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Abstract

This paper is concerned with the fracture of an axisymmetric hollow cylindrical bar containing rigid inclusions. The
cylinder is under the action of uniformly distributed axial tension applied at infinity. The bar contains a ring-shaped
crack at the symmetry plane whose surfaces are free of tractions and two ring-shaped rigid inclusions with negligible
thickness symmetrically located on both sides of the crack. It is assumed that the material of the cylinder is linearly
elastic and isotropic. The mixed boundary conditions of the problem lead the analysis to a system of three singular
integral equations for crack surface displacement derivative and normal and shearing stress jumps on rigid inclusions.
These integral equations are solved numerically and the stress intensity factors are calculated.
© 2002 Civil-Comp Ltd. and Elsevier Science Ltd. All rights reserved.

Keywords: Fracture; Crack; Rigid inclusion; Singular integral equation; Stress intensity factor

1. Introduction

Sneddon and Welch [1] analyzed the distribution of
stress in a long circular cylinder of elastic material
containing a penny-shaped crack at the center of the
cylinder. The elastostatic plane problem of a finite strip
has been solved by Gecit and Turgut [2]. In this study,
solution of the problem is obtained by considering (i) an
infinite strip containing a transverse rigid inclusion at
the middle and (ii) two symmetrically located transverse
cracks. Turgut and Gecit [3] have considered a semi-
infinite elastic strip which contains a transverse central
crack. Formulation is reduced to a system of three sin-
gular integral equations. Gauss—Chebyshev integration
formulas for singular integrals are developed by Erdo-
gan and Gupta [4]. Using these formulas a simple nu-
merical method for solving a system of singular integral
equations is described in this paper. Gupta [5] consid-
ered a semi-infinite strip held rigidly on its short end.

* Corresponding author.

Stress singularity at the strip corner is obtained from the
singular integral equation. Stress along the rigid end is
determined and the effect of the material properties on
the stress-intensity factor is presented. Gupta [6] ana-
lyzed the axisymmetric semi-infinite cylinder with fixed
short end. Loads are applied far from the fixed end of
the cylinder. An integral transform technique is used to
formulate the problem in terms of a singular integral
equation. This technique has been used by Gupta [5].
Numerous analytical studies have been devoted to the
analysis of semi-infinite cylinders with stress-free curved
surfaces and prescribed stress or displacement boundary
conditions on the plane end. A few good solutions exist.
Benthem and Minderhood [7] used the eigenfunction
technique to solve semi-infinite and finite cylinder
problem with remarkable success. Erdol and Erdogan [§]
studied an elastostatic axisymmetric problem for a long
thick-walled cylinder containing a ring-shaped internal
or edge crack. Using transform technique the problem is
formulated in terms of an integral equation which has a
simple Cauchy kernel for the internal crack and a gener-
alized Cauchy kernel for the edge crack as the dominant
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part. Delale and Erdogan [9] analyzed the problem of a
hollow cylinder which contains an arbitrarily oriented
radial crack. The cylinder is subjected to arbitrary nor-
mal tractions on the crack surfaces. Problem is formu-
lated in terms of a singular integral equation by using
the basic dislocation solutions as the Green’s functions.
In the paper by Nied and Erdogan [10] the elasticity
problem for a long hollow circular cylinder containing
an axisymmetric circumferential crack is considered. The
cylinder is subjected to general non-axisymmetric ex-
ternal loads. The problem is formulated in terms of a
system of singular integral equations with the Fourier
coefficients of the derivative of the crack surface dis-
placement density functions. The stress intensity factors
and the crack opening displacement are calculated.

The present paper investigates the stress intensity
factors for the infinite hollow cylinder containing a ring-
shaped crack whose surfaces are free of tractions and
two ring-shaped rigid inclusions symmetrically located
on both sides of the crack with arbitrary, but equal
widths. The hollow cylinder is under the action of axi-
symmetric tensile loads at infinity. Material of the cyl-
inder is assumed to be linearly elastic and isotropic.
Solution for this problem can be obtained by super-
posing the solutions for (1) an infinite cylinder subjected
to uniformly distributed tensile load at infinity, and (2)
an infinite cylinder having a ring-shaped crack and two
rigid inclusions (the perturbation problem). The main
objective of this study is to have a good acquaintance
with the mathematical difficulties which may arise in a
hollow cylinder containing flaws like cracks and rigid
inclusions. Afterwards, the problem of a cracked finite
cylinder with rigid end plates will be solved. One must be
aware that analytical works require a lot of symmetry
considerations. Therefore, the geometry of the problem
is very much restrictive and one may naturally have
concerns on engineering significance and practical ap-
plications of the present problem.

