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Time delay is a phenomenon which is common in signal processing, communication, control applications, etc. The special
feature of time delay that makes it attractive is that it is a commonly faced problem in many systems. A literature search
on time-delay identification highlights the fact that most studies focused on numerical solutions. In this study, a novel
online adaptive time-delay identification technique is proposed. This technique is based on an adaptive update law through
a minimum–maximum strategy which is firstly applied to time-delay identification. In the design of the adaptive identifi-
cation law, Lyapunov-based stability analysis techniques are utilised. Several numerical simulations were conducted with
Matlab/Simulink to evaluate the performance of the proposed technique. It is numerically demonstrated that the proposed
technique works efficiently in identifying both constant and disturbed time delays, and is also robust to measurement noise.
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1. Introduction

Time delay is a widely used phenomenon in dynamical sys-
tems in a wide variety of disciplines such as chemistry, biol-
ogy, communications, mechanics, control, and signal pro-
cessing applications. In dynamical systems, time delay may
have negative effects such as instability and/or reduction in
performance. On the other hand, its accurate identification
is crucial for several signal processing applications such
as distance measurement and localisation systems (Bren-
nan, Gao, & Joseph, 2007; Gao, Brennan, & Joseph, 2009;
Giraudet & Glotin, 2006; Lui, Chan, & So, 2009; Martin
et al., 2002). Due to its implementation in several disciplines
and to overcome its negative effects, a significant amount
of research was devoted to the time-delay phenomenon, its
effects on systems, and identification and control methods.
A broad overview on time delay, and its effects on systems
and open problems may be found in Richard (2003).

Identification of time delay in systems is an important
research area and several techniques and algorithms are
available. The proposed approaches in the literature usu-
ally use least-squares algorithms (Bai & Chyung, 1993;
Tuch, Feuer, & Palmor, 1994), gradient algorithms, cor-
relation analysis, filter-based techniques, or stochastic-
approximation techniques (Banyasz & Keviczky, 1994;
Zhou & Frank, 2000). Tugnait (1996) proposed an adaptive
frequency domain filter based on high-order statistics for a
class of error-in-variable models and applied this method
to time-delay identification. Zhou and Frank (2000) de-
veloped an approach based on a modified tracking filter
for time-delay identification for a class of nonlinear autore-

∗
Corresponding author. Email: alperbayrak@iyte.edu.tr

†
Present address: Department of Electrical & Electronics Engineering, Abant Izzet Baysal University, Bolu, Turkey.

gressive processes with exogenous inputs. Tuch et al. (1994)
also considered least squares for time-delay identification.
However, the stability analysis led to some strict conditions
that must be satisfied. In Diop, Kolmanovsky, Moraal, and
van Nieuwstadt (2001), a system with time-delayed input
was considered and the least-squares method presented in
Tuch et al. (1994) was utilised to identify the time delay.
However, the identification method necessitated the consid-
eration of a strict assumption which obstruct zero crossing
of the derivative of the input signal. Furthermore, while the
stability analysis yielded exponential stability, however, as
indicated in the paper, in implementation, ultimate conver-
gence can be provided as opposed to exponential conver-
gence.

So (2002) presented an unbiased impulse response esti-
mation approach for time-delay identification between sig-
nals received at two spatially separated sensors. Zhang and
Li (2006) analysed the time-varying communication delay
and proposed a time-delay identification method based on
the steepest descent algorithm. But, the stability analysis
of the method relies on the system being linear, and when
the system is nonlinear, the stability of the method should
be investigated for concave and convex cases separately,
and in convex case, the method fails to ensure conver-
gence. Wen et al. proposed an adaptive structure to address
time-delay identification in noisy environment and devel-
oped a stochastic-gradient algorithm to calculate the opti-
mum solution (Wen, Li, & Wen, 2007). Shaltaf presented a
neuro-fuzzy technique for identification of time delay em-
bedded within a received noisy and delayed replica of a

C© 2014 Taylor & Francis
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known reference signal (Shaltaf, 2007). Sharma and Joshi
(2007) proposed a number of estimators-based fractional
Fourier transform for time-delay identification. Harva and
Raychaudhury (2008) proposed a Bayesian approach for
identifying time delay between signals that are irregularly
sampled. Bhardwaj and Nath (2010) proposed a maximum
likelihood identifier for time-delay identification. Bastard
et al. presented a modified version of the estimation of
signal parameters via rotational invariance techniques al-
gorithm which takes both transmitted pulse shape and any
noise into account, to identify time delay in backscattered
radar signals (Bastard, Baltazart, & Wang, 2010). Another
commonly utilised tool is the cross-correlation method. In
this method, basically, the measured delayed signal is cor-
related with an array of signals which have different delays
and their regressions are compared. Unfortunately, such
methods cannot be run online. A good categorisation and
comparison of time-delay identification methods may be
found in Bjorklund and Ljung (2003).

