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The factorization method, applied to the finite-difference Schrödinger equation in the
relativistic configurational space, allows to consider the q-deformations as a relativistic
effect. In particular, different factorizations allow to obtain all known q-oscillators in a
unified way. The classical limit of deformed Hamiltonians is investigated.
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In [1] the relativistic oscillator was considered on the basis of the concept of the
relativistic configurational representation [2, 3]. Referring the reader to [1, 4, 5], we
present here the necessary formulae (the one-dimensional case is considered).

The relativistic finite-difference Schrödinger equation (we use the unit system
h̄ = m = c if not specified otherwise)

(
ĥ0 + V (x) − e

)
ψ(x) =

(
k̂2

2m
+ V (x)− k2

2m

)
ψ(x) = 0 , (1)

where the relativistic energy-momentum vector
(
p0 = coshχ, p = sinhχ

)
is con-

nected with the kinetic momentum k and energy e:

h =
k̂2

2
+ V (x) , e =

k2

2
, k̂ = −2mc sinh

(
ih̄
2mc

d
dx

)
, k = 2mc sinh

χ

2
. (2)

Parameter χ is the hyperbolic angle (the rapidity) (see [1, 4, 5]).
In [1] the general approach to the oscillators in the relativistic-configurational

space were formulated and one of such oscillators was considered in detail. It was
shown that the relativistic oscillator is the q-oscillator with parameter of deforma-
tion depending on physical parameters

q = exp
(
− ωh̄

4mc2

)
. (3)

∗) Presented at the 13th International Colloquium on “Integrable Systems and Quantum
Groups”, Prague, 17–19 June 2004.
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The ladder operators A± (we use in what follows the unit system h̄ = c = m = 1)

A± = ±i
√
2e±ω/8

[
sinh

(
i
2

d
dx

)
∓ i tan

ωx

2
cosh

(
i
2

d
dx

)]
=

= ∓ 1√
2
e±ωx2/2D̂e−ωx2/2 ,

(4)

where

D̂ = − 2i
cos
(

1
2ωx

) · sinh( i
2

d
dx

)
(5)

obey the q-mutation relations [1], [7–9][
A−, A+

]
q
= qA−A+ − q−1A+A− = 2

(
q−1 − q

)
= 4 sinh 1

4ω . (6)

The systematic analysis, see below (7)–(9), shows, however, that unlike the standard
differential non-relativistic Schrödinger equation, which can be factorized in only
one way (for a given potential), for the relativistic finite-difference Schrödinger
equation, there are a number of different factorizations. Each of them leads in
general to a specific q-oscillator model. We show that there are different possibilities
to obtain factorized oscillator-like relativistic Hamiltonian. The origin of this fact
lies in the finite-difference character of the relativistic momentum operator (2). We
can obtain also different finite-difference ladder operators. Indeed, let us return
for a moment to the non-relativistic QM. The free-energy operator is the second
derivative, which can be split in two factors by only one way, if we do not consider
the fractional degrees of differentiation operators:

H0 =
p2

2m
= − 1

2m
d2

dx2
= − 1

2m

(
d
dx

)(
d
dx

)
.

In the relativistic case the free Hamiltonian is the finite-difference operator, given
by (2). Using the definition of the hyperbolic function sinh z:

sinh
(
i
2

d
dx

)
=

1
2

[
exp
(
i
2

d
dx

)
− exp

(
− i
2

d
dx

)]
and the relation exp

(
± 1

2 i d/dx
)
〈x|p〉 = e∓χ/2〈x|p〉, we can write the free Schrödinger

equation in different forms:[
1− exp

(
−i d

dx

)2
]
〈x|p〉 = 2eχ sinh2

(
1
2χ
)
〈x|p〉 , (7)

[
1− exp

(
i
d
dx

)2
]
〈x|p〉 = 2e−χ sinh2

(
1
2χ
)
〈x|p〉 , (8)

[
1− exp

(
i
d
dx

)][
1− exp

(
−i d

dx

)]
〈x|p〉 = −2 sinh2

(
1
2χ
)
〈x|p〉 . (9)
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From (7)–(9) different q-oscillators can be obtained. Referring the reader to [1, 4, 5],
we write down here the corresponding ladder operators. For the case (7) we have
the ladder operators

η+ = − i√
2
eiωx(ξ−2)

[
1− exp

(
i
ωx

2

)
exp
(
−i d

dx

)
exp
(
i
ωx

2

)]
eiωxξ ,

η− =
i√
2
eiωx(ξ+2)ξ

[
1− exp

(
−i ωx

2

)
exp
(
−i d

dx

)
exp
(
−i ωx

2

)]
e−iωxξ .

(10)

In this case the value of q is
∼
q= eω .

The q-mutator is[
η−, η+

]
∼
q
=

∼
q η−η+−

∼
q
−1

η+η− = eωη−η+ − e−ωη+η− = 1
2

(
∼
q −

∼
q
−1
)
= sinhω .

Another pair of the creation and annihilation operators γ± comes out if we start
with the free Hamiltonian from (9)

γ+ =
i√
2
exp
(
−i(2 + ζ)

d
dx

)[
1− exp

(
−i ωx

2

)
exp
(
i
d
dx

)
e
(
−i ωx

2

)]
× exp

(
iζ

d
dx

)
,

γ− =
i√
2
exp
(
iζ

d
dx

)[
1− exp

(
−i ωx

2

)
exp
(
−i d

dx

)
exp
(
−i ωx

2

)]
× exp

(
i(2− ζ)

d
dx

)
.

(11)

The value of q is
∼
∼
q=

∼
q
−1

= e−ω

and the q-mutator is[
γ−, γ+

]
∼
q
−1 =

∼
q
−1

γ−γ+−
∼
q γ+γ− = e−ωγ−γ+ − eωγ+γ− = 1

2

(
∼
q −

∼
q
−1
)
.

The pairs of the ladder operators η± and γ+ are symmetric in the sense that
they transform into each other if we exchange the coordinates and rapidities. This
generalizes the symmetry between coordinates and momenta existing in the non-
relativistic theory. Now let us consider the classical limit of this relativistic theory.

We concentrate on the case described by the ladder operators (4). Using Baker–
Campbell–Hausdorf formula, we can rewrite A+, A− operators as

A± = ∓
√
2

cos(ωx/2)
e±ωx2/2 sinh

(
i
2

d
dx

)
e∓ωx2/2 =

=
√
2

cos(ωx/2)
sinh

(
p+ iωx

2

)
=

√
2

cos(ωx/2)
sinh

(
a±√
2

)
, (12)
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where
a± =

1√
2
(p± iωx) (13)

are standard non-relativistic ladder operators.
Note that in the classical limit the deformation parameter

q = exp
(
− ωh̄

4mc2

)
−→ 1 . (14)

Correspondingly the “ladder functions” (12) go over to the classical operators

B+ =
√
2mc2

(
sinh

p

2mc
+ i tan

ωx

2c
cosh

p

2mc

)
,

B− =
√
2mc2

(
sinh

p

2mc
− i tan

ωx

2c
cosh

p

2mc

)
.

(15)

The relativistic classical Hamiltonian function is defined as

H = B+B− = 2mc2
(
cosh2 p

2mc
cos−2 ωx

2c
− 1
)
. (16)

The Poisson bracket for B+ and B− is

{B−, B+} =
∂B−

∂x

∂B+

∂p
− ∂B−

∂p

∂B+

∂x
= −iω cosh2 p

2mc
cos−2 ωx

2c
=

= −iω
[

H

2mc2
+ 1
]

c→∞−→ −iω , (17)

which is a right non-relativistic limit

{a−, a+} = −iω . (18)

Correspondingly the equations of motion have the form

dB+

dt
= {B−,H} = {B−, B−B+} = {B+, B−}B+ = iω

[
H

2mc2
+ 1
]
B+ , (19)

dB−

dt
= −iω

[
H

2mc2
+ 1
]
B− . (20)

Direct calculation gives

dH
dt

=
d
dt
(
B+B−) =

= 2mc
cosh

(
p/(2mc)

)
cos2

(
ωx/(2c)

) [ ṗ
m

sinh
p

2mc
+ ωẋ tan

ωx

2c
cosh

p

2mc

]
=

c→∞−→ p

(
ṗ

m
+ ω2x

)
= p

(
p̈

m
+ ω2x

)
=

= 0 for the non-relativistic oscillator. (21)
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But what is the value of dH/dt in the relativistic case? (0?)
Let us introduce, by analogy with non-relativistic relations, the new relativistic

“coordinate” κ and “momentum” π:

κ =
i

ω
√
2m

(
B−B+

)
=

2c
ω

tan
ωx

2c
cosh

p

2mc
,

π =
√
m

2
(
B+ +B−) = 2mc sinh

p

2mc
.

(22)

In terms of these relativistic coordinate and momentum the Hamiltonian takes the
form

H =
π2

2m
+
mω2κ2

2
. (23)

The Hamiltonian equations of motion for κ and π take the form

κ̇ = {κ,H} =
(

H

2mc2
+ 1
)
π

m
, (24)

π̇ = {κ,H} = −ω2m

(
H

2mc2
+ 1
)
κ . (25)

As H does not explicitly depend on time, the following equation of motion is
satisfied:

κ̈+ ω2

(
H

2mc2
+ 1
)2

κ = 0 . (26)

Further using

{κ,H} = ∂κ

∂x

∂H

∂p
− ∂κ

∂p

∂H

∂x
(27)

and

{π,H} = −∂π
∂p

∂H

∂x
, (28)

we explicitly calculate the Poisson brackets in (24) and (25). Then we calculate as
well the time derivatives of the usual coordinate and momentum, expressing them
in terms of relativistic quantities

ẋ = {x,H} = ∂H

∂p
= 2c sinh

p

2mc
cosh

p

2mc
cos−2 ωx

2
=

=
[

H

2mc2
+ 1
]
cosh−1 p

2mc
π

m
, (29)

ṗ = {p,H} = −∂H
∂x

= −2mcω tan
ωx

2c
cosh2 p

2mc
cos−2 ωx

2c
=

= −mω2

[
H

2mc2
+ 1
]
cosh−1 p

2mc
κ . (30)
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Inserting these results into the expression (21) for the time derivative of the
Hamiltonian dH/dt obtained by direct differentiation, we come to the important
conclusion that

dH
dt

≡ 0 . (31)

In other words the Hamiltonian equations for x and p, and for κ and π are compat-
ible. The reason of that fact lies in the periodicity properties [6] of the relativistic
classical oscillator Hamiltonian function (16):

H (x, p+ 2πimc) = H (x, p) (32)

and

H

(
x+

2πc
ω

, p

)
= H (x, p) . (33)

As a consequence of Eqs. (32) and (33) the trajectories in (κ, π)-phase space
have the double periodic structure. The orbits, corresponding to the constant energy
in (κ, π)-phase space (cf. 23), are multiply reproduced in the (x, p)-phase space
exhibiting the periodic dependence. Of course the scales along axes in these phase
spaces are different. To see the manifestation of the periodicity property described
by (32), we have to consider the complex (x, p)-phase space.
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