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ABSTRACT 

 

DEVELOPMENT AND EXPERIMENTAL VERIFICATION OF THE 

STIFFNESS MATRIX OF THE HIPHAD HAPTIC DEVICE 

 

In this work the evaluation of stiffness performance of HIPHAD haptic device has 

been studied with 2 semi-analytical and an experimental method in order to obtain the 

stiffness characteristics of the haptic device for precise motion tracking performance. 

Since the compliance of a robot depends highly on robot configuration and force is 

variable in the haptic applications, stiffness properties of main robot elements and 

methods of evaluating stiffness of a robot manipulator is investigated considering the 

computational costs. Virtual Joint Method (VJM) and Structural Matrix Analysis (SMA) 

method is applied to the case study. Although, structural matrix analysis reduces the 

computational time dramatically by reducing the node elements it is not accurate as Finite 

Element Analysis (FEA) method. Comparing the VJM to the SMA, it is applicable to 

online application due to its simplicity and flexibility. In addition, with FEA based link 

modelling VJM is as accurate as FEA method in finding stiffness of the manipulator. 

While both methods can include flexible joints FEA based link stiffness parameters 

computational costs for these methods is the performance criteria for choosing one. For 

the case study HIPHAD, the VJM method provides better result in terms of flexibility and 

computation cost with 0.035 seconds finding the resultant force while SMA method   

calculates result in 0.074 seconds. 

 

 

 

Keywords and Phrases: virtual joint method, structural matrix analysis, stiffness, 

experimental Stiffness Analysis, haptics, HIPHAD
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ÖZET 

 

HIPHAD HAPTİK CİHAZININ DİRENGENLİK MATRİSİNİN 

OLUŞTURULMASI VE DENEYSEL OLARAK DOĞRULANMASI 

 

Bu çalışmada, HIPHAD haptic cihazının direngenlik karakteristiği, hassas hareket 

takibi sağlayabilmesi için, iki yarı analitik ve bir de deneysel yöntem ile bulunmuştur. 

Haptik uygulamalarda kuvvetin büyüklüğü ve yönü değişken olduğundan ayrıca 

robotların direngenlik matrislerinin mafsal açılarına bağlı olarak değişiklik 

göstermesinden dolayı, robot kollarının direngenlik matrisinin çıkarılmasında kullanılan 

metotlar gerektirdikleri hesaplama zamanı düşünülerek araştırılmıştır. Bu tezde Sanal 

Mafsal Metodu ve Yapısal Matris Analizi yöntemleri kullanılmıştır. Yapısal Matris 

Analizi metodu her ne kadar hesaplama zamanını azaltıyor olsa da modelin doğruluğu 

azalmaktadır. Sanal mafsal metodu ve yapısal matris analizi kıyaslandığında, sanal mafsal 

metodu daha esnek ve basit bir modelleme yöntemi sunmaktadır. Bunun yanı sıra sonlu 

elemanlar analizi kullanılarak bulunan direngenlik değerleri sayesinde bu yöntem, sonlu 

elemanlar analizi kadar isabetli sonuçlar verebilmektedir. Yapısal matris analizi de sanal 

mafsal metodu da esnek mafsal modellerinde bulundurabilir. Dolayısı ile bu iki metot 

arasındaki belirleyici fark hesaplama zamanlarından gelecektir. HIPHAD için VJM 

metodu daha doğru sonuçlar vermiştir. Yapısal matris analizi metodu ve sanal mafsal 

motodu için bir döngünün çözüm süres 0.074 sn ve 0.035 olarak ölçülmüştür. 

 

 

Anahtar Kelimeler ve Deyimler: sanal mafsal metodu, yapısal matris analizi, 

direngenlik, deneysel direngenlik analizi, haptik, HIPHAD
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CHAPTER 1  

 

INTRODUCTION 

 

Haptics term describes the sense of touch. It is a concept that originated in ancient 

times and it is derived from the Greek term "haptios", which describes anything that can 

be touched. This sense binds the other senses and therefore it has an indispensable place 

in human perception. The sense of touch is used in different manners in human body such 

as the boundary of the human body (receptors under the skin) is used to perceive distances 

and calibrate sense of vision (Kern, 2009).  

Humans are not only using the sense of touch for feeling physical boundaries but 

we are also receiving information about the texture of objects. Discrimination of objects 

are vital for humans; for example, it enables us to feel whether something is harmful or 

not, e.g. when touching a hot pan or holding a glass filled with cold water. This type of 

haptic sensation makes it possible for humans to feel textures that range from 1m to a 

few millimeters (Kern, 2009), which can be surface of a glass or a fabric. On the other 

hand, humans are also capable of qualifying the objects according to their weight and 

hardness. The two mechanisms for haptic sensation in our bodies are named as tactile and 

kinesthetic sensing. Tactile sensing is achieved through the nerve ends located under our 

skin, which provides us the information of heat, pressure and texture (Varalakshmi, 

2012). On the other hand, kinesthetic sensing provides information about the kinesthetic 

parameters of the environment which are motion, location, weight, and rigidity (Bilgincan 

et al., 2010). 

Although, haptic information is important for humans to perceive spatial 

information, the first sensory information that were used in human machine interactions 

are visual and auditory information. With the technological improvements in data 

processing and transferring units, the haptic information are started to be used in human 

machine interactions (Bilgincan et al., 2010). Human machine interactions in terms of 

haptic information exchange are realized by haptic devices. These haptic devices can be 

operated to communicate with a virtual reality environment (VR) or a teleoperated remote 
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system in a real distant environment and get the multimodal sensory information 

(Varalakshmi, 2012), (Hirche & Buss, 2012). Here "multimodal" refers to the perceptual 

capabilities of human being, which are visual, auditory and haptic senses. Haptic devices 

can be both kinesthetic devices and/or tactile devices, which are providing kinesthetic 

sensory information such as, motion and force and/or tactile sensory information such as 

texture and temperature of a surface (Kern, 2009). From now on, the concept haptics will 

cover the kinesthetic sub-senses, e.g. sensing force and motion. 

Haptic feedback in teleoperated systems provide users extensive knowledge about 

the distant site and increases the feeling of being present in the remote site, which is 

generally termed as telepresence. Therefore, it enables the users to perform more complex 

and precise objectives in the remote environment. During the haptic interaction, not only 

the force and position information about the environment is provided to the user, but also 

it allows the user to manipulate (by means of a telerobotic manipulation) the distant 

environment, which is referred to as slave environment in a teleoperation setting or virtual 

environment in virtual reality (VR) applications. During this manipulation not only the 

positional information but also the velocity and the acceleration of the contact of the slave 

device can be reflected to the user. In this case motion tracking of the haptic master device 

should be improved for a precise operation, since the chain composed of remote 

environment, teleoperator or VR and haptic device is closed with the human user (Hirche 

& Buss, 2012). However, as this kind of systems are human-in-the-loop-systems, the 

performance of the haptic system highly relies on the physical coupling and visuo-haptic 

co-location of the users hand and the slave device in remote environment through haptic 

interface.  

Physical coupling in haptic applications refers to transmit the mechanical 

resistance of the remote environment to the user and the mechanical resistance is the 

impedance. Mechanical impedance Z is the ratio of force, F, to the velocity, v, 

respectively ratio of the moment, M, to angular velocity, . Measures for the level of 

coupling of human and remote environment are presented by (LAWRANCE, 1992), 

(Yokokohji & Yoshikawa, 1994), (Hokayem & Spong, 2006) as transparency and by 

(Colgate & Brown, 1994) as impedance width. 
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Transparency, T, is a factor that gives the relation of the input impedance, which 

is the impedance of the remote environment interaction, Zin and the felt impedance by the 

user referred to as output impedance, Zout, given in Equation 1.1. 

 T =
Zin

Zout
 (1.1) 

This means that, when transparency of a system gets close to "one", the input 

impedance is not distorted by the haptic system. Therefore, the user controlling the haptic 

device feels the input impedance perfectly. If a device has a transparency greater than 

one, then this device cannot mimic the stiffness of the contact occurring in the slave site 

and a softer contact force is felt by the user (Kern, 2009) Impedance width, Z-width, 

provides the impedance range that can be stably provided by the haptic device. Therefore, 

Z-width measure provides us the information about the difference between the minimum 

and maximum impedance of the haptic device. Zmin stands for the minimum resistance, 

which is induced by the friction and inertial properties of the motors, joints and links of 

the haptic device and felt by the user during free motion. Zmax gives the maximum 

impedance that can be rendered by the haptic device under a very stiff contact condition. 

The mathematical representation for Z-width is provided in Equation 1.2. 

 Z − width = Zmax − Zmin (1.2) 

In haptic systems, Z-width and Transparency which are used to identify the 

performance of the system, are related to the factors such as sampling time of the 

controller, encoder quantization and unavoidable dynamic properties of the haptic device 

that are friction, inertia, backlash and stiffness (Koul, Manivannan & Saha, 2013) (Lee 

et.al., 2010). Other than improving the controllers, algorithms and sensors, the 

mechanical design of haptic devices are fronting the advanced kinematic structure with 

high-strength and light-weight materials and reduced cross-sections of the links (Ahmad 

et al., 2014). While using light-weight materials with reduced cross-sections reduces Zmin 

in terms of decreasing the perceived inertia during free motion, it also affects adversely 

the mechanical stiffness properties of the haptic device that is directly related to Zmax, 

transparency and positional accuracy (Carbone, 2003). 
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Positional accuracy is an important parameter in fusing the visual and kinesthetic 

feedback that is named as visuo-haptic. Seeing the remote device and receiving the 

kinesthetic stimuli at the same spatial location improves the perception of the remote 

environment and makes the interaction more natural. This spatial information of the 

visual and haptic feedback can be misaligned due to a physical property of the haptic 

device which is the stiffness (Barbieri et al., 2014). Consequently, performance criteria 

of haptic devices, which is described previously, have a common variable that is the 

stiffness of a haptic device.  