Literature review highlighted the fact that most of the
available time-delay estimation methods are for linear or
linearised system models and they are either inadequate for
nonlinear systems or they impose strict constraints. On the
other hand, some methods cannot be used online due to their
nature. Review of the relevant literature yielded the fact that
time delay is a nonlinear parameter affecting the systems
(nonlinearly) and thus nonlinear parameter identification
techniques should be proposed for time-delay identification.
In this study,1 a novel online adaptive time-delay identifica-
tion technique is presented to identify constant time delays
for the systems of the form in (1). The technique is novel in
the sense that a nonlinear-adaptive identification technique
is firstly adopted as a time-delay identification method. The
proposed time-delay identification algorithm is based on
a minimum–maximum optimisation algorithm. It is math-
ematically proven that the developed estimator identifies
unknown time delays upon satisfaction of a nonlinear per-
sistent excitation condition. In the design of the adap-
tive identification law, Lyapunov-based stability analysis
techniques were utilised. As a consequence of Lyapunov-
based methods, the identification algorithm is robust to
noise, variations, and time delay, and also compensates for
some unmodelled nonlinearities (Dydek, Annaswamy, &
Lavretsky, 2010). The robustness of the technique to noise
and disturbed delay was demonstrated by extensive numer-
ical simulation results.

2. Plant model

The general model considered in this paper is of the fol-
lowing form:

q(τ,�) = a10�1(t) + a11�1(t−τ1) + · · · + a1n�1(t − τn)

+ · · · + am0�m(t) + am1�m(t − τ1)

+ · · · + amn�m(t − τn) (1)

which can be rewritten as

q(τ,�) =
m∑

i=1

ai0�i(t) +
m∑

i=1

n∑
j=1

aij�i(t − τj ), (2)

where q(·) ∈ R is a measurable signal, �(·) is a measur-
able function including known and measurable parameters,
�i(t) ∈ R, i = 1, . . . , m, are arbitrary chosen functions, a’s
are attenuation factors and τ = [τ1 . . . τn]T ∈ R

n, where τ j,
j = 1, 2, . . . , n, denote time delays. We assume that only the
time delays are unknown and all the remaining parameters
are known.

The signal q(·) in (1) consists of a sum of different sig-
nals and their time-delayed forms as a general description
of delayed systems. A delayed signal received by a sensor
can be given as a simplest example to this kind of systems.
This kind of systems are usually used as localisation or dis-
tance measurement applications. Meanwhile, the received
signal can be an emitted signal itself and its delayed forms.

The estimation of leak location in water distribution
pipes can be given as an interesting real-world example
to such kind of systems (Wen, Wen, & Li, 2008). In this
system, the purpose is to estimate the location of the leak
in a water distribution pipe by estimating the time delay in
the acoustic signals travelling inside the pipe measured by
receivers at points A and B, which is depicted in Figure 1.
The system can be modelled as (Wen et al., 2008)

xA(t) = s(t),
xB(t) = δs(t − τ ),

(3)

where xA and xB are measured signals at points A and B,
respectively, s(t) is the emitted signal, δ is the attenuation
factor, and τ is the time delay. Some other applications in
which time-delay information is utilised can be found in Gi-
raudet and Glotin (2006), Yu, Qi, and Fanrong (2012), Chen,
Liu, Kong, and He (2011), Quazi (1981), Qin, Huang, and
Zhang (2003), Aghasi, Hashemi, and Khalaj (2011), Wei,
Wang, and Wan (2006), and Azimi-Sadjadi, Charleston,
Wilbur, and Dobeck (1998).

The general model in (1) satisfies the conditions given
in Assumptions 2.1, 2.2, 2.4, and 2.5.

Assumption 2.1: It is assumed that τ , the unknown time-
delay vector, is bounded and in a known hypercube � ⊂ R

n.

Assumption 2.2: It is assumed that the function q(·) is
either concave or convex on a simplex2 �s in R

n, and also
�s ⊃ �.

