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Abstract Effects of thermal dispersion on heat transfer

and temperature field within cross-flow tubular heat

exchangers are investigated both analytically and numeri-

cally, exploiting the volume averaging theory in porous

media. Thermal dispersion caused by fluid mixing due to

the presence of the obstacles plays an important role in

enhancing heat transfer. Therefore, it must be taken into

account for accurate estimations of the exit temperature

and total heat transfer rate. It is shown that the thermal

dispersion coefficient is inversely proportional to the

interstitial heat transfer coefficient. The present analysis

reveals that conventional estimations without consideration

of the thermal dispersion result in errors in the fluid tem-

perature development and underestimation of the total heat

transfer rate.

List of symbols

A Surface area (m2)

Aint Interface between the fluid and solid (m2)

af Specific surface area (1/m)

c Specific heat (J/kgK)

cp Specific heat at constant pressure (J/kgK)

C Size of the touching arm (m)

D Size of the solid (m)

f, g Profile functions (-)

H Size of the cell (m)

hf Interfacial heat transfer coefficient (W/m2K)

k Thermal conductivity (W/mK)

nj Unit vector pointing outward from the fluid side to

solid side (-)

Pr Prandtl number (-)

q Heat flux (W/m2)

T Temperature (K)

V Representative elementary volume (m3)

xi Cartesian coordinates (m)

x, y, z Cartesian coordinates (m)

e Porosity (-)

g Dimensionless vertical coordinate (-)

q Density (kg/m2)

Special symbols
~/ Deviation from intrinsic average

/h i Darician average

/h if ;s Intrinsic average

Subscripts and superscripts

f Fluid

s Solid

1 Introduction

Thermal dispersion is the spreading of heat caused by

variations in fluid velocity about the mean velocity. In

addition to the molecular thermal diffusion, there is sig-

nificant mechanical dispersion in heat and fluid flow in a

fluid-saturated porous medium, as a result of hydrodynamic

mixing of the interstitial fluid particles passing through

pores. This thermal dispersion causes additional heat
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transfer, which brings further complications in dealing with

transport processes in fluid saturated porous media. As the

thermal dispersion becomes significant, the hydrodynamic

dispersion comes to play an important role within the pore,

resulting an additional flow resistance, which is usually

modeled by a velocity square term as in Ergun’s equation

[1].

In cross flow tubular heat exchangers, the fluids pass

through tube bundles. The presence of tubes within the

flow field naturally induces significant spreading of heat in

both transverse and axial directions. Thus, the effects of

thermal dispersion on the heat transfer characteristics are

expected to be quite significant. However, in most con-

ventional heat exchanger analyses, such effects have been

neglected completely. It should be pointed out that the

mixing due to thermal dispersion is much more significant

than turbulence mixing. Thus, the thermal dispersion must

be considered fully in such heat exchanger analyses.

Yagi et al. [2] were the first to measure the effective

longitudinal thermal conductivities of packed bed, taking

full account of the effect of thermal dispersion, and even-

tually found that the longitudinal component of the

dispersion coefficient much greater than its transverse

component. According to Wakao and Kaguei [3], this great

finding, despite of its importance, puzzled them so much

that they hesitated to publish their results for some years.

Taylor [4] reported a famous analytical treatment in a tube.

Since then, a number of theoretical and experimental

efforts (e.g. Aris [5], Koch and Brady [6], Han et al. [7],

and Vortmeyer [8]) were made to establish useful corre-

lations for estimating the effective thermal conductivities

due to thermal dispersion (See Kaviany [9]). Furthermore,

Kuwahara et al. [10] and Nakayama et al. [11] conducted a

series of numerical experiments by assuming a macro-

scopically uniform flow through a lattice of rods, so as to

elucidate the effects of microscopic velocity and temper-

ature fields on the thermal dispersion. It is also worthwhile

to mention that Nakayama et al. [12] derived a thermal

dispersion heat flux transport equation from the volume

averaged version of Navier–Stokes and energy equations

and showed that it naturally reduces to an algebraic

expression for the effective thermal conductivity based on

a gradient-type diffusion hypothesis.

In this paper, we shall first derive an inverse propor-

tional relationship between the interstitial heat transfer

coefficient and the thermal dispersion conductivity, over-

looked in the previous investigations. Then, we shall use

this relationship to take full consideration of thermal dis-

persion effects on the temperature field and total heat

transfer rate within cross flow tubular heat exchangers. We

shall follow the definition of thermal dispersion heat flux to

evaluate the longitudinal component of the thermal dis-

persion conductivity, exploiting the macroscopic energy

equation based on the volume averaging theory. It will be

shown that conventional estimations without consideration

of the thermal dispersion results in errors in the fluid

temperature development and underestimation of the total

heat transfer rate.

2 Macroscopic energy equation

Consider a cross flow tubular heat exchanging system as

illustrated in Fig. 1. We shall consider the energy equation

for the fluid passing through isothermal tubes as follows:

qf cpf

oT

ot
þ qf cpf

o

oxj
ujT ¼

o

oxj
kf

oT

oxj

� �
: ð1Þ

The boundary conditions are given by

x ¼ 0 : T ¼ Tin ð2aÞ
On the tube wall : T ¼ Ts ð2bÞ

such that

x ¼ 1 : T ¼ Ts: ð2cÞ

We take a local control volume V within in the system,

whose length scale V1=3 is much smaller than the external

characteristic length, but, at the same time, much greater

than the structural characteristic length, namely, the tube

diameter (see e.g. Nakayama [13]). Under this condition,

the volume average of a certain variable / in the fluid

phase is defined as

/h if� 1

Vf

Z
Vf

/dV ð3Þ

where Vf is the volume space which the fluid phase

occupies. The porosity e � Vf =V is the volume fraction of

inT

Du

sT

x

V

Fig. 1 Cross flow tubular heat exchanger

184 Heat Mass Transfer (2012) 48:183–189

123



the fluid space. Following Nakayama [13], Cheng [14],

Quintard and Whitaker [15] and many others, we

decompose a variable into its intrinsic average and the

spatial deviation from it:

/ ¼ /h ifþ ~/: ð4Þ

We shall exploit the following spatial average relation-

ships:

/1/2h if¼ /1h if /2h ifþ ~/1
~/2

D Ef

ð5Þ

o/
oxi

� �f

¼ 1

e
oe /h if

oxi
þ 1

Vf

Z
Aint

/nidA ð6Þ

where Aint is the local interfacial area between the fluid and

solid matrix, while ni is the unit vector pointing outward

from the fluid side to solid side. Similar relationships hold

for the solid phase, whose intrinsic average is defined as

/h is� 1

Vs

Z
Vs

/dV: ð7Þ

Upon integrating (1) over the local control volume with

help of the foregoing relationships, we obtain the volume

averaged energy equation as follows:

qf cpf
e
o Th if

ot
þ qf cpf

o uj

� �
Th if

oxj

¼ o

oxj
ekf

o Th if

oxj
þ kf

V

Z
Aint

TnjdA� qf cpf
e ~u ~T
� �f

0
B@

1
CA

þ 1

V

Z
Aint

kf
oT

oxj
njdA ð8Þ

where uj

� �
¼ e uj

� �f
is the Darcian velocity while Th if

is the intrinsic average of the fluid temperature. Obviously,

the parenthetical terms on the right hand-side of (8) denote

the diffusive heat transfer, while the last term describes the

interfacial heat transfer between the tube wall and fluid,

which may be modeled via Newton’s cooling law [12] as

1

V

Z
Aint

kf
oT

oxj
njdA ¼ �af hf Th if�Ts

� 	
ð9Þ

where af is the specific surface area. The thermal dispersion

tensor of our interest may be modeled [12] as

�qf cpf
~uj

~T
� �f¼ kdiskj

o Th if

oxk
: ð10Þ

Noting that the surface integral term associated with

tortuosity between the parentheses vanishes for isothermal

tube walls, we have the following macroscopic energy

equation in terms of the intrinsic average of the fluid

temperature, Th if :

qf cpf
e
o Th if

ot
þ qf cpf

o uj

� �
Th if

oxj

¼ o

oxj
e kf djk þ kdisjk


 � o Th if

oxk
� af hf Th if�Ts

� 	
ð11Þ

3 Thermal dispersion and interstitial heat transfer

In order to elucidate a close relationship between the lon-

gitudinal thermal dispersion conductivity and the intersti-

tial heat transfer coefficient, we shall consider the

macroscopic energy equation for the case of steady one

dimensional macroscopic flow as illustrated in Fig. 1.

qf cpf
uD

d Th if

dx
¼ d

dx
ekdisxx

d Th if

dx

 !
� af hf Th if�Ts

� 	

ð12Þ

where uD ¼ uh i ¼ e uh if is the Dacian axial velocity. The

molecular thermal conductivity is dropped since the

thermal dispersion overwhelms it. In most conventional

heat exchanger analyses, the thermal dispersion term in the

foregoing equation is neglected such that

qf cpf
uD

d Th if

dx
¼ �af hf Th if�Ts

� 	
ð13Þ

which, with the boundary condition, namely, (2a, 2b, 2c),

gives us an exponential temperature distribution:

Th if�Ts

Tin � Ts
¼ exp � af hf

qf cpf uD
x

 !
: ð14Þ

The heat balance relationship given by (14) which

neglects the thermal dispersion term is often considered to

be valid, when the convection predominates over the heat

conduction such as in cross-flow tubular heat exchangers.

However, it is the convection from the tube walls that

controls the spatial distribution of the local temperature

among the tubes and thus enhancing the thermal

dispersion activities. Therefore, the effects of the

thermal dispersion on the temperature field in reality

may never be negligibly small for highly convective flows

encountered in heat exchanging systems. Upon replacing

the temperature gradient in the diffusion term by the

temperature difference using the approximate heat balance

relationship (13), we can reduce (12) to an approximate

form:

qf cpf
uD

af hf
þ ekdisxx

qf cpf
uD

 !
d Th if

dx
¼ � Th if�Ts

� 	
: ð15Þ
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Thus, the longitudinal thermal dispersion term may be

estimated as follows:

� qf cpf
~u ~T
� �f¼ �qf cpf

uh if Th if� Th is
� 	

f � 1ð Þ g� 1ð Þh if

¼
qf cpf

uD


 �2

eaf hf
þ kdisxx

 !
f � 1ð Þ g� 1ð Þh if d Th if

dx
ð16Þ

where the temperature difference is replaced by the

temperature gradient using (15). Hence, from (16) and

(10), we obtain

kdisxx
¼

qf cpf
uD


 �2

eaf hf

f � 1ð Þ g� 1ð Þh if

1� f � 1ð Þ g� 1ð Þh if
ð17Þ

where

u ¼ uh if f gð Þ; ð18aÞ

and

T � Ts ¼ Th if�Ts

� 	
g gð Þ: ð18bÞ

In order to estimate the coefficient associated with the

thermal dispersion conductivity, we shall consider a

convective flow through square tubes in a regular

arrangement as shown in Fig. 2, where the dimensionless

coordinate g is defined as

g ¼ 2y= H � Dð Þ: ð19Þ

The profile functions f(g) and g(g) should satisfy the

following conditions:

g ¼ 0 :
df

dg
¼ dg

dg
¼ 0 ð20aÞ

g ¼ 1 : f ¼ g ¼ 0 ð20bÞ

and

fh if¼ gh if¼ 1 ð20cÞ

where /h if¼ 1

2

Z1

�1

/dg: ð21Þ

Any reasonable functions, which satisfy the foregoing

conditions, may be used to evaluate the shape factor

f � 1ð Þ g� 1ð Þh if . One of the simplest functions would be

f gð Þ ¼ g gð Þ ¼ 3

2
1� g2

 �

ð22Þ

which gives f � 1ð Þ g� 1ð Þh if¼ 1=5. Hence, we have

kdisxx
¼ 1

4

qf cpf
uD


 �2

eaf hf
: ð23Þ

It is interesting to note that the thermal dispersion

coefficient, kdisxx
as given by (23), is inversely proportional

to the interfacial heat transfer coefficient, hf. The thermal

dispersion coefficient, which is difficult to measure

directly, can easily be estimated from (23), as we

measure the interstitial heat transfer coefficient instead,

using the single-blow method [16]. Alternatively, we may

use a number of empirical correlations for the heat transfer

coefficient established for tube bundles available in the

literature (e.g. Zhukauskas [17]) to estimate the thermal

dispersion coefficient. The effects of the tube geometry and

arrangement on the thermal dispersion must be accounted

by using the heat transfer coefficient obtained for that

particular tube geometry and arrangement.

4 Analysis for cross-flow tubular heat exchanger

The validity of the inverse proportional relationship can be

checked by carrying out pore scale numerical simulations

and evaluating hf and kdisxx
, faithfully following the defi-

nitions, namely, (9) and (10), using the pore results

obtained using a periodic structure as done by many others

u /
f

u u ε=

D

H D−
s

T

f
T

f
u

x

y

Fig. 2 Model consisting of

square tubes for evaluation of

the shape factor
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[10, 18, 19]. In Fig. 3, the thermal dispersion conductivity

obtained from such pore scale numerical simulations is

compared with the thermal dispersion conductivity esti-

mated from the present inverse proportional relationship

with the interstitial heat transfer coefficient obtained from

the pore scale numerical simulations. The abscissa variable

is set to the Peclet number PeD ¼ qf cpf
uDD=kf . As the

figure shows, the inverse proportional relationship provides

a reasonable estimate for the pore scale numerical simu-

lation results, which substantiates the validity of the present

relationship.

In what follows, we shall investigate the effects of the

thermal dispersion on the temperature field within heat

exchangers. Upon substituting (23) for the thermal con-

ductivity into the original macroscopic energy equation, we

obtain

qf cpf
uD

d Th if

dx
¼

qf cpf
uD


 �2

4af hf

d2 Th if

dx2
� af hf Th if�Ts

� 	
:

ð24Þ

The foregoing second order ordinary differential

equation may easily be solved with the boundary

conditions given by (2a, 2b, 2c) as

Th if�Ts

Tin � Ts
¼ exp �

2
ffiffiffi
2
p
� 1


 �
af hf

qf cpf uD
x

 !

¼ exp �0:828
af hf

qf cpf uD
x

 !
: ð25Þ

Comparison of the foregoing solution (25) with the

conventional solution (14) reveals that the conventional

solution underestimates the distance required for reaching

the thermal equilibrium. For the case of air pre-heater, for

example, the temperature at the exit is much lower than the

one estimated by the conventional solution neglecting

thermal dispersion. The total heat transfer rate may be

estimated by integrating (14) and (25) over the distance

L as

Q ¼ Aaf hf Ts � Tinð Þ
ZL

0

exp � af hf

qf cpf uD
x

 !
dx

¼ qf cpf uDA Ts � Tinð Þ 1� exp � af hf L

qf cpf uD

 ! !

: without dispersion ð26aÞ

Q ¼ Aaf hf Ts � Tinð Þ
ZL

0

exp �0:828
af hf

qf cpf uD
x

 !
dx

¼
qf cpf uDA Ts � Tinð Þ

0:828
1� exp �0:828

af hf L

qf cpf uD

 ! !

: with dispersion:

ð26bÞ

These two equations indicate that the thermal dispersion

works to enhance the total heat transfer from the tubes to

fluid. The foregoing (26a, 26b) are valid for all tube

geometries and arrangements, as the corresponding heat

transfer coefficient is substituted into the equations.

Pore scale numerical simulations were conducted using

a semi-finite periodic array of isothermal square tubes, as

shown in Fig. 4. Computations were carried out using a

grid system, namely, (1000 9 100) to cover one row of the

tubes as indicated by the dashed lines. The symmetry

boundary conditions were imposed along the horizontal

boundaries. Grid nodes are laid out densely around the

tubes. The numerical results are found to be independent of

any additional refinement of the grid system, thus, ensuring

that the results are independent of the number of grid

nodes. Convergence was measured in terms of the maxi-

mum change in each dimensionless dependent variable

during an iteration, which was set to 10-5.

An air at constant temperature enters into the array of

tubes… with D/H = 0.8 and af = 4D/H2 at qf cpf
uDD=kf ¼

800 and receives heat from the isothermal tubes. The

resulting velocity and temperature fields are presented

in Figs. 5 and 6, respectively. As seen from Fig. 5,

the velocity field becomes periodically fully-developed

quickly after passing through the second unit (x [ 2H).

Since the tubes are closely packed for this case, no sepa-

ration bubbles are observed behind the tubes. When the

Fig. 3 Comparison of the inverse proportional relationship with DNS

Fig. 4 Physical model for pore scale numerical simulations
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porosity is high, the separation bubbles may appear. Such

turbulent flow cases may be found in [19].

The pore scale results were integrated over a unit

structure to obtain the intrinsic volume average tempera-

ture of the fluid Th if . In Fig. 7, the development of the

intrinsic volume average temperature obtained from such

pore scale numerical simulations is compared with the

temperature development estimated from (14) (without

thermal dispersion) and that estimated from (25) (with

thermal dispersion). The pore scale numerical results clo-

sely follow the temperature variation predicted by (25).

Note that the air temperature is substantially lower as we

consider thermal dispersion, which guarantees larger tem-

perature difference between the tube and air and hence

more heat transfer from the tube to air, as dictated by (26b).

This indicates that the effects of thermal dispersion on the

temperature development must be taken into full consid-

eration for accurate estimations of the heat transfer char-

acteristics in cross-flow tubular heat exchangers.

5 Conclusions

An inverse proportional relationship has been found

between the interstitial heat transfer coefficient and the

longitudinal thermal dispersion conductivity, which was

overlooked in most previous investigations. This relation-

ship has been used to obtain a simple analytical expression

for the fluid temperature development within cross flow

tubular heat exchangers. Pore scale numerical simulations

were also conducted to compare the results with the ana-

lytical results, revealing that the numerical simulation

Fig. 5 Pore scale velocity field

Fig. 6 Pore scale temperature

field

Fig. 7 Development of the fluid temperature
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results closely follow the temperature development

obtained analytically in full consideration of thermal dis-

persion. The present study clearly indicates that conven-

tional estimations without consideration of the thermal

dispersion results in errors in the fluid temperature devel-

opment and underestimation of the total heat transfer rate.
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