Bodies under load change their reference configuration into final configuration, 

which are their deformed shapes, also known as compliant displacements (Przemieniecki, 

1985). The same rule exists for the multi-body mechanical systems, such as robot 

manipulators. As defined in (Rivin, 1999), stiffness is the capacity of a mechanical 

systems to sustain loads without excessive changes of its geometry. In a more quantitative 

way, stiffness is defined as ratio of force applied on a deformable body to the compliant 

displacements (NOF, 1985). Therefore, if a robotic structure has high stiffness values, 

then it can resist more forces without compromising its positional accuracy. The 

structures having low stiffness are called to be compliant. Although, level of compliance 

of a robot indicates the safety of the manipulator while working with a human and 

provides advantages in assembly processes, it has an adverse impact on positional 

accuracy. Therefore, in applications that require better positional accuracy and stiffness, 

such as haptic devices, low compliance and high stiffness is desired. However, 

compliance of a human-machine interface can also serve for increasing the safety of the 

user. The level of the required compliance of a haptic device relies on the application. 

When a haptic device is used for rehabilitation purposes, the main performance criterion 

becomes the controllable compliance and not positional accuracy and when a haptic 

device is used in critical missions such as surgical robotics, the main performance 

criterion becomes the positional accuracy. 

Relying on the previously described basis, the motivation of this master thesis 

study is to develop the stiffness model of a kinesthetic haptic device to evaluate and in 

the future studies possibly improve its stiffness characteristics and position tracking 

accuracy. The kinesthetic haptic device, HIPHAD, constructed in Iztech Robotics 
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Laboratory, IRL, by (Bilgincan et al., 2010) for high precision haptic applications is the 

haptic device used for the case study in this thesis.  

This thesis focuses on evaluation of stiffness matrix of HIPHAD under quasi-

static equilibrium configuration, which can be also referred as unloaded mode. This 

means that deflections due to external loads are small enough so that the relation between 

deflections and forces can be assumed as linear. Structural Matrix Analysis method 

(SMA), and Virtual Joint Method (VJM), among the other stiffness calculation methods 

are used to obtain an analytical stiffness matrix equation. The calculated stiffness matrices 

are compared to each other with respect to the performance criteria, which are 

computational time and accuracy of the used methods. The actual stiffness values of the 

case study are acquired using an experimental method, in which the deflections are 

measured with vision sensors. The data acquired in the experiments are used in verifying 

the results obtained by the SMA method and VJM method. To achieve this goal, the listed 

objectives are set: 

1. Design and construction of the test setup including external force exertion 

mechanisms and camera mounting structure.  

2. Employment of image processing methods for accurate and high 

resolution positional measurement in three-dimensional (3D) environment.  

3. Stiffness matrix calculation of HIPHAD device. 

4. Verification of the stiffness matrix calculations through experiments 

5. Stiffness characteristics mapping of HIPHAD device throughout its 

workspace. 

The contributions of this thesis work are: 

1. Measurement of compliant displacements with vision sensors. 

The compliant displacements are measured using stereo-vision cameras and 

image processing techniques. This technique, allows us to measure the stiffness of a 

mechanism without any electro-mechanical component attached to the mechanism that 

changes the stiffness characteristics. Since there is no mechanical connection between the 
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robot and the measurement device, this method can be applied to mobile robots, e.g. 

humanoids. 

2. Extension of the analysis of HIPHAD device by its stiffness evaluation 

that can possibly be used to increase motion tracking accuracy. 

HIPHAD device was developed within High Precision Haptic Device Design 

project funded by EU FP7 Marie-Curie International Re-integration Grant to be used in 

high precision applications. In this manner, it was constructed with low density aluminum 

alloy and high precision brushless-DC (BLDC) motors. In order to increase its 

performance in terms of motion tracking accuracy, its stiffness characteristics are 

evaluated for the first time.  

3. Obtaining an analytical stiffness matrix expression of HIPHAD device 

that is suitable for implementing in online compliant error compensation techniques. 

Since forces will be random in a haptic application, integrating a computationally 

effective expression for stiffness matrix in an impedance controller and using this 

controller in the master system will improve the force transmission and motion tracking 

performance of a haptic device. 

Preliminary works for this study have been published and presented in an 

international proceeding of ROMANSY-2014 XX CISM-IFToMM SYMPOSIUM. The 

study was executed in the course of improving the accuracy of the HIPHAD device was 

executed to calibrate and experimentally validate the kinematics of a novel haptic device. 

HIPHAD v1.0. External measurement of the absolute position of the mechanism was 

carried out by using a vision-aided algorithm, which is 2-D correlation, on the images 

taken by the cameras facing along 13 and 12 directions. Calibration of the mechanism 

was made by measuring the positive and negative end of the workspace and relating them 

to the sensor voltages. Test results also indicate the precision errors in manufacturing and 

assembling the device which are accounted for by performing the calibration. Vision-

aided measurements were experimented and calibration of forces exerted by the 

mechanism to the human operator is pointed as a future work. 

This master thesis is composed of 6 chapters and these chapters are Introduction, 

Literature Survey, Analytical Stiffness Calculation of HIPHAD, Experimental Evaluation 



 

 

21 

of Stiffness Matrix of HIPHAD, Test Results and Conclusion. In second Chapter, possible 

error sources in haptic devices are listed and compensation techniques for these errors are 

provided. In addition, analytical and experimental methods for developing stiffness 

matrix of robot manipulators are given and digital image processing techniques for object 

tracking is provided. In Chapter 3, the stiffness matrix calculation of HIPHAD device 

with SMA and VJM is provided. Chapter 4 is dedicated to experimental method for 

stiffness matrix evaluation of HIPHAD. After that, analytical and experimental results 

are provided in Chapter 5. Finally, evaluation on the outcomes of the methods are made 

and conclusions are presented in Chapter 6. 
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CHAPTER 2  

 

LITERATURE SURVEY 

 

Examples for haptic applications can be sorted with respect to their need for 

precision from coarse applications such as entertainment and art design to fine 

applications such as medical operations. Precision of a haptic device can be affected by a 

number of factors. In order to understand these factors, haptic device operation conditions 

should be taken into consideration. In haptic applications, force feedback is sent to the 

user through haptic devices and under contact condition, these forces result in the 

compliant bending of the haptic device. The force transmission and motion tracking 

capability of the haptic device is crucial in precise haptic applications, since any 

divergence between master and slave device motions and/or weak force transmission will 

result in a faulty perception of the slave environment by the user and an undesired motion 

of the slave device. To identify and improve the performance of a haptic device, 

performance criteria like motion tracking accuracy, transparency and Z-width has to be 

understood and parameters influencing these criteria has to be exposed. One of these 

parameters is the stiffness of the haptic device since the stiffness properties of haptic 

devices directly affect all the mentioned performance criteria.  

In this chapter, sources of errors that degrade the performance of haptic devices 

are listed. Methods for compensating these errors are then provided and on-line 

compensation methods in the literature for eliminating the effects of compliant errors are 

reviewed. In this work, offline compensation methods are disregarded since in a high 

precision master-slave haptic application there is no pre-determined trajectory of the 

master device. Methods developed for evaluating stiffness matrix of robot mechanisms 

are provided in order to determine the compliance errors. Later, experimental methods 

for calibration of the robots and verification of robot mechanisms' stiffness matrices are 

presented. Finally, analytical and experimental methods for calculating stiffness 

properties of robots are discussed and compared.  
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2.1. Possible Sources of Errors in Haptic Devices 

 

In general, performance of a robot manipulator is given by two noteworthy points. 

They are payload and positional accuracy of the robot manipulator and performance of 

the manipulator is determined by these factors. These terms are explained in (Merlet, 

2006) and metrics for payload capacity is given by payload/weight ratio which is the load 

that a robot can carry per its unit weight. In evaluation of the positioning accuracy usually 

three metrics are used as absolute accuracy, repeatability and resolution (Klimchik, 2011). 

Absolute accuracy is defined in as robot’s ability of positioning its wrist at a desired target 

within workspace. In this sense, it is defined as one-half of the resolution. Accuracy of a 

robot arm depends on the mechanical inaccuracies, control algorithms and system 

resolution that is provided in Figure 2.1. 

 

Figure 2.1 Diagram showing accuracy and spatial resolution (ISO 9283 Deifinition) 

 

The repeatability is a term giving the numerical value of maximum difference 

between numerous measurements of position that a robot can achieve for a desired pose. 

This measure shows how a point repeated by the robot. Resolution in positioning is 

defined in ISO 9283 standard as the smallest incremental move that a robot can achieve. 

This term includes the effects of two distinguished factors that are control resolution and 

programming resolution. Control resolution is the smallest reading that a position sensor 

can do and the programming resolution is the smallest allowable position increment and 
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referred to as the basic resolution unit (BRU). These positional accuracy metrics are 

provided in Figure 2.2 as an example. 

 

 

Figure 2.2 Positional accuracy metrics of a robot. 

 

Considering the haptic systems, mainly two control schemes exist, which are 

admittance and impedance type controllers. For haptic systems having admittance type 

of controller, user exerts force on the haptic master device and this force is converted to 

motion command through an admittance model. Slave robot is manipulated with this 

motion command and measured position of the slave robot is sent back to the haptic 

master device. On the other hand, systems having impedance type of controller has to 

receive motion command from the user and send it to the slave site. Then the contact 

forces are displayed to the user. Concerning the mentioned schemes, position tracking of 

the haptic master device is important for displaying the position signals coming from the 

slave environment in the systems that have admittance type of controller. For haptic 

systems having impedance type of controller, haptic master device displays force signals 

coming from the slave site; therefore, it is the force signal to be tracked. Due to the 

mentioned control natures of admittance and impedance type of haptic systems, 

performance criteria introduced for industrial robots are valid for haptic master devices 

with admittance controller. For haptic master devices with impedance controller, key 

point is not tracking the absolute position of the slave robot but tracking the force with 

respect to the motion of the slave robot (penetration velocity and depth occurring in the 

slave site between the environment and the slave robot). In this concept, performance 
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criteria defined for industrial robots do not completely match with the task executed by 

impedance type of haptic devices. In this thesis an impedance type of haptic device is the 

subject and for this device motion tracking is affected by the encoder resolution and 

compliance of the links and actuators.  