Definition 2.3: A function W is convex on � if it satisfies
the following inequality:

W (κν1 + (1 − κ)ν2) ≤ κW (ν1) + (1 − κ)W (ν2),

∀ν1, ν2 ∈ �, (4)
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Figure 1. A segment of a water distribution pipeline system.

and concave if it satisfies the following inequality:

W (κν1 + (1 − κ)ν2) ≥ κW (ν1) + (1 − κ)W (ν2),

∀ν1, ν2 ∈ �, (5)

where 0 ≤ κ ≤ 1.

Assumption 2.4: It is assumed that the function �(t) is a
continuous function of time, bounded, and Lipschitz in t as

follows:

‖�(t1) − �(t2)‖ ≤ L1|t1 − t2|, ∀t1, t2 ∈ R
+, (6)

where L1 ∈ R
+ is the Lipschitz constant.

Assumption 2.5: It is assumed that q(τ , �) is Lipschitz
with respect to its arguments as

|q(τ + 	τ,� + 	�) − q(τ,�)| ≤ L2(‖	�‖ + ‖	τ‖),
(7)
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Figure 2. τ̂1(t) for constant delay for case I without noise (left top) and in the presence of additive noise with an SNR of 10 (right top),
20 (left bottom), and 30 dB (right bottom).
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Figure 3. τ̂1(t) for disturbed time delay for case I without noise (left top) and in the presence of additive noise with an SNR of 10 (right
top), 20 (left bottom), and 30 dB (right bottom).

where 	���(t1) − �(t2), 	τ�τ (t1) − τ (t2), and L2 ∈
R

+ is the Lipschitz constant.

3. Delay estimation

The estimate form of (2) is defined as

q̂ =
m∑

i=1

�i(t) +
m∑

i=1

n∑
j=1

�i(t − τ̂j ), (8)

where q̂ � q(τ̂ , �) ∈ R. An auxiliary filter signal, denoted
by qf (t) ∈ R, is designed as follows:

q̇f = −αqf + q, qf (t0) = 0, (9)

where α ∈ R is a positive constant. The estimate form of
(9) is designed as

˙̂qf = −α(q̂f − εsat(r)) + q̂ − a∗sat(r), (10)

where q̂f (t) and ˙̂qf (t) ∈ R are the estimates of qf(t) and
q̇f (t), respectively, ε ∈ R is the desired precision, a∗(t) ∈ R

is the tuning function and r(t) ∈ R is defined as follows:

r � q̃f

ε
, (11)

where q̃f (t) ∈ R is an error signal defined as follows:

q̃f � q̂f − qf . (12)

In (10), sat (·) is a saturation function and is defined as

sat(z) =
⎧⎨
⎩

1, z � 1
z, |z| < 1
−1, z � −1

. (13)

After taking the time derivative of (12), the below ex-
pression may be obtained:

˙̃qf = −αq̃f ε + q̂ − q − a∗sat(r), (14)
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Figure 4. τ̂1(t) for constant delay for case II without noise (left top) and in the presence of additive noise with an SNR of 10 (right top),
20 (left bottom), and 30 dB (right bottom).

where (9) and (10) were utilised and q̃f ε(t) ∈ R is the tuning
error defined as

q̃f ε � q̃f − εsat(r). (15)

The tuning function q̃f ε(t) and the saturation function sat(r)
ensure that the estimator is continuous even if a discon-
tinuous solution of the minimum–maximum algorithm is
obtained (Annaswamy, Skantze, & Loh, 1998). The update
law is developed with a projection as follows:

˙̂τ = Proj{−�q̃f εφ
∗}, (16)

where φ∗(t) ∈ R
n is the sensitivity function, � ∈ R

n×n is
a positive-definite diagonal gain matrix, and the projection
algorithm ensures that τ̂ (t) always belongs to the hypercube
�. The projection algorithm is defined as

τ̂j =
⎧⎨
⎩

τ̂j , if τ̂j ∈ [τj,min, τj,max]
τj,min, if τ̂j < τj,min

τj,max, if τ̂j > τj,max

, (17)

where the subscript j denotes the jth element of the corre-
sponding vector ∀j = 1, 2, . . . , n, and τj,min and τj,max ∈ R

are the minimum and maximum values of the jth compo-
nent of τ , respectively. The projection strategy in (17) is
utilised to guarantee the boundedness of τ̂ (t); thus, φ∗(t)
can be upper bounded as follows:

‖φ∗(t)‖ � Lφ ∀t � t0, (18)

where Lφ ∈ R is a positive constant. The terms φ∗(t) and
a∗(t) are defined from the following minimum–maximum
optimisation problem3:

a∗ = min
φ∈Rn

max
τ∈�s

J (φ, τ ), (19)

φ∗ = arg min
φ∈Rn

max
τ∈�s

J (φ, τ ), (20)
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Figure 5. τ̂1(t) for disturbed time delay for case II without noise (left top) and in the presence of additive noise with an SNR of 10 (right
top), 20 (left bottom), and 30 dB (right bottom).

where J (r, q, q̂, τ̃ , φ) ∈ R is a performance index and is
given as follows:

J (·) = sat(r)[q̂ − q − (�τ̃ )T φ], (21)

where τ̃ (t) ∈ R
n is the parameter estimation error defined

as follows:

τ̃ � τ̂ − τ. (22)

The solutions of φ∗(t) and a∗(t) can be obtained as
follows:

(1) when q̃f (t) < 0

a∗ =
{

0 if q is concave on �s

A1 if q is convex on �s
(23)

φ∗ =
{∇q(τ̂ ) if q is concave on �s

A2 if q is convex on �s
(24)

(2) when q̃f (t) � 0

a∗ =
{

A1 if q is concave on �s

0 if q is convex on �s
(25)

φ∗ =
{

A2 if q is concave on �s

∇q(τ̂ ) if q is convex on �s

(26)

where A(t) ∈ R
n+1 is given as follows:

A = [A1 AT
2 ]T = G−1b, (27)

where A1(t) ∈ R and A2(t) ∈ R
n, and G(t) ∈ R

(n + 1)×(n + 1)

and b(t) ∈ R
n+ 1 are defined as

G =

⎡
⎢⎣

−1 β�(τ̂ − τs1)T

...
...

−1 β�(τ̂ − τs(n+ 1))T

⎤
⎥⎦ , (28)
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Figure 6. τ̂ (t) for constant delay for case III without noise (left top) and in the presence of additive noise with an SNR of 10 (right top),
20 (left bottom), and 30 dB (right bottom).

b =

⎡
⎢⎣

β(q̂ − qs1)
...
β(q̂ − qs(n+ 1))

⎤
⎥⎦ , (29)

where β ∈ R is defined as follows:

β =
{

1 if q is convex on �s

−1 if q is concave on �s .
(30)

In (29), qsh�q(τ sh, �) ∀h = 1, 2, . . . , n + 1, where τsh ∈
R

n are the vertices of the simplex �s. In (24) and (26),
∇q(τ̂ ) ∈ R

n is the gradient function given as follows:

∇q(τ̂ ) = ∂q

∂τ
|τ=τ̂ . (31)

The hypercube � may be obtained by using minimum
and maximum values of τ . The vertices of the simplex �s

may be obtained by first inscribing � in a n-dimensional

sphere and then inscribing this sphere inside an (n + 1)-
dimensional polytope.

4. Stability analysis

Theorem 4.1: The adaptive update law in (16) ensures that
q̃f ε(t) ∈ L2 ∩ L∞; hence, the stability of the identifier and
the global boundedness of the overall adaptive system are
guaranteed. The estimator ensures that ‖τ̃ (t)‖ � γ as t →
∞ provided the following nonlinear persistent excitation
condition holds:

β(�(t2))(q(τ̂ (t1),�(t2)) − q(τ,�(t2))) � εu‖τ̂ (t1) − τ‖,
(32)

where γ ∈ R is a constant defined as

γ � 8εc1

ε2
u

, (33)

where c1 ∈ R is a constant defined as c1 � 4L1L2 +
2νL2Lφ + νL2

φ , where ν ∈ R is the maximum eigenvalue
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Figure 7. τ̂ (t) for disturbed time delay for case III without noise (left top) and in the presence of additive noise with an SNR of 10 (right
top), 20 (left bottom), and 30 dB (right bottom).

of �, t2 ∈ [t1, t1 + T0], t1 > t0, and T0, εu ∈ R are positive
constants.

Proof: The reader is referred to Bayrak (2013) for the full
proof and Nath, Tatlicioglu, and Dawson (2010) for a sim-
ilar proof. �

Remark 1: From its definition in (33), it is clear that γ

can be made smaller by choosing a smaller precision ε.
It is also clear that as ε → 0, γ → 0; thus, the time-
delay identification error also goes to zero in the sense that
‖τ̃ (t)‖ → 0.

