 21.4.

Figure 3.37. 7-methoxy-3-(4-methoxyphenyl)pyrazolo[1,2-a]indazole-1,9-dione

5cd: *H NMR (400 MHz, CDCls) 8: 7.94 (d, J= 8.8 Hz, 2H), 7.74 (d, J=2.8 Hz,
1H), 7.36 (s, 1H), 7.34 (d, J= 2.8 Hz, 1H), 6.97 (d, J= 8.8 Hz, 2H), 6.34 (s, 1H), 3.92 (s,
3H), 3.86 ('s, 3H) *C NMR (100 MHz, CDCls) &: 160.9, 156.6, 155.9, 153.7, 152.1,
148.3,128.2,125.2, 124.1, 118.2, 114.4, 114.1, 108.3, 85.8, 56.2, 55.4.
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Figure 3.38. 3-(4-chlorophenyl)-7-methoxypyrazolo[1,2-a]indazole-1,9-dione

5dd: *H NMR (400 MHz, CDCls) &: 7.94 (d, J= 8.4 Hz, 2H), 7.76 (d, J= 2.4 Hz,
1H), 7.44 (d, J= 8.4 Hz, 2H), 7.39-7.37 (m, 2H), 6.39 (s, 1H), 3.94 (s, 3H) °C NMR
(100 MHz, CDCl3) &: 156.7, 155.0, 153.7, 152.2, 148.3, 135.8, 130.1, 129.0, 128.0,
125.5, 118.3, 114.3, 108.3, 86.2, 56.2.
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CHAPTER 4

RESULTS & DISCUSSION

Bimane compounds hold unique photophysical and chemical properties.
However, there are very few and challenging methodologies to synthesise and derivatise
these important molecules. Because of this reason, development of a new and
straightforward method to obtain various analogues of bimane compounds are in high
demand. The major concern of thesis study is to construct new and applicable method

for the synthesis of “syn” bimane derivatives.

4.1.Synthesis of Benzo-Bimane Derivatives via Copper Catalyst:

Optimization and Other Studies

In the course of this study, a new method to synthesise benzo-bimanes
derivatives was developed. The strategy was constructed on the synthesis of compound
4 which further undergoes to copper catalysed intramolecular cyclisation reaction. The
proposed synthetic method along the way of succesful synthesis was demonstrated in

figure below (Figure 4.1).

o o o o o) o
\ | \ / \ /
\ E:-‘- CIm \ EH - I) €N§
N
I
R4 I R> R4 R R4 R,
2
(4) (5)

(2) ()

Figure 4.1. Cyclization reaction with copper-catalyst

C(aryl)-N, C(aryl)-C and C(aryl)-O cyclisation reactions via copper catalyst as
indicated above (Figure 4.1) have been well-known as Ullmann condensation reactions

in the literature.
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4.1.1. Optimization Studies

Compound 4 bearing only phenyl ring as a substituent was chosen as probe

substrate to survey optimum reaction conditions. Also, iodine substituent was used as

halogen group. The reactant to be utilised in optimisation studies was shown in figure

below.

(4)

Figure 4.2. The reactant (4) to be utilized in optimization studies and final product (5)

The optimisation studies was first started with the investigation of the effect of

organic/inorganic bases to the reaction yield. For this purpose, conversion of reactions

was examined by switching one or more reagents used in the reaction. Copper(l) iodide

(catalyst), L-proline (ligand) and K,CO3 (base) were vital prerequisites for reaction to

proceed as seen in Table 4.1. Otherwise, the conversion occured scarcely.

Table 4.1. Conversion of reactant to Benzo-Bimane with different reagents.

(o) (o}
\ |
N
50
|

(4)

(0.3 mmol)

DMSO,

24

o) o)
90°C -
o \ ,{l
h
(5)

Cul (%) | L-Proline (%) Yield (%)

2 Determined by *H NMR.

20

2 eq.