In haptic applications, besides the tracking accuracy, another performance 

measure is the ability of a haptic device to transmit the impedance characteristics of the 

slave environment (Baser, 2012). This performance measure is related to the design 

features of haptic devices that are transparency and Z-width. The design features, which 

are mentioned in the Introduction section, are affected by the stiffness properties of the 

actuator and the mechanism. High stiffness in robot manipulators like haptic devices can 

be achieved by using over-constraint mechanisms as robot structure and high-strength 

links in manipulator construction. Increasing stiffness of haptic devices improves the Z-

max, however, at the same time it negatively affects Z-min and transparency due to the 

frictional forces created on the bearings resulted from the internal stresses and the inertia 

of the haptic device resulted from the increased weight of the high-strength links.  

Motion tracking and force transmission performance of haptic devices are affected 

by the same factors that affect the positioning performance of industrial robots. 

Positioning performance degradation of a robot is a result of the accumulation of the 

errors that are divided into two main categories given in (Meggiolaro, Dubowsky & 

Mavroidis, 2004) and (Gong, Yuan & Ni, 2000).  Inaccuracy factors in robotic 

manipulators are listed in Figure 2.3. 
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Figure 2.3 Inaccuracy factors of robot manipulators (Klimchik, 2011). 

 

Geometrical errors that are listed in Figure 2.3 originate from non-ideal geometry 

of the links and joints of the robot manipulator. Deviation in the geometry of robot parts 

are results of the errors occurred in manufacturing and assembly processes. Any 

deviations in orthogonality, parallelism of the links and joints, differences in the link 

lengths and errors in joint zero values are reasons of geometrical errors (Meggiolaro, 

Dubowsky & Mavroidis, 2005 ; Chen & Chao, 1987). The effects of geometrical errors 

are observed as differences between the nominal and actual pose of the end-effector. It is 

the reason of the 90% of the errors in positional accuracy of robot manipulators under 

free motion or relatively small forces (Klimchik, 2011). These factors affecting the 

positional accuracy in industrial robots also affect the motion tracking performance of a 

haptic device. Non-geometric errors, however, are results of environment factors, such as 

humidity, temperature, actuator deficiencies, measurement errors and control errors 

(Aoyagi et al., 2012). Among the non-geometrical errors that are listed in Figure 2.3, 

influence of the compliance errors is the most significant error source in tracking 

performance of haptic devices (Di Alessio et al., 2004).  

In haptic applications there are two separate phases with respect to the force 

applied by the device namely, the free motion phase and the contact phase. Haptic device 

in free motion is back-driven by the user force that is required only to overcome the 
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minimum impedance of the device, which is induced by the inertia and the friction of 

haptic device. Therefore in this phase, geometric errors dominate non-geometric errors 

due to constant environmental factors, measurement, backlash friction wear and control 

errors, which are the similar to industrial robots working in free space (Klimchik, 2011). 

This phase continues until the slave system on remote environment makes a contact with 

its surrounding environment.  

When a contact is made in the slave environment and acquired force 

measurements are sent to haptic device at the user side, it is now a new phase in which 

perception of impedance of the contacted object in remote site becomes important. 

Impedance of the contact condition is displayed by the haptic device to the user by 

exerting forcing to the user through the handle of the device. Haptic devices tend to 

deform under this forcing. This is not desired for precise tracking of the haptic device 

handle since the actual position of the handle deviates from the acquired position of the 

handle. Obviously, this is true when the motion acquisition sensors are placed in the joint 

composition of the haptic device mechanism, which is the usual exercise in commercially 

available haptic devices. Therefore, in contact condition, the non-geometrical errors 

dominate the geometrical errors and calculation of them becomes important (Lopez, 

2012).  

In order to reach higher performance ratings in motion tracking of haptic devices, 

compensation of geometric and non-geometric errors is critical. For this reason, methods 

found in the literature for compensating the geometric and non-geometric errors are 

provided in the next section. 

 

2.2. Compensation Methods for Inaccuracy Factors 

 

A common compensation technique for geometric errors is to calibrate the 

position calculation algorithm by measuring the absolute position of the end-effector. 

Measurement methods in robot calibration are listed in (Kosić, Đalić & Marić, 2010), 

(Švaco et  al., 2014) and (Schwenke et al., 2008) as, laser projection, theodolite, 2D 

machine vision, portable coordinate measuring machines, stereo vision camera systems 
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and laser tracking devices. Measured errors can be given by linear equations if they are 

geometric errors (Meggiolaro, Dubowsky & Mavroidis, 2005), hence they can be 

compensated in the workspace of the robot by feeding them into the robot controller with 

the nominal joint values (Gong, Yuan & Ni, 2000). Another example for compensating 

such an error was done by (Dede et al., 2014). In this work, absolute position of the 

HIPHAD haptic device was measured by stereo vision system and active joint limits were 

calculated using these measurements.   

Methods used in calibration cannot be applied for the errors that are not linear in 

the workspace such as non-geometric errors created by payloads, thermal effects and 

measurement errors. For these kind of errors compensation is done in two means that are 

off-line and on-line compensations. In off-line compensation, errors on the control points 

or nodes are mapped and trajectory is modified with respect to these errors. In the works 

of many researchers, who are working on error compensation of machining centers, 

modification of the desired trajectory is generally applied in this way. In this direct 

approach, a primary absolute position measurement is made for the first operation and 

errors are recorded then for the following operations the path is modified according to the 

measured errors (Shen et al., 2012). 

In the work of (Klimchik et al., 2014), an off-line compensation method 

depending on the stiffness properties calculated under the auxilary loads and external 

forces is made. Robot control program that defines the trajectory is modified with respect 

to the calculated deformations. Differing from the previously given methods, in this 

approach internal sensors that are already on the robot are used given in Figure 2.4. 
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Figure 2.4 Modification of the trajectory of the manipulator depending on the robot model 

(Source: Klimchik et al., 2014). 

 

Method explained in Figure 2.4 incorporates the stiffness model of the robot in 

the robot controller, which calculates the joint coordinates according to desired trajectory 

and estimated loading. 

(Wang, Yu, & Liao, 2004) introduced the compensation of compliant errors based 

on the error prediction and compensation by NC-code conversion which can be applied 

on-line. In this method, accumulated errors in the workspace as a result of geometric, 

gravity and stiffness effects are predicted and these errors vary with respect to the robot 

configuration and applied external forces. Finally, trajectory is modified and it is fed into 

the servo controller of the NC machine via NC conversion software.  

In haptic device applications, forces can be displayed in any direction and 

magnitude. Maintaining a better motion tracking between the master and the slave 

devices, while displaying these random forces, requires computation of compliant errors 

and compensation of the slave trajectory sent from the master side in real time. Therefore, 

on-line compensation provides best solution for the compensation of compliant errors for 

haptic device applications. The difficulty in applying an on-line compensation method 

stems from the complexity of the mathematical stiffness model for especially multi-DoF 

systems. Calculation of the stiffness matrix provides the relation between the forces 

exerted on the robot and the compliant displacements of the robot mechanism, which are 

the reason of the compliant errors at the end-effector. Therefore, in the next subsection, 

methods for stiffness analysis for robot manipulators are explained. 
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2.3. Stiffness Analysis of Robot Manipulators 

 

The linear relation between the external forces acting on the end-effector and 

displacement of the end-effector due to the external forces is generally given by the 

stiffness matrix, K̂  , (Clinton, Zhang, & Wavering, 1997) and provided in the Equation 

2.1. The diagonal elements of K̂  constitute the relation of the force and compliant 

displacements, when the coupling of these deformations is not taken into account. 

However, to represent the coupling between the compliant displacements and rotations, 

non-diagonal elements of stiffness matrix can be presented in K̂ . The linear relation in 

Equation 2.1 is valid only for small magnitudes of displacements ΔS  and under static 

conditions (Carbone, 2003). 

  ˆW=K ΔS   (2.1) 

The external load vector W is also known as wrench which has linear and 

rotational elements as provided in Equation 2.2. 

 TW=(Fx,Fy,Fz,Tx,Ty,Tz)   (2.2) 

In Equation 2.2, Fx, Fy and Fz are external force components and Tx, Ty and Tz 

are the external moment components applied on the manipulator’s end effector and ΔS is 

given in Equation 2.3.    

 TΔS=(Ux,Uy,Uz,Uα,Uγ,Uδ)   (2.3) 

where Ux, Uy and Uz are the linear displacement components of the end-effector 

along the Cartesian coordinate axes and Uα, Uγ and Uδ  are the angular displacement 

components of the end-effector represented in Euler angles for a selected Euler angle 

sequence.  
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For displaying minimum impedance in free motion and maximum impedance in 

stiff wall contact conditions, haptic devices are made of high-strength low-density 

materials. These materials with reduced weight and cross-sectional areas result in 

structural deformations under external loading conditions (Carbone, 2003). Therefore, 

calculation of stiffness matrix of the haptic device in early stages of the design enables 

the designers to improve the stiffness characteristics of the device. Moreover, a closed 

form stiffness matrix of the final design can also be used to improve positional accuracy 

during the operation.  

In literature, three approaches are generally employed to find the linear relation 

between displacement and the external wrench for robot mechanisms. These methods are 

structural matrix analysis (SMA), finite element analysis (FEA) and virtual joint method 

(VJM). Apart from these methods, (Ceccarelli & Carbone, 2002) provides another 

approach called as matrix product method. All four methods are explained and discussed 

in the next subsections. Moreover, the identification of the link stiffness parameters and 

experimental methods for evaluating the stiffness characteristic of robot manipulators are 

provided. 

