
MILCOM 2004 - 2004 IEEE Military Communications Conference 

TAYLOR SERIES APPROXIMATION OF SEMI-BLIND BEST LINEAR UNBIASED 
CHANNEL ESTIMATES FOR THE GENERAL LINEAR MODEL 

Christopher Pladdy, S.M. Nerayanuru, Mark Fimoff 
Zenith R&D Center, Lincolnshire. IL 

Serdar Ozen 
Ivnir Institute of Technology, 

Izmir, Turkey 

ABSTRACT 
We present a low complexity approximate method 

for semi-blind best linear unbiased estimation (BLUE) 
of a channel impulse response vector (CIR) for a 
communication system, which utilizes a periodically 
transmitted training sequence, within a continuous 
stream of infomation symbols. The algorithm achieves 
slightIy degraded results at a much lower complexity 
than directly computing the BLUE CIR estimate. In 
addition, the inverse matrix required to invert the 
weighted normal equations to solve the general least 
squares problem may be pre-computed and stored at the 
receiver. The BLUE estimate is obtained by solving the 
general linear model, y = Ah + w +- n , for h , where w 
is correlated noise and the vector n is an AWGN 
process, which is uncorrelated with w .  The Gauss - 
Markoff theorem gives the solution 
h = ( ATC(h)-'A)-'ATC(h)-' y . In the present work we 
propose a Taylor series approximation for the h c t i o n  
F(h) = (A"C@)-'A)-'ATC(h)-'y where, F: R L + R L 

for each fixed vector of received symbols,y, and each 
fixed convolution matrix of known transmitted training 
symbols, A .  We describe the fill Taylor formula for this 
fimction, F(h) = F(h,) + & (h - hid)a (&%)"F(hia) 

and describe algo&hms using, respectively, first, second 
and third order' approximations. The algorithms give 
better performance than correlation channel estimates 
and previous approximations used, [15], at only a slight 
increase in complexity. The linearization procedure used 
is similar to that used in the linearization to obtain the 
extended Kalman filter, and the higher order 
approximations are similar to those used in obtaining 
higher order Kalman filter approximations, [7] 
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Index Terms - Channel estimation, BLUE, best linear 
unbiased estimation, general linear model, Taylor series 
approximation, linearization, Gauss Markoff Theorem. 

I. INTRODUCTION 
Reliable communication often requires accurate 

estimation of the channel impulse response (CIR) to 
facilitate channel equalization. Semi-blind algorithms 
exploit information used by blind methods (for example, 

Michael Zoltowski 
Purdue University, 
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the statistics of the unknown data symbols) as well as 
information from known training symbols. For general 
references on blind and semi-blind channel estimation, 
see [8]. Several recent papers consider different aspects 
of semi-blind channel estimation. Notably [6 ] ,  [13], 
[ 121, and [4]. In [ 171 and [ 181 we devised a semi-blind 
iterative algorithm to construct the best linear unbiased 
estimate (BLUE) of the channel, which is given by the 
Gauss-Markoff Theorem ([ 101 or [14]) as 

in the case where we have the general linear model for 
the received data, i.e. where the noise is not white, since 
we consider correlated noise due to unknown data, 
where, in our case, the noise is correlated due to 
convolution with the CIR. For each fixed matrix of 
training data, A , and each vector of received values, y , 
we define the function 

h,,,, = ( ATC(h)-' A) -'ATC(h)-' y (1) 

F( h) = FyA( h) = ( ATC(h)-'A)-'ATC@)-'y (2) 
In [ 151 and [ 161 an approximate version of the iterative 
algorithm of [17] and El81 is described. Zn the present 
work we propose a more general framework, within 
which the approximation given in [15] and [16], would 
be the zeroeth order Taylor series approximation of the 
function F(h) , i.e. a constant approximation, F( h id) ,  to 
the function F(h). We consider the .real part of the 
received data, denoted as vector y , and the real part of 
the CIR vector, denoted ash . We use the vector-vaIued 
function of a real vector variable version of the Taylor 
series, 1131, to develop a series approximation to the 
function F( h) which gives the BLUE estimate for h , as 
given in (1). Note that although our proposed algorithm 
does not fit within a Kalman filtering framework the 
process of linearization used in deriving the extended 
Kalman filter (Em) is similar to that which we propose 
here, and the higher order approximations which we use 
are similar to those used in obtaining higher order 
Kalman filter approximations, [7]. In fact, the use of the 
Taylor series is a standard tool of approximation, see, 
for example, [ 5 ] ,  [9 ] ,  and [ 191 to see instances of its use. 
We describe the full Taylor formula for this function, 
where 
multi-index, where for a =[O;--,O, 1 ,O, . . . ,O] ,  