5. Numerical simulation results

The performance of the proposed technique was evaluated
by conducting several numerical simulations using Mat-
lab/Simulink. Numerical simulation performance was in-
vestigated for various cases. The below parameters and
initial conditions were used in all cases, without being
changed, to demonstrate a better comparison of results. The

performance of the proposed technique was evaluated with
additive noise where white Gaussian noise with 10, 20, and
30 dB signal to noise ratio (SNR) was, separately, injected
to q(t) to demonstrate robustness against noise. During the
simulation, the update law in (16) was utilised with gains α

= 600, � = 3000, and the desired precision was chosen as
ε = 0.00001. The control gains were adjusted via trial and
error. The desired precision is required to be chosen very
close to zero and this eased the choice of ε. For a better
comparison, in all the sub-cases, same gains were used. As
a result, the gains α and � were required to be chosen big
for the algorithm to be robust to additive noise, additive dis-
turbances, and jumps in the delays. At this point, we would
like to highlight the fact that if we were to choose control
gains differently for all sub-cases, then smaller gains would
work for both noise-free and disturbance-free cases. In ad-
dition, we would also like to note that genetic algorithms
or similar methods can be utilised to adjust the gains. The
lower and upper bounds of phase shifts4 were 0.1 and 1.1
radians, respectively. The initial values of qf and q̂f were
set to 0 and the initial value of τ̂ was 0.3 radians.
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Figure 8. τ̂ (t) for constant delay for case IV without noise (left top) and in the presence of additive noise with an SNR of 10 (right top),
20 (left bottom), and 30 dB (right bottom).

5.1. Case I

The model in (34) was considered with f1 = 5 Hz and τ 1 =
0.6 radians. The estimate of τ 1 is presented in Figure 2 for
both noiseless and noisy cases:

q (τ,�) = 0.9 sin (2πf1t) + 0.8 sin (2πf1t − τ1) . (34)

Another simulation was conducted for the same model
where a sinusoidal perturbation was added to the time shift
to demonstrate robustness to additive disturbances in the
sense that

τ1 = 0.6 + 0.001sin(2π0.05t). (35)

In Figure 3, the estimate of τ 1(t) in (35) is presented for
both noiseless and noisy cases. From Figures 2 and 3, it is
clear that the identification of time delay is achieved even
in the presence of noise and also disturbance.

5.2. Case II

The model in (36) was considered with f1 = 10 Hz, f2 = 5
Hz, and τ 1 = 0.6 radians. The estimate of τ 1 is presented
in Figure 4 for both noiseless and noisy cases:

q (τ,�) = 0.9 sin (2πf1t − τ1) + 0.8 sin (2πf2t) . (36)

Another simulation was conducted for the same model
where a sinusoidal perturbation was added to the time de-
lay to demonstrate robustness to additive disturbances as in
(35). In Figure 5, the estimate of τ 1(t) is presented for both
noiseless and noisy cases. From Figures 4 and 5, it is clear
that the identification of time delay is achieved even in the
presence of noise and also disturbance.

5.3. Case III

The model in (37) was considered with f1 = 10 Hz, f2 = 5
Hz, τ 1 = 0.6 radians, and τ 2 = 0.8 radians. The estimates
of time delays are presented in Figure 6 for both noiseless
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Figure 9. τ̂ (t) for disturbed time delay for case IV without noise (left top) and in the presence of additive noise with an SNR of 10 (right
top), 20 (left bottom), and 30 dB (right bottom).

and noisy cases:

q (τ,�) = 0.9 sin (2πf1t − τ1) + 0.8 sin (2πf2t − τ2) .

(37)

Another numerical simulation was conducted for the
same model where a sinusoidal perturbation was added to
the time delay to demonstrate robustness to additive distur-
bances in the sense that

τ1 = 0.6 + 0.001sin(2π0.05t), (38)

τ2 = 0.8 + 0.001cos(2π0.05t). (39)

In Figure 7, the estimates of τ 1(t) and τ 2(t) are presented
for both noiseless and noisy cases. From Figures 6 and 7,
it is clear that the identification of time delay is achieved
even in the presence of noise and also disturbance.

5.4. Case IV

The model in (37) was considered with f1 = 10 Hz and
f2 = 5 Hz. It is considered that the time delays are constant
and jumping to different constant values after a while. Time
delays were set to τ 1 = 0.6 radians and τ 2 = 0.8 radians,
and after 5 seconds, time delays were changed as τ 1 = 0.4
radians and τ 2 = 0.9 radians. The estimates of time delays
are presented in Figure 8 for both noiseless and noisy cases.