 

2.3.1. Structural Matrix Analysis in Stiffness Modeling of Robot 

Manipulators 

 

SMA is based on considering the manipulator as a spatial frame of beam elements. 

Originally this method is used for calculating the deformations of the structures 

(Przemieniecki, 1985) and it is the oldest method for finding stiffness of structures. Then 

this method is slightly modified to be used for calculating the deformation of robots 

(Clinton, Zhang & Wavering, 1997). In this method, external forces and end-effector 

displacements are represented by nodal forces and displacements. Nodal displacements 

and forces are related with nodal stiffness matrices, which depend on the geometrical and 

mechanical properties of the element such as configuration of the robot, link lengths, 

cross-sectional area of the links, Young's and Coulomb's modulus and inertias of the 

beams. Most recently (Deblaise, Hernot, & Maurine, 2006) have provided an analytical 
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method, which is a modification of the SMA method, for calculating stiffness matrix of 

parallel mechanisms. 

In this section, SMA is given over the example of a serial chain, since the steps 

for calculating the stiffness matrix of a parallel robot relies on calculating each leg’s 

stiffness as if they are distinct serial chains and then to combine them in an overall 

stiffness matrix of the parallel robot.  Decomposition of a serial kinematic chain that is 

composed of joints and links for carrying out SMA is given in Figure 2.5. In this figure, 

the serial chain is decomposed into structural elements that are defined between the nodes 

1, 2 and 3. These elements are the kinematic elements of the links of this serial chain and 

have their own geometric and mechanical properties which are defined with respect to 

their local frames. For the element between fixed-end, which is the base of the robot 

manipulator, and node 1, the stiffness matrix is defined in Local Frame 1. Stiffness matrix 

of this element gives the deformation of the node 1 under the related nodal force. For the 

next element that is between nodes 2 and 3, stiffness matrix is defined for the Local Frame 

2. In this decomposition, joints i and j couples the nodes coming before and after these 

joints. 

 

Figure 2.5 Decomposition of a serial chain. 

For beam elements subjected to external wrenches, a stiffness matrix is defined 

and expressed in the local frame of that beam. In SMA, beams can be defined by two 

means (McGuire, Gallagher, & Ziemian, 2000); (1) beam that has a fixed tip and one 

node corresponding to the other tip, which is indicated as Link 1 in Figure 2.5, (2) beam 

that has two nodes on each end, which is indicated as Link 2 in Figure 2.5. Stiffness 

matrix of beams having one node is given by a 6x6 matrix provided in Equation 2.4. 
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(2.4) 

 

In Equation 2.4, the indices of 1K̂b  matrix indicate base as b and link frame 

number as 1.  Elements of the matrix are calculated using the flexible beam assumption 

given in (McGuire, Gallagher, & Ziemian, 2000). For beams having two nodes, the 

stiffness matrix can be represented by a 12x12 square matrix, given in Equation 2.5. 

 

2 2 2 2

22 232 2

2 2 2 2

32 33

ˆ ˆK K
K̂

ˆ ˆK K

 
  
  

  (2.5) 

2 2

ijK̂ given in Equation 2.5 stands for the stiffness matrices of the nodes, which 

relates the displacement of a node to a nodal force. Subscripts i and j identifies the acting 

point of forces and nodes that stiffness matrix is built for, respectively (Przemieniecki, 

1985). After this matrix is developed in its local frame, then it is transformed to the base 

frame to be superposed with the other stiffness matrices. This transformation of the local 

stiffness matrix 2 2

ijK̂  is accomplished by using a rotation matrix given in Equation 2.6. 

Transformation equation for the local stiffness matrix is shown in Equation 2.7. 
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R̂ 0 0          0

ˆ 0          00 R
P̂

ˆ0          0 R 0

ˆ0         0 0 R

   (2.6) 

 b 2 2 2 1ˆ ˆ ˆ ˆK P K P   (2.7) 

In Equation 2.6, R̂(b,2) stands for the 3x3 rotation matrix from world frame to the 

local frame 2. As the stiffness values for links are calculated with respect to the same base 

frame, they can be superposed and assembled in a global stiffness matrix. For the example 

given in Figure 2.5, the stiffness matrix assembly becomes, 

 

b 1

b b 2 b 2

T 22 2

6,6 6,6

6,6

6,6

3

b 2 b 2

32 33

K̂

ˆ ˆ ˆK K K

ˆ ˆK

0

0 K

0

0

 
 

  
 
  

  (2.8) 

In this equation 6,60  is 6 by 6 zero matrix.  

After the stiffness properties of the robot mechanism are calculated, the kinematic 

relations between nodal displacements are developed to model the joints of the structure 

and the elements that are considered to be rigid. Characteristic of the revolute joint is that 

all motions of the nodes 1 and 2 are the same except the rotational motion of node 2 about 

the joint axis z21. 
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Figure 2.6 Coordinates of a revolute joint 

 

Since all of the stiffness matrices, which relates the nodal displacements to the 

nodal wrenches, are defined according to the world frame, x21 and y21 unit vectors should 

also be written in the world frame. These unit vectors given in Figure 2.6 are extracted 

from the rotation matrix of the related frame by finding the projection of the unit vectors 

on world frame. This projection is done by multiplying the rotation matrix R(b,2) which 

is provided in Equation 2.6 with the x, y and z axes defined on the world frame that is 

given by bx21,  
by21 and 2x21, 

2y21 in Equation 2.9 stands for the unit vectors of the Local 

Frame 1 defined in the world frame. It should be noted that these unit vectors may change 

depending on the axis of motion of the joint.  

 
 b,2

21

2

21
ˆx R b x         ,      

 b,2b

21 1

2

2
ˆy R y  (2.9) 

This kinematic relation can be defined such that these two nodes make the same 

displacements in 5 DoF other than the last DoF, which is the rotation about the axis of 

motion of the first joint (Deblaise, Hernot, & Maurine, 2006). This relation can be given 

in the following matrix equation provided below. 

 

2

3,123 3,3 3 3,3

2,112,3 21 2,3 21

1

dP

ˆ ˆ 0δI 0 -I 0

0dP0 Ω 0 -Ω

δ

 
    
     
     
 
 

 (2.10) 
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where Ω21 is a 2x3 matrix having the unit vectors perpendicular to the axis of rotation of 

that revolute joint. These unit vectors are given in Equation 2.9 with bx21 and by21 and 

they are defined with respect to the 1st frame. Î  in Equation 2.10 stands for the 3x3 

identity matrix and 0i,j stands for the ixj dimensional zero matrix. 

 

b

21

21 b

21

T

T

x
Ω

y

 
  
 

 (2.11) 

 

The Equation 2.10 can be represented with the following equation, 

 
2

21 21 5,1

1

ΔXˆ ˆA -A = 0
ΔX

 
        

 
 (2.12) 

where 21Â , 2ΔX  and 1ΔX are given as Equation 2.13. 

 
3 3 2 1

21 2 1

2 12,3 21

ˆÎ 0 dP dP
Â ;      ΔX = ;     ΔX

ˆ ˆ δ δ0 Ω

     
      
      

 (2.13) 

As shown in Equation 2.12, perfect revolute joints do not allow any linear 

displacements along 21x , 21y  and 21z  and any angular displacements about 21x  and 21y . 

General stiffness matrix GK̂ , nodal force vector GF  and nodal displacement vector GΔX  

are defined in Equation 2.14.  

 

b T

T K K

G G G

ˆK̂ A F ΔX
K̂ = ;       F = ;      ΔX =

ˆ ˆ 0 λA 0

     
     
      

 (2.14) 

The A matrix is a (5m)x(6k) matrix where m is the number of joints and k is the 

number of the nodes defined for the serial chain. For a serial chain, Â matrix is 

constructed using Equation 2.12. In this matrix, nodes attached to each other on joints 
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have the kinematic constraints and the others that are not on the joints are represented 

with a zero matrix. The nodal force vector FK is developed by carrying out static force 

analysis for each node. λ in Equation 2.14 is a 5x1 vector representing the Lagrange 

multiplier for the node. Considering the structure given in Figure 2.5, Equation 2.14 can 

be written such that 
T T T T

G 1 2 3 1,6
F = F F F 0 

    and

TT T T T

G 1 2 3 1,5
ΔX = ΔX ΔX ΔX λ 

 
, for this system GK̂ is written as: 
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 
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 
 
 
 
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 (2.15) 

If the boundary conditions for the robot are defined perfectly, which means that 

robot is rigidly fixed to a stationary base, the deformations of nodes can be calculated by 

using Equation 2.16,  

 -1

G G G
ˆ ΔX =K F    (2.16) 

In this set of linear equations GX , GF and GK̂ will be subjected to simple 

permutation operations. The permutation of these vectors and matrices will give the same 

set of equations with a different alignment. The purpose of this operation is to separate 

the node of interest from the others, which will help us to find out an equivalent stiffness 

matrix for the robot structure. If we define a 3x3 permutation matrix of P composed of 

vectors 
1 2 3[1 0 0];  [0 0 1];  [0 1 0]      and M composed of 

1 11 12 13 2 21 22 23 3 31 32 33M =[a a a ];  M =[a a a ];  M =[a a a ]  such that, 

 T

1 2 3P = ε ε ε  and  T

1 2 3M = M M M , then the matrix multiplication of P by a 3x3 

matrix of M from left will give the matrix ML with rows interchanged according to the 

permutation vector, which can be shown as; 
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11 12 13 11 12 13

L 21 22 23 31 32 33

31 32 33 21 22 23

1 0 0 a a a a a a

P M=M ;         0 0 1 a a a a a a

0 1 0 a a a a a a

     
     

  
     
          

 (2.17) 

If the inverse of P matrix, which comes out to be itself, were multiplied from right, the 

resultant matrix MR would be the M matrix with the columns interchanged according to 

the permutation vectors (Stuart & Weaver, 1991) as shown in Equation 2.18. 

