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ABSTRACT

BOUNDARY VALUE PROBLEMS FOR THE LAPLACE EQUATION
USING INTEGRAL EQUATION APPROACH

The main goal of this thesis is to solve numerically the exterior and interior Robin

boundary value problems via a boundary integral equation method, which has an advan-

tage of decreasing the computational dimension of the problem. Representing the solution

by a layer potential, we reduce the differential problem in a bounded and an unbounded

domain to the Fredholm integral equation of the second kind over the boundary. In the

case of exterior problem in two dimension, the fundamental solution to the Laplace equa-

tion is logarithmic, and hence additional condition or modification has to be applied that

keeps the solution bounded in the unbounded domain. Instead of using a classical single-

layer potential and enforcing a condition on the unknown density we propose a modified

single layer potential approach. After investigating uniqueness and existence of solution

to the obtained integral equations of second kind, we solve the equations numerically by

the Nyström method. For the numerical integration of integral operators with continuous

kernels the trigonometric quadratures on an equidistant mesh is used. For the numerical

integration of weakly singular kernels we first splitt off the logarithmic singularity and

apply a special quadrature rule for the improper integrals. The feasibility of the proposed

methods, covergence order (super-algebraic for smooth data) is illustrated by numerical

examples.
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ÖZET

İNTEGRAL DENKLEMİ YAKLAŞIMI KULLANILARAK LAPLACE
DENKLEMİ İÇİN SINIR DEĞER PROBLEMLERİ

Bu tezin temel amacı; iç ve dış Robin sınır değer problemlemlerinin, problemin

hesaplama boyutunu azaltması avantajına sahip bir yöntem olan sınır integral denklem

yötemi ile sayısal olarak çözülmesidir. Çözümün tek katmanlı potansiyel ile göster-

ilmesiyle; sınırlı ve sınırlı olmayan bölgedeki türevlenebilir problem, sınır üzerinde ik-

inci tür Fredholm integral denklemine indirgenmiştir. İki boyuttaki dış problem duru-

munda Laplace denklemin temel çözümü logaritmiktir, ve bundan dolayı sınırlı olmayan

bölgedeki çözümü sınırlı tutmak için ek bir şart ya da modifikasyon uygulanmalıdır.

Klasik tek katmanlı potansiyel kullanıp, bilinmeyen yoğunluk üzerinde bir şart uygula-

mak yerine; modifiye edilmiş tek katmanlı potansiyel yaklaşımının kullanılması tercih

edilmiştir. Elde edilen ikinci tür integral denklemlerinin çözümünün varlık ve tekliği in-

celendikten sonra, denklemler sayısal olarak Nyström yöntemi ile çözülmüştür. Sürekli

kernela sahip olan integral operatörlerin sayısal integrasyonu için eşit aralıklı meşler üz-

erinde trigonometrik quadrature kullanılmıştır. Zayıf tekilliği olan kernellerin sayısal in-

tegrasyonu için, ilk olarak logaritmik tekilliği ayırılmış ve improper integraller için özel

quadrature kuralı uygulanmıştır. Önerilen metodların yapılabilirliği, yakınsama mertebesi

sayısal örneklerle açıklanmıştır.
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CHAPTER 1

INTRODUCTION

Laplace equation with Robin condition arises in many mathematical and physical

phenomena such as physical geodesy, electrostatic, gravitational potential, mathematical

physics, fluid mechanics and so on. The Robin boundary conditions model the situation

when the boundary absorbs some part of the energy, heat, mass, which is transmitted. It

is well-known that the problem has a unique solution [4]. Integral equations are of central

importance to elliptic partial differential problems to show existence of the solution. Ivar

Fredholm has proved existence of solution to elliptic differential equation with Dirichlet

boundary conditions by using single-layer potential with the aid of Fredholm alternative

theorem in the late 1800s. In the thesis of Keeler [7], the classical single-layer potential is

used to obtain integral equation which is solved numerically via Nyström method based

on hybrid Gauss-trapezoidal quadrature. The drawback of using the single-layer poten-

tial for the two dimensional exterior problem is its unboundedness at infinity. Hence,

the additional condition has to be imposed on the unknown density. In this thesis we

propose alternative solution methods to Laplace equation in bounded and unbounded do-

mains with Robin boundary conditions. In the case of the exterior Robin problem, we

introduce a modified single-layer potential, inspired by [10], where the modification was

considered for investigating an inverse boundary value problem. This representation uses

for inverse problems [10]. Introducing appropriate representation which is bounded in

unbounded domain for the solution of the exterior problem, we show that the obtained in-

tegral equation has a unique solution. We solve numerically the boundary corresponding

boundary integral equations of the second kind via Nyström method based on trigonomet-

ric quadrature and a special quadrature with logarithmic weight function. Convergence of

the proposed method is verified by the numerical examples.

In Chapter 2 we describe basic concepts and potential theory. Representation of

the solution of the Laplace equation as an integral is important tool to obtain boundary

integral equations. Here classical single- layer potential and double-layer potential are

given and also their properties such as jump relation are defined.

In Chapter 3 we give the problem statement. We investigate a solution to the

Laplace equation which is bounded in D and IR2 \ D and additionally the solution should

satisfy the given Robin boundary conditions. In canonical domains such as circle, rectan-

1



gle etc, the solution of Laplace equation with boundary conditions can be found analyt-

ically by separation of variables [14] but our domains are not canonical domains in this

study.

Chapter 4 provides integral equation approach for the solution of the problems.

Here we introduce modified single-layer potential which is bounded at infinity and satis-

fies the Laplace equation. From the boundary condition we derive an integral equation.

The corresponding integral operators will be proved to be compact and injective. With the

help of Riesz theorem we show uniqueness and existence of the solution of the integral

equations we obtain. Since in the proof of the unique solvability of the integral equation

corresponding to the interior Robin problem we need additional assumptions on the do-

main, we give some information about logarithmic capacity of the domain. More details

about logarithmic capacity are given in [13]

In Chapter 5 we describe Nyström method for approximate solutions of boundary

integral equations. Nyström method is established on quadrature rules. Special quadrature

method will be given for singular operators. This chapter includes treating of the weakly

singular kernel of the integral operator via splitting off the logarithmic singularity in a

special form. Since the trigonometric monomials with this logarithm weight function can

be integrated exactly [9, Theorem 8.23], the method is high-order accurate for this type

singularity on smooth curve.

In Chapter 6 we present numerical examples which illustrate that the method con-

verges super-algebraically for exterior, interior problems with simply and multiply con-

nected domains.
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CHAPTER 2

BASIC CONCEPTS AND POTENTIAL THEORY

In this chapter some basic definitions and some fundamental theorems are given.

To study boundary value problem for the Laplace equation we briefly provide general

overview of potential theory and finally Green’s formula and identities are given in this

chapter.

2.1. Basic Definitions

Γ represents boundary of domain D ⊂ IR2 here. It is defined

Γ := {z(t) =
(
z1(t), z2(t)

)
, t ∈ [0, 2π]}, z(t) : [0, 2π]→ IR2 and |z′(t)|, 0,∀t ∈ [0, 2π],

if z(t) =
(
z1(t), z2(t)

)
is two times continuously differentiable, that is Γ is of class C2.

Definition 2.1 Let X,Y be linear spaces. A mapping < ·, · >: X × Y → C is called a

bilinear form if

< α1φ1 + α2φ2, ψ > = α1 < φ1, ψ > +α2 < φ2, ψ >,

< φ, β1ψ1 + β2ψ2 > = β1 < φ, ψ1 > +β2 < φ, ψ2 >

for all φ1, φ2, φ ∈ X, ψ1, ψ2, ψ ∈ Y, and α1, α2, β1, β2 ∈ C.

