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ABSTRACT 
 

MODAL ANALYSIS OF AEROFOIL CROSS-SECTIONED WING MADE 
OF LAMINATED COMPOSITE AND FILLED WITH FOAM 

 

Modal analysis of aerofoil cross-sectioned wing made of laminated composite and filled 

with foam is studied by Finite Element Method with the help of ANSYS which is very 

powerful and well proven software all around the world. The effects of ratio of overhangs 

to mid-span and length of the thickened parts on natural frequencies are investigated by 

finite element models developed in ANSYS and the model is verified by theoretical results 

available in the literature. 
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ÖZET 
 

KÖPÜKLE DOLDURULMUŞ VE TABAKALI KOMPOZİTTEN 
YAPILMIŞ AEROFOİL KESİTLİ KANADIN MODAL ANALİZİ 

 

Köpükle doldurulmuş ve tabakalı kompozitten yapılmış aerofoil kesitli kanadın modal 

analizi, Dünya’da iyi ispatlanmış ve güçlü bir sonlu eleman yazılımı olan ANSYS’in 

yardımı ile çalışılmıştır. Çıkıntının açıklığa oranının ve takviyelenmiş kısımların 

uzunluklarının doğal frekanslara etkileri ANSYS de geliştirilen sonlu eleman modelleri ile 

araştırılmıştır ve model kaynaklarda mevcut sonuçlar ile karşılaştırılarak doğrulanmıştır. 
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CHAPTER 1 

 
GENERAL INTRODUCTION 

 
 The word composite in the term composite material signifies that two or more 

materials are combined on a macroscopic scale to form a useful third material. The key is 

the macroscopic examination of a material wherein the components can be identified by 

the naked eye. Different materials can be combined on a microscopic scale, such as in 

alloying of metals, but the resulting material is, for all practical purposes, macroscopically 

homogeneous, i.e., the components cannot be distinguished by the naked eye and 

essentially act together. The advantage of composite materials is that, if well designed, 

they usually exhibit the best qualities of their components or constituents and often some 

qualities that neither constituent possesses. Some of the properties that can be improved by 

forming a composite material are (Jones, 1999) 

 

• strength  

• stiffness  

• corrosion resistance  

• wear resistance  

• attractiveness  

• weight  

• fatigue life 

• temperature-dependent behavior 

• thermal insulation 

• thermal conductivity 

• acoustical insulation 

 

 Naturally, not all of these properties are improved at the same time nor is there 

usually any requirement to do so. In fact, some of the properties are in conflict with one 

another, e.g., thermal insulation versus thermal conductivity. The objective is merely to 

create a material that has only the characteristics needed to perform the design task (Jones, 

1999). 
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 Throughout history, humans have used composite type materials. One of the earliest 

uses of composite material was by the ancient Mesopotamians around 3400 B.C., when 

they glued wood strips at different angles to create plywood. 

 Egyptians used of Cartonnage, layers of linen or papyrus soaked in plaster, for death 

masks dates to the 2181-2055 BC. Archeologists have found that natural composite 

building materials were in used in Egypt and Mesopotamia, since ancient builders and 

artisans used straw to reinforce mud bricks, pottery, and boats around 1500 BC. 

 Around 25 BC, The Ten Books on Architecture described concrete and 

distinguished various types of lime and mortars. Researchers have demonstrated that the 

cement described in the books is similar, and in some ways superior to the Portand cement 

used today. 

 In about 1200 AD, the Mongols invented the first composite bows made from a 

combination of wood, bamboo, bone, cattle tendons, horns, bamboo and silk bonded with 

natural pine resin. The bows were small, very powerful, and extremely accurate. 

Composite Mongolian bows were the most feared weapons on earth until the invention 

effective firearms in the 14th century. 

 Chemistry had revolution about the 1880. Polymerization allowed new synthetic 

resins to be transformed from a liquid to solid state in a cross-linked molecular structure. 

Early synthetic resins included celluloid, melamine and Bakelite. 

 In the early 1900’s, plastics such as vinyl, polystyrene, phenolic and polyester were 

developed. As important as these innovations were, reinforcement was needed to provide 

the strength and rigidity. 

 Bakelite, or polyoxybenzylmethylenglycolanhydride, is an early innovative plastic. 

It is a thermosetting phenol formaldehyde resin, formed from an elimination reaction of 

phenol with formaldehyde. It was developed by Belgian-born chemist Leo Baekeland in 

New York in 1907. 

 One of the first plastics made from synthetic components, Bakelite was used for its 

electrical nonconductivity and heat-resistant properties in electrical insulators, radio and 

telephone casings, and such diverse products as kitchenware, jewelry, pipe stems, and 

children’s toys. Bakelite was designated a National Historic Chemical Landmark in 1993 

by the American Chemical Society in recognition of its significance as the world’s first 

synthetic plastic. The “retro” appeal of old Bakelite products has made them collectible. 

 The thirties were perhaps the most important decade for the composites industry.  In 

1935, Owens Corning launched the fiber reinforce polymer (FRP) industry by introducing 
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the first glass fiber.  In 1936, unsaturated polyester resins were patented.  Because of their 

curing properties, they would become the dominant choice for resins in manufacturing 

today.  In 1938, other higher performance resin systems like epoxies also became 

available. 

 World War II brought the FRP industry from research into actual production.  In 

addition to high strength to weight properties, fiberglass composites were found to be 

transparent to radio frequencies and were adopted for radar domes and used with other 

electronic equipment.  In addition, the war effort developed first commercial grade boat 

hulls.  While they were not deployed in the war effort, the technology was rapidly 

commercialized after the war. 

 By 1947 a fully composite body automobile had been made and tested. This car was 

reasonably successful and led to the development of the 1953 Corvette, which was made 

using fiberglass preforms impregnated with resin and molded in matched metal dies.  

During this period, several methods for molding were developed.  Eventually two methods, 

compression molding of sheet molding compound (SMC) and bulk molding compound 

(BMC), would emerge as the dominant forms of molding for the automotive and other 

industries. 