 

11 12 13 11 13 21

1

R 21 22 23 21 23 22

31 32 33 31 33 23

a a a 1 0 0 a a a

M P =M ;         a a a 0 0 1 a a a

a a a 0 1 0 a a a



     
     

  
     
          

 (2.18) 

∆XP, FP and KP, given in Equation 2.19, are the permutations of GX , GF and GK̂ and they 

provide a simple solution in finding the equivalent stiffness matrix of a structure, which 

is defined for a specified node. 

 

b T

T -1 G G

P P P

ˆK̂ A F Xˆ ˆ ˆ ˆ ˆK =P P ;       F =P ;      X =P
ˆ 0 λA 0

     
         
      

 (2.19) 

When the permutations of GX , GF and GK̂ are found according to the method previously 

described, these vectors and matrices become: 

 

b 1 T

6,6 6,6 21 6,6
1 1

b 2 T b 2

6,6 22 21 232 2

P P P

6,1 21 21 5,5 5,6

b 2 b 2
3 3

6,6 32 5,6 33

ˆ ˆ ˆK̂ 0 A 0ΔX F
ˆ ˆˆ ˆ0 K -A KΔX F ˆΔX = ,     F = ,    K =
ˆ ˆ ˆ ˆλ 0 A -A 0 0

ΔX F ˆ ˆˆ ˆ0 K 0 K

    
    
    
    
    
      

 (2.20) 

For the ease of calculation, Equation 2.20 can be divided into a block 

representation so that the node of interest is isolated from the other terms as presented in 

Equation 2.21. In this block representation, RX and RF represent the rest of the elements 
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of PX and PF other than 3X and F3. PK̂ in Equation 2.20 is represented by the elements 

KR1, KR2, KR3 and bK33
2 in Equation 2.21.  

 
R1 R2

R

R R

P P P b 2
3 3 333

X F ˆX ,     F = ,    K
ˆX F

ˆ ˆK K

K̂ K

    
       

       

 (2.21) 

As described in (Deblaise, Hernot, & Maurine, 2006), if a linear equation set is 

written and expanded in the form of P P PK̂ X F   , following equations are formulated: 

 R 3R1 RR2
ˆ ˆK KΔX + ΔX =F   (2.22) 

 
b 2

R3 R 33 3 3
ˆΔX + KK̂ ΔX =F   (2.23) 

If RX is left alone in Equation 2.22 and then substituted into Equation 2.23, the final 

expression provided in Equation 2.24 gives the compliant displacement of node 3 with an 

equivalent stiffness matrix and force. 

 
1 b 2 1 1

3 3R3 R1 R2 R33 R13 R
ˆΔX ( K ) (F Fˆ ˆ ˆ ˆ ˆK K K K K )            (2.24) 

Equivalent stiffness matrix EK  and equivalent force EF that are implicitly written in 

Equation 2.24 are presented explicitly in Equation 2.25. This equivalent representation 

for stiffness calculations for the single DoF mechanism of concern is illustrated in Figure 

2.7. 

 

1 b 2ˆ ˆK ( K )
E 33

1F (F F )
E 3

ˆ ˆ ˆK K K
R3 R1 R2

ˆ ˆK K
R3 R1 R

    

   

 (2.25) 
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Figure 2.7 Equivalent beam representing the manipulator for stiffness 

calculations 

Once the equivalent stiffness matrix for a serial chain of a parallel mechanism is 

calculated, it can be combined with the rest of serial chains’ stiffness matrices for finding 

the equivalent stiffness matrix and equivalent force vector for the parallel mechanism as 

explained in (Deblaise, Hernot, & Maurine, 2006). The method of combining the 

equivalent stiffness matrices of serial chains for a parallel robot relies on a kinematic 

constraint defined for the mobile platform of the parallel robot. This kinematic constraint 

states that, if any two nodes are defined on a rigid body, the compliant displacements 

between them is zero, which is expressed by Equation 2.26. Therefore, the vector L⃗ vw, 

which is shown in Figure 2.8, defines the relative position of the nodes and it is constant.  

 

Figure 2.8 A rigid body defined by nodes v and w. The displacements of these nodes are 

given with dPv, δv, dPw and δw. 



 

 

41 

 
v w

v w vw wP P L

  

  
  (2.26) 

This kinematic relation ensures that there is no energy stored in the rigid body.  

 

v

3,3 3 3,3 3 3,1v

3,1w3 3,3 3 vw

w

P
ˆ ˆ ˆ ˆ0 I 0 I 0

ˆˆ ˆ 0PI 0 I L

   
    

    

 
 
 
 
 
 

  (2.27) 

vwL  is a skew symmetric matrix of vwL  = [Lx Ly Lz]
T, which is a vector defined 

from node v to node w.  

 

z y

vw z x

y x

0 L L

L L 0 L

L L 0

 
 

  
  

 (2.28) 

Thus the simplified form of Equation 2.27 can be written as: 

 
v

vw 6,1

w

ΔXˆ ˆB B = 0
ΔX

 
        

 
  (2.29) 

B̂ , vwB̂ in Equation 2.29 are written as: 

 
3 3

3 3

ˆ ˆ0 I

ˆÎ 0
B̂

 
  

  

 ,    
3 3

vw

3 vw

ˆ0 I
ˆ

Î L
B̂

 
  
  

  (2.30) 
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Equivalent stiffness matrix of the parallel kinematic robot can be obtained using 

the kinematic relation given in Equation 2.29. The analogy remains same for 

implementing these kinematic relations and given by Equation 2.20. 

 

2.3.2. Finite Element Analysis in Stiffness Modeling 

 

Analytical methods for the stiffness calculations of the robots generally produce 

complex closed form analytical expressions which are hard to solve (Pêgo et al., 2013). 

Generally in analytical methods, links having complex shapes are simplified and joints 

are considered to be rigid, which means that material properties of the joints do not affect 

the overall displacement of the robot but they are only used in defining kinematic 

relations. Such approximations reduce the accuracy of the robot's stiffness model that is 

less useful in design improvement stage of the robot manipulator as discussed in 

(Aginagaa et al., 2012) and (Deblaise, Hernot, & Maurine, 2006). 

In order to overcome this inaccuracy in analytical methods, robot's stiffness model 

can be constructed by FEA. This method reduces infinite dimensional robot model into 

finite dimension and these finite regions are called as elements. Then these elements are 

given a certain number of nodes depending on their geometry such as, cube and pyramid. 

Then the approximate solutions of an element are calculated among these nodes. These 

solutions are approximated, so that they guarantee a continuous solution for the nodes 

shared by the neighbor elements (Logan, 2011). 

FEA shares the same basis with the SMA; however, it reduces the element size 

from links and joints to finite sized geometric shapes of cubes and pyramids. By this way 

more accurate geometries of the links, joints and end-effector can be modeled (Klimchik, 

2011). This property of FEA makes it far more accurate compared to the SMA, since the 

links and joints can be modeled in their original shape and the node of interest can be 

extracted from the others just as described in SMA (Huang, Zhao & Whitehouse, 2002). 

However, increased number of nodes generates larger matrices to be dealt with, which 
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requires higher computational cost. Due to this higher computational cost, this method is 

generally preferred to be used in the final stage of the design procedure (Carbone, 2003). 

 

2.3.3. Virtual Joint Method in Stiffness Modeling 

 

VJM assumes that the links of a robot manipulator are rigid and compliances of 

the links are represented with localized springs placed in the joints. These auxiliary joints 

are called virtual joints and they lump the compliances of links and joints onto one point. 

Due to this approach, this method is also called as lumped method (Gosselin, 1990). For 

the structure having compliant joints and rigid links, static equilibrium equations are 

derived and linearized to obtain Cartesian stiffness matrix of the manipulator as explained 

in (Zhang & Gosselin, 2002). In this work, joints were assumed to be the dominating 

source of compliance and as an application of the method, stiffness of a serial manipulator 

was derived. In the works (Zhang & Gosselin, 2002), (Xi et al., 2004) and (Majou et al., 

2007), the compliances of the links were also lumped in the virtual joints and VJM were 

applied on parallel mechanisms. Since the links' and joints' stiffness are lumped on a joint 

and the rigid body assumption is made in calculations of end-effector positions, this 

method simplifies the stiffness calculation (Klimchik, 2011). 

When this method was first applied by (Gosselin, 1990), the compliant elements 

were defined by only one degree of freedom springs. This approach was not capable of 

representing a general stiffness matrix for the links and thus, for the whole manipulator. 

To improve its accuracy, several virtual joints were used to represent the translational and 

rotational degrees of freedoms (Majou, 2007). In this work, compliances of the links were 

calculated by considering the links as flexible beams and stiffness values for these links 

were derived by relating the external forces to the displacement (Majou et al., 2007). 

Finally, in the work of (Pashkevich, Chablat & Wenger, 2008) the compliances of the 

links are obtained using a FEA-based approach. In this approach, links are modeled in a 

3D CAD environment and imported into FEA software. By using FEA tools, a 6x6 

symmetrical semi-definite, non-negative stiffness matrices is obtained for each link after 

several numerical simulations. As a result of this, stiffness parameters of the links and 

joints are calculated more accurately with the help of FEA. Although this process requires 
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more computational time for finding a link stiffness, it is executed once for a design. That 

is the reason that this method can be used in VJM calculations and can be used in closed-

form analytical solutions.  

Stiffness calculations in VJM originate from the basic equations given below. 

Equation 2.31 is derived from the geometric model of the manipulator and it relates the 

translational and rotational displacements of virtual joints to the end-effector’s compliant 

displacement. In Equation 2.32, static equilibrium of the manipulator is given and finally 

in Equation 2.33, the changes in virtual joints are related to the reaction forcing by 

Hooke's Law (Gosselin, 1990). 