Definition 2.2 The bilinear form is called nondegenerate if for every φ ∈ X with φ , 0

there exists ψ ∈ Y such that < φ, ψ >, 0; and for every ψ ∈ Y with ψ , 0 there exists

φ ∈ X such that < φ, ψ >, 0.

Definition 2.3 Two normed spaces X and Y equipped with a nondegenerate bilinear form

< ·, · >: X × Y → C are called dual system and denoted by < X,Y >.

3



Definition 2.4 Let < X1,Y1 > and < X2,Y2 > be two dual systems. Then two operators

K : X1 → X2, K′ : Y2 → Y1 are called adjoint (with respect to these dual systems) if

< Kφ, ψ >=< φ,K′ψ >, (2.1)

for all φ ∈ X1, ψ ∈ Y2.

Definition 2.5 (Compact Operator) Let X,Y be normed space, A be linear operator and

define A : X −→ Y . If for each bounded sequence ψn in X the sequence Aψn has a

convergent subsequence in Y, A is called compact operator.

Definition 2.6 (Integral Operator) Let Γ ⊂ IR2 be nonempty domain. The linear

integral operator with continuous kernel k : Γ × Γ→ IR is defined by

K : C(Γ) −→ C(Γ)

(Kψ)(x) : =

∫
Γ

k(x, y)ψ(y)ds(y), x ∈ Γ, ψ ∈ C(Γ) (2.2)

Definition 2.7 A function g which is defined on D ⊂ IR2 is called Hölder continuous with

α ∈ (0, 1] if

∣∣∣g(x) − g(y)
∣∣∣ ≤ c

∣∣∣x − y
∣∣∣α for all x, y ∈ D, (2.3)

where c > 0 is constant independent of x and y. Hölder spaces are denoted by C0,α(D).

Definition 2.8 (Weakly Singular) The kernel k(x, y) in (2.2) is defined and continuous

for all x, y ∈ D ⊂ IRm, x , y, if there exist positive constants M independent of x, y and

α ∈ (0,m] such that

|k(x, y)|≤ M|x − y|α−m, x, y ∈ D, x , y, (2.4)

then k is called weakly singular.

Theorem 2.1 If the kernel of K is continuous or weakly singular, then in the dual system

4



< C(Γ),C(Γ) >, the operators are defined by

K : C(Γ) −→ C(Γ), (2.5)

(Kψ)(x) : =

∫
Γ

k(x, y)ψ(y)ds(y), x ∈ Γ,

K′ : C(Γ) −→ C(Γ),

(K′ψ)(x) : =

∫
Γ

k(y, x)ψ(y)ds(y), x ∈ Γ

are adjoint to each other [9, Theorem 4.7].

Theorem 2.2 The integral operator in (2.2) with a weakly singular kernel or continuous

kernel is compact operator.

The proof is given in [9, p.28].

Theorem 2.3 (Riesz Theorem) Let B : X −→ X be a compact linear operator on a

normed space X. Then I − B is injective if and only if it is surjective. If I − B is injective

(and therefore also bijective), the inverse operator (I − B)−1 : X −→ X is bounded [9,

Theorem 3.4].

Corollary 2.1 Kernel of K − I = {0} if and only if K − I is one-to-one.

2.2. Harmonic Functions

Potential theory alludes to Laplace equation in many fields such as physics, en-

gineering, statics etc. In this chapter we will introduce some properties about Laplace

equation and physical interpretation which are associated with Laplace equation and also

we will give a overview briefly about some appropriate theories which we will use later.

In this work D represents bounded domain.

We start with harmonic functions which are very important for solution of partial

differential problems and boundary integral equations. Let Φ be continuously differen-

tiable real-valued function and defined on domain D ⊂ IRm. We call Φ harmonic function

in D if it satisfies Laplace equation

∆Φ = 0 in D. (2.6)

5



Harmonic functions play a crucial role in many parts of science and engineering. They

describe

• Gravitational field

• Electrostatic

• Velocity potentials

• Time independent temperature distributions

• Brownian motion

• Chemical concentration

2.3. Fundamental Solution

The function

Φ(x, y) =


1

2π
ln

1
|x − y|

x, y ∈ IR2,m = 2,

1
4π

1
|x − y|

x, y ∈ IR3,m = 3,
(2.7)

where x , y, is called the fundamental solution of Laplace’s equation for all x, y ∈ IRm.

Here we have given the fundamental solution for two and three dimension. For any m

dimension it can be written

∆Φ(x, y) = δ(x − y), x, y ∈ IRm, (2.8)

where δ is Dirac delta distribution .

Lemma 2.1 Asymptotic behavior of fundamental solution of ∇Φ(x, y) = δ(x − y) is

Φ(x, y) =


1

2π
ln

1
|x|

+ O
(

1
|x|

)
, m = 2

O
(

1
|x|

)
, m = 3

(2.9)

6



Proof We have this formula by using fundamental solution when m = 2, 3. For m = 2

the fundamental solution is unbounded when |x|→ ∞. The proof also given in [9, p. 83] �

2.4. Properties of Single-Layer Potential

We introduce classical boundary integral representation of the solution of the

Laplace equation as a harmonic function in whole space except boundary Γ. In this thesis

we will use the single-layer potential to solve interior Robin problem under some condi-

tions. u is a harmonic function which can be represented as a integral and this allows us

to represent solution of Laplace equation as integral. It is defined as the following

u(x) =

∫
Γ

ψ(y)Φ(x, y)ds(y), x ∈ IRm \ Γ, ψ ∈ C(Γ). (2.10)

It is called a single-layer potential .

Theorem 2.4 Let Γ be of class C2 and ψ ∈ C(Γ). Then the single layer potential u is

continuous through IRm. On the boundary Γ we have

u(x) =

∫
Γ

ψ(y)Φ(x, y)ds(y), x ∈ Γ, (2.11)

where the integral exists as an improper integral.

The proof is given in [9, Theorem 6.15].

Theorem 2.5 Let Γ be class of C2 and ψ is continuous on Γ. Then we have

∂u±
∂ν

(x) =

∫
Γ

ψ(y)
∂Φ(x, y)
∂ν(x)

ds(y) ∓
1
2
ψ(x), x ∈ Γ, (2.12)

where
∂u±
∂ν

(x) := lim
h→+0

ν(x) · grad u(x ± hν(x)), and the integral (2.12) exists as an im-

proper integral.

Proof This shows normal derivative of a single-layer potential has jump relation on the

boundary Γ. The proof is given in [9, Theorem 6.19]. �
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2.5. Properties of Double-Layer Potential

Double layer-potential also represents solution to Laplace equation in D and IR2 \

D̄. It is defined as

υ(x) =

∫
Γ

ψ(y)
∂Φ(x, y)
∂ν(x)

ds(y), x ∈ IRm \ Γ, ψ ∈ C(Γ). (2.13)

Theorem 2.6 Let Γ of class C2 with ψ ∈ C(Γ). Then Double layer-potential can be

continuously extended up to the boundary as follows

υ(x)± =

∫
Γ

ψ(y)
∂Φ(x, y)
∂ν(x)

ds(y) ±
1
2
ψ(x), x ∈ Γ, (2.14)

where

υ±(x) := lim
h→+0

υ(x ± hν(x))

and the integral exists as an improper integral.

Proof This theorem depicts double-layer potential is discontinuous and it has jump

relation on the boundary Γ. Also the proof is given in [9, Theorem 6.18]. �

Theorem 2.7 Let Γ of class C2 with ψ ∈ C(Γ). Then double-layer potential υ has property

lim
h→+0

ν(x) · {grad υ(x + hν(x)) − grad υ(x − hν(x))} = 0 for all x ∈ Γ. (2.15)

Proof It is taken exterior limit and interior of limit of the normal derivative of the

double layer potential. The proof is given in detail in [9, Theorem 6.20]. �

Theorem 2.8 If w, u ∈ C2(D) ∩C1(D̄), then Green’s identities

∫
D

u∆wdx +

∫
D

(grad u) · (grad w)dx =

∫
Γ

u
∂w
∂ν

ds, (2.16)

8



and

∫
D

(u∆w − w∆u)dx =

∫
Γ

(u
∂w
∂ν
− w

∂u
∂ν

)ds. (2.17)

Proof If the divergence theorem is applied for u grad w, then equation (2.16) is obtained

and by switching u and w, the equality (2.17) can be established [4, Theorem 1. 26]. �

2.6. Green’s Formula

Theorem 2.9 Let D be bounded domain of class C1, ν denote the outer unit normal vector

to the boundary Γ, u be twice continuously differentiable and u be harmonic in D. Then u

can be represented

u(x) =

∫
Γ

(
∂u(y)
∂ν(y)

Φ(x, y) − u(y)
∂Φ(x, y)
∂ν(y)

)
ds(y), x ∈ D. (2.18)

Proof The proof is given in [9, Theorem 6.5]. Green’s formula is combination of single-

layer and double-layer potential. It is used for direct method to derive integral equation

on the boundary. We will use it to derive boundary integral equation for the interior Robin

problem. �

Lemma 2.2 Let D be bounded domain of class C1, ν denotes the outer unit normal vector

to the boundary Γ. If w is harmonic in D, then

∫
D

∣∣∣grad w
∣∣∣2 dx =

∫
Γ

w
∂w
∂ν

ds. (2.19)

Proof This assertion comes from (2.16) with w = u [4, p. 10]. �

Lemma 2.3 We assume that u and
∂u
∂ν

satisfy the asymptotic relations at infinity. Namely

9



u = O
(
1
r

)
and

∂u
∂ν

= O
(

1
r2

)
as r→ ∞. If u is harmonic in ∈ IR2 \ D̄, then

∫
IR2\D̄

∣∣∣grad u
∣∣∣2 dx = −

∫
Γ

u
∂u
∂ν

ds. (2.20)

Proof We take a disk S R which contains strictly domain D and has sufficiently large

radius R. If we apply Lemma 2.2 in S R ∩ (IR2 \ D̄), then we have

∫
S R∩(IR2\D̄)

∣∣∣grad u
∣∣∣2 dx = −

∫
Γ

u
∂u
∂ν

ds +

∫
∂S R

u
∂u
∂ν

ds. (2.21)

By assumption, the integral

∫
∂S R

u
∂u
∂ν

ds→ 0 (2.22)

when R→ ∞. Thus the desired result is obtained [4, p. 10]. �

10



CHAPTER 3

PROBLEM STATEMENT

In this chapter we will investigate existence of solution to the exterior and the

interior problem theoretically and also we will explain what our problems are in this

thesis. It is well known that if we have canonical shape, we can find analytic solution

via separation of variable method. But if we do not have canonical shape, we can not

find analytic solution to partial differential problems. Hence, we need to find solution that

approximates exact solution. Before solving the problem analytically or numerically, we

need to show that interior and the exterior problem have unique solution. In the following

we have explanation of the problems in this thesis. Let D be bounded domain in IR2 with

smooth boundary Γ and ν is an outward unit normal to Γ

3.1. Exterior Robin Problem

Given function f ∈ C(Γ), λ ∈ C(Γ), λ > 0, we will find solution

u ∈ C2(IR2 \ D̄) ∩C1(IR2 \ D) of the Laplace Equation

∆u = 0 in IR2 \ D̄ (3.1)

which satisfies the impedance boundary conditions

∂u
∂ν
− λu = f on Γ, (3.2)

where ν is an outward unit normal to Γ. Moreover the solution should satisfy the asymp-

totic behavior at infinity, i.e

u = O (1) when |x|→ ∞. (3.3)

11



ν

Γ D

Figure 3.1. Exterior problems

3.2. Interior Robin Problem

Given function f ∈ C(Γ), λ ∈ C(Γ), λ > 0, we will find solution u ∈ C2(D)∩C1(Γ)

of the Laplace equation

∆u = 0 in D, (3.4)

which satisfies the impedance boundary conditions

∂u
∂ν

+ λu = f on Γ, (3.5)

where ν is an outward unit normal to Γ.

3.3. Existence and Uniqueness

Existence of the solution to elliptic partial differential problems are equivalent to

the existence of the solution to integral equation. They have relationship with each other

reciprocally. Existence of the solution of the exterior and interior problems by using

Fredholm alternative theorem can be shown. The following theorems are given to show

existence and uniqueness of the elliptic partial differential problems.

12



Theorem 3.1 Each of exterior boundary value problem and interior boundary value

problem has at most one solution.

Proof Let u be the difference of any two solutions of the interior Robin boundary value

problem. Then

∂u
∂ν

(x) + (λu)(x) = 0, where x ∈ Γ and λ > 0. (3.6)

This can be written
∂u
∂ν

(x) = −(λu)(x). From Lemma 2.2

∫
D

∣∣∣grad u
∣∣∣2 +

∫
Γ

λu2ds = 0, x ∈ Γ. (3.7)

By reason of the fact that λ is positive, from the equation (3.7) it follows that u(x) = 0, x ∈

Γ. In what follows, similar arguments can be done for the exterior Robin boundary value

problem by using the Lemma 2.3. This shows it is unique [4, p. 13]. The existence is

given in the Chapter 4. �
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CHAPTER 4

INTEGRAL EQUATION METHOD

In this chapter we will find boundary integral equation equivalent to the interior

and exterior Robin problems. Thanks to this we will solve the problem on the boundary

instead of the domain. Moreover, we introduce boundary representation of u as modified

single-layer potential u(x), x ∈ IR2\D̄ which satisfies Laplace equation and that is bounded

at infinity. The reason why we introduce modified single-layer potential is that it satisfies

asymptotic behavior at infinity but single-layer potential does not. Finally, we will prove

the uniqueness and the existence of the solution to the boundary integral equation.

4.1. Integral Equation Method For The Exterior Problem

There are some modified forms of single-layer potential in [4]. Here we will give

simpler representation of solution to Laplace equation for the exterior Robin problem. In

order to identify the solution to the exterior Robin problem, we will propose a solution

u(x), x ∈ IR2 \ D̄ as modified single layer potential.

Theorem 4.1 Let D ⊂ IR2 with smooth boundary Γ and (0, 0) ∈ D then

u(x) =

∫
Γ

ψ(y)Φ(x, y)ds(y) +

∫
Γ

(1 − Φ(x, 0))ψ(y)ds(y), x ∈ IR2 \ D̄ (4.1)

satisfies Laplace equation and asymptotic behavior at infinity, i.e u = O(1) when

|x| −→ ∞.

Proof We prove that modified single layer potential satisfies

• Laplace equation

• Asymptotic behavior at infinity

By the fact that the function (4.1) is composed of a single layer potential and constant

function, the function (4.1) satisfies Laplace equation. Secondly, by substituting funda-
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mental solution into the representation (4.1), we get

u(x) =
1

2π

∫
Γ

ψ(y) ln
1
|x − y|

ds(y) −
∫

Γ

ψ(y) ln
1
|x|

ds(y) +

∫
Γ

ψ(y)ds(y), x ∈ IR2 \ D̄.(4.2)

The equation (4.2) can be written as

u(x) =
1

2π

∫
Γ

ψ(y) ln
|x|
|x − y|

ds(y) +

∫
Γ

ψ(y)ds(y), x ∈ IR2 \ D̄. (4.3)

Since x ∈ IR2 \ D̄, there exists y∗ ∈ Γ such that

∣∣∣u(x)
∣∣∣ ≤ ∣∣∣∣∣∣ 1

2π
ln

|x|
|x − y∗|

∫
Γ

ψ(y)ds(y) +

∫
Γ

ψ(y)ds(y)

∣∣∣∣∣∣ . (4.4)

From property of integral

∣∣∣∣∣∣ 1
2π

ln
|x|
|x − y∗|

∫
Γ

ψ(y)ds(y)

∣∣∣∣∣∣ +

∣∣∣∣∣∣
∫

Γ

ψ(y)ds(y)

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣ 1
2π

ln
|x|
|x − y∗|

∣∣∣∣∣∣
∫

Γ

∣∣∣ψ(y)
∣∣∣ ds(y) +

∫
Γ

∣∣∣ψ(y)
∣∣∣ ds(y).

Then when |x| → ∞,
∣∣∣u(x)

∣∣∣ is bounded, i.e |u(x)|≤ c. We have shown that when

x→ ∞, the modified single-layer potential satisfies asymptotic behavior. �

Theorem 4.2 Let D ⊂ IR2 be bounded and closed domain with λ, f ∈ C(Γ). If ψ ∈ C(Γ)

is solution to

2
∫

Γ

ψ(y)
∂Φ(x, y)
∂ν(x)

ds(y) − 2λ(x)
∫

Γ

ψ(y)Φ(x, y)ds(y) − ψ(x) (4.5)

− 2
∫

Γ

ψ(y)
∂Φ(x, 0)
∂ν(x)

ds(y) − 2λ(x)
∫

Γ

(1 − Φ(x, 0))ψ(y)ds(y) = 2 f (x), x ∈ Γ.

Then

u(x) =

∫
Γ

ψ(y)Φ(x, y)ds(y) +

∫
Γ

(1 − Φ(x, 0))ψ(y)ds(y), x ∈ IR2 \ D̄ (4.6)
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is solution to the exterior problem

∆u = 0 in IR2 \ D̄, (4.7)
∂u
∂ν
− λu = f on Γ, (4.8)∣∣∣u(x)

∣∣∣ = O(1) when |x| −→ ∞. (4.9)

Proof From Theorem 4.1, u satisfies Laplace equation and asymptotic behavior at in-

finity. The remaining part is to show u satisfies the Robin boundary condition (4.8). Using

the jump relation from Theorem 2.5, we obtain

∂u
∂ν

(x) − λ(x)u(x) =

∫
Γ

ψ(y)
∂Φ(x, y)
∂ν(x)

ds(y) − λ(x)
∫

Γ

ψ(y)Φ(x, y)ds(y) (4.10)

−
1
2
ψ(x) −

∫
Γ

ψ(y)
∂Φ(x, 0)
∂ν(x)

ds(y) − λ(x)
∫

Γ

(1 − Φ(x, 0))ψ(y)ds(y), x ∈ Γ.

�

By assumption ψ is the solution to the (4.5), therefore u satisfies the (4.8). We have

the Fredholm integral equation of second kind in the (4.10) which can be represented in

abstract form. We introduce operators

(
K′ψ

)
(x) := 2

∫
Γ

ψ(y)
∂Φ(x, y)
∂ν(x)

ds(y),
(
Sψ

)
(x) := 2

∫
Γ

ψ(y)Φ(x, y)ds(y), (4.11)

(
Hψ

)
(x) := 2

∫
Γ

ψ(y)
∂Φ(x, 0)
∂ν(x)

ds(y),
(
Tψ

)
(x) := 2

∫
Γ

(1 − Φ(x, 0))ψ(y)ds(y),

(
Kψ

)
(x) :=

∫
Γ

ψ(y)
∂Φ(x, y)
∂ν(y)

ds(y),
(
S λψ

)
(x) :=

∫
Γ

λ(y)ψ(y)Φ(x, y)ds(y).

Linearity for these operators (4.11) are obvious with these notations. Boundary integral

equation (4.10) can be represented by

(K′ − λS − I)ψ − (H + λT )ψ = 2 f (4.12)

which is boundary integral equation of Fredholm of second kind.

Theorem 4.3 The operators I − K and I − K′ have trivial nullspaces [9, Theorem 6.21].

Theorem 4.4 (K′ − λS − I)ψ − Aψ = 0 has only a trivial solution.
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Proof Now we analyze the integral operators (4.12) to check the injectivity which is

one of conditions to have unique solution for integral equation. Let ψ be solution to the

homogeneous integral equation.

(K′ − λS − I)ψ − (H + λT )ψ = 0. (4.13)

We demonstrate that ψ = 0 to prove injectivity. We recall the definition of the function u,

(4.6). From the equation (4.13), we obtain that
∂u
∂ν
−λu = 0 in IR2 \ D̄. From the Theorem

3.1 exterior Robin problem has unique solution. It follows that u = 0, and therefore

1
2π

∫
Γ

ψ(y) ln
|x|
|x − y|

ds(y) +

∫
Γ

ψ(y)ds(y) = 0, x ∈ IR2 \ D̄. (4.14)

When x −→ ∞, because of asymptotic behavior of modified single-layer potential the

(4.14) we obtain

∫
Γ

ψ(y)ds(y) = 0. (4.15)

By using the equation (4.6) and (4.15) with
∂u
∂ν

∣∣∣
Γ

= 0, eventually we have

(K′ − I)ψ = 0. (4.16)

From the Theorem 4.3, the homogeneous integral equation (4.16) has trivial nullspaces.

Namely ψ = 0, thus the integral operator in (4.12) is injective . �

What we have done until now is not enough to have unique solution for Fredholm integral

equation of second kind (4.5). For this reason, also the integral operators in the (4.5) must

be compact so we describe parametrized form of integral operators to show compactness.

Assume that Γ has a C2-smooth and 2π-periodic representation

Γ :=
{
z(t) = (z1(t), z2(t)), |z′(t)|> 0 for t ∈ [0, 2π]

}
.
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We introduce the parametrized operators

K̃′ : C2π −→ C2π

(K̃′ψ)(t) = 2
∫ 2π

0

∂Φ(z(t), z(τ))
∂ν(z(t))

ψ(z(τ))|z′(τ)|dτ, t ∈ [0.2π]

S̃ : C2π −→ C2π

(S̃ψ)(t) = 2
∫ 2π

0
Φ(z(t), z(τ))ψ(z(τ))|z′(τ)|dτ, t ∈ [0.2π]

H̃ : C2π −→ C2π

(H̃ψ)(t) = 2
∫ 2π

0

∂Φ(z(t), 0)
∂ν(z(t))

ψ(z(τ))|z′(τ)|dτ, t ∈ [0.2π]

T̃ : C2π −→ C2π

(T̃ψ)(t) = 2
∫ 2π

0
(1 − Φ(z(t), 0))ψ(z(τ))|z′(τ)|dτ, t ∈ [0.2π]

where ν(z(t)) =
[z′2(t),−z′1(t)]
|z′(t)|

=
[z′(t)]⊥

|z′(t)|
which is unit normal directed outside of the do-

main D. Having described the parametrization of our integral operators and given ap-

propriate theory, now we turn to show compactness of integral operators in the equation

(4.12) for exterior Robin problem.

Operator K̃′

The kernel of the operator K̃′ is given by

k(t, τ) = 2
∂Φ(z(t), z(τ))
∂ν(z(t))

|z′(τ)|. (4.17)

By taking derivative of fundamental solution with respect to z(t), we have

gradz(t) Φ(z(t), z(τ)) =
(z(t) − z(τ))
|z(t) − z(τ)|2

, (4.18)

and by substituting expression (4.18) and ν in the kernel (4.17), we obtain

2
∂Φ(z(t), z(τ))
∂ν(z(t))

|z′(τ)| = 2|z′(τ)|ν(z(t)) · gradz(t) Φ(z(t), z(τ)),

= −
1
π

[z′(t)]⊥

|z′(t|
·

(z(t) − z(τ))
|z(t) − z(τ)|2

|z′(τ)|. (4.19)

18



By taylor expansion of function z around the point t, we have

z(τ) − z(t) = (τ − t)z′(t) + (t − τ)2
∫ 1

0
(1 − λ)z′′(τ + λ(t − τ))dλ. (4.20)

Substituting the expression (4.20) into the expression (4.19) and taking limit as t → τ, we

get

1
2π

z′′(τ) · [z′(τ)]⊥

|z′(τ)|2
. (4.21)

Eventually we have proven that

2
∂Φ(z(t), z(τ))
∂ν(z(t))

=


−

1
π

[z′(t)]⊥

|z′(t)|
·

(z(t) − z(τ))
|z(t) − z(τ)|2

|z′(τ)|, if t , τ,

1
2π

z′′(t) · [z′(t)]⊥

|z′(t)|2
, if t = τ.

(4.22)

It follows that the kernel (4.17) is continuous and hence by the Theorem 2.2 the operator

K̃′ is compact.

Operator S̃

Operator S̃ is defined as

(S̃ψ)(t) =
1
π

∫ 2π

0
ln(

1
|z(t) − z(τ)|

)ψ(z(τ))|z′(τ)|dτ, t ∈ [0, 2π]. (4.23)

It can be found ∃M > 0, 0 < α ≤ 1 such that

∣∣∣∣∣∣ln 1
|z(t) − z(τ)|

∣∣∣∣∣∣ ≤ M
|z(t) − z(τ)|1−α

≤ M̃|t − τ|α−1. (4.24)

From Theorem 2.2, the kernel is weakly singular, and therefore the operator S̃ is compact.
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Operator H̃

Recalling the definition of the operator H̃

(H̃ψ)(t) = 2
∫ 2π

0

∂Φ(z(t), 0)
∂ν(z(t))

ψ(z(τ))|z′(τ)|, (4.25)

it is clear that the kernel of H̃ is continuous sincce (0, 0) ∈ D. For this reason, the operator

H̃ is compact by Theorem 2.2.

Operator T̃

By the same reason as operator H̃, the operator T̃ is compact. We have shown that the

linear boundary integral operators in (4.12) are compact and the homogenous equation

has only a trivial solution, so Riesz theorem can be applied. According to Riesz theorem

and Theorem 4.3, the boundary integral equation (4.5) has solution and it is unique.

4.2. Integral Equation Method for Interior Problem

We have two methods to obtain boundary integral equation for interior Robin

boundary value problem. One way is to use single-layer potential as representation of

solution of the Laplace equation under some conditions. This method is called indirect

method. Another method is direct method which is based on Green’s formula. By using

two ways, we obtain Fredholm integral equation of second kind. In order to have unique

solution, we need to put some restrictions on domain D.

Theorem 4.5 In two dimensions suppose there exists x0 ∈ D such that |x − x0| , 1 for all

x ∈ Γ. Then the single layer operator S : C(Γ) −→ C(Γ) is injective.

Proof The proof is given [9, Theorem 7.38]. �

We can give a counter example when the assumptions of the theorem are not fulfilled.

Consider a unit circle and λ = 1, ψ =
1
‖Γ‖

, where ‖Γ‖ represents the length of the curve.

Then by using polar coordinates, the operator

Sψ =

∫
Γ

Φ(x, y)ψ(y)ds(y) = −
1
‖Γ‖

∫ 2π

0
R ln Rdθ = − ln 1 = 0. (4.26)

Instead of using the assumption in Theorem 4.5 one can show the injectivity of a single

layer potential operator by introducing the concept of logarithmic capacity.
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Theorem 4.6 There is a unique nonzero ψ ∈ C0,α(Γ) and a unique constant ω such that

∫
Γ

Φ(x, y)ψ(y)ds(y) = ω,

∫
Γ

ψ(y)ds(y) = 1, (4.27)

where Γ is class of C2 and α ∈ (0, 1).

Proof For details we refer to [4, p. 21]. �

Definition 4.1 The numbers 2πω and e−2πω are called Robins’s constant and logarithmic

capacity of Γ.

Theorem 4.7 If the logarithmic capacity of Γ is 1, then the single layer operator S

coincides with (K′ +
1
2

I). In all other cases, this space consists of zero alone.

Proof We will not give the proof. The proof is given in [4, p. 22]. �

4.2.1. Using Singe-Layer Potential

Here we will use indirect method which is based on single-layer potential to derive

our Fredholm integral equation of second kind. By substituting the single-layer (2.10)

instead of u in boundary condition (3.5) and using the Theorem 2.5, we get

2
∫

Γ

ψ(y)
∂Φ(x, y)
∂ν(x)

ds(y) + ψ(x) + 2λ(x)
∫

Γ

ψ(y)Φ(x, y)ds(y) = 2 f (x), x ∈ Γ. (4.28)

Recalling the operators (4.11), the boundary integral equation (4.28) can be written as

(K′ + λS + I)ψ = 2 f . (4.29)

Theorem 4.8 Assume that K : C(Γ) −→ C(Γ), S : C(Γ) −→ C(Γ) and f , λ ∈ C(Γ), there

exists x0 ∈ D such that |x − x0| , 1 such that for all x ∈ Γ. Then (K′ + λS + I)ψ = 2 f has

at most one solution.

Proof We assume that (K′ + λS + I)ψ = 0, and define

u(x) =

∫
Γ

Φ(x, y)ψ(y)ds(y). (4.30)
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By using representation (4.30) and (K′ + λS + I)ψ = 0, we obtain

∂u
∂ν

+ λu = 0. (4.31)

From the uniqueness of the interior Robin problem, u = 0 in D, by analycity u|Γ = 0, and

hence λSψ = 0. From the Theorem 4.5, we conclude that ψ = 0. More the detail about

this approach is given in [9]. �

We define ˜λ(t) = λ(z(t)), ˜f (t) = f (z(t)).

Theorem 4.9 Assume there exists x0 ∈ D, |x − x0| , 1, ∀x ∈ Γ. Then

(K̃′ + λ̃S̃ + I) = 2 f̃ (4.32)

has a unique solution.

Proof We have shown that the operators K̃′ and S̃ are compact so from the Theorem

2.3 and the Theorem 4.5, the integral equation (4.32) has unique solution. �

4.2.2. Using Green’s Formula

Here we use direct method which is based on Green’s representation formula to

obtain integral equation of second kind. We substitute
∂u
∂ν

= −λu + f into formula (2.18)

and then we have

u(x) = −

∫
Γ

λ(y)u(y)Φ(x, y)ds(y) −
∫

Γ

u(y)
∂Φ(x, y)
∂ν(y)

ds(y)

+

∫
Γ

f (y)Φ(x, y)ds(y), x ∈ D. (4.33)

Introducing ψ = u|Γ and g(x) =
∫

Γ
f (y)Φ(x, y)ds(y), we derive a boundary integral

equation

(K + S λ + I)ψ = g. (4.34)
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Theorem 4.10 Suppose that K : C(Γ) −→ C(Γ), S : C(Γ) −→ C(Γ) and f , λ ∈ C(Γ), and

there exists x0 ∈ D such that |x − x0| , 1 such that for all x ∈ Γ. Then

(K + S λ + I)ψ = g (4.35)

has a unique solution where u|Γ= ψ and g(x) =
∫

Γ
f (y)Φ(x, y)ds(y), x ∈ Γ.

Proof Let ψ ∈ C(Γ) be solution to (I + K + S λ)ψ = 0. We define

u(x) =

∫
Γ

∂u
∂ν

(y)Φ(x, y)ds(y) −
∫

Γ

u(y)
∂Φ(x, y)
∂ν(y)

ds(y) in D. (4.36)

By using (I + K + S λ)ψ = 0 and (4.36), we obtain

∂u
∂ν

+ λu = 0 on Γ. (4.37)

From the equation (4.37) and the representation (4.33), we find that

u|Γ= ψ and
∂u
∂ν

= −λψ. (4.38)

Then by Lemma 2.2, we have

∫
Γ

u
∂u
∂ν

ds = −

∫
Γ

ψ2λds =

∫
D

∣∣∣∇u
∣∣∣2 dx. (4.39)

This yields ψ = 0 since λ > 0 . Thus the operator (I + K + S λ) is injective. Compactness

is known for operator S λ and K. From the Theorem 2.3, it follows that (4.35) has solution

which is unique �

This work also can be extended to another types of assumption on the domain D by

considering the Hölder space C0,α. This is given in detail in [4].
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CHAPTER 5

NUMERICAL SOLUTION TO INTEGRAL

EQUATIONS

In this chapter we focus on Nyström method for the numerical solution of integral

equations. Besides we give the error estimate for Nyström method based on the quadra-

ture rules for 2π-periodic functions. Then we focus on treating singularity by splitting the

kernel into two parts. We have two types of kernels which are 2π-periodic. For contin-

uous kernel, the integrals are calculated by trapezoidal rule which is high-order accurate

method for 2π periodic functions. For the singular kernel, we use the way of splitting

off the singularity and calculating the resulting singular part by a special quadrature rule

introduced by R. Kress and K. Atkinson. Although there are some high -order accurate

methods for calculating integrals with weakly singular kernel [2, 6], the method based

on splitting off the singularity is superior since it is based on the exact integration. The

general overview of these methods can be found in [5].

5.1. Quadrature Rule

For given weights wk and quadrature nodes yk, for k ∈ {1, 2, . . . n},

Q(ψ) =

∫ 2π

0
ψ(y)dy (5.1)

is approximated by quadrature formula

Qn(ψ) =

n∑
k=1

wkψk. (5.2)

To guarantee the convergence Qn(ψ)→ Q(ψ), we have theorem below.

Theorem 5.1 (Steklov) Assume Qn(1) → Q(1) as n → ∞ and quadrature weights are
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all positive. Then the quadrature rules (Qn) converge if and only if Qn(ψ) → Q(ψ), as

n→ ∞, for all ψ in some dense subset M ⊂ C(G), G ⊂ IRm.

Proof The proof is given in [9, p. 222]. �

The classical quadrature rules are inappropriate for improper integral, and there-

fore we introduce some special quadrature formulas for improper integral whose integrand

is 2π periodic functions with logarithmic singularity.

(Aψ)(t) :=
1

2π

∫ 2π

0
ln

4 sin2
(
t − τ

2

) k(t, τ)ψ(τ)dτ, t ∈ [0, 2π], ψ ∈ C[0, 2π], (5.3)

where k ∈ C([0, 2π] × [0, 2π]).

We assume that n is the number of quadrature nodes. By substituting trigonometric in-

terpolation polynomial instead of 2π periodic continuous function ψ and using Lagrange

basis for interpolation, we obtain

(Anψ)(t) :=
2n−1∑
j=0

R(n)
j (t)k(t, t j)ψ(t j), (5.4)

with the equidistant points t j =
jπ
n

and the weights

R(n)
j (t) = −

1
n


n−1∑
m=1

1
m

cos m(t − t j) +
1

2n
cos n(t − t j)

 , (5.5)

for j = 0, . . . , 2n−1. The special quadrature rule converges uniformly for all trigonometric

polynomials. The proof is given in [9, p. 208].

5.2. Treatment of Singularity

The operator S̃ has singularity so it needs to be treated. That is why we split

the kernel of operator S̃ into two parts. To do this, one needs to simplify kernel of the

operator. We add and subtract
1

2π
|z′(τ)|ln

(
4 sin2 (t − τ)

2

)
to the kernel of operator S̃ .
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Then we have

1
2π
|z′(τ)|ln

(
1

|z(t) − z(τ)|

)2

±
1

2π
|z′(τ)|ln

(
4 sin2 (t − τ)

2

)
. (5.6)

By the Taylor expansion (4.20), the kernel of the operator S̃ can be written as

P(z(t), z(τ)) −
1

2π
|z′(τ)|ln

(
4 sin2 (t − τ)

2

)
, (5.7)

where

P(z(t)), z(τ)) =


1

2π
|z′(τ)|ln

 4 sin2 t−τ
2

|z(t) − z(τ)|2

 , τ , t,

1
2π
|z′(τ)|ln

(
1

|z′(τ)|2

)
, τ = t.

(5.8)

We have obtained two distinct parts of the kernels of the operator. One of them is contin-

uous and another one is discontinuous part. We have treated singularity in the kernel of

operator and constructed some simple kernels and consequently the resulting kernel can

be integrated by quadrature formula (5.4) for improper integral.

5.3. Error Estimate for 2π-Periodic Functions

We will give a error estimate of numerical integration for periodic analytic func-

tions. This estimate demonstrates that for periodic analytic functions quadrature rules

converge exponentially. Also we provide error estimate for continuously differentiable

functions.

Theorem 5.2 Let g : IR −→ IR be analytic and 2π-periodic . Then the error

RT (g) :=
1

2π

∫ 2π

0
g(x)dx −

1
2n

2n−1∑
i=0

g
(
iπ
n

)
, (5.9)
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for composite trapezoidal rule can be estimated by

∣∣∣RT (g)
∣∣∣ ≤ Ce−2ns, (5.10)

where C and s are positive constants depending on g.

Proof The proof is given in [9, p. 201]. �

Theorem 5.3 Assume g : IR −→ IR is m-times continuously differentiable and 2π-periodic

function. The error for the trapezoidal rule

RT (g) :=
1

2π

∫ 2π

0
g(x)dx −

1
2n

2n−1∑
i=0

g
(
iπ
n

)
, (5.11)

can be estimated as follows

∣∣∣RT (g)
∣∣∣ ≤ C

nm

∥∥∥g(m)
∥∥∥
∞
. (5.12)

Proof The proof is given in [9]. The main idea of the proof in the following. �

Let f : [a, b] → IR be m-times continuously differentiable for m ≥ 2 and recall

definition of the trapezoidal sum with h = b−a
n ,

Th( f ) := h
[
1
2

f (x0) + f (x1) + · · · + f (xn−1) + f (xn)
1
2

]
, for f ∈ C[a, b]. (5.13)

By Euler-Maclaurin expansion

∫ b

a
f (x)dx = Th( f ) −

[ m
2 ]∑

j=1

b2 jh2 j

(2 j) !

[
f (2 j−1)(b) − f (2 j−1)(a)

]
(5.14)

+(−1)mhm
∫ b

a
B̄m

( x − a
h

)
f (m)(x)dx,
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where
[m

2

]
denotes the largest integer smaller than or equal to

m
2

.

B2m(x) = 2(−1)(m−1)
∞∑

k=1

cos 2πkx
(2πk)2m and B2m−1(x) = 2(−1)(m)

∞∑
k=1

sin 2πkx
(2πk)2m−1 (5.15)

denotes the periodic extension of the Bernoulli polynomial. When we have 2π-periodic

continuous functions f , the trapezoidal rule coincides with the rectangular rule

∫ 2π

0
f (x)dx ≈

2π
n

n∑
k=1

f
(
2πk
n

)
. (5.16)

The equality 5.14 illustrates why the trapezoidal rule for periodic functions is superior to

any other quadrature rule by (5.14). For more details we refer to [8].

5.4. Nyström Method

Assume that a quadrature rule is convergent. We consider the Fredholm equation

of second kind

ψ(x) =

∫ 2π

0
k(x, y)ψ(y)dy + g(x) represented ψ = Kψ + g, y ∈ [0, 2π]. (5.17)

Approximating operator K via the quadrature rule, we have

ψn(x) =

N∑
k=1

wkk(x, yk)ψn(yk) + g(x) represented by ψn = Knψn + g, (5.18)

which is known as Nyström interpolation. By virtue of the fact that the density function in

the quadrature node points satisfies semi-discretized expression (5.18), the linear system

of equations

ψ(xk) =

N∑
k=1

wkk(xk, yk)ψ(yk) + g(xk) (5.19)
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are obtained. Generally the matrix (5.19) gives us some useful information about stability

which is related to condition number. These are some advantages of Nyström method. In

the following we will give error analysis of Nyström method.

5.5. Error and Convergence of Nyström Method

Convergence of Nyström method depends on the quadrature formula we choose.

In order to show complete error analysis of Nyström method, we give the following the-

orem.

Theorem 5.4 Assume that X is a Banach space and S ,T are bounded operators from X

to X. Let S be compact. Also assume I − T : X −→ X is bijective which shows (I − T )−1

exists as a bounded operator from X to X. Assume that

∥∥∥(T − S )S
∥∥∥ < 1∥∥∥(I − T )−1

∥∥∥ . (5.20)

Then (I − S )−1 exists and is bounded from X to X, accompanying

∥∥∥(I − S )−1
∥∥∥ ≤ 1 +

∥∥∥(I − T )−1
∥∥∥ ‖S ‖

1 −
∥∥∥(I − T )−1

∥∥∥ ∥∥∥(T − S )S
∥∥∥ . (5.21)

If (I − T )u = g and (I − S )v = g, then

‖u − v‖ ≤
∥∥∥(I − S )−1

∥∥∥ ‖Tu − S v‖ . (5.22)

Proof The proof is given in detail in [3, Theorem 12.4.3]. �

Theorem 5.4 yields the following convergence result for the Nyström method.

Theorem 5.5 Let k(x, y) be continuous for all x, y ∈ [0, 2π]. Assume quadrature rule is

convergent for all continuous functions on [0, 2π]. Moreover, assume that the integral

equation (5.17) is uniquely solvable for given g ∈ C([0, 2π]). Then for all sufficiently

large n, say n ≥ N, the approximate inverses (I − Kn)−1 exist and are uniformly bounded,

∥∥∥(I − Kn)−1
∥∥∥ ≤ 1 +

∥∥∥(I − K)−1
∥∥∥ ‖Kn‖

1 −
∥∥∥(I − K)−1

∥∥∥ ∥∥∥(K − Kn)Kn

∥∥∥ ≤ Cy, n ≥ N, (5.23)
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with a appropriate constant Cy < ∞ . For the integral equations (I − K)v = g and

(I − Kn)vn = g, we have

∥∥∥ψ − ψn

∥∥∥
∞
≤

∥∥∥(I − Kn)−1
∥∥∥ ∥∥∥(K − Kn)ψ

∥∥∥
∞
≤ Cy

∥∥∥(K − Kn)ψ
∥∥∥
∞
. (5.24)

Proof We substitute S = K and T = Kn in Theorem 5.4. Then we get the desired result

about the convergence of the Nyström method. From the inequality (5.24),
∥∥∥ψ − ψn

∥∥∥
∞

is

bounded by

∥∥∥(K − Kn)ψ
∥∥∥
∞

= max
x∈[0,2π]

∣∣∣∣∣∣∣∣
∫ 2π

0
k(x, y)ψ(y)dy −

n∑
i=1

wik(x, xi)ψ(xi)

∣∣∣∣∣∣∣∣ . (5.25)

It can be written

(I − Kn)(ψ − ψn) = (K − Kn)ψ. (5.26)

From (5.26), it is obtained

∥∥∥(K − Kn)ψ
∥∥∥
∞
≤ ‖I − Kn‖

∥∥∥ψ − ψn

∥∥∥
∞
. (5.27)

Also from (5.26), it can be obtained

∥∥∥ψ − ψn

∥∥∥
∞
≤

∥∥∥(I − Kn)−1
∥∥∥ ∥∥∥(K − Kn)ψ

∥∥∥
∞
. (5.28)

This depicts
∥∥∥(K − Kn)ψ

∥∥∥
∞

and
∥∥∥ψ − ψn

∥∥∥
∞

converge to 0 as n → 0 with the same speed.

The proof is given in details in [3, Theorem 12.4.4]. �
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CHAPTER 6

NUMERICAL EXAMPLES

Having given the formulation of the integral equations and information about

some of the suitable theory, we now turn to numerical implementation which yields nu-

merical approximations of the solutions to the exterior and interior boundary problem.

6.1. Numerical Examples For the Exterior Problem

First, we present the exact solution, then we demonstrate the table of convergence

for the solution to the exterior Robin problem and finally, numerical solution is illustrated

by the total field for a monopole and dipole. Our domains which we will use are

Γ1 :=
{
(4 cos t + sin 2t, 4 sin t + 2 sin2 t + 7), t ∈ [0, 2π]

}
Γ2 :=

{
(2 cos t − sin 3t, 2 sin t − sin 3t), t ∈ [0, 2π]

}
which are smooth and regular. By taking λ = 0 in the condition (3.2), the Robin condition

reduces to the Neumann condition. It is well known that exterior Neumann problem has

unique solution but interior Neumann is not uniquely solvable. To implement the method,

we have started with the exterior Neumann condition and then extended the code to the

impedance conditions. Here we will give the numerical results for the exterior Robin

problem for

λ(x) = −2 sin(|x|) + 4.5.

Example 6.1.

∆u = 0 in IR2 \ D̄, (6.1)

f =
∂u
∂ν
− λu on Γ, (6.2)

f (x) =
∂
(
Φ(x1, x) − Φ(x2, x)

)
∂ν(x)

− λ(x)
(
Φ(x1, x) − Φ((x2, x)

)
, x ∈ Γ, x1, x2 ∈ D,(6.3)

u = O(1) when |x| → ∞. (6.4)
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The exact solution uE(x) = Φ(|x − x1|) − Φ(|x − x2|) with x1 = (0, 0), x2 = (0.1, 1) ∈ D

and x ∈ IR2 \ D̄ satisfies equations above. Besides, uE is bounded at infinity while the

fundamental solution (2.7) is not bounded in two dimension.

Figure 6.1. Approximate solution

As illustrated in Fig. 6.1, there are two fixed points inside domain because of

form of the exact solution. Fig. 6.1 demonstrates the solution in exterior of domain. Now

we present the table of convergence for the exterior Robin problem. For convergence of

the exterior Robin problem, we consider modified single layer potential as approximate

solution.

Table 6.1. Convergence of exterior Robin problem for one domain

n Cond. Number Error at (4,5) Error at (-4,-2)

8 90.04 0.001104075430519 0.000230184056030
16 114.70 0.000099629624383 0.000042541648225
32 131.20 0.000000440955601 0.000000051071255
64 138.28 0.000000000018878 0.000000000003923

128 142.73 0.000000000000000 0.000000000000000

This table exhibits the error estimate at the point (4,5) and (-4,-2) respectively. As

illustrated in the Table (6.1), correct digits almost double so it converges super-algebraically

and condition number is uniformly bounded due to the Nyström method and the opera-

tors in the equation (4.29). Additionally in the Table 6.1 the convergence agrees with the
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Theorem 5.3. This demonstrates the method converges for exterior Robin boundary value

problem. We consider a case of a monopole, that is we put one source Φ at the point x?.

Example 6.2.

Mathematically, we consider the solution to the exterior Robin problem with the function

f (x) = −

(
∂Φ(x?, x)
∂ν(x)

− λ(x)Φ(x?, x)
)
, x ∈ Γ, x? ∈ IR2 \ D̄, (6.5)

where x? = (2, 3). The total field is defined as following

uT (x) = Φ(x?, x) + u(x), x?, x ∈ IR2 \ D̄, (6.6)

where u(x) is approximate solution.
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Figure 6.2. Equipotential lines of total field for a monopole for one domain

In Fig. 6.2 the total field is illustrated for a monopole for one domain. This figure

can be interpreted as total field for a unit charge.
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Example 6.3.

We have two sources x?1 = (−3,−2) and x?2 = (2, 3) for the exterior problem. Total field

uT and f are defined in the following

uT (x) = Φ(x?1 , x) − Φ(x?2 , x) + u(x), x?1 , x
?
2 , (6.7)

where x ∈ IR2 \ D̄, u(x) is approximate solution.

f (x) = −

∂
(
Φ(x?1 , x) − Φ(x?2 , x)

)
∂ν(x)

− λ(x)
(
Φ(x?1 , x) − Φ((x?2 , x)

) , (6.8)

where x ∈ Γ.
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Figure 6.3. Equipotential lines of total field for a dipole for one domain

Fig. 6.3 demonstrates the total field for a dipole for the exterior Robin problem

with one domain. This figure can be interpreted as total field for one positive and one

negative charge unit charges.
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Example 6.4.

In this example we take into consideration the exterior Robin problem for a doubly con-

nected domain. We have one point source x? = (2, 3) and so we construct uT and f with

one source point in the following.

uT (x) = Φ(x?, x) + u(x), x?, x ∈ IR2 \ D̄, (6.9)

f (x) = −

(
∂Φ(x?, x)
∂ν(x)

− λ(x)Φ(x?, x)
)
, x ∈ Γ, x? ∈ IR2 \ D̄. (6.10)
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Figure 6.4. Equipotential lines of total field for a monopole

In Fig. 6.4 uT for a monopole with multiply connected domain is illustrated. Also

this shows total field for a unit charge for multiply connected domains.
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Example 6.5.

In this example we consider the exterior Robin problem. We have two source points

x?1 = (−3,−2), x?2 = (2, 3) for multiply connected domain also uT and f are constructed

as follows

uT (x) = Φ(x?1 , x) − Φ(x?2 , x) + u(x), (6.11)

where x?1 , x
?
2 , x ∈ IR2 \ D̄ and u(x) is approximate solution.

f (x) =
∂
(
Φ(x?1 , x) − Φ(x?2 , x)

)
∂ν(x)

− λ(x)
(
Φ(x?1 , x) − Φ((x?2 , x)

)
, (6.12)

where x ∈ Γ, x?1 , x
?
2 ∈ IR2 \ D̄.
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Figure 6.5. Equiptential lines of the total field for a dipole

Fig. 6.5 illustrates equipotential lines of the total field for a dipole with multiply

connected domains. This can be interpreted as total field for positive and negative unit

charges for multiply connected domains.
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6.2. Numerical Examples For the Interior Problem

In this section we present some numerical examples for interior Robin problem

with λ(x) = − cos(|x|) + 4.5. The numerical approach of interior Robin problem is based

on single-layer potential from section 4.8. Our domains are defined as

Γ1 :=
{
(4 cos t + sin 2t, 4 sin t + 2 sin2 t + 7), t ∈ [0, 2π]

}
Γ2 :=

{
(2 cos t − sin 3t, 2 sin t − sin 3t, t ∈ [0, 2π]

}
Example 6.1. For convergence test we have

∆u = 0 in D, (6.13)

∂u
∂ν

+ λu = f on Γ, (6.14)

f (x) =
∂Φ(x?, x)

∂ν
+ λ(x)Φ(x?, x) x ∈ Γ, x? ∈ IR2 \ D̄, (6.15)

uE = Φ(x?, x), x? ∈ IR2 \ D̄, x ∈ D. (6.16)

The exact solution uE is defined by 6.16 with x? = (5, 5) ∈ IR2 \ D̄.

Γ

x*
D

Figure 6.6. Domain for convergence test for the interior problem
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Table 6.2. Convergence of interior Robin problem for one domain

n Cond. Number Error at (0,0) Error at (-1,1)

8 20.27 0.000266178205197 0.005788897607039
16 25.82 0.000009527392591 0.000727624242802
32 27.67 0.000000004951059 0.000016070916386
64 29.36 0.000000000000525 0.000000006042646

128 30.73 0.000000000000000 0.000000000000120
256 31.39 0.000000000000000 0.000000000000000

As illustrated in Table 6.2, the error decreases and it converges super-algebraically.

Also this convergence agrees with the Theorem 5.3. This shows this numerical method

converges for interior Robin problem. We consider the approximate solution to the inte-

rior Robin problem in this example.
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Figure 6.7. Approximate solution for interior Robin boundary value problem

The solution is illustrated for interior Robin problem in the Fig. 6.7

38



Example 6.2.

In this example we focus on the interior Robin problem for total field for a simply con-

nected domain and f is defined by

f (x) = −

(
∂Φ(x?, x)

∂ν
+ λ(x)Φ(x?, x)

)
, x ∈ Γ, x? ∈ D, (6.17)

where x? = (0, 0). The total field is given by

uT (x) = Φ(x?, x) + u(x) x?, x ∈ D. (6.18)
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Figure 6.8. Equipotential lines of total field for a monopole

As illustrated in the Fig. 6.8, we plot total field for a monopole. We have one

source in the Fig. 6.8. This can be interpreted as total field for unit charge.
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Example 6.3.

We have two source x?1 = (0, 0), x?2 = (0.1, 1) in this example. uT and f are defined in the

following way

f (x) = −

∂
(
Φ(x?1 , x) − Φ(x?2 , x)

)
∂ν(x)

+ λ(x)
(
Φ(x?1 , x) − Φ((x?2 , x)

) , (6.19)

where x ∈ Γ, x?1 , x
?
2 ∈ D.

uT (x) = Φ(x?1 , x) − Φ(x?2 , x) + u(x), (6.20)

where u(x) is approximate solution and x, x?1 , x
?
2 ∈ D.
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Figure 6.9. Equipotential lines of total field for a dipole

Fig. 6.9 illustrates equipotential lines of total field for a dipole in a simply con-

nected domain. This figure can be interpreted as total field for one positive and one

negative unit charges.
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CHAPTER 7

CONCLUSION

In this thesis integral representations of solutions to the planar Robin boundary

value problems for the Laplacian are considered which lead to the Fredholm integral

equations of second kind. The uniqueness and existence of the solutions to the boundary

integral equations are investigated. For the exterior Robin boundary value problem a

special modification of the single layer potential was introduced. This representation has

an advantage of avoiding an additional condition on the unknown solution of the integral

equation. The constructed integral equation were solved numerically by Nyström method

which is based on quadrature methods. Some of the integral operators have singular

kernels so the singularity is treated by splitting weakly singular kernel into two parts.

For calculation of singular parts we have used special quadrature rule which is extremely

accurate for the weakly singular kernel. The provided numerical examples demonstrate

convergence and high accuracy for the solutions of the exterior and interior problems for

simply and multiply connected domains. As expected by the theory and validated by

the numerical results, the proposed numerical approaches converge super-algebraic for

smooth data. As a result, integral equation method has been demonstrated to be effective

for the exterior and the interior problem Robin boundary value problem for the Laplace

equation.

Our study can be extended to three dimensions but the main drawback of three di-

mensions includes many calculations, [1]. We solved the problems for smooth boundaries,

but the Robin boundary value problems can be also solved for domains with piecewise

smooth boundary, [11]. Additionally, this study can be applied to inverse problems, [12].

Future work includes solution method of the Robin boundary value problem in the half

plane by using Green’s function, [14].
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