h=[h , ,  ..,, h,] T , & = t h y  ,..., h?lTand a is a 

Y 
i>h 
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( h  - hiJ = (hi - h , q  
F(h)= F(hid) + & a121 (h - hia)a(CVdh)aF(hid) (3) 

and use either a first (denoted VIF( hid) )  or second 

(denoted V2F( hid)  ) order approximation, 

F( h) = V'F( hid) 
(4) = F(hid) + ( hi -hid) (a /ai) F( hid)  

F( h) -V2F( hid)  

=F(hid)+(h i  -hF)(dldhi)F(  hid) ( 5 )  

+ ( h i  - 2/dh2) F( hid) 

11. BASEBAND DATA TRANSMISSIONMODEL 

matched filter output is given by 
The baseband symbol rate sampled receiver pulse- 

k k 

where I k E {a,  , t c is the M-ary complex 
valued training sequence; (a,)denotes the first N 
known (training) symbols within a fiarne of length 
N' and {dk) denotes the remaining N' - N random 

data within the h m e ;  v ( t ) = q ( f )  *q'(-t) denotes the 
complex (colored) noise process at the output of the 
receiver (pulse) matched filter, with q(t) being a zero- 
mean white Gaussian noise process with spectral density 
0; per real and imaginary part; h(t) is the complex 
valued impulse response of the composite dynamic 
channel, including the pulse shaping transmit filterq(t) , 
the physical channel impulse 'response c(t) , and the 

receive filter q*(-t) and is given by 

,a 

L 

h(t) = p(t> * cIt) = CkP(t - tk 1 (8) 
k=-K 

and p(t) = q(t) * q* (4) is the convolution of the transmit 
and receive filters, where q(t) has a fmite support of 
[-T, /2,Tq /2 ] ,  and the span of the transmit and receive 

filters, Tq , is an integer multiple of the symbol period, 

T; that is T = N  T = 2 L  , N  EZ+.(ct)ECdenote 

the complex valued physical channel gains, and {rk) 
denote the multi-path delays, or the Time-Of-Arrivals 
(TOA). We also note that for the 8-VSB system, the 

9 q  q q  

transmitter pulse shape is the Hermitian symmetric root 
raised cosine pulse, which implies that q(t> = q* (-t) . In 
the sequel, we will denote both the transmit and receive 
filters by q[n] I q(t)l i=oT . Also the sampled matched 
filter output signal, y[n], will be used extensively in 
vector form, and so we introduce the notation 

,=Rn2-nlt1. 
Y[n,:n,] =[Y[n,l,---,Y[n,Il 

Similarly 

v L n ,  : n z  = [v[n,],...,v[n,]] ER" ,  - n l  + I .  

Without loss of generality, the symbol rate 
sampled, complex valued composite CIR, h [n], can be 
written as a finite dimensional vector 

where N, and N, denote the number of anticausal and 
causal taps respectively. From this point on, we revert to 

for the real writing yrnl:n21 ~ R " ~ - " ' + l a n d  h E R  
parts of the received data vector and. CIR vector 
respectively. Based on (6), and assuming that 
N 2 (N, + N, + 1) , we can write the pulse matched 
filter output corresponding only to the known training 
symbols compactly, in vector notation, as, 

qInl:n2 = [q[n I ] ,  - - 7 ,  q[n, I] E R n z - n l + '  and 

h = M-N. 1,...7hC-ll,h[OI,h/ll,...,h[N, 11' 

N, +N,+I  

- 
YljV,:N-N,-l] = Ah + v[N,:N-N,-l] - -  

= Ah + Q~'[N,-L,:N-N,-I+L,] 

T where x=T{[a.m+.a , * * . , a N - I 1  9[aN,+N,  , ' * * Y a , l l  is 

the (N-N, - N , ) x ( N ,  + N e  +1) Toeplitz 
convolution matrix with first column 
[a , .  + N ,  , ' . ' ,aN-l] and first row +N, , * * ' ~ ~ l ) l  - 
and Vpf,:N-N,-I] = Q qp!,-L,:N-N,-I+L,] is the colored noise at 

the receiver matched filter output, where 

2 L ,  il 

where q denotes the symbol rate sampled receiver pulse 
matched filter. 