 In early 1950’s, manufacturing methods such included pultrusion, vacuum bag 

molding, and large-scale filament winding were developed. Filament winding became the 

basis for the large-scale rocket motors that propelled exploration of space in the 1960’s and 

beyond. Pultrusion is used today in the manufacture of linear components such as ladders 

and moldings. 

 In 1961, first carbon fiber was patented, but it was several years before carbon fiber 

composites were commercially available.  Carbon fibers improved thermoset part stiffness 

to weight ratios, thereby opening even more applications in aerospace, automotive, 

sporting goods, and consumer goods.  The marine market was the largest consumer of 

composite materials in the 1960’s. 

 By the mid 1990’s, composites hit mainstream manufacturing and construction.  As 

a cost effective replacement to traditional materials like metal and engineered 

thermoplastics, Engineers began specifying thermoset composites for various components 

within the Appliance, Construction, Electrical and Transportation industries 

(http://www.mar-bal.com/applications/history-of-composites/). 

 Clasıfıcatıon of composite materials are gıven by Vinson ( 2002) as: 
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• Fiber: Either continuous (long or chopped whiskers) are suspended in a matrix material 

shown in Figure 1.1. 

• Particulate: Composed of particles are suspended in a matrix material (Figure 1.2). 

• Flake: Composed of flakes which have large ratios of platform area to thickness and 

are suspended in a matrix material (Figure 1.3) 

• Filled/Skeletal: Composed of a continuous skeletal matrix filled by a second material 

(Figure 1.4) 

• Laminar: Composed of layers bonded together by a matrix material (Figure 1.5). 

 

 

 

 

 

Figure 1.1. Fiber composite 
(Source: Vinson 2002) 

 

 

 

 

 

Figure 1.2. Particulate composite 
(Source: Vinson 2002) 

 

 

 

 

 

Figure 1.3. Flake composite 
(Source: Vinson 2002) 

 

 

 

 

 

Figure 1.4. Filled composite 
(Source: Vinson 2002) 
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Figure 1.5. Laminar composite 
(Source: Vinson 2002) 

 

 Composites are different from metals and are combinations of materials differing in 

composition or form. The constituents retain their identities in the composites, and do not 

dissolve or otherwise merge completely into each other, although they act together. 

Reinforced concrete is an excellent example of a composite structure in which the concrete 

and steel still retain their identities. The steel bars carry the tension loads, and the concrete 

carries the compression loads. In aircraft construction, the term composite structures refers 

to fabric resin combinations in which the fabric is embedded in the resin, but still retains its 

identity. 

 Advanced composite materials consist of new high strength fibers embedded in an 

epoxy matrix. These composites provide for major weight savings in airplane structures, 

since they have high strength to weight ratios. When replacing aluminum structure with 

graphite/epoxy composite, weight reductions of 20% or better are possible. Weight 

reduction is the greatest advantage of composite material, and is one of the key items in 

decisions regarding its selection. Other advantages over conventional structure include, its 

high corrosion resistance, and its resistance to damage from cyclic loading (fatigue). 

 The major disadvantage of using advanced composite materials in airplane 

construction is the relatively high cost of the materials. 

 Hybrid Composites are made by the addition of some complementary material such 

as fiberglass or kevlar to the basic carbon fiber/epoxy matrix. The added materials are used 

to obtain specific material characteristics, such as greater fracture toughness and impact 

resistance, and should be considered for areas subject to foreign object damage. The 

addition of carbon / epoxy to fiberglass structure is used to provide additional stiffness 

(http://www.aviation-history.com/theory/composite.htm). 

 Figure 1.6 shows the application of carious composite materials on the Boeing 777. 
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 For rotor blades. composite materials provide opportunities for structural simplicity 

of hingeless and bearingless designs, increased fatigue life, and structural couplings to 

improve the response and the aeroelastic stability of configurations. The directional nature 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.6 Various composite materials used in structures of the Boeing 777 
(Source: Jones 1999) 

 

of the composite materials allows for construction of rotor blades with different ply 

orientations of materials exhibiting coupling between the elastic modes of deformation. 

Plies with an appropriate placement of fibers in the bladc can produce elastic coupling 

between desired types of motion in the modes, thus providing a mechanism for elastic 

tailoring. 

 Since rotor blades are built-up, complicated structures, some simplification in the 

analytical modeling is helpful in the process of designing them and studying their behavior. 

One such simplification is to regard thc blade as a beam. For analysis of composite rotor 

blades as beams, it is necessary to determine a constitutive law that is suitable for beam 

theory. 

Composite materials are commonly used in industry because of their low weight, 

high strength, precise shape. Glass fiber or carbon fiber with epoxy are main materials for 

composite structures. Composite materials also exhibit desired damping properties due to 

the their structural properties such as lamination or combinations. The energy dissipation 

for damping is based on the resin (generally epoxy). 

 



 7

 The first of beam theory has been introduced by Euler (1744). After this, the most 

popular one has been introduced by Timoshenko (1744). Several textbooks have been 

written for the Mechanics of Composite Materials ( Tsai, 1980; Jones, 1999; Vinson, 2002; 

Kaw, 2006). Recently, Qatu (2004) published a textbook on vibration of laminated shells 

and plates. 

Stafford and Giurgiutiu (1975) presented an important study on semi-analytic 

methods for rotating Timoshenko beams. 

Jang and Bert (1989) derived the frequency equations for vibrating stepped beams 

on classical supports. 

Murphy (1997) found the numerical solution to the frequency equation for the 

transverse vibration of a simple beam with symmetric overhangs. 

Hodges et al (1989) presented the natural frequencies and mode shapes of 

composite beam structures. The sectional elastic constants are determined from two 

qualitalively different methods: simple analytical methods in which the stiffnesses are 

given in closed form and a detailed cross-sectional finite element method. The equations of 

motion are also solved in two ways: by an essentially exact integration method and by a 

mixed finite element method. 

Subic and He (1995) presented a modal parameter estimation methods to the 

analysis of a high performance glider wing. Due to the aerodynamic characteristics of the 

glider wing, material and design characteristics of laminated composite structure, 

experimental modal analysis is different from the case of powered aircraft analysis. 

Damping factors of the overall structure is paticularly interesting in this case study. 

Marur and Kant (1996) studied on free vibration analysis of fiber reinforced 

composite beams using higher order theories and finite element modelling. They used 

Taylor’s series expansions for axial displacement in order to describe the warping of cross-

sections of sandwich and composite beams. 

Yu and Hwu (2005) rederived the comprehensive model with finite element 

method. To show the accuracy and generality of the comprehensive dynamic finite element 

model for the free vibration analysis of the tapered stiffened composite wing structures, an 

illustration, for a cantilever NACA 2412 composite wing with uniform chord length along 

the direction of span is given. Moreover, several numerical results of different tapered ratio 

wing are introduced to study the influence of tapered effect. 

Subramanian (2006) presented dynamic analysis of two different one-dimensional 

finite element models for laminated composite beams, in which a 5th order expansion was 
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used to expand the axial displacement and a 4th order power series was used for the 

transverse displacement. 

Murugan et al (2012) addressed optimal design of laminated composite beams with 

stiffness and aeroelastic constraints. The design variables were the fiber orientations of the 

laminate on the walls of the internal blade spar. 

Blasques and Stolpe (2012) presented a simultaneous optimization of topology and 

laminate properties in structural design of laminated composite beam cross sections. The 

structural response of the beam is evaluated using a beam finite element model. Solutions 

are presented for a maximum stiffness problem with constraints on the weight, and the 

shear and mass center positions. 

Modal analysis of noncontinuous or stepped beams can be done exactly just for not 

so complicated systems. If the cross-sections of the beam are very complex, numerical 

methods are prefered. 

 In this study, modal analysis of aerofoil cross-sectioned wing made of laminated 

composite and filled with foam is studied by Finite Element Method with the help of 

ANSYS which is very powerful and well proven software all around the world. The effects 

of ratio of overhangs to mid-span and length of the thickened parts on natural frequencies 

are investigated by finite element models developed in ANSYS and the model is verified 

by theoretical results available in the literature. 
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CHAPTER 2 

 

THEORETICAL BACKGROUND 

 
2.1. Description of the Problem 

 
 The problem is the modal analysis of aerofoil cross-sectioned wing made of 

laminated composite and filled with foam. The wing has two overhangs as shown in Figure 

2.1. In general, wing has two different cross-sections along the longitudional axis due to 

the supports and mid part of the beam. It is seen from Figure 2.1 that support regions and 

mid part are dimensioned as L2 which are the thickened cross-section parts of the wing. 

 

 

 

 

Figure 2.1. A wing with two overhangs 
 

The cross-section of the wing is given in Figure 2.1. Wing surface is based on 

Laminated Composite 1. All necessary lamina codes and material details are given in the 

numerical aplication part of this thesis. Leading edge panel and spar caps have thick pure 

epoxy. On the other hand, shear web has foam as core material. Moreover, trailing edge 

reinforcement is made up epoxy. 

The difference between the cross-sections of the wing parts having length L1&L3 

and L2 is the lamina code of the Laminated Composite 1 shown in Figure 2.2. Thickened 

cross-section part of the wing having the length L2 has more layers than the wing having 

the length L1&L3. 

 In this study, the effects of ratio of overhangs to mid-span=(L1+L2/2)/(2L2+2L3) or 

the ratio of span to length=(2L2+2L3)/(2L1+3L2+2L3) and L2 on natural frequencies are 

investigated by finite element models verified by theoretical results available in the 

literature just for a special case (L2=0). 



 10

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fi
gu

re
 2

.2
. C

ro
ss

-s
ec

tio
n 

of
 th

e 
w

in
g 



 11

2.2. Modal Analysis of Multi-Part Wing 

 
A beam with uniform cross-section having typical boundary conditions is 

considered.  In this case, bending rigidity of the beam EI along the beam axis is constant. 

Thus, free bending vibration of a beam is governed by (Inman 2001)  

 

0),(),(
2

2

4

4

=
∂

∂
+

∂
∂

t
tzvA

z
tzvEI ρ       (2.1) 

 

where E is Young’s modulus, I is second moment of area, ρ is density of the beam and A is 

the area of the cross section of the beam. Also, v(z,t) is the transverse displacement of the 

beam. Equation (2.1) is reduced to differential eigenvalue problem as 

 

0)()( 4
4

4

=− zV
dz

zVd β        (2.2) 

EIA /24 ωρβ =         (2.3) 

 

where β is non-dimensional natural frequency parameter. The general solution of Equation 

(2.2) is expressed as 

 

zBzBzBzBzV ββββ coshsinhcossin)( 4321 +++=   (2.4) 

 

where V(z) represents bending mode shapes of the beam. In order to find the non-

dimensional natural frequency parameters and the corresponding mode shapes of the beam 

with typical boundary conditions, boundary conditions are used. For example, if the beam 

is simply supported at both ends, the following equations are written 

 

Deflection = V(0)=0 

(2.5) 

Bending moment = 0)(

0
2

2

=
=zdz

zVdEI  

 

Other boundary conditions at z = l are written similary. 
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Four equations from Equation (2.5) provide a system of linear homogeneous 

equations. In order to find the non-dimensional natural frequency parameters, the 

determinant of the coefficient matrix of linear homogeneous equations must be zero. Then, 

frequency equation is determined and solved for β. After finding β, corresponding mode 

shape function V(z) is found. 

 For multi-part wing, Equation (2.4) is written for each part of the beam. Therefore, 

the number of unknown coefficients is equal to four times number of part. In order to 

determine the unknown coefficients, boundary conditions of the beam and the continuity 

conditions between parts are used. 

 At the junction of two parts; the continuity of deflection, slope, bending moment and 

shear force must be preserved. Let us consider two parts named as 1 and 2 has a junction at 

z = b, aforementioned continuity conditions are written as 

 

Deflection = V1(b)= V2(b) 

 

Slope = V1′(b)= V2′(b) 

(2.6) 

Bending moment = 
bzbz dz

zVdEI
dz

zVdEI
==

= 2
2

2

22
1

2

1
)()(  

 

Shear force= 
bzbz dz

zVdEI
dz

zVdEI
==

= 3
2

3

23
1

3

1
)()(  

 

Therefore, for the considered simply supported beam with two parts: there are 2 x 4 

= 8 unknown coefficients. Four equations from Equation (2.5) and four equations from 

Equations (2.6) provide a system of linear homogeneous equations. The solution procedure 

is the same with the previous one. In order to find the non-dimensional natural frequency 

parameters, the determinant of the coefficient matrix of linear homogeneous equations 

must be zero. Then, frequency equation is determined and solved for β. After finding β, 

corresponding mode shape functions V(z) for each part are found. 
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2.3. Vibration of Simply Supported Beams with Overhang 
 

 The procedure of the transverse vibration analysis of beams with multi-part 

presented in section 2.2 can be applied to a beam with overhang shown in Figure 2.3. 

 

 

 

 

 

Figure 2.3. Geometry of simply supported beam with symmetric overhang 
(Source: Murphy 1997) 

 

 The simply supported continuous beams with symmetric overhang shown in Figure 

2.3 can be divided into three parts with three distinct coordinate systems z1, z2, and z3 and 

origins. Let V1(z), V2(z), and V3(z) be the normal functions of the beam sections (see 

Equation (2.4) ). The general solution for the normal functions are 

 

 1413121111 coshsinhcossin)( zBzBzBzBzV ββββ +++=  δ≤≤ 10 z  

 2423222222 coshsinhcossin)( zBzBzBzBzV ββββ +++= Sz ≤≤ 20  (2.7) 

 3433323133 coshsinhcossin)( zBzBzBzBzV ββββ +++=  δ≤≤ 30 z  

 

 Along with these three normal functions, boundary and continuity conditions must 

be satisfied. At the ends of the beam both moment and shear have to be zero. At the 

supports deflection is zero, slope and moment are continuous. These 12 boundary and 

continuity conditions are expressed mathematically as follows: 

 

    0)(

0

2
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1
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=
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dz
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    0)(
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 If α = S/L is defined as the ratio of span to length, then the overhang can be 

expressed as δ = L(1 – α )/2. 

 From Equation (2.7), 12 by 12 matrix of the coefficients of the 12 constants can be 

constructed. The elements of the matrix consist of the trigonometric and hyperbolic terms 

of the normal functions given in Equation (2.7). This set of  homogeneous equations will 

have nontrivial solutions only if the determinant of the coefficients vanishes. Expansion of 

the determinant is the frequency equation. Roots of the frequency equation correspond to 

the natural frequencies. The minimum nonzero βL value that makes the determinant zero is 

used to calculate the fundamental frequency. From Equation (2.3), natural frequency in Hz 

is calculated by ( Murphy 1997) 

 

41 AL
EIKf
ρ

=        (2.9) 

 

where K1 is transformed fundamental root of the frequency equation and given as 
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 The variation of transformed fundamental root of the frequency equation K1 for a 

simply supported beam with symmetric overhang with the ratio of span to length α is 

shown in Figure 2.4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4 Transformed fundamental root of the frequency equation for a simply supported 
beam with symmetric overhang (Source: Murphy 1997) 
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2.4. Mechanics of Laminated Composites 

 

2.4.1. Macromechanical Analysis of a Lamina 
 

In order to understand the stress–strain relationship for an angle lamina in x-y 

coordinate system, Figure 2.3 is considered. 

 

 

 

 

 

 

 

Figure 2.5. Local and global axes of an angle lamina. 

 

The stress–strain relationship in x-y coordinate system is (Kaw 2006) 
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where ijQ  are given by 
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4
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1111 )2(2 csQQsQcQQ +++=    (2.12) 

 

)()4( 24
12

22
66221112 scQcsQQQQ ++−+=    (2.13) 
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4
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4

1122 )2(2 csQQcQsQQ +++=    (2.14) 
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3
66121116 )2()2( −−−−−=  (2.15) 
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3
661222

3
66121126 )2()2( scQQQcsQQQQ −−−−−=          (2.16) 

 

)()22( 44
66

22
6612221166 csQscQQQQQ ++−−+=          (2.17) 

 

in which c=Cos(θ) and s=Sin(θ) The stiffness coefficients Qij are related to the engineering 

constants and given as: 

 

1221

1
11 1 υυ−
=

EQ              (2.18) 

 

1221

212
12 1 υυ

υ
−

=
EQ              (2.19) 

 

1221

2
22 1 υυ−
=

E
Q              (2.20) 

 

1266 GQ =              (2.21) 

 

Since the ijQ  presented above do not allow a direct study of the effect of the angle of the 

lamina on the ijQ , they can be written in invariant form as 

 

θθ 42 32111 CosUCosUUQ ++=     (2.22) 

 

θ43412 CosUUQ −=       (2.23) 

 

θθ 42 32122 CosUCosUUQ +−=     (2.24) 

 

θθ 42
2 3

2
16 SinUSinUQ +=      (2.25) 

 

θθ 42
2 3

2
26 SinUSin

U
Q −=      (2.26) 
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θ4)(
2
1

34166 CosUUUQ −−=      (2.27) 

 

where 

 

)4233(
8
1

661222111 QQQQU +++=     (2.28) 

 

)(
2
1

22112 QQU −=       (2.29) 

 

)423(
8
1

661222113 QQQQU −−+=     (2.30) 

 

)46(
8
1

661222114 QQQQU −++=     (2.31) 

 

2.4.2 Macromechanical Analysis of Laminates 
 

A laminate is made of a group of single layers bonded to each other as shown in Figure 

2.6. Special notations are used for the laminate code. For example: [0/–45/60]s 

 

 

 

 

 

 

 

 

Figure 2.6. Schematic of a laminate. 

 

In this section, the classical lamination theory for a plate under the in-plane loads 

shown in Figure 2.7 is presented. 
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Nx, Ny = normal force per unit length, Nxy= sher force per unit length 

Mx, My = bending moments per unit length, Mxy = twsiting moments per unit length 

 

Figure 2.7. Resultant forces and moments on a laminate. 

 

The strain-displacement equations can be written in matrix form as: 
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where the midplane strains and curvatures are given as 
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Let us consider a laminate made of n plies shown in Figure 2.8. Each ply has a 

thickness of tk . Then the thickness of the laminate h is 
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Figure 2.8. Coordinate locations of plies in a laminate. 

 

The forces and moments in the plate having thickness h are written as 

 

dz
N
N
N h

h
xy

y

x

xy

y

x

∫
− ⎥

⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
2/

2/ τ
σ
σ

      (2.36) 

 

dzz
M
M
M h

h
xy

y

x

xy

y

x

∫
− ⎥

⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
2/

2/ τ
σ
σ

      (2.37) 

 

Since the laminate made of n plies, forces and moments in each lamina are summed after 

integrating the stresses for each lamina to give the resultant forces and moments in the 

laminate as 
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Now, the resultant forces and moments are written in terms of the midplane strains 

and curvatures by using the stress–strain relationship as 
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where the [A], [B], and [D] matrices are called the extensional, coupling, and bending 

stiffness matrices, respectively. The matrix [A] relates the resultant in-plane forces to the 

in-plane strains, and the matrix [D] relates the resultant bending moments to the plate 

curvatures. The matrix [B] couples the force and moment terms to the midplane strains and 

midplane curvatures. Elements of the [A], [B], and [D] are given as 
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2.4.3. Material Properties of Cross-Section of the Wing 

 
 Detailed cross-section of the wing is given in Figure 2.2. In order to model the wing 

as beam, mass and stiffness properties of the wing can be obtained by using the equivalent 

system approach. To do this, Figure 2.2 is modified by numbering the each part of the 

cross-section and this is shown in Figure 2.9. 

 

 

 

 

 

 

 

Figure 2.9 Parts of the cross-section of the wing in x-y plane 

 

 Equivalent mass density of the wing can be obtained by using the following 

equation: 

 

54321

5544332211

AAAAA
AAAAA

e ++++
++++

=
ρρρρρρ     (2.45) 

 

where ρi and Ai are density and cross-sectional area of the ith part (i=1, 2, 3, 4, 5). 

Similarly, equivalent modulus of elasticity in the direction of longitudional axis of 

the wing can be obtained as follows: 

 

54321

5544332211

AAAAA
AEAEAEAEAEE zzzzz

ea ++++
++++

=     (2.46) 

 

where Ei is the modulus of elasticity of the ith part (i=1, 2, 3, 4, 5) of the wing in the 

longitudional axis of the wing. 

 Also, equivalent modulus of elasticity in the direction of longitudional axis of 

the wing due to bending about x axis can be obtained as follows: 
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where Ei is the modulus of elasticity of the ith part (i=1, 2, 3, 4, 5) of the wing in the 

longitudional axis of the wing. 

Moreover, equivalent modulus of elasticity in the direction of longitudional axis of 

the wing due to bending about y axis can be obtained as follows: 
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where Ei is the modulus of elasticity of the ith part (i=1, 2, 3, 4, 5) of the wing in the 

longitudional axis of the wing. 

 

2.5. Modal Analysis by Finite Element Method 

 
 The equation of motion of discrete system is given by 

 

)}({)}(]){[]([)}(]{[)}(]{[ tftxGKtxDtxM =+++ &&&   (2.49) 

 

where [M], [D], [K] and [G] are mass, damping, elastic stiffness and geometric matrices, 

respectively. It is known that, {x(t)} is displacement vector and {f(t)} is force vector. The 

equation (2.49) is reduced to generalized eigenvalue equation: 

 

}0{}]){[][]([ 2 =−+ ii uMGK ω      (2.50) 

 

where ωi is ith natural frequency and {ui} is the ith vibration mode shape vector. 

Possible motions related to the mode shape can be seen from Figure 2.10. The 

motions are named as flapping, lead-lag and torsional motions. Flapping and lead-lag 

motions are also called as flapwise and chordwise bending, respectively. 

 It is possible to model the wing by finite element method in several ways based on 

element type and solution approach. For example, linear layered structural shell element 

SHELL99 can be used. This element is defined by 8 nodes, average or corner layer 
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thicknesses, layer material direction angles, orthotropic material properties. Another 

approach is the usage of beam element BEAM44 based on the equivalent isotropic material 

for the combination of laminated composite, foam and epoxy used in the wing cross-

section.  

 

 

 

 

 

 

 

Figure 2.10: Flapping lead-lag and torsional motions of a beam 
(Source: Stafford and Giurgiutiu 1975) 

 

The best modelling can be done in ANSYS by using parametric design language 

shortened as APDL. 
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CHAPTER 3 

 

NUMERICAL RESULTS AND DISCUSSIONS 

 
3.1. Geometrical Model of the Wing 
 

Wing with two equal overhangs shown in Figure 3.1 has two different aerofoil 

cross-sections as mentioned earlier. The lengths of the parts of beam are shown in Figure 

3.1. 

 

 

 

 

Figure 3.1. Dimensions of the wing with two equal overhangs 
 

Left and right supports of the wing are located at the mid points of the parts having 

length L2. Chord and thickness of the aerofoil cross-sectioned wing are shown in Figure 

3.2 and given as Chord = 400 mm and Thickness = 82 mm. 

 

 

 

 

 

 

 

Part 1: Laminated composite 1 (LC1) 

Part 2: Laminated composite 2 (LC2) 

Part 3: Laminated composite 3 (LC3) 

Part 4: Epoxy 

Part 5: Foam 

 

Figure 3.2. Cross-section of the wing with part numbers 
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 Geometrical properties of each part are given in Table 3.1 and Table 3.2. 

 

Table 3.1 Geometrical properties of each part for thickness of Part 1a = 3.2 mm 

 A (mm2) Ixx (mm4) Iyy(mm4) 

Part 1a: Gelcoat of LC* 1 341.24 3.1368e5 5.3009e6 

Part 1b: Layers of LC 1 2347.96 1.94432e6 3.67731e7 

Part 2: LC 2 97.939 30593 18011 

Part 3: LC 3 287.85 2.0550e5 2.1880e6 

Part 4: Epoxy 1092.2 1.0036e6 8.3138e6 

Part 5: Foam 636.73 1.9889e5 1.0285e5 

All parts 4804.6 3.6973e6 5.2675e7 

* LC means Laminated Composite 

 

Table 3.2 Geometrical properties of each part for thickness of Part 1b = 5 mm 

 A (mm2) Ixx (mm4) Iyy(mm4) 

Part 1a: Gelcoat of LC 1 341.24 3.1368e5 5.3009e6 

Part 1b: Layers of LC 1 3733.46 3.02262e6 5.17311e7 

Part 2: LC 2 97.939 30593 55429 

Part 3: LC 3 287.85 2.0550e5 2.6395e6 

Part 4: Epoxy 746.48 6.6671e5 6.4906e6 

Part 5: Foam 636.73 1.9889e5 3.4614e5 

All parts 5844.3 4.4386e6 6.6564e7 
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 Two types of aerofoil cross-sections of the wing of which data provided above are 

formed in CAD program and igs files are obtained. Then, importing igs files to ANSYS, 

the Real Constants used by BEAM44 are obtained. The details of the real constants and the 

corresponding numerical values of the present two models are given below: 

 

Real Constants used by BEAM44 

AREA1, IZ1, IY1, TKZB1, TKYB1, IX1,  

AREA2, IZ2, IY2, TKZB2, TKYB2, IX2,  

DX1, DY1, DZ1, DX2, DY2, DZ2,  

SHEARZ, SHEARY, TKZT1, TKYT1, TKZT2, TKYT2,  

ARESZ1, ARESY1, ARESZ2, ARESY2, TSF1, TSF2,  

DSCZ1, DSCY1, DSCZ2, DSCY2, EFSZ, EFSY,  

Y1, Z1, Y2, Z2, Y3, Z3,  

Y4, Z4, Y1, Z1, Y2, Z2,  

Y3, Z3, Y4, Z4, THETA, ISTRN,  

ADDMAS 

 

Real Constants for thickness of Part 1a = 3.2 mm: 

R,1,4805.1,0.52679E+08,0.36976E+07,41.968,156.45,0.93070E+07 

RMORE,4805.1,0.52679E+08,0.36976E+07,41.968,156.45,0.93070E+07 

RMORE,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000 

RMORE,1.9010,5.3291,41.968,243.80,41.968,243.80 

RMORE,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000 

RMORE,0.35880E-03,-19.795,0.35880E-03,-19.795,0.0000,0.0000 

 

Real Constants for thickness of Part 1b = 5 mm: 

R,2,5836.5,0.66241E+08,0.44381E+07,41.968,166.95,0.12765E+08 

RMORE,5836.5,0.66241E+08,0.44381E+07,41.968,166.95,0.12765E+08 

RMORE,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000 

RMORE,1.5858,6.0767,41.968,233.30,41.968,233.30 

RMORE,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000 

RMORE,0.46510E-03,-32.912,0.46510E-03,-32.912,0.0000,0.0000 
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3.2. Material Models of the Wing 
 

 The parts listed in Figure 3.2 are detailed in this section. The cross-section of the 

wing with 3.2 mm for thickness of Part 1a is named as C-S1 (Cross-Section1). Another 

one, Part 1b, is named C-S2. Laminate codes and layer thicknesses for C-S1 and C-S2 are 

given in Tables 3.3 and Table 3.4, respectively. 

 

Table 3.3 Laminate codes and layer thicknesses for C-S1 

 Laminate code Layer thicknesses (mm) 

Layers of LC 1 [45/-45/45/0/-45/45/90/-45]T 0.4, 0.4, 0.4, 0.2, 0.4, 0.4, 0.2, 0.4 

LC 2 [45/-45]T 0.4, 0.4 

LC 3 [45/-45/45/-45]T 0.4, 0.4, 0.4, 0.4 

 

 

Table 3.4 Laminate codes and layer thicknesses for C-S2 

 Laminate code Layer thicknesses (mm) 

Layers of LC 1 
[45/-45/45/0/-45/45/90/-45/ 

45/0/-45/45/-45]T 

0.4, 0.4, 0.4, 0.2, 0.4, 0.4, 0.2, 0.4, 

0.4, 0.2, 0.4, 0.4, 0.4 

LC 2 [45/-45]T 0.4, 0.4 

LC 3 [45/-45/45/-45]T 0.4, 0.4, 0.4, 0.4 

 

Scotchply type 1002 glass/epoxy material is used for all laminated composite parts 

of the C-S1 and C-S2. Its engineering constants are given by Tsai (1980) 

 

Longitudinal Young’s modulus Ex = 38.6 GPa 

Transverse Young’s modulus Ey = 8.27 GPa 

Longitudinal Poisson’s ratio υx = 0.26 

Longitudinal-transverse shear modulus Es = 4.14 GPa  

Fiber volume fraction vf = 0.45 

Specific gravity = 1.8 
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Also, the typical properties of epoxy which is used as the matrix material and filling 

are given by Kaw (2006) as follows: 

 

Axial modulus Ex = 3.4 GPa 

Transverse modulus Ey = 3.4 GPa 

Axial Poisson’s ratio υx = 0.3 

Axial shear modulus Es = 1.308 GPa 

Specific gravity = 1.2 

 

 Airex C70.55 made by Airex is selected as foam material. Its properties are listed 

below: 

 

Density ρ = 60 kg/m3 

Tensile modulus in the plane Ex = 45 MPa 

Shear modulus Es = 22 MPa 

Poisson's ratio υx = 0.32 

 

 Using the equations given in Section 2.2.1 and 2.2.2, axial Young’s modulus and 

shear modulus of each part having laminations which are based on A11 and A66 can be 

calculated. For this purpose, a computing code is developed by Matlab®. The results are 

given in Table 3.5. 

 

Table 3.5 Axial and shear modulus 

 Ex (MPa) Gxy (MPa) 

LC 1-CS1 19.758 10.922 

LC 1-CS2 20.406 11.02 

LC 2 18.628 12.053 

LC 3 18.628 12.053 

 



 30

 By using the Equations (2.35)-(2.38) along with the data provided in this Chapter, 

equivalent densities and longitudinal Young’s modulus of the C-S1 and C-S12 are found. 

The results are given in Table 3.6. 

 

Table 3.6 Eqv (equivalent) densities and axial Young’s modulus 

 C-S1 C-S2 

Eqv density   ρ (kg/m3) 1390 1499 

Eqv axial Young’s modulus by using Ai
*   Eea (GPa)  12.173 14.491 

Eqv lateral Young’s modulus by using Ixxi
*   Ebx (GPa) 12.796 15.201 

Eqv lateral Young’s modulus by using Iyyi
*   Eby (GPa) 15.445 16.712 

* related with i-th part 

 

3.3. Verification of the Present Model 
 

 To verify the used approach and the finite element model based on beam element 

BEAM44, due to the lack of information in the existing literature, transverse vibration of 

the uniform cross-sectioned wing with equal overhangs which is the fundamental part of 

the study is considered and examined. 

 The lengths of the wing shown in Figure 3.1 are given again in Figure 3.3 in the 

modified form and their details are L1 = 1650 mm, L3 = 2350 mm. C-S1 is selected for the 

cross-section of the wing. After several convergence test, total N=20 beam elements 

BEAM44 are used for finite element model. The overhangs and span parts of the beam are 

divided into 4 and 12 elements, respectively. The results of the covergency tests done for 

finding the proper number of elements necessary to model the beam with two equal 

overhangs correctly are shown in graphical form in Figure 3.4. 

 

 

 

 

Figure 3.3. Dimensions of the uniform wing with two equal overhangs 
 



 31

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4. Covergency curve 
 

 By using the ratio of span to length α = S/L defined by Murphy (1997) (see Section 

2.3 of this thesis) as α =2L3/(2L1+2L3)=4700/8000=0.5875 is found for the beam shown in 

Figure 3.3. The transformed fundamental root of the frequency equation K1 is read from 

Figure 2.4 approximately 12.3 for α =0.5875. Thus, natural frequency f in Hz is calculated 

by using Equations (2.9) as f=4.76926 Hz. 

The present finite element results and the results available in the literature are given 

in Table 3.7. 

 

Table 3.7 Comparisons of natural frequencies (Hz)  

 Present, N=20 Rao and Rao (1973) Murphy (1997) 

First natural frequency f1 4.6252 4.639 4.76926 

Second natural frequency f2  9.6614 10.1063 - 

Third natural frequency f3 15.078 16.2629 - 

 
It can be seen from Table 3.7 that present results are in good agreement with the 

results obtained from the available in the literature. 

 The natural mode shapes of the natural frequencies presented in Table 3.7 are 

plotted in the Figure 3.5 to Figure 3.7. 
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Figure 3.5. First natural mode shape: Flapping 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6. Second natural mode shape: Flapping 2 
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Figure 3.7. Third natural mode shape: Flapping 3 

 

3.4. Natural Frequencies and Mode Shapes of Main Model 

 
 The main model, shown in Figure 3.8, with lengths L1 = 1400 mm, L2 = 500 mm 

and L3 = 1850 mm are considered in this section. In this model, the effects of the thickened 

parts on natural frequencies are studied. In order to get accurate results for higher order 

natural frequencies, N=40 elemets are used to model the beam after checking the 

convergency for higher order natural frequencies. The natural frequencies of uniform wing 

and multi-section wing are given in Table 3.8. Only the mode shapes of multi-section wing 

are given in Figures 3.9-3.20. 

 

 

 

 

 

Figure 3.8. Dimensions of the wing with two equal overhangs 
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Table 3.8. Natural frequencies fi (Hz) with N=40 elements 

Mode shapes Uniform Wing Multi-Section Wing 

Flapping 1 4.6252 4.6906 

Flapping 2 9.6611 10.136 

Flapping 3 15.077 15.996 

Lead-Lag 1 17.316 17.624 

Flapping 4 31.050 32.126 

Lead-Lag 2 35.601 37.563 

Flapping 5 54.397 58.107 

Lead-Lag 3 58.156 58.918 

Flapping 6 81.385 81.759 

Flapping 7 81.423 82.040 
 

As expected, it is seen from Table 3.8 that multi-section wing with the strengthened 

cross sections have higher natural frequencies than the wing with uniform cross-section. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9. Flapping 1 
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Figure 3.10. Flapping 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.11. Flapping 3 
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Figure 3.12. Lead-Lag 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.13. Flapping 4 
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Figure 3.14. Lead-Lag 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.15. Lead-Lag 3 
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Figure 3.16. Flapping 5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.17. Flapping 6 
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Figure 3.18. Flapping 7 

 

3.5. Natural Frequencies and Mode Shapes of Several Models 
 

 In order to see the effects of the ratio of span to length α = S/L on the natural 

frequencies, considering the same lengths of the thickened cross-section part L2 and of 

total length=2L1+3L2+2L3 shown in Figure 3.8, the models with different L1 and L3 

combinations are studied. Each model is named based on the notation ModelL1 as follows: 

 

Model2200 :  L1 = 2200 mm, L2 = 500 mm and L3 = 1050 mm. 

Model2000 :  L1 = 2000 mm, L2 = 500 mm and L3 = 1250 mm. 

Model1800 :  L1 = 1800 mm, L2 = 500 mm and L3 = 1450 mm. 

Model1600 :  L1 = 1600 mm, L2 = 500 mm and L3 = 1650 mm. 

Model1400 :  L1 = 1400 mm, L2 = 500 mm and L3 = 1850 mm. 

Model1200 :  L1 = 1200 mm, L2 = 500 mm and L3 = 2050 mm. 

Model1000 :  L1 = 1000 mm, L2 = 500 mm and L3 = 2250 mm. 
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 In addition to investigation of effect of the ratio of span to length α = S/L on the 

natural frequencies, next to that, by using the same ratio of span to length denoted by α = 

S/L=4700/8000=0.5875, different L1, L2, and L3 combinations are considered in order to 

see the effects of the thickened cross-section part on the natural frequencies. Similar to 

former study step, now each model is named based on the notation ModelL2 as follows: 

 

Model300 :  L1 = 1500 mm, L2 = 300 mm and L3 = 2050 mm. 

Model400 :  L1 = 1450 mm, L2 = 400 mm and L3 = 1950 mm. 

Model500 :  L1 = 1400 mm, L2 = 500 mm and L3 = 1850 mm. 

Model600 :  L1 = 1350 mm, L2 = 600 mm and L3 = 1750 mm. 

Model700 :  L1 = 1300 mm, L2 = 700 mm and L3 = 1650 mm. 

 

 It should be noted for Model2200 and Model300 that if the subscript of the model name 

has 4 digits, it belongs to L1, otherwise it belongs to L2. 

 The results of the analysis on investigation on the effect of the ratio of span to length 

α = S/L on the natural frequencies are presented for ten natural frequencies in Figure 3.19 

to Figure 3.28 seperately, in order to see the graph precisely. The axis of the plots in the 

aforementioned figures are selected as L1 (mm) vs nth (Hz) frequency. Moeover, in the 

plots gridlines are shown to see the numerical value for a selected point to discuss. 

 

 

 

 

 

 

 

 

 

 

Figure 3.19. The effect of L1on first natural frequencies 
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Figure 3.20. The effect of L1on second natural frequencies 

 

 

 

 

 

 

 

 

 

 

Figure 3.21. The effect of L1on third natural frequencies 

 

 

 

 

 

 

 

 

 

 

Figure 3.22. The effect of L1on fourth natural frequencies 
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Figure 3.23. The effect of L1 on fifth natural frequencies 

 

 

 

 

 

 

 

 

 

 

Figure 3.24. The effect of L1on sixth natural frequencies 

 

 

 

 

 

 

 

 

 

 

Figure 3.25. The effect of L1 on seventh natural frequencies 
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Figure 3.26. The effect of L1 on eighth natural frequencies 

 

 

 

 

 

 

 

 

 

 

Figure 3.27. The effect of L1on nineth natural frequencies 

 

 

 

 

 

 

 

 

 

 

Figure 3.28. The effect of L1 on tenth natural frequencies 

55

60

65

70

75

1000 1200 1400 1600 1800 2000 2200

L 1 (mm)

f 8 (Hz)

60

65

70

75

80

85

1000 1200 1400 1600 1800 2000 2200

L 1 (mm)

f 9 (Hz)

75

80

85

90

95

1000 1200 1400 1600 1800 2000 2200

L 1 (mm)

f 10 (Hz)



 44

 Since the overhang length L1 is effective on the location of nodes of natural modes, 

the results related to in the range of {1000,..., 2200} shown in Figure 3.19 to Figure 3.28 

have very different plots. Discussions of them are presented below: 

 First natural frequencies has maximum value for L1=1600 mm and the plot in the 

shape of inverse parabola. 

 Second natural frequency decreases about linarly, when the overhang length L1 

increases. 

 Third natural frequency plot in the shape of fourth order polinomial. It has local 

maximum at L1=1200 mm, local minimum at L1=1600 mm, and absolute maximum at 

L1=2000 mm. 

 Fourth natural frequency plot in the shape of inverse fourth order polinomial. It has 

absolute minimum at L1=1200 mm, local maximum at L1=1600 mm, and local minimum 

at L1=2000 mm. 

 Fifth natural frequencies increase up to L1=1550 mm gradually, then decrease 

linearly. 

 Sixth natural frequencies decrease up to L1=1400 mm, then increase until local 

maximum value at L2=2000 mm, finally again decrease linearly. 

 Seventh natural frequency has maximum value for L1=1400 mm and the plot 

approximately in the shape of inverse parabola. 

 Eighth natural frequency plot in the shape of inverse fourth order polinomial. It has 

absolute minimum at L1=1400 mm, local maximum at L1=1600 mm, and local minimum 

at L1=1800 mm. 

 Nineth natural frequencies increase up to L1=1400 mm, then decrease until local 

minimum value at L2=1850 mm, finally again increase linearly. 

 Tenth natural frequency plot in the shape of fourth order polinomial. It has local 

maximum at L1=1200 mm, local minimum at L1=1400 mm, and absolute maximum at 

L1=1800 mm. 

 The results of the analysis on investigation of the effects of the thickened cross-

section part length L2 on the natural frequencies are presented just for three natural 

frequencies in Figure 3.29 to Figure 3.31 seperately, in order to see the graph precisely. 

The axis of the plots in the aforementioned figures are selected as L2 (mm) vs nth (Hz) 

frequency. Moeover, in the plots gridlines are shown to see the numerical value for a 

selected point to discuss. 
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Figure 3.29. The effect of L2 on first natural frequencies 

 

 

 

 

 

 

 

 

 

 

Figure 3.30. The effect of L2 on second natural frequencies 

 

 

 

 

 

 

 

 

 

 

Figure 3.31. The effect of L2 on third natural frequencies 
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 It can be seen from Figure 3.29 to Figure 3.31 that when the thickened cross-section 

part length L2 increses in the considered range, natural frequencies increases linearly. 

Althougth the same tandency is observed for the first ten natural frequencies, just first 

three natural frequency results are presented. 
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CHAPTER 4 

 

CONCLUSIONS 

 
 Modal analysis of aerofoil cross-sectioned wing made of laminated composite and 

filled with foam can be studied by Finite Element Method with the help of ANSYS. 

ANSYS provides diferent types of finite element models based on beam and shell 

elements. The effects of ratio of overhangs to mid-span and length of the thickened parts 

on natural frequencies are investigated by finite element models developed in ANSYS and 

the model is verified by theoretical results available in the literature. 

 Since the overhang length L1 is effective on the location of nodes of natural modes, 

very different type of plots for natural frequecy vs length L1 are obtained. 

 Moreover, length of the thickened cross-section part L2 and the natural frequencies 

are directly proportional. 
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