 θδt = J δθ   (2.31) 

 
T

θτ = J F   (2.32) 

 θτ = K δθ   (2.33) 

In Equation 2.31, δt  vector includes the translational and rotational compliant 

displacements of the end-effector, θJ  is the Jacobian matrix and θδ  is the translational 

and rotational displacements of virtual joints. In 2.32,   stands for the vector of reactions 

in the virtual joints, F stands for the vector of external forces and moments. Finally, Kθ  

contains the stiffness information of the virtual joints. After some symbolic manipulations 

Equations, 2.31, 2.32 and 2.33 can be combined in one equation presented in 2.34. In 

Equation 2.34, Cartesian stiffness matrix is given as 
1 T

C θ θ θK J K J    in unloaded 

mode, where the external load is relatively small. The reason to specify the external load 

as small is that the calculations include kinematic relations which would change if there 

is relatively large amount of force which causes change in the configuration of the robot. 

Therefore, this stiffness matrix calculations holds only in the vicinity of the initial 

condition where the external forcing is relatively small. 
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1 T

θ θ θδt=(J K J ) δθ    (2.34) 

It is obvious in Equation 2.34 that the important issue for this approach is finding 

the stiffness matrix θK  for the virtual joints. In the first studies for VJM, this matrix was 

developed in a way that the compliancy due to forces and moments are considered to be 

decoupled (Gosselin, 2002). This resulted in a diagonal 6 by 6 matrix. In the following 

works, the stiffness matrix definition is improved by including the coupling of the 

deflections due to the forces and moments (Li, 2008).  

When this method is first applied to parallel mechanisms, some assumptions were 

made. In these assumptions, parallel robots were not considered as over-constraint 

mechanisms and compliances of the manipulator was concentrated in the actuated joint 

(Gosselin, 1990). Then in following works by (Zhang, 2002) and (Xi et al., 2004), VJM 

is extended to links' and passive joints' compliances. Recently, in the works of 

(Pashkevich, Chablat & Wenger, 2008) and (Pashkevich, Chablat & Wenger, 2009), 

stiffness values of the links are obtained via numerical simulations. 

Generally, each serial chain of a parallel robot includes an active joint and passive 

joints. Therefore, in stiffness calculations passive joint effects are considered. As denoted 

in (Klimchik, 2011), passive joints can be eliminated when the geometric constraints 

imposed by the manipulator assembly are not redundant. In this case, the original 

formulation provided in Equation 2.34 can be applied. However, in the case of over-

constrained and under-constrained mechanisms the elimination of passive joints cannot 

be applied directly. This problem is studied by (Majou et al., 2007) and (Pashkevich, 

Chablat & Wenger, 2008), in which internal loops like parallelograms in a serial chain is 

converted to an equivalent serial link. The technique proposed in (Pashkevich, Chablat & 

Wenger, 2008) requires inversion of a square matrix of size (6+ θn ) x (6+ θn ) where θn  

is the number of passive joints. This square matrix is composed of link stiffness matrices 

and Jacobian matrices of both virtual springs and passive joints. When the inverse of this 

matrix is taken, Cartesian stiffness KC
 matrix can be extracted from this matrix which is 

provided in Equation 2.35. 
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1
1 T

θ θ θ qc

T

q

J K J JK *

J 0* *


   

   
    

 (2.35) 

θJ  is the Jacobian matrix formulated for the virtual springs and qJ is the Jacobian 

matrix formulated for the passive joints. Once the stiffness matrices of serial chains that 

connect the base and the moving platform of a parallel manipulator are calculated, they 

can be integrated into a general stiffness model under some assumptions. These 

assumptions are that there should be no internal loops in the serial chain and serial chains 

connect to the same point on the moving platform (Xi, 2004). The method for combining 

the legs that is not connected to the same point is provided in (Klimchik, 2011). When 

these conditions are met, stiffness matrices of serial chains of a parallel manipulator can 

be superposed directly as given in Equation 2.36. 

 

1
1 T

θ θ θ qc

T

q

J K J JK *

J 0* *


   

   
    

 (2.36) 

where i is the kinematic chains and n is the number of chains (Pashkevich, Chablat & 

Wenger, 2009). 

Compared to the other methods, VJM has low computational cost due to the 

simplicity in modeling of the compliance model of the robot manipulator. With the 

proposed method of finding virtual spring parameters by FEA, VJM method proved to be 

comparable with FEA method in terms of accuracy (Klimchik, 2011). 

 

2.3.4. Matrix Product Method 

 

Matrix product method is proposed by (Ceccarelli & Carbone, 2002), which 

simply decomposes the stiffness behavior of the parallel robot into its force transmission, 

stiffness values of leg components, leg geometry and leg configuration. The parallel 

robot, which is given in Figure 2.9, is under the effect of an external wrench W and this 
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results in the compliant displacement of the end-effector by ΔS. Here these parameters 

are given as TW=(Fx,Fy,Fz,Tx,Ty,Tz)  and TΔS=(Ux,Uy,Uz,Uα,Uγ,Uδ) .  

 

Figure 2.9 Forcing on legs of parallel robot under an external forcing 

The method is performed by finding a relation between external wrench W and 

the reaction forcings R1, R2 and R3 that are applied on the end-effector of a robot from 

the leg 1, 2 and 3. For the parallel robot scenario as given in (Ceccarelli & Carbone, 2002), 

the force transmission matrix, T, is an nxm, non-diagonal matrix. Here the n is the number 

of external wrench components, which is 6 for the general case, and m is the total number 

of reaction forcing components. Therefore, if reaction forcings R1, R2 and R3 have the all 

the force and moment components in x, y and z directions, then m becomes 18. The 

relation between W and the reaction forcings is given in Equation 2.37. 

 W=T R  (2.37) 

Then, these reaction forcing vector is related to the individual displacements of 

the compliant elements of the mechanism, which are the links, joints and actuators in each 

leg of the parallel robot. Therefore, the relation is set by the stiffness values of the 

compliant elements and this is provided in Equation 2.38. 

 R=K l  (2.38) 

Here the stiffness matrix K is defined according to the reference frame and 

includes stiffness values of all three legs for the case presented in Figure 2.9. In addition, 
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l  is composed of 1l , 2l and 3l each has linear and rotational displacements in x, y and 

z directions.  

 

1

2

3 (18x18)

K 0 0

K̂= 0 K 0

0 0 K

 
 
 
  

 (2.39) 

  
T

1 2 3 (1x18)
Δl= Δl Δl Δl  (2.40) 

Once the stiffness reaction forcing vector R is related to the leg displacements l

, the coordinate variation at the joint, which connects the leg the end-effector, can be 

found. This variation can be positional and/or rotational difference and it is represented 

for the case presented in Figure 2.9 which has three legs as  
T

1 2 3e= e e e , where 

 
T

k k k k k k ke = x y z θx θy θz is the coordinate variation of leg k. The relation 

between coordinate variation and the leg deformations are defined with C which is given 

in 2.41. 

 -1l=C e   (2.41) 

After coordinate variations of the joints that are between the legs and the end-

effector are calculated, the pose of the end-effector is found by applying a geometric 

relation. This is done by finding parametric plane equations A that is a function of the 

coordinate variations e, which is given in 2.51. 

 -1e=A ΔS  (2.42) 

After these steps are finished, then these matrices can be combined together to 

form the matrix product method as presented in 0.43. The total stiffness matrix of parallel 

robot KTOTAL is then formulated as shown in 0.44. 

 -1 -1W=M K C A ΔS     (2.43) 
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-1 -1

TOTALK M K C A     (2.44) 

 

2.3.5. Identification of Link Stiffness Matrices 

 

The stiffness matrices for links are generally determined by approximating the 

links as simple beams and this method is named as single beam approximation. In the 

literature, this method appears to be the most used one. Stiffness of a link can be easily 

determined by relating the forcing Facting on the link and translational and rotational 

deformations of the link (Yoon et al., 2004). For example considering a load F on a beam, 

the deflection of the link S  is shown in Figure 2.10. 

 

Figure 2.10 A slender beam fixed from one end and subjected to a force from the other 

end. F , M and S  are 3x1, 3x1 and 6x1 vectors defining the force, moment 

and deflection of the beam. 

For example, considering the force vector to be in x-direction only and moments 

to be zero, deflection of the beam can be found by applying following equation. In 

Equation 2.46, F  and S  is related with a constant value that is the stiffness of the beam 

in x direction. 

  xF L
x

A E


 


 (2.45) 
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  x

A E
x F

L


    (2.46) 

 

 With this analogy the other stiffness elements can be written as provided in 

Equation 2.47 (Przemieniecki, 1985).  

 

Z Z

3 2

Y Y

3 2

Y Y

2

Y Y

2

EA
0 0 0 0 0

L

12EI -6EI
0 0 0 0

L L

12EI 6EI
0 0 0 0

L L
K̂=

GJ
0 0 0 0 0

L

6EI 4EI
0 0 0 0

L L

-6EI 4EI
0 0 0 0

L L

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 (2.47) 

However, for the links having complex shapes, determination of link stiffness can 

be made by multi-beam approximation (Klimcik, 2011). In this approximation, link is 

divided into several pieces of serial links connected rigidly, which have simple geometric 

shapes. The stiffness matrices of these smaller links can then be combined by any stiffness 

matrix calculation method that is presented in this thesis. Schematic representation of this 

method is illustrated on a link that is given in Figure 2.11. Link shown in Figure 2.11 has 

varying cross-sectional areas along its length and it is not a straight beam. Provided in the 

figure, this link is divided into simpler pieces that are link1, link2, link3 and link 4 

respectively. To model this complex link more accurately, stiffness properties of these 

simpler links are calculated first and then integrated to each other in the right sequence. 

The integration can be done with SMA or VJM depending on the preferred method used 

for the analysis of whole system. Considering the stiffness analysis of a robot that contains 

this complex link provided in Figure 2.11, is executed with SMA, then the links 1 to 4 
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can be integrated to each other with SMA. In this case, the procedure of integration is 

provided by Equation 2.52. 

