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Abstract

Both the “eCK” model, by LaMacchia, Lauter and Mityagin, and the “CK01” model, by
Canetti and Krawczyk, address the effect of leaking session specific ephemeral data on the
security of key establishment schemes. The CK01-adversary is given a SessionStateReveal
query to learn session specific private data defined by the protocol specification, whereas
the eCK-adversary is equipped with an EphemeralKeyReveal query to access all ephemeral
private input required to carry session computations. SessionStateReveal cannot be issued
against the test session; by contrast EphemeralKeyReveal can be used against the test ses-
sion under certain conditions. On the other hand, it is not obvious how EphemeralKeyReveal
compares to SessionStateReveal. Thus it is natural to ask which model is more useful and
practically relevant.

While formally the models are not comparable, we show that recent analysis utilizing
SessionStateReveal and EphemeralKeyReveal have a similar approach to ephemeral data
leakage. First we pinpoint the features that determine the approach. Then by examining
common motives for ephemeral data leakage we conclude that the approach is meaningful,
but does not take into account timing, which turns out to be critical for security. Lastly,
for Diffie-Hellman protocols we argue that it is important to consider security when discrete
logarithm values of the outgoing ephemeral public keys are leaked and offer a method to
achieve security even if the values are exposed.

http://www.cryptolounge.net
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1 Introduction

Motivation. The extensive literature dedicated to analysis of key establishment security af-
firms its importance. The early approach where a designer argues that a specific protocol meets
an ad-hoc list of security goals is rarely used today. Instead, analysis is carried out in models
which aim to simulate the environment where the protocol is deployed.

The security models evolved since they were first proposed by Bellare and Rogaway [3] and
Blake-Wilson, Johnson and Menezes [6]. Faced with different models it is important to select
the right model for strongest results. However, deciding which is the strongest model is in
itself a non-trivial task. The Canetti and Krawczyk model [8], henceforth called “CK01”, and
the model by LaMacchia, Lauter and Mityagin [13, 14], henceforth referred to as “eCK”, are
considered among the most advanced models. It is claimed that eCK captures a wider range
of security attributes than CK01, without leaving out any CK01 implied properties. The claim
has been under scrutiny and even argued against.

Both eCK and CK01 security definitions are indistinguishability based. An adversary con-
trolling all communications interacts with parties and has to identify if the response to a test
session challenge is the test session key or a randomly chosen key. During the interaction the
adversary is allowed to learn secret data held by parties. Subject to the condition that the test
session key is not obtained via “trivial” means, a protocol is deemed secure if the adversary
cannot decide significantly better than a random guess whether the challenge response is the
test session key. Both eCK and CK01 address leakage of session specific ephemeral data in re-
lation to protocol security. The respective treatments of leakage are one of the major difference
between the two models.

On one hand the CK01-adversary is given a SessionStateReveal query to learn session specific
private information which is defined in the protocol specifications. On the other hand the eCK-
adversary is equipped with EphemeralKeyReveal query to access all ephemeral private input
required to carry the session computations. The SessionStateReveal query cannot be issued
against the test session; by contrast the EphemeralKeyReveal query can be used against the test
session under certain conditions, suggesting that eCK is stronger than CK01. But the relatives
strengths of the queries are also important and may render any comparison inconclusive. There
are vastly different views on the subject: [28, 25] claim that EphemeralKeyReveal is no weaker
than SessionStateReveal, whereas [10] argues that SessionStateReveal is stronger; §3.1 of the
full version of [7] suggests that the queries are incomparable.

Contributions. In this paper we focus on Diffie-Hellman protocols. We show that even
though EphemeralKeyReveal as used by the NAXOS security argument in [14] and Session-
StateReveal as used by the HMQV security argument in [12] return different values, their func-
tions in terms of underlying treatment of ephemeral secret leakage are essentially the same. We
clarify in what sense they have the same approach and how they differ. By looking at common
reasons for ephemeral secret leakage we argue that the approach is well motivated, but in both
arguments it fails to account for timing. The importance of timing is prompted by two attack
examples which fit into the leakage reasons. By themselves the reasons are not convincing to
choose the HMQV’s SessionStateReveal over the NAXOS’ EphemeralKeyReveal but we give a
separate motivation to consider security when the value of discrete logarithm of the ephemeral
public key is exposed. We propose a method to show security for Diffie-Hellman protocols even
if these values are revealed to the adversary. Consequently, our use of EphemeralKeyReveal is
no weaker than SessionStateReveal as used in Krawzcyk [12] and Canetti and Krawzcyk [8].
We exhibit a new protocol utilizing the method, argue its security, and show it to be among
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the most efficient and practical Diffie-Hellman protocols.

Outline. In §2 we put side by side CK01 and eCK to motivate our comparison. In §3 we
identify how HMQV and NAXOS share the same approach to security. Common sources of
leakage of ephemeral secret data, described in §4, are used to compare HMQV’s and NAXOS’
definitions, and highlight the importance of timing; the section also reasons why HMQV ap-
proach is advantageous. The new protocol, its design principles and its comparison with other
related protocols are presented in §5. The discussion wrap-ups in §6.

Notation. In the paper G is a multiplicative group of prime order q generated by g; G∗
denotes the set of non-identity elements in G. Parties engaging in key agreement are denoted
by Â,B̂,. . . with static public keys A,B,. . . , respectively; Â includes the party identifier as well
as the static public key. Usually X and Y denote the ephemeral public keys of Â and B̂,
respectively. Uppercase letters are public, whereas lowercase letters are private or secret data;
g is an exception. Furthermore the lowercase letter will typically refer to the discrete logarithm
base g of the corresponding uppercase letter. For example A = ga, in which case a is the static
private key of Â.

Acknowledgements

I thank Cas Cremers, Atsushi Fujioka and Alfred Menezes for helpful discussions and comments
on earlier drafts of this paper.

2 CK01 and eCK models

2.1 CK01 outline

In the CK01 model [8] there are n probabilistic polynomial time Turing machines, each called
a party, that run interactive procedures. A party Â possesses a certificate that binds its static
public keys to the party and can be activated via an action request Create(Â, B̂,Ψ, role) to
create a separate subroutine within the same party called a session. In the request B̂ is another
party; Ψ is a unique within Â string that identifies the session at Â; role is either initiator
or responder. Upon receiving Create(Â, B̂,Ψ, role), Â verifies that no session was previously
created with (Â, B̂,Ψ, role′) for some role’ not necessarily equal to role. For a session s =
(Â, B̂,Ψ, role), Â is the owner and B̂ is the peer of s; together Â and B̂ are partners or peers
of s. Parties can be activated via an incoming message to update an existing session s. The
response to an activation is an outgoing message or an action request.

Within its owner every session s has an associated session state that contains only protocol-
defined session-specific information related to s, portions of which are labeled secret. A session
produces local output of the form (Â, B̂,Ψ, κ), where a null value κ indicates that an error
occurred and the session is aborted ; non-null κ is labeled secret and called the session key.
The session state of a session that produced local output is erased from the memory of the
session owner. Let session s be owned by Â and produced a session key κ, given action request
Expire(s), Â deletes κ from its memory and labels s expired. Sessions su = (Â, B̂,Ψu, role)
and sv = (B̂, Â,Ψv, role′) are matching if Ψu = Ψv.

The CK01 adversary controls all communications. Parties submit outgoing responses to
the adversary, who makes decisions about their delivery. The adversary presents parties with
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incoming messages and action requests, thereby controlling session creation.1 The adversary
does not have immediate access to information labeled secret, however to capture information
leakage the adversary is allowed the queries:

• SessionStateReveal(s): The adversary obtains the information labeled secret in the state
associated with s. A special note is appended to s and it produces no further output.

• SessionKeyReveal(s): The adversary obtains the session key for a session s, provided that
the session holds a session key.

• Corrupt(party): The adversary takes complete control over the party identified via this
query and learns all information that is currently in the party’s memory. Such party
cannot be activated any more and is called corrupt. If not corrupt a party is named
honest or uncorrupted.

For a session s = (Â, B̂,Ψ, ∗) if the adversary issues SessionStateReveal(s) or SessionKeyRe-
veal(s), or Corrupt(Â) before Expire(s), including the case in which Â is corrupted before s
is even created, then s is said to be locally exposed. If neither s nor its matching session are
locally exposed, then s is fresh. The adversary’s goal is to distinguish a fresh session key from
a random key: at any stage during its execution the adversary is allowed to make one special
query Test(s), where s is a session that produced a session key, is unexpired and is fresh. With
equal probability the response is either the session key held by s or a random key. Provided
that s remains fresh throughout the adversary’s execution, a protocol is CK01-secure (see [8,
Definition 4]) if: (i) when two uncorrupted parties complete matching sessions, they both out-
put the same key; and (ii) the probability that the adversary’s guess is correct is no larger that
1
2 plus a negligible in the security parameter function.

CK01 implications. In the remainder of the paper we only consider Diffie-Hellman protocols,
where two parties Â and B̂ exchange static public keys A,B ∈ G∗, and ephemeral public keys
X,Y ∈ G∗, and thereafter compute a session key; the key derivation may also include public
information like the identities of session peers. Let Â and B̂ be partners of a session st and
sm be the session matching to st. If s∗ is different from st and sm, then SessionStateReveal
captures the security implications on st when s∗ is exposed. Exposing s∗ could reveal s∗’s
ephemeral private key to the adversary. But there are protocol secure even if the adversary
obtains x and y used in st itself. Ideally, any subset of (x, a, y, b) that contains neither (x, a)
nor (y, b) should not be sufficient to compute the session key. In the CK01 model the adversary
is allowed to obtain at most the pair (a, b) after st and sm are expired.

Krawczyk [12] considered a model, henceforth called CK01’, that addressed many CK01
shortcomings. LaMacchia, Lauter and Mityagin [14] via eCK, which we outline next, provided
another alternative.

2.2 eCK outline

As described in [14], in eCK there are n parties each having a static public-private key pair
together with a certificate that binds the public key to that party. The certifying authority
does not require parties to prove possession of static private keys, but verifies that each static
public key belongs to G∗. The adversary M is a probabilistic Turing machine and can select
identifiers for the parties, as well as register static public keys on behalf of adversary controlled
parties. Parties that are not adversary controlled are called honest.

1Note that the adversary selects Ψ.
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An honest party Â can be activated to execute an instance of the protocol called a session.
Depending on the activation Â is either session initiator I or responderR. Sessions are identified
via exchanged messages, identities of the session peers and the role of the party that owns the
session. For Diffie-Hellman protocols an initiator Â identifies a session via (I, Â, B̂,X, Y ). If it
exists the matching session is identified via (R, B̂, Â,X, Y ) and owned by a responder B̂.

The eCK adversary M controls all communications. Parties submit outgoing messages to
M, who makes decisions about their delivery and presents parties with incoming messages
via Send(message), thereby controlling session activations. Leakage of private information is
captured via the following queries:

• EphemeralKeyReveal(s): M learns the ephemeral private input to the session s.

• SessionKeyReveal(s): M learns the session key of the completed session s.

• StaticKeyReveal(party): M learns the party’s static private key.

Fresh two-pass Diffie-Hellman session in eCK is given by:

Definition 2.1 (fresh session) Let s be the session identifier of a completed session, owned
by an honest party Â with peer B̂, who is also honest. Let s∗ be the session identifier of the
matching session of s, if it exists. Define s to be fresh if none of the following conditions hold:

(i) M issues a SessionKeyReveal(s) query or a SessionKeyReveal(s∗) query (if s∗ exists);

(ii) s∗ exists and M makes either of the following queries:

– both StaticKeyReveal(Â) and EphemeralKeyReveal(s), or

– both StaticKeyReveal(B̂) and EphemeralKeyReveal(s∗);

(iii) s∗ does not exist and M makes either of the following queries:

– both StaticKeyReveal(Â) and EphemeralKeyReveal(s), or

– StaticKeyReveal(B̂).

As in CK01,M is allowed one Test(st) query and has to identify if the response is session key of
st or a random session key; st must remain fresh throughout the experiment. A key agreement
protocol is eCK-secure if: (i) when two honest parties complete matching sessions, then, except
with negligible probability, they both compute the same session key (or both output indication
of protocol failure); and (ii) no polynomially bounded adversary M can distinguish the session
key of a fresh session from a randomly chosen session key, with probability greater than 1

2 plus
a negligible in the security parameter function.

The eCK notion of freshness appears to give more power to the adversary, however, a
thorough comparison should take into account the relative strengths of EphemeralKeyReveal
and SessionStateReveal.

2.3 Notes on comparison

Due to different session identifiers eCK and CK01 are formally incomparable in the sense that
neither model can imply the other: in CK01 the identifier is set when the session is created, by
contrast in eCK the session identifier is available only after the last message, see also [13, §2.2].
The CK01 approach has a drawback: how to implement Ψ in practice. Using concatenation of
messages as CK01 session identifier requires caution: an exposed session cannot be activated so
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the effect of SessionStateReveal on the session identifier and consequently on matching condition
is not immediately clear; in that sense [12, 7] lack details. Similar issues are present in eCK [14],
in case the adversary does not deliver all messages.

In CK01 SessionStateReveal must not reveal the static private keys; only ephemeral in-
formation can be exposed. But [13] argued that in some cases leaking ephemeral randomness
also reveals the static key via weaknesses in the cryptographic primitives used by the protocol:
in some signature schemes (such as DSA) learning randomness is equivalent to learning the
signing key. Hence, in the signed Diffie-Hellman protocol, SessionStateReveal should not treat
signatures as a black box. This motivates the statement [13, pg 8]:

We require that an ephemeral secret key of an AKE session should contain all
session-specific information used by a party in the AKE session. That is, all com-
putations done by a party must deterministically depend on that party’s ephemeral
key, long-term secret key, and communication received from the other party.

Note the following about the CK01 model [8, pg.6]:

An important point here is what information is included in the local state of a
session; this is to be specified by each ke protocol.

Empty states leak no information, so at the expense of weakening the model by specifying
empty session states, as done in [7], SessionStateReveal does not leak the static private keys
via used primitives. The weakness of signed Diffie-Hellman example given in [13] shows that it
is important to comprehend the many facets of leaking ephemeral information if stronger as-
surances are desired. Protocols that first perform Diffie-Hellman computations with the static
private keys are better placed to guard them in the event of leakage of session specific ephemeral
data. But even for such protocols and even if we distance from other aspects of the underlying
models, it is crucial to fully understand the meaning, strength and use of SessionStateRe-
veal and EphemeralKeyReveal queries. Before delving in motivations for ephemeral leakage
to compare the queries, we look at previous use and comparison of EphemeralKeyReveal and
SessionStateReveal.

3 Two protocols

3.1 HMQV

Figure 1 presents HMQV [12], which is a hashed MQV [16] variant designed to achieve both
MQV efficiency and have formal security argument. Including the identities in the key derivation
function H(·) is optional for HMQV. As discussed in [12, §7.4] such modification can improve
HMQV’s security attributes but not violate them. Since the variant with the identities highlights
details relevant to our discussion, we focus on it.

Following [12, §2] sessions with identifier s = (Â, B̂,X, Y ) is matching to s∗ = (B̂, Â, Y,X).
These identifiers do not carry role information so both Â and B̂ may view themselves as initia-
tors, in which case Â computes κA = H(σ, Â, B̂) and B̂ computes κB = H(σ, B̂, Â). As a result
matching sessions may not compute the same session key2. For consistent notation we partially
address this technicality by using eCK-like identifiers, which indicate the role of session owner;

2We emphasize that this observation does not represent an attack on the core HMQV protocol. The core
protocol without identities in the key derivation function is symmetric and the session identifier and the matching
conditions in [12, §2] suffice to ensure matching sessions output the same session key.
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Â, a, A = ga

s : x,X = gx

σ = (Y Be)x+da

X →

← Y

B̂, b, B = gb

s : y, Y = gy

σ = (XAd)y+eb

d = He(X, B̂), e = He(Y, Â)

κ = H(σ, Â, B̂)

Figure 1: The HMQV key agreement protocol

matching sessions must have different roles; and lastly assume no sessions with the same owner
and peer are allowed.

The session state of HMQV contains the discrete logarithm of the outgoing ephemeral public
key. That is the session state is the doubly underlined data in Figure 1 and can be obtained
via a SessionStateReveal query.

3.2 NAXOS

Depicted in Figure 2, NAXOS [14] is a Diffie-Hellman variant that unlike its counterparts
computes the ephemeral public keys using the so called NAXOS trick. With the NAXOS trick
Â selects an ephemeral private key x̃ and sets the ephemeral public key X = gHe(x̃,a). This is in
contrast with the more common scenario where Â selects a random x and sets X = gx.

Â, a, A = ga

s : x̃, X = gHe(x̃,a)

σA = Y a

σB = BHe(x̃,a)

σe = Y He(x̃,a)

X →

← Y

B̂, b, B = gb

s : ỹ, Y = gHe(ỹ,b)

σA = AHe(ỹ,b)

σB = Xb

σe = XHe(ỹ,b)

κ = H(σA, σB, σe, Â, B̂)

Figure 2: The NAXOS key agreement protocol

NAXOS satisfies the eCK security definition with less assumptions and simpler analysis
than HMQV. However, the NAXOS trick plays a vital role in the security argument. The
ephemeral key is the private session input used with the static private key to compute the
outgoing ephemeral public key. As in HMQV, the doubly underlined values are the ephemeral
private data that the adversary can access via an EphemeralKeyReveal query.

3.3 Another interpretation.

Cremers [10] suggests that SessionStateReveal could leak the shared secrets – in case of NAXOS
shared secrets are σA, σB and σe; for HMQV the shared secret is σ. By substituting Ephemer-
alKeyReveal with SessionStateReveal and devising a NAXOS attack, [10] concludes that Ses-
sionStateReveal is the stronger query. We recall the attack and extend it to HMQV3; [1] presents

3The attack mechanisms can also be applied to MQV.
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a closely related HMQV attack. In the following boxed and dashed-boxed values are for NAXOS
and HMQV, respectively. The initiator attack [10, §3.2] proceeds as follows:

1. M issues Send(Â,B̂) to Â, who computes an outgoing ephemeral public key X and creates
a session s with initiator role.

2. M issues Send(B̂,Â) to B̂, who computes an outgoing ephemeral public key Y and creates
a session s∗ with initiator role.

3. M issues Send(s∗,X) to B̂; upon B̂’s activation

(a) B̂ computes

σB = Xb, σA = AHe(ỹ,b)

σe = XHe(ỹ,b)

d = He(X, B̂), e = He(Y, Â)

σ = (XAd)y+eb

(b) M issues SessionStateReveal(s∗) and obtains

σA,σB,σe σ

(c) B̂ completes s∗ = (I, B̂, Â, Y,X) with the session key

κ∗ = H(σB, σA, σe, B̂, Â) κ∗ = H(σ, B̂, Â)

4. M issues Send(s,Y ) to Â who computes

σA = Y a, σB = BHe(x̃,a)

σe = Y He(x̃,a)

d = He(X, B̂), e = He(Y, Â)

σ = (Y Be)x+da

and completes s = (I, Â, B̂,X, Y ) with the session key

κ = H(σA, σB, σe, Â, B̂) κ = H(σ, Â, B̂)

5. M issues Test(s) and can compute κ via the information obtained at Step 3b.

In [10] it is argued that the attack mechanism are applicable to other protocols and other models
as long as SessionStateReveal query is allowed; see also [1]. Naturally one can ask if there is a
contradiction given that HMQV was shown secure utilizing SessionStateReveal.

In relation to reflection attacks, [12, §6.3] proposes modifying d and e to identify roles,
incidentally preventing the HMQV attack, but the security argument remains invalid as it
is crucial for the simulation to keep σ secret from the adversary. In [10] SessionStateReveal
is supposed to return “the full internal state of the Turing machine executing the protocol”.
Condition 3 in [10, Definition 3] appears to imply that the adversary can learn the shared
secret computed in the test session, but the paragraph following the definition clarifies that
SessionStateReveal cannot be issued against fresh4 sessions in case the response trivially reveals
the session key. However, if SessionStateReveal is not allowed against the test session, then the
resulting model is weaker in the sense that the adversary cannot obtain any test session specific
secrets.

4The term for fresh in [10] is clean.
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HMQV could potentially address leakage of σ but without revealing x. However [12] puts
emphasis on revealing x. Since the NAXOS attack extends to HMQV, it shows that HMQV
treats the session state in the way NAXOS treats ephemeral input: it allows leaking protocol
defined ephemeral values related to test session and is not concerned with exposing the full state
of Turing machines. As such SessionStateReveal and EphemeralKeyReveal are functionally
equivalent and the attack does not contradict the HMQV security in [12]. The NSA’s Suite B
“intended to protect both classified and unclassified national security systems and information”
includes SP800-56A [24], which standardizes MQV, and considers leaking x in its rationale [24,
§6.1.1.5], but not shared secrets. We next look at reasons for ephemeral leakage and argue that
exposing data used to compute ephemeral public keys is important, but revealing shared secrets
is less relevant to practice.

4 Session specific ephemeral data

4.1 Leaking private data

Poor random number generators are the most significant source of leaking ephemeral secrets
and are notoriously hard to achieve. A whole subfield of cryptography is devoted to define
and design good generators of pseudo-randomness, and yet even with the best algorithms not
only randomness is hard on a deterministic device but also implementations are error prone.
Recall Goldberg and Wagner [11] who exposed a major weakness in the Netscape web browser.
More recently Bello [5] announced a flaw in the Debian Linux OpenSSL implementation. In
both cases weak randomness breaches security and in the latter it could be guessed before being
used.

Other important justification include side channel analysis that detect if a square-and-
multiply iteration performs a multiplication, thus revealing x while gx is computed. Smart
cards that pre-compute values X for on-line use, and store them in a less secure medium acces-
sible to malicious entities. Devices that provide good randomness but require constant external
power to keep their latest state: a malicious entity gaining temporary access to the hardware
can record its evolution path, reset it to the initial stage and subsequently anticipate its actions
in the protocol, or alternatively can recover past states. The list is not exhaustive but for key
agreement protocols it covers a wide range practical occasions.

4.2 Comparing approaches

Both leaking x and x̃ take into account compromised sources of randomness. The Ephemer-
alKeyReveal query was motivated by protocol using signature schemes that access the same
random source as the protocol and is stronger than SessionStateReveal, which does not account
for subroutines where leaking ephemeral and static keys are equivalent. Key agreement proto-
cols should take into account this aspect; though in theory for Diffie-Hellman protocols such as
HMQV and NAXOS leaking x and x̃ are on par.

The security argument for NAXOS does not account for adversaries who learn x via side
channel or other means. If an adversary obtains x but not sA = x+ da, then HMQV argument
is not affected; if sA is leaked, which is possible by the side channel mechanism outlined above,
then HMQV becomes insecure.

Formally neither SessionStateReveal nor EphemeralKeyReveal captures pre-computations:
both queries are issued against activated but not yet completed sessions, whereas an adversary
can access the pre-computed list before sessions begin. Krawczyk [12, §7.3] describes an HMQV
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attack where adversary needs only X before the session is initiated. Another example5: with key
confirmation the UM [20] protocol has forward secrecy but not key compromise impersonation
(KCI). Substitute UM with KEA+ [15] and the protocol appears secure if the adversary learns
x after the session completes, but if x is leaked before the session starts the adversary can
easily impersonate B̂ to Â. Both examples illustrate the importance of timing. One can argue
that since EphemeralKeyReveal concerns the input to the session, it is issued right before the
session is activated. But in the context of pre-computations there is little if any difference
between HMQV and NAXOS treatment: they formally consider scenarios where the adversary
accesses the storage medium at the same time as the party.

Resettable state can be used in cases where two sessions share the same public key due to a
reset. Such scenario is covered by neither HMQV nor NAXOS, which explicitly require that an
ephemeral key pair is used only once. Alternatively, if ephemeral key pairs are not reused, reset
introduces a new timing venue for the adversary: not only the adversary can record in advance
future output of the device, but can also recover past states. In general we can conclude that
timing is not covered by EphemeralKeyReveal and SessionStateReveal.

The approach in [10] is very specialized and it leaks shared secrets at a very specific stage.
Thus bad source of randomness, pre-computations and resets are not necessarily taken into
account. Side channel attacks are better addressed: while obtaining σ (for HMQV) is weaker
than obtaining sA at the very least computation involving sA is revealed.

4.3 Diffie-Hellman protocols

We presented important rationale that require security arguments for protocols to take into
account leaking ephemeral session specific data. Essential consequence of these motivations
is that ephemeral does not necessarily imply short-lived or irrecoverable. The attacks based
on timing show that models should give the adversary time flexibility to ask for ephemeral
information. Moreover, some attacks require only the release of ephemeral public information
before a session is created. Therefore, ephemeral key pairs should be treated similar to static
key pairs: the adversary should have access to the ephemeral public key before the session using
it is created and should be able to learn the ephemeral private key before, during or after the
session runs.

A natural Diffie-Hellman candidate for ephemeral session secret input is the data used to
compute X. Wide range of protocols like [14, 28, 18, 17] use the NAXOS trick and all have
simpler security arguments and weaker assumptions than HMQV, but does it justify dropping
x in favor of x̃?

While the random oracle guarantees security when X = gHe(x̃,a), any implementation has to
approximate He by a deterministic function. For example, one can apply DES with secret key a
to x̃, thus simulating He(a, x̃). In that case a is used for two different cryptographic algorithms:
DES encryption and DH computation. Such practice is not sound and certainly not modeled.
Alternatively, a could consists of two parts: one used in the computation of X and one used
for deriving the shared secrets. This only says that parties should choose ephemeral secrets
as securely as static ones, but there is no guarantee that parties could follow that. The goal
of revealing the ephemeral secrets is to represent scenarios where ephemeral secrets happen to
leak to malicious entities.

To conclude it is desirable to have secure protocols where discrete logarithm of the outgoing
ephemeral public key can be exposed before, during or after a session run. Furthermore, the
ephemeral public key should also be accessible to the adversary before the session becomes alive.

5We are not aware if this KEA+ [15] attack was previously published.

11



Such model and queries will reveal no less information than SessionStateReveal as used in [12]
and cover scenarios added to the HMQV analysis.

5 UP – unified protocol

The UP-protocol informally depicted in Figure 3, utilizes “pseudo” static keys and “postponed”
ephemeral key derivation. The postpone ephemeral key derivation offers an alternative to x̃,
namely the “postponed” ephemeral key derivation.

Â, a, A = ga

s : B̂, I, x,X = gx

σA = (Y Be)x+a

σB = (Y B)x+da

X →

← Y

B̂, b, B = gb

s : Â,R, y, Y = gy

σA = (XA)y+eb

σB = (XAd)y+b

d = He(X) e = He(Y )

κ = H(σA, σB, Â, B̂,X, Y, UP)

Figure 3: UP protocol

5.1 Protocol description

In the description γ is the security parameter, He and H are random oracle, where He outputs
integers that are half the bit-size of q.

Definition 5.1 (UP) The protocol proceeds as follows:

1. Upon activation (UP, Â, B̃, I), party Â (the initiator) performs the steps:

(a) Select an ephemeral private key x ∈R [1, q] and compute X = gx.

(b) Create an active session with identifier (UP, Â, B̃, I, X).

(c) Create session state that contains (x,X).

(d) Send (UP, B̃, Â,R, X) to B̃.

2. Upon activation (UP, B̃, Â,R, X), party B̂ (the responder) does the following:

(a) Verify that X ∈ G∗.
(b) Select an ephemeral private key y ∈R [1, q] and compute Y = gy.

(c) Compute e = He(Y ) and σA = (XA)y+eb.

(d) Compute d = He(X) and σB = (XAd)y+b.

(e) Compute κ = H(σA, σB, Â, B̂,X, Y, UP).

(f) Destroy σA, σB, d and e.

(g) Send (UP, Â, B̂, I, X, Y ) to Â and complete the session (UP, B̂, Â,R, X, Y ) by accept-
ing the session key κ.

3. Upon activation (UP, Â, B̂, I, X, Y ), Â does the following:

(a) Verify that an active (UP, Â, B̃, I, X) session exists and Y ∈ G∗.
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(b) Compute e = He(Y ) and σA = (Y Be)x+a.

(c) Compute d = He(X) and σB = (Y B)x+da.

(d) Compute κ = H(σA, σB, Â, B̂,X, Y, UP).

(e) Destroy σA, σB, d and e.

(f) Update the session identifier to (UP, Â, B̂, I, X, Y ) and complete the session by ac-
cepting the session key κ.

If any of the verifications fail, the party erases all session-specific information and marks the
session aborted.

5.2 Design principles

Postponed ephemeral key. SettingX = gHe(x̃,a) implies that without both a and x̃, an entity
cannot query and learn x, which leads to simple security arguments. Postponed ephemeral key
derivation achieves the same by changing the effective ephemeral public key to XAd instead
of modifying how X is prepared; d should be computable by both peers. As before computing
the corresponding discrete logarithm x+ ad requires both x and a, and any protocol admitting
X = gHe(x̃,a) also admits XAd. Our derivation of d conforms the MQV protocol, which can be
viewed as the ephemeral Diffie-Hellman with postponed ephemeral keys, but other alternatives
are also possible, say in order to prevent Cremers’ type attacks. Furthermore an honest party
has some assurances that the peer’s effective ephemeral secret key is guarded by the peer’s static
private key.

Pseudo static keys. Similar idea is applicable to static keys. The KEA+[15] session key
with postponed ephemeral keys is κ = H(CDH(A, Y Be),CDH(XAd, B), Â, B̂). It inherits a
KEA+ weakness and does not provide forward secrecy. With the ”pseudo” static key XA even
with the value a, the adversary is not able to recover the private pseudo static key x+ a. The
result is UP’s shared secrets. Note that with pseudo static keys the UM protocol appears to
resist KCI attacks.

5.3 Security

Informally the design principles suggest that UP is secure. The formal argument is a tedious
analysis of different case and has been left to the appendix §A. The security is carried using
Menezes and Ustaoglu [19] model which takes into account our observation in relation to timing.
The model is denoted by eCK+ in Table 1 and is stronger that eCK in the sense that eCK+
can be restricted to eCK.

We note that the security argument in §A utilizes the “gap square DH” assumption. It
is required only if reflections are considered. Otherwise the security argument uses only the
gap CDH assumption. This does not represent deficiency since other protocols such as HMQV
require the square assumption when reflections are considered.

5.4 Comparison with other protocols

In Table 1, which compares UP with Diffie-Hellman type protocols, KEA1 abbreviates “knowl-
edge of exponent assumption” [2]; CDH – the computational Diffie-Hellman problem, gap CDH
is the gap variant [26] of CDH. All analysis are done in the random oracle model [4], which
for clarity is not listed. For every protocol the adversary can obtain either x̃ as in NAXOS or
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Protocol Security Assumptions Tight Efficiency x̃,x
HMQV CK01’ gap CDH, KEA1 no 2.17 (2.5) x

CMQV eCK gap CDH no 2.17 (3) x̃

NAXOS+ eCK CDH yes 3.34 (5) x̃

NAXOS eCK gap CDH yes 3.17 (4) x̃

NETS eCK gap CDH yes 3 x̃

UM CK01+ gap CDH yes 3 x

KEA+ CK01* gap CDH yes 3 x

UP eCK+ gap CDH yes 3.17 (3.5) x

Table 1: Protocols comparison

x as in HMQV. All protocols are assumed to perform public key validation, so it is left out
efficiency6, which takes into account improvements such as Shamir’s trick [21, Algorithm 14.88]
and Exponent Combination Method [22]; the bracketed values are the naive counts. “Tightness”
indicates whether the Forking lemma [27] is used in the security argument.

To compute its shared secrets, UP needs one more exponentiation than HMQV. But UP’s
security argument is tighter in the sense that the forking lemma is not used. Therefore for
the same security levels the efficiency gap between (C,H)MQV and UP is smaller than one
exponentiation, because of smaller group size. Apart from tightness-efficiency trade-off UP
performs no worse than HMQV and CMQV, and for each protocol improves at least one column
in the table comparison.

NAXOS+ [18] utilizes the twin Diffie-Hellman trapdoor test [9] and hence does not need
the gap assumption. The minor reduction gap introduced by the test could be ignored, but
while theoretically interesting NAXOS+ is less practical than UP. It is an interesting problem to
devise an efficient eCK+ secure protocol using the CDH assumption and postponed ephemeral
keys.

NETS [17], which effectively uses pseudo static keys, improves over NAXOS and is an
important UP contender. It is slightly more efficient, relies on the same assumptions and very
likely is eCK+ secure. Assuming NETS is eCK+ secure the main UP advantage over NETS is
the ephemeral secret data revealed to the adversary. As argued in practice using x instead of
x̃ is more sound and therefore worth the small efficiency cost. Note that NETS can be viewed
as UM protocol with NAXOS trick and pseudo static keys. If NAXOS trick is substituted with
postponed ephemeral keys the resulting protocol will have similar to UP attributes.

The UM protocol in Table 1 refers to the three pass variant analyzed in [20]. The CK01+
model implies most security attributes that three pass UM protocol satisfies, for example it
allows malicious insiders but does not model KCI attacks. The model KEA+ is analyzed is also
derived from CK01. It uses eCK like session identifiers, but does not account for attacks allowed
in the eCK model, for example it allows only a very restricted notion of forward secrecy. To
sum up neither UM nor KEA+ meets the eCK definition and hence when security is paramount
the efficiency cost of UP is justified.

6 Conclusion

We have argued that for Diffie-Hellman protocols from practical perspective it is relevant to
allow an adversary access to the discrete logarithm of the ephemeral public key and that the

6Efficiency is in terms of group exponentiations.
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timing of leaking is important. Via UP we proposed a method to achieve strong security that
takes into account these points.

Comparing protocols with different set of security assumptions cannot be conclusive but it
is of theoretical interest to see if the proposed approach can be adapted to the standard model
or in conjunction with the trapdoor test to remove the “gap” assumption.
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A Security arguments for UP

Theorem A.1 If H and He are modeled as random oracles, and G is a group where the gap
square assumption assumption holds, then UP is secure key agreement protocol.

Given a challenge square problem challenge U first compute V = Uk for a random integer
k ∈R [1, q]. To compute SDH(U) from σ = CDH(U, V ) and k, one computes σ

1
k . We next

proceed with the security argument.
Verifying that matching UP-session compute the same session key is straightforward. We

will show that no polynomially bounded adversary can distinguish the session key of a fresh
session from a randomly chosen session key.

Let γ denote the security parameter, and let M be a polynomially (in γ) bounded ad-
versary. The adversary M is said to be successful with non-negligible probability if M wins
the distinguishing game with probability 1

2 + p(γ), where p(γ) is non-negligible. The event
M denotes a successful M. Let the test session be st = (UP, Â, B̂, I, X, Y, TB, TA) or st =
(UP, B̂, Â,R, X, Y, TB, TA). Let H∗ be the event that M queries H with (σA, σB, Â, B̂,X, Y, UP),
where σA and σB are as in the test session. Let H∗ be the complement of event H∗, and let s∗

be any completed session owned by an honest party such that s∗ 6= st and s∗ is non-matching
to st. Since s∗ and st are distinct and non-matching, the inputs to the key derivation function H
are different for st and s∗. Since H is a random oracle,M cannot obtain any information about
the test session key from the session keys of non-matching sessions. Hence Pr(M ∧H∗) ≤ 1

2 and

Pr(M) = Pr(M ∧H∗) + Pr(M ∧H∗) ≤ Pr(M ∧H∗) +
1
2
,

whence Pr(M ∧H∗) ≥ p(γ). Henceforth the event M ∧H∗ is denoted by M∗.
Assume that M succeeds in an environment with n parties, activates at most s sessions

within a party, makes at most h, he queries to oracles H, He, respectively, and terminates after
time at most TM(γ).

The following conventions will be used for the remainder of the security argument. The
DDH oracle on input (ga, gb, gc) returns the bit 1 if gab = gc and the bit 0 otherwise. Also,
ξ : G × G → G is a random function known only to S, such that ξ(X,Y ) = ξ(Y,X) for all
X,Y ∈ G. The algorithm S, which simulatesM’s environment, will use ξ(X,Y ) to “represent”
CDH(X,Y ) in situations where S may not know logg X and logg Y . Except with negligible
probability, M will not detect that ξ(X,Y ) is being used instead of CDH(X,Y ).

We useM to construct a SDH (CDH) solver S that succeeds with non-negligible probability.
We will consider the following complementary events:
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1. There exists session sm matching to the test session st and adversary does not issues
EphemeralKeyReveal(sm); and either of the following:

(a) M does not issue EphemeralKeyReveal(st) – Event E1a.

(b) M does not issue StaticKeyReveal(Â) – Event E1b.

2. M does not issues StaticKeyReveal(B̂), but may issue EphemeralKeyReveal(sm) if sm

exists; the test session communicating partners are distinct and either of the following:

(a) M does not issue EphemeralKeyReveal(st) – Event E2a.

(b) M does not issue StaticKeyReveal(Â) – Event E2b.

3. M does not issues StaticKeyReveal(Â), but may issue EphemeralKeyReveal(sm) if sm

exists, and the communicating peers the test session are the same party Â – Event E3.

If event M∗ occurs with non-negligible probability at least one event from the set

{(E1a ∧M∗), (E1b ∧M∗), (E2a ∧M∗), (E2b ∧M∗), (E3 ∧M∗)}

occurs with non-negligible probability.
Suppose the test communicating peers have private input (x, a) and (y, b). Event E1a con-

siders the case when M does not obtain (x, y), similarly E1b considers the case M does not
obtain (a, y); E2a considers the case M does not obtain (x, b); E2b considers the case M does
not obtain (a, b); E3 considers the caseM does not obtain (a, a). In any other scenario the test
session is not fresh.

A.1 Event E1a ∧M∗

A.1.1 Event E1a ∧M∗: setup

The algorithm S begins by establishing n-honest parties that are assigned random static key
pairs. For each honest party Â, S maintains a list of at most s ephemeral key pairs, and two
markers – a party marker and an adversary marker. The list is initially empty, and the markers
initially point to the first entry of the list. Whenever Â is activated to create a new session, S
checks if the party marker points to an empty entry. If so then S selects a new ephemeral key
pair on behalf of Â as described in Step 1a or 2b of the UP protocol. If the list entry is not empty,
then S uses the ephemeral key pair in that list entry for the newly created session. In either
case the party marker is updated to point to the next list entry, and the adversary marker is
also advanced if it points to an earlier entry. IfM issues an EphemeralPublicKeyReveal query,
then S selects a new ephemeral key pair on behalf of Â as described in Step 1a or 2b of the UP
protocol. S stores the key pair in the entry pointed to by the adversary marker, returns the
public key as the query response, and advances the adversary marker.

In addition to the above steps, S randomly selects two parties Ĉ,D̂ and two integers i, j ∈R
[1, s] subject to the condition that (Ĉ, i) 6= (D̂, j). S selects ephemeral key pairs on behalf of
honest parties as described above, with the following exceptions. The ith ephemeral public key
selected on behalf of Ĉ is chosen to be U and the jth ephemeral private key selected on behalf
of D̂ is V . The sessions with outgoing ephemeral public keys U and V will be denoted by su

and sv, respectively; S does not possess the corresponding ephemeral private keys.
The algorithm S activates M on this set of parties and awaits the actions of M. We next

describe the actions of S in response to party activations and oracle queries.
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A.1.2 Event E1a ∧M∗: simulation

In the following description we will use

fxy(X,A, Y,B, e, σA, a, b) =
(
Y Be)−aX−ebσA. (1)

One verifies that if σA = CDH(XA,Y Be), A = ga and B = gb, then

fxy(X,A, Y,B, e, σA, a, b) = CDH(X,Y ).

1. Send(UP, Â, B̂, I): S executes Step 1 of UP honestly.

2. Send(UP, B̂, Â,R, X): S executes Step 2 of UP honestly, except if the created session is su

or sv, in which case S deviates by setting σA = ξ(XA,Y Be) and σB = ξ(XAd, Y B).

3. Send(UP, Â, B̂, I, X, Y ): S executes Step 3 of UP honestly, except if the activated session
is su or sv, in which case S deviates by setting σA = ξ(XA,Y Be) and σB = ξ(XAd, Y B).

4. H(σA, σB, Â, B̂,X, Y, UP):

(a) If {X,Y } = {U, V }, Â and B̂ are honest, then S obtains τa = DDH(XA,Y Be, σA)
and τb = DDH(XAd, Y B, σB).

• If τa = 1, then S aborts M and is successful by outputting

fxy(X,A, Y,B, e, σA, a, b)

• If τb = 1, then S aborts M and is successful by outputting

fxy(Y,B,X,A, d, σB, b, a)

(b) If X ∈ {U, V } and either σA 6= ξ(XA,Y Be) or σB 6= ξ(XAd, Y B), then S sets τa = 1
if either DDH(XA,Y Be, σA) = 1 or σA = ξ(XA,Y Be); otherwise S sets τa = 0.
Similarly, S set τb = 1 if either DDH(XAd, Y B, σB) = 1 or σB = ξ(XAd, Y B);
otherwise S set τb = 0.

i. If τa = 1 and τb = 1, then S returns H(ξ(XA,Y Be), ξ(XAd, Y B), Â, B̂,X, Y, UP).
ii. If τa 6= 1 or τb 6= 1, then S simulates a random oracle in the usual way.

(c) If Y ∈ {U, V } and either σA 6= ξ(XA,Y Be) or σB 6= ξ(XAd, Y B), then S sets τa = 1
if either DDH(XA,Y Be, σA) = 1 or σA = ξ(XA,Y Be); otherwise S sets τa = 0.
Similarly, S set τb = 1 if either DDH(XAd, Y B, σB) = 1 or σB = ξ(XAd, Y B);
otherwise S set τb = 0.

i. If τa = 1 and τb = 1, then S returns H(ξ(XA,Y Be), ξ(XAd, Y B), Â, B̂,X, Y, UP).
ii. If τa 6= 1 or τb 6= 1, then S simulates a random oracle in the usual way.

(d) S simulates a random oracle in the usual way.

5. He(∗): S simulates random oracle in the usual way.

6. StaticKeyReveal(Â): S responds to the query faithfully.

7. EphemeralKeyReveal(s): If s = su or s = sv, then S aborts with failure, otherwise
responds to the query faithfully.

8. SessionKeyReveal(s): S responds to the query faithfully.
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9. EphemeralPublicKeyReveal(Â): S responds to the query faithfully.

10. EstablishParty(Ê, E): S responds to the query faithfully.

11. Test(s): If the ephemeral public keys of s are not {U, V }, then S aborts with failure,
otherwise responds to the query faithfully.

12. M outputs a guess γ: S aborts with failure.

A.1.3 Event E1a ∧M∗: analysis

The simulation ofM environment is perfect except with negligible probability. The probability
that M selects su and sv as the test session and its matching is at least 1

n2s2
. Suppose this is

indeed the case, then S does not abort as in Step 11, and suppose Event E1a∧M∗ occurs; hence
S does not abort in Step 7. Under event M∗ except with negligible probability of M guessing
ξ(XA,Y Be) and ξ(XAd, Y B),M queries H with CDH(XA,Y Be) and CDH(XAd, Y B). Since
S possesses the private keys of all honest parties S can compute fxy. Therefore S is successful
as described in Step 4 and does not abort as in Step 12.

Hence if E1a ∧M∗ occur with probability p1a then S is successful with probability Pr(S)
bounded by

Pr(S) ≥ p1a

n2s2
. (2)

During the simulation S simulates random oracles, access decision oracle and performs group
exponentiations. Assume q = Θ(2γ), then group exponentiation takes time TG = O(γ). We
assume that the decision oracle takes time Tddh = O(γ). Simulating oracle H and He take time
TH = O(γ) and THe = O(γ), respectively. Thus the algorithm S running time TS is bounded by

TS ≤ max (2.5TG , TG + 2Tddh + TH, THe) TM. (3)

A.1.4 Event E1a ∧M∗: remarks

Should M query the session key of the test session or its matching S would abort in Step 12.
However, a successful adversary queries neither the test session nor its matching session for the
session key. Furthermore, it is possible that the owner and the peer of the test session are the
same party. Neither sizes nor the values of d and e affect the security argument.

A.2 Event E1b ∧M∗

A.2.1 Event E1b ∧M∗: setup

The algorithm S begins by establishing n-honest parties. One of these parties denoted by Û is
assigned static public key U . The remaining parties are assigned random static key pairs. S
also selects at random a party D̂ and an integer i ∈R [1, s]. It is possible that D̂ and Û are the
same party. On behalf of honest parties S selects ephemeral key pairs as described in A.1.1,
with the exception of D̂’s ith ephemeral key pair. The ith ephemeral public key selected on
behalf of D̂ is chosen to be V . The session with outgoing ephemeral public V will be denoted
by sv; S does not possess sv’s ephemeral private key and Û ’s static private key.

The algorithm S activates M on this set of parties and awaits the actions of M. We next
describe the actions of S in response to party activations and oracle queries.
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A.2.2 Event E1b ∧M∗: simulation

In the following description we will use

fay(X,A, d, Y, B, e, σA, σB, x) =


(

(Y Be)−xσA

)d

(
(Y B)−xσB

)e


1
d(1−e)

. (4)

One verifies that if σA = CDH(XA,Y Be) and σB = CDH(XAd, Y B), then

fay(X,A, d, Y, B, e, σA, σB, x) = CDH(A, Y ).

1. Send(UP, Â, B̂, I): S executes Step 1 of UP honestly.

2. Send(UP, B̂, Â,R, X): S executes Step 2 of UP honestly, except if B̂ = Û or the created ses-
sion is sv , in which case S deviates by setting σA = ξ(XA,Y Be) and σB = ξ(XAd, Y B).

3. Send(UP, Â, B̂, I, X, Y ): S executes Step 3 of UP honestly, except if the activated session is
sv or Â = Û , in which case S deviates by setting σA = ξ(XA,Y Be) and σB = ξ(XAd, Y B).

4. H(σA, σB, Â, B̂,X, Y, UP):

(a) If Â = Û , Y = V , DDH(XA,Y Be, σA) = 1 and DDH(XAd, Y B, σB) = 1 then S
aborts M and is successful by outputting

fay(X,A, d, Y, B, e, σA, σB, x).

(b) If B̂ = Û , X = V , DDH(XA,Y Be, σA) = 1 and DDH(XAd, Y B, σB) = 1 then S
aborts M and is successful by outputting

fay(Y,B, e, X,A, d, σB, σA, y).

(c) If Û ∈ {Â, B̂} and either σA 6= ξ(XA,Y Be) or σB 6= ξ(XAd, Y B), then S sets τa = 1
if either DDH(XA,Y Be, σA) = 1 or σA = ξ(XA,Y Be); otherwise S sets τa = 0.
Similarly, S set τb = 1 if either DDH(XAd, Y B, σB) = 1 or σB = ξ(XAd, Y B);
otherwise S set τb = 0.

i. If τa = 1 and τb = 1, then S returns H(ξ(XA,Y Be), ξ(XAd, Y B), Â, B̂,X, Y, UP).
ii. If τa 6= 1 or τb 6= 1, then S simulates a random oracle in the usual way.

(d) If V ∈ {X,Y } and either σA 6= ξ(XA,Y Be) or σB 6= ξ(XAd, Y B), then S sets τa = 1
if either DDH(XA,Y Be, σA) = 1 or σA = ξ(XA,Y Be); otherwise S sets τa = 0.
Similarly, S set τb = 1 if either DDH(XAd, Y B, σB) = 1 or σB = ξ(XAd, Y B);
otherwise S set τb = 0.

i. If τa = 1 and τb = 1, then S returns H(ξ(XA,Y Be), ξ(XAd, Y B), Â, B̂,X, Y, UP).
ii. If τa 6= 1 or τb 6= 1, then S simulates a random oracle in the usual way.

(e) S simulates a random oracle in the usual way.

5. He(∗): S simulates random oracle in the usual way.

6. StaticKeyReveal(Â): If Â = Û , then S aborts with failure, otherwise responds to the
query faithfully.
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7. EphemeralKeyReveal(s): If s = sv, then S aborts with failure, otherwise S responds to
the query faithfully.

8. SessionKeyReveal(s): S responds to the query faithfully.

9. EphemeralPublicKeyReveal(Â): S responds to the query faithfully.

10. EstablishParty(Ê, E): S responds to the query faithfully.

11. Test(s): If the test session is not owned by Û , with incoming public key V , then S aborts
with failure, otherwise responds to the query faithfully.

12. M outputs a guess γ: S aborts with failure.

A.2.3 Event E1b ∧M∗: analysis

The simulation ofM environment is perfect except with negligible probability. The probability
that M selects a test session st with owner Û and incoming ephemeral public key V is at least

1
n2s

. Suppose this is indeed the case, then S does not abort as in Step 11, and suppose Event
E1b ∧M∗ occurs. The probability that two sessions have outgoing ephemeral public keys V
equals the probability S randomly guessing the discrete logarithm v of V , in which case S is
successful by outputting Uv. Therefore we can assume that sv is matching to st. Hence S does
not abort in Step 6 and Step 7. Under event M∗ except with negligible probability ofM guessing
ξ(XA,Y Be) and ξ(XAd, Y B),M queries H with CDH(XA,Y Be) and CDH(XAd, Y B). Since
st is different from sv, the algorithm S possesses st’s ephemeral private key and can compute
fay. Therefore S is successful as described in Step 4 and does not abort as in Step 12.

Hence if E1b ∧M∗ occur with probability p1b then S is successful with probability Pr(S)
bounded by

Pr(S) ≥ p1b

n2s
. (5)

The running time TS is bounded as in Equation 3.

A.2.4 Event E1b ∧M∗: remarks

When M selects the test session st, the session sv may be incomplete and later become non-
matching to st. However, in event E1b the test session has a matching session and if S does not
abort in Step 11 then the session matching to the test session has outgoing ephemeral public
key V . Therefore either sv remains matching to st or there are two sessions with outgoing
ephemeral public keys V . In either case S is successful. The function fay in Equation 4 requires
that d 6= 0 and e 6= 1. For S to be successful with non-negligible probability it must be the
case that the probability of d or e be zero or one is negligible. With the definition of He that
probability is O(2−γ), which is negligible in the security parameter.

A.3 Event E2a ∧M∗

A.3.1 Event E2a ∧M∗: setup

The algorithm S begins by establishing n-honest parties. One of these parties denoted by V̂ is
assigned static public key V . The remaining parties are assigned random static key pairs. S
also selects at random a party Ĉ, such that Ĉ 6= V̂ and an integer i ∈R [1, s]. On behalf of
honest parties S selects ephemeral key pairs as described in A.1.1, with the exception of Ĉ’s
ith ephemeral key pair. The ith ephemeral public key selected on behalf of Ĉ is chosen to be
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U . The session with outgoing ephemeral public U will be denoted by su; S does not possess
su’s ephemeral private key and V̂ ’s static private key.

The algorithm S activates M on this set of parties and awaits the actions of M. We next
describe the actions of S in response to party activations and oracle queries.

A.3.2 Event E2a ∧M∗: simulation

In the following description we will use

fxb(X,A, d, Y, B, e, σA, σB, a) =

(
(Y Be)−aσA

(Y B)−adσB

) 1
e−1

. (6)

One verifies that if σA = CDH(XA,Y Be) and σB = CDH(XAd, Y B), then

fxb(X,A, d, Y, B, e, σA, σB, a) = CDH(X,B).

1. Send(UP, Â, B̂, I): S executes Step 1 of UP honestly.

2. Send(UP, B̂, Â,R, X): S executes Step 2 of UP honestly, except if B̂ = V̂ or the created ses-
sion is su , in which case S deviates by setting σA = ξ(XA,Y Be) and σB = ξ(XAd, Y B).

3. Send(UP, Â, B̂, I, X, Y ): S executes Step 3 of UP honestly, except if the activated ses-
sion is su or Â = V̂ , in which case S deviates by setting σA = ξ(XA,Y Be) and
σB = ξ(XAd, Y B).

4. H(σA, σB, Â, B̂,X, Y, UP):

(a) If X = U , B̂ = V̂ , DDH(XA,Y Be, σA) = 1 and DDH(XAd, Y B, σB) = 1 then S
aborts M and S is successful by outputting

fxb(X,A, d, Y, B, e, σA, σB, a).

(b) If Y = U ,Â = V̂ , DDH(XA,Y Be, σA) = 1 and DDH(XAd, Y B, σB) = 1 then S
aborts M and S is successful by outputting

fxb(Y,B, e, X,A, d, σB, σA, b).

(c) If V̂ ∈ {Â, B̂} and either σA 6= ξ(XA,Y Be) or σB 6= ξ(XAd, Y B), then S sets τa = 1
if either DDH(XA,Y Be, σA) = 1 or σA = ξ(XA,Y Be); otherwise S sets τa = 0.
Similarly, S set τb = 1 if either DDH(XAd, Y B, σB) = 1 or σB = ξ(XAd, Y B);
otherwise S set τb = 0.

i. If τa = 1 and τb = 1, then S returns H(ξ(XA,Y Be), ξ(XAd, Y B), Â, B̂,X, Y, UP).
ii. If τa 6= 1 or τb 6= 1, then S simulates a random oracle in the usual way.

(d) If U ∈ {X,Y } and either σA 6= ξ(XA,Y Be) or σB 6= ξ(XAd, Y B), then S sets τa = 1
if either DDH(XA,Y Be, σA) = 1 or σA = ξ(XA,Y Be); otherwise S sets τa = 0.
Similarly, S set τb = 1 if either DDH(XAd, Y B, σB) = 1 or σB = ξ(XAd, Y B);
otherwise S set τb = 0.

i. If τa = 1 and τb = 1, then S returns H(ξ(XA,Y Be), ξ(XAd, Y B), Â, B̂,X, Y, UP).
ii. If τa 6= 1 or τb 6= 1, then S simulates a random oracle in the usual way.

(e) S simulates a random oracle in the usual way.
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5. He(∗): S simulates random oracle in the usual way.

6. StaticKeyReveal(Â): If Â = V̂ , then S aborts with failure, otherwise responds to the
query faithfully.

7. EphemeralKeyReveal(s): If s = su, then S aborts with failure, otherwise responds to the
query faithfully.

8. SessionKeyReveal(s): S responds to the query faithfully.

9. EphemeralPublicKeyReveal(Â): S responds to the query faithfully.

10. EstablishParty(Ê, E): S responds to the query faithfully.

11. Test(s): If the test session is not su with peer V̂ , then S aborts with failure, otherwise
responds to the query faithfully.

12. M outputs a guess γ: S aborts with failure.

A.3.3 Event E2a ∧M∗: analysis

The simulation ofM environment is perfect except with negligible probability. The probability
thatM selects su as the test session with peer V̂ is at least 1

n2s
. Suppose this is indeed the case,

then S does not abort as in Step 11, and suppose Event E2a ∧M∗ occurs; hence S does not
abort in Step 6 and Step 7. Under event M∗ except with negligible probability of M guessing
ξ(XA,Y Be) and ξ(XAd, Y B),M queries H with CDH(XA,Y Be) and CDH(XAd, Y B). Since
Ĉ 6= V̂ , the algorithm S possesses Ĉ’s static private key and can compute fxb. Therefore S is
successful as described in Step 4 and does not abort in Step 12.

Hence if E2a ∧M∗ occur with probability p2a then S is successful with probability Pr(S)
bounded by

Pr(S) ≥ p2a

n2s
. (7)

The running time TS is bounded as in Equation 3.

A.3.4 Event E2a ∧M∗: remarks

The function fxb in Equation 6 requires that e 6= 1. For S to be successful with non-negligible
probability it must be the case that the probability of e one is negligible. With the definition
of He that probability is O(2−γ), which is negligible in the security parameter.

A.4 Event E2b ∧M∗

A.4.1 Event E2b ∧M∗: setup

The algorithm S begins by establishing n-honest parties. Two of these parties selected at
random are is assigned static public keys U and V , respectively. The party with public key U
will be denoted by Û and the party with public key V will be denoted by V̂ . The remaining
parties are assigned random static key pairs. On behalf of honest parties S selects ephemeral
key pairs as described in A.1.1; S does not possess the static private keys of Û and V̂ .

The algorithm S activates M on this set of parties and awaits the actions of M. We next
describe the actions of S in response to party activations and oracle queries.
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A.4.2 Event E2b ∧M∗: simulation

In the following description we will use

fab(X,A, d, Y, B, e, σA, σB, x) =


(

(Y Be)−xσA

)d

(Y B)−xσB


1

d(e−1)

. (8)

One verifies that if σA = CDH(XA,Y Be), σB = CDH(XAd, Y B) and X = gx, then

fab(X,A, d, Y, B, e, σA, σB, x) = CDH(A,B).

1. Send(UP, Â, B̂, I): S executes Step 1 of UP honestly.

2. Send(UP, B̂, Â,R, X): S executes Step 2 of UP honestly, except if B̂ ∈ {Û , V̂ }, in which
case S deviates by setting σA = ξ(XA,Y Be) and σB = ξ(XAd, Y B).

3. Send(UP, Â, B̂, I, X, Y ): S executes Step 3 of UP honestly, except if Â ∈ {Û , V̂ }, in which
case S deviates by setting σA = ξ(XA,Y Be) and σB = ξ(XAd, Y B).

4. H(σA, σB, Â, B̂,X, Y, UP):

(a) If {Â, B̂} = {Û , V̂ }, DDH(XA,Y Be, σA) = 1, DDH(XAd, Y B, σB) = 1 and Â owns
a session with outgoing ephemeral public key x then S abortsM and S is successful
by outputting

fab(X,A, d, Y, B, e, σA, σB, x).

(b) If {Â, B̂} = {Û , V̂ }, DDH(XA,Y Be, σA) = 1, DDH(XAd, Y B, σB) = 1 and B̂ owns
a session with outgoing ephemeral public key y then S abortsM and S is successful
by outputting

fab(Y,B, e, X,A, d, σB, σA, y).

(c) If Â ∈ {Û , V̂ } or B̂ ∈ {Û , V̂ } and either σA 6= ξ(XA,Y Be) or σB 6= ξ(XAd, Y B),
then S sets τa = 1 if either DDH(XA,Y Be, σA) = 1 or σA = ξ(XA,Y Be); otherwise
S sets τa = 0. Similarly, S set τb = 1 if either DDH(XAd, Y B, σB) = 1 or σB =
ξ(XAd, Y B); otherwise S set τb = 0.

i. If τa = 1 and τb = 1, then S returns H(ξ(XA,Y Be), ξ(XAd, Y B), Â, B̂,X, Y, UP).
ii. If τa 6= 1 or τb 6= 1, then S simulates a random oracle in the usual way.

(d) S simulates a random oracle in the usual way.

5. He(∗): S simulates random oracle in the usual way.

6. StaticKeyReveal(Â): If Â ∈ {Û , V̂ }, then S aborts with failure, otherwise responds to the
query faithfully.

7. EphemeralKeyReveal(s): S responds to the query faithfully.

8. SessionKeyReveal(s): S responds to the query faithfully.

9. EphemeralPublicKeyReveal(Â): S responds to the query faithfully.

10. EstablishParty(Ê, E): S responds to the query faithfully.

11. Test(s): If the test session communicating partners are not Û and V̂ , then S aborts with
failure, otherwise responds to the query faithfully.

12. M outputs a guess γ: S aborts with failure.
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A.4.3 Event E2b ∧M∗: analysis

The simulation ofM environment is perfect except with negligible probability. The probability
that M selects the test session with peers Û and V̂ is at least 1

n2 . Suppose this is indeed
the case, then S does not abort as in Step 11, and suppose Event E2b ∧M∗ occurs; hence S
does not abort in Step 6. Under event M∗ except with negligible probability of M guessing
ξ(XA,Y Be) and ξ(XAd, Y B),M queries H with CDH(XA,Y Be) and CDH(XAd, Y B). Since
S possesses the ephemeral private keys for all sessions owned by honest parties, S can compute
fab. Therefore S is successful as described in Step 4 and does not abort as in Step 12.

Hence if E2b ∧M∗ occur with probability p2b then S is successful with probability Pr(S)
bounded by

Pr(S) ≥ p2b

n2s
. (9)

The running time TS is bounded as in Equation 3.

A.4.4 Event E2b ∧M∗: remarks

The function fab in Equation 8 requires that d 6= 0 and e 6= 1. For S to be successful with
non-negligible probability it must be the case that the probability of d or e be zero or one
is negligible. With the definition of He that probability is O(2−γ), which is negligible in the
security parameter.

A.5 Event E3 ∧M∗

A.5.1 Event E3 ∧M∗: setup

The algorithm S begins by establishing n-honest parties. One party denoted by Û is selected
at random and assigned static public key U . The remaining parties are assigned random static
key pairs. On behalf of honest parties S selects ephemeral key pairs as described in A.1.1; S
does not possess the static private key of Û .

The algorithm S activates M on this set of parties and awaits the actions of M. We next
describe the actions of S in response to party activations and oracle queries.

A.5.2 Event E3 ∧M∗: simulation

In the following description we will use

faa(X,A, d, Y, A, e, σA, σB, x) =


(

(Y Ae)−xσA

)d

(Y A)−xσB


1

d(e−1)

. (10)

One verifies that if σA = CDH(XA,Y Ae), σB = CDH(XAd, Y A) and X = gx, then

faa(X,A, d, Y, B, d, σA, σB, x) = CDH(A,A).

1. Send(UP, Â, B̂, I): S executes Step 1 of UP honestly.

2. Send(UP, B̂, Â,R, X): S executes Step 2 of UP honestly, except if B̂ = Û , in which case S
deviates by setting σA = ξ(XA,Y Be) and σB = ξ(XAd, Y B).

3. Send(UP, Â, B̂, I, X, Y ): S executes Step 3 of UP honestly, except if Â = Û , in which case
S deviates by setting σA = ξ(XA,Y Be) and σB = ξ(XAd, Y B).
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4. H(σA, σB, Â, B̂,X, Y, UP):

(a) If Â = B̂ = Û , DDH(XA,Y Ae, σA) = 1, DDH(XAd, Y A, σB) = 1 and Â owns a
session with outgoing ephemeral public key X then S aborts M and S is successful
by outputting faa(X,A, d, Y, A, e, σA, σB, x).

(b) If Â = Û or B̂ = Û , and either σA 6= ξ(XA,Y Be) or σB 6= ξ(XAd, Y B), then S sets
τa = 1 if either DDH(XA,Y Be, σA) = 1 or σA = ξ(XA,Y Be); otherwise S sets τa =
0. Similarly, S set τb = 1 if either DDH(XAd, Y B, σB) = 1 or σB = ξ(XAd, Y B);
otherwise S set τb = 0.

i. If τa = 1 and τb = 1, then S returns H(ξ(XA,Y Be), ξ(XAd, Y B), Â, B̂,X, Y, UP).
ii. If τa 6= 1 or τb 6= 1, then S simulates a random oracle in the usual way.

(c) S simulates a random oracle in the usual way.

5. He(∗): S simulates random oracle in the usual way.

6. StaticKeyReveal(Â): If Â = Û , then S aborts with failure, otherwise responds to the
query faithfully.

7. EphemeralKeyReveal(s): S responds to the query faithfully.

8. SessionKeyReveal(s): S responds to the query faithfully.

9. EphemeralPublicKeyReveal(Â): S responds to the query faithfully.

10. EstablishParty(Ê, E): S responds to the query faithfully.

11. Test(s): If the test session is not owned by Û with peer Û , then S aborts with failure,
otherwise responds to the query faithfully.

12. M outputs a guess γ: S aborts with failure.

A.5.3 Event E3 ∧M∗: analysis

The simulation ofM environment is perfect except with negligible probability. The probability
that M selects a test session owned by Û with peer Û is at least 1

n2 . Suppose this is indeed
the case, then S does not abort as in Step 11, and suppose Event E3 ∧M∗ occurs. In Event
E3 the algorithm S does not abort in Step 6. Under event M∗ except with negligible prob-
ability of M guessing ξ(XA,Y Be) and ξ(XAd, Y B), M queries H with CDH(XA,Y Be) and
CDH(XAd, Y B). Since S possesses the ephemeral private keys for all sessions owned by honest
parties, S can compute faa. Therefore S is successful as described in Step 4 and does not abort
as in Step 12.

Hence if E3 ∧ M∗ occur with probability p3 then S is successful with probability Pr(S)
bounded by

Pr(S) ≥ p3

n2
. (11)

The running time TS is bounded as in Equation 3.
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A.6 Overall analysis

Combining Equations 2, 5, 7, 9 and 11 the probability of success for algorithm S is bounded by

Pr(S) ≥ max
{ p1a

n2s2
,
p1b

n2s
,
p2a

n2s
,
p2b

n2
,
p3

n2
.
}

(12)

Since p = p1a + p1b + p2a + p2b + p3, if Pr(M∗) = p is non-negligible then Pr(S) is also
non-negligible. If TM is polynomially bounded then S is an algorithm that succeeds in solving
a gap square problem in G in polynomial time, contradiction the assumption. Therefore no
polynomially bounded adversary succeeds in distinguishing the session key of a fresh UP-session
from a randomly choses session key with non-negligible probability. ‡
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