Similarly, we can write the pulse matched filter 
output which includes all the contributions f iom the 
known training symbols (including output which 
includes contributions fiom adjacent unknown random 
data) as 
Y[-N,:N+N,-I] = ( A + Dl 

R(N-Na-Nc)x(N-Na-Nct 0 = T ( E  qo,o, - * - ,0lT , [ qT,O, 

and q = [q[+L q I, - . *  3 q[OI, - * * ,  q[-L q 11 E R 

(9) 
+V[-N,:N+N,-I] 

= A h + D h + Q q ~ - - N , - L , : N + N , - l + L , l  
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T where A =T([a ,..., a N . ,  , 0, - - * ,O  3 ,[a o ,  O,*.*,O ]} 

is the ( N + N ,  + N , ) x ( N ,  + N ,  + I )  Toeplitz matrix 

with first column [ao,...,aN-[,O,.--,O]T and first row 
[a,,O,+.-,O] and 

- - 
N ,  + N ,  N a  + N ,  

T D=T{(O , , , . , O , d N ; . . , d N , + N , + N - I  J ,[O,d-l,***,d-Na-Nc I} is - 
previous frame data 

w 
N 

a Toeplitz matrix which includes adjacent random 
information symbols only, both prior to the training 
sequence and after the training sequence. We shall only 
use the statistics of this random data, (since the actual 
values are unknown) and use these statistics to compute 
the covariance matrix of the correlated noise, to be used 
in the solution for the BLUE estimate of h .  The data 
symbols dl , - - e ,  d-N,-N, denote the unknown information 
symbols transmitted at the end of the previous frame. 
v~-N,:N+N,-I] = Q v ~ , N , - L , . N + N , - ~ + L ~ J  is the colored noise at 
the receiver-matched filter output, where 

is defined similarly to 6 .  Q E R  
To compute the covariance matrix for the noise 
contribution, Dh+ Q7/ [-N,-Lq:N+Nc-I+Lq] 9 to the received 

vector Y [ - ~ ,  N + N , - I l ,  it is advantageous to rewrite the term 

Dh . 
by 

d = [d-N,-N,  * * * 9 d - 1 ~  IxN 9 d, 5 .  * * d N+N,+N,-I I' and 

H = H(h) = T {  [h[-N, ] ,O ,  * * a  ,O], [ET ,0, ***,OIT 1 E R 
is the Toeplitz channel convolution matrix where 
hT =[hlN,],...,h[l],h[O],h[-ll,...,h[-N, ]] 
is the time reversal of the channel vector, h T .  Then, we 
note that Dh = Hd and E[ Hd( Hd)T] = od2HSHT where 

(NtN,+N,)x(  N+N,  t N, + N q )  

We define d E R N + 2 ( N c + N z )  

(N+N, +N, 

E[ ddT]= 0;s and S E ~ ~ t 2 ~ ~ + N ~ ) ) x ~ + 2 ~ ~ + N ~ ) )  is give-, 

ONx(N,+N,) (10) 

Iwc t N, I 1 x N  O ( N c + N a )  

ON 

0, N, +N, p N 

Since Dh = Hd , then we may rewrite (9) as 

Hence, 
y[-N;NtN,-I] = A h + H d + Q ~ ~ - N , - L q : N + N , - I + L I ]  (11) 

C = C(h) 

(12) - - Var(Hd+Q~[-N~-Lq:N+N~-,+,9j) 

= o;HSHT +c;QQT 

111. PROBLEM DESCRIPTION AND PREVIOUS 
WORK 

The solution of the general linear model, (1 l), is 
given by the Gauss-Markoff Theorem as 

where C(h) is given by (12). We note that in solving (13) 
we are looking for a fixed point, denoted by h ,, , of the 
mapping h wF(h)  where, for each fixed vector of 
received symbols, y , and each fixed convolution matrix 
of known transmitted training symbols, A, then 
F : R L  + R L  isgivenby(2). 

Our own previous approaches to finding the semi- 
blind BLUE channel estimate have encompassed: 

Case ( I ) :  In [17] and [18] an initial thresholded 
approximation, denoted h"" , to h was obtained via 
correlation of the training sequence with a stored copy of 
the training sequence at the receiver. Then the iteration 
h(k+l) = ( A T  C(h (k) ) A) - I  A 
was used to generate a sequence of approximations to the 
fixed point, h BLUE , Numerical simulations indicated that 
two or three iterations were suficient for an error of 
llh(k) -hBLmll -lO4(hereh  ER"^). Theoretically 

convergence of this iteration to the unique fixed point, 
h of the function F(h) = Fy,* (h) is guaranteed if 

IIJp (h) 11 < 1 where JF(h) denotes the Jacobian matrix of 

F 3 U81. 
Case (2): In [15] and [16], an approximate linear 

system was derived to give an approximate solution to 
(13). This approximate linear system was derived by 
replacing C(h) on the right-hand side of (13) by C(h id ) 

whereh, = [ O ,  ..., 0,1,0, ..., 01' € R L  where the 1 appears 
in the 64fh position in our case, to correspond to the 
position of the cursor in the decision feedback equalizer 
(DFE), which we use. This approach has the added 
advantage that the matrix 
(A C(h ) - I  A) -I A C(h id ) "' may be computed 
offline and stored at the receiver. 

In the present work, we take the point of view that 
we may expand the vector-valued function 
F( h) = F ,  A (h) = (A C(h) -' A) -' A C(h) -' y of the 
vector variable, h, using Taylor's Formula, [3], [ l  11 about 
a fixed "ideal" . vector, hi, . The approximation to 
F , ,  ( h) given by F ,  A ( h id ) in Case (2), above, is the 
zeroeth order Taylor approximation. We then derive 
explicitly first, second, and third order Taylor 

h=(ATC(h) - 'A) - 'ATC(h) ' ly  (13) 

C(h (k) ) - I  y, k = 0,1,2, . * +  

151 1 



approximations to the BLUE CIR estimate. The methods 
are attractive, since computation of the matrices involved 
may be done offline and stored at the receiver. The only 
processing which will be needed at the receiver is that of 
computing (hi -hid),  where hi  is the ith entry of the 
approximate channel vector obtained by correlation, and 
h i  = 1 , if we use h id = [O, I + -  0, &,O, m - 1  ,O]' , and then to 

form the matrices used in obtaining the vectors given in 
(4) and (5).  

id 

i~ 

IV. DERIVATION OF THE APPROXIMATIONS 
V'F(h,,) and V2F(hid) 

We defme the matrix 
A,(h)=  ( ATC(h)-'A)-'ATC(h)-' E RLX(NtL-') (14) 
Then F : R L  + R L  defined by F :  h HF(h)  in (2) is 

given by F( h) = A, ( h) y E RL . We state the foIlowing 
Propositions, and give brief proofs. 

Proposition 1; For any matrix B=B(h)  GR"'" 
which depends on a vector parameter 
h = [ h , , . . . h , ] E R K  such that there exists an open set 

U c R , such that B is nonsingular and differentiable on 
U, then, we have that for any i,l5 i I K , and for any 
h E U ,  

Proofi Differentiate with respect to hi  both sides of 

Proposition 2: For 1 5 i I L , we have 
the identity B( h)-'B( h) = I , using the product rule. 

-- a F( h, - A, (h)-C(h)-l {AAc (h) -I> y (16) 
ai ah 

Proof. Differentiate, using the. product rule, with 
respect to h i ,  the expression for A, (h)  y and use 
Pruposition I three times. That is, we have, 

+( ATC(h)-'A)-lAT Z ( C ( h ) - l ) y  
ai 

= ( ATC(h)-'A)-'ATC(h)-' x=C(h)-'A(ATC(h)-' A)-' 
ah 

x(ATC(h)-' y - (  ATC(h).'A)-'ATC(h)-')x-C(h)-' X ( h )  y 
ai 

which gives the result1 
Proposition 3: For 1 I i, j I L , we have 

+ 

Proof Differentiate (16) with respect to h j, using the 

product rule and employing Proposition I. We omit the 
details.. 

We omit the expression for the third derivatives, but 
it is straightforward to compute from (17) above. 

Proposition 4: For 1 5 i I L , we have 

Proox Differentiating (12) with respect to h gives 

Proposition 5: For 1 I i, j 5 L , we have 
the required result. H 

4- 
a2C(h) aH(h) i3H(h)T 

aH(h) dH(h)T 
ahi ahj 

-- - bd - S- 
dhi8hj ah ai 

od - s- 119) 

Proof Differentiating (18) with respect to h j ,  and 

= 0 for any i, j, gives the required 
i32H(h)T 

. ahiah j  
noting that 

resuit. 
Proposition 6:For all derivatives of order 3 and 

Proofi Differentiating (1 9) with respect to h , and 

= 0 for any i, j, gives the required 
a2H(h)' 

noting that 
ahiahj 

result. 
We use approximations (4) and ( 5 )  where we do not 

use a full linear approximation, including all terms in the 
linear Taylor series approximation. We only use a linear 
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approximation using the dominant term, which for us is a 
linear approximation where we have differentiated with 
respect to the main tup weight. This approach is 
supported by the simulation results where the best results 
are obtained in this case. This has the added advantage of 
reducing the complexity since only a single term is used 
in the approximation. A similar comment holds for both 
the quadratic and cubic approximations, where we do not 
use the f i l l  second and third order Taylor series 
approximations, but only use a single second order term 
and a single third order term in the second and third order 
approximations. 

V. Algorithm 
A. Input: 

Received vector y; 
Training sequence to form data matrix A 

€3. Stored at Receiver: 
Zeroeth order approximation matrix (see (14)) 

A, (hid ) = (AT C(h id )-' A)-' AT C(h id)- t  E R Lx( N+L-o (20) 
First order approximation matrix E RLxlNIL-') for first 
order algorithm (see (16) and note that 
-- aF(h) aAC (hid - 
ai dh 

Second Order approximation matrix E R Lx(N+L-') , if 
second order algorithm is used (see (17) and note that 
a2F(h) dZAc (h) 

Y >  -= 
ahiahj ahiaIlj 

(22) 
~ R L X ( N + L - I )  

Third order approximation matrix if third order algorithm 
is used (uot given here.) 
C. Real-Time Processing 
Let h,,, = [ h r , h y , - d - , h C , O " ' ] T   ER^ denote the 
correlation approximation to the channel, which is 
available from timing acquisition. Then compute the 
scalar value h 0, - h f" = h - 1 when the ideal 

channel used is hi,  =[O,.,,,O, 1 ,O,..-,O] E R  

Use this, together with (20) and (21), to form the matrix 

+ 
i th posilion 

to be used in the first order algorithm. Complexity is 
L x ( N + L - 1) multiplications L x ( N +  L - 1) 
additions. Similarly, using (20), (21) and (22), form the 
matrix 

and 

( v 2 A c )  (hid ) = A, (h id ) + (h?" - h y )  '*,(hid) + 
dh 

Complexity is 2 x Lx ( N i L - 1) multiplications and 
2 x L x (  N + L - 1 )  additions. We omit the third order 
approximation matrix in the interests of space. 

Figure 1 

1) Compute the approximations to h,,,, : 

V°F(hid) = (V'A, (hid))y zeroeth order approximation 

V'F(hid) = (VIAC (hid))y first order approximation 

V2F(hid) = [V'A, (hid))y secondorder approximation 

V3F(hid) = (V2Ac (hi,))y thirdorder approximation 

identical to that in [ 151 and [ 161 

using (23) 

using (24) 

not explicitly given here 
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VI. SIMULATION RESULTS 
Simulation results are shown in Figure 1 (where 

Normalized Least Squares Error = llh - ill 
where h is the channel estimate) for Brazilian channel D 
which appears in the HDTV literature, [l], at 
18,20,22,24,26,28 dB input SNR for the zeroeth, first, 
second and third order approximations. 
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