2 eq. <3

2 eq. 0
- 0
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In the next step, the experiments were carried out in diverse amount of copper(l)
iodide to observe the catalytic activity of copper on C-N coupling reaction by holding
constant the other variables of reaction such as amounts of L-proline (ligand) and

potassium carbonate (base) (Table 4.2).

Table 4.2. Effect of catalyst to the reaction

L-proline (20 %),

o o o o
\ / \ /
N K2CO3 (2 eq.), N
\ _NH > \_N

| DMSO, 90°C
(5)

(4) 24 h
(0.3 mmol)
0.25 40
0.5 41
1.0 55
2.0 16
4.0 8
10 5.0 5

All experiments were isolated.

When the above table was analyzed, optimum amount of copper catalyst was
established as 1 mol% to achive highest reaction yield. It should be noted that, the
transformation was also possible by using small amounts of copper catalys (Table 4.2,
Entries 5, 6). However, higher amounts of copper decreased the yield of the reaction
that most probably caused by the deactivation of catalyst with ligands (Table 4.2,
Entries 8-10).

As it is well known that the type of solvent have high impact on these type of
coupling reactions. To understand the effect of solvation to the reaction yield, various

organic solvents and water / solvent combinations were surveyed.
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Table 4.3. Effect of solvent to the reaction

é;b

25
25
11
15

Cul(0,5%)
L-proline (20 %),
g b K,CO; (2 eq.),
@) 24 h
(0.3 mmol)
- Toluene
- Dimethylformamide 90
Acetonitrile 85
Tetrahydrofuran 70
Dioxane 90
DMSO/Water (1:1, v/v) 90

All experiments were purified.

As shown in above table, there is no positive effect of used solvents to outcome

of the reaction. Based upon this experiment, DMSO was chosen as suitable solvent for

intramolecular C-N coupling reaction.

Up to this point, the reaction temperature was held constant at 90°C in all

experiments (not including solvent effect experiments). The effect of temperature to the

conversion was also investigated to get optimal reaction conditions. Increase in the

reaction temperature reduced solely conversion time, but it had no positive contribution

to isolated yield. As a result of all experiments carried out, 90°C was optimum

temperature for that reaction.
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Table 4.4. Effect of temperature to the reaction

Cul(0,5%)

L-proline (20 %),
KZCO3 (2 eq. )s
(4)

(0.3 mmol)

# Reaction time 30 min. All experiments purified.

In general, these types of metal catalysed reactions were initiated with the metal

catalyst via activation with a base and ligand species (Figure 4.3) (Li et al., 2014).

Figure 4.3. Activation of copper-catalyst by ligand and base
(Source: Lietal., 2014)

Based on this knowledge, distinctive types of ligands were exploited to obtain
higher isolated yields. L-proline (ligand), one of the commercially procurable and
economic aminoacids, was given priority. Feasibility of the reaction was proven in the
presence of that ligand via various amounts of catalyst. Also, the reaction yield was
endeavoured to increase by implementing distinctive ligands which include heteroatoms
and activate copper-catalyst. It could be concluded from Table 4.5 that the highest
isolated yield was obtained with triphenylphosphine (40 mol %). As known,
triphenylphosphine is higly stable in air and also have some important features to be
used in catalytic reactions. Compared to metal ammine complexes, metal phosphine
complexes have an aptitude to be lipophilic and indicate good solubility in organic
solvents. In addition to this, it is amenable with metals in variable oxidation states.
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These two properties make metal phosphine complexes

reactions.

Table 4.5. Effect of ligand to the reaction

useful reagents for catalytic

o

(0.3 mmol)

K2CO3 (2 eq.),
b 90°C,1h
(4)

(@)

gb

Yield
Entry Ligand Cul (%) %)
(1]

L-proline (10 %)
2 L-proline (20 %)
22 L-proline (40 %)

1,10 phenanthroline (20 %)

S

1,10 phenanthroline (40 %)

1,10 phenanthroline (20 %)

(20 %)
Pyridine (20 %)

NN
|

2,2’-bipyridyl (20 %)
Triphenylphosphine (20 %)

Triphenylphosphine (40 %)

All experiments isolated.

N-tosylpyrolidyn-2-carboxamide

1 55
1 50
1 65
1 70
2 32
1 51
1 55
1 63
1 67
1 85

One of the most signifant factor required for reaction was sort of the base. With

this object in mind, the effect of a variety of organic and inorganic bases to the reaction

was researched. Although the maximum vyield was achieved via addition of K,COs,

caesium carbonate have no constructive effect to the reaction yield. Among all organic

bases employed in synthesis, 1,8-diazabicycloundec-7-ene suggested the best reaction

yield. According to previous studies, differences in the amount of copper catalyst had
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great influences over the reaction. Due to that reason, the effect of 1,8-
diazabicycloundec-7-ene offering higher yields were examined along with a variety of
copper amounts. Surprisingly, its effect to the reaction yield was fewer compared to

conditon incorporating 1 mol% Cul and potassium carbonate.

Table 4.6. Effect of base to the reaction

Cul(1%)
b L-proline (20 %),
90°C,1h
(4)
(0.3 mmol)
Base (2 eq.) Cul (%) Yield (%)
Cs,CO,
32 Triethylamine 0,5 10
33 Diethylamine 0,5 <10
1,8-Diazabicycloundec-7- 0,25 55
ene
1,8-Diazabicycloundec-7- 0,5 60
ene
1,8-Diazabicycloundec-7- 1 40
ene

All experiments purified.

As a consequence of optimisation studies, the optimum condition for this
reaction was analysed in entry 30. Therefore, the optimum condition for that reaction
was gathered under 0.3 mmol 2-iodobenzoyl-pyrazole (reactant) in dimethylsulfoxide, 1
mol% Cul, 40 mol% triphenylphosphine and 2 equivalent K,CO3 at 90°C in 1 hour.

Subsequent to determination of optimum conditions, the availability of reaction
with reactants bearing other halogens was initially tested. The results shown in Table

4.7 proved practicality of reaction with reactants bearing other halogen group.
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Table 4.7. Effect of other halogens to the reaction

(\) IO Cul (1 %) C\> /0
N PPh; (40 %), N
S ﬁ:b > \_N
X 90°C, 1 h
(4) (5)

(0.3 mmol)

(2-halobenzoyl)-

Yield (%)
pyrazol

o) o)
\ l

? N

\_ NH

4.1.2. Synthesis of Benzo-Bimane Derivatives

All experiments isolated.

To understand the feasibility of reaction conditions, various substitution patterns

were synthesised and subjected to copper catalyzed C-N intramolecular coupling

reaction under optimum conditions. The results summarized in Table 4.8 revealed the

applicability of methodology to achieve benzo-biman structure with various substitution

patterns such as electron donating and withdrawing groups.

Table 4.8. Cyclization reactions of different analogs of (2-iodobenzoyl)-pyrazoles

o /0 Cul(1%) o /0
\ N PPh; (40 %), ) N
\ _NH > \_N
X 90°C,1h
(4) R, (5)
Ri (0.3 mmol) R

continued on next page
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Table 4.8. continued

Reactant

Product

Yield (%)

5ab

o)
\ /
N
\_.NH

" ?b’

/]
O -

o
\N/
o
\_NH N
41 ?:Tb/
4ad

\ /
N
\ _N /
5ad
(o) 0] (o) (o]
\ / \ /
N N
<\:NH \_N
42 I 40
C5H11 C5H11
4ba 5ba
(o) (0] (o) (o]
\ / \ /
N N
\ g,.:b \_N
I
43 76

continued on next page
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Table 4.8. continued
Reactant Product Yield (%)

\ \
\ \
~0
0

4cd =0 5cd
o o o
\ / \ /
N o) N
( JD’ \ SO
49 I (o) 66

All experiments purified.
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4.1.3. Photophysical Experiments

In addition to NMR and mass analyses, the photophysical properties of
synthesised compounds were also surveyed carefully. Because of the fact that bimane
compounds are highly fluorescent and used in many areas of sensor chemistry, it is
important to determine photophysical properties of synthesised compounds.
Fluorescence emission and UV absorption measurements were made for all benzo-
bimane derivatives as shown below. Because of quantum yield measurements, dye

concentration of each molecule in fluorescence graphs may vary (Appendix C).

In this study, quantum vyields, extinction coefficients, Xex and Aeyn of all
synthesised benzo-bimane analogues have been cautiously established. The derivatives
bearing electron donor group(s) and having conjugation system have unique, high
fluorescence intensities and high quantum yields (®) due to the fact that there occurs
electron donation in the ring conjugation system. Contrary to this, the derivatives
bearing heavy atom (bromine) and aliphatic group have relatively low fluorescence
intensities and low quantum yields (®) because of the fact that these molecules are
lacking in conjugation system (phenyl ring conjugation) and their emissions are
probably compressed by heavy atom effect. Determination of quantum vyields,
extinction coefficients, Aex and Aem of all synthesized benzo-bimane derivatives have
critical importance to be applied in areas such as fluorescent labelling, fluorescent

bioimaging and sensing.

4.2. Photophysical Studies of Benzo-Bimane Derivatives

Photophysical measurements of benzo-bimane compounds were performed
carefully. Stock solutions were prepared in acetonitrile for fluorescence and absorption
measurements. UV absorption spectra were measured over the range from 250 nm to
600 nm. Upon excitation at 310 nm, fluorescence measurements of compounds were
performed over the range from 320 nm to 600 nm. In measurements, dye concentrations
were held constant as 20 uM and samples were handled in 10.0 mm path length quartz
cuvettes (2.0 mL volume). Slit widths were adjusted to 5nm-5nm for both excitation
and emission. All measurements were carried out at least in triplicate. Spectra of benzo-

bimane analogs were indicated below.
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4.2.1. Quantum Yield Calculation

Quantum yields of synthesised dyes were calculated with reference dye

coumarin 102 by using equation number [1] (Table 4.9).

QVYaye= QYret X (IAdye/|Arer) X (ODyet/ODagye) x (ll,dyez/ I],refz)---[]-]

QY: Quantum yield
IA: Integrated area
OD: Optical density

n: refractive index

Table 4.9. Quantum vyields of synthesized Benzo-Bimane analogs

Product Quantum Yield Product Quantum Yield

5aa 14.9 5da 16.5
5ab 0.9 Sea 12.2
5ac 25.3 5fa 0.8
5ad 25.0 5ga 4.0
Sba 4.8 5cd 13.2
5ca 76.4 5dd 8.2
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4.2.2. Extinction Coefficient Calculation

Moreover, extinction coefficients for each synthesised benzo-bimane derivatives
were calculated by sketching absorption graphs. Accordingly, dye solutions were
prepared in acetonitrile over concentration range from 2.5 uM to 20 uM and absorbance
measurements were made. Absorbance-concentration graph was plotted by using the
measurement results acquired formerly and extinction coefficients of synthesised dyes

were calculated by using equation number [2] (Table 4.10).

A=€xbxec...[2]

A: Absorbance

€: Extinction coefficient (cm™ M™)
b: Path length of light (cm)

c: Concentration (M)

Table 4.10. Extinction coefficient of synthesized Benzo-Bimane analogs

Product | Extinction Coefficient Product Extinction Coefficient

(10° Mt em™) (10° Mt ecm™)
5aa 0.0186 5da 0.027
5ab 0.0164 5ea 0.019
5ac 0.022 5fa 0.066
5ad 0.016 5ga 0.057
5ba 0.0029 5cd 0.018
5ca 0.026 5dd 0.006

54



CHAPTER 5

CONCLUSION

In the literature, it is well-known that 1,5-diazabicyclo[3.3.0] octadiendione,
shortly called as ‘’9,10-dioxabimane’” or "bimane", compounds having substantial
photochemical and photophysical features have been synthesized under harsh reaction
conditions in extremely low yields. In this study, less harmful chemicals and simple
reaction conditions are envisaged to synthesise bimane compounds. Optimisation
studies and synthesis of various analogues of bimane compounds could be successfully

carried out.

In the course of synthesis study by utilising Ullmann reaction, benzo-bimane
compound and analogues of it are synthesised via the treatment of various 2-
iodobenzoyl pyrazol compounds with copper catalyst, ligand and base in moderate to
good yields. Additionally, it is experienced that the method offered for the synthesis of
benzo-bimane is applicable to the benzo-bimane derivatives bearing electron

withdrawing and electron donor groups.

Moreover, photophysical properties of all synthesised products have been
cautiously investigated in this study. The derivatives bearing electron donor group(s)
and having conjugation system have unique, high fluorescence intensities and high
quantum yields (®). Contrary to this, the derivatives bearing heavy atom (bromine) and
lacking in conjugation system have low fluorescence intensities and low quantum yields
(®). All synthesised benzo-bimane analogues hold unique photophysical properties to

be applied in areas such as fluorescent labelling, fluorescent bioimaging and sensing.
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APPENDIX A

'H-NMR AND BC-NMR SPECTRA OF COMPOUNDS
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Figure A.22. *C-NMR of 2-(2-iodo-5-methoxybenzoyl)-5-phenyl-1H-pyrazol-3(2H)-one
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Figure A.23. "H-NMR of 5-pentyl-2-(2-iodobenzoyl)-1H-pyrazol-3(2H)-one
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Figure A.24. > C-NMR of 5-pentyl-2-(2-iodobenzoyl)-1H-pyrazol-3(2H)-one
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Figure A.26. *C-NMR of 2-(2-iodobenzoyl)-5-(4-methoxyphenyl)-1H-pyrazol-3(2H)-one
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Figure A.27. *H-NMR of 2-(2-chlorobenzoy!)-5-(4-iodophenyl)-1H-pyrazol-3(2H)-one
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Figure A.28. **C-NMR of 2-(2-chlorobenzoyl)-5-(4-iodophenyl)-1H-pyrazol-3(2H)-one
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Figure A.29. *H-NMR of 2-(2-iodobenzoyl)-5-(m-tolyl)-1H-pyrazol-3(2H)-one
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Figure A.30. *C-NMR of 2-(2-iodobenzoyl)-5-(m-tolyl)-1H-pyrazol-3(2H)-one
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Figure A.31. "H-NMR of 2-(2-iodobenzoyl)-5-(o-tolyl)-1H-pyrazol-3(2H)-one
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Figure A.32. *C-NMR of 2-(2-iodobenzoyl)-5-(0-tolyl)-1H-pyrazol-3(2H)-one
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Figure A.33. *H-NMR of 2-(2-iodobenzoyl)-5-(p-tolyl)-1H-pyrazol-3(2H)-one
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Figure A.34. *C-NMR of 2-(2-iodobenzoyl)-5-(p-tolyl)-1H-pyrazol-3(2H)-one
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Figure A.37. *H-NMR of 5-(4-chlorophenyl)-2-(2-iodo-5-methoxybenzoyl)-1H-
pyrazol-3(2H)-one
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Figure A.40. *C-NMR of 3-phenylpyrazolo[1,2-a]indazole-1,9-dione
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Figure A.41. *H-NMR of 6-bromo-3-phenylpyrazolo[1,2-a]indazole-1,9-dione
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Figure A.42. **C-NMR of 6-bromo-3-phenylpyrazolo[1,2-a]indazole-1,9-dione
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Figure A.45. 'H-NMR of 7-methoxy-3-phenylpyrazolo[1,2-a]indazole-1,9-dione
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Figure A.46. **C-NMR of 7-methoxy-3-phenylpyrazolo[1,2-a]indazole-1,9-dione
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Figure A.47. *H-NMR of 3-pentylpyrazolo[1,2-a]indazole-1,9-dione
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Figure A.49. 'H-NMR of 3-(4-methoxyphenyl)pyrazolo[1,2-a]indazole-1,9-dione
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Figure A.50. *C-NMR of 3-(4-methoxyphenyl)pyrazolo[1,2-a]indazole-1,9-dione
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Figure A.51. *H-NMR of 3-(4-chlorophenyl)pyrazolo[1,2-a]indazole-1,9-dione
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Figure A.52. **C-NMR of 3-(4-chlorophenyl)pyrazolo[1,2-a]indazole-1,9-dione
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Figure A.54. *C-NMR of 3-(m-tolyl)pyrazolo[1,2-a]indazole-1,9-dione
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Figure A.56. *C-NMR of 3-(o-tolyl)pyrazolo[1,2-a]indazole-1,9-dione
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Figure A.58. *C-NMR of 3-(p-tolyl)pyrazolo[1,2-a]indazole-1,9-dione
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Figure A.61. *H-NMR of 3-(4-chlorophenyl)-7-methoxypyrazolo[1,2-a]indazole-1,9-
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Figure A.62. **C-NMR of 3-(4-chlorophenyl)-7-methoxypyrazolo[1,2-a]indazole-1,9-

dione

90



APPENDIX B

IR SPECTRA OF PRODUCTS
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Figure B.1. IR Spectrum of 3-phenylpyrazolo[1,2-a]indazole-1,9-dione
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Figure B.2. IR Spectrum of 6-bromo-3-phenylpyrazolo[1,2-a]indazole-1,9-dione
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Figure B.3. IR Spectrum of 7-methyl-3-phenylpyrazolo[1,2-a]indazole-1,9-dione
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Figure B.4. IR Spectrum of 7-methoxy-3-phenylpyrazolo[1,2-a]indazole-1,9-dione
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Figure B.5. IR Spectrum of 3-pentylpyrazolo[1,2-a]indazole-1,9-dione
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Figure B.6. IR Spectrum of 3-(4-methoxyphenyl)pyrazolo[1,2-a]indazole-1,9-dione
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Figure B.10. IR Spectrum of 3-(p-tolyl)pyrazolo[1,2-a]indazole-1,9-dione
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APPENDIX C

FLUORESCENCE SPECTRA OF PRODUCTS

Figure C.1. Fluorescence spectra of 3-phenylpyrazolo[1,2-a]indazole-1,9-dione
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Figure C.2. Fluorescence spectra of 6-bromo-3-phenylpyrazolo[1,2-a]indazole-1,9-

dione
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Figure C.3. Fluorescence spectra of 7-methyl-3-phenylpyrazolo[1,2-a]indazole-1,9-dione
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Figure C.4. Fluorescence spectra of 7-methoxy-3-phenylpyrazolo[1,2-a]indazole-1,9-

dione
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Figure C.5. Fluorescence spectra of 3-pentylpyrazolo[1,2-a]indazole-1,9-dione
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Figure C.6. Fluorescence spectra of 3-(4-methoxyphenyl)pyrazolo[1,2-a]indazole-1,9-

dione
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Figure C.7. Fluorescence spectra of 3-(4-chlorophenyl)pyrazolo[1,2-a]indazole-1,9-

dione
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Figure C.8. Fluorescence spectra of 3-(m-tolyl)pyrazolo[1,2-a]indazole-1,9-dione
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Figure C.9. Fluorescence spectra of 3-(o-tolyl)pyrazolo[1,2-a]indazole-1,9-dione
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Figure C.10. Fluorescence spectra of 3-(p-tolyl)pyrazolo[1,2-a]indazole-1,9-dione
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Figure C.11. Fluorescence spectra of 7-methoxy-3-(4-methoxyphenyl)pyrazolo[1,2-
aJindazole-1,9-dione
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Figure C.12. Fluorescence spectra of 3-(4-chlorophenyl)-7-methoxypyrazolo[1,2-

aJindazole-1,9-dione
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