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ABSTRACT

INVESTIGATION OF THE ELECTRONIC STRUCTURE OF THE
RUTHENIUM DYES USED IN SOLAR CELLS BY COMBINING

HARTREE-FOCK THEORY WITH THE QUANTUM MONTE CARLO
TECHNIQUE

The Haldane-Anderson model is constructed to describe the electronic properties

of a system where a transition-metal impurity atom is added into a semiconductor host ma-

terial. The electric and magnetic properties of the ruthenium-based dyes are investigated

by using Haldane-Anderson model in this study. Because ruthenium-based dyes are semi-

conductor and ruthenium atom is a transition metal and its 4d orbitals are considered as

impurities for dye molecules. Density Functional Theory (DFT) and Hartree-Fock Theory

(HF) was used to obtain the Haldane-Anderson model parameters of the ruthenium-based

dyes. Multi-orbital Hirsch-Fye Quantum Monte Carlo (HFQMC) algorithm was used to

investigate effect of onsite Coulomb interactions of impurity 4d orbitals. Firstly, the An-

derson model parameters are calculated by using Hartree-Fock and Density Functional

Theory. After that, the occupation numbers of 4d orbitals and the all orbital occupancies

of the dye molecules are obtained by using the Hirsch-Fye Quantum Monte Carlo algo-

rithm and the magnetization of 4d orbitals are calculated. Finally, physical meaning of

our results are discussed.
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ÖZET

GÜNEŞ PİLLERİNDE KULLANILAN RUTHENİUM BOYALARIN
ELEKTRONİK YAPISININ HARTREE FOCK KURAMI İLE KUANTUM

MONTE CARLO TEKNİĞİNİN BİRLEŞTİRİLEREK İNCELENMESİ

Yarı-iletken ev sahibi malzemenin içine geçiş metali safsızlık atomu eklenerek

oluşturulan bir sistemin elektronik özelliklerini incelemek için Haldane-Anderson mod-

eli oluşturulmuştur. Bu çalışmada ruthenium-temelli boyaların elektronik ve manyetik

özellikleri Haldane-Anderson modeli kullanılarak incelenmiştir. Çünkü, ruthenium-temelli

boyalar yarı iletkendir ve ruthenium atomu bir geçiş metalidir ayrıca ruthenium atomu-

nun 4d orbitalleri boya molekülü için safsızlık olarak kabul edilmiştir. Ruthenium-temelli

boyaların Haldane-Anderson modeli parameterelerini elde etmek için Yoğunluk Fonksiy-

oneli Kuramı ve Hartree-Fock Kuramı kullanılmıştır. 4d orbitallerindeki Coulomb etkileş-

melerinin sistemin elektronik özelliklerine etkisini incelemek için multi-orbital Hirsch-

Fye Quantum Monte Carlo algoritması kullanılmıştır. İlk olarak, Hartree-Fock ve Yoğunluk

Fonksiyoneli Kuramları kullanılarak Anderson modeli parametreleri hesaplanmıştır. Bun-

dan sonra, Hirsch-Fye Kuantum Monte Carlo algoritması kullanılarak 4d orbitallerinin

doluluk oranları, bütün sistemin doluluk oranları ve 4d orbitallerinin manyetizasyonları

elde edilmiştir. Son olarak sonuçlarımızın fiziksel anlamları tartışılmıştır.
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CHAPTER 1

INTRODUCTION

One of the most important thing for humanity is energy sources. Humankind

is developing very fast and energy need of humanity is increasing rapidly. One of the

solution of this energy need problem is solar energy. There are different kinds of solar

energy cells to capture solar energy. Dye Sensitized Solar Cells (DSSC) is one of them.

DSSC is a low-cost solar cell in the group of thin film solar cells [1]. Earlier version of

DSSC based on semiconductor form between a photo-sensitized anode and an electrolyte

and these are photoelectrochemical systems. The modern version of this type of solar

cells known as Gratzel Cell and it was originally invented in 1988 by Brian O’Regan and

Micheal Gratzel at UC Berkeley [2].

A modern DSSC is composed of a porous layer of titanium dioxide TiO2 nanopar-

ticles, covered with a molecular dye which absorb sunlight, like the chlorophyll in green

leaves. When sunlight passes through the transparent electrode into the dye layer, it can

excite electrons which flow into the TiO2. The electrons flow toward the transparent

electrode where they are collected for powering load. They are re-introduced into the

cell on a metal electrode at the back, flowing into the electrolyte. In the electrolyte part,

transported electrons go back into the dye molecules with red-ox reactions [3].

Figure 1.1. Working principle of dye sensitized solar cell (DSSC).

There is no efficient and also stable dye molecules in literature now and that is the

main disadvantage of DSSC [4]. Different kinds of dye molecules have been produced in
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the last 20 years. These dyes have organic and non-organic structures. We are going to

investigate electronic structure of the ruthenium-based non-organic dyes and maybe this

can help for finding new dye molecules in the future. We chose the ruthenium-based dyes

because of their photochemical and physical properties. Ruthenium atom is a transition

metal and ruthenium-based dyes are strongly correlated systems [5]. Ab-initio calcula-

tions (Density Functional Theory and Hartree-Fock Theory) have some problems to give

correct results for strongly correlated system [6]. We are going to investigate this problem

by using Haldane-Anderson impurity model [7]. Firstly, we will use DFT and HF theory

with Gaussian 09 program and NBO package to find Anderson model parameters and

then we will use HFQMC algorithm to find electronic properities of the Ruthenium-based

dye molecules [8, 9].

Briefly, in Chapter 2, we investigated the molecular structure of the Ruthenium-

based dyes and we explained why we chose N3, N719, N712 and Z907 dye molecules.

Later, in Chapter 3 we decribed the basics of HF theory and DFT. In Chapter 4, we intro-

duced the Anderson model and we decribed how we found the Anderson model parame-

ters from the Fock matrix. In chapter 5, we showed HF theory, DFT, HF + QMC and DFT

+ QMC results and we compared Ab-initio calculations with the Quantum Monte Carlo

calculations. Finally, in Appendix part, we gave detailed explanations for HF theory, DFT

and HFQMC algorithm.

1.1. Molecular Structure of Ruthenium Dyes

Ruthenium-based dye molecules were first reported in 1991 by O’Regan and

Gratzel in the Nature [1]. 7.1% efficiency was achieved by using these first ruthenium-

based dyes. However, their molecular structures were complicated and the productions of

them were difficult. Following dyes have different photochemical properties and we want

to figure out the reasons of these differences. If we understand their electronic and mag-

netic properties correctly, we can then answer this question. We chose these following

dyes for investigation of their electronic properties because N719 dye is the most efficent

dye, Z907 dye is the most stable dye and N3 dye is the first one of these dyes and also

molecular structure of N712 and N3 dyes are very similar to the N719 dye.
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1.1.1. Molecular Structure of N3 Dye

In 1993, Nazeeruddin published DSSC with 10.3% efficiency [10], using N3

dye[cis-di(thiocyanato)bis(2,2-bipyridine-4,4-dicarboxylate)Ruthenium]. Molecular struc-

ture of N3 dye was much simpler than earlier version of dye molecules used in DSSC.

Empirical formula of N3 dye is [C26H16N6O8RuS2] and ruthenium metal center atom

instead of three like earlier versions.

Figure 1.2. Atomic position of N3 Dye, with the empirical formula
[C26H16N6O8RuS2]. Nitrogen atoms are shown in dark blue, car-
bon in grey, ruthenium in light blue, hydrogen in white, oxygen in red and
sulphur in yellow.

1.1.2. Molecular Structure of N719 Dye

In 2005, Nazeeruddin reported a new dye called N719. This new dye achieved

11.3% conversion efficiency in DSSC [11]. Molecular structure of N719 dye is similar to

N3 dye with a empirical formula [C26H14N6O8RuS2]−2. N719 dye has two TBA+(tetra

butylamyn) and two H+ counterions instead of four H+ counterions in N3. When sun-

light passes through to the DSSC, photons absorb by the dye molecules and they are

excited from ground state to the excited state. Excited dye molecules adsorbed on the

TiO2 layer and they gives excited electrons into the conduction band of TiO2 electrode.
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When this process happening, dye molecules have different adsorption speed into the tita-

nium dioxide layer. N3 dye and N719 dye have different adsorption speed onto the porous

layer of TiO2 electrode because they have different counterions and adsorption speed of

N3 dye is 3 hours and adsorption speed of N719 dye is 24 hours. Consequence of speed

difference of N719 dye gives better efficiency [3].

Figure 1.3. Atomic position of N719 Dye, with the empirical formula
[C26H14N6O8RuS2]−2. Nitrogen atoms are shown in dark blue, car-
bon in grey, ruthenium in light blue, hydrogen in white, oxygen in red and
sulphur in yellow. Molecular structures are taken from GaussView.

1.1.3. Molecular Structure of N712 Dye

N712 dye has four TBA+ and no H+ counterions. Molecular structure is similar

to the N3 dye and the N719 dye except counterions part. Empirical formula of N712 Dye

is [C26H12N6O8RuS2]−4. Adsorption speed on the porous layer of the TiO2 is less than

N719 dye ( it takes much time then N719 dye to adsorbed on the TiO2 layer ). There is

a certain value of adsorption speed for efficiency increase. Optimum value of adsorption

time is around 24 hours. Because of these reasons, N712 dye has less efficienct then N719

dye [3]. However, we will investigate electronic structure of N712 dye because, we want

to understand the effect of the counterion change.
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Figure 1.4. Atomic position of N712 Dye, with the empirical formula
[C26H12N6O8RuS2]−4. Nitrogen atoms are shown in dark blue, car-
bon in grey, ruthenium in light blue, hydrogen in white, oxygen in red and
sulphur in yellow. Molecular structures are taken from GaussView.