2. Formulation

Consider the axisymmetric problem for the hollow
cylindrical bar shown in Fig. 1. The cylinder with inner
and outer radii 4 and B is subjected to uniformly dis-
tributed axial tension of intensity p, at infinity. The in-
finite hollow cylinder contains a ring-shaped crack of
width (b — @) at the symmetry plane z = 0 and two ring-
shaped rigid inclusions of width (d —c¢) at z=4+L
planes.

Along the rigid inclusions with negligible thickness
displacements are constant and continuous whereas
stresses have jumps. The surfaces of the crack are free of
tractions. Therefore, the field equations of axisymmetric
elasticity problem must be solved together with the fol-
lowing boundary conditions:

z
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Fig. 1. Geometry of the problem.

0.(r,0)=0, a<r<b, (1a)
w(r,0)=0, A<r<a, b<r<B, (1b)
o.(r,+00) = py, A<r<B, (2a)
o.(r,—c0) =py, A<r<B, (2b)
u(r,+L) =0, c<r<d, (3a)
u(r,—L)=0, c<r<d, (3b)
w(r,+L) =const, c¢<r<d, (3¢)
w(r,—L) =const, c¢<r<d, (3d)
0,(4,z) =0, —o0o<z< o0, (4a)
1,.(4,2) =0, —oo0<z< o0, (4b)
6,(B,z) =0, —o00<z< 00, (5a)
7.(B,z) =0, —o0 <z< o0, (5b)

where u and w are the r- and z-components of the dis-
placement vector.

Solution for the problem shown in Fig. 1 may be
obtained conveniently by considering (1) problem of an
infinite hollow cylinder subjected to loads at infinity with
no crack or inclusions, and (2) problem of an infinite
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Fig. 2. The informal superposition scheme (perturbation problem).

hollow cylinder containing a ring-shaped crack at z =0
and two ring-shaped rigid inclusions at z = +L shown in
Fig. 2. The external load is the negative of the stresses
and displacements at locations of the crack and the in-
clusions obtained from the first problem. Due to sym-
metry and uniform nature of deformation, the general
solution for the displacement and stress components for
the first problem is obtained easily in the form

_ (x = 3)m
”(V)—*mr, (6a)
_ —2po -
W(Z) - N(K _ 7) ) (6b)
a.(r,z) =0, (7a)
0.(r,z) = po, (7b)
1,.(r,z) =0, (7c)

where p is the shear modulus, k =3 — 4v as in plane
strain problems, v being the Poisson’s ratio.

In order that all boundary conditions given in Egs.
(1a)—(5b) be satisfied, the number of unknowns in the
expressions for the stress and displacements must be
equal to the number of these boundary conditions.
Therefore, the general expressions for the stress and
displacements for the second problem will be written as
the sum of the expressions obtained from the following
three subproblems: (i) An infinite axisymmetric elastic
medium containing a ring-shaped crack of width (b — a)
at z = 0 plane. Navier equations are solved by the use of
the Hankel transform on r. Upper and lower half spaces
are considered to be two separate media and the general

expressions are matched at z =0 by means of the fol-
lowing conditions:

6.(r,0") =06.(r,07), 0<r < oo, (8a)

T.(r,0%) = 1.(r,07), 0<r < oo, (8b)

%[u(r, 0") —u(r,07)] =0, 0<r< oo, (8¢c)

O [, 07) — w(r, 0)] = 27,

0<r < o0, (8d)
or

where f(r) is the unknown crack surface displacement
derivative. Then, the general expressions for the dis-
placements and the stresses in the upper half space be-
come:

u(r,z) = %_H /000[720(2 + (k = D)]F (o) e™*J, (o) do,
(9a)

w(r,z) = K;H /Ow[—Zocz — (k+ D]F(a)e™*Jp(or) dar,

(9b)
a,(r,z) = Kz—il—ll | [20z(k — 1)]F (o) e™* = J; (ar) da
2u % sz
+ 1 o 2(1 — az)F (o) e ouJy (or) dax,
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1,.(r, 2)

e oty (ar)do, (10c)
where J is the Bessel function of the first kind and

(o) = / f(r)rdi(ar)dr, (11a)

f(r)=0,

(i) An infinite axisymmetric elastic medium containing
two ring-shaped rigid inclusions of width (d —c¢) at
z = +L. Navier equations are solved again by the use of
the Hankel transform on r satisfying the conditions

A<r<a, b<r<B (11b)

u(r,L")=u(r,L7), A<r<B, (12a)
w(r, L") =w(r,L™), A<r<B, (12b)
o.(r,LY) —o.(r,L7) = h(r), c<r<d, (13a)
T.(r L") —1.(r,L7) =g(r), c<r<d, (13b)

at z = L. Here the unknown functions g(r) and h(r),
normal and shearing stress jumps along the inclusions,
satisfy the conditions

h(r)=0, A<r<e, d<r<B, (14a)

gr)=0 Ad<r<ec, d<r<B. (14b)

Hence, the following expressions may be written for the
displacements and the stresses in the interval (—L <
z< L)

1 o0
u(r,z) = m/{) [{—a(L — 2)H(x)

+ [2(L — 2) + K]G(ex) e~ =1)
+{—a(L +z)H(a) + [—a(L +z)

+ x]G(a) } e D), (ar) da, (15a)
w(r,z) = D) / —o(L —z) + x]H (o)

+[ L —2)|G(e)} e ) 4 {[~a(L + 2z) — x]H (e)

— a(L + 2)G(a) e Doty (or) do, (15b)
0,(r,z) et 1) / [{2a(L — z)H (o) + [-20(L — 2)

- zK]G( V}e 0 4 {20(L + 2)H («)

+ 20(L +z2)

+ m /0 {[-2(L - 2) + (x — 3)H (@)
+[2a(L = 2) + (i + 3)]G(ar) e
+{[—20(L+z) — (k. — 3)]H (a) + [-2a(L + 2)
+ (1 + 3)]G(2) } e Doy (ar) dar, (15¢)

— 2] G(o) } e 0] %Jl (o) dot

0.(r,7) = ﬁ /0 “HRAL = 2) — (6 + DH(2)

+ [<20(L — 2) — (k — 1)]G(a) }e %= H)
+{2(L +2) = (e + D]H (o) + [-22(L +2)
— (k= 1)]G(o)} e "oy (o) do, (15d)

) = gy | KL= = (e~ D))

2L~ (4 ]G e

+{[20(L + z) + (1 — D)]H (o) + [2a(L + 2)

— (k4 1)]G(a) } e Doty (o) de. (15e)
Here
Gla) = / (o (o) dr, (16a)
H(x) = / h(r)rJy (or)dr. (16b)

(iii) An elastic medium with no crack or inclusion. By
using Fourier sine/cosine transforms in z-direction the
general expressions are obtained as

2 [ 1 , 1 \
u(r,z) = - /0 { — Eclll (Ar) + §C2K1 (Ar)

+ C3j.l"lo(/l}") + C4)»VKO(/‘L}"):| Cos )de/{, (173)

wrz) =2 /0 ) { Seuy(ir) + sk (i)
—c3](x + DIy (Ar) + 2r (Ar)]
+ aa](k + D)Ko (Ar) — Ark; (/lr)]} sin Azd4,
(17b)

a,(r,z)

_ 27“ /Om {cl { —My(ir) + %Jl(zr)}

+ [ — ;VKQ(AI’) — %Kl (}J’):|
+ e3[(ic — DAL () + 22281 (Ar)]

+ cq[(ic — 1)Ko (Ar) — 272K, (;Lr)]} cos AzdJ,

(17¢)
o.(r,z) = 2?” /OOC{CMJO()J) + 2Ky (Ar)
— e3[(kc + 5) Ao (2r) + 22%r1 (4r)]
— ca[(rc + 5) Ko (4r)
— 2)%rK; (4r)]} cos Jzd2, (17d)
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7.(r,z) = 27'11 /0 {e1 Ay (Ar) — ey /K (Ar)

— 222 () + (x4 V)AL ()]
— c4[202rKo ()
— (kK + 1)K, (4r)]} sin 2zd . (17¢)

When the general expressions for these subproblems
added together and substituted in (4a), (4b), (5a), and
(5b), the stress boundary conditions at inner and outer
lateral surfaces of the cylinder, the general expressions
for the displacement and stress components will be ob-
tained in terms of three unknown functions F(«), G(x)
and H(a).

3. Integral equations

The three unknown functions F(a),G(o) and H(x)
can be determined by using the remaining boundary
conditions (1a), (3a) and (3c) on crack and the inclu-
sions. It is noted that (3a) and (3c) are displacement type
conditions whereas (la) is a stress type condition. In
order to have the same type of conditions, say stress
type, the boundary conditions may be stated as follows:

0.(r,0) = —po, a<r<b, (18a)
0

—w(r,L)=0, c<r<d, (18b)
or

: a[ (r,L)] =2 d (18c)
g, |=2¢, c<r<d, c
where

_3-rpm

8077—;c2,u‘ (19)

Substituting sum of expressions given in (6a), (6b), (7a)—
(7¢), (9a), (9b), (10a)—(10c), (15a)—(15e), (17a)—(17e) for
displacements and stresses in (18a)—(18c), separating the
divergent integrals giving the simple Cauchy-type sin-
gularity [11] after lengthy manipulations, following three
singular integral equations are obtained (see [12] for
details)

n(,fi ¥ /abf(t){£+2M1(r, £) + tNy (r, 1)} dr

! .dht)z Ti(r,t 2N t)|de
g [ 0T = 2N
d 2
+K+1/c g(z)t{Tz(r,t)—;ng(r,t)}dt:—po,
a<r<b (20a)

1
K+ 1

/abf(t)t |:T3(V, 1)+ %Nﬂ(n t)] dr

1 d .
+m /c h(t) |:tT4(V, l‘) -+ ;]\42(},7 Z)
+EL_ithz(r7t)}dt+

nt—r =w

2u(k+ 1)

X /cd g0t [Ts(r, t) — %Nzg (r, t)} dr

=0, c<r<d (20b)
! /bf(t)tT( t)—l—zN( t)|de
k+1J, 61 z
- /dh(t)t T( t)—i—ﬂN (r,t)|dt
2u(k+1) ). 7\, AL r,
! ’ T "M
+m[ g(t)[t 8(”71‘)"'; 3(r,t)
+EL—itN33(r,l):|dl:2807 c<r<d (200)
nt—r W
where
M_(,,,):M7 i=13 (21)
t—r
and
Z(tr—r)K(E)_‘_ti_rr (;l:>7 r>t7
Mi(r,1) = 2t r y
t+r (E)’ reh
(22a)
2a()
M;(r,t) = _g(t_) (f) 22 /r (f) <
7 t) o (t4+r) \t)’ b
(22b)
20 (1) 4+ 2 g (1), o
M*(V f): r r t+r r
3\ 2t r
t—l—rE(;)’ r<h
(22¢)

in which K and E are the complete elliptic integrals of
the first and the second kinds, respectively. The kernels
N;; (i, j = 1-3) are given in Appendix A by (A.1) and the
elliptic integrals T;(r,¢) (i = 1-8) are defined by (A.2).
Eqgs. (20a)—(20c), must be solved together with the fol-
lowing single-valuedness condition for the displacement
around the crack and the equilibrium conditions along
the inclusions:
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/abf(t) dt =0, /Cd g(t)tdt =0, /Cd h(t)tdt = 0.

(23)

The integral equations have (i) a simple Cauchy type
singularity at ¢t =r, (ii) the kernels M;, M,, M; have
logarithmic singularity, (iii) among the Fredholm ker-
nels, N;; only Ny, N», and N33 have singular terms when
t=A,B and r = +A4,+B due to the behaviour of the
integrands of the integrals giving Ny, Ny and Nj; as
/. — oo. Therefore, N;(r,t) can be written in the fol-
lowing form:

Ny(r 1) = /0 Ly(r,t,2)d2,  ij=1-3. (24)

Then the singular parts of the kernels may be separated
as

Ni/'S(r7 t) = / LijOC(r7 t7 j‘) d/l7 l7] = 1737 (25)
0

where

L,’joo(r, t, )\,) = llm L,'j(}"7 t, ;u), l,_]: 1*3 (26)

Integrands of integrals given by (24) contain modified
Bessel functions. By using asymptotic expansions for
modified Bessel functions, the expressions for Ly (7, ¢, 1)
are obtained and presented in Appendix (A.1). Corres-
ponding singular kernels N;;; can be obtained in the form

Niis(r, 1) :i{[74(34)2d—2+ 12(34)372}

Vrt dr? dr
1 42
Xm—k{—%/l—r)@
d 1
+12(A—r)a—2}m}7
(27a)
N22~"("7t)—%{[*(B*V)2%+3(Bfr)—
1,5 ) 1
+Z(K _3)_ (t+r—2B)
"‘{_(A—V)z%—b-?)(f!—r)%
PN 1
MUt oy } (27b)
e - o[- 07 v
1, , ] 1
+Z(K _3)_ (t+r—2B)
+{—(A—r)2%+3(,4_r)_
+%(K2 - 3)_ (f+"17*214) }, (27¢c)

and the bounded parts of the kernels will be

Mjb(r, t) = / [L,'j(}", l‘7 ),) — L,m(r, t, )\.)} dj.,
0
i,j=1-3. (28)

Together with 1/(¢ — r), Niis, Nags, Nz, give generalized
Cauchy kernels. The singular behaviour of the unknown
functions f(¢), g(¢) and k(¢) are determined by writing

fO)=FO[(t—a)b—0)]" 0<Re(y) <1, (29a)
h(t) =H@)[(t—c)(d—1)]"° 0<Re(d) <1, (29b)
gt) = G)[(t—e)d -] 0<Re(d) <1, (29¢)

where F(¢),H(t) and G(¢) are Holder-continuous func-
tions in respective intervals [a,b] and [c,d]. f(¢) has in-
tegrable singularity at the edges of the crack while g(¢)
and h(¢) have at the edges of the inclusions. After
somewhat routine manipulations (see [12]) it can be
shown that y and ¢ satisfy the characteristic equations

cotny =0 (30a)

cotnd =0 (30b)

Therefore y = 0 = 1/2 which is in perfect agreement
with previously reported results for the power of sin-
gularity at the edges of the crack (r — a,b) and at the
edges of the inclusions (r — ¢, d).

Having determined the singular behaviour of the
unknown functions, the integrals appearing in Egs.
(20a)—(20c) and (23) may be non-dimensionalized by
introducing the following dimensionless variables 7, ¢
for the crack by

t:b;"wb—;“, a<t<b —l<t<l,  (3la)
r:b;a€+b—;a7 a<r<b, —1<é<l (31b)
and 7, ¢ for the inclusions by
d— d
= zcn+%, c<t<d, —1<np<l, (32)
d— d
re 2"’8+%, c<r<d, —l<g<l  (32b)

and Egs. (20a)—(20c) become
1 [ 2 -
E flf(f) {?Ml(é,’f) +N11(£,‘L’) dt

+1101/ h(n)[T1 (&) — Nia(E, )] dn

—l<é<l, (33a)
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» [ 7OEG D + R old 22 [ )

Tt + Bt 4 = Rt

+§_; % [lg(ﬂ)[fs(& n) — ﬁz3(87 I’[)} dn

=0, —l<e<l, (33b)
» [ 7O + Ruolde -2 [ )

- ~ 1 /!
 (Frlenn) + Falamlan + 5 [ g

x {fg(e, n) + Ms(e,n) + % — Ny (e, n)} dn
_2(3-x)

— (K+1)%’L, “l<e<l, (33¢)
where
f(z):f(b;"wb;“), (34a)
o =450+, (34)
] (34)

Then, substituting singular behaviour of the dimen-
sionless unknown functions (Egs. (29a)—(29c¢))

()=Fx)(1-)", —l1<t<], (35a)

~I

>

) =HmA-)""? —1<n<l, (35b)

gln) =G)(1 -2,

these integrals are converted into series by the use of the
Gauss-Lobatto integration formula [13] so that a system
of linear algebraic equations is obtained. This system is
solved numerically. The infinite integrals are calculated
using Laguerre and Filon integration formulas [13].
After the numerical solution is obtained, the mode I
stress intensity factors at the edges of the crack, ki, ki,
the mode I stress intensity factors, k., k14, and the mode
I1 stress intensity factors, k., k24, at the edges of the rigid
inclusions are calculated:

ki, = lim+/2(a — r)a.(r,0), (36a)

r—a

—-l<y<l, (35¢)

ki = l_inl} \2(r = b)a.(r,0), (36b)

ke =lim+/2(r — ¢)o.(r, L), (36¢)

r—c

koe = im~/2(r — ¢)1,2(r, L), (36d)

r—c

kg = lim+/2(d — r)o.(r,L), (36¢)

r—d

kg = er} V2(d = r)t(r,L). (36f)

4. Results

In the numerical calculations Poisson’s ratio is used
as the material parameter and the ratios of the outer
radius of the cylinder, outer and inner radii of the crack
and the inclusions, and the distance between the inclu-
sions and the crack to the inner radius of the cylinder are
used as the geometric parameters. Some of the calcu-
lated results are presented in graphical form in Figs. 3-8.
Figs. 3-5 show the normalized stress intensity factors at
the edges of the crack defined by

]}111 = kla/PO\/ (b — a)/2, (378)

kiy = kin/por/ (b — a) /2. (37b)

As may be observed from these figures kj, increases
when the crack width increases, the inclusion width, and
v decrease. On the other hand, %, increases when the
crack width, the inclusion width, and v increase. &, is

35

sor o k,(FEA) :

——k,  *k,(FEA)

251

20

0.00 0.05 0.10 0.15 0.20 0.25
(b-a)/ A

Fig. 3. Variation of normalized stress intensity factors, ki,, ki,
with (b—a)/4 when B=1254, L =0.254, d —c=0.154,
v=0.3,a+b=2254, c+d =2.254.
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Fig. 5. Variation of normalized stress intensity factors, ki, ki,
with L/4 when B=1.54,d —c¢=0.34,v=0.3, a+b=2.54,
c+d=254.

greater than kj;, both are constant when L/4 = 1.0. In
Fig. 3, together with the results of the present study,

0.012
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0.008[
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1 L L L y
O'OO&.OO 0.05 0.10 0.15 0.20 0.25
(d-c)/A

Fig. 6. Variation of normalized stress intensity factors, ki., k4,
with (d —c¢)/4 when B=1254, L=0.54, v=03, a+b=
2.254, ¢ +d = 2.254.
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Fig. 7. Variation of normalized stress intensity factors, k., kg
with L/4 when B=1.54, b—a=034,d—c=0.14, a+ b=
2.54, c+d =2.54.

finite element solution is also presented for comparison
purposes. As can be observed in this figure, analytical
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Fig. 8. Variation of normalized stress intensity factors ka., kyq
with (d —¢)/A when B=1.54,L =0.54,b—a=034,a+b =
2.54, c+d = 2.54.

results and numerical finite element results are very
much similar, coinciding especially for considerable
crack lengths. Figs. 6-8 show the normalized stress in-
tensity factors at the edges of the inclusion

ke = kie/por/(d = 0) /2, (38a)
ki = ka/po/(d =) /2, (38b)
ke = koo [po/(d = 0) /2, (38¢)
ko = a0/ (d = €)/2. (38d)

It can be observed that k. and k;, increase as the crack
width increases and the inclusion width decreases. ks,
and k,; increase as v and L/A increase and as the in-
clusion width decreases.

Appendix A

The kernels Nj;(r,t) (i,j = 1-3) appearing in Egs.
(20a)—(20c) are defined as follows:

]\[lj(}"7t) :/0 Llj(r,t,ﬂ)d/l

:/ Ll'.foo(rah/l)d/l_'_/& [Li/'(r7t7)»)
0 0
= Lijo(r,t, )] d4,  1,j=1-3, (A.1)

where L. (r, ¢, A) may be obtained in the form

Li(r,t,2) = \/Lﬁ {e B[ 4B —r)(B—1)2
+2(B—r)i+6(B—1)2—4]}
+ \/Lﬁ {044 — 1) (A —1t) 2
+2(4 = r)A+6(4— 1)1 +4]},
Lisno(ryt,2) = Si\%L {ef“”f’*” {— 2(B—r)(B—1)i

+x(B—-r)A+3(B— t)),—%(SK—F 1)}}

+sinAL
\rt

(A=) —3(A — t)),—%(SK—F 1)} }

{exxu—r—t) { 24— )4 - 1)

Liss(r,t,) = C‘\’;;L {efwfrfn {2(3 — (B -7
+Kx(B—-r)A—3B-1)A 7%(3]( — 1)} }
cos AL

+
N

+x(d—r)A—34—- t))~+%(3;cf 1)} },

{e)'<2”””) [ —2(A—r)(4—-1)2

Lotee(ryt,2) = % {e*/’-<23*’*’> { —2(B—r)(B—1)4

+(B—r)/1+(K+2)(B—r)/1—%(;c+3)”

+ % {e;‘(“"’") [ —2(4—-1)(4 -7

+Ad-ri- (K+2)(Aft)/lf%(l€+3):|},

sin AL
\rt

1

5B =i+ (5+1)(B- 00—

+ 1)2} } RLLC {e’~<“*'*f> {(A — )4

Lo (ryt, 1) = {e-m—’-” { —(B—r)(B-1)X

Vi
PYE %(A ey (g+ =10z
e}
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CC)S\/V_;;L {e_,x(zB—r—z) {(B Y
+g(3_r)1— (g+ 1>(B—t)),

(® + 2K — 1)} } + C—(:;éL {e;‘(z”‘”"’)
%

(A —r)(d— 1) —g(A -y}

§+1)(A—t))»—%(1<2+21<— 1)”,

L23oc(r7 t j-) =

X

+

A~~~ — Rl—

L3|o<;(r7 t, ,1) — L {672(234—1) I:Z(B _ }’) (B _ t);vz

Jrt
—(B—r)/l-i-(K—Z)(B—t)ﬂ—%(lc—3)i|}
L H2d-r—1) | _ VA —p2
+\/ﬁ{e { 2(4 = r)(Ad — 1)

At (k—2)(A— 1)
+%(K_3):|}7

Lo (r 1, 1) = Si\%L {e—*@B—f-” { —(B-r)(B-0)2*
K 1
—E(B—r)/l+§(K—2)FBit)},
—%(KZ — 2Kk — 1)} } + % {e"(“””)
x {(A — ) -7 +§(A .y
—%(K—Z)(A —t))v—%(Kz—ZK— 1)2”7
L33<x(7’, t, /1) _ % {ef}h(ZBfr—t) |: _ (B _ r) (B _ l‘)/lz
—g(B—r)/1+%(K—2)(B—t)),
1 2 COSAL [ 04—y
e
x {(A EVRYE +§(A .y
—%(K—2)(A—t)l+%(lc— 1)2”.

Expressions of the functions used in Egs. (20a)—(20c):

Tl(r7 t) = 2Lky (l", [) + (K+ 1)]{22(7’7 t)7

Tz(?} t) = 2111(723(1"7 [) — (K — l)kzz(r, t),

T3(r, t) = 21‘1{11(}"7 [) + (K+ l)klz(r, t),

T4(I’7 t) = 2111(713(}"7 [) + Kk14(r7 l)7 (AZ)
T5(I’7t) = 2Lk15(}’,[),

T6(r, l) = —2Lk36(}"7 l) + (K — 1)/{37(}”, t),

T7(V7 l) = 2Lk]g(}’, t),

Tg(r7 l) = —Z,ka)(}"7 l) + ka3()(r, l‘)7

where

kis(r,t) = /00C e 22y (to)J, (rer) dor,

ka(r,t) = /0OC e 2oy (to)J; (ror) do,

kis(ryt) = /00C e 22, (to)J, (rer) dar,

ki (ry8) = /0OC e Lol Jy (to)Jy (rot) da,

ko (ryt) = /000 e Loty (to)Jo(rer) da,

s (r,t) = /OOC e oy (to)Jo (rer) do = kag(r, 1),
koa(r,t) = /OOC e oy (to)Jo(re) dow = kg (r, 1),
kag(r,t) = /OOC e 2oy (to)Jy (rer) dar,

kso(r, 1) =/ e Lol (to)Jo (rer) do,
0

ko (r,1) =/ e o, (to)Jo (rer) o
0
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