Another numerical simulation was conducted for the
model in (37) where a sinusoidal perturbation was added
to the time delay to demonstrate robustness to additive dis-
turbances as in (38) and (39), and after 5 seconds, the time
delays were changed to

τ1 = 0.4 + 0.001sin(2π0.05t), (40)

τ2 = 0.9 + 0.001cos(2π0.05t). (41)

In Figure 9, the estimates of τ 1(t) and τ 2(t) are presented
for both noiseless and noisy cases. From Figures 8 and 9,
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it is clear that the identification of time delays is achieved
when there is a sudden change in the time delay and even
in the presence of noise and also disturbance.

6. Conclusion

In this work, a novel adaptive time-delay identification tech-
nique was presented. The technique is novel in the sense that
a nonlinear parameter identification algorithm was utilised
as the time-delay identification algorithm for the first time in
the literature. In the design of the adaptive identification law,
Lyapunov-based stability analysis techniques were utilised.
As a consequence of Lyapunov-based methods, our identi-
fication algorithm is robust to parametric uncertainties and
noise and also compensates for some unmodelled nonlin-
earities. Numerical simulation results were given to demon-
strate the efficiency of the estimator for both constant and
disturbed time delays and its robustness to additive noise.
From the results, it is clear that the developed technique
efficiently identifies constant and disturbed time delays and
even when there is sudden change in the time delay.

The main results of this paper are as follows: (1) non-
linear parameter identification tools are utilised to identify
time delays, (2) the identifier is continuous, (3) the de-
veloped time-delay identification algorithm can be applied
online, (4) multiple time delays may be identified, (5) the
developed identifier provides identification of time delay
within a desired precision that can be adjusted to be very
small, and (6) the identification algorithm is proven to be
correct.

There is much to be considered as future work. A pos-
sible extension is that the developed technique can be fused
with other Lyapunov-based techniques since it is based on
Lyapunov-type analysis synthesis tools. Specifically, a full
system identification can be aimed by fusing the developed
technique with other system identification tools (Yin, Ding,
Haghani, Hao, & Zhang, 2012). It is also aimed to adopt this
technique to time-delay identification for general classes of
systems and to control applications by extending our previ-
ous results in Bayrak and Tatlicioglu (2012). In that sense,
one possible research avenue is designing controllers for
systems subject to unknown input time delay (Li, Jing, &
Karimi, 2014).

Notes
1. Preliminary results of this work were published in Bayrak and

Tatlicioglu (2011).
2. A simplex in R

n is a convex polytope with n + 1 vertices.
3. Although the derivations are very similar to that of

Annaswamy et al. (1998), we presented them for the sake
of completeness.

4. In examples, phase shifted form was used to illustrate the
delayed sinusoidal signals. The phase shift in radians can be,
easily, converted to time delay by a basic linear transforma-
tion.

Notes on contributors
Alper Bayrak was born in Ankara, Turkey,
on 19 October 1980. He graduated from the
Electrical and Electronics Engineering De-
partment in Blacksea Technical University,
Trabzon, Turkey, in 2004. In 2005, he at-
tended the MSc programme at the Electrical
and Electronics Engineering Department in
Gazi University and graduated in 2007. In
2013, he acquired his Ph.D. degree in elec-

tronics and communications engineering from Izmir Institute of
Technology, Izmir, Turkey. He worked as a research assistant at the
Department of Electrical and Electronics Engineering at Abant
Izzet Baysal University, Bolu, Turkey, from 2005 to 2007, and
at the Department of Electrical and Electronics Engineering in
Izmir Institute of Technology from 2008 to 2013. He has been
working as an assistant professor at the Department of Electri-
cal and Electronics Engineering in Abant Izzet Baysal University
since January, 2014. His current fields of research are control,
identification, nonlinear systems, and robotics.

Enver Tatlicioglu received his BSc degree
in electrical and electronics engineering
from Dokuz Eylul University, Izmir, Turkey,
and his Ph.D. degree in electrical and com-
puter engineering from Clemson University,
Clemson, SC, USA, in 1999 and 2007, re-
spectively. Upon completion of his Ph.D. de-
gree, he worked as a post-doctoral research
fellow in the Department of Electrical and

Computer Engineering at Clemson University and then joined the
Department of Electrical & Electronics Engineering at Izmir Insti-
tute of Technology, Izmir, Turkey, where he is currently working
as an associate professor. His research interests include control
and identification of time-delay systems, dynamic modelling of
extensible continuum robot manipulators, nonlinear control tech-
niques for kinematically redundant robot manipulators, partial
state feedback and output feedback control, haptic systems and
teleoperation; learning, robust, and adaptive control of nonlinear
systems.

References
Aghasi, H., Hashemi, M., & Khalaj, B.H. (2011, May). Source lo-

calization through adaptive signal attenuation model and time
delay estimation. In Proceedings of the International Con-
ference on Telecommunications (pp. 151–156). Ayia Napa,
Cyprus.

Annaswamy, A.M., Skantze, F.P., & Loh, A.P. (1998). Adap-
tive control of continuous time systems with convex/concave
parametrization. Automatica, 34, 33–49.

Azimi-Sadjadi, M.R., Charleston, S., Wilbur, J., & Dobeck, G.J.
(1998). A new time delay estimation in subbands for resolving
multiple specular reflections. IEEE Transactions on Signal
Processing, 46(12), 3398–3403.

Bai, E.-W., & Chyung, D.H. (1993). Improving delay estimates de-
rived from least-square algorithms and Pade approximations.
International Journal of Systems Science, 24(4), 745–756.

Banyasz, Cs., & Keviczky, L. (1994). Recursive time delay es-
timation method. International Journal of Systems Science,
25(11), 1857–1865.

Bastard, C.L., Baltazart, V., & Wang, Y. (2010). Modified esprit
(m-esprit) algorithm for time delay estimation in both any
noise and any radar pulse context by a GPR radar. Signal
Processing, 90, 173–179.

D
ow

nl
oa

de
d 

by
 [

Iz
m

ir
 Y

uk
se

k 
T

ek
no

lo
gi

 E
ns

tit
us

u]
 a

t 0
4:

59
 2

6 
M

ay
 2

01
6 



International Journal of Systems Science 1585

Bayrak, A., & Tatlicioglu, E. (2011). A novel online adaptive time
delay identification technique. In Proceedings of the IEEE
International Conference on Decision and Control (pp. 3338–
3343). Orlando, FL.

Bayrak, A. (2013). Online time delay identification and adaptive
control for general classes of nonlinear systems (doctoral dis-
sertation). Izmir Institute of Technology, Izmir, Turkey.

Bayrak, A., & Tatlicioglu, E. (2012). Online time delay identifica-
tion and control for general classes of nonlinear systems. In
Proceedings of the IEEE International Conference on Deci-
sion and Control (pp. 1591–1596). Maui, HI.

Bhardwaj, T.P., & Nath, R. (2010). Maximum likelihood esti-
mation of time delays in multipath acoustic channel. Signal
Processing, 90, 1750–1754.

Bjorklund, S., & Ljung, L. (2003). A review of time-delay es-
timation techniques. In Proceedings of IEEE Conference on
Decision and Control (pp. 2502–2507). Maui, HA.

Brennan, M., Gao, Y., & Joseph, P. (2007). On the relationship
between time and frequency domain methods in time delay es-
timation for leak detection in water distribution pipes. Journal
of Sound and Vibration, 304, 213–223.

Chen, L., Liu, Y., Kong, F., & He, N. (2011). Acoustic source
localization based on generalized cross-correlation time-delay
estimation. Procedia Engineering, 15, 4912–4919.

Diop, S., Kolmanovsky, I., Moraal, P.E., & van Nieuwstadt, M.
(2001). Preserving stability/performance when facing an un-
known time-delay. Control Engineering Practice, 9, 1319–
1325.

Dydek, Z., Annaswamy, A.M., & Lavretsky, E. (2010). Adaptive
control and the NASA X–15–3 flight revisited. IEEE Control
Systems Magazine, 30, 32–48.

Gao, Y., Brennan, M., & Joseph, P.F. (2009). On the effects of re-
flections on time delay estimation for leak detection in buried
plastic water pipes. Journal of Sound and Vibration, 325,
649–663.

Giraudet, P., & Glotin, H. (2006). Real-time 3D tracking of whales
by echo-robust precise TDOA estimates with a widely-spaced
hydrophone array. Applied Acoustics, 67, 1106–1117.

Harva, M., & Raychaudhury, S. (2008). Bayesian estimation of
time delays between unevenly sampled signals. Neurocom-
puting, 72, 32–38.

Li, H., Jing, X., & Karimi, H.R. (2014). Output-feedback-based
H∞ control for vehicle suspension systems with control delay.
IEEE Transactions on Industrial Electronics, 61(1), 436–446.

Lui, K.W., Chan, F.K., & So, H. (2009). Accurate time delay
estimation based passive localization. Signal Processing, 89,
1835–1838.

Martin, J.M., Jimenez, A.R., Seco, F., Calderon, L., Pons, J.L.,
& Ceres, R. (2002). Estimating the 3D-position from time
delay data of US-waves: Experimental analysis and a new
processing algorithm. Sensors and Actuators A: Physical, 101,
311–321.

Nath, N., Tatlicioglu, E., & Dawson, D.M. (2010). Range iden-
tification for nonlinear parameterizable paracatadioptric sys-
tems. Automatica, 46, 1129–1140.

Qin, H., Huang, J., & Zhang, Q. (2003). A novel joint estima-
tor of direction-of-arrival and time-delay for multiple source
localization. In Proceedings of the International Confer-
ence on Neural Networks & Signal Processing (pp. 1294–
1297).

Quazi, A. (1981). An overview on the time delay estimate in ac-
tive and passive systems for target localization. IEEE Trans-
actions on Acoustics, Speech & Signal Processing, 29, 527–
533.

Richard, J.P. (2003). Time-delay systems: An overview of some
recent advances and open problems. Automatica, 39, 1667–
1694.

Shaltaf, S. (2007). Neuro-fuzzy based time-delay estimation using
DCT coefficients. ISA Transactions, 46, 21–30.

Sharma, K.K., & Joshi, S.D. (2007). Time delay estimation using
fractional Fourier transform. Signal Processing, 87, 853–865.

So, H.C. (2002). Noisy input–output system identification ap-
proach for time delay estimation. Signal Processing, 82,
1471–1475.

Tuch, J., Feuer, A., & Palmor, Z.J. (1994). Time delay estimation in
continuous linear time-invariant systems. IEEE Transactions
on Automatic Control, 39(4), 823–827.

Tugnait, J.K. (1996). Frequency domain adaptive filters using
higher-order statistics with application to adaptive time de-
lay estimation. International Journal of Adaptive Control &
Signal Processing, 10, 137–157.

Wei, X., Wang, L., & Wan, J. (2006, June). A new localization
technique based on network TDOA information. In Proceed-
ings of International Conference on ITS Telecommunications
(pp. 127–130) Chengdu, China.

Wen, J., Li, P., & Wen, Y. (2007). A new method for unbiased
time–delay estimation in noisy environments. International
Journal of Adaptive Control & Signal Processing, 21, 623–
634.

Wen, J., Wen, Y., & Li, P. (2008, June). Time delay estimation
method for leak location of buried water distribution pipes.
In Proceedings of the World Congress on Intelligent Control
and Automation (pp. 3052–3056). Chongqing, China.

Yin, S., Ding, S.X., Haghani, A., Hao, H., & Zhang, P. (2012). A
comparison study of basic data-driven fault diagnosis and
process monitoring methods on the benchmark Tennessee
Eastman process. Journal of Process Control, 22, 1567–
1581.

Yu, B., Qi, W., & Fanrong, M. (2012, June). Application of time
delay estimation in stress wave test of crude oil pipeline leak-
age. In Proceedings of the World Automation Congress (pp.
1–4). Puerto Vallarta, Mexico.

Zhang, T., & Li, Y. (2006). A control scheme for bilateral tele-
operation systems based on time–varying communication de-
lay identification. In Proceedings of Systems and Control in
Aerospace and Astronautics (pp. 273–278). Harbin, China.

Zhou, D.H., & Frank, P.M. (2000). A real–time estimation ap-
proach to time–varying time delay and parameters of NARX
processes. Computers & Chemical Engineering, 23, 1763–
1772.

D
ow

nl
oa

de
d 

by
 [

Iz
m

ir
 Y

uk
se

k 
T

ek
no

lo
gi

 E
ns

tit
us

u]
 a

t 0
4:

59
 2

6 
M

ay
 2

01
6 


	Abstract
	1. Introduction
	2. Plant model
	3. Delay estimation
	4. Stability analysis
	5. Numerical simulation results
	5.1. Case I
	5.2. Case II
	5.3. Case III
	5.4. Case IV

	6. Conclusion
	Notes
	References