1.1.4. Molecular Structure of Z907 Dye

In 2003 Peng Wang et al. reported Z907 Dye which is a stable quasi-solid-state

amphiphilic ruthenium sensitizer with polymer gel electrolyte [12]. Emprical formula of

Z907 Dye is [C42H52N6O8RuS2]. It has some kind of similar molecular structure like

N719 dye. Instead of TBA+ counterions of N719 dye, it has C9H19 molecules and wide

band gap with TiO2 up to 750nm and more stable than N719 dye. The DSSC with Z907

was sustained 1000h at 90oC and it showed 94% of initial performance but Z907 dye is

less efficient than N719 dye . This study was reported by [3, 12, 13].
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Figure 1.5. Atomic position of Z907 Dye, with the empirical formula
[C42H52N6O8RuS2]. Nitrogen atoms are shown in dark blue, car-
bon in grey, ruthenium in light blue, hydrogen in white, oxygen in red and
sulphur in yellow. Molecular structures are taken from GaussView.
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CHAPTER 2

HARTREE-FOCK AND DENSITY FUNCTIONAL THEORY

2.1. Hartree-Fock Theory

Investigation of many-body particles requires solving electronic Shrodinger equa-

tion and we need a trial wave function for solving electronic Shcrodinger eqution. True

N-body ground state wave function can be approximated as linear combination of all pos-

sible Slater determinants [14, 15] because of the fermionic structure of the electrons of the

system and Pauli’s Exclusion Principle. Our method in this part of the study is Hartree-

Fock approximation. This theory states that true N-body ground state wave function of

the system can be approximated by a single Slater determinant which minimize the en-

ergy among all possible choice of all other single Slater determinants of the system. If we

construct trial wave function from all possible Slater determinant, The trial wave function

will define the system exactly but it is impossible to solve computationally [16–21]. We

use Hartree-Fock theory because of this reason.

In Hartree-Fock theory, interactions between particles are approximated, either by

neglecting all but taking the most important one or by taking all interactions into account

in avarge fashion and consequently neglects the correlation between electrons [16–21].

In Hartree-Fock Theory, we are going to solve Fock matrix as eigenvalue equation

(see appendix A for theoretical details) and it is as follows,

Fiφi = εiφi (2.1)

Here F is the Fock operator, φi is canonical molecular orbital, and εi is eigenvalue

of fock operator and Fock operator is defined as,

Fi = hi +
∑
ij

(Jij −Kij) (2.2)
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Where Jij is coulomb operator and Kij is exchange operator and they defined as,

Jij =< φi(1)φj(2)|g12|φi(1)φj(2) > (2.3)

Kij =< φi(1)φj(2)|g12|φj(1)φi(2) > (2.4)

here hi is single particle operator,

hi = −1

2
∇i

2 −
Nnuclei∑

a

Za
|Ra − ri|

(2.5)

and two particle gijoperator defined as,

gij =
1

|ri − rj|
(2.6)

2.2. Density Functional Theory

The basis of (DFT) is the Hohenberg Kohn theorem [22]. DFT states that the

ground state electronic energy can be completely determined by the electron density [16].

DFT is conceptually and computationally very similar to HF theory. We are taking

account electron-electron correlation effects in DFT and we are neglecting this effects in

Hartree-Fock Theory, because DFT can provide much better results when we compare

with Hartree-Fock Theory.

Main goal in DFT, is to find exchange-correlation functional and also main prob-

lem of DFT is finding correct exchange-correlation functional. There are lots of different

exchange-correlation functionals to describe electronic structure of the systems in litera-

ture. These different functionals can give good result or bad result depending on what we

measure and what the electronic structure of the system is. Exchange-correlation func-

tionals are constructed from theoretically and emprically and that is the reason why there

are so much different functionals.
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2.2.1. Hohenberg-Kohn Theory and Kohn-Sham Equation

There are two main ideas in the Hohenberg-Kohn theory. The first idea, electron

density is a basic variable for determing system. The second idea, the ground state of

the system can be found by using variational principle [16, 22]. (for details of theory see

Appendix B) Hamiltonian of the many body system is

He = Te + Vext + Vee. (2.7)

Where Te is the electronic kinetic energy, Vext is interaction with the external

potential energy and Vee is the electron-electron interaction potential energy. General

total energy can be written as

E[ρ] = F [ρ] +

∫
Vext(r)ρ(r)dr. (2.8)

Where Vext is the interaction with nuclei and any other field and F[ρ] is defined as

F [ρ] = T [ρ] + V [ρ], (2.9)

(2.10)

F [ρ] is independent of external potential but we don’t know what it is and from

Kohn-Sham theory [23] F[ρ] can be written as

F [ρ] = Ts[ρ] +

∫
ρ(r)ρ(r′)drdr′ + Exc[ρ]. (2.11)

where Ts[ρ] is non interaction kinetic energy, Exc[ρ] is exchange-correlation en-

ergy and J [ρ] is the Coulomb potential. Now we can write general energy expression for
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DFT as follows

EDFT [ρ] = Ts[ρ] + Ene[ρ] + J [ρ] + Exc[ρ]. (2.12)
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CHAPTER 3

ANDERSON MODEL FOR RUTHENIUM-BASED DYES

3.1. Anderson Model For Ruthenium-Based Dyes

Haldane-Anderson model describes the electronic structure of transition metal

impurities in semiconductors[24]. Single-orbital Anderson Hamiltonian is [7]

H =
∑
kσ

(εk − µ) ckσ
†ckσ +

∑
σ

(εd − µ) d†σdσ

+
∑
k,σ

(Vkckσ
†dσ + h.c) + Und↑nd↓. (3.1)

Where, εk denotes the eigenvalues of host electrons, ckσ is the destruction operator,

ckσ
† is the creation operator for host electrons, εd denotes the eigenvalues of the impuritiy

electrons, Vk is the hybridization term between host and impurity electrons, U is the on

site Coulomb interaction of d electrons, ndσ is the site occupation number of d electron

with σ =↑ and σ =↓ which denotes up spin and down spin of electrons.

In this work we are interested to find electronic structure of Ruthenium based

dyes. Ru atom is transition metal. Transition metals have partially filled d and f orbitals.

Because of that we need to construct multi-orbital Anderson model [25]. Multi-orbital

Anderson Hamiltonian is

H =
∑
mσ

(εm − µ) c†mσ cmσ +
∑
mσ

5∑
ν=1

(Vmν c
†
mσ dν σ + h.c.)

+
5∑

ν=1

∑
σ

(εν − µ)nν σ +
5∑

ν=1

Uν nν ↑ nν ↓.

In the single-orbital case ~k denotes the wave vector of the host lattice structure.

However, in our work, we use the notation m for the discrete host eigenstates, ν is the
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index of d orbitals ranging from 1 to 5 for Anderson model. Therefore, each molecular

orbital can be expressed as

|ψn〉 =
5∑

ν=1

βnν |dν〉+
N−5∑
i=1

βni|φi〉 (3.2)

where βnm are the molecular orbital coefficients, |dν〉 is the orthogonal atomic

orbital of impurity, and |φi〉 is the orthogonal atomic orbital of host. In Eq.(3.2), n is an

index for the molecular wavefunctions, N represents the number of the basis functions, ν

is an indec for only 4d orbitals of ruthenium atom and i an index for the rest of the atomic

orbitals (host index).

In this work, we’re going to use HF and DFT to find Anderson model parame-

ters. After that, we will use these parameters in our QMC calculations and effect of the

Coulomb repulsion between 4d orbitals are included in these results.

There is a lack of knowledge for understanding strongly corralated systems in pure

DFT. We are taking into account electron-electron correlation effect in DFT calculations.

On the other hand, in the pure HF theory, there is no correlation effect of electrons and

Coulomb repulsion is taken in the mean field fashion.

3.2. Finding Anderson Model Parameters with Hartree-Fock and

Density Functional Theory from Fock Matrix

To find the Anderson model parameters, our approach is getting Fock matrix by

using the Gaussian 09 program with the NBO package [8, 9]. We use the NBO package

since there is an option to get Fock matrix in orthogonal basis called Natural Atomic

Orbitals (NAO). In the input file “FNAO” keyword gives us the Fock matrix in NAO

basis. After getting Fock matrix, we divided it into two submatrices which are host part

and impurity part [26].
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Figure 3.1. The Hamiltonian of the Fock matrix in the NAO basis (FNAO). We divided
Fock matrix into the three parts. The Hd part contains the diagonal terms
εdν (effective energies of the 4d orbitals) and the off-diagonal terms tνν′
(the hopping energies of the 4d orbitals). The H0 matrix represents the host
Hamiltonian. Mνi and Miν are the interacting terms between the impurity
(4d orbitals of ruthenium atom) and the host part.

The impurity part contains diagonal εdν effective energy of 4d orbitals part and

the nondiagonal tνν′ hopping term between 4d orbitals part. H0 is the host part, Mνi and

Miν are the interacting terms between the impurity and the host part.

We diagonalize the host part of Fock matrix by multiplying with fim matrix and

we also have to multiply interaction terms between the impurity and host part of the Fock

matrix Mνi with fim . If we define Vmν as the new interaction term between host and

impurity part as following [26],

Vνm =
N−5∑
i

Mνifim . (3.3)

New Hamiltonian is
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Figure 3.2. New Hamiltonian H′ after diagonalization. The first part contains the di-
agonal terms εdν ( energies of the 4d orbitals) and the off-diagonal terms
tνν′ (hopping energies of the 4d orbitals). The host part contains εm the
eigenvalues of the host Hamiltonian after diagonalization. Vνm and Vmν

are the hybridization matrix elements between the impurity (4d orbitals of
ruthenium atom) and the host part.

We can find all Anderson Hamiltonian parameters from reading these matrix ele-

ments.

14



CHAPTER 4

QUANTUM MONTE CARLO MEASUREMENTS

4.1. Quantum Monte Carlo Measurements

Multi-orbital Hirsch-Fye quantum Monte Carlo technique [25](see Appendix C

for details) allows us to find the numerical results of Green’s functions of 4d orbitals.

Firstly, we define the Green functions of 4d orbitals as following,

Gν ν′ σ(τ) = −
〈
Tτ dν σ(τ ′ + τ) d†ν′ σ(τ ′)

〉
, (4.1)

(4.2)

in Matsubara frequiencies. Here, subscript ν and ν ′ shows 4d orbitals of ruthenium

atom, Tτ is the Matsubara time ordering operator and σ is the spin. dν and d′ν obey the

fermionic anti commutation relation:

{
dν , d

†
ν′

}
= δν,ν′ . (4.3)

Our primary goal in this work is to find the occupation number and the magne-

tization of 4d orbitals of ruthenium atom and the definition of occupation number and

magnetization are;

M z
ν = d†ν↑ dν↑ − d†ν↓ dν↓, (4.4)

nν = d†ν↑ dν↑ + d†ν↓ dν↓. (4.5)

With these definitions, we can find the static QMC measurements and these static
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measurements are equal time measurements. In chapter 6, we will investigate the occu-

pation number of the 4d orbitals of ruthenium atom < nν > and the equal-time magnetic

correlation function of between 4d orbitals of ruthenium atom < (M z
ν )2 >.

4.1.1. Static Quantum Monte Carlo Measurements

In our simulations warm up sweeps describe the thermalization of the system at

given temperature. During the warm up sweeps, Hubbard Stratonovich spins (see Appen-

dic C) flip via random number ratio and system can be arranged realisticly depending on

the number of sweeps. We can find avarage values and error values of our calculations by

using standart deviation. If we increase the number of warm up sweeps, this will mini-

mize our errors but it will increase the computing time. Therefore, we calibrated number

of warm up sweeps and measurements sweeps. In the warm up sweeps section, there are

no any measurements made. After the warm up sweeps part, measurements strart.

By using fermionic anti commutation relation of d†ν↑ and dν↑, the definitions of

the Green’s function and Wick’s Theorem, we will calculate the occupation number of 4d

orbitals, magnetic moment of 4d orbitals.

The occupation number of 4d orbitals,

〈nν 〉 =
〈
d†ν↑ dν↑ + d†ν↓ dν↓

〉
=

1

L

L∑
i=1

〈 [ ( 1 − Gν ν ↑(τi, τi) ) + ( 1 − Gν ν ↓(τi, τi) ) ]〉{Slν} . (4.6)

Square of the magnetic moment of 4d electrons,
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〈
(M z

ν )2
〉

=
〈(

d†ν↑ dν↑ − d†ν↓ dν↓

) (
d†ν↑ dν↑ − d

†
ν↓ dν↓

)〉
=

〈(
d†ν↑ dν↑ − d†ν↓ dν↓

) (
d†ν↑ dν↑ − d†ν↓ dν↓

)〉
+
〈(

dν↑ d
†
ν↑ d

†
ν↑ dν↑ + dν↓ d

†
ν↓ d

†
ν↓ dν↓

)〉
=

1

L

L∑
i=1

〈 [
(Gν ν ↑(τi, τi) − Gν ν ↓(τi, τi) )2

+ Gν ν ↑(τi, τi) ( 1−Gν ν ↑(τi, τi) )

+ Gν ν ↓(τi, τi) ( 1−Gν ν ↓(τi, τi) ) ]〉{Slν} . (4.7)

{Slν} denotes the Hubbard-Stratonovich field summation.

4.2. Double Counting Correction

In our calculations, it is important to note that the onsite Coulomb interaction U

is taken into account twice, first in Ab-inito calculation (HF and DFT) and second in the

QMC calculations. We need to extract double counting term from the energy levels of the

4d orbitals of ruthenium atom called εdν . We used double counting definition from [27].

Our new energy levels of 4d orbitals are ε̃dν as the following,

ε̃dν = εdν − µdc (4.8)

Here, µdc is the double counting term and we can describe as the following,

µdc =
U < nHFdc >

10
(4.9)

where < nHFdc > is the average electron number of 4d orbitals of ruthenium atom

which is obtained by HF theory and U is the on-site Coulomb interaction term.

We use the same relation for DFT only difference here is < nDFTdc > the average
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electron number of 4d orbitals of ruthenium atom which is obtained by DFT.

µdc =
U < nDFTdc >

10
(4.10)
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CHAPTER 5

RESULTS

5.1. Hartree-Fock Results

We define density of states(DOS)D(ε) for 4d orbitals of ruthenium atom plus host

states as follows,

D(ε) =
N∑
n=1

δ(ε− En))

=
N∑
n=1

γ/π

γ2 + (ε− En)2
(5.1)

Here En are the eigenvalues of the Fock operator and N is the total basis function.

We define DOS D0(ε) of host states as follows,

D0(ε) =
N∑
n=1

δ(ε− εm))

=
N∑
n=1

γ/π

γ2 + (ε− εm)2
(5.2)

Here εm are the energy levels of the host states and we use here N − 5 basis func-

tion because we want to find DOS without 4d orbitals of ruthenium atom. γ is broadness

factor and we plotted DOS graph for different γ values 0.1 and 0.2.
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5.1.1. Computational Details

HF theory results of ruthenium-based dyes (N3, N719, N712 and Z907) are cal-

culated by using Gaussian 09 program [8] with NBO package [9]. Molecular geometry is

obtained by using GaussView [28] which is visualization program of molecular sturcture

of the systems. In these calculation, atomic coordinates of optimized structure of N3 dye

taken from [29], atomic coordinates of optimized structure of N719 dye taken from [29],

atomic coordinates of optimized structure of N712 dye taken from [29] and Z907 dye con-

structed from N719 dye with the information from [30] after that, all dyes are optimized

by using Gaussian 09 program with B3LYP (Becke-three-LeeYangParr hybrid functional)

[31–34] functional. After finding optimized structure of all ruthenium-based dyes we did

Hartree-Fock calculation with LANL2DZ basis set for Ru atom and 6-31G(d) basis set

for the rest of the atoms (C, H, O, N, S). For the transition metal Ru atom, the effective

core potential basis set LANL2DZ ( Los Alamos ECP plus double zeta) is used [35–38].
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5.1.2. Measurement of N719

Figure 5.1. Energy eigenvalues En versus n for N719 dye is plotted. The forbidden
energy gap (∆) is approximately 8.14 eV between HOMO and LUMO
levels. Here, n is the number of basis functions;n = 1, 2, ..., N .

4d orbitals εdν  (eV)  ⟨nν ⟩
xz -3.66265 1.63283

3z2-r2 -3.24360 1.59633
x2-y2 -2.64223 1.50150
xy -1.27621 1.32799
yz  2.57420 0.84509

HF n719Table 5.1. Occupation number and energy level of 4d orbitals of N719 dye
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Figure 5.2. For all orbitals density of states D(ε) versus ε are calculated by using eq.
5.1 (a) The calculated density of state (DOS) of N719 Dye is plotted for
γ = 0.2. (b) This figure is plotted for γ = 0.1 with the range -8 to 8.
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Figure 5.3. Without 4d orbitals density of states D(ε) versus ε are calculated by using
eq. 5.2 (a) The calculated density of state (DOS) of N719 Dye without the
4d is plotted for γ = 0.2. The coloured vertical lines represent the position
of 4d orbitals. (b) This figure is plotted for γ = 0.1 with the range -8 to 8 .
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Figure 5.4. Square of the hybridization matrix elements Vmν between the host states
and theRu(4dν) states plotted as a function of the energy of the host states,
εm. Here, the vertical solid and dashed lines denote the HOMO and LUMO
levels.
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5.2. DFT Results

We define density of states(DOS)D(ε) for 4d orbitals of ruthenium atom plus host

states as follows,

D(ε) =
N∑
n=1

δ(ε− En))

=
N∑
n=1

γ/π

γ2 + (ε− En)2
(5.3)

Here En are the eigenvalues of the Fock operator and N is the total basis function.

We define DOS D0(ε) of host states as follows,

D0(ε) =
N∑
n=1

δ(ε− εm))

=
N∑
n=1

γ/π

γ2 + (ε− εm)2
(5.4)

Here εm are the energy levels of the host states and we use here N − 5 basis func-

tion because we want to find DOS without 4d orbitals of ruthenium atom. γ is broadness

factor and we plotted DOS graph for different γ values 0.1 and 0.2.

5.2.1. Computational Details

DFT results of ruthenium-based Dyes (N3, N719, N712 and Z907) are calculated

by using Gaussian 09 program [8] with NBO package [9]. Molecular geometry is obtained

by using GaussView [28] which is visualization program of molecular sturcture of the

systems. In these calculation, atomic coordinates of optimized structure of N3 taken from

[29], atomic coordinates of optimized structure of N719 dye taken from [29], atomic

coordinates of optimized structure of N712 dye taken from [29] and Z907 dye constructed

from N719 dye with the information from [30] after that all dyes are optimized by using

Gaussian 09 program with B3LYP (Becke-three-LeeYangParr hybrid functional) [31–34]
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functional. After finding optimized structure of all ruthenium-based dyes we did DFT

calculation also we used B3LYP hybrid functional with LANL2DZ basis set for Ru atom

and 6-31G(d) basis set for the rest of the atoms (C, H, O, N, S). For the transition metal

Ru atom, the effective core potential basis set LANL2DZ ( Los Alamos ECP plus double

zeta) is used [35–38].
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5.2.2. Measurement of N719

Figure 5.5. Energy eigenvalues En versus n for N719 dye is plotted. The forbidden
energy gap (∆) is approximately 1.90 eV between HOMO and LUMO
bands. Here, n is the number of basis functions;n = 1, 2, ..., N .

4d orbitals εdν  (eV)  ⟨nν ⟩
xz -1.65717 1.59698

x2-y2 -1.51840 1.53774
3z2-r2 -1.45581 1.59379

xy -1.23540 1.35743
yz -0.71566 1.01547

DFT n719

Table 5.2. Occupation number and energy level of 4d orbitals of N719 dye
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Figure 5.6. For all orbitals density of states D(ε) versus ε are calculated by using eq.
5.3 (a) The calculated density of state (DOS) of N719 Dye is plotted for
γ = 0.2. (b) This figure is plotted for γ = 0.1 with the range -8 to 8.
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Figure 5.7. Without 4d orbitals density of states D(ε) versus ε are calculated by using
eq. 5.4 (a) The calculated density of state (DOS) of N719 Dye without the
4d is plotted for γ = 0.2. The coloured vertical lines represent the position
of 4d orbitals. (b) This figure is plotted for γ = 0.1 with the range -8 to 8.
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Figure 5.8. Square of the hybridization matrix elements Vmν between the host states
and theRu(4dν) states plotted as a function of the energy of the host states,
εm. Here, the vertical solid and dashed lines denote the HOMO and LUMO
levels, respectively.
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5.3. QMC Results of N719

Solving Anderson Hamiltonian is very difficult numerically and of the Coulomb

repulsion of the (4dν) orbitals of ruthenium atom. Therefore, we used Hirsch-Fye Quan-

tum Monte Carlo (HFQMC) algortihm (for details see appendix C) [39] which takes ac-

count strong Coulomb repulsion effects without any approximation.

We did static Quantum Monte Carlo calculations by using HFQMC algortihm and

we found occupation number of (4dν) orbitals of the ruthenium atom, occupation number

of host states of the N719 dye and total electron number of N719 dye, square of local

magnetic moment of (4dν) orbitals of the ruthenium atom.

5.3.1. Hartree-Fock + QMC Results

We found Anderson Hamiltonian parameter from Hartree-Fock Theory for QMC

calculations in this section. We found occupation number of host states of the N719 dye

and occupation number of (4dν) orbitals of the ruthenium atom for temperature 1000K.

In these calculations β = ∆τL are parameters of Hirsch-Fye algortihm and these values

are ∆τ = 0.3625 and L = 32. Also we found square of local magnetic moment of (4dν)

orbitals of ruthenium atom for T = 1000K. For magnetic moment calculations Hirsch-

Fye parameters values are ∆τ = 0.3625 and L = 32. For all calculations number of

warm up sweeps are 1000 and number of measurement sweeps are 1000.
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Figure 5.9. Occupation number of the (4dν) orbitals of the ruthenium atom 〈nd 〉 as a
function of the chemical potential µ. Here, results are shown for different
values of the onsite Coulomb repulsion U . In addition, the vertical solid
and dashed lines denote the HOMO and LUMO levels, respectively.
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Figure 5.10. Occupation number of the host states of N719 dye 〈nh 〉 as a function of
the chemical potential µ. Here, results are shown for different values of
the onsite Coulomb repulsion U . In addition, the vertical solid and dashed
lines denote the HOMO and LUMO levels, respectively.
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Figure 5.11. Total electron numbers of the N719 dye 〈nt 〉 = 〈nd 〉+〈nh 〉 as a function
of the chemical potential µ. Here, results are shown for different values of
the onsite Coulomb repulsion U . In addition, the vertical solid and dashed
lines denote the HOMO and LUMO levels, respectively.
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Figure 5.12. Occupation number of the (4dν) orbitals of ruthenium atom 〈nν 〉 plotted
as a function of the chemical potential µ. Here, results are shown for the
onsite coulomb repulsion U = 0eV . In addition, the vertical solid and
dashed lines denotes the HOMO and LUMO levels, respectively.
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Figure 5.13. Square of the local magnetic moment of the (4dν) orbitals of ruthenium
atom 〈 (Mν

z)2 〉 plotted as a function of the chemical potential µ. Here,
results are shown for the onsite coulomb repulsion U = 0eV . In addition,
the vertical solid and dashed lines denote the HOMO and LUMO levels,
respectively.
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Figure 5.14. Occupation number of the (4dν) orbitals of ruthenium atom 〈nν 〉 plotted
as a function of the chemical potential µ. Here, results are shown for the
onsite coulomb repulsion U = 20eV . In addition, the vertical solid and
dashed lines denote the HOMO and LUMO levels, respectively.

37



Figure 5.15. Square of the local magnetic moment of the (4dν) orbitals of ruthenium
atom 〈 (Mν

z)2 〉 plotted as a function of the chemical potential µ. Here,
results are shown for the onsite coulomb repulsion U = 20eV . In addition,
the vertical solid and dashed lines denote the HOMO and LUMO levels,
respectively.
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Figure 5.16. Occupation number of the (4dν) orbitals of ruthenium atom 〈nν 〉 plotted
as a function of the chemical potential µ. Here, results are shown for the
onsite coulomb repulsion U = 24eV . In addition, the vertical solid and
dashed lines denote the HOMO and LUMO levels, respectively.
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Figure 5.17. Square of the local magnetic moment of the (4dν) orbitals of ruthenium
atom 〈 (Mν

z)2 〉 plotted as a function of the chemical potential µ. Here,
results are shown for the onsite coulomb repulsion U = 24eV . In addition,
the vertical solid and dashed lines denote the HOMO and LUMO levels,
respectively.
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Figure 5.18. Occupation number of the (4dν) orbitals of ruthenium atom 〈nν 〉 plotted
as a function of the chemical potential µ. Here, results are shown for the
onsite coulomb repulsion U = 28eV . In addition, the vertical solid and
dashed lines denote the HOMO and LUMO levels, respectively.
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Figure 5.19. Square of the local magnetic moment of the (4dν) orbitals of ruthenium
atom 〈 (Mν

z)2 〉 plotted as a function of the chemical potential µ. Here,
results are shown for the onsite coulomb repulsion U = 28eV . In addition,
the vertical solid and dashed lines denote the HOMO and LUMO levels,
respectively.

Occupation number of 4dν orbitals of the ruthenium atom is decreased to nearly

5 after we did HF+QMC calculation. Total occupation number of the 4dν orbitals of the

ruthenium atom is 6.9 for U = 0eV , 5.5 for U = 20eV , 5.2 for U = 24eV , 5.1 for

U = 28eV . Also we found occupation number of the host states of N719 dye is increased

after QMC calculations. We see that total electron number of the sytem is became constant

around 325 electron and when we reached chemical potential value 0eV , total electron

number of the sytem increase again Finally after 1eV for chemical potential value, total

electron number of the sytem will be constant again and total electron number of the

system is 326.
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5.3.2. Density Function Theory + QMC Results

We use Anderson Hamiltonian parameter from Density Functional Theory for

QMC calculations in this section. We found occupation number of host states of the

N719 dye and occupation number of (4dν) orbitals of the ruthenium atom for temperature

700K. In these calculations β = ∆τL are parameters of Hirsch-Fye algortihm and these

values are ∆τ = 0.3625 and L = 46. Also we found square of local magnetic moment

of (4dν) orbitals of ruthenium atom for T = 700K. For magnetic moment calculations

Hirsch-Fye parameters values are ∆τ = 0.3625 and L = 46. For impurity orbital cal-

culations number of warm up sweeps are 1000 and number of measurement sweeps are

1000 and total electron number of the sytem calculations number of warm up sweeps and

measurement sweeps are 100.
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Figure 5.20. Occupation number of the (4dν) orbitals of the ruthenium atom 〈nd 〉 as a
function of the chemical potential µ. Here, results are shown for different
values of the onsite Coulomb repulsion U . In addition, the vertical solid
and dashed lines denote the HOMO and LUMO levels, respectively.
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Figure 5.21. Occupation number of the host states of N719 dye 〈nh 〉 as a function of
the chemical potential µ. Here, results are shown for different values of
the onsite Coulomb repulsion U . In addition, the vertical solid and dashed
lines denote the HOMO and LUMO levels, respectively.
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Figure 5.22. Total electron numbers of the N719 dye 〈nt 〉 = 〈nd 〉+〈nh 〉 as a function
of the chemical potential µ. Here, results are shown for different values of
the onsite Coulomb repulsion U . In addition, the vertical solid and dashed
lines denote the HOMO and LUMO levels, respectively.
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Figure 5.23. Occupation number of the (4dν) orbitals of ruthenium atom 〈nν 〉 plotted
as a function of the chemical potential µ. Here, results are shown for the
onsite coulomb repulsion U = 0eV . In addition, the vertical solid and
dashed lines denotes the HOMO and LUMO levels, respectively.
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Figure 5.24. Square of the local magnetic moment of the (4dν) orbitals of ruthenium
atom 〈 (Mν

z)2 〉 plotted as a function of the chemical potential µ. Here,
results are shown for the onsite coulomb repulsion U = 0eV . In addition,
the vertical solid and dashed lines denote the HOMO and LUMO levels,
respectively.
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Figure 5.25. Occupation number of the (4dν) orbitals of ruthenium atom 〈nν 〉 plotted
as a function of the chemical potential µ. Here, results are shown for the
onsite coulomb repulsion U = 8eV . In addition, the vertical solid and
dashed lines denotes the HOMO and LUMO levels, respectively.
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Figure 5.26. Square of the local magnetic moment of the (4dν) orbitals of ruthenium
atom 〈 (Mν

z)2 〉 plotted as a function of the chemical potential µ. Here,
results are shown for the onsite coulomb repulsion U = 8eV . In addition,
the vertical solid and dashed lines denote the HOMO and LUMO levels,
respectively.
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Figure 5.27. Occupation number of the (4dν) orbitals of ruthenium atom 〈nν 〉 plotted
as a function of the chemical potential µ. Here, results are shown for the
onsite coulomb repulsion U = 12eV . In addition, the vertical solid and
dashed lines denotes the HOMO and LUMO levels, respectively.
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Figure 5.28. Square of the local magnetic moment of the (4dν) orbitals of ruthenium
atom 〈 (Mν

z)2 〉 plotted as a function of the chemical potential µ. Here,
results are shown for the onsite coulomb repulsion U = 12eV . In addition,
the vertical solid and dashed lines denote the HOMO and LUMO levels,
respectively.
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Figure 5.29. Occupation number of the (4dν) orbitals of ruthenium atom 〈nν 〉 plotted
as a function of the chemical potential µ. Here, results are shown for the
onsite coulomb repulsion U = 16eV . In addition, the vertical solid and
dashed lines denotes the HOMO and LUMO levels, respectively.
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Figure 5.30. Square of the local magnetic moment of the (4dν) orbitals of ruthenium
atom 〈 (Mν

z)2 〉 plotted as a function of the chemical potential µ. Here,
results are shown for the onsite coulomb repulsion U = 16eV . In addition,
the vertical solid and dashed lines denote the HOMO and LUMO levels,
respectively.

Occupation number of 4dν orbitals of the ruthenium atom is decreased to nearly

5.5 after we did DFT+QMC calculation. Total occupation number of 4dν orbitals of

the ruthenium atom is 7.1 for U = 0eV , 6.3 for U = 8eV , 6 for U = 12eV , 5.5 for

U = 16eV . Also we found occupation number of the host states of N719 dye is increased

after QMC calculations. We see that total electron number of the sytem is became constant

around 325 electron and when we reached chemical potential value 0eV , total electron

number of the sytem increase again Finally after 0.5eV for chemical potential value, total

electron number of the sytem will be constant again and total electron number of the

system is 326 .
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5.3.3. Comparation between DFT + QMC and Hartree-Fock +QMC

There is very important main differences of pure DFT and HF calculation. In DFT,

we are taking acount electron-electron correlation effects and this gives different energy

band structure for HF and DFT calculations. In DFT calculations, band gap of the system

is narrower when we compare it with HF calculations. We use B3LYP functional with

local density approximation for DFT and this is the reason why band gap is narrower,

when we compare it with HF calculations.

When we did DFT+QMC and HF+QMC calculation, we see that HOMO and

LUMO level of the N719 dye changed. For DFT+QMC calculation new HOMO and

LUMO levels are 0.4eV and 1eV for U = 8eV , 0.5eV and 1eV for U = 12eV , 0.8eV

and 1eV for U = 16eV . For HF+QMC calculation new HOMO and LUMO levels are

1.1eV and 3.8eV for U = 20eV , 1eV and 3.8eV for U = 24eV , 0.8eV and 3.8eV for

U = 28eV .

We found there are new states between HOMO and LUMO levels for both DFT+

QMC and HF+QMC calculations. These new states gives different magnetic properties to

the system which we cant see from just pure DFT or HF calculations. If we look occupa-

tion number of 4dν orbitals of ruthenium atom, we can see these new states. Occupation

number of the yz, xz, xy orbitals of the ruthenium atom are increasing in HOMO and

LUMO levels for all values of U for DFT+QMC calculation and occupation number of

3z2 − r2 and x2 − y2 orbitals of the ruthenium atom are constant in HOMO and LUMO

levels for DFT+QMC calculations. Occupation number of the xy, x2 − y2, 3z2 − r2 or-

bitals of the ruthenium atom are increasing in HOMO and LUMO levels for all values

of U and occupation number of yz and xz orbitals of the ruthenium atom are constant in

HOMO and LUMO level for HF+QMC calculations.
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CHAPTER 6

CONCLUSION

The magnetic and electronic properties of N719 dye has been shown by using

Hirsch-Fye QMC algorithm with the impurity Anderson model. 4d orbitals of the ruthe-

nium atom defined as impurity part and the other orbitals of the N719 dye defined as host

part. Anderson model parameters are calculated from Hartree-Fock Theory and Density

Functional Theory. We take into account onsite Coulomb interaction by using HF+QMC

and DFT+QMC method. Then, we compared HF and DFT calculations and HF+QMC

and DFT+QMC calculations.

If we look U = 0eV QMC results, we can say that these results can give an

ophinion for pure HF and DFT results. Occupation number of the 4dν orbitals of the

ruthenium atom is constant for DFT+QMC and HF+QMC calculation in HOMO and

LUMO levels and occupation number of 4dν orbitals are changing in HOMO and LUMO

levels for DFT+QMC and HF+QMC calculation for increased value of onsite Coulomb

interaction value U. Also we found there are new states in HOMO and LUMO levels for

both DFT+QMC and HF+QMC calculations. Occupation number of the 4dν orbitals of

ruthenium atom are nearly doubly occupied for U = 0eV in DFT+QMC and HF+QMC

calculation. When we increased onsite Coulomb interaction value, we found that occu-

pation numbers of the 4dν orbitals of the ruthenium atom is decreasing nearly 1 and we

found that these orbitals became magnetic when we increase onsite Coulomb interaction

values for DFT+QMC and HF+QMC calculations.

We looked energy gap value from litarature for N719 dye experimently and it

is 2.25eV [40]. We found energy gap value from DFT 1.90eV and from Hartree-Fock

8.15eV . We found that in our QMC calculations HOMO and LUMO level of the N719 dye

has changed. In DFT+QMC calculation new energy gap values are 0.6eV for U = 8eV ,

0.4eV for U = 12eV and 0.2eV for U = 16eV . In HF+QMC calculation new energy gap

values are 2.7eV for U = 20eV , 2.8eV for U = 24eV , 3.0eV for U = 28eV . Therefore

we can say that most similar results can be found from HF+QMC for band gap values for

N719 dye.

Pure DFT is very good method for describing electronic and magnetic properties

of system. It is very quick and can give good results for fining band sturcture of the

system. But from pure DFT we can not find correct magnetic properties of the system. If
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we do HF+QMC method we can find correct band structure also magnetic properties of

the system. Also DFT+QMC method and HF+QMC method are very similar for finding

magnetic properties of the system but HF+QMC method is better than DFT+QMC method

for finding band structure of the system. HF method is like more primitive version of DFT

method but for advanced method like DFT+QMC or HF+QMC, HF method is better then

DFT to construnct more advance models.

In the future, if we look other ruthenium-based dyes with Hirsch-Fye Quantum

Monte Carlo algorithm, we can find different magnetic properties. Molecular sturcture of

different ruthenium-based dyes causes different magnetic properties and these differences

in the magnetic properties of dye molecules gives different efficiency and different sta-

bilities in DSSC. If we understand, what magnetic properties will raise when we changed

molecular structure of the dye molecules, we can find more efficient and more stable dye

molecules.
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APPENDIX A

THE BACKGROUND OF HARTREE-FOCK THEORY

A.1. Mandy Body Problem

The Adiabatic and Born-Openheimer approximation states that the total non-rela-

tivistic Hamiltonian Htot can be written as kinetic and potential energies of the nuclei and

electron [41, 42].

Htot = Tn + Te + Vne + Vee + Vnn (A.1)

Here, Tn is kinetic energy of nuclei,

Tn =

Nnuclei∑
a

1

2
∇a

2 (A.2)

Te is kinetic energy of electrons,

Te =

Nel∑
i

1

2
∇i

2 (A.3)

Vne is potential energy between nuclei and electrons,

Vne =

Nnuclei∑
a

Nel∑
i

Za
|Ra − ri|

(A.4)
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Vee is potential energy between electron and electron,

Vee =

Nel∑
i

Nel∑
j>i

1

|ri − rj|
(A.5)

Vnn is potential energy between nuclei and nuclei.

Vnn =

Nnuclei∑
a

Nnuclei∑
b>a

ZaZb
|Ra −Rb|

(A.6)

Here, Z denotes charge of nuclei, R denotes position of nuclie and r, denotes

position of electrons. Subindex a,b represent nuclei position and i,j electrons position. If

the Hamiltonian is transformed to the center of mass system it can be written as

Htot = Tn +He +Hmp (A.7)

He = Te + Vne + Vee + Vnn (A.8)

Hmp =
−1

2Mtot

(

Nel∑
i

∇i)
2 (A.9)

Here,He is the Electronic Hamiltonian,Hmp is the Mass Polarization Hamiltonian

and Mtot denote total mass of the nuclei, Nel denote total electron number of system

[16, 18–21].

A.2. Hartree-Fock Approximation

Our main purpose is solving Electronic Hamiltonian and first thing to do that is

construct Schrodinger Equation. For solving Schrodinger Equation we need to choose

a trial wave function to describe our system. Spin dependence of wave function can be

think as |α > and |β > spin functions and they obey orthogonality relations,
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< α|α >=< β|β >= 1 (A.10)

< α|β >=< β|α >= 0 (A.11)

For solving Electronic Schrodinger Equation our first assumption is Hartree-Fock

approximation. This method states that true N-body ground state wave function can be

approximated by a single slater determinant. So trial wave function’s spatial part has to

be contruct from slater determinants. If we take all possible single slater determinants

into account, it will be the exact wave function of the system. But it is impossible to

solve numerically in that case. Therefore trial wave function constructed from one slater

determinants accourding to Hartree-Fock approximation. Another question is how we

choose one the slater determinant from all slater determinants [14–16]. Answer is the

system which we are dealing has to be in the ground state accourding to Hartree-Fock

approximation so we choose one slater determinant from all other one which minimize

the system’s energy.

In Hartree-Fock approximation interaction between particles are approximated,

either by neglecting all but the most important one or by taking all interactions into ac-

count in an avarage fashion. So in this approximation electrons interactions are taking as

avarage fashion and neglecting correlation between electrons.

Now we are ready to construct wave function as slater determinat for N electron

and N spin orbitals,

φSD = 1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

φ1(1) φ2(1) . . . φN(1)

φ1(2) φ2(2) . . . φN(2)

. . . .

. . . .

. . . .

φ1(N) φ2(N) . . . φN(N)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Here, φi is the molecular orbitals and orthogonality relation is

< φi|φj >= δij (A.12)
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Now we are ready to solve Electronic Hamiltonian,

He =
−1

2
∇i

2 −
Nnuclei∑

a

Nel∑
i

Za
|Ra − ri|

−
Nel∑
i

Nel∑
j>i

1

|ri − rj|

+

Nnuclei∑
a

Nnuclei∑
b>a

ZaZb
|Ra −Rb|

(A.13)

Define single particle operator hi and two particle operator gij as follows,

hi =
−1

2
∇i

2 −
Nnuclei∑

a

Nel∑
i

Za
|Ra − ri|

(A.14)

gij =
1

|ri − rj|
(A.15)

Energy of the Electronic Hamiltonian became

E =
Nel∑
i

hi +
1

2

Nel∑
i 6=j

(Jij −Kij) + V nn (A.16)

Here, Jj is coulomb operator and Kj is exchange operator and they defined as

following in addition Vnn is taking constant here because of the Born-Oppenheimer ap-

proximation [41].

Jij =< φi(1)φj(2)|g12|φi(1)φj(2) > (A.17)

Kij =< φi(1)φj(2)|g12|φj(1)φi(2) > (A.18)

and definition of Fock operator is
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F = hi +
∑
j

(Jj −Kj) (A.19)

Now we are ready to get Hartree-Fock Equation and energy with Lagrange’s

Method of undetermined Multipliers.

A.2.1. Lagrange’s Method of Multipliers

We are going to get the Hartree-Fock Equation by using Lagrange’s Method of

Multipliers. In this section, we take definitions from [17]. Firstly, we need to minimize

Hartree-Fock energy with respect to changes in the molecular orbitals also we assume

that orthonormality of the molecular orbitals remain unchanged after minimization of the

energy.

L[φi] = EHF [φi]−
∑
ij

εij(< i|j > −δij) (A.20)

here εij is the undermined Lagrange multipliers and < i|j > is the overlap be-

tween spin orbitals i and j definition of this as follows,

< i|j >=

∫
φi
∗(x)φj(x)dx (A.21)

Variational principle leads to δL = 0 from here with using previous definition we

can find Hartree-Fock equation,

Fφi = εiφi (A.22)
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where F is the fock operator, φ is the molecular orbitals and ε is the eigenvalue of

the fock operator.

In manybody systems, calculation of the coulomb integrals and exchange inte-

grals are very hard computationally with molecular orbitals because of that we have to

transform molecular orbitals into the basis set notation,

φi =
N∑
µ=1

Cµiφ̃µ (A.23)

Here φ̃µ is the atomic orbitals basis function, Cµi is the coefficient number of for

each i molecular orbitals and N is the total basis function number. If we put the φi into

the eigenvalue equation of the Fock operator we will get,

FC = SCε (A.24)

in matrix notation. Here ε is the diagonal matrix of the orbital energies εi, S is

the overlap matrix, C is the transformation coefficients matrix from molecular orbital to

atomic orbitals finally F is the fock matrix.
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APPENDIX B

THE BACKGROUND OF DENSITY FUNCTIONAL

THEORY

B.1. Density Functional Theory

Solving Electronic Hamiltonian is the main goal of DFT but we are using different

approach for solving this problem when we compare Hartree-Fock Theory. Foundation of

DFT is Hohenberg and Kohn Theory and this theory states that the ground state electronic

energy is determined completely by the electron density ρ [22].

B.1.1. The Hohenberg-Kohn Theorems

We see that Electronic Hamiltonian has three part; Kinetic energy Te, attraction

between nuclei and electrons Vne, and electron-electron interaction Vee. (Here we used

Born-Oppenheimer approximation which states that Nuclei-Nuclei interaction is constant

for large systems [41].) If we merge together this with Hohenberg Kohn theory,

Hel = Te + Vee + Vne (B.1)

and from this energy of the system can be defined as,

E[ρ(r)] = Te[ρ(r)] + Eee[ρ(r)] + Ene[ρ(r)]. (B.2)

Definition of Ene[ρ(r)] is
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Ene[ρ(r)] = −
Nnuclei∑

i

∫
Zaρ(r)

|Ra − r|
dr. (B.3)

We can think electron electron interaction energy Eee[ρ(r)] as coulmb repulsion

energy J [ρ(r)] in Hartree-Fock equations without exchange part with definition,

J [ρ(r)] =
1

2

∫ ∫
ρ(r)ρ(r′)

|r − r′|
drdr′ (B.4)

Now we are ready to get into the Kohn-Sham equation.

B.1.2. Kohn-Sham Equation

First of all Kohn and Sham assumes that Hamiltonian of a system depend on the

value of the interaction parameter λ with 0 ≤ λ ≤ 1 [23].

Hλ = T + Vext(λ) + λVee (B.5)

The external potential Vext is equal to Vne for λ = 1 (refer to fully interacting

electrons of the system or real system) and λ = 0 case (refer to non-interacting electrons

of the system ) is Hartree-Fock case. From that approach Kohn and Sham states that if

we divide kinetic energy into two part interacting and noninteracting part, non-interacting

part of kinetic energy can be think like HF sense then one could just use Hartree-Fock

expression for kinetic energy employing orbitals [16, 23]. This approximation leads to

definition of the kinetic energy of non-interacting electrons as,

Ts =
N∑
i

< φi|
−1

2
∇2|φi > (B.6)
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and definition of density is as follows,

ρ(r) =
N∑
i

|φi(r)|2 (B.7)

for a now there is no introduction of any exchange operator like in Hartree-Fock

sense. After defnition of Exchange Correlation energy are going to handle this problem.

Let’s rewrite (B.2) with all these definitions

EDFT [ρ(r)] = Ts[ρ(r)] + Ene[ρ(r)] + J [ρ(r)] + Exc[ρ(r)] (B.8)

where Exc is Exchange correlation energy and it includes kinetic energy term for

interacting electrons and symetrization term for electrons. Because we divide kinetic

energy into two parts interacting and non-interacting (correlating) part of kinetic energy.

We put non-interacting kinetic energy into equation(B.8) and interacting kinetic energy

part into the exchange correlation energy term. In addition we didn’t introduce anywhere

in our equations pauli principle so we have to put symmetrization term into exchange

correlation energy term [16]. Now we are ready to define exchange correlation energy as

Exc[ρ(r)] = (Texact[ρ(r)]− Ts[ρ(r)]) + (Eee[ρ(r)]− J [ρ(r)]) (B.9)

From now on our main purpose is to find good excahange correlation energy to

describe our system.

B.2. Natural Atomic Orbitals

The analysis of natural atomic orbital (NAO) and natural bond orbital (NBO) have

been developed by Weinhold and coworkers to define the shape of atomic orbitals in the

molecule, and to derive molecular bonds from electron density between atoms [9, 43].

According to NAO procedure, nonorthogonal AOs {φi} are transformed to corresponding
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orthogonal AOs {φ̃i} by the occupancy-weighted symmetric orthogonalization (OWSO)

procedure

TOWSO{φi} = {φ̃i} , 〈φ̃i|φ̃j〉 = δij (B.10)

Here, the transformation matrix TOWSO has the mathematical property of minimizing the

occupancy-weighted, and has the mean-squared deviations of the nonorthogonal φi and

the orthogonal φ̃i

min

{∑
i

wi

∫
|φ̃i − φi|2dτ

}
. (B.11)

where weighting factor wi is defined as

wi = 〈φi|Γ̂|φi〉. (B.12)

Eq.(B.12) is taken as the occupancy of nonorthogonal φi and Γ̂ is defined as diagonal

expectation value of the density operator.
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APPENDIX C

HIRSCH-FYE QUANTUM MONTE CARLO TECHNIQUE

In this section, the Hirsch-Fye Quantum Monte Carlo (HFQMC) algorithm for the

multi-orbital Anderson model is described. This algorithm uses the Hubbard-Stratonovich

(HS) transformation to convert the interacting electron system to a non-interacting one.

Moreover, with the HS transformation, electrons move in a fluctuating magnetic field

which is defined by a random set of spin configurations. These configurations are ac-

cepted or rejected by Monte Carlo (MC) algorithms such as the heat-bath algorithm or

the Metropolis algorithm. In this way, the finite temperature Green’s functions which

measure the electronic and magnetic properties of the system are calculated.

The Hirsch-Fye QMC algorithm for the multi-orbital Anderson model is used in

this study and with permision we use same algorithm in [25]. We have 5 d orbitals and

the size of the impurity Green’s functions is 5L× 5L.

C.1. Hamiltonian of the System

Here the Hamiltonian for the multi-orbital case is defined :

H =
∑
mσ

(εm − µ) c†mσ cmσ +
∑
mσ

5∑
ν=1

Vmν (c†mσ dν σ + h.c.)

+
5∑

ν=1

∑
σ

(εν − µ)nν σ +
5∑

ν=1

U nν ↑ nν ↓. (C.1)

In the Anderson Hamiltonian of Ruthenium dye molecules,m denotes the host eigenstates

which are obtained by density functional theory calculation and Hartree-Fock Theory cal-

culations. Furthermore, ν is the index of the d orbitals ranging from 1 to 5. The Hamil-

tonian is divided into two parts which are the non-interacting part H0 and the interacting

part H1

H ≡ H0 +H1, (C.2)
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where

H0 =
∑
mσ

(εm − µ) c†mσ cmσ +
∑
mσ

5∑
ν=1

Vmν (c†mσ dν σ + h.c.)

+
5∑

ν=1

∑
σ

(εν − µ)nν σ +
5∑

ν=1

U/2 (nν ↑ + nν ↓), (C.3)

H1 =
5∑

ν=1

Unν ↑nν ↓ −
5∑

ν=1

U/2 (nν ↑ + nν ↓). (C.4)

and the interaction Hamiltonian H1 is treated by using the Hubbard-Stratonovich trans-

formation.

C.2. The Hubbard-Stratonovich Transformation, Trotter Break-Up

and Partition Function

The next step is the Hubbard-Stratonovich (HS) transformation. In the interaction

Hamiltonian, if we replace nd ν ↑ nd ν ↓ term with

nν ↑ nν ↓ = −1

2
(nν ↑ − nν ↓)2 +

1

2
(nν ↑ + nν ↓), (C.5)

we obtain

H1 =
∑
ν

−U
2

(nν ↑ − nν ↓)2. (C.6)

With cosh (λν) = e
1
2

∆τ U ,

exp {−∆τ H1} = exp

{
−∆τ

∑
ν

U

2
(nν ↑ − nν ↓)2

}
(C.7)

=
1

2

∑
Slν =±1

exp

{∑
ν

λν Slν (nν ↑ − nν ↓)

}
, (C.8)
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where Slν is the auxiliary Hubbard-Stratonovich field. The partition function is

Z = Tr
[
e−β H

]
. (C.9)

By taking small time step in imaginary time with ∆τ L = β, we do the Trotter approxi-

mation

e−∆τ (H0+H1) = e−∆τ H0 e−∆τ H1 + θ (∆τ 2[H0, H1]). (C.10)

The partition function is rewritten:

Z = Tr
[
e−β H

]
(C.11)

= Tr

[
L∏
l=1

e−∆τ (H0+H1)

]
(C.12)

' Tr

[
L∏
l=1

e−∆τ H0 e−∆τ H1 + θ (∆τ 2)

]
. (C.13)

By using the Hubbard-Stratonovich transformation and the Trotter approximation, we

write the partition function.

Z = Tr

[
L∏
l=1

exp {−∆τ H0} × exp {−∆τ H1)}

]

=Tr
L∏
l=1

1

2

∑
Slν =±1

exp

{
−∆τ

∑
i j

a†i ↑Ki j aj ↑

}
exp

{∑
ν

λν Sl ν nd ν ↑

}

× exp

{
−∆τ

∑
i j

a†i ↓Ki j aj ↓

}
exp

{∑
ν

−λν Sl ν nd ν ↓

}
(C.14)

=
1

25L
Tr

L∏
l=1

∑
S1 ν ,S2 ν ,....,SLν =±1

exp
{
−∆τ H↑(l)

}
exp

{
−∆τ H↓(l)

}
, (C.15)

74



where

H0 =
∑
i,j,σ

a†i σKi j aj σ (C.16)

H↑(l) =
∑
i j

a†i ↑Ki j aj ↑ −
∑

ν λν Sl ν nd ν ↑
∆τ

(C.17)

H↓(l) =
∑
i j

a†i ↓Ki j aj ↓ +

∑
ν λν Sl ν nd ν ↓

∆τ
. (C.18)

a denotes both c and d orbitals and now, we define for fixed l

V σ
νl = σ λν Sν . (C.19)

V σ
ν = σ λν Sν |ν〉 〈ν| only acts at the impurity sites and the matrix form of eV σν is

eV
σ
ν =



eσ λν=1 Sν=1

eσ λ2 S2 0
eσ λ3 S3

eσ λ4 S4

eσ λ5 S5

1

0 .

1



This is a diagonal (N + 5)× (N + 5) matrix. In this matrix, diagonals are eσ λν Sν

for the impurity sites and 1 for the host sites and we represent it with
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eV
σ
ν =



•
•

• 0
•

•
1

1

0 .

.

1



Let’s introduce now the following matrix Bσ
lν = e−∆τ K eV

σ
lν . By using this defi-

nition, we can write the partition function

Z =
∑

S1ν ,S2ν ....=± 1

∏
σ=± 1

det[I +BLν(σ)BL−1 ν(σ)....B1 ν(σ)] (C.20)

≡
∑

S1 ν ,S2 ν ....=± 1

det ϑS1 ν S2 ν .....SLν (↑) det ϑS1 νS2 ν .....SLν (↓) (C.21)

ϑν(σ) is an (N + 5)L × (N + 5)L matrix, where K is a (N + 5) × (N + 5) matrix for

the bilinear part of the H and N is the number of the host states. Furthermore, the matrix

representation of eV σl ν is
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!
l=1 l=2 l=3 l=L

l=1

l=2

l=3

l=L

(N+5)X(N+5)

(N+5)X(N+5)

(N+5)X(N+5)

L(N+5) X L(N+5)

1
.
.

1
.
.

1
.

1
1
.

.

0

0

!

!
!
!

!"!
!!

!!!!!!!′ !!!!!!′ !!!!′ !!!!!$$′ 

!

!

!

l=3 

l=L 

In this matrix, d orbitals are shown with the bullets and the host states are 1.

Moreover, the matrix elements at the l 6= l′ and ν 6= ν ′ are zero.

C.3. Dyson’s Equation for the Green’s Functions

We define the single particle Green’s function as

Gσ
ν ν′ = −

〈
Tτdν σ d

†
ν′ σ

〉
(C.22)

=
−Tr Tτ e−β Hdν σ(l) d†ν′ σ(l′)

Tr e−β H
. (C.23)

The relation between the ϑν(σ) and the Green’s function by the identity

Gσ
ν ν′ = (ϑν(σ))−1. (C.24)
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as shown in [44]. The size of the ϑS1,S2,...,SL is (N + 5)L× (N + 5)L and the calculation

of the Green’s functions for every set S1, S2, ..., SL of spins from this large size matrix is

very difficult.

Hirsch and Fye [39] noted that the Green’s functionG can be calculated only once

for a certain spin configuration S1, S2, ..., SL and after that, G can be updated for a new

set of configuration where only one spin is changed. The Green’s functions which are

different only by one “spin flip” are related to each other by a Dyson’s equation.

The new configuration Green’s function G′

ν ν′ and the old configuration Green’s

function Gν ν′ are related to each other by a Dyson’s equation (by omitting σ )

G
′

ν ν′ = Gν ν′ + (Gν ν′ − I) (eV
′
ν−Vν − I)G

′

ν ν′ (C.25)

C.4. Impurity Green’s Function for the New Hubbard-Stratonovich

Field Configuration

After the spin Sl ν is flipped, the new impurity Green’s function is obtained from

the relation

G
′

ν ν′ = Gν ν′ + (Gν ν′ − I) (eV
′
lν−Vlν − I)G

′

ν ν′ . (C.26)

By substituting

G
′

ν ν′ = [I − (Gν ν′ − I) ((eV
′
lν−Vlν − I)]−1Gν ν′ , (C.27)

we have

G
′

ν ν′ = Gν ν′ + (Gν ν′ − I) (eV
′
lν−Vlν − I)

×[I − (Gν ν′ − I)(eV
′
lν−Vlν − I)]−1Gν ν′ . (C.28)
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We define

A = I + (I −Gν ν′) (eV
′
lν−Vlν − I). (C.29)

After Sl ν is flipped, the new impurity Green’s function is given by

G
′

ν ν′(l1, l2) = Gν ν′(l1, l2)

+
∑
l3,l4

(Gν ν′ − I)l1,l3 (eV
′
lν−Vlν )l3, l3 (A−1)l3, l4 (Gν ν′)l4,l2 . (C.30)

Hence

G
′

ν ν′(l1, l2) = Gν ν′(l1, l2)

+
∑
l4

(Gν ν′(l1, l)− δl1,l δν, ν′) (eV
′
lν−Vlν ) (A−1)l, l4 (Gν ν′)l4, l2 . (C.31)

We define

(
eV

σ′
l′ ν′−V

σ
l ν

)
= δν ν′ δl l′ e

σ λν (Sl′ ν′−Sl ν) (C.32)

so

(A−1)l, l4;ν, ν′ = δl l4 δν ν′
1

[I + (I −Gν ν′(l, l))(e(V
′
lν−Vlν) − I)]

. (C.33)

Hence

G
′

ν ν′(l1, l2) = Gν ν′(l1, l2) + (Gν ν′(l1, l)− δl1, l δν ν′)(eV
′
ν−Vν − I)

× 1

[I + (I −Gν ν′(l, l))(eV
′
l ν−Vl ν − I)]

Gν ν′(l, l2) (C.34)
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C.5. Ratio of the Fermion Determinants

For a proposed change of the HS field Sl ν ,

Sl ν → S
′

l ν = −Sl ν (C.35)

The probability of acceptence of the new configuration is proportional to the ratio

of determinants of the new and old configuration.

Rν σ =
det ϑS′

l ν
(σ)

det ϑSl ν (σ)
= I + [I −Gσ

ν ν′(l, l)] (eV
σ
′

l ν −V
σ
l ν − I). (C.36)

In order to prove this, we start from

G̃
′

ν ν′ = G̃ν ν′ − G̃ν ν′ (e−V
′
lν − e−Vlν ) G̃′

ν ν′ , (C.37)

where

G̃ν ν′ = eVlν Gν ν′ . (C.38)

Multiplying both sides with (G̃
′

ν ν′)
−1 on the right, we get

I = G̃ν ν′ (G̃
′

ν ν′)
−1 − G̃ν ν′ (e−V

′
lν − e−Vlν ). (C.39)

Hence

G̃ν ν′ (G̃
′

ν ν′)
−1 = I + G̃ν ν′ (e−V

′
lν − e−Vlν ). (C.40)
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Since

G̃ν ν′ = eVlν Gν ν′ = eVlν ϑ−1
lν , (C.41)

we have

(eVν ϑ−1
lν )

[
eV

′
lν (ϑ

′

lν)
−1
]−1

= I + eVlν Gν ν′ (e−V
′
lν − e−Vlν ), (C.42)

eVlν (ϑ−1
lν ϑ

′

lν) e
−V ′

lν = I + eVlν Gν ν′ (e−V
′
lν − e−Vlν ). (C.43)

Here, we multiply on the left with e−Vlν and on the right with eV
′
lν ,

ϑ−1
lν ϑ

′

lν = e−Vlν eV
′
lν +Gν ν′ (e−V

′
lν − e−Vlν ) eV

′
lν (C.44)

ϑ−1
lν ϑ

′

lν = eV
′
lν−V +Gν ν′ (I − eV

′
lν−Vlν ) (C.45)

= eV
′
lν−Vlν + (Gν ν′ − I)(I − eV

′
lν−Vlν ) + I (I − eV

′
lν−Vlν ). (C.46)

Hence

ϑ−1
lν ϑ

′

lν = I + (I −Gν ν′)(e
V

′
lν−Vlν − I). (C.47)

By taking the determinant of the both sides, we obtain

det ϑ
′

lν

det ϑlν
= det (I + (I −Gν ν′) (eV

′
lν−Vlν − I)) (C.48)

(eV
′
lν−Vlν − I) has the non-zero elements only at the d sites so I+(I−Gν ν′)(e

V
′
lν−Vlν − I)

has the form
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l

1

1

1

1
1

.

.
.
.

1
1

0

0

In this matrix, the bullets show the impurity sites and the line denotes a single flip

at an arbitrary l and ν orbital. This way

det
(
I + (I −Gν ν′)(e

V
′
lν−Vlν − I)

)
= I + (I −Gσ

ν ν′(l, l))(e
V

′
lν−Vlν − I). (C.49)

Hence

Rν σ = I + (I −Gσ
ν ν′(l, l))(e

V
′
lν−Vlν − I). (C.50)

In heat-bath method, the transition probability from one state Sl ν to another state S ′l ν is

P (Sl ν → S ′l ν) =
1∏

ν σ Rν σ + 1
(C.51)

Then, by random number generator, if

P > random number −→ accept

else reject.
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C.6. Impurity Green’s Functions for the Multi-Orbital Case for

When the Hubbard-Stratonovich Field is Zero

The impurity and host Green’s functions with no hybridization and no Coulomb

interaction are given by

G00
ν ν′ =

δν ν′

iωn − (εd ν − µ)
and G00

m (iωn) =
1

iωn − (εm − µ)
. (C.52)

The Green’s function with hybridization and no Coulomb interaction can be evaluated by

using the following diagrams

υ υ υ υ υ υ

(−iV)                      (−iV)

υ m

Figure C.1. Feynman diagram representing the impurity Green’s function G0
ν ν′(i ωn)

for the U = 0. The double lines denote G0
ν ν′(i ωn) while the single lines

denote G00
m (i ωn) and G00

ν (i ωn), respectively.

G0
ν ν′(iωn) = G00

ν ν′(iωn) +
∑
ν′′

G00
ν ν′(i ωn)

×

{∑
m

Vνm Vmν′′ G
00
m (i ωn)

}
G0
ν′′ ν′(iωn) (C.53)

and let’s define the self-energy

Fν ν′′(iωn) ≡
∑
m

Vmν Vν′′m
1

iωn − (εm − µ)
. (C.54)

Then;

G0
ν ν′(i ωn) = G00

ν ν′(iωn) +G00
ν ν′(i ωn)

∑
ν′′

Fν ν′′(iωn)G0
ν′′ ν′(iωn), (C.55)
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G0
ν ν′(iωn) = G00

ν ν′

1 +
∑
ν′′

Fν ν′′(iωn)G0
ν′′ ν′(iωn)︸ ︷︷ ︸

Tν ν′ (iωn)

 . (C.56)

Tν ν′(iωn) = 1 +
∑
ν′′

Fν ν′′(iωn)G0
ν′′ ν′(iωn). (C.57)

∑
ν′′

Tν ν′′(i ωn)G0
ν′′ ν′(i ωn) = G00

ν (i ωn). (C.58)

So

G0
ν ν′(i ωn) =

∑
ν′′

T−1
ν ν′′(i ωn)G00

ν′′(i ωn) (C.59)

Up to now, we have got iωn dependent Green’s functions. Now, all Green’s func-

tions are transformed to imaginary time space to be used in the Hirsch-Fye algorithm.

Here, G0(l, l
′
) is defined by

G0
ν ν′

(l, l
′
) = T

∑
iwn

e−iwn ∆τ(l−l′ ) G0
ν ν

′ (iwn) (C.60)

for l, l′ = 1, ....., L. However, for l = l
′ cases, attention is required for implementation of

boundary conditions in τl space. For l = l
′ , we define G0

ν ν′
(l, l)

G0
ν ν′

(l, l) = lim
τ→ 0+

T
∑
iwn

e−i ωn τG0
ν ν′

(i ωn). (C.61)
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Our choice for l = l
′ gives,

G0
ν ν′

(l, l) = −
〈
Tτ cν(τl) c

†
ν′(τl)

〉
0

(C.62)

= −[1−
〈
cν(τl) c

†
ν′(τl)

〉
0
] (C.63)

= −[1− 〈nd ν σ〉0]. (C.64)

In the program, we calculate G0
ν ν′(l, l

′) for l 6= l′ and l, l′ = 1, ....., L cases. After that,

we use

G0
ν ν′

(τl) = −G0
ν ν′

(τl + β) = −G0
ν ν′

(τl+L) (C.65)

to obtain G0
ν ν′

(τl) for −L ≤ l ≤ −1 and l = L.

C.7. Procedure to Update Impurity Green’s Functions

Procedure to update Green’s functions is Firstly, calculate the G0
ν ν′(i ωn) which

is the Green’s function for non-zero hybridization and no Hubbard field. After that, for

an initial spin configuration, Gν ν′(l, l
′) is calculated. State of whole system is changed

from Sl ν to Sl ν ′ with probability P (Sl ν → S ′l ν). Then the Green’s function is updated if

P (Sl ν → S ′l ν) is larger than the random number which is generated from 1 to 0.

C.8. Flow chart for the HFQMC algorithm

• Calculate the non-interacting (HS field = 0) Green’s function G0.

• By random number generator, choose starting HS field configuration.

• Calculate the Green’s function G from the below equation,

Gσ
νν′ = [I + (G0

νν′ − I)(I − eV σνl)]−1G0
νν′ (C.66)

• Choose imaginary time slice and 3d orbital randomly for spin flip and accept or
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reject the spin flip with respect to heat-bath QMC algorithm.

• Calculate the new Green’s function G′νν′ by using Dyson’s equation.

G
′

ν ν′(l1, l2) = Gν ν′(l1, l2) + (Gν ν′(l1, l)− δl1, l δν ν′)(eV
′
lν−Vlν − I)

× 1

[I + (I −Gν ν′(l, l))(eV
′
l ν−Vl ν − I)]

Gν ν′(l, l2) (C.67)

• After certain number of warm up sweeps, the system reaches the equilibrium.

• Then, measurements start. In order to eliminate the correlations, a few update

sweeps between the measurements should be considered.

• Finally, calculate the averages and standart deviation of the measurements.
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