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Abstract

The nearly-optimal Petrov–Galerkin (NOPG) method is employed to improve finite element computation of con-

vection-dominated transport phenomena. The design of the NOPG method for convection–diffusion is based on

consideration of the advective limit. Nonetheless, the resulting method is applicable to the entire admissible range of

problem parameters. An investigation of the stability properties of this method leads to a coercivity inequality. The

convergence features of the NOPG method for convection–diffusion are studied in an error analysis that is based on the

stability estimates. The proposed method compares favorably to the performance of an established technique on several

numerical tests.

� 2003 Elsevier Science B.V. All rights reserved.

1. Introduction

The standard finite element method is based on continuous, piecewise polynomial, Galerkin approxi-

mation. This approach is optimal for the Laplace operator in the sense that it minimizes the error in the

energy norm––the H 1 semi-norm in this case. In geometric terms, the finite element solution is the pro-

jection of the exact solution on the finite element function space. This property is referred to as best

approximation, and it assures good performance of the computation at any mesh refinement, i.e., high

coarse-mesh accuracy.

However, good numerical performance at any mesh resolution is not guaranteed by the standard

finite element method for other cases. Consequently, finite element computation can become prohibi-
tively expensive in the presence of sharp gradients and rapid oscillations. For example, the Galerkin

finite element method with low-order piecewise polynomials performs poorly for advection-dominated

equations.
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Numerous approaches to alleviating these difficulties have been proposed. Inevitably, these are based on
modifications of the classical piecewise polynomial Galerkin approximation. Among these approaches we

note Galerkin/least-squares [13] and related stabilized methods (SUPG/SD [5] and USFEM [7], see also

[10]), residual-free bubbles (RFB) [4,9], (see also [8]) variational multi-scale (VMS) [11,15], the generalized

finite element method (GFEM) [17], based on the partition of unity method (PUM) [1,14], the discontin-

uous enrichment method (DEM) [6], and nearly-optimal Petrov–Galerkin (NOPG) [2].

NOPG, previously developed as a general methodology and applied to the Helmholtz equation [2], is

motivated by the desire to achieve high coarse-mesh accuracy via best approximation in the H 1 semi-norm,

in order to guarantee good performance of the computation at any mesh refinement. Practical consider-
ations lead to a Petrov–Galerkin formulation which approximates H 1 optimality [2]. In some cases, such as

piecewise linear basis functions on regular meshes, the NOPG formulation yields results that are identical

to those obtained by RFB.

In this paper we apply the NOPG method to problems of convection–diffusion. The NOPG method as a

general approach for improving finite element computation is reviewed in Section 2, and the method is then

specialized to convection–diffusion problems. In Section 3 we investigate stability features of the NOPG

method for the convection-dominated case. The analysis is similar to that of RFB [4,9]. We prove the

convergence of NOPG for convection–diffusion in Section 4. The numerical performance of the proposed
method and of established techniques are compared in Section 5.

2. Formulation

Let X � Rd be a d-dimensional, open, bounded region with smooth boundary C.

2.1. Boundary-value problem

For simplicity, we consider the following homogeneous Dirichlet boundary-value problem: Find

u : X ! R such that

Lu ¼ f in X; ð1Þ

u ¼ 0 on C; ð2Þ

where f : X ! R is a given function. We think of L as a second-order differential operator. The gener-

alization to boundary-value problems with other types of boundary conditions and inhomogeneous

boundary data is straightforward (see Section 5 for numerical results with other types of boundary con-

ditions).

2.2. Weak form

The variational form of the boundary-value problem (1) and (2) is stated in terms of the set of functions

V ¼ H 1
0 ðXÞ. We seek u 2 V such that

aðv; uÞ ¼ ðv; f Þ; 8v 2 V: ð3Þ

Here

aðv; uÞ ¼ ðv;LuÞ ¼ ðL�v; uÞ ð4Þ
for all sufficiently smooth u, v 2 V and assuming sufficiently smooth f ; ð	; 	Þ is the L2ðXÞ inner product.

Subscripts on inner products denote domains of integration other than X.
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2.3. Petrov–Galerkin approximation

In the following presentation we review the original derivation of NOPG [2] for completeness.

The conventional approximation, by the Galerkin method, is obtained by finding vh 2 Vh � V such that

aðvh; uhÞ ¼ ðvh; f Þ; 8vh 2 Vh; ð5Þ
Vh is a conventional finite dimensional finite element space. The approximation uh that results from (5),

however, is not necessarily optimal in any sense.

Instead, we wish to consider an alternative approach. We seek an approximation to u which is optimal in

terms of the H 1 semi-norm. That is, we wish to find uh 2 Vh such that

ðrvh;reÞ ¼ 0; 8vh 2 Vh: ð6Þ
Here e ¼ uh � u and u is solution of (1) and (2) or (3). Generally, (6) cannot be solved for uh, since u is
unknown. However, for the special case when L ¼ �D, the Galerkin approximation (5) leads to the H 1

projection (6), which guarantees good performance of the computation on any mesh refinement. Our goal,

then, is to formulate a problem that retains optimality in the sense of (6), at least approximately, yet may be

solved directly.

Partition X in the usual way into nel non-overlapping regions Xe (element domains) with boundaries Ce,

e ¼ 1; . . . ; nel (see Fig. 1). We denote the union of element interiors by

eXX ¼
[nel
e¼1

Xe: ð7Þ

Similarly, the union of element boundaries is denoted

eCC ¼
[nel
e¼1

Ce: ð8Þ

We assume that Vh is given. Then, for each Galerkin weighting function vh 2 Vh, we construct a function
�vvh 2 �VVh � V that satisfies

L��vvh ¼ Dvh in eXX; ð9Þ

�vvh ¼ vh on eCC: ð10Þ
We note that while the functions vb ¼ �vvh � vh are bubbles over the elements, they are not residual free,

except in special cases such as piecewise linear Galerkin weighting functions on regular meshes.

Fig. 1. Domain X partitioned into element domains Xe.
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Starting from the H 1 projection (6), we now derive our NOPG formulation:

ðrvh;reÞ ¼ �ðr2vh; eÞ~XX þ ð½vh;n�; eÞ~CC ¼ �ðL��vvh; eÞ~XX þ ð½vh;n�; eÞ~CC ¼ að�vvh; eÞ þ ð½vh;n � �vvh;n�; eÞ~CC
¼ að�vvh; uhÞ � ð�vvh; f Þ þ ð½vh;n � �vvh;n�; eÞ~CC; ð11Þ

where we have used integration by parts, the definition of weight functions (9) and the fact that �VVh � V.

Here, ½	� is the jump at an element boundary. Eq. (11) motivates the following NOPG problem: Find

uh 2 V such that

að�vvh; uhÞ ¼ ð�vvh; f Þ; 8�vvh 2 �VVh: ð12Þ
The term �nearly-optimal� can be justified by the fact that this formulation approximates the H 1-optimal

result (6), in the sense that its solution satisfies

ðrvh;reÞ ¼ ð½vh;n � �vvh;n�; eÞ~CC: ð13Þ

The non-zero right-hand side is a measure of the distance of the Petrov–Galerkin solution from H 1-opti-
mality. This is related to the lack of symmetry of the formulation.

In practice, the Petrov–Galerkin weighting functions �vvh may be defined in terms of the bubbles vb. Using

integration by parts and the vanishing trace of the bubbles on element boundaries, the NOPG variational

equation (12) is then computed as

aðvh; uhÞ þ ðvb;LuhÞ~XX ¼ ðvh þ vb; f Þ: ð14Þ
We now apply the method to the convection–diffusion equation.

2.4. The NOPG method for convection–diffusion

Convection–diffusion describes many transport phenomena and serves as a model for fluid mechanics.

Let L be the convection–diffusion operator, i.e.,

L ¼ �jMþ a 	 r: ð15Þ
The diffusivity jðxÞ > 0 is known and aðxÞ is the given flow velocity. In this case

að�vvh; uhÞ ¼ ðr�vvh; jruhÞ þ ð�vvh; a 	 ruhÞ: ð16Þ
in the NOPG formulation (12).

In order to complete the definition of the method, we consider a discrete space Vh containing piecewise

linears on triangles. The Petrov–Galerkin weighting functions �vvh are designed via the bubbles vb, which
satisfy the following BVP:

L�vb ¼ �L�vh in eXX; ð17Þ

vb ¼ 0 on eCC; ð18Þ
since L� is linear, L��vvh ¼ Mvh by (9) and (10) and Mvh ¼ 0 for linear triangles.

In practice, our current implementation of the method is based on a simplification of vb that is obtained
by considering a reduced solution at the advective limit. Nonetheless, the resulting method is applicable in

the entire range from diffusion-dominated to advection-dominated cases (see the numerical tests in Section

5).

For each triangle Xe, let Cþ
e ¼ fx 2 Ce : a 	 nðxÞ > 0g be its outflow boundary and C�

e ¼ fx 2 Ce :
a 	 nðxÞ < 0g its inflow boundary, where n is the outward-pointing unit normal to Ce. Assume that a 	 nðxÞ is
bounded away from zero; then, excluding vertices, for each Xe we have Ce ¼ C�

e [ Cþ
e . As j ! 0, the

problem (17) and (18) reduces to finding the reduced solution v0b:
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�a 	 rv0b ¼ a 	 rvh in Xe; ð19Þ

v0b ¼ 0 on Cþ
e : ð20Þ

Let ðx�; xþÞ be a generic line segment that lies parallel to a in a single element domain with x� 2 C�
e and

xþ 2 Cþ
e . The solution for (19) and (20) is simply

v0bðxÞ ¼ vhðxþÞ � vhðxÞ; for x 2 ðx�; xþÞ: ð21Þ

We may think of v0b as a modification of (21) that contains a thin boundary layer along the inflow boundary

C�
e , in order to satisfy consistency requirements. The presence of such a boundary layer is of little con-

sequence in the integration of the bubble multiplying the inner-element residual, see (14), so that it may be

neglected in practice.

In summary, our method is implemented as the NOPG variational equation (12), with the bilinear

operator (16), and the Petrov–Galerkin weighting functions �vvh ¼ vh þ v0b, where v0b is given in (21).

3. Stability of the NOPG method for convection–diffusion

In this section, we investigate stability features of the NOPG method for the convection–diffusion

equation. We are primarily interested in the case where the discrete space Vh is the space of piecewise

linears on triangles. We further assume the advection a is piecewise constant inside each element. Thus

a 	 rvh is constant in each element and Mvh ¼ 0 throughout the domain eXX in this case.

Stability of the diffusion-dominated case is evident. In the following we focus on the convection-dom-

inated case where j � 1. To prove that the bilinear form (16) is coercive over �VVh �Vh, assume that j is

constant within each element and substitute �vvh ¼ vh þ vb into (16):

að�vvh; vhÞ ¼
X
e

ðjðr�vvh;rvhÞXe
þ ð�vvh; a 	 rvhÞXe

Þ

¼
X
e

ðjjvhj21;Xe
þ jðrvh;rvbÞXe

þ ðvh; a 	 rvhÞXe
þ ðvb; a 	 rvhÞXe

Þ

¼
X
e

ðjjvhj21;Xe
þ ðvb; a 	 rvhÞXe

Þ: ð22Þ

In order to obtain the last line in (22) we integrated by parts and used the facts that vh ¼ 0 on the boundary

of X, vb ¼ 0 on each Ce, a is constant and Dvh ¼ 0 on each Xe since vh is linear.

Case I. Limiting case j ! 0: In this case we employ the reduced solution (21)

v0bðxÞ ¼ vhðxþÞ � vhðxÞ; for x 2 ðx�; xþÞ ¼ 1

jaj

Z xþ

x

a 	 rvhðsÞds ¼ 1

jaj ða 	 rvhÞjXe
jxþ � xj ð23Þ

since a 	 rvh is constant in each element.
By the formula for the volume of the pyramid we observe thatZ

K
jxþ � xjdx ¼ hajKj

3
;

where x 2 ðx�; xþÞ and ha is defined as the length of the longest segment parallel to the flow and contained

in Xe (see Fig. 2).

A. Nesliturk, I. Harari / Comput. Methods Appl. Mech. Engrg. 192 (2003) 2501–2519 2505



Hence, recalling (22) and taking into account that j ! 0, we get

að�vvh; vhÞ ¼
X
e

ðjjvhj21;Xe
þ ðv0b; a 	 rvhÞXe

Þ; ð24Þ

¼
X
e

jjvhj21;Xe

�
þ ha
j3aj ka 	 rvhk2Xe

�
: ð25Þ

The expression in the second term can be shown to be weaker than the semi-norm that appears in the

standard analysis of the streamline upwind Petrov–Galerkin (SUPG) method when parameters are chosen
as in [7].

Case II. 0 < j � 1

The coercivity result can be extended to the case where 0 < j � 1 and Vh is the space of piecewise

linears on triangles Xe. Rewriting (22) and using the result obtained in Case 1, we get

að�vvh; vhÞ ¼
X
e

ðjjvhj21;Xe
þ ðvb; a 	 rvhÞXe

Þ;

¼
X
e

ðjjvhj21;Xe
þ ðv0b; a 	 rvhÞXe

þ ðvb � v0b; a 	 rvhÞXe
Þ;

¼
X
e

jjvhj21;Xe

�
þ ha
j3aj ka 	 rvhk2Xe

þ ðvb � v0b; a 	 rvhÞXe

�
: ð26Þ

To obtain coercivity, we need to prove that the third term in this sum is dominated by the second term. This

can be achieved by the virtue of the following lemma.

Lemma 1. Let Xe be a fixed triangle in our triangulation. Suppose that no edge in the triangulation is aligned
with the direction of the flow and that vb � v0b is defined on Xe by

L�ðvb � v0bÞ ¼ jDv0b in Xe;
vb � v0b ¼ 0 on Cþ

e ;
vb � v0b ¼ vhðx�Þ � vhðxþÞ on C�

e :

8<: ð27Þ

Then there exists a fixed positive constant C, which is independent of j, ha and jaj, such that

kvb � v0bk0;Xe
6C

j1=2h1=2a

jaj3=2

 
þ j

jaj2

!
ka 	 rvhk0;Xe

:

Fig. 2. The region below the surface z ¼ jxþ � xj is a pyramid.
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Proof. Proof of the lemma follows the lines of [9]. For notational convenience, set z ¼ vb � v0b. Define the

function U on Xe, letting /ðxÞ ¼ vhðxþÞ � vhðxÞ, by
L�U ¼ 0 in Xe;
U ¼ 0 on Cþ

e ;
U ¼ /ðx�Þ on C�

e ;

8<:
so that U is a smooth boundary-layer-like extension of / over Xe. Now set w ¼ z� U. Then

L�w ¼ jDv0b in Xe;
w ¼ 0 on Ce:

�
If Cþ

e is a single side of Xe, then jDv0b ¼ 0 on Xe, and then w ¼ 0 all over the domain Xe implying z ¼ U but

in general this is not the case. Therefore we assume that Cþ
e consists of two edges of Xe (see Fig. 3).

Let us denote the cartesian coordinates in two dimensions by ðx; yÞ. Since a is constant on Xe, without

loss of generality we assume that a ¼ a1~ee1 for some a1 > 0, where~ee1 is the unit vector in the direction of the

positive x-axis.
We first bound w in terms of the crosswind derivative of v0b. Then develop an argument to bound the

crosswind derivative of v0b in terms of streamline derivative of this function.

Choose ðx�; y�Þ 2 C�
e such that x� 6 x for all ðx; yÞ 2 Xe (see Fig. 4). Multiply L�w ¼ jDv0b by

ðx� x�Þwðx; yÞ and integrate over Xe, to getZ
Xe

ðx� x�ÞðL�wÞðx; yÞwðx; yÞdxdy ¼
Z

Xe

jðx



� x�Þjrwðx; yÞj2 þ a1
2
ðx� x�Þ o

ox
w2ðx; yÞ

�
dxdy

¼
Z

Xe

½jðx� x�Þjrwðx; yÞj2 þ ða1=2Þw2ðx; yÞ�dxdy; ð28Þ

a a

Two-sided outflow boundary One-sided outflow boundary

Fig. 3. Types of outflow boundary.

Fig. 4. The point ðx�; y�Þ is the leftmost point in Xe.
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where we integrated by parts and used w ¼ 0 on Ce. Next, integrating the left-hand side of (28) by parts and

using the inequality

a 	 b6 jaj2 þ jbj2

2
;

we getZ
Xe

ðx� x�ÞðjDv0bÞðx; yÞwðx; yÞdxdy ¼
Z

Xe

jrv0bðx; yÞ 	 rððx� x�Þwðx; yÞÞdxdy

¼
Z

Xe

jrv0bðx; yÞ 	 ððx� x�Þrwðx; yÞ � wðx; yÞ~ee1Þdxdy

6
1

2

Z
Xe

jðx
h

� x�Þjrwðx; yÞj2 þ a1
2
w2ðx; yÞ

i
dxdy

þ 1

2

Z
Xe

jðx



� x�Þjrv0bðx; yÞj
2 þ 2j2

a1
jrv0bðx; yÞj

2

�
dxdy: ð29Þ

Combining (28) and (29), we have

1

2

Z
Xe

a1
2
w2ðx; yÞdxdy6 1

2

Z
Xe

jðx
h

� x�Þjrwðx; yÞj2 þ a1
2
w2ðx; yÞ

i
dxdy

6
1

2

Z
Xe

jðx



� x�Þjrv0bðx; yÞj
2 þ 2j2

a1
jrv0bðx; yÞj

2

�
dxdy:

Consequently, we infer thatZ
Xe

w2ðx; yÞdxdy6 4

a1

Z
Xe

jðx
�

� x�Þ þ 2j2

a1

�
jrv0bðx; yÞj

2
dxdy6

4

a1

Z
Xe

jha

�
þ 2j2

a1

�
jrv0bðx; yÞj

2
dxdy:

Thus

kwk0;Xe
6 2

j1=2h1=2a

a1=21

 
þ

ffiffiffi
2

p
j

a1

!
krv0bk0;Xe

: ð30Þ

We now bound krv0bk0;Xe
in terms of its streamline derivative. Recall that we assume that Cþ

e consists of two

edges of Xe and the edges of each Xe are bounded away from being parallel to a ¼ a1~ee1. This means that we

can write the equations of the two edges E1 and E2 in Cþ
e as xþ ¼ mjy þ kj for each j 2 f1; 2g, where the mj

and kj are constants that satisfy jmjj6C1 for some fixed constant C1.

If ðx; yÞ lies in the part of Xe that is upwind to a point ðxþ; yÞ on the side Ej, j 2 f1; 2g, then, letting
K ¼ ð1=jajÞða 	 rvhÞjXe

, from (23) we have

v0bðx; yÞ ¼ Kjxþ � xj ¼ Kðxþ � xÞ ¼ Kððmjy þ kjÞ � xÞ;

since a ¼ a1~ee1 and a1 > 0. Then it is easy to see that

ov0bðx; yÞ
oy

���� ���� ¼ jKmjj6C1jKj ¼ C1

ov0bðx; yÞ
ox

���� ����:
(This inequality bounds the cross-wind derivative of v0b in terms of the streamline derivative of this func-

tion.) Hence,

krv0bk0;Xe
6 kðv0bÞxk0;Xe

þ kðv0bÞyk0;Xe
6 ðð1þ C1Þ=a1Þka 	 rv0bk0;Xe

¼ ðð1þ C1Þ=a1Þka 	 rvhk0;Xe
;
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where we have used (19). Invoking this inequality in (30), we obtain

kwk0;Xe
6 2ð1þ C1Þ

j1=2h1=2a

a3=21

 
þ

ffiffiffi
2

p
j

a21

!
ka 	 rvhk0;Xe

: ð31Þ

Next we bound kUk0;Xe
. As an application of maximum principle for the advection–diffusion operator, this

will be accomplished by designing a suitable barrier function for U: A function such that if it satisfies jUj6 h
on Ce and jLUj6 Lh on Xe then jUj6 h on all of Xe; see [16]. At the end, an upper bound for the barrier

function will also be the desired bound for U.

We shall do this for the case where C�
e consists of two edges of Xe; the case where C�

e is a single edge is

similar but easier.

Let the two edges in C�
e be E1 and E2, where the equation of Ej is x�j ¼ m0

jy þ k0j for j ¼ f1; 2g, and the m0
j

and k0j are constants. Extend each edge Ej to form a complete line (which we still call Ej, see Fig. 5). Given
ðx; yÞ 2 Xe, define x�j ¼ x�j ðx; yÞ by the requirement that ðx�j ; yÞ lie on Ej (see Fig. 6).

We set M and N such that

M ¼ max
C�
e

fj/jg;

N ¼ 1þ ðm0
1Þ

2 þ ðm0
2Þ

2
:

Define the function hjðx; yÞ by

hjðx; yÞ ¼ Me�a1ðx�x�j Þ=ðjNÞ P 0; for j 2 f1; 2g:

a

E2: x2=m2y+k2

E1:x1=m1y+k1
-

-

Fig. 5. x� x�j is always non-negative inside the triangle.

Fig. 6. The point ðx; yÞ is upwind to ðx�j ; yÞ in the streamline direction.
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Observe that

hj ¼ M on Ej;
hj 6M on C�

e n Ej;
hj 6M in Xe;

8<: ð32Þ

For each j, a calculation shows that

L�hjðx; yÞ ¼
a21
jN

1

 
�
1þ ðm0

jÞ
2

N

!
hj P 0;

since N P 1þ ðm0
jÞ

2
. Now set hðx; yÞ ¼ h1ðx; yÞ þ h2ðx; yÞ. Then

L�h ¼ L�h1 þL�h2 P 0 ¼ L�U

on Xe, and if ðx; yÞ 2 C�
e , then

hðx�Þ ¼ h1ðx�Þ þ h2ðx�Þ > M P Uðx�Þ ¼ /ðx�Þ;
because, by construction, hj ¼ M on Ej; also h > 0 ¼ U on Cþ

e . That is, we have shown that h is a barrier

function for U on Xe. The maximum principle now implies that jUj6 h on Xe. We make use of the well-
known inequality

ðaþ bÞ2 6 2ða2 þ b2Þ for all a; b 2 R;

to estimate the norm of U by the barrier function:

kUk0;Xe
6 khk0;Xe

¼ kh1 þ h2k0;Xe

6

Z
Xe

ðMe�a1ðx�x�
1
Þ=ðjNÞ

�
þ Me�a1ðx�x�

2
Þ=ðjNÞÞ2 dX

�1=2

6

Z
x�2C�

e

Z ðxþ ;yÞ

ðx� ;yÞ
2ðM2e�2a1ðx�x�

1
Þ=ðjNÞÞdxdC

(

þ
Z
x�2C�

e

Z ðxþ;yÞ

ðx�;yÞ
2ðM2e�2a1ðx�x�

2
Þ=ðjNÞÞdxdC

)1=2

6

Z
x�2C�

e

Z ðxþ ;yÞ

ðx� ;yÞ
2ðM2e�2a1ðx�m0

1
y�k1Þ=ðjNÞÞdxdC

(

þ
Z
x�2C�

e

Z ðxþ;yÞ

ðx�;yÞ
2ðM2e�2a1ðx�m0

2
y�k2Þ=ðjNÞÞdxdC

)1=2

6

Z
x�2C�

e

M2 jN
a1

ðð1
(

� e�2a1ðxþ�m0
1
y�k1Þ=ðjNÞÞÞdC

þ
Z
x�2C�

e

M2 jN
a1

ðð1� e�2a1ðxþ�m0
2
y�k2Þ=ðjNÞÞÞdC

)1=2

6M
Z
x�2C�

e

2jN
a1

dC

( )1=2

; ð33Þ

where we have used the fact that for j 2 f1; 2g,
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1� e�2a1ðxþ�x�j Þ 6 1

and

e�2a1ðxþ�x�j Þ 6 1;

for x� 2 C�
e and xþ 2 Cþ

e . Since a 	 rvhjXe
is constant on each Xe, it follows from the regularity of the

triangulation that

M ¼ sup
C�
e

jUj6 hajða 	 rvhÞXe
j=a1; ð34Þ

6 hXe jða 	 rvhÞXe
j=a1: ð35Þ

Thus the bound obtained for U above can be estimated further:

kUk0;Xe
6

ffiffiffi
2

p
M

ffiffiffiffi
N

p
j1=2h1=2Xe

a1=21

6

ffiffiffi
2

p ffiffiffiffi
N

p
j1=2h3=2Xe

jða 	 rvhÞXe
j

a3=21

6

ffiffiffi
2

p ffiffiffiffi
N

p
C2j1=2h1=2Xe

ka 	 rvhk0;Xe

a3=21

; ð36Þ

using the fact that

hXe jða 	 rvhÞXe
j6C2ka 	 rvhk0;Xe

ð37Þ

for some constant C2 depending on the minimum angle condition in the triangulation. To see the relation

(37), observe that

ka 	 rvhkXe
¼ ja 	 rvhjXe

Z
Xe

dX

� �1=2

¼ ja 	 rvhjXe
C�1

2 hXe :

Since hXe ¼ Cha for a non-degenerate triangulation, by the triangle inequality,

kzk0;Xe
6 kwk0;Xe

þ kUk0;Xe
6C3

j1=2h1=2a

a3=21

 
þ

ffiffiffi
2

p
j

a21

!
ka 	 rvhk0;Xe

;

from (30) and (36), where C3 ¼ 2ð1þ C1Þ þ
ffiffiffiffiffiffiffi
2N

p
C2C. �

It is crucial that the bounding coefficient above is a multiple of the diffusivity parameter. This fact actually

enables us to embed the last term in (26) into the third one in the same equation which is known to be

coercive. The next theorem uses this result to establish the coercivity inequality (see [9]).

Theorem 1. Assume that no edge in the triangulation is aligned with the direction of the flow and that

j6 hajajmin 1;
1

64C2

� �
ð38Þ

for all triangles Xe in the triangulation. Then

að�vvh; vhÞP
X
e

jjvhj21;Xe

�
þ ha
12jaj ka 	 rvhk20;Xe

�
: ð39Þ

Proof. Lemma 1 shows that

jðvb � v0b; a 	 rvhÞXe
j6C

j1=2h1=2a

jaj3=2

 
þ j

jaj2

!
ka 	 rvhk20;Xe

: ð40Þ
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By (26) and (40),

að�vvh; vhÞ ¼
X
e

jjvhj21;Xe

�
þ ha
3jaj ka 	 rvhk20;Xe

þ ðvb � v0b; a 	 rvhÞXe

�

P
X
e

jjvhj21;Xe

 
þ ha
3jaj ka 	 rvhk20;Xe

� C
j1=2h1=2a

jaj3=2

 
þ j

jaj2

!
ka 	 rvhk20;Xe

!

P
X
e

jjvhj21;Xe

�
þ ha
12jaj ka 	 rvhk21;Xe

�
;

where we have used (38) for the last inequality and considered the cases 16 64C2 and 1 > 64C2 sepa-

rately. �

4. Error estimates

In this section, we study the convergence features of the NOPG method. In Section 3, we have obtained

the coercivity inequality (39) under some assumptions on the orientation of the mesh and the relation

between j, a and ha. The error analysis presented below relies on this stability estimate.

Theorem 2. Let the solution vh be the solution of the NOPG method and suppose v 2 HsðXÞ
T
H 1

0 ðXÞ,
1 < s6 2. If

j6 jajha min 1;
1

64C2

� �
;

then we have the following convergence rates:X
e

jkrðv
�

� vhÞk20;Xe
þ ha
24jaj ka 	 rðv� vhÞk20;Xe

�
6

X
e

CXeh
2s�1
a jvj2s;Xe

:

Proof. Let ~vvh be the linear interpolant of v, eh ¼ ~vvh � vh and g ¼ ~vvh � v. The proof follows the lines of the

error analysis of the SUPG method and it is given as follows:X
e

jkrehk20;Xe

�
þ ha
12jaj ka 	 rehk20;Xe

�
6 að~vvh � vh; ehÞ ¼ að~vvh � v; ehÞ þ aðv� vh; ehÞ

¼ ðg; a 	 rehÞ þ jðrg;rehÞ

6

X
e

kgk0;Xe
ka 	 rehk0;Xe

þ
X
e

jkrgk0;Xe
krehk0;Xe

¼
X
e

ðhacÞ�1=2kgk0;Xe
ðhacÞ1=2ka 	 rehk0;Xe

þ
X
e

j1=2krgk0;Xe
j1=2krehk0;Xe

6

X
e

h�1
a c�1

2
kgk20;Xe

�
þ hac

2
ka 	 rehk20;Xe

þ j
2
krgk20;Xe

þ j
2
krehk20;Xe

�
;
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where we have used the well-known inequality

ab6
a2

2
þ b2

2

for any real number a and b.
Now choose c ¼ 1=ð12jajÞ. Noting that c is bounded below away from zero, i.e. c > C0 � 0 for some

constant C0, we can subsume the 2nd and 4th terms into the right hand side of the inequality above. Thus
we obtainX

e

j
2
krehk20;Xe

�
þ ha
24jaj ka 	 rehk20;Xe

�
6

X
e

h�1
a C0

2
kgk20;Xe

�
þ j

2
krgk20;Xe

�
: ð41Þ

The first term in (41) can be estimated by interpolation theory [3]. For the second term in (41), we remark

that the coercivity inequality holds under the assumption that

j6 jajha min 1;
1

64C2

� �
and thus, letting b ¼ minf1; 1=ð64C2Þg, we get

j
2
krgk20;Xe

6
bjajha
2

krgk20;Xe
: ð42Þ

Now the right hand side of (41) can be estimated. The theorem follows by applying the triangle inequal-

ity. �

5. Numerical results

In this section we compare the numerical performance of the nearly-optimal Petrov–Galerkin finite
element method (NOPG) with the stabilized finite element method (FFH) in Franca et al. [7]. Recall

that the design of our implementation of NOPG is based on the advective limit. The following com-

putations test the performance in the entire range from diffusion-dominated to advection-dominated

cases. We employ both uniform and non-uniform meshes of four-noded quadrilateral elements in all

tests.

5.1. Advection skew to the mesh

Consider a constant-coefficient advection–diffusion problem in the unit square �0; 1½� �0; 1½. There are

no distributed sources ðf ¼ 0Þ. Inhomogeneous Dirichlet data are specified on the inflow boundary

so that there is a discontinuity in the inflow Dirichlet data at x ¼ ð0; 0:475Þ, with homogeneous

Neumann outflow conditions (Fig. 7). We use uniform and non-uniform (Fig. 8) meshes with 20 · 20
elements.

The discontinuity is propagated into the domain creating an internal layer. Here, the element P�eeclet
number is ðjajhÞ=2j ¼ 2:5� 104. The problem is solved at h ¼ p=6, p=4, and p=3. For example, solutions on

the uniform mesh at h ¼ p=6 are shown in Fig. 9. The NOPG solution exhibits much better performance for
these problems with discontinuities, particularly when the flow is along element diagonals (Fig. 10).

Results for the non-uniform mesh are shown in Fig. 11. Both methods retain the main features of so-

lutions obtained on the uniform mesh.
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Fig. 7. Statement of Problem 5.1.

Fig. 8. 20· 20 non-uniform mesh employed in Problems 5.1 and 5.2.

Fig. 9. Solutions of Problem 5.1 on the uniform mesh at h ¼ p=6: FFH (left), and NOPG (right).
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5.2. Advection skew to the mesh with outflow boundary layers

The outflow conditions of Problem 5.1 are changed to homogeneous Dirichlet conditions, leading to

outflow boundary layers [4,7]. Note that the interpolant now accounts for the outflow boundary layers. The
problem is solved at h ¼ p=6, p=4, and p=3. For example, solutions on the uniform mesh at h ¼ p=6 are

shown in Fig. 12. The outflow boundary layers may not represent typical physical configurations, but they

are numerically challenging. The performance of both method is similar to the previous case yet with larger

relative errors; see Fig. 13. The main characteristics of the solutions are still retained when the non-uniform

mesh is employed (Fig. 14).

5.3. Transport in a rotating flow field

Consider a homogeneous Dirichlet advection–diffusion problem [7,12] in the unit square (centered at the

origin, Fig. 15). There are no distributed sources ðf ¼ 0Þ, j ¼ 10�6, and aT ¼ h�y; xi representing a rotating

Fig. 10. L2 error (%) for the uniform mesh in Problem 5.1 relative to the nodal interpolant: FFH (- -) and NOPG (––).

Fig. 11. Solutions of Problem 5.1 on the non-uniform mesh at h ¼ p=6: FFH (left), and NOPG (right).
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Fig. 12. Solutions of Problem 5.2 on the uniform mesh at h ¼ p=6: FFH (left), and NOPG (right).
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Fig. 13. L2 error (%) for the uniform mesh in Problem 5.2 relative to the nodal interpolant: FFH (- -) and NOPG (––).

Fig. 14. Solutions of Problem 5.2 on the non-uniform mesh at h ¼ p=6: FFH (left), and NOPG (right).
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velocity field. There is an internal boundary along the negative y-axis, with the boundary condition

uð0; yÞ ¼ wðyÞ, where

wðyÞ ¼ 1
2
½cosð4py þ pÞ þ 1�; �0:56 y6 0: ð43Þ

The reference solution is obtained by FFH on a uniform mesh of 200 · 200 elements. The tests are per-

formed on a uniform and a non-uniform mesh (Fig. 16) of 40 · 40 elements. Velocity is taken to be constant

inside each element and its value is assigned at the center of the element.

Solutions on the uniform mesh are shown in Fig. 17. Table 1 shows the relative error of the uniform

mesh, measured in the L2 norm. The NOPG solution is better than FFH, even though the design of the

NOPG method implemented herein is based on the advective limit, while this problem contains diffusion-
dominated regions.

Results for the non-uniform mesh are shown in Fig. 18. Both methods are robust and retain the main

features of solutions obtained on the uniform mesh.

Fig. 15. Statement of Problem 5.3.

Fig. 16. 40· 40 Non-uniform mesh employed in Problem 5.3.
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6. Conclusion

In this paper we employ the nearly-optimal Petrov–Galerkin method to improve finite element com-
putation of convection-dominated transport phenomena. By the construction of the NOPG weighting

functions, this method approximates optimality in the H 1 semi-norm, which provides high coarse-mesh

accuracy that guarantees good performance of the computation at any mesh refinement. The NOPG

method is related to residual-free bubbles in certain settings.

Fig. 17. Solutions of Problem 5.3 on the uniform mesh: FFH (left), and NOPG (right).

Table 1

L2 Relative errors (%) for the uniform mesh in Problem 5.3

Relative to nodal interpolant

FFH 0.484

NOPG 0.353

Fig. 18. Solutions of Problem 5.3 on the non-uniform mesh: FFH (left), and NOPG (right).
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The design of the NOPG method for convection–diffusion in this paper is based on consideration of the
advective limit. The resulting method is applicable to the entire admissible range of problem parameters.

We investigate the stability properties of this method, ultimately deriving a coercivity inequality. The

convergence features of the NOPG method for convection–diffusion are studied in an error analysis that is

based on the stability estimates. The proposed method compares favorably to the performance of an es-

tablished technique on several numerical tests.
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