
Security Arguments for the UM Key Agreement Protocol in
the NIST SP 800-56A Standard

Alfred Menezes
Department of Combinatorics & Optimization

University of Waterloo, Canada
ajmeneze@uwaterloo.ca

Berkant Ustaoglu
Department of Combinatorics & Optimization

University of Waterloo, Canada
bustaoglu@uwaterloo.ca

ABSTRACT
The Unified Model (UM) key agreement protocol is an effi-
cient Diffie-Hellman scheme that has been included in many
cryptographic standards, most recently in the NIST SP 800-
56A standard. The UM protocol is believed to possess all im-
portant security attributes including key authentication and
secrecy, resistance to unknown key-share attacks, forward
secrecy, resistance to known-session key attacks, and resis-
tance to leakage of ephemeral private keys, but is known to
succumb to key-compromise impersonation attacks. In this
paper we present a strengthening of the Canetti-Krawczyk
security definition for key agreement that captures resistance
to all important attacks that have been identified in the lit-
erature with the exception of key-compromise impersonation
attacks. We then present a reductionist security proof that
the UM protocol satisfies this new definition in the random
oracle model under the Gap Diffie-Hellman assumption.

Categories and Subject Descriptors
E.3 [Data Encryption]: Public key cryptosystems

General Terms
Security, Standardization

Keywords
key agreement protocols, security models, provable security,
NIST SP 800-56A

1. INTRODUCTION
The ‘unified model’ is a family of two-party Diffie-Hellman

key agreement protocols that has been standardized in ANSI
X9.42 [1], ANSI X9.63 [2], and NIST SP 800-56A [15]. The
core protocol in the family is a two-pass protocol where
each party contributes a static (long-term) key pair and an
ephemeral (one-time) key pair which are then used to de-
rive the secret session key. The family of protocols is called

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASIACCS ’08, March 18-20, 2008, Tokyo, Japan.
Copyright 2008 ACM 978-1-59593-979-1/08/0003 ...$5.00.

the ‘unified model’ because there are natural variants of the
core protocol that are suitable in certain scenarios, for exam-
ple in email where the receiver only contributes a static key
pair. In this paper we shall only consider the security of the
core protocol which, for legacy reasons, is called ‘dhHybrid1’
when the underlying group is a DSA-type group, and ‘Full
unified model’ when the underlying group is an elliptic curve
group [15]. More precisely, we will consider a three-pass vari-
ant that consists of the core protocol augmented with key
confirmation as specified in the SP 800-56A standard [15].
This variant is worthy of study because it possesses more
security attributes than the other protocols in the unified
model family and therefore is most likely to be deployed in
applications that wish to be compliant with SP 800-56A.
For simplicity, we will henceforth refer to this protocol as
the Unified Model (UM) protocol.

We are aware of two previous papers [5, 9] that offered
security proofs for variants of the UM protocol. In §2 we
discuss the limitations of these security proofs. Then, in §3,
we present a strengthening of the Canetti-Krawczyk model
for secure key agreement [7] that we believe captures resis-
tance to all important attacks that have been identified in
the literature with the exception of key-compromise imper-
sonation (KCI) attacks. (The desirable security properties
of key agreement protocols are listed in Appendix A.) Re-
sistance to KCI attacks is not incorporated in our security
model because the UM protocol is known to succumb to
these attacks. A complete description of the UM protocol is
provided in §4. In §5 we present a reductionist security argu-
ment for the UM protocol in the random oracle model under
the Gap Diffie-Hellman (GDH) assumption. Summary con-
clusions appear in §6.

2. PREVIOUS WORK
Let G = 〈g〉 denote a multiplicatively-written group of

prime order q, and let G∗ = G \ {1}. The Computational
Diffie-Hellman (CDH) assumption in G is that computing
CDH(U, V) = guv is infeasible given U = gu and V = gv

where u, v ∈R [1, q − 1]. The GDH assumption is that the
CDH assumption holds even when the solver is given a De-
cision Diffie-Hellman (DDH) oracle which distinguishes DH
triples (ga, gb, gab) from random triples (ga, gb, gc).

The two communicating parties are denoted by Â and B̂.
Party Â’s static private key is an integer a ∈R [1, q−1], and
her corresponding static public key is A = ga. Party Â’s
ephemeral private key is an integer x ∈R [1, q − 1], and her
corresponding ephemeral public key is X = gx. Analogously,
B̂’s static key pair is (b, B), and his ephemeral key pair is

261

(y, Y). We assume that parties can obtain authentic copies
of each other’s static public keys by exchanging certificates
that have been issued by a trusted certifying authority (CA).
Let H and H ′ denote independent hash functions, and let
MAC denote a message authentication code algorithm.

Protocol 1, the basic two-pass protocol upon which the
UM protocol is built, is depicted in Figure 1. The commu-

Â

a, x

k = H(Xy, Ab)

Y

X

B̂

b, y

k = H(Y x, Ba)

Figure 1: Protocol 1: Basic two-pass UM protocol.

nicating parties exchange static and ephemeral public keys
and thereafter compute the session key k = H(gxy, gab) by
hashing the concatenation of the ephemeral Diffie-Hellman
shared secret σe = gxy and the static Diffie-Hellman shared
secret σs = gab. In [5] it was observed that this protocol is
insecure under known-session key attacks.

The attack highlights the importance of authenticating
the exchanged ephemeral public keys. This led to Protocol 2,
shown in Figure 2, and analyzed by Blake-Wilson, Johnson
and Menezes [5]. In Protocol 2, the communicating parties

Y , tB = MACk′ (2, B̂, Â, Y, X)

tA = MACk′ (3, Â, B̂, X, Y)

X

k = H(Y x, Ba)

k′ = H′(Y x, Ba)

a, x

Â

k = H(Xy, Ab)

k′ = H′(Xy, Ab)

b, y

B̂

Figure 2: Protocol 2: The variant of the UM proto-
col analyzed in [5].

also exchange key confirmation tags tA, tB computed using
the MAC key k′ = H ′(gxy, gab). If the tags verify, then the
parties compute the session key k = H(gxy, gab). Protocol 2
succumbs to a KCI attack since an adversary who learns Â’s
static private key a can thereafter impersonate B̂ (without
knowing b) in a run of the protocol with Â. While KCI re-
silience is certainly desirable in practice, it is arguably not a
fundamental security requirement of key agreement.1 Never-
theless, Protocol 2 appears to possess all the other desirable
security attributes including key authentication and secrecy,
resistance to unknown key-share attacks, forward secrecy,
resistance to known-session key attacks, and resistance to
leakage of ephemeral private keys. In [5], the security model
and definition developed by Bellare and Rogaway [4] for key
agreement in the symmetric-key setting was adapted to the
public-key setting. Protocol 2 was proven to be meet this se-
curity definition in the random oracle model assuming that
the CDH problem in G is intractable and that the MAC
scheme is secure. However, the security model and result in
[5] have the following shortcomings:

1That is, a key agreement protocol should not be considered
‘insecure’ merely because it fails to be KCI resilient.

(i) The security model does not incorporate forward se-
crecy.

(ii) While the adversary is allowed to learn a party’s static
private key and thereafter impersonate the party, the
security proof does not permit the adversary to replace
that party’s key pair with a key pair of its own choos-
ing. Hence the security proof does not rule out ‘ma-
licious insider’ attacks such as Kaliski’s online attack
[10]. (However, the security proof in [5] can be mod-
ified to rule out malicious insider attacks by invoking
the stronger GDH assumption.)

(iii) The adversary is not allowed to learn any ephemeral
private keys. More generally, the adversary is not al-
lowed to learn any session-specific secret information
(with the exception of session keys).

(iv) As observed by Rackoff (cf. [14]), a deficiency of the
Bellare-Rogaway model is that the adversary is not
allowed to make any queries once it has issued the
‘Test’ query (where it is given either a session key or
a randomly selected key).

More recently, Jeong, Katz and Lee [9] proposed and an-
alyzed a variant of Protocol 1 depicted in Figure 3 whereby
the ephemeral public keys and identities of the communi-
cating parties are included in the key derivation function
H. The Bellare-Rogaway security model was strengthened

Â

a, x

k = H(Xy, Ab, Â, B̂, X, Y)

Y

X

B̂

b, y

k = H(Y x, Ba, Â, B̂, X, Y)

Figure 3: Protocol 3: The variant of Protocol 1 an-
alyzed in [9].

in [9] to incorporate (weak) forward secrecy, and to allow the
adversary to issue queries even after making a Test query.
Protocol 3 was proven secure in the random oracle under the
CDH assumption. However, the security model and result in
[9] still have the shortcomings (ii) and (iii) described above.

In the next section, we strengthen the security model to
incorporate forward secrecy, resistance to malicious insider
attacks, and leakage of session-specific secret information.

3. SECURITY MODEL
In this section we present our strengthening of the

Canetti-Krawczyk security definition for key agreement [7].
Our definition aims to capture all essential security proper-
ties of key agreement with the exception of KCI resilience.2

The new definition can also be viewed as a weakening of the
extended Canetti-Krawczyk (eCK) definition [12] (see also
[16]) by the exclusion of KCI resilience.3

2The Canetti-Krawczyk security definition does not capture
KCI resilience.
3Exclusion of KCI resilience can mean that there are other
security properties that are captured by the eCK definition
but not our new definition. For example, unlike the eCK def-
inition, our new definition does not provide any assurances
if the adversary learns a party’s static private key and her

262

Our definition has been crafted specifically to allow a re-
ductionist security proof to be given for the UM protocol.
We don’t expect that the definition will be useful to assess
the security of other key agreement protocols. Nonetheless,
even though the new definition may appear to be contrived
and have limited applications, we feel that the exercise of
devising an appropriately strong security definition and pro-
viding a reductionist security proof for the UM protocol with
respect to this definition is worthwhile given the importance
of the UM protocol.

Preliminaries
In the model there are n parties each modeled by a prob-
abilistic Turing machine. Each party has a static key pair
together with a certificate that binds the public key to that
party. We do not assume that the CA requires parties to
prove possession of their static private keys, but we do in-
sist that the CA verifies that the static public key of a party
belongs to G∗. Since we are primarily interested in analyz-
ing the security of the UM protocol, we will only describe
our model for three-round key agreement protocols where
the initiator Â sends B̂ an ephemeral public key X in the
first round, B̂ responds with an ephemeral public key Y and
key confirmation tag tB in the second round, and Â sends
its confirmation tag tA in the third round. The session key
is obtained by combining A, B, X, Y and possibly the iden-
tifiers Â, B̂.

In the following, we shall assume that all communicated
messages are represented as binary strings. We denote by
× a special symbol not in {0, 1}∗. Two elements m1, m2 ∈
{0, 1}∗ ∪ {×} are said to be matched, written m1 ∼ m2, if
either m1 = × or m2 = ×, or if m1 = m2 as binary strings.
Two equal-length vectors over {0, 1}∗ ∪ {×} are said to be
matched if their corresponding components are matched.

Sessions
A party Â can be activated to create an instance of the pro-
tocol called a session. A session is created via an incoming
message that has one of the following forms: (i) (Â, B̂) or
(ii) (Â, B̂, Y). If Â is activated with (Â, B̂) then Â is the
session initiator, otherwise the session responder. If Â is
the session initiator then Â creates a separate session state
where all session-specific short-lived information is stored,
and prepares an ephemeral public key X. The session is la-
beled active and identified via a (temporary and incomplete)
session identifier s = (Â, B̂, X,×,×,×). The outgoing mes-
sage prepared by Â is (B̂, Â, X). If Â is the session respon-
der then Â creates a separate session state and prepares an
ephemeral public key X and key confirmation tag tA. The
session is labeled active and identified via (Â, B̂, Y, X, tA,×).
The outgoing message is (B̂, Â, Y, X, tA).

Since ephemeral keys are selected at random on a per-
session basis, the probability that an ephemeral public key
X is chosen twice by Â is negligible. Hence session iden-
tifiers are unique except with negligible probability. For a
session (Â, B̂, CommA), we call Â the session owner and B̂
the session peer ; together, Â and B̂ are referred to as the
communicating parties. The owner of a session associates a
label with the session to identify whether the owner is the
session’s initiator or responder.

communicating partner’s ephemeral private key. We believe,
however, that our definition is the ‘right’ one for capturing
all the essential security properties of the UM protocol.

A party Â can be activated to update an active session
via an incoming message of the form (i) (Â, B̂, X, Y, tB) or
(ii) (Â, B̂, Y, X, tA, tB). If the message is (Â, B̂, X, Y, tB),
then Â first checks that it owns an active session with iden-
tifier s = (Â, B̂, X,×,×,×); if not then the message is re-
jected. If the session exists, then Â prepares a key confirma-
tion tag tA, updates the identifier to s = (Â, B̂, X, Y, tB , tA),
and completes the session by accepting a session key. The
outgoing message is (B̂, Â, X, Y, tB , tA). If the incoming
message is (Â, B̂, Y, X, tA, tB), then Â first checks that it
owns an active session with identifier s = (Â, B̂, Y, X, tA,×);
if not then the message is rejected. If the session exists, then
Â updates the identifier to s = (Â, B̂, Y, X, tA, tB), and com-
pletes the session by accepting a session key. Whenever a
session s completes, all information stored in its session state
is erased. Note that since the session key is not short-lived,
it is not considered to be part of the session state.

Let s = (Â, B̂, CommA) be a session owned by Â. A ses-
sion s∗ = (Ĉ, D̂, CommC) is said to be matching to s if D̂ =
Â, Ĉ = B̂ and CommC ∼ CommA. The session s can have
more than one matching session if CommA = (X,×,×,×).
If CommA 6= (X,×,×,×), then s can have at most one
matching session (except with negligible probability) since
ephemeral keys are chosen at random on a per-session basis.

A protocol may require parties to perform some checks on
incoming messages. For example, if Â receives the message
(Â, B̂, X, Y, tB), then Â may need to verify that Y ∈ G∗ and
that tB satisfies some authentication condition. If a party is
activated to create a session with an incoming message that
does not meet the protocol specifications, then that message
is rejected and no session is created. If a party is activated
to update an active session with an incoming message that
does not meet the protocol specifications, then the party
deletes all information specific to that session (including the
session state and the session key if it has been computed)
and aborts the session.

At any point in time a session is in exactly one of the
following states: active, completed, aborted.

Adversary
The adversary M is modeled as a probabilistic Turing ma-
chine and controls all communications. Parties submit out-
going messages to M, who makes decisions about their de-
livery. The adversary presents parties with incoming mes-
sages via Send(message), thereby controlling the activation
of parties. The adversary does not have immediate access
to a party’s private information, however in order to cap-
ture possible leakage of private information M is allowed to
make the following queries:

• SessionStateReveal(s): M obtains all the information
available in the session state of s. We will henceforth
assume that M issues this query only if there is some
secret information in the session state of s. Since the
session key is not considered to be part of the session
state, M cannot obtain a session key with a Session-
StateReveal query.

• Expire(s): If s has completed, then the session key
held by s is deleted. We will henceforth assume thatM
issues this query only to sessions that have completed
and have not yet been expired.

• SessionKeyReveal(s): If s has completed and has not
been expired, then M obtains the session key held by

263

s. We will henceforth assume that M issues this query
only to sessions that have completed and have not yet
been expired.

• Corrupt(party): M gains complete control over the
party and is given all the information held by that
party including its static private key, the contents of
all active-session states, and all session keys (but not
session keys that were deleted via an Expire query). In
addition, M is able to select a new static key pair for
that party. Parties against whom M issued a Corrupt
query are called corrupt or adversary controlled. If a
party is not corrupt then it is said to be honest.

Adversary goal
M’s goal is to distinguish the session key held by a ‘fresh’
session from a random key. Informally speaking, a session
s is said to be fresh if M cannot determine the session key
held by s by trivial means, for example by requesting it with
a SessionKeyReveal(s) query, or by requesting it from the
matching session of s should that session exist. In order to
capture forward secrecy, M is allowed to learn the static
private key of a fresh session’s owner via a Corrupt query,
but this query can be issued only after s has expired (and
the session key deleted). However, since we wish to avoid
capturing KCI resilience, we will require that M cannot ob-
tain the static private key of a fresh session’s owner and the
ephemeral private key provided by the other communicating
party (which M could have chosen herself, or obtained via a
SessionStateReveal query). Formally, we have the following
definition.

Definition 1. Let s be the identifier of a completed ses-
sion, owned by party Â with peer B̂. Let s∗ be the identifier
of the matching session of s, if it exists. Define s to be fresh
if none of the following conditions hold:

1. M issued SessionKeyReveal(s).

2. M issued Corrupt(Â) before Expire(s).

3. M issued SessionStateReveal(s) and either
Corrupt(Â) or Corrupt(B̂).

4. s∗ exists and M issued one of the following:

(a) SessionKeyReveal(s∗).

(b) Corrupt(B̂) before Expire(s∗).

(c) SessionStateReveal(s∗) and either Corrupt(Â) or
Corrupt(B̂).

5. s∗ does not exist and M issued Corrupt(B̂) before
Expire(s).

To capture the indistinguishability requirement, the ad-
versary M is allowed to make a special query Test(s) to a
fresh session s. In response, M is given with equal prob-
ability either the session key held by s or a random key.
M meets its goal if it guesses correctly whether the key is
random or not. Note that M can continue interacting with
parties after issuing the Test query, but must ensure that
the test session remains fresh throughout M’s experiment.

Definition 2. A key agreement protocol is secure if the
following conditions hold:

1. If two honest parties complete matching sessions then,
except with negligible probability, they both compute the
same session key.

2. No polynomially bounded adversary M can distinguish
the session key of a fresh session from a randomly cho-
sen session key, with probability greater than 1

2
plus a

negligible fraction.

One can see that Definition 2 overcomes the four short-
comings listed in Section 2. Although this new definition is
not as strong as the eCK security definition [12], we main-
tain that a reductionist security proof that a protocol sat-
isfies Definition 2 can provide meaningful practical assur-
ances. In particular, Definition 2 captures all elements of the
Canetti-Krawczyk definition [7], which has been accepted as
a strong definition (see [8]). In addition, it is stronger than
the Canetti-Krawczyk definition in the following ways:

1. The SessionStateReveal query can be issued to the test
session and also to its matching session.

2. The adversary can select its own static key pair for
a corrupted party, thereby allowing the modeling of
malicious insider attacks.

3. The test session does not have to be unexpired at the
time when the Test query is issued.

4. A party is allowed to execute the protocol with itself.

4. PROTOCOL DESCRIPTION
In this section we give a complete description of the UM

protocol which, as mentioned earlier, is the dhHybrid1/Full
unified model with key confirmation as described in SP 800-
56A [15].

In the following, Λ denotes optional public information
that can be included in the key derivation function (KDF)
H, R is the fixed string “KC 2 U”, and I is the fixed string
“KC 2 V”. To establish a session key, parties Â and B̂ do
the following:

1. Party Â (the initiator) does the following:

(a) Select an ephemeral private key x ∈R [1, q − 1]
and compute the ephemeral public key X = gx.

(b) Initialize the session identifier to
(Â, B̂, X,×,×,×).

(c) Send (B̂, Â, X) to B̂.

2. Upon receiving (B̂, Â, X), party B̂ (the responder)
does the following:

(a) Verify that X ∈ G∗.

(b) Select an ephemeral private key y ∈R [1, q − 1]
and compute the ephemeral public key Y = gy.

(c) Compute σe = Xy and σs = Ab.
Compute (k′, k) = H(σe, σs, Â, B̂, Λ).

(d) Destroy σe, σs and y.

(e) Compute tB = MACk′(R, B̂, Â, Y, X).

(f) Initialize the session identifier to
(B̂, Â, X, Y, tB ,×).

(g) Send (Â, B̂, X, Y, tB) to Â.

264

3. Upon receiving (Â, B̂, X, Y, tB), Â checks that
she owns an active session with identifier
(Â, B̂, X,×,×,×). If so, then Â does the follow-
ing:

(a) Verify that Y ∈ G∗.

(b) Compute σe = Y x and σs = Ba.
Compute (k′, k) = H(σe, σs, Â, B̂, Λ).

(c) Destroy σe, σs and x.

(d) Verify that tB = MACk′(R, B̂, Â, Y, X).

(e) Compute tA = MACk′(I, Â, B̂, X, Y).

(f) Destroy k′.

(g) Send (B̂, Â, X, Y, tB , tA) to B̂.

(h) Update the session identifier to
(Â, B̂, X, Y, tB , tA) and complete the session
by accepting k as the session key.

4. Upon receiving (B̂, Â, X, Y, tB , tA), B̂ checks
that he owns an active session with identifier
(B̂, Â, X, Y, tB ,×). If so, then B̂ does the following:

(a) Verify that tA = MACk′(I, Â, B̂, X, Y).

(b) Destroy k′.

(c) Update the session identifier to
(B̂, Â, X, Y, tB , tA) and complete the session
by accepting k as the session key.

We will henceforth assume that the adversary cannot issue
a SessionStateReveal, Expire, SessionKeyReveal or Corrupt
query while a party is executing one of the four main steps
of the protocol. That is, the adversary can only issue one
of these queries at the end of steps 1, 2, 3 or 4. This means
that a SessionStateReveal query can yield x (at the end of
step 1) or k′ (at the end of step 2), but not y. In order to
account for possible loss of y to the adversary via a side-
channel attack or the use of a weak pseudorandom number
generator, we will henceforth assume that the adversary can
learn y by issuing a SessionStateReveal query at the end of
step 2 even though step 2 stipulates that y be deleted.

5. SECURITY PROOF
For simplicity we first consider the case Λ = (X, Y), where

X and Y are the exchanged ephemeral public keys. We also
assume that a party does not initiate a session with itself.
These restrictions will be relaxed in §5.4 and §5.5.

Theorem 1. Suppose that G is a group where the GDH
assumption holds, that the MAC scheme is secure, and that
H is modeled as a random oracle. Then the UM protocol is
secure in the sense of Definition 2.

Proof. Condition 1 of Definition 2 can be easily verified.
We now prove that condition 2 of Definition 2 is satisfied —
that no polynomially bounded adversary can distinguish the
session key of a fresh session from a randomly chosen session
key. Let λ denote the security parameter, and let M be a
polynomially (in λ) bounded adversary. We assume that M
succeeds in an environment with n parties, activates a party
to create a session at most t times, and terminates after
time TM. Here, n and t are bounded by polynomials in λ.
Let M denote the event that M succeeds, and suppose that

Pr(M) = 1
2

+ p(λ) where p(λ) is non-negligible. We will
show how M can be used to construct a polynomial-time
algorithm S that, with non-negligible probability of success,
solves a CDH instance (U, V) or breaks the MAC scheme.

Since H is a random function, M has two possible strate-
gies for winning its distinguishing game with probability sig-
nificantly greater than 1

2
:

(i) induce a non-matching session s′ to establish the same
session key as the test session s, and thereafter issue a
SessionKeyReveal(s′) query; or

(ii) query the random oracle H with (gxy, gab, Â, B̂, X, Y)
where s = (Â, B̂, X, Y, tB , tA) is the test session or its
matching session.

Now, two sessions (Â, B̂, X, Y, tB , tA) and
(B̂, Â, X, Y, t′B , t′A) cannot both be initiators or responders
except with negligible probability. It follows that tB = t′B
and tA = t′A, and so the sessions are matching. Hence,
since the input to the key derivation function includes the
identities of the communicating parties and the exchanged
ephemeral public keys, non-matching completed sessions
produce different session keys except with negligible prob-
ability of H collisions. This rules out strategy (i). Now,
let H∗ denote the event that M queries the random oracle
H with (gxy, gab, Â, B̂, X, Y) where s = (Â, B̂, X, Y, tB , tA)
is the test session or its matching session. Since H is a
random function, we have

Pr(M |H∗) =
1

2

where negligible terms are ignored. Hence

Pr(M) = Pr(M ∧H∗) + Pr(M |H∗) Pr(H∗)

≤ Pr(M ∧H∗) +
1

2
,

whence Pr(M ∧H∗) ≥ p(λ). We will henceforth denote the
event M ∧H∗ by M∗.

Let st denote the test session selected by M, and let sm

denote its matching session (if it exists). Consider the fol-
lowing complementary events:

E1. sm exists, and M issues neither SessionStateRe-
veal(st) nor SessionStateReveal(sm).

E2. Either sm does not exist, or M issues SessionStateRe-
veal(st), or M issues SessionStateReveal(sm).

Since Pr(M∗) is non-negligible, it must be the case that
either p1(λ) = Pr(M∗∧E1) or p2(λ) = Pr(M∗∧E2) is non-
negligble. The events E1 and E2 are considered in §5.1 and
§5.2.

The following conventions will be used in the remainder
of this section. The DDH oracle on input (ga, gb, gc) returns
the bit 0 if gc 6= gab, and the bit 1 if gc = gab. Also, ξ :
G×G → G is a random function known only to S and such
that ξ(X, Y) = ξ(Y, X) for all X, Y ∈ G. The algorithm
S, which simulates M’s environment, will use ξ(U, Z) to
‘represent’ CDH(U, Z) in situations where S does not know
logg U . Except with negligible probability,M will not detect
that ξ(U, Z) is being used instead of CDH(U, Z).

5.1 Event E1

265

We use M to construct an algorithm S that succeeds with
non-negligible probability provided that the event M∗ ∧E1
occurs with non-negligible probability.
S establishes n parties, who are assigned random static

key pairs, and selects s1, s2 ∈R [1, . . . , nt]. The s1’th and
s2’th sessions created will be called sU and sV , respectively.
The adversary M is activated on this set of n parties. We
next describe the actions of S when M activates a party or
issues a query.

1. Send(Â, B̂). S executes step 1 of the protocol. How-
ever, if the session being created is the s1’th or s2’th
session, then S deviates from the protocol description
by setting the ephemeral public key X to be U or V ,
respectively; note that S does not possess the corre-
sponding ephemeral private key in this case.

2. Send(B̂, Â, X). S executes step 2 of the protocol.
However, if the session being created is the s1’th or
s2’th session, then S deviates from the protocol de-
scription by setting the ephemeral public key Y to be
U or V , respectively, and setting σe = ξ(Y, X); note
that S does not possess the corresponding ephemeral
private key in this case.

3. Send(Â, B̂, X, Y, tB). S executes step 3 of the protocol.
However, if X ∈ {U, V }, then S deviates from the
protocol description by setting σe = ξ(X, Y).

4. Send(B̂, Â, X, Y, tB , tA). S executes step 4 of the pro-
tocol.

5. SessionStateReveal(s). S answers the query faithfully
except if s ∈ {sU , sV } in which case S aborts with
failure.

6. Expire(s). S answers the query faithfully.

7. SessionKeyReveal(s). S answers the query faithfully
except if s ∈ {sU , sV } in which case S aborts with
failure.

8. Corrupt(Â). If Â owns session sU or sV , and that ses-
sion is not expired, then S aborts with failure. Other-
wise, S answers the query faithfully.

9. H(σe, σs, Â, B̂, X, Y).

(a) If X ∈ {U, V } and σe 6= ξ(X, Y), then S obtains
τ = DDH(X, Y, σe).
If τ = 0, then S simulates a random oracle in the
usual way (by returning random values for new
queries and replaying answers if the queries were
previously made).
If τ = 1 and Y ∈ {U, V } and Y 6= X, then S
aborts with success and outputs CDH(U, V) = σe.
Otherwise, if either Y 6∈ {U, V } or Y = X, then
S returns H(ξ(X, Y), σs, Â, B̂, X, Y).

(b) If Y ∈ {U, V } and σe 6= ξ(X, Y), then S obtains
τ = DDH(X, Y, σe).
If τ = 0, then S simulates a random oracle in the
usual way.
If τ = 1, then S returns
H(ξ(X,Y), σs, Â, B̂, X, Y).

(c) S simulates a random oracle in the usual way.

10. Test(s). If s 6∈ {sU , sV } or if sU and sV are non-
matching, then S aborts with failure. Otherwise, S
answers the query faithfully.

Analysis
S’s simulation of M’s environment is perfect except with
negligible probability. The probability that M selects one
of sU , sV as the test session and the other as its matching
session is least 2/(nt)2. Suppose that this is indeed the case,
and suppose that event M∗ ∧ E1 occurs. Then S does not
abort as described in steps 5 and 10. Furthermore, since the
test session is fresh, S does not abort as described in steps 7
and 8.

Except with negligible probability of guessing ξ(U, V), a
successful M must query H with

(CDH(U, V), CDH(A, B), Â, B̂, X, Y)

where {X, Y } = {U, V }, in which case S is successful as
described in step 9(a). The probability that S is successful
is bounded by

Pr(S) ≥ 2

(nt)2
p1(λ), (1)

where negligible terms are ignored.
During the simulation, S performs group exponentiations

and MAC computations, accesses the DDH oracle, and sim-
ulates a random oracle. Let q = Θ(2λ). Then a group expo-
nentiation takes time TG = O(λ) group multiplications. We
assume that a MAC computation, a DDH oracle call, and
a response to an H query take polynomial time, TMAC(λ),
TDDH(λ), and TH(λ), respectively. The running time TS of
S is therefore bounded by

TS ≤ (2TG + 2TMAC + TDDH + TH) TM. (2)

5.2 Event E2
Let F be the event “sm does not exist and M does not

issue SessionStateReveal(st)”. We further subdivide event
E2 into the following complementary events:

E2a. E2 ∧ F .

E2b. E2 ∧ F .

Let p2a(λ) = Pr(M∗ ∧ E2a) and p2b(λ) = Pr(M∗ ∧ E2b),
whence p2 = p2a + p2b. If event M∗ ∧ E2 occurs with non-
negligible probability, then either M∗ ∧ E2a or M∗ ∧ E2b
occurs with non-negligible probability. The events E2a and
E2b are considered in §5.2.1 and §5.2.2. In both cases, S
establishes n parties. Two of these parties, denoted Û and
V̂ , are randomly selected and assigned static public keys
U and V , respectively. (Note that S does not know the
corresponding static private keys.) The other n − 2 parties
are assigned random static key pairs.

5.2.1 Event E2a
We use M to construct an algorithm S that succeeds with

non-negligible probability provided that the event M∗∧E2a
occurs with non-negligible probability.

The adversary M is activated on the set of n parties. We
next describe the actions of S when M activates a party or
issues a query.

1. Send(Â, B̂). S executes step 1 of the protocol.

266

2. Send(B̂, Â, X). S executes step 2 of the protocol.
However, if B̂ ∈ {Û , V̂ }, then S deviates from the
protocol description by setting σs = ξ(A, B).

3. Send(Â, B̂, X, Y, tB). S executes step 3 of the protocol.
However, if Â ∈ {Û , V̂ }, then S deviates from the
protocol description by setting σs = ξ(A, B).

4. Send(B̂, Â, X, Y, tB , tA). S executes step 4 of the pro-
tocol.

5. SessionStateReveal(s). S answers the query faithfully.

6. Expire(s). S answers the query faithfully.

7. SessionKeyReveal(s). S answers the query faithfully.

8. Corrupt(Â). If Â ∈ {Û , V̂ } then S aborts with failure.
Otherwise, S answers the query faithfully.

9. H(σe, σs, Â, B̂, X, Y).

(a) If Â ∈ {Û , V̂ } and σs 6= ξ(A, B), then S obtains
τ = DDH(A, B, σs).
If τ = 0, then S simulates a random oracle in the
usual way.
If τ = 1 and B̂ ∈ {Û , V̂ } and B̂ 6= Â, then S
aborts with success and outputs CDH(U, V) =
σs. Otherwise, if B̂ 6∈ {Û , V̂ } or B̂ = Â, then S
returns H(σe, ξ(A, B), Â, B̂, X, Y).

(b) If B̂ ∈ {Û , V̂ } and σs 6= ξ(A, B), then S obtains
τ = DDH(A, B, σs).
If τ = 0, then S simulates a random oracle in the
usual way.
If τ = 1, then S returns
H(σe, ξ(A, B), Â, B̂, X, Y).

(c) S simulates a random oracle in the usual way.

10. Test(s). If the communicating parties of s are not
Û and V̂ , then S aborts with failure. Otherwise, S
answers the query faithfully.

Analysis
S’s simulation of M’s environment is perfect except with
negligible probability. The probability that Û and V̂ are
the communicating parties of the test session selected by
M is at least 2/n2. Suppose that this is indeed the case
(so S does not abort in step 10), and suppose that event
M∗∧E2a occurs. Now, ifM issued a SessionStateReveal(st)
query then, by definition of a fresh session, M cannot have
corrupted Û or V̂ . On the other hand, if M did not issue
a SessionStateReveal(st) query then, by definition of event
F , sm must exist. Consequently, by definition of event E2,
M must have issued a SessionStateReveal(sm) query, and
hence cannot have corrupted Û or V̂ . Hence, S does not
abort as described in step 8.

Except with negligible probability of guessing ξ(U, V), a
successful M must query H with

(CDH(X, Y), CDH(U, V), Â, B̂, X, Y)

where {Â, B̂} = {Û , V̂ }, in which case S is successful as
described in step 9(a). The probability that S is successful
is therefore bounded by

Pr(S) ≥ 2

n2
p2a(λ), (3)

where negligible terms are ignored. The running time TS is
the same as in event E1.

5.2.2 Event E2b
We use M to construct an algorithm S that succeeds with

non-negligible probability provided that the event M∗∧E2b
occurs with non-negligible probability.
S is given a MAC oracle with key k̃ that is unknown to

S. S selects r ∈R [1, nt] and activates M. The rth session
created will be called sr. We next describe the actions of S
when M activates a party or issues a query.

1. Send(Â, B̂). S executes step 1 of the protocol. If the
session created is the rth session and {Â, B̂} 6= {Û , V̂ },
then S aborts with failure.

2. Send(B̂, Â, X). S executes step 2 of the protocol.
However, if B̂ ∈ {Û , V̂ }, then S deviates from the
protocol description by setting σs = ξ(A, B).

If the created session is the rth session, then S deviates
from the protocol description as follows. If {Â, B̂} 6=
{Û , V̂ } then S aborts with failure. Otherwise, S selects
a random session key k and sets the MAC key k′ equal
to the (unknown) key k̃ of the MAC oracle. S queries
the MAC oracle with (R, B̂, Â, Y, X) and sets tB equal
to the oracle response.

3. Send(Â, B̂, X, Y, tB). S executes step 3 of the protocol.
However, if Â ∈ {Û , V̂ }, then S deviates from the
protocol description by setting σs = ξ(A, B). If Â was
activated to update sr, then S selects a random session
key k and sets the MAC key k′ equal to the (unknown)

key k̃ of the MAC oracle. S queries the MAC oracle
with (I, Â, B̂, X, Y) and sets tA equal to the oracle
response.

4. Send(B̂, Â, X, Y, tB , tA). S executes step 4 of the pro-
tocol. If B̂ was activated to update sr, then S com-
pletes the session without verifying the received tA.

5. SessionStateReveal(s). S answers the query faithfully.
However, if s = sr and the owner of sr is the session
responder, then S aborts with failure.

6. Expire(s). S answers the query faithfully. However, if
s = sr and sr does not have a matching session, then S
aborts with success and outputs as its MAC forgery the
key confirmation tag received by s (and the associated
message). If s = sr and sr has a matching session,
then S aborts with failure.

7. SessionKeyReveal(s). S answers the query faithfully.

8. Corrupt(Â). If Â ∈ {Û , V̂ } then S aborts with failure.
Otherwise, S answers the query faithfully.

9. H(σe, σs, Â, B̂, X, Y).

(a) If Â ∈ {Û , V̂ } and σs 6= ξ(A, B), then S obtains
τ = DDH(A, B, σs).
If τ = 0, then S simulates a random oracle in the
usual way.
If τ = 1 and B̂ ∈ {Û , V̂ } and B̂ 6= Â, then S
aborts with success and outputs CDH(U, V) =
σs. Otherwise, if B̂ 6∈ {Û , V̂ } or B̂ = Â, then S
returns H(σe, ξ(A, B), Â, B̂, X, Y).

267

(b) If B̂ ∈ {Û , V̂ } and σs 6= ξ(A, B), then S obtains
τ = DDH(A, B, σs).
If τ = 0, then S simulates a random oracle in the
usual way.
If τ = 1, then S returns
H(σe, ξ(A, B), Â, B̂, X, Y).

(c) S simulates a random oracle in the usual way.

10. Test(s). If s 6= sr or if sr has a matching session, then
S aborts with failure. Otherwise, S answers the query
faithfully.

Analysis
S’s simulation of M’s environment is perfect except with
negligible probability. The probability that the test session
is the rth session, and Û and V̂ are its communicating par-
ties, is at least 2/(n3t). Suppose that this is indeed the case
(so S does not abort in steps 1 and 2), and suppose that
event M∗ ∧ E2b occurs (so S does not abort in step 6). By
definition of event F , S does not abort in steps 5 and 10.
Also by definition of a fresh session, M is only allowed to
corrupt either Û or V̂ after expiring the test session. There-
fore before aborting as in step 8, S is successful as in step 6.

Except with negligible probability of guessing ξ(U, V), a
successful M must query H with

(CDH(X, Y), CDH(U, V), Â, B̂, X, Y)

where {Â, B̂} = {Û , V̂ }, in which case S is successful as
described in step 9(a). The probability that S is successful
is bounded by

Pr(S) ≥ 2

n3t
p2b(λ), (4)

where negligible terms are ignored. The running time TS is
the same as in event E1.

5.3 Overall analysis
Combining the results from §5.1, §5.2.1 and §5.2.2, we

conclude that for every adversary M there is an algorithm
S that solves the GDH problem or breaks the MAC scheme
with running time TS and success probability Pr(S), where

TS ≤ (2TG + 2TMAC + TDDH + TH) TM (5)

and

Pr(S) ≥ max

{
2

(nt)2
p1(λ),

2

n2
p2a(λ),

2

n3t
p2b(λ)

}
. (6)

This completes the proof of Theorem 1.

5.4 Reflections
In the simulations of E2a and E2b it was implicitly as-

sumed (in step 9(a)) that Û and V̂ are distinct parties.
More precisely, if a party is allowed to initiate a session
with itself then S may fail as M may produce CDH(U, U) or
CDH(V, V) instead of CDH(U, V). The case Û = V̂ can be
encompassed by a reduction from the Gap Square Problem

(GSP), which is the problem of computing gu2
given gu and

a DDH oracle4. S’s actions are modified as follows. Given
U = gu, S selects v ∈R [1, q−1] and computes V = Uv. The

output produced by S in event E1 is σv−1

e . In events E2a

4The Gap Square Problem is easily seen to be polynomial-
time equivalent to the Gap Diffie-Hellman Problem [13].

and E2b, S’s output is σv−1

s if the communicating parties
are Û and V̂ , σs if Û is both the owner and peer of the test

session, and σv−2

s if V̂ is both the owner and peer of the test
session.

5.5 No ephemeral public keys in the KDF
If ephemeral public keys are not included in the key deriva-

tion function (i.e., if Λ is the empty string), then the follow-
ing attack on the UM protocol can be launched by M.

1. M induces two sessions s1 = (Â, B̂, X, Y, tB , tA) and
s2 = (B̂, Â, X, Y, tB , tA) to complete, where Â is the
initiator and B̂ is the responder. Note that (k, k′) =
H(gxy, gab, Â, B̂). During the protocol run, M learns
the ephemeral private keys x, y and the MAC key k′

via SessionStateReveal queries to s1 and s2.

2. M issues Test(s1).

3. M issues Send(Â, B̂). In response, Â selects ephemeral

key pair (x∗, X∗) where X∗ = gx∗ , initiates session
s = (Â, B̂, X∗,×,×,×), and sends (B̂, Â, X∗).

4. M issues SessionStateReveal(s) to learn x∗, and com-

putes y∗ = xy(x∗)−1, Y ∗ = gy∗ , and the MAC tag
t∗B = MACk′(R, B̂, Â, Y ∗, X∗).

5. M issues Send(Â, B̂, X∗, Y ∗, t∗B). Since gx∗y∗ = gxy,
Â computes the same (k, k′) pair as she computed for
session s1. Thus the tag t∗B is valid, and Â completes
session s with session key k.

6. M now obtains k by issuing SessionKeyReveal(s), and
thereafter correctly answers the Test query (note that
session s1 is still fresh).

The attack relies on the ability of the adversary to obtain
(temporary) MAC keys k′ via a SessionStateReveal query.
If MAC keys are deemed to be at risk, then the ephemeral
public keys X and Y should be included in the key deriva-
tion function, thus thwarting attacks like the one described
above.5 Suppose now that the adversary is unable to obtain
MAC keys. We sketch how the security proof can be mod-
ified for the case where the ephemeral public keys are not
included in the key derivation function.

A potential problem is that the adversary M could force
two non-matching sessions to compute the same session key,
issue the Test query to one session, and learn the session key
from the other session. Now, the test session completes only
after obtaining the correct key confirmation tag. Since this
tag contains the identifiers of the communicating parties,
the exchanged ephemeral public keys, and the string R or
I identifying whether the tag was created by an initiator or
responder, M cannot fool the test session owner into com-
pleting a session by reusing a MAC tag from a non-matching
session. Since the MAC algorithm is assumed to be secure,
it must be the case that M computed the MAC key itself
by querying H with (CDH(U, V), CDH(A, B), Â, B̂) in case
E1 and with (CDH(X, Y), CDH(U, V), Â, B̂) in cases E2a
and E2b. To complete the proof, we need to modify the

5Such attacks can also be prevented if the responder B̂ com-
putes tA and deletes k′ in step 2 of the protocol, and then
uses the stored copy of tA to verify Â’s tag in step 4. In this
way the attacker does not learn k′ via a SessionStateReveal
query.

268

simulation in case E1 as follows. Whenever M queries H
with (σe, σs, Â, B̂), S checks whether Â or B̂ owns either
of sU or sV . If so, then S uses the DDH oracle to test if
CDH(U, V) = σe, in which case S is successful.

6. CONCLUDING REMARKS
We have provided a reductionist security argument for the

UM protocol with respect to a strengthened version of the
Canetti-Krawczyk definition for secure key agreement. Our
reduction is not tight, but that is perhaps unavoidable given
that there can be many parties and sessions. It is also not
clear how, given a desired security level, one can use our
reduction to derive concrete recommendations for the pa-
rameters of the cryptographic ingredients. An outstanding
open problem is to design a Diffie-Hellman key agreement
protocol that: (i) is as efficient as the UM protocol; (ii) has
a natural one-pass variant; and (iii) has a ‘tight’ reduction-
ist security proof with respect to the eCK definition that
is relatively simple and intuitive, and makes only standards
assumptions (such as the CDH or DDH assumptions).

7. REFERENCES
[1] ANSI X9.42. Public Key Cryptography for the

Financial Services Industry: Agreement of Symmetric
Keys Using Discrete Logarithm Cryptography.
American National Standards Institute, 2003.

[2] ANSI X9.63. Public Key Cryptography for the
Financial Services Industry: Key Agreement and Key
Transport Using Elliptic Curve Cryptography.
American National Standards Institute, 2001.

[3] M. Bellare, D. Pointcheval, and P. Rogaway.
Authenticated key exchange secure against dictionary
attacks. In Advances in Cryptology – EUROCRYPT
2000, pages 139–155. LNCS 1807, 2000.

[4] M. Bellare and P. Rogaway. Entity authentication and
key distribution. In Advances in Cryptology –
CRYPTO ’93, pages 232–249. LNCS 773, 1994. Full
version available at http://www.cs.ucdavis.edu/
˜rogaway/papers/eakd-abstract.html.

[5] S. Blake-Wilson, D. Johnson, and A. Menezes. Key
agreement protocols and their security analysis. In
Proceedings of the Sixth IMA International Conference
on Cryptography and Coding, pages 30–45. LNCS
1355, 1997.

[6] C. Boyd and A. Mathuria. Protocols for
Authentication and Key Establishment. Springer, 2003.

[7] R. Canetti and H. Krawczyk. Analysis of key-exchange
protocols and their use for building secure channels. In
Advances in Cryptology – EUROCRYPT 2001, pages
453–474. LNCS 2045, 2001. Full version available at
http://eprint.iacr.org/2001/040/.

[8] K.-K. Choo, C. Boyd, and Y. Hitchcock. Examining
indistinguishability-based proofs for key establishment
protocols. In Advances in Cryptology – ASIACRYPT
2005, pages 585–604. LNCS 3788, 2005.

[9] I. Jeong, J. Katz, and D. Lee. One-round protocols for
two-party authenticated key exchange. In Applied
Cryptography and Networks Security – ACNS 2004,
pages 220–232. LNCS 3089, 2004.

[10] B. Kaliski. An unknown key-share attack on the MQV
key agreement protocol. ACM Transactions on
Information and System Security, 4:275–288, 2001.

[11] H. Krawczyk. HMQV: A high-performance secure
Diffie-Hellman protocol. In Advances in Cryptology –
CRYPTO 2005, pages 546–566. LNCS 3621, 2005. Full
version available at http://eprint.iacr.org/2005/176/.

[12] B. LaMacchia, K. Lauter, and A. Mityagin. Stronger
security of authenticated key exchange. In ProvSec
2007, pages 1–16. LNCS 4784, 2007.

[13] U. Maurer and S. Wolf. Diffie-Hellman oracles. In
Advances in Cryptology – CRYPTO ’96, pages
268–282. LNCS 1109, 1996.

[14] V. Shoup. On formal models for secure key exchange.
Available at http://www.shoup.net/papers/, 1999.

[15] SP 800-56A. Special Publication 800-56A,
Recommendation for Pair-Wise Key Establishment
Schemes Using Discrete Logarithm Cryptography.
National Institute of Standards and Technology, 2006.

[16] B. Ustaoglu. Obtaining a secure and efficient key
agreement protocol from (H)MQV and NAXOS.
Cryptology ePrint Archive, Report 2007/123, 2007.
Available at http://eprint.iacr.org/2007/123.

APPENDIX
A. DESIRABLE SECURITY PROPERTIES

OF KEY AGREEMENT PROTOCOLS
We list the essential security requirements for key agree-

ment protocols. For further discussion, see [6].
Let Â and B̂ be two honest parties. The fundamental

security requirements for a key agreement protocol are the
following:

1. Key authentication and secrecy. Suppose that party Â
executes the protocol in the belief that she is commu-
nicating with party B̂. Then Â should be assured that
no party other than Â and B̂ can possibly compute the
session key. A key confirmation procedure may be in-
corporated in order to make this assurance explicit –
that is Â receives the additional assurance that B̂ has
actually computed the session key.

2. Resistance to unknown key-share attacks. Entity B̂ can-
not be coerced into sharing a session key Â without B̂’s
knowledge, i.e., when B̂ believes the key is shared with
some party Ĉ 6= Â, and Â (correctly) believes the key
is shared with B̂.

3. Known-session key security. The security of a session
key is not compromised even if an adversary learns
other session keys.

The following security requirements are also deemed im-
portant in order to guard against the inadvertent (and some-
times unavoidable) disclosure of secret information to the
adversary.

4. Forward secrecy. If static private keys of one or more
parties are compromised, then the security of previ-
ously established session keys is not affected. Bellare,
Pointcheval and Rogaway [3] (see also [11]) observed
that two-pass key agreement protocols can only achieve
weak forward secrecy whereby security assurances are
only provided for session keys established without the
active involvement of the adversary.

5. Key-compromise impersonation (KCI) resilience. An
adversary who learns Â’s static private key is unable to
impersonate other entities to Â.

269

6. Resistance to leakage of ephemeral private keys. The
security of session keys is not affected even though the
adversary is able to learn one or more ephemeral private
keys. In practice, such ephemeral private key leakage
may occur by the use of a weak random number gen-
erator, by a side-channel attack, or if the adversary is
able to physically extract the keys from a party’s (less-
secure) memory.

270