Symbolically, links 1, 2, 3 and 4 has stiffness matrices given in Equations 2.48, 

49, 50 and 51. Subscripts written in these equations are giving identification of the nodes 

to the related links respectively. Therefore, they are provided in the equations by the 

numbers 1 and 2. It should also be noted that stiffness matrices are rotated according to 

the rotation of these links with respect to the world coordinate. 

 

b link1 b link1

b link1 11 12

b link1 b link1

21 22

K K
K

K K

 
  
 

 (2.48) 

 

b link2 b link2

b link2 11 12

b link2 b link2

21 22

K K
K

K K

 
  
 

 (2.49) 

 

b link3 b link3

b link3 11 12

b link3 b link3

21 22

K K
K

K K

 
  
 

 (2.50) 

 

b link4 b link4

b link4 11 12

b link4 b link4

21 22

K K
K

K K

 
  
 

 (2.51) 

Once the stiffness matrices of the links are calculated, they are integrated with the exact 

method provided for whole robotic structure. 

 

b link1 b link1

11 12 6,6 6,6 6,6

b link1 b link1 b link2 b link2

21 22 11 12 6,6 6,6

b TOTAL b link2 b link2 b link3 b link3

6,6 21 22 11 12 6,6

b link3 b link3 b link4 b link4

6,6 6,6 21 22 11 12

b link4 b li

6,6 6,6 6,6 21 22

K K 0 0 0

K K K K 0 0

K 0 K K K K 0

0 0 K K K K

0 0 0 K K



 


nk4

 
 
 
 
 
 
 
 

 
(2.52) 

In the case of VJM, the procedure of integration can be done by generating the 

Denavit-Hartenberg (D-H) parameters of the complex link as if it is a mechanism. For 



 

 

52 

example, a simple beam can be modelled with six virtual joints that have virtual joint 

parameters of S1i, S2i, S3i, 1i, 2i, 3i. The subscript i represents the identification number 

of the link.  

 

Table 2.1 Denavit-Hartenberg parameters of links 1, 2, 3 and 4 to be combined 

in multi-beam approximation of the complex beam.  

 d  a 

1 S1+Li /2 0 /2 

2 S2 /2 0 /2 

3 S3 /2 0 /2 

4 0 1 0 /2 

5 0 2 0 /2 

6 0 3 0 /2 

7 0 i 0  -/2 

 

L and  are the length and angular displacement between links.  is defined from 

the previous to the next link and it is a constant. After putting D-H parameters of all links 

one after another in the required sequence, the orientation matrix and position vector can 

be calculated and from this knowledge Jacobian Matrix of the link can be computed. 

When the Jacobian and stiffness parameters of the link is set into the Equation 2.36, the 

stiffness matrix of the complex link can be found. 

 

 

Figure 2.11 Link collecting the stiffness properties of the links in the serial chain 
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Although the method of dividing a complex link into smaller pieces provides 

better results and it is computationally more convenient, practically it does not provide 

accurate results to most of the robots which have non-uniform cross sections in their links 

(Klimchik, 2011). An example for such links can be the one in Figure 2.11. The circular 

cavities that are cut out of the link for reducing the weight, makes the analysis of the 

stiffness properties harder. 

To achieve better accuracy in determining the stiffness of links, another method 

is proposed by (Paskevich et al., 2010). In this method, links are modeled in a CAD 

environment and then exported to an FEA software. In this software, the mechanical 

properties of the links are selected and proper fixtures are defined to one end of the link 

to construct a cantilever beam approach. Forces and torques are applied systematically to 

the other end of the link and deflection field of the free end of the link is measured. This 

deflection field is the compliant displacements of the reference point’s neighborhood. 

Then FEA simulations are repeated for forces and moments in different directions. 

Finally, link’s stiffness model identification is done according to the data of deflections 

and applied forcings.  

For small deformations, the stiffness properties are defined through stiffness 

matrix K, which defines the linear relation 

 
F p

K
M ψ

   
    

   
 (2.53) 

where p and  are the translational and rotational displacement vectors of the free end 

and F and M are the force and moment vectors causing these displacements. 

 

After carrying out simulations for different forces and moments, link’s stiffness matrix 

can be computed from the linear system provided in Equation 2.54. 
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1

1 m 1 m

1 m 1 m

F ... F p ... p
k=

M ... M ψ ... ψ



   
   

   
 (2.54) 

where k is the inverse of the stiffness matrix of the link, K and m is the number of 

experiments(Pashkevich, 2010). In each experiment only one force or moment is applied 

on the link, given in equation 2.55, therefore, in each test one column of stiffness matrix 

will be computed. 

 

T T T T

1 x 1 4 4 x

T T T T

2 y 2 5 5 y

T T T T

3 z 3 6 6 z

F (F ,0,0)   M (0,0,0) ;        F (0,0,0)   M (M ,0,0) ;

F (0,F ,0)   M (0,0,0) ;       F (0,0,0)   M (0,M ,0) ;

F (0,0,F )   M (0,0,0) ;       F (0,0,0)   M (0,0,M ) ;

   

   

   

 (2.55) 

Finally, after 6 experiments the stiffness matrix for the link is computed as, 

 

1

1 x 2 3 4 x 5 6

1 x 2 3 4 x 5 6

p /F p /F p /F p /M p /M p /M
K=

ψ /F ψ /F ψ /F ψ /M ψ /M ψ /M

y z y z

y z y z



 
 
 

 (2.56) 

Since there is a statistical approach by evaluating the deflections for various forcings and 

the link shapes, coupling between rotational and translational deflections and joint 

particularities are taken into the account, this method provides a reduction of errors in the 

calculation of a link’s stiffness matrix from 20-50 % to 0.1%. These error reduction values 

are taken from the works of (Klimchik, 2011) and (Pashkevich, Chablat & Wenger, 2009). 

 

2.3.6. Experimental Methods 

 

In calculation of stiffness matrix of robots, previously described methods provide 

solutions, which are more accurate like FEA solutions or computationally effective that 

can be used in on-line calculations. Although, the difference between the analytical and 

experimental solutions are getting closer with the improvements in the analytical models, 

there is still a remarkable error between these solutions for high precision applications 
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(Carbone, 2011). To identify the deviation of the stiffness model from the real case 

experiments are executed. These experiments share the same methodology that is to 

measure the displacement of the robot's end-effector under external wrenches. In 

literature, researchers have measured the end-effector displacements with various 

absolute measurement devices for example, (Clinton, Zhang, & Wavering, 1997) used 

dual indicators in measurement and followed the test procedure outlined in ASME 

Standard B5.54 (1993) that is given in the Figure 2.12.  

 

Figure 2.12 Test setup for stiffness matrix evaluation (Clinton, Zhang & Wavering, 1997). 

Another study (Alıcı & Shirinzadeh, 2005) made use of laser tracker for 

measuring the displacement of a serial robot at heuristically  determined points in its 

workspace. In this experiment force is applied through a wire on the end-effector and 

resultant forces in three axis is found through a force sensor. A schematic for experimental 

method is given in Figure 2.13. 
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Figure 2.13 Schematic for Stiffness measurement. The measurement is made by 

measuring the retroreflector with a laser tracker (Alıcı & Shirinzadeh, 

2005). 

Previously provided strategies were executed with complex testing procedures 

with expensive measurement devices. Therefore, mapping the stiffness characteristics of 

manipulators are limited (Carbone, 2011). In the work of (Pinto, Corral, Altuzarra & 

Hernández, 2010), a measurement cycle is provided for compliance measurements and 

this cycle defines a 5 step testing procedure. The procedure starts by dividing the 

workspace into points, where the stiffness measurements is executed. Secondly, the 

localization of the joints has to be done either by control or by manually with some 

fixtures. This step is followed by the 3rd phase that is the preload phase. Step 3 is made 

for removing the joint clearances since, only the compliant displacements are intended to 

be acquired. The step 4 were defined to be full load phase, in which pre-load and an 

additional load is applied onto the end-effector of the manipulator. In last phase the 

stiffness matrix of the robot is calculated according to the measurements taken in this 

phase. Measurements are taken along 3 axis for including the effect of the moments 

created.  

Another method for measuring the compliant displacements is built by researchers 

(Ceccarelli & Carbone, 2005) which is named as Milli-CATRASYS. This device is able 

to exert wrenches on the point H, Q and F on the end-effector of the robot manipulator 

given in Figure 2.14, while measuring the compliant displacements of the wire that is 

connected to the same points. Then the displacements measured through the LVDT 

sensors, can be used in calculating the end-effector displacements using the trilateration 



 

 

57 

technique (Carbone, 2003). Linear Variable Differential Transformers (LVDT) are 

analog sensors for measuring displacements. The position measurement occurs through 

electromagnetic coupling. This sensors provide high repeatability. Due to this reason it 

provides theoretically infinite resolution (marmatek.com/lvdt-rvdt/).  

 

Figure 2.14 Milli-CATRASYS measuring device (Ceccarelli & Carbone, 2005). 

As defined in (Carbone, 2011), stiffness matrix of a robot manipulator is 

symmetric under the conditions of external wrenches and reference frame that the 

displacement is going to be measured. As given in the work (Kumar, 1997), multiple 

solutions were calculated for a conservative mechanical system depending on the 

manipulator and the parameterization of its joint space. Due to this reason, calculation of 

a 6x6 Cartesian stiffness matrix requires 6 distinguished experiments, which are executed 

for 6 wrenches. The wrenches, stiffness coefficients and compliant displacements for 

each experiment is given in Equation 2.57. 

 
 

T
i i i i i i i

Ti

i1 i2 i3 i4 i5 i6

T
i i i i i i i

z

W= Fx Fy Fz Mx My Mz        

K= K K K K K K                        ;       i=1 6

X= x y z        

    

  



        x y  

 (2.57) 
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 The measured results for these experiments are collected in the way given in 

Equation 2.58 and the numerical solution for 6 set of linear equations gives the stiffness 

matrix coefficients of iK .  

