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BRIEF COMMUNICATIONS

STRONGLY RADICAL SUPPLEMENTED MODULES

E. Büyükaşık1 and E. Türkmen2 UDC 512.5

Zöschinger studied modules whose radicals have supplements and called these modules radical supple-
mented. Motivated by this, we call a module strongly radical supplemented (briefly srs) if every submod-
ule containing the radical has a supplement. We prove that every (finitely generated) left module is an
srs-module if and only if the ring is left (semi)perfect. Over a local Dedekind domain, srs-modules and
radical supplemented modules coincide. Over a nonlocal Dedekind domain, an srs-module is the sum of
its torsion submodule and the radical submodule.

1. Introduction

Throughout this paper, R is an associative ring with identity, and all modules are unital left R-modules. Let
M be an R-module. By N � M we mean that N is a submodule of M: A submodule L � M is said to
be essential in M; denoted by L E M; if L \ N ¤ 0 for every nonzero submodule N � M: A submodule
S of M is called small (in M/ , denoted by S � M; if M ¤ S C L for every proper submodule L of M:

By Rad M we denote the sum of all small submodules of M; or, equivalently the intersection of all maximal
submodules of M: A module M is called supplemented (see [1]) if every submodule N of M has a supplement,
i.e., a submodule K minimal with respect to N C K D M: A submodule K is a supplement of N in M if
and only if N C K D M and N \ K � K (see [1]). An R-module M is said to be radical supplemented
if Rad M has a supplement in M: Radical supplemented modules were studied by Zöschinger in [2] and [3].
Motivated by this definition, we call a module strongly radical supplemented if every submodule containing the
radical has a supplement. The srs-modules lie between radical supplemented modules and supplemented modules.
Some examples are provided to show that these inclusions are proper.

In this paper, among other results, we prove that the srs-modules are closed under factor modules and finite
sums. Every left R-module is an srs-module if and only if R is left perfect. For modules with small radical, the
notions of supplemented module and srs-module coincide. This implies that every finitely generated R-module
is an srs-module if and only if R is semiperfect. Over a commutative nonlocal domain, we prove that every
reduced srs-module M is of the form M D T .M/ C Rad M; where T .M/ is the torsion submodule of M:

A commutative domain is h-local if and only if every finitely generated torsion module is an srs-module. Over
a local Dedekind domain (i.e., over a DVR), a module is an srs-module if and only if it is radical supplemented.
Over a nonlocal Dedekind domain, an srs-module M is of the form M D T .M/C Rad M:
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2. Strongly Radical Supplemented Modules

First, we show some properties of srs-modules.

Proposition 2.1. Every homomorphic image of an srs-module is an srs-module.

Proof. Let L � N � M and Rad.M=L/ � N=L: Since .Rad M C L/=L � Rad.M=L/; we have
Rad M � N: By assumption, N has a supplement, say K; in M: Then, according to [1] (41.1(7)), .K C L/=L

is a supplement of N=L in M=L: Hence, M=L is an srs-module.

Proposition 2.2. If M is an srs-module, then M= Rad M is semisimple.

Proof. By Proposition 2.1, M= Rad M is an srs-module. We have Rad.M= Rad M/ D 0; and, therefore,
M= Rad M is supplemented. According to [1] (41.2(3)), M= Rad M is semisimple.

To prove that the finite sum of srs-modules is an srs-module, we use the following standard lemma (see
[1] (41.2)):

Lemma 2.1. Let M be an R-module and let M1 and N be submodules of M with Rad M � N: If M1

is an srs-module and M1 CN has a supplement in M; then N has a supplement in M:

Proof. Let L be a supplement of M1 C N in M: Since Rad M1 � Rad M � N; we have Rad M1 �

.LCN /\M1: Then .LCN /\M1 has a supplement, say K; in M1 because M1 is an srs-module. Therefore,

M DM1 CN C L D K C Œ.LCN / \M1�CN C L D .K CN /C L:

Since N C K � N CM1; we conclude that L is also a supplement of N C K in M: Then, according to [4]
(Lemma 1.3a), K C L is a supplement of N in M:

Proposition 2.3. Let M DM1 CM2; where M1 and M2 are srs-modules. Then M is an srs-module.

Proof. Suppose that N � M with Rad M � N: Clearly, M1 CM2 C N has the trivial supplement 0

in M; and so, by Lemma 2.1, M1 C N has a supplement in M: Applying the lemma once again, we obtain a
supplement for N in M:

Corollary 2.1. Every finite sum of srs-modules is an srs-module.

Lemma 2.2. Let M be a module with Rad M DM: Then M is an srs-module.

Proof. Clearly, M has the trivial supplement 0 in M: Since M D Rad M is the unique submodule
containing the radical, we conclude that M is an srs-module.

Let M be an R-module. By P.M/ we denote the sum of all submodules V of M such that Rad V D V:

Corollary 2.2. Let M be an R-module. Then P.M/ is an srs-module.

Proof. For any module M; we have Rad P.M/ D P.M/: Then, by Lemma 2.2, P.M/ is an srs-module.

The example below shows that srs-modules need not be supplemented.

Example 2.1. Consider the Z-module M DZ Q: Then M is an srs-module because Rad Q D Q: On the
other hand, M is not supplemented by virtue of [4] (Theorem 3.1).
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Proposition 2.4. Let M be an R-module with Rad M � M: In this case, M is supplemented if and only
if M is an srs-module.

Proof. In one direction, the statement is obvious. Suppose that M is an srs-module. Let N be a submodule
of M: Then N C Rad M has a supplement, say L; in M: Hence,

N C Rad M C L DM and .N C Rad M/ \ L� L:

Since Rad M �M; we have

N C L DM and N \ L � .N C Rad M/ \ L� L;

i.e., N \ L� L: Hence, N has a supplement L in M: Thus, M is supplemented.

In [6], a ring R is called left max if every nonzero R-module has a maximal submodule. It is well known that
R is a left max ring if and only if Rad M � M for every nonzero left R-module M: By using Proposition 2.4,
we obtain the following corollary:

Corollary 2.3. Every srs-module over a left max ring is supplemented.

Proposition 2.5. Let M be an R-module. Suppose that Rad M is supplemented and M is an srs-module.
Then M is supplemented.

Proof. Let N be a submodule of M: By assumption, Rad M C N has a supplement in M: Since Rad M

is supplemented, N has a supplement in M by virtue of [1] (41.2). Hence, M is supplemented.

A submodule U � M is said to be cofinite if M=U is finitely generated. In [5], M is called cofinitely
supplemented if every cofinite submodule of M has a supplement in M: It is also shown that M is cofinitely
supplemented if and only if every maximal submodule of M has a supplement in M (see [5], Theorem 2.8).
Since Rad M is contained in every maximal submodule of M; every srs-module is cofinitely supplemented. But
the converse need not be true in general, as is shown in the example presented below.

First, we need the following lemma:

Lemma 2.3. Let M be an R-module and let U; V �M: If V is a supplement of U in M and Rad V � U;

then Rad V � V:

Proof. Suppose that Rad V C T D V for some T � V: Then

M D U C V D U C Rad V C T D U C T:

Since V is a supplement and T � V; we have T D V: Hence, Rad V � V:

Example 2.2. Let Z be the ring of integers and let p be a prime in Z: Consider the Z-module M DL
n�1 Zpn ; where Zpn D Z=pnZ: Then M is a torsion module, and it is cofinitely supplemented by virtue of

[5] (Corollary 4.7). To see that M is not an srs-module, consider the submodule pM of M: Since M=pM is
a semisimple module, we have Rad M � pM: We prove that pM does not have a supplement in M: Assume
that pM has a supplement, say N; in M: Then Rad N � N by Lemma 2.3. Since every element of M is
annihilated by some power of p; the module M can now be considered as a module over the local ring Z.p/:

Then N is a bounded module by virtue of [5] (Lemma 2.1). Therefore, pnN D 0 for some n � 1: On the other
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hand, since N is a supplement of pM; we have M D pM C N; and so pnM D pnC1M C pnN D pnC1M:

Therefore, pnM is a divisible module by virtue of [5] (Lemma 4.4). However, M does not have a nonzero
divisible submodule. Hence, pnM D 0; a contradiction. Therefore, pM does not have a supplement in M; i.e.,
M is not an srs-module.

Proposition 2.6. Let R be an arbitrary ring and let M be an R-module. Suppose that M= Rad M is
finitely generated. In this case, M is cofinitely supplemented if and only if it is an srs-module.

Proof. Let M be an R-module and let N be a submodule of M with Rad M � N: Note that

ŒM= Rad M�=ŒN= Rad M� ŠM=N

is finitely generated, and, thus, N is a cofinite submodule of M: Since M is cofinitely supplemented, N has a
supplement in M: Therefore M is an srs-module. The converse is obvious.

We now have the following implications on modules:

supplemented H) srs-module H) cofinitely supplemented:

Proposition 2.7. Let M be an R-module and let Rad M � U � M: If V is a supplement of U in M;

then Rad V � V:

Proof. Since Rad M � U; we have Rad V � U: Then Rad V � V by Lemma 2.3.

Recall from [6] that a submodule L of a module M is called a Rad-supplement of a submodule N of M

in M if N C L DM and N \ L � Rad L: Clearly, every supplement submodule is a Rad-supplement.

Corollary 2.4. Let M be an R-module and let N �M be such that Rad M � N: Suppose that NCL DM

for some L � M: In this case, L is a supplement of N in M if and only if L is a Rad-supplement of N and
Rad L� L:

In the proposition below, we characterize supplements of the radical of a module over semilocal rings.

Proposition 2.8. Let R be a semilocal ring and let M be an R-module. A submodule N � M is a
supplement of Rad M in M if and only if N is coatomic, M=N does not have maximal submodules, and
Rad N D N \ Rad M:

Proof. ()) Let N be a supplement of Rad M in M: Then, according to [1] (41.1(5)), we have
Rad N D N \Rad M: If N DM; then, clearly, Rad M �M: Since R is semilocal, M= Rad M is semisimple.
Therefore, every proper submodule of M is contained in a maximal submodule, i.e., M is coatomic. Assume that
N is a proper submodule of M: If K is a maximal submodule of M with N � K; then M D Rad MCN � K;

a contradiction. Therefore, N is not contained in any maximal submodule of M; i.e., M=N does not have max-
imal submodules. By Proposition 2.7, we have Rad N � N: Since N= Rad N is semisimple, N is coatomic.

(() Suppose that N CRad M ¤M: Then .N CRad M/= Rad M ¤ M= Rad M: Since R is semilocal, we
conclude that M= Rad M is semisimple, and so there exists a maximal submodule K= Rad M of M= Rad M such
that .N C Rad M/= Rad M � K= Rad M: Hence, N C Rad M � K; which implies that N � K: Therefore,
K=N is a maximal submodule of M=N; a contradiction. Consequently. N C Rad M D M: By assumption,
N \ Rad M D Rad N � N: Hence, N is a supplement of Rad M in M:
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We now characterize the rings over which all (finitely generated) modules are srs-modules.

Corollary 2.5. For a ring R; the following statements are equivalent:

(1) R is semiperfect;

(2) RR is an srs-module;

(3) every finitely generated left R-module is an srs-module.

Proof. For every finitely generated module M; we have Rad M � M: On the other hand, according to [1]
(42.6), R is semiperfect if and only if every finitely generated R-module is supplemented. In view of this fact and
Proposition 2.4, the implications .1/, .2/, .3/ are obvious.

Corollary 2.6. For a ring R; the following statements are equivalent:

(1) R is left perfect;

(2) the left R-module R.N/ is an srs-module;

(3) every left R-module is an srs-module.

Proof. The implications .1/) .3/ and .3/) .2/ are obvious.

.2/) .1/: According to Proposition 2.1, RR is an srs-module. Hence, R is semilocal by virtue of Proposi-
tion 2.2. Since R.N/ is an srs-module, Rad R.N/ has a (weak) supplement in R.N/: Therefore, R is left perfect
by virtue of [7] (Theorem 1).

The statement below is a slight modification of Lemma 1.3 (Folgerung) in [4].

Proposition 2.9. Let M be an R-module and let K be a submodule of M: If K and M=K are srs-mod-
ules and K has a supplement L in P for every submodule P with K � P �M; then M is an srs-module.

Proof. Let N be a submodule of M with Rad M � N: It follows from [4] (Lemma 1.1(d)) that we can
write

Rad.M=K/ D .Rad M CK/=K � .N CK/=K:

Since M=K is an srs-module, .N CK/=K has a supplement in M=K: This means that there exists a submodule
V=K of M=K such that .N C K/=K C V=K D M=K and Œ.N C K/=K� \ ŒV=K� � V=K: Since K � V;

we conclude that K has a supplement in V: Therefore, V D K C L and K \ L � L for some L � V: We
now have

M D N C V D N C .K C L/ D .N CK/C L:

Suppose that M D .N C K/C L0 for some L0 � L: Then M=K D .N C K/=K C .L0 C K/=K: However,
V=K is a supplement of .N CK/=K in M=K and .L0CK/=K � V=K: By virtue of the minimality of V=K;

we obtain .L0 C K/=K D V=K: Then V D L0 C K: Since L is a supplement of K in V; we have L0 D L:

Therefore, L is a supplement of N CK in M: By virtue of Lemma 2.1, N has a supplement in M: Hence, M

is an srs-module.
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The corollary below is a direct consequence of Proposition 2.9.

Corollary 2.7. Let M be an R-module that contains an Artinian submodule K: In this case, M is an
srs-module if and only if M=K is an srs-module.

Proof. In one direction, the statement follows from Proposition 2.1. Conversely, suppose that M=K is an
srs-module. By assumption, K is supplemented, and so it is an srs-module. It follows from [3] that K has a
supplement in every P with K � P �M: Therefore, M is an srs-module by Proposition 2.9.

3. srs-Modules over Dedekind Domains

Throughout this section, unless otherwise stated, we consider commutative rings. The result below is due to
Zöschinger.

Lemma 3.1 [3] (Satz 3.1). For a module over a discrete valuation ring (DVR), the following statements are
equivalent:

(1) M is radical supplemented;

(2) M D T .M/˚X; where the reduced part of T .M/ is bounded and X= Rad X is finitely generated.

We now prove that radical supplemented modules and srs-modules coincide over discrete valuation rings.
First, we need the following lemma:

Lemma 3.2. Let R be a local ring and let M be an R-module. If M= Rad M is finitely generated, then
M is an srs-module.

Proof. Let N be a submodule of M such that Rad M � N: Then M=N is finitely generated, and so
M D NCL for some finitely generated submodule L of M: Since RR is supplemented, L is also supplemented
because it is finitely generated. Thus, N has a supplement in M by Lemma 2.1.

Proposition 3.1. Let R be a DVR and let M be an R-module. In this case, M is an srs-module if and only
if M is radical supplemented.

Proof. In one direction, the statement is clear. Suppose that M is radical supplemented. Then M D

T .M/ ˚ X as in Lemma 3.1. Since T .M/ is bounded, it is supplemented by virtue of [4] (Theorem 2.4).
According to Lemma 3.2, X is an srs-module. Therefore, M is an srs-module by Corollary 2.1.

Note that, according to Example 2.2, Proposition 3.1 is not true in general for modules over Dedekind domains
that are not DVR.

Proposition 3.2. Let R be a nonlocal domain and let M be a reduced R-module. If M is an srs-module,
then M D T .M/C Rad M:

Proof. Suppose that T .M/C Rad M ¤ M: Since Rad M � T .M/C Rad M; we conclude that T .M/C

Rad M has a supplement, say L; in M: Then L has a maximal submodule K because M is reduced. Let
K 0 D T .M/C Rad M CK: It is easy to see that K 0 is a maximal submodule of M: Then K 0 has a supplement
V in M: According to [1] (41.1(3)), V is local, and so V Š R=I for some nonzero I � R: Therefore, V is a
torsion one, and so V � T .M/: We get

M D K 0 C V D T .M/C Rad M CK C V D T .M/C Rad M CK D K 0;

a contradiction. Hence, M D T .M/C Rad M:
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We now prove that the converse of Proposition 3.2 is true under a certain condition.

Proposition 3.3. Let R be a domain and let M be an R-module. Suppose that M D T .M/CRad M and
T .M/ is supplemented. Then M is an srs-module.

Proof. Let N be a submodule of M such that Rad M � N: Then

N D N \ T .M/C Rad M D T .N /C Rad M:

Let L be a supplement of T .N / in T .M/: Then T .N /C L D T .M/ and T .N / \ L� L: Hence,

M D T .M/C Rad M D T .N /C LC Rad M � N C L;

and so M D N C L: Since L is a torsion one, we have N \ L D T .N / \ L: Therefore, L is a supplement of
N in M:

Let R be a Dedekind domain and let M be an R-module. Since R is a Dedekind domain, P.M / is the
divisible part of M: According to [5] (Lemma 4.4), P.M/ is (divisible) injective, and so there exists a submodule
N of M such that M D P.M/ ˚ N: Here, N is called the reduced part of M: Note that P.M/ � Rad M:

By Corollary 2.2, we know that P.M/ is an srs-module. Using these facts, we obtain the following result:

Proposition 3.4. Let R be a Dedekind domain and let M be an R-module. In this case, M is an srs-mod-
ule if and only if the reduced part N of M is an srs-module.

Proof. According to Proposition 2.1, N is an srs-module as a homomorphic image of M: The converse
follows from Proposition 2.3.

Proposition 3.5. Let R be a nonlocal Dedekind domain and let M be an srs-module. Then M D T .M/C

Rad M:

Proof. Let M D P.M/˚ N with N reduced. Then N is an srs-module as a direct summand of M: By
Proposition 3.2, we have N D T .N /C Rad N: Therefore,

M D P.M/˚N D P.M/C T .N /C Rad N � T .M/C Rad M:

Hence, M D T .M/C Rad M:

Recall from [5] that a commutative domain R is called h-local if every nonzero nonunit of R belongs to
only finitely many maximal ideals and R=P is a local ring for every prime ideal P of R: It is also proved that a
commutative domain R is h-local if and only if R=I is a semiperfect ring for every nonzero ideal I of R (see
[5], Lemma 4.5). It is proved in [5] that R is h-local if and only if every finitely generated torsion R-module is
supplemented. Since, for finitely generated modules, supplemented modules and srs-modules coincide, we obtain
the following statement:

Proposition 3.6. Let R be a commutative domain. In this case, R is h-local if and only if every finitely
generated torsion R-module is an srs-module.
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4. H. Zöschinger, “Komplementierte moduln über Dedekindringen,” J. Algebra, 29, 42–56 (1974).
5. R. Alizade, G. Bilhan, and P. F. Smith, “Modules whose maximal submodules have supplements,” Commun. Algebra, 29, No. 6,

2389–2405 (1987).
6. J. Clark, C. Lomp, N. Vanaja, and R. Wisbauer, Lifting Modules. Supplements and Projectivity in Module Theory. Frontiers in Mathe-
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