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Surfactant Adsorption and Marangoni Flow in Liquid Jets.

2. Modeling
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This paper is concerned with the interfacial behavior of surfactant solutions on short time scales.
A gravity-driven laminar liquid jet is used to create a rapidly expanding liquid surface, which
exposes the surfactant solution to highly nonequilibrium conditions. This expansion causes the
surface tension to differ locally from its equilibrium value, generating a (Marangoni) shear stress
that acts on the jet surface and retards the surface acceleration. A theory for the flow very near
the nozzle shows that the cube-root dependence of the surface velocity on the distance traveled
is altered through the adsorption of surfactant. In a boundary-layer treatment, both the surface
velocity and the surface concentration increase linearly from the nozzle exit over a short distance,
which we term the detachment region. The length of the detachment region is found to vary
with the bulk concentration raised to the power %/,. A numerical model of the surfactant
adsorption process in the jet has been developed within the framework of the CFD code FIDAP.
The numerical solution confirms the general features of the theory and shows that the maximum
reduction in surface velocity occurs very close to the nozzle exit, except at high concentrations.
A comparison with experiments on C;sTAB at concentrations below the critical micelle

concentration, which are described in part 1 of this series of papers, shows good agreement.

1. Introduction

The study of the behavior of surfactant solutions away
from equilibrium is of considerable interest. One ex-
ample found in nature is our ability to breathe, which
is facilitated by surfactants in the lung.! Examples
found in industry include emulsification, multiphase
flow, detergency, wetting, coating, and foaming.2—4
During drainage in a foam, film thinning occurs. In the
thin part of the film, the surface concentration of the
surface-active solute falls with a resulting rise in the
local surface tension. Consequently, a surface force acts
toward the region of high surface tension. This force
causes a counter surface flow of liquid that opposes film
drainage and restores the film.5

This paper is concerned with the study of the dynam-
ics of surfactant adsorption at a continually expanding
surface on short time scales (<1—100 ms). A gravity-
driven, vertical, laminar liquid jet is employed to create
such an expanding surface. The investigation is carried
out experimentally, using noninvasive optical tech-
niques—laser Doppler velocimetry and ellipsometry—
to measure the fluid mechanics and the amount of
surfactant adsorbed at the surface. The experimental
work has been described in part 1 of this series of
papers.® A mathematical model has been developed
within the framework of the commercial CFD code
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FIDAP, which simulates the adsorption process in the
jet. This modeling work is described here.

The liquid jet used in this study issues from a long
circular capillary pipe. The inner diameter of the pipe
is on the order of 1 mm, and its length was chosen to
be 100 times the nozzle diameter, sufficiently long to
ensure fully developed laminar flow at the nozzle exit.
The long pipe is attached to a liquid reservoir in which
the liquid height is maintained at a constant level.
Gravity provides the driving force for the liquid flow.
The liquid leaves the nozzle with a mean velocity that
is on the order of 1 m s™%. The nozzle end is tapered to
minimize wetting at the tip of the nozzle. The contrac-
tion of the jet is only slight, which is due to the high
Reynolds number.

Before giving an account of our CFD model of the jet
flow, we model the jet flow analytically in the absence
and in the presence of surfactant, within a boundary-
layer formalism. Using continuity and conservation of
axial momentum, we derive the well-established cube-
root dependence of surface velocity and jet contraction
on the axial distance. We then show how this char-
acteristic behavior changes in the presence of surfac-
tant. The surface velocity then varies linearly with
distance near to the nozzle, as a result of a limiting
Marangoni stress at that point, and the surface expan-
sion rate at the point of detachment from the nozzle
remains finite. The singular behavior of the jet flow at
the nozzle exit is thus eliminated. This limitation of the
Marangoni stress at the nozzle exit is implemented in
the numerical model.

Next, a complete fluid mechanic model of the jet for
a pure liquid (water) is introduced. The governing
equations and the boundary conditions are given,
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Figure 1. Development of the hydrodynamic boundary layer at
the nozzle exit: Ro, nozzle radius; R(z), jet radius; ¢, thickness of
the boundary layer (with contraction); d, radial distance of the edge
of the boundary layer from the nozzle wall; z, axial jet coordinate;
y, Cartesian transverse coordinate in the boundary layer. A dashed
line shows the boundary-layer velocity profile in the absence of
surfactant (du/dy = 0) and a solid line the boundary-layer velocity
profile in the presence of surfactant (du/dy = 0).

and computed results are presented. The following
section presents our model of surfactant adsorption
from an aqueous solution in the jet flow. The central
diffusion—convection flux boundary condition at the free
surface is discussed in detail, and the link between
surfactant adsorption and the fluid mechanics in the
jet (Marangoni flow) is highlighted. Finally, numerical
results of surface coverage and dynamic surface tension
for one surfactant (C16TAB) at different concentrations
are shown and validated through comparison with
experimental data.

The combination of experimental, numerical, and
analytical studies of the adsorption process in the jet
flow leads to a validated surfactant adsorption model
that is applicable to other types of free-surface flows on
similar time scales, such as coating flows and the
formation of foams. Such systems are not easily acces-
sible for our experimental tools.

2. Asymptotic Behavior of the Jet Flow near the
Nozzle Exit

2.1. Growth of the Zero-Vorticity Layer in the
Absence of Surfactant: The Cube-Root Depend-
ence. The velocity profile at the nozzle exit is that of
fully developed laminar flow, with the usual no-slip
condition at the wall. This no-slip condition is im-
mediately relaxed when the fluid leaves the tube. In the
absence of any surface shear (no surfactant present), a
region of zero vorticity appears at the surface of the jet
and, as the fluid travels downward, the zero-vorticity
region diffuses toward the center of the jet, tending to
equalize the velocity across the jet. Initially, however,
this region is very thin, and we will consider its initial
growth when its thickness, ¢, is much less than the
radius of the nozzle, Ry, or the jet, R (see Figure 1).

Near the jet nozzle, the effect of gravity may be
neglected. Fluid in the zero-vorticity layer is accelerated
by the adjacent layer of faster moving fluid. The
parabolic profile at the nozzle exit (z = 0) is

U(y) = Ay + By? 1)

where A = 40oRo! and B = —20gRo 2 and Ty is the
mean jet velocity at the nozzle exit. At a distance z from
the nozzle exit, the depth of the zero-vorticity layer,
measured from the line y = 0, is 6. Note that the actual
thickness of the layer, ¢, is less than d, as shown in
Figure 1. If we let the axial velocity in the zero-vorticity
layer be

u(y) =a+bfy — (6 — €)} )

then a is the axial surface velocity, us, and b is zero
because there is no shear stress at the surface and so
du/ogy = 0 throughout the layer. We set the condition
that the velocity be continuous at the edge of the layer,
so that U(0) = u(d), which gives Ao + Bd? = a.
Substituting for A, B, and a shows that the surface

velocity is
o &
Ug = 4ty =5 — 3
S O(RO 2R02) ( )

and, because 0 < Ry,

Ug =

U,0/R, (4)

The thickness of the layer, ¢, at a distance z can be found
by continuity, because

fJuy) dy = [ uy) dy 5)

from which Ad6%/2 + B&3/3 = ae and

2U0R,[ o2 &
BT A ©®)
Us \R, 3R,
and, because 0 < Ry,
2000°
“TUR, 2 )

The thickness of the vorticity-free layer is just half the
distance 6.

The fluid streamlines that leave the nozzle between
y = 0 and 6 at a distance z are found between y = 6/2
and J. The rate of gain of momentum by the fluid in
this layer is equal to the acting force. For unit width,
assuming the depth of the layer is small compared with
the jet radius, the rate of momentum gain is

pfyun {ul ) v ey =x () 2 @

Neglecting terms in 6% and higher powers of 6, from eq
8 we obtain Aad? = 2v(A + 2B0d)z, so that a = 2v(0=2 +
ZBA 1671)z. From the parabolic profile, we have 2BA™!
= —Ro7}, so the surface velocity, us = a, is given by

_2vz[, O
u. =21 -¢) ©

and, because 0 < Ry,

ug = 2v2/6° (10)

Combining egs 4 and 10 gives

320, vz|"?
U, = —R02 (11)
Rovz 1/3
~\2q, (12)

and



1[Rovz\13
€= E( 20, ) (13)

The relative narrowing of the jet due to acceleration of
the surface layer is given by

R@) _Re=0=9_ 1 v
Ro R, 2\2r 0,

1/3
) (14)

Introducing the dimensionless variables us = uilo and
z = z*Rp into eq 11 leads to

= 4[2)" 15
u; =4[5 (15)

where
2Ropl, 2R,
R

is the Reynolds number. Similarly, a dimensionless
expression for the relative narrowing of the jet

Re (16)

o+ \1/3
R¥=_—-=1— 0.5(—) 17)

can be derived.

There is thus a singularity at the point (z =10,y = 0)
where the surface expansion rate, dus/dz, becomes
infinite. This singularity is a consequence of the step
change in the surface shear condition at this point.

We note the connection to the classic Graetz heat-
transfer problem in a circular tube,” where the thermal
penetration depth in the thermal entry region of the
flow scales as the axial distance raised to the /3 power.

The cube-root dependence of us and R on z in liquid
jets has been found by other authors. In the late 1950s,
Scriven and Pigford investigated the absorption of CO,
into freely falling laminar liquid jets.8 They assumed a
uniform velocity profile in the core of the jet (short
nozzles were used, and hence a fully developed laminar
flow was not achieved at the nozzle exit) and an annular
boundary layer outside the core of the jet in which the
velocity was reduced, because of viscous effects close to
the nozzle wall. A cubic equation was employed to
represent the velocity distribution within this annular
boundary layer. Mass and momentum balances between
the nozzle exit plane and a downstream position that
corresponded to a fully relaxed velocity profile in the
jet were carried out to estimate the boundary layer
growth. The authors concluded from the smallness of
the boundary layer at the nozzle—only /;oth of the
nozzle radius—that the core velocity of the jet remained
unchanged by momentum exchange with the boundary
layer. If the rate of change of the jet diameter is
negligibly small and gravity is neglected, the problem
of analyzing the velocity distribution in the neighbor-
hood of the jet surface is identical to the problem of
calculating the velocity distribution in a laminar wake
behind an infinitely thin, flat plate oriented parallel to
the direction of flow. This analogy was pointed out
earlier by Rideal and Sutherland.® The surface velocity
near the nozzle exit was described by a cube-root
dependence (at leading order) on the axial distance.

Goren studied the development of the boundary layer
accompanying the formation of a free surface from a
two-dimensional horizontal uniform shear flow that was
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taken to be of infinite extent in both directions.’® When
surface tension forces are neglected, his analysis shows
that both the surface velocity and surface position vary
with the cube root of the distance downstream. Goren’s
results are applicable to newly formed capillary jets for
small axial distances, provided the interaction of the
boundary layer with the core region of the jet, where
the initial velocity profile is not one of uniform shear,
is negligible. For a jet of average velocity Uo, issuing
from a long needle of radius Ry with parabolic flow,
Goren gave the equation for the dimensionless surface

velocity, ug, as

. 7%\1/3
u;=5.07(2] (18)

and that for the dimensionless jet radius, R*, as

R*—1—07O3zl/3 19
—1-0, (Re) (19)

In the same year, Goren and Wronski reported mea-
surements of the radius of horizontal capillary jets as a
function of the axial distance.!! For the highest Reynolds
number under consideration (Re ~ 200), the measure-
ments confirmed the cube-root dependence on the axial
distance, but the observed coefficient was lower than
the predicted one by about a factor of 2. The authors
attributed this discrepancy to the smallness of the
Reynolds number and possible interactions between the
boundary layer and core fluid. It was suggested to test
the boundary-layer analysis against experimental data
at much higher Reynolds numbers of 1000—2000.

We have performed such a comparison in Figure 6
for Re = 1950, where both our eqs 15 and 17 are
compared with the above results of Goren, eqgs 18 and
19, and our own CFD model. The CFD data were
compared with our experimental data in part 1 of this
series of papers, where they were shown to be in
excellent agreement.® In Figure 6, good agreement exists
between the two boundary-layer treatments and the
CFD computation for short jet lengths, where the effects
of gravity and the interaction between the boundary
layer and core fluid are negligibly small. The smallness
of Re in the experiments of Goren and Wronski thus
seems to be the likely cause of the disagreement with
eq 19 in their study.

Only 2 years later, Tillett also applied boundary-layer
analysis to a horizontal liquid jet emerging from a two-
dimensional channel at high Reynolds number, but he
assumed that the flow inside the channel has the basic
Poiseuille profile.’? Ignoring the effects of surface ten-
sion, Tillett did not confine modifications to the basic
profile to the boundary layer. Instead, he derived
solutions for the “inner” (boundary layer) region and the
“outer” (core) region of the jet flow, which he matched.
It emerged, however, from his solution that Goren’s and
Scriven and Pigford’s assumption is fully justified: for
moderate downstream distances, the interaction be-
tween the boundary layer and the core of the jet flow
can be neglected, which also justifies the assumption
that fully developed laminar flow exists at the channel/
nozzle exit in the high Reynolds number limit. This
assumption is otherwise inadequate as pointed out by
Middleman,3 Fisher et al.,'* and Dutta and Ryan?® in
the course of their numerical investigations of creeping
jet flows (Re ~ 0). Tillett confirmed Goren’s solution for
the channel flow (the cube-root dependence), but he did
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not apply his derivations to the case of an axisymmetric
jet leaving a circular pipe. At leading order, however,
because the boundary layer is thin relative to the jet
radius, these two problems are the same. Indeed, using
Tillett's result for the surface velocity of the channel flow
(eq 3.19 in the original work) and applying our normal-
izing scheme to it, we obtain the same result as that
given by egs 15 and 18 but with a factor of 5.11, which
is nearly identical with Goren’s result.

The cube-root dependence in the case of a jet of a pure
liquid is thus a well-established result. We now go on
to investigate how the presence of surfactant at the jet
surface affects the boundary-layer development in the
jet flow, particularly at the nozzle exit.

2.2. Growth of a Reduced-Vorticity Layer in the
Presence of Surfactant. When a surfactant is present,
its nonuniform surface concentration will give rise to a
surface tension gradient: the Marangoni stress. The
surface condition of the jet is no longer one of full slip,
and the Marangoni stress gives rise to a velocity
gradient in the layer adjacent to the surface, which is
thus a region of reduced rather than zero vorticity. If
this applied stress is 7, at a distance z from the nozzle
exit, then

—_,[3u
L= H (ay)surface (20)

where for this approximate theory we have taken the
coordinate y to be effectively perpendicular to the jet
surface. If the velocity in the layer is again given by eq
2, then a is the surface velocity, us, and b is —7,/u. The
velocity profile in the core of the jet flow is not changed
and is given by eq 1.

We set the condition that the velocity be continuous
at the edge of the layer, so that U(d) = u(d), which gives
Ad + Bo? = a + be. Substituting for A, B, a, and b shows
that the surface velocity is

(o 6 T,€
Ug = 4lg| =5 — +— 21
° °(Ro 2R02) u 1)
and, because 0 < Ry,
4000 T,
Us = R, (22)

The thickness of the layer, €, can be found by continuity.
Applying eq 5, we have Adé%/2 + Bo%/3 = ae + be?/2.

Hence
200Ro[ 52 &° 1,6
°°/5—2— O ) = f1- (23)
u; (R 3R, 2uug

and, because 0 < Ry,

20,0°  1,e

Ug = GRO +Z

(24)

Combining eqs 22 and 24, we find the relation between
0 and e,

0% — 20e — ———€*=0 (25)

The negative solution of eq 25 has no physical meaning,

and the positive solution is

/ 7, B
1+ 1+ m)é = e (26)

The surface-slip factor a is in the range of 1 < a < 2
because 7; is in general a negative quantity. The lower
limit represents a no-slip condition at the jet surface,
and the upper limit represents the stress-free surface
analyzed previously. The term 4utlo/Ro is the shear
stress at the nozzle wall, which results from the
parabolic flow profile.

The rate of gain of momentum by fluid in the layer is
equal to the force acting on the layer, which this time
must include the surface tension. Again when gravity
is neglected and it is assumed that the depth of the layer
is small compared with the jet radius, the rate of
momentum gain per unit width is

o=

oo {u§ +0— ¢ - uw) dy =

oJ
1 (Gy) 2t 0 00 @)

where oy is the surface tension at the nozzle exit and o,
is the surface tension at the distance z. In this balance
we have discounted the fact that the jet surface is not
cylindrical and therefore that the surface tensions do
not quite act in the z direction and that the tension o,
acts over a slightly smaller perimeter than oo does. In
the high Reynolds number limit, this simplification is
made at little expense.

Again neglecting terms in 62 and higher powers of ¢,
we obtain Aad?/2 = v(A + 2Bd)z + (0, — 0o)lp, So that

_ m(l _ g) RoAo
62 200407

R, (28)

where Ao = 0, — op is the change in the surface tension
over the distance z. Because 6 < Ry, the surface velocity,
Us = a, is given by

RoAo
u =22 0 (29)
0 2p0,0

We can use egs 22 and 26 to eliminate 6 from eq 29
and find the surface velocity as

B 32L_]021/Z 1/3 - AO‘/Z 1/3 - TZ/Q 2/3 20
=T TR2 4uty/R, quogr,| G0

which can be rearranged to give
320 2y7\13 113 . 113
u,=|———| 1+ 1+ 4u04R, (32)

R,
Both the mean Marangoni stress Ao/z and the local
value at z, 7, = do/dz, will in general be negative
guantities, so that the result, as expected, is a reduction
in the surface velocity from what it would be in the
absence of the surfactant. Note that, within a boundary-
layer treatment, the Marangoni stress in the jet is do/
dz > —4uto/Ro, which is equal to the stress value inside
the nozzle. We use this condition in the numerical

Aolz

4uty/R,




computations to limit the Marangoni stress at z = 0.
Later, we discuss briefly the physical consequences of
relaxing this restriction on do/dz.

The corresponding values of 6 and ¢ are

1/3 1/3 -1/6
5= (F;O—L_f) (1 + 4,,¢A-+0//ZRO) (1 + MUT—;/RO) (32)
and
€ = ola (33)
where the surface-slip factor o is defined in eq 26. The

relative narrowing of the jet due to acceleration of the
surface layer is given by

Rz Ro—(0—¢€
RO B R0 B

13 13 T 13
1—1( & ) (1+—A_‘9/Z ) (1+—_z ) (34)
\2R 70, 4uty /R, 4uty/R,

We can again derive dimensionless expressions, u; =

ui(z*) and R* = R*(z*), for the surface velocity and the
radius of the jet, respectively. With our definitions for

u; and z*, eq 31 may be rewritten to give
. [64z* 1/3 1/3 7,R, 1/3
u; = ( Re ) 1+ 1+ 400, (35)

Defining the Capillary number, Ca, as uUg/o, and

(0, = 09)
47*ul,

|Oz - OO'
=— 36
o (36)

_ |1
Ma=Ica Ca,

where Ma is the Marangoni number, and introducing
7, = dol/dz, we get

_ (64z*\U3,  Ma\U3 1.d[1)ps
u _( Re ) (1 42*) [1 + 4 dz*(Ca)] (37)

Correspondingly, the dimensionless radius of the jet is

R¥— 1 l(z)l/s(l B @)1/3[1 N 1 d (i)]l/f:‘ (38)

*

w

a\Re 47* 4 dz*\Ca

In our expression for the surface velocity, eq 37, we
included terms for the Marangoni stress: the mean
Marangoni stress Ma/z* and the local value d/dz* (1/
Ca). This stress cannot be determined from the dynam-
ics of the jet because it depends on the surface concen-
tration, which, in turn, depends on the diffusion of the
surfactant to the surface. To solve the jet dynamics fully,
we must also solve the coupled mass-transfer problem.
The set of equations that describes the coupled problem
is too complex for analytical solution and must be
tackled using CFD methods. However, it is useful to
derive some approximate results so as to understand
the shape of the problem and the features displayed by
the computed solution. We derive these approximate
results by dividing the jet flow into two zones, the
downstream jet flow and the flow of the jet near the
nozzle, which we term the detachment region, with the
nozzle exit at z* = 0 being the point of detachment.
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2.3. Downstream Jet Flow. Diffusion occurs when
expansion of the surface, dui/dz* = f '(z*), reduces the
subsurface concentration, ws = w(y* = 0, z*), of the
surfactant below its equilibrium level. Note that in this
section on modeling the mass transfer we take y* to be
measured from the surface of the jet. The subsurface
concentration is given as a mass fraction, ws = (M/p)cs,
where c; is the molar concentration at the subsurface
and M is the molecular weight of the surfactant. We
note first that the thickness of the diffusion boundary
layer will be small compared with the thickness of the
hydrodynamic boundary layer, so that diffusion may be
assumed to be taking place within a layer moving with
the surface velocity, u; = f(z*), throughout its depth.
Within the diffusional boundary layer, there is a velocity
v* perpendicular to the surface where by continuity
(neglecting curvature and contraction of the jet)

g | gv* Vo OV*

E W—O@—f(Z)—By—* (39)
This relationship shows that the velocity gradient
within the diffusion boundary layer, av*/dy*, is deter-
mined by variation in the surface velocity, f'(z*). We
can integrate eq 39 to find

v* = —y*f'(z*) (40)

because v* is zero at the surface (y* = 0), and the
streamwise velocity can be taken not to vary over the
very thin boundary layer, at given z*.

The convection—diffusion equation, in its dimension-
less form, is

82_W @ *f I (7%) — = -
ay*2+ 2Scy f'(z )ay*_ Scu (42)

In eq 41, the Schmidt number, Sc, is defined as
Sc = ulpD (42)

where D is the coefficient of diffusivity of surfactant
molecules in water.

The Péclet number, Pe = (Re x Sc)/2 = Rolo/D, is
((10%) > 1. This indicates that we can neglect the
contribution of axial diffusion in eq 41. This simplifica-
tion is valid throughout the fluid, except very close to
the point of detachment, where the surface concentra-
tion (and hence the subsurface concentration) changes
rapidly and the surface velocity is low.

It may be shown that the transverse convection term
in eq 41 scales as z*~%3, whereas the axial convection
term (right-hand side of eq 41) scales as z*~%3. We are
particularly interested in the solution of eq 41 near to
the nozzle, where the axial convection term is relatively
small. In this simplified model, we therefore ignore the
axial convection term in eq 41.

The boundary conditions are that w = ws at y* =
and w — wy, as y* — o, where wy, is the bulk concentra-
tion and ws is the subsurface concentration. The solution
of eq 41 is

w —

W wWs erf{ﬁm} (43)
W, 2

W, —
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Table 1. Parameters ¢’and m of the Power-Law Fit, Eq
107, as a Function of the Bulk Concentration, cp, of
C16TAB for Re = 1950, Estimated Surface Concentration
at the Point of Detachment I';, Eq 74, and the
Corresponding Values of the Subsurface Concentration
Ws o, EQ 100, as a Function of cp

co/(mol m=3)  wp/x10-6 ¢ m Iy Wso/x1078
0.01 3.645 2.32 x 1077 0.2910 0.0002 0.0125
0.05 18.225 1.17 x 10°% 0.2974 0.0017 0.1396
0.10 36.450 2.34 x 107® 0.3054 0.0048 0.3962
0.30 109.350 7.25 x 107% 0.3383 0.0249 2.1009
0.63 229.635 1.67 x 1075 0.3840 0.0757 6.7451
0.90 328.050 2.79 x 1075 0.3965 0.1293 12.2256

Table 2. Values of Physical Parameters Used in the
Numerical Computation

Ro nozzle radius 0.79 x 1073 m
Uo mean nozzle exit velocity 1.236ms?t

o density of water 103kg m—3

u viscosity of water 103kgmts?

72.8 x 1008N'm 1
364.5 x 1073 kg mol ~*

Ow surface tension of water
M molecular weight of C16TAB

k Langmuir constant of C;,gTAB ~ 0.23 mol m~—3

I'sat  saturation surface coverage 3.9 x 1076 mol m—2
of C16sTAB

D diffusivity of C1sTAB 7.46 x 10710m2¢s 1

N ionic number of C16TAB 2

R universal gas constant 8.314Jmol 1K1

T temperature 293.15 K

g gravity 9.81 ms—2

in which f'(z*) = duZ/dz* is the rate of expansion of the
jet surface.

We note that there is a similarity solution to the
complete eq 41, which is identical with eq 43 with the
exception that the argument of the error function is
increased by a factor of V2. This similarity solution
may be found by taking w to be a function of the
similarity variable y*z*~13 (see work by Deen,” p 382).

The dimensionless diffusion mass flux to the surface,
defined as q; g = QsaifRo(0D) %, is given by

Re x Scd_lfsk
T dz*

x  _ [OW _
@i = (5] = o~ Ws(2)] (44)
Diffusion to the surface of the jet is balanced by
convection in the surface (see work by Levich,6 p 393).
When the (small) change in the perimeter of the jet is
neglected, this dimensionless convective surface flux,

s conv = Os.convRo(oD) 7%, is given as

* Mﬂorsat d Tk 2 dZF*
Us conv = oD ‘F ugl™) + Re x SC, gz*2 (45)

where the term 2(Re x Scs)~! d?I'™*/dz*2 accounts for
diffusion in the surface, which accompanies the convec-
tion d/dz* (uil'*). Scs is the Schmidt number in the
surface, which contains the diffusivity of monomers in
the surface, Ds. If we assume that Ds = D, ug is given
by eq 15, and I'* ~ z*13 we find that the surface
diffusion contribution is negligibly small compared with
the surface convection for the values of the physical
parameters given in Table 2. Therefore, we do not
consider the surface diffusion contribution any further.

In eq 45, T'* = I'lTsa is the dimensionless surface
concentration or surface coverage. We note that the
saturation surface concentration, I'sat, is a value deduced

from the equilibrium adsorption isotherm, as wy — oo.
In practice, the maximum surface concentration, ob-
served as the bulk concentration reaches the critical
micelle concentration (cmc), is less than I'sat. For C16TAB,
this maximum value is about 0.8[sat.

If the Marangoni stresses are small compared with
the maximum value at the nozzle exit, then we can
assume that the surface velocity has the surfactant-free
value. This will be the case for dilute solutions, some
way from the nozzle exit. In this case, the surface
velocity, ui = ui(z*), is given by eq 15. Substituting for
the surface expansion, dui/dz*, in eq 44 and assuming
that the subsurface concentration remains low com-
pared to the concentration in the bulk, wy — ws =~ wy,
gives

£3
s diff =

1/2 1/6
Re x SC) ( 64 ) sz*—lIS (46)

T 27Re

The surface concentration, I'* = I'*(z*), can be found by
balancing convection and diffusion at the surface (eqs
45 and 46)

Re x Sc\'2 64 \16 Z*_ 113 _
S8 -

Ma, I «
— 2 [ d(Uir) (47)

and with eq 15 for ug, we find

r* = 0.244—L2 |Re®scw 2+ (48)
Muorsat

when the Marangoni stress is small.

For low concentrations, the variation in the surface
tension, d/dz* (1/Ca), is obtained from a surface equation
of state, Henry's law, which relates the surface tension
to the surface concentration

NATT
1 = 1 fsatr* (49)
Ca Ca, 1ly
This gives
NATT *
l (i) —_— — - — sat dL (50)
dz* \Ca, ub, dz*
and, with dI'™/dz* from eq 48,
d(1\___E [ oD 23l Sx—2I3
dz* (Ca) - 12.28(MUOF5at)Re Sewpz 7 (51)
where
E = N®#ZTI,/ut, (52)

is the Elasticity number. It is a measure of the impor-
tance of the surface tension change caused by surfactant
adsorption relative to the viscous force. In eq 52, N
reflects the number of ions delivered to the surface by
a molecule of surfactant (N = 1 for nonionics, N = 2 for
ionics with monovalent ions, etc.), %2 is the universal
gas constant, and T is the temperature.

Both the surface concentration and the surface ten-
sion will vary approximately with the 1/3 power of
distance from the nozzle, that is, I'* ~ z*13 and Ca™1 ~
7*153 respectively. This implies that dI'*/dz* ~ z*~23 and



d/dz* (1/Ca) ~ z*~2/, from which it follows that dI"™*/dz*
— o and d/dz* (1/Ca) — o as z* — 0. This behavior
contravenes our assumption that the Marangoni stress
is small, so that the cube-root dependence of eq 48 must
break down as z* — 0.

The derivations made in this section apply to the
region of the jet flow, where the Marangoni stress is
small compared to the maximum shear stress at the
nozzle exit, that is, outside the region of detachment
(see the next section) but still close enough to the nozzle
exit for the assumptions of low concentration (Henry’s
law) and neglect of gravity and streamwise convection
in the boundary layer to be valid.

2.4. Flow near the Nozzle: The Detachment
Region. It is important for the description of flow
further down the jet to know how the jet surface moves
immediately after it detaches from the nozzle. In
particular, we wish to establish the conditions under
which acceleration of the liquid at the point of detach-
ment remains finite and what the surface concentration
is near the nozzle.

2.4.1. Surface Velocity and Surface Concentra-
tion. The surface concentration gradient at the point
of detachment, dI'*/dz* at z* = 0, must remain finite
and sufficiently small that the maximum Marangoni
stress, 4ulig/Ro, consistent with a boundary-layer treat-
ment of the hydrodynamics is not exceeded. Considering
the fluxes from eqgs 44 and 45, we see that if they are to
match each other, we must have (duZ/dz*)Y2 ~ d(ul T*)/
dz*. If we suppose that u; varies as z*" (n > 0) to
leading order, then I'* must vary as z*(="2 as z* — Q.
Because I'* remains finite as z* — 0, n < 1. However,
near the nozzle a value of n of less than unity is
precluded because dI'*/dz* must remain finite as z* —
0. Hence, n = 1 and the leading order term in a Taylor
expansion for I'* about z* = 0 is a constant value I'y; =
T'o/T'sat. Near the nozzle, the surface velocity increases
linearly with distance and the surface acceleration at

= 0 is finite.

From eq 37, near the nozzle,

*_ (642*)1/3( [1 L dz*(&)]m ~ iz (53)

s Re
where « is a constant that is to be determined. It
emerges from eq 53 that as z* — 0, where we have
—Ma(4z*)~1 = d/dz* (4Ca)~}, if the surface acceleration
is to remain finite, we must have

(6 Callero o Gl =4

The local Marangoni stress must have its maximum
(negative) value at that point. We note that this result
is independent of the concentration of the surfactant.
We can integrate eq 53 to obtain the dependence of the
surface tension parameter, Ca™1, on the axial distance,
z*, near the origin. We obtain

Ma\1/3
42*)

K3/2 /Re

1_ 1 _ py — 7%2 (55)

Ca Ca,

which is valid as z* — 0. From eq 55, we obtain for the
Marangoni stress in the detachment region

32 /on
d (i)=_4+/< ZReZ*

az \ca (56)
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Figure 2. Definition of the length of the detachment region, 1*.
Data are for Re = 1950 and ¢, = 0.3 mol m~3 C16TAB in water.
Curve a is ug of the surfactant-free jet, given by eq 15. Curve b is
u; in the region of detachment, given by eq 61. Curve c is u of the
jet in the presence of surfactant outside the region of detachment,
given by eq 62.

We can now derive the expression for the dependence
of the surface coverage, I'*, on z* in the region of
detachment using Henry's law, eq 50, and eq 56. We
obtain through integration

4 3/2\/_
* — T To%x
T*=To+ 228 = == (57)

2.4.2. Matching with the Far-Field Solution.
We have thus shown that there is a (short) detach-
ment region in which the surface velocity increases
linearly from zero at z* = 0 and a region further from
the nozzle in which, according to eq 15, the surface
velocity varies with the cube root of the distance, as the
Marangoni stress becomes negligible. We can estimate
the length scale of the detachment region, 1* = A/R,,
which is defined as the length at which the detach-
ment region solution and the far-field solution both
exhibit the same surface velocity, u;, and the same
surface expansion, dui/dz*, in the following way (see
Figure 2).

The upward Marangoni stress near the nozzle acts
so as to reduce the surface velocity in the downstream
region slightly. This velocity reduction may be consid-
ered equivalent to a small displacement of the nozzle
exit, say A, in a downward sense. Suppose that for large
values of z*, from eq 15,

=By e - o (58)

which is valid for z* = A (curve ¢ in Figure 2). In eq 58,
we can approximate (z* — A)Y3 ~ z*13 — (A/3)z*23, so
that for z* — o we see that (z* — A)Y3 — z*18, The
Marangoni effect thus vanishes as the jet travels
downstream, and for z* — o, eq 58 becomes eq 15,
which is given by curve a in Figure 2. For small z*, we
assume that ug shows linear behavior according to eq
53, which is demonstrated by curve b in Figure 2. We
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match both u} and du}/dz* at z* = 1*, from which we
obtain

_ 2.
A= 3/1 (59)
and
_ [ 64\13, -2
K= 3Re) 2 (60)
The velocity profiles are thus given by
w_ (B4R 2y
ug (3Re) A z (61)
in the region of detachment and
o (64\B3_, 2, .\13
ug = (Re) (z 3/1 ) (62)

in the downstream region.

The solutions for the surface concentration, I'*, in the
downstream region and in the region of detachment, eqgs
48 and 57, respectively, are matched using a procedure
similar to that used for the matching of the surface
velocity. As before, we introduce an offset value into the
downstream solution for I'*. This offset value, say A, is
different from A.

Equation 48 then becomes

[*= _((zx— A (63)
where
(= 0.244(—LP_JReigciizy (64)
MUOrsat b

We match the values I'* and the slopes dI'*/dz* from
eqs 63 and 57 at z* = A*, which gives

" LV\2A* e RV
I+ (2 - ﬁ)? = _A(* - A (65)
and
A *_~_2/3—£ _i
g W —A) = E(l @) (66)

respectively. From eq 66, we find directly for the offset
value

X aw £ _i —3/2
RA=ir—|=f {(1 Jé)] (67)

The matching of the two solutions for I'* at z* = A* is
shown graphically in Figure 3. The downstream solution
for I'* without the offset value A, eq 48, is given by curve
a, and curve b represents the solution for I'* in the
region of detachment, eq 57. Curve c is the downstream
solution for I'*, which is shifted in the axial direction
by the offset value A, eq 63. We see from Figure 3 that
the offset value A is a negative quantity. The reduced
surface velocity decreases the convection in the surface.
For the convective surface flux, uiI'*, to balance diffu-
sion of surfactant to the surface, requires that I'*
increases. Thus, it appears downstream that the source
of the jet has moved a distance A upstream, as shown
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Figure 3. Matching of the solutions for I'* in the region of
detachment (curve b, eq 57) and in the downstream region, where
curve a, given by eq 48, is the downstream solution for I'* if the
surface velocity of the surfactant-free jet is assumed, and curve c,
given by eq 63, is the downstream solution for I'* with the reduced
surface velocity of the jet in the presence of surfactant. Data are
for Re = 1950 and ¢, = 0.9 mol m~3 C1,TAB in water.

in Figure 3. The matched solution for I'* consists of
curve b on the interval 0 < z* < A* and curve c for z* >
A%,

_ 2.4.3. Calculating A* and I'y. Using eq 67 to replace
A in eq 65, we find a quadratic equation that contains
A* and I'j, namely

V3 V3l E
E (3 1\
R (1_ﬁ) (68)

which has the solution

. 5.69061* [ E.(
o= 2E + 5.0718 (69)

Only the positive solution in eq 69 has a physical
meaning.

We have thus found a relation between the length of
the detachment region, A*, and the surface concentra-
tion at the point of detachment, I';. Both 2* and I'{ are
still unknown, and a second relation is needed to
determine them. Intuitively, it may seem that this
second relation could be obtained from the matching of
the solutions for the surface tension parameter, Ca™,
which are given by egs 49 and 48 in the downstream
region and by eq 55 in the region of detachment, in a
way that is analogous to the matching of the surface
concentration, but that is, in fact, not the case. Indeed,
if we carry out this matching procedure, we find that
the downstream solution for Ca™! is offset by a value
that equals exactly A. This is a consequence of using a
linear equation of state.

The second relation for A* and I is found from a
mass balance around the surface at the point of detach-
ment. Balancing diffusion and convection at z* = 0,
eqs 44 and 45, where we assume that w, > Wso = Ws
(z* = 0), and using the detachment region solution for




ui, eq 61, gives

0.3388 U3

To= 024

(70)

Setting eqs 69 and 70 equal gives an equation for A*

(B
Ar = 2.2521 (71)

0.3388,+1/3 |, 2.8453
- 0.244 AT E

Equation 71 is a reduced cubic equation, for which the
solution can be found by standard procedures, and is

A* = 0.0211(E. ¢ )*? (72)

Resubstituting for . gives

3/2
2% = 2543 x 10 E—LP_**Re x sc¥w, ¥ (73)
M Orsat

At first sight, it may seem surprising that the surface
acceleration at the point of detachment is fundamentally
changed by the presence of surfactant because this
might suggest that the no-surfactant case is not ob-
tained by reducing the surfactant concentration toward
zero. In fact, a steady reduction of the surfactant
concentration, wy, reduces the length of the detachment
region, A*, and increases the surface acceleration at the
point of detachment. Taking the value of 1* from eq 73
shows that duj/dz* ~ 2*=2”% ~ w,, =%, which gives du}/dz*
— o0 as Wp — 0, so that the limiting (pure water) case
emerges correctly.

Replacing A* in eq 70 with eq 73 and resubstituting
for ¢, we find

. _ w2[__pD )32 34, 312
I'; = 0.0462E (Muorsat) Re x Sc™'w,™ (74)

The surface concentration at the point of detachment
and the length of the detachment region thus show the
same dependence on the bulk concentration.

The simplified theory shows that (dul/dz*);—o
finite when surfactant is present. This is an important
result, which may be contrasted with the no-surfactant
case in which (dui/dz*),— is infinite. In a related
result, the simplified theory also shows that when
surfactant is present, there is a finite amount, T},
which may be small, adsorbed at the surface of the jet
at the point of detachment.

2.5. Region of Validity. We have assumed in the
analysis that 6 < Rg, which, using the result for a pure
water jet, means that

1/3
2" <1, orzr=2 <Re (75)
204R, Ro

Our experiments have been carried out at 1000 < Re <
2000, and this condition on z* is easily fulfilled over that
part of the jet on which experiments are made.

We have also neglected gravity, which in practice
serves to accelerate the jet. Our derivation is thus valid
provided that gravity does not affect the vorticity-free
layer

Uy > 9 (76)
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where g is the acceleration due to gravity. Using the
results for a pure water jet, this condition is

320,%vz\"¥[ 320, | ;  32%F3
2 22 ~ 9 orzr=—< 2
R, 27R,’z Ry 27Re
(77)
where
Fr= 0o’ 78

is the Froude number. We also require the bulk of the
jet itself to be unaffected by gravity, so

0,> > 29z, or z*<Fr (79)
The Froude numbers in our experiments are in the
range of 50 < Fr < 100, so that the latter condition is
likely to be the more restrictive.

We have also assumed in the mass-transfer model
that the surface concentration remains far below satu-
ration and that in the vicinity of the nozzle the concen-
tration is low enough for Henry's law to be applied to
the surface phase.

3. Fluid Mechanics of the Jet Flow

3.1. Governing Partial Differential Equations.
The numerical treatment of the hydrodynamics of
laminar jets of pure liquids at high Reynolds numbers
received considerable attention during the late 1970s
and throughout the 1980s.17:18 In this paper, we obtain
the flow field of the jet using FIDAP, one of FLUENT's
general-purpose CFD solvers that employs a finite-
element method to discretize the governing set of partial
differential equations.

The three-dimensional liquid jet is reduced to the
axisymmetric case. The origin of the cylindrical coordi-
nate system is located on the center (symmetry) line of
the jet in the nozzle exit plane. Gravity points in the
positive axial direction (see Figure 4). The Navier—
Stokes equations and the equation of continuity are
solved in their dimensionless forms, which are

ou ou*
* - * - =
Ve T g
_op* 2(1 8 (., 0u 82u 1
0z* + Re(r* or* (r ar*) T2 9z* 2Fr (80)
ov* ov* _op* , 2[00 (1 0
* * 2 = IF = = * *
v ar* tu az*  or* + Re[ar* (r* ar* rv )) oz *2
(81)
and
1 9
= 8Ir*(r*v"‘) + az* =0 (82)

respectively. The dimensionless variables are defined
as
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Figure 4. Model of the axisymmetric jet flow: Ro, nozzle radius;
Uo, mean nozzle exit velocity; g, gravitational acceleration; R,
curvature parameter; 6, downstream contact angle; (r, z), cylindri-
cal polar coordinate system; (n, t), local normal tangential coor-
dinate system.

where the mean nozzle exit velocity, Up, and the nozzle
radius, Ry, serve as the characteristic jet flow param-
eters. Two dimensionless numbers are derived: the
Reynolds number, Re, which was defined in eq 16, and
the Froude number, Fr, which is given by eq 78.

3.2. Computational Domain and Meshing. A short
part of the long capillary nozzle is considered in Figure
4. We must allow for a sufficient distance between the
inlet of the jet flow domain and the nozzle exit plane so
that the inlet boundary conditions can be applied safely.
The nozzle section was chosen to be one nozzle radius
in length, which was found to be sufficient for the flow
parameters under consideration in this study. The jet
model ends at a downstream position sufficiently far
away from the nozzle that the appropriate downstream
boundary conditions may be applied. To keep the
numerical size of the flow to a minimum, we chose a
length of 100R, for the free jet section.

The surrounding air is neglected in the model and
treated as a vacuum; the pressure of the adjacent phase
is set equal to zero and the only pressure exerted on
the free surface of the jet is through the action of surface
tension. Because the jet surface is curved, the pressure
at the surface of the jet cannot be uniform.

Figure 5 shows the mesh that was used in the
numerical computations presented in this paper. The
section of the mesh displayed in Figure 5 spans Az =
8.2 um in the axial direction and Ar = 5.5 um in the
radial direction around the nozzle exit at r = Rp and z
= 0 for a nozzle radius of Rp = 0.79 mm. The grid was
generated using FLUENT's mesh-generating program

L

Figure 5. Regular mesh of the jet flow around the nozzle exit
region after deformation. The section spans Az = 8.2 um in the
axial direction and Ar = 5.5 um in the radial direction around the
nozzle exit at r = Ro = 0.79 mm and z = 0 (marked by the arrow).

GAMBIT. The relatively simple axisymmetric flow
geometry permits the use of a regular mesh. At the
detachment point, where the free surface starts to
develop, the boundary condition changes from a no-slip
condition at the wall to a slip condition on the free
surface, which results in a rapid velocity increase at this
point. Dense meshing is required around the point of
detachment to capture the steep velocity gradients in
the axial flow direction accurately.

In the radial direction, the hydrodynamic and diffu-
sion boundary layers, € and ¢, start to grow at the point
of detachment. The two boundary layers are related

through
€c /pD 1
—~ =— (84)
€ “ - VSc

For an aqueous surfactant solution of C16TAB, we find
that efe ~ (1072). The thickness of the diffusion
boundary layer is given by

D
™ A/ duJdz (85)

For C16TAB (see Table 2), we can estimate €. to be @ (1
um). Figure 5 shows that the mesh immediately under-
neath the surface is very dense to account for the
smallness of the diffusion boundary layer. The distance
from the row of surface nodes to the first row of nodes
underneath the surface is only about 40 nm (for a nozzle
radius of Rg = 0.79 mm), to ensure the accurate
computation of the concentration field within the dif-
fusion boundary layer. The mesh consists of 12 012
elements in total, which resulted in average computa-
tion times of not more than 10 min for the water jet
and not more than 30 min if the hydrodynamics were
solved along with the coupled mass-transfer problem on
a Windows 2000 PC with 512 MB RAM and a 1.0 GHz
processor. A fully coupled Newton—Raphson iteration
scheme, where the free surface position was updated
at each iteration step, was employed to solve the




governing set of equations. The free surface position was
adjusted by moving the nodes on the surface and
underneath the surface along the so-called spines to
satisfy the kinematic condition, eq 94.

3.3. Boundary Conditions. 3.3.1. Inlet. Fully de-
veloped laminar flow is applied at the inlet of the flow
domain
u*(r*,z*<0) =2(1 — r*%) and v*(z*<0)=0 (86)

3.3.2. Nozzle Wall. A no-slip condition is applied at
the nozzle wall

u*(r*=1.0,2<0)=0 and Vv*(r*=1.0,2<0) =0
(87)

3.3.3. Center Line. Symmetry conditions are found
on the axial center line of the jet

ou

8r*(|’*=O,Z*) =0 and

v*(r*=0,z*) = 0 (88)

3.3.4. Outlet. In the absence of gravity, a radially
uniform axial velocity distribution and a final jet
diameter are approached asymptotically as the distance
from the jet nozzle is increased, that is, 6 — 7/2 and
v* — 0 for z* > 0, where 0 is the contact angle at the
outlet of the jet flow domain (see Figure 4). In the
presence of gravity, the jet continues to contract and
does not reach a final diameter. We presume that, for a
long enough jet, the inertia term will eventually grow
so that it overwhelms viscous forces and balances the
gravitational term, thus leading to a free-fall velocity
field.?® This condition requires that 6 < 7/2. Applying
Bernoulli’'s law and the equation of continuity and
accounting for the parabolic velocity profile at the nozzle
exit yields a value for the contact angle, 6, that is
applied at the outlet of the jet flow domain. Thus,

JT
* *—R*) — i JRN— _
0(z*>0,r*=R*) = 5 arctan 3 + =

1 (4  z*\ 54
4Fr( )

| @9

where R* = R/Ry is the dimensionless radial position
of the free surface. Continuous contraction of the jet
results in a velocity profile that is not exactly uniform
in the radial direction. The symmetry condition requires
v*(r*=0) = 0, but v* increases with increasing r*,
reaching its maximum value at the surface (r* = R*).
This maximum value may be expressed in terms of the
contact angle, 6, and the axial jet velocity component,
u*, as

V(%0 r*=R*) = u* tan(g - 9) ~ u*(g - 0) (90)
The smallness of /2 — 6, which is of order 1074, leads
to very small values for v*(z*>0,r*=R¥*). However,
downstream boundary conditions formulated by requir-
ing that all velocity gradients vanish result in an
inconsistent flow field for a vertical jet. Therefore, only
the contact angle, 6(z*>0,r*=R¥*), defined in eq 89, is
applied as a downstream boundary condition.

The curvature in the azimuthal direction and the
nonzero surface tension value dictate that the pressure
at the common node between the free surface and the
outlet is nonzero. If there is no boundary condition
specified on the normal component of velocity at the
outlet, which is the case, the so-called stress-free natural
boundary condition is applied in FIDAP, which is
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+2 au“—0 91
P+2u—r= (91)

where p is the pressure, u is the viscosity, un is the
normal component of velocity, and n is the normal to
the outlet. Note that in the jet flow geometry the
direction of the normal at the outlet of the flow domain
is identical with the axial direction of flow. If the flow
is fully developed (or nearly fully developed) at the
outlet (making the derivative dun/dn zero, or nearly zero)
or if the viscous contribution is small, then eq 91
effectively makes the pressure zero at the outlet, which
conflicts with the nonzero pressure at the outlet node
caused by the curvature and the nonzero surface tension
value. Removing the pressure term from eq 91 resolves
this conflict.

3.3.5. Free Surface. A normal stress condition on the
jet surface (the ambient pressure is set equal to zero)
accounts for the varying pressure along the jet axis due
to the curvature of the jet surface. Using the Young—
Laplace equation, we obtain

Re « o« 1
> Th= 2R} ca (92)

where R; = RcRq is the dimensionless curvature pa-
rameter, which is defined in the usual way (see, for
example, the work of Middleman?!®), and Ca is the
Capillary number. The dimensionless normal stress
component is defined as 7}, = tn(plo?) 2.

The dimensionless tangential stress component, 7+*
= 7¢(plp?) 1, is only active in the case of varying surface
tension along the jet length and is zero for a pure liquid.
The tangential stress boundary condition couples the
jet hydrodynamics and the mass transfer and is respon-
sible for the occurrence of the Marangoni effect. It reads

Re._ 8 1 _ 0 (©3)
2t gt*Ca on*
In eq 93, t* = t/Rp and n* = n/R, define the dimension-
less local tangential and normal coordinate system on
the free surface, and u; = ud/0y is the tangential
surface velocity component.
A kinematic condition that sets the normal velocity,
uy = up/o, on the free surface to zero is used to locate
the position of the free surface

u, =0 (94)

3.4, Surface Velocity and Contraction in the
Water Jet. The computed surface velocity, u;, and the
free surface position, R*, of the water jet (that is,
without surfactant) are plotted in Figure 6 as a function
of the axial jet coordinate, z*, for Re = 1950. Also plotted
in Figure 6 is the theoretical solution found by Goren,
eqs 18 and 19, and the theoretical solution that is
derived in this work, egs 15 and 17. We have given a
comparison of our numerical and experimental results
in part 1 of this series of papers, which shows excellent
agreement.b

At larger values of z*, our boundary-layer theory
underpredicts the surface velocity and the contraction
in the jet flow, whereas Goren’s theory overpredicts both
variables. At small z*, both theories overpredict the
surface velocity and jet contraction. We note here that
the analytical theory has relative errors ((Re 13), as
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Figure 6. Surface velocity, ui = us/to, and surface position, R*
= R/Ry, of the water jet as a function of the jet length, z* = z/R.
The data are for Re = 1950, Ca™! = Ca, 1 = 58.9, and (2Fr)™1 =
0.005 07. The lines are the numerical solution. The open and closed
circles are given by egs 15 and 17, respectively. Goren'’s theoretical
results, egs 18 and 19, are the open and closed triangles,
respectively.
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Figure 7. Model of diffusion-controlled surfactant adsorption in
the jet flow.

demonstrated by Tillett.»2 This gives a relative error of
about 0.08 for a Reynolds number of nearly 2000, which
is consistent with the differences noted in Figure 6.
Although not shown here, the same difference between
the numerical solution and the analytical values was
noted at lower Reynolds numbers of 1550 and 1280.

The very rapid acceleration of fluid particles in the
surface close to the point of emergence from the nozzle
is evident. This acceleration results in very high surface
expansion rates, duz/dz*, near the nozzle exit, which
provide the driving force for the diffusion of the surfac-
tant molecules to the surface, as will be discussed in
the following section.

4. Surfactant Adsorption in the Jet Flow

The adsorption of surfactant monomers at the jet
surface may be divided into a four-step mechanism,
which is depicted in Figure 7. Our adsorption model is
based on these steps. First, surfactant monomers are
transported to the surface of the jet through diffusion
and convection from the bulk (i). In the case of the jet,
diffusion is the main mechanism that is responsible for
the delivery of surfactant molecules to the surface. This
diffusive flux toward the jet surface is balanced by
convection within the surface, which is determined by
the rate of surface expansion. On the assumption of local
equilibrium at the surface, the subsurface concentration
and surface coverage may be related by an appropriate
adsorption isotherm (ii). Surface coverage and surface

tension are linked by a thermodynamical equilibrium
expression, the Szyszkowski equation (see below, eq
103), where the small contribution of the diffusion layer
to the dynamic surface tension has been neglected (iii).
Finally, the tangential surface stress boundary condition
(93) couples mass transfer and fluid mechanics of the
jet and leads to the occurrence of the Marangoni effect
(iv).

The same physical assumptions were made in the
surfactant mass-transfer model of the overflowing cyl-
inder (OFC),2120 which was previously modeled numeri-
cally by Schunk,??2 who also predicted surfactant ad-
sorption in slide coating using this model.2® Recently,
Ghadiali et al.?* presented a numerical model of surf-
actant adsorption at the interface of a semi-infinite
bubble progressing in a capillary tube, which matches
the model outlined in Figure 7. Cerro and Whitaker
used the model in their theoretical study on the hydro-
dynamic development of thin films in the presence of
surfactant.?®

4.1. Bulk Diffusion and Convection of Surfac-
tant. The convection—diffusion equation describes the
transport of surfactant molecules from the core of the
jet toward the free surface. In cylindrical polar coordi-
nates (r*, z*), this conservation equation for a surfactant
species being transported in the fluid under steady-state
flow conditions is given in its dimensionless form as

Rec [odw , ow)|_[1 9 *M) Fw
2Sc(v ar*+u 82*) * e (r Py +az*2 (95)

Equation 95 is given in terms of the mass fraction of
surfactant species, w. The Schmidt number, Sc, is
defined in eq 42.

4.2. Boundary Conditions. 4.2.1. Inlet. At the inlet
of the jet flow domain, sufficiently far upstream from
the nozzle exit plane, the bulk concentration, wy, is
assumed everywhere in the fluid, that is

w(r*,z*<0) = wy, (96)

4.2.2. Nozzle Wall. The nozzle wall is made im-
penetrable for surfactant, and thus
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F m(r*W) =0

atr*=10,z*<0 (97)

4.2.3. Free Surface. A flux boundary condition at the
free surface of the jet allows the surface to take up
surfactant from the bulk liquid. Hence, a diffusive mass
flux that is directed along the outward unit normal of
the free surface is prescribed on that boundary. This
diffusive mass flux is given as

0

* = — | — — —_—
s qgifr = = or* atr*=R* z*> 0

A

r*wg) + —

az*

(98)

where ws refers to the subsurface concentration. In

eq 98, the dimensionless diffusive mass flux is defined

as gt = (PD/Ro)0sairr. This diffusive mass flux,

Os qir OF surfactant molecules is balanced by the rate

of local redistribution by surface convection, d .., =
(oD/Rg)™10s.conv, Which can be written as

_MIy d

* ——(T*ug)

Us,conv™ p—D dz* atr*=R* z*>0 (99)



In the high Reynolds number limit, the contraction
of the jet is slight, which allowed us to simplify eq 99.
It is sufficient to consider the axial component of the
tangential surface velocity, u; ~ ui(z*), and we can
then replace the surface gradient with the gradient in
the axial direction, d/dz*.

The surface coverage, I'*, in eq 99 must be linked to
the subsurface concentration, ws, to enable matching of
diffusive and convective flux. Here, we assume diffusion-
controlled surfactant adsorption; that is, each molecule
that is being transported to the surface adsorbs im-
mediately, and diffusion is the rate-controlling transport
step. On the basis of this assumption of local equilibrium
everywhere along the jet surface, an equilibrium ad-
sorption isotherm is used to link I'* and ws. The simplest
nonlinear isotherm is the Langmuir isotherm,28 given
as

T W,
r

S

S,

r*= (100)

sat

where k* = MK/p is the dimensionless Langmuir con-
stant. Replacing I'* with eq 100 in eq 99 leads to the
expression for the convective mass flux that is applied
at the free surface of the jet. It reads

*
qs,conv

Fsatu

M b )L L dwg K* N dug
T KTEW U (m) Ws Gx

Equation 101 provides the driving force for the transport
of surfactant molecules (almost exclusively by diffusion)
to the surface or, to be more precise, to the subsurface.
It is implemented into the CFD code FIDAP through a
Fortran user subroutine. The derivatives, duz/dz* and
dws/dz*, within the user subroutine are computed using
fourth-order finite-difference approximations. Here, we
have employed an algorithm published by Fornberg to
compute the weights of the finite-difference approxima-
tions on arbitrarily spaced grids.?”

In the CFD code FIDAP, by default, an applied flux
that results in a net flow into the fluid would be
specified as positive. When programming eq 101 into
the CFD code, we have therefore introduced a negative
sign in the equation to account for the fact that the
surfactant molecules diffuse toward the surface.

4.2.4. Outlet. In the absence of gravity, significantly
far downstream from the nozzle exit plane, equilibrium
conditions are reached at the surface, that is, ws(z>0)
— wp. In the presence of gravity, however, the surface
experiences constant expansion at the downstream
position, and equilibrium conditions are never reached.
Consequently, no constraints to the subsurface concen-
tration are applied at the outlet of the jet flow domain.

4.3. Coupling of Hydrodynamics and Surfactant
Adsorption: Marangoni Flow in the Jet. The link
between the surface tension and surface coverage is
established by means of the Frumkin equation

*

(101)

=0, + NAT T, In(1 — - (102)
FSat

which, in terms of the subsurface concentration and
using our dimensionless notation, may be given as
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1_ 1 el (103)
Ca Ca k* + wy

W

Equation 103 is known as the Szyszkowski equation,??
in which 1/Ca, = ow(ulg)™! is the surface tension
parameter of pure water. Equation 103 is implemented
into the CFD code FIDAP through a Fortran user
subroutine. The Elasticity number, E, is defined in eq
52.

The tangential stress boundary condition, eq 93,
becomes active when the surface tension parameter,
1/Ca, is not constant but varies along the jet length z*.

4.4. Limiting Marangoni Stress at the Point of
Detachment: Hybrid CFD Model. Converged nu-
merical solutions of the CFD model as outlined above
are only achieved at very low values for the bulk
concentration c, of about 0.01 mol m~3 at Re = 1950.
At higher bulk concentrations, direct coupling of surf-
actant adsorption and fluid mechanics—the link be-
tween the shear stress condition (eq 93) and the equa-
tion of state (eq 103)—led to failure of the Newton—
Raphson iteration scheme. The Marangoni stress, d/dz*
(1/Ca), very near to z* = 0 was found to exceed the shear
stress at the nozzle wall, as a consequence of which the
surface velocity was not only reduced but also brought
to rest and reversed. The result was the appearance of
a closed vortex flow, much less in diameter than the
nozzle radius, in the nozzle exit plane. With the occur-
rence of such a toroidal flow, convergence for the
convection—diffusion equation could no longer be at-
tained. Schunk?? reported a similar phenomenon in his
numerical work on surfactant adsorption in an OFC,
where what he believed to be an oscillatory toroidal
instability, which was caused by steep surface tension
gradients, was observed near the center of the OFC.

The failure of our numerical scheme results from its
inability to handle the step change in the subsurface
concentration that should occur at the point of detach-
ment. To speed up convergence and to suppress the
appearance of oscillations in the numerical solutions,
we have introduced upwinding,?° a degree of numerical
diffusion that does not affect the solution away from the
nozzle. The CFD code FIDAP uses a streamline up-
winding scheme that adds numerical diffusion only
along the flow direction.3° Axial diffusion and upwinding
cause the step change in the surface concentration to
be smeared out over a few nodes, resulting in finite, but
very large, concentration gradients immediately down-
stream of the point of detachment. When these concen-
tration gradients are converted to surface tension
gradients through the equation of state, large accelera-
tions result. The whole calculation scheme then fails to
converge.

We have tackled this problem by combining the
theoretical solution at the nozzle exit with the far-field
solution that is obtained from the numerical computa-
tion. We apply a limiting Marangoni stress at the point
of detachment. We also apply the finite surface concen-
tration, 5, at z* = 0, which has been calculated from
the theory. Stable solutions for the convection—diffusion
equation are then obtained for a range of bulk concen-
trations at our high Reynolds numbers. The implemen-
tation in our numerical model is detailed in the next
sections.

We note here that our boundary-layer theory is based
on the supposition that reverse flow does not occur and
consequently that the maximum Marangoni stress does
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not exceed the stress value at the nozzle wall. We have
shown that this assumption can lead to a solution that
does not show singular behavior at the point of detach-
ment. Our analysis, however, does not exclude the
possibility that other families of solutions exist, such
as the toroidal vortices observed in some of the numer-
ical solutions.

4.4.1. Limitation Condition and Concentration
Profile in the Region of Detachment. The condition
that determines the Marangoni stress at the point of
detachment is given by eq 54. This limitation is imple-
mented into the numerical computation through the
subsurface concentration profile, ws(z*), at the point of
detachment at z* = 0. The surface equation of state
(103) determines the surface tension everywhere along
the jet surface, including the point of detachment at z*
= 0. It must thus fulfill the limitation condition (54).
Differentiating the Szyszkowski equation (54) with
respect to z*, and considering the limitation condition,
gives

d ) E_Me_ 4 (109

dz* \Ca z_k*+wsdz*

at z* = 0. Integrating eq 104 by separating the variables
gives
k* + wy 4_, 105
o exp(g2*] (105)
In eq 105, wsy is the subsurface concentration at the
point of detachment (z* = 0), for which we have to make
a suitable choice. For small values of z*, eq 105 can be

linearized and rearranged to give the solution for ws,
which is valid as z* — 0, namely

W, = Wy + K W, )7* (106)

4.4.2. Asymptotic Matching with the Numerical
Far-Field Solution. We match the linear solution for
Ws(z*) at the point of detachment, eq 106, with the
numerical downstream solution for ws that is computed
by the CFD code. To carry out the matching, we
approximate the numerical downstream solution with
a power-law equation of the form

w, = ¢'z*" (107)

with ¢’and m being the parameters of the least-squares
power-law fit.

Asymptotic matching of eqs 106 and 107 leads to a
smooth solution for ws that holds everywhere along the
jet surface. We have used

(108)

4 %2 1(-m)/2
W, = |Wgo + E(k*+ WS’O)Z*

[%2 4 z%2
with
I Ve 1/(L—m)

== (109)
2(* + w, )

Equation 108 provides us with a smooth fit through the
downstream solution for ws that is computed by the CFD
code and gives the required maximum Marangoni stress
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Figure 8. Length of the detachment region, 1* = A/R, (closed
circles, eq 73), and the related parameter, I* = I/R (open triangles,
eq 109), as a function of the bulk concentration, cp, of C1sTAB at
Re = 1950 and (2Fr)~* = 0.00507.

at the point of detachment. This information is passed
to the numerical computation through the equation of
state (103), which is linked to eq 108 instead of coupling
it directly with the numerical solution for the subsurface
concentration. In this way, a smooth surface tension
function, Ca—1(z*), is obtained that accounts for the
limiting Marangoni stress at the point of detachment.
The parameters of the power-law fit in eq 107, ¢’and
m, are updated to fit the numerical downstream solution
after each computation, until a stable solution is ob-
tained. Typically, five or six computations were neces-
sary to attain stable solutions. Note that “downstream
solution” here refers to the region of the jet flow where
x> |*

In eq 108, I* is a dimensionless length scale that is
related to the length of the detachment region, 1*,
because it marks the point of transition from the (linear)
upstream solution (eq 106) to the downstream solution
(eq 107). The length scale I* is a function of the power-
law parameters ¢’and m, which, in turn, depend on the
bulk concentration cp, the Reynolds number, and the
physicochemical properties of the surfactant. The values
for ¢’and m are displayed in Table 1 for Re = 1950 and
the properties of C16TAB (given in Table 2) and different
bulk concentrations cp.

Equation 74 provides an estimate of the finite value
of the surface concentration at the point of detachment,
Iy = I'*(z*=0). Using the Langmuir isotherm, eq 100,
we can calculate a value for the subsurface concentra-
tion at that point, wso = ws(z*=0), which is then used
in egs 108 and 109. The values for Ty and wso that we
calculated using the physical properties of an aqueous
solution of C16TAB are summarized in Table 1 for the
bulk concentrations under consideration in this work.

Figure 8 shows how A* and I* depend on the bulk
concentration, cp, for a Reynolds number of Re = 1950
and the surfactant properties of C16TAB. Both sets of
values increase monotonically with increasing bulk
concentration and, in the limit of ¢, — 0, correctly show
A%, I* — 0. The A* values have a 3/, power dependence
on cp (see eq 73), and the I* values show the same
functional dependence on cy,.

Although the length scale I* is related to A*, which
explains the same functional dependence on cy, the
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Figure 9. Surface coverage, I'* = I'/T'sat, @s a function of the axial
jet coordinate, z* = z/R,, at Re = 1950 and (2Fr)~1 = 0.00507. Bulk
concentrations of ¢, = 0.3 mol m=3 (d), 0.63 mol m=3 (e), and 0.9
mol m~=3 (f) C16TAB in water are shown. The symbols are the
experimental data at ¢, = 0.3 mol m~3 (squares), 0.63 mol m~3
(circles), and 0.9 mol m~3 (triangles).

values for I* are about one order of magnitude larger
than the values for 1*. This difference in magnitude has
its origin in the way both are defined. We remember
that A* is defined as the point where the detachment
region velocity solution is matched with a far-field
solution that is extrapolated back to this point. In
contrast, I* indicates the distance at which a linear
dependence of the subsurface concentration near to the
nozzle makes a transition to the fitted power-law
dependence of the computed solution for large z*.

4.5. Surface Concentration in the Liquid Jet.
Figures 9 and 10 show computed surface coverage
profiles. The surfactant chosen is C16TAB, which has a
cmc of 0.92 mol m=3. The values of the physical
parameters that have been used in the computations
are displayed in Table 2. The bulk concentrations are
all below the cmc, and the Reynolds number is high, at
Re = 1950.

In Figure 9, experimentally obtained surface coverage
data for ¢, = 0.3, 0.63, and 0.9 mol m~2 are compared
with the computed values from our model. The experi-
mental surface coverage data were obtained from ellip-
ticity measurements in the jet flow, details of which can
be found in part 1 of this series of papers.® We can see
very clearly that the jet surface is depleted of surfactant
near the nozzle exit because of the rapid surface
expansion in this region of the jet. The surface coverage
increases quite rapidly in the close vicinity of the nozzle
exit. The increase of I'* with increasing z* is less
pronounced in the downstream region of the jet because
of a decrease in the surface expansion. At ¢, = 0.3 mol
m~3, the predicted values and the measured data exhibit
a very good agreement. At ¢, = 0.63 and 0.9 mol m~3,
the agreement is less good. At these higher concentra-
tions, very near the cmc, the experimental data show
that I'*(z*) increases less rapidly as the jet leaves the
nozzle than the computed results suggest. Furthermore,
at these high concentrations, the experimental data
approach the state of equilibrium at the surface sooner
than the computed values.

Although the estimates for I'; that were used in the
numerical computations agree reasonably well with the
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Figure 10. (a and b) I'*/wj, as a function of z*, at Re = 1950 and
(2Fr)~1 = 0.005 07. Bulk concentrations of ¢, = 0.01 mol m~3 (a),
0.05 mol m=3 (b), 0.1 mol m~3 (c), 0.3 mol m~3 (d, squares), 0.63
mol m~3 (e, circles), and 0.9 mol m~3 (f, triangles) C16TAB in water
are shown. Equation 48, which states that I'*/wy, ~ z*13, is also
plotted.
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first experimental values for T'* at small z*, the diffu-
sion-controlled modeling approach with a Langmuir-
type isotherm of the CFD model seems to fail to correctly
predict the adsorption behavior of C16TAB in the jet at
bulk concentrations around the cmc. Our model neglects
the presence of an electric double layer, which has the
effect of reducing the rate of mass transfer to the
surface, because adsorbing molecules must overcome the
electrostatic resistance of the surface.®® This model
deficiency might explain the deviation between the
computation and the experimentally obtained values at
higher bulk concentrations.

Equation 48 suggests that, in the far field, I'*/w, ~
z*13, Parts a and b of Figure 10 show that the experi-
mental data do indeed converge when I'*/wj, is plotted
as a function of z*, at larger z*. Equation 48 is also
plotted in Figure 10a,b, together with the computed
hybrid solution. The undulations in some of the com-
puted solutions are probably numerical artifacts.
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Figure 11. Surface tension parameter, Ca=! = o(ulig)”!, as a
function of the axial jet coordinate, z* = z/R,, at Re = 1950 and
(2Fr)~1 = 0.005 07. Bulk concentrations of ¢, = 0.01 mol m~3 (a),
0.05 mol m~2 (b), 0.1 mol m~3 (c), 0.3 mol m~2 (d), 0.63 mol m~3
(e), and 0.9 mol m~3 (f) C16TAB in water.

4.6. Dynamic Surface Tension in the Liquid Jet.
The dynamic surface tension calculations, Ca™! =
Ca(z*), that correspond to the computed surface
coverage data shown in Figures 9 and 10 are shown in
Figure 11. At the lowest concentration, ¢, = 0.01 mol
m~3, the surface tension parameter remains nearly that
of water and changes only very slightly over the length
of the jet, which agrees with the low surface coverage
values at this concentration (see Figure 10a). We also
note that only very small quantities of surfactant adsorb
at the point of detachment at low bulk concentrations
(curves a—c in Figure 11) and the surface tension
parameter at that point is nearly that of pure water;
that is, Ca“!(z*=0) ~ Ca, ! = 58.9. At the point of
detachment, from eq 54, the local surface tension
gradient is identical for all bulk concentrations; that is,
d/dz* (Ca™!) = —4 at z* = 0. Within the region of
detachment, the local Marangoni stress is linear, eq 56.
Outside the region of detachment, z* > I*, higher bulk
concentrations lead to steeper surface tension gradients,
which persist for significant jet lengths. At the highest
concentration (0.9 mol m~3), a relatively rapid decrease
in the surface tension is observed, which again is in
accordance with the surface coverage data in Figure 9.

4.7. Surface Velocity Profiles in the Liquid Jet.
The adsorption of surfactant at the expanding jet
surface leads to a surface tension gradient, d/dt* (Ca™?)
~ didz* (Ca™1), that activates the tangential shear stress
condition (eq 93). The surface tension gradient acts in
the upstream direction (see Figure 11) and retards the
jet flow. The theory requires that, in the presence of
surfactant, the surface velocity at the point of detach-
ment from the nozzle increases linearly with increasing
distance from the nozzle, eq 61. For z* > I*, the
Marangoni effect vanishes and the surface velocity tends
toward the pure water value. This behavior is shown
by the graphs in Figure 12. The linear dependence of
u; on z* for z* < I* is clearly visible at higher bulk
concentrations. The transition points of all curves
compare well with the values for I* (see Figure 8).

In the experiments, a measurable reduction in the
surface velocity was only observed at bulk concentra-
tions well above the cmc. As evident from Figure 12,
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Figure 12. Surface velocity profiles, ui = ui(z*), for the bulk
concentrations ¢, = 0.05 mol m~2 (b), 0.1 mol m~3 (c), 0.3 mol m~—3
(d), 0.63 mol m~=3 (e), and 0.9 mol m~3 (f) C1sTAB in water at Re
= 1950 and (2Fr)~' = 0.005 07 in comparison with the ui(z*)
profile of the water jet (w).

the surface velocity retardation is rather low and occurs
very near the nozzle exit, even at bulk concentrations
near the cmc. This position on the jet surface is not fully
accessible for the lasers.® The theory and calculations
presented here are not valid for solutions above the cmc,
where micelles are present.

5. Conclusions

In part 2 of this series of papers, we have described a
numerical model of surfactant adsorption in a laminar
liquid jet, which we have implemented into the CFD
code FIDAP. In addition, we have derived an analytical
solution of the jet flow in the presence of surfactant,
which is based on the limitation of the surfactant-
generated Marangoni stress at the point of emergence
of liquid from the nozzle. As a consequence of this
assumption, the surface velocity, the surface concentra-
tion, and the surface tension were found to depend
linearly on the axial jet coordinate in the detachment
region near the nozzle exit. This contrasts with the
solution of the water jet, where the surface velocity
shows a cube-root dependence on the axial distance
everywhere. The validity of the model that we have
presented in this paper is restricted to bulk concentra-
tions well below the cmc and high Reynolds numbers.
Furthermore, the model assumes diffusion-controlled
adsorption. The predicted surface coverage data agree
well with experimental data. The validated adsorption
model should be applicable to other free-surface flow
configurations, such as coating flows and foaming.
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Nomenclature

Dimensionless Groups

Ca = Capillary number, utglo

E = Elasticity number, N9 T sat(ulo) *
Fr = Froude number, T?(2Rog) !

Ma = Marangoni number, |[Ca™! — Cap™ |
Pe = Péclet number, Roly/D

Re = Reynolds number, 2RqpUo/u

Sc = Schmidt number, u(pD)1

Latin Symbols

A = dummy parameter, 40¢/Ro (s71)

- = dimensionless constant

a = dummy variable (m s™1)

B = dummy parameter, —20¢/Ro? (m~1 s71)
b = dummy parameter (s71)

¢ = dimensionless fit parameter

¢ = molar concentrtaion (mol m=3)

D = coefficient of diffusivity (m? s—1)

f(z) = dependence of us on z (m s71)

f'(z) = rate of surface expansion, dus(z)/dz (s™1)
g = gravitational acceleration (9.81 m s72)
k = Langmuir constant (mol m~3)

| = length scale (m)

= molecular weight (kg mol—2)

= power-law parameter

= ionic number

n = power-law parameter

n = normal surface coordinate (m)

p = pressure (Pa)

g = mass flux (kg m—2 s71)

9 = universal gas constant (8.314 J mol~t K1)
R = jet/nozzle radius (m)

R. = curvature parameter (m-1)

r = radial coordinate (m)

T = temperature (K)

t = tangential surface coordinate (m)

U = axial core velocity of the jet (m s71)

U = mean jet velocity (m s71)

u = axial jet velocity component (m s—1)

v = radial velocity component (m s™1)

w = mass fraction, c¢(M/p)

y = transverse coordinate in the boundary layer (m)
z = axial coordinate (m)

z3Z

Greek Symbols

o = surface-slip factor, d/e

0 = radial distance of the edge of the boundary layer from
the nozzle wall (m)

€ = thickness of the hydrodynamic boundary layer (m)

€. = thickness of the diffusion boundary layer (m)

6 = downstream contact angle (deg)

x = dimensionless constant

A = length of the detachment region (m)

u = dynamic viscosity (kg m~t s71)

v = kinematic viscosity, u/p (m? s71)

p = density (kg m~3)

o = surface tension (N m~1)

7 = stress component (N m~2)

A = dimensionless downstream surface velocity offset value

A = dimensionless downstream surface concentration offset
value

I' = surface concentration/coverage (mol m—2)

Subscripts
0 = point of detachment
b = bulk

conv = convection
diff = diffusion
max = maximum
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n = normal direction

s = surface

sat = saturation

t = tangential direction
w = water

wall = nozzle wall

z = downstream position

Superscript
* = dimensionless variable
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