 

i

6,1 6,1 6,1 6,1 6,1

i

6,1 6,1 6,1 6,1 6,1

i

6,1 6,1 6,1 6,1 6,1 i i

i

6,1 6,1 6,1 6,1 6,1

i

6,1 6,1 6,1 6,1 6,1

i

6,1 6,1 6,1 6,1 6,1

X 0 0 0 0 0

0 X 0 0 0 0

0 0 X 0 0 0
K W 0                i=1 6

0 0 0 X 0 0

0 0 0 0 X 0

0 0 0 0 0 X

 
 

 
 

    
 

 
 

  

 (2.58) 

Then, the coefficients are combined in a stiffness matrix that is provided in 

Equation 2.59. 

 

11 12 13 14 15 16

21 22 23 24 25 26

31 32 33 34 35 36

41 42 43 44 45 46

51 52 53 54 55 56

61 62 63 64 65 66

K

K K K K K K

K K K K K K

K K K K K K

K K K K K K

K K K K K K

K K K K K K

 
 
 
 

  
 
 
 
  

 (2.59) 

 

2.4. Conclusion for Literature Survey 

 

In this section, methods exist in the literature are given with their details. Firstly, 

SMA method is explained. SMA takes the robot manipulator as a structure and uses each 

compliant element's stiffness properties to find the overall stiffness value of the structure. 

In this approach, the compliant elements are represented with at most 2 nodes and 

compliant relations between these nodes are superposed in a global stiffness matrix to 

compute the displacement due to external wrenches. The matrix operations and required 

mathematical manipulations to end up with an equivalent stiffness matrix for the robot 

structure is shown. Since the compliant elements of the robot manipulator is given with 

less number of nodes, computational complexity of the stiffness calculation is lower than 
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the FEA based method yet the method involves matrix operations of large sizes. 

Furthermore, approximating a simpler shape for links reduces the accuracy of the method. 

Lastly, this method is provided for the unloaded mode, which means that external forces 

and moments are relatively low.  

Another method provided here is the VJM. This method simplifies the model by 

representing the compliancy of the links on joints and allowing a rigid body approach for 

the robot manipulator. Since this method uses the conventional kinematic calculations, 

computational complexity is low. An important point for this approach is determining the 

stiffness matrix of the virtual springs.  

Matrix Product Method(MPM) calculates the stiffness matrix of the manipulator 

by simply making matrix product of matrices that gives the force transmission capability, 

stiffness values of leg components, leg geometry and leg configurations. This method 

also provides a closed form representation for the overall stiffness matrix of a parallel 

kinematic robot manipulator. Since these matrices are written according to the moving 

platform of the parallel manipulator and considering the parallel kinematic robots with 

decoupled motion, displacement and coordinate variation matrices due to the stiffness of 

each leg has lower dimensions. However, complexity increases when the robot have 

another type of motion characteristics. 

As provided in the literature, first given by the decoupled stiffness values are 

introduced for all force and moment components. Then this is improved by providing the 

coupled effects of the deflections. After that, it is improved by providing a multi-beam 

approach to the links. Finally, a FEA-based approach is given. The FEA-based method 

improves the accuracy of the stiffness model for the robot manipulators composed of links 

having non-geometric shapes. Furthermore, this method is applied once for a manipulator 

before the stiffness calculations, therefore, it does not increase the calculation time of the 

stiffness matrix of the manipulator. 

  Experimentation for compliancy evaluation is done by measuring the absolute 

position of the robot that is given by several examples in the literature. The tools for these 

researches changes from micrometers, inclinometers and modified LVDT systems, which 

has to touch the end-effector of the robot, to laser trackers and stereo vision cameras that 
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is measuring the end-effector position of the robot from a distance. The important points 

for absolute position measurement to be used in compliancy evaluation is to follow a 

testing procedure and to consider the number of tests to find the stiffness property at a 

point. Moreover, the testing device should not include its own stiffness into the 

measurement.  

Considering the goals of this thesis, the stiffness calculation methods to be applied 

must be the one that provides most accurate result for stiffness matrix with least amount 

of computational expense. Comparing the methods provided in this section VJM and 

SMA gives the best trade of between accuracy and the computational efficiency. VJM 

and SMA can be improved by implementing a FEA-based approach for link stiffness 

identification. For experimentation, using vision sensors provide a good solution 

considering a wider workspace observation with minimum calibration and not including 

stiffness of the measuring devices to the evaluated robot. 
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CHAPTER 3  

 

 

CASE STUDY: A PARALEL MECHANISM HAPTIC 

DEVICE 

 

Haptic devices find use in many VR and teleoperation applications such as 

computer aided design (Ott et al. 2010), entertainment (Faust &Yoo 2006), (Web, 2012), 

education (Kretz et al., 2005), training (Basdogan et al., 2001), rehabilitation (Broeren et 

al. 2004), nano-manipulation (Sieber et al., 2008), virtual prototyping (Zhu & Lee, 2004) 

and virtual sculpting (Leu et al., 2005). Various types of haptic devices are developed, 

and they are employed in different types of tasks. Especially for accurate teleoperation 

(Hokayem & Spong, 2006) and precision required VR and medical applications (Ferreira 

& Mavroidis, 2006), haptic systems that have higher precision levels compared to the 

current commercially available haptic devices are required. In order to meet this precision 

criterion, a 6-DoF desktop haptic device, HIPHAD v1.0, was designed and constructed 

in previous thesis study in IZTECH Robotics Laboratory (Bilgincan et al., 2010).  

In this master thesis, a lower mobility version of HIPHAD v1.0 is taken under the 

consideration. In the original design, a wrist mechanism was included that was composed 

of the last 3 DoF and it was a passive serial kinematic chain. Since there were no actuation 

system in this wrist mechanism, it was not able to reflect any haptic feedback. Therefore, 

last 3 DoF are excluded from the device and a mobile platform with a fixed handle is 

assembled to the device. In the following sub-sections, components, kinematic and quasi-

static equilibrium analyses, and calibration of this modified version of HIPHAD device 

is introduced. 

 

3.1. General Information and Specifications of HIPHAD v1.0 
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HIPHAD v1.0 was designed to provide position feedback signals in the joint space 

in order to indirectly calculate the pose of the tool handled by the user in space through 

direct kinematics. Therefore it was configured as a 6-DoF mechanism. Only point-type 

of contact was designated to be reflected back to the user and to accomplish this only 

translational motion was required to be constrained by the actuators during operation. The 

device had hybrid structure which is composed of a 3-DoF active parallel translational 

mechanism and a 3-DoF passive serial-spherical wrist mechanism. Specifications of the 

device are listed in Table 3.1.  

Table 3.1 Specifications of HIPHAD v1.0 Design. 

Sensation Type Kinesthetic 

Mechanical Structure Hybrid 

Control Structure Open-Loop Impedance 

Application Type Desktop Device 

Degreesof Freedom of 

Motion 

6 

Type of Contact 

Simulation 

Point-Type of Contact 

(Forces in 3D) 

Continuous Exertable 

Force 

> 0.8 N in all directions 

Nominal Positional 

Resolution 

< 0.1 mm 

Workspace 120mm W x 120mm H x 

120mm D 

Footprint < 200 mm2 

 

In open-loop impedance type haptic devices, due to the random motion of the 

operator, no control can be employed to avoid singular positions. Therefore, motion 

through singular positions must be restricted by design. During the design procedure two 

singularity conditions are encountered and avoided by necessary precautions in design. 
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More information on the mechanical design of the device can be found in (Bilgincan et 

al., 2010). 

 

3.2. Hardware Used in the Haptic Device 

 

HIPHAD is composed of mechanical, electro-mechanical, and electronics units to 

facilitate an impedance type haptic system. The mechanical interface of HIPHAD is 

described in Section 3.3. The electro-mechanical parts used in the mechanism are the 

sensors and the electrical actuators. HIPHAD has parallelograms in each driving axis that 

allows using separate position sensors other than the position sensor attached on the rear 

end of the actuator. With this advantageous design feature, the positional measurements 

are not restricted to low resolution sensors. In the original design of HIPHAD, 

potentiometers were used to acquire the angular position of the actuated link indirectly 

from the other grounded link’s angular position. In this thesis work, the potentiometers 

are swapped with 10-bit quadrature encoders, which resolves a complete turn into 4096 

finite steps. In this way, noise problem on the analog potentiometer sensors were 

eliminated. These sensors, provided in Figure 3.1, are attached on the passive grounded 

axes of the parallelograms. 

 

Figure 3.1 In (a), location of the encoders are given by numbers 1, 2 and 3. In (b) enlarged 

view of encoder 1 is given 
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The Data Acquisition Card (DAQ) used in this haptic system is the Q8 DAQ from 

Quanser Consulting Inc. This is a single-board, PCI based, hardware-in-the-loop (HIL) 

control board. The specification of the Q8 DAQ are given in Table 3.2. In order to 

interface the HIPHAD device with a computer, 3 quadrature encoder inputs and 3 D/A 

converters of this DAQ are used. Theoretically, the Q8 DAQ can operate up to 100 KHz 

sampling rate that is far more than the human motion frequency. It stated that human can 

feel the haptic feedback that range from 10 Hz to 1 KHz, therefore, haptic devices should 

be able to provide force feedback in this frequency range (Kern, 2009). 

 

Table 3.2 Specifications of Quanser Q8 DAQ  

İtem Quantity Property 

Analog Inputs 8 14-bit 

Analog 

Outputs 
8 12-bit 

Quadrature 

Encoder Inputs 
8  

I/O Channels 32 Programmable 

Dedicated 

Counter/ 

Timers 

2 32-bit 

Reconfigurable 

Encoder 

Counter/Timers 

2 24-bit 

PWM Inputs 2  

PCI bus 

Interface 
  

32-bit          

33 MHz 

 

The actuators used in HIPHAD device were selected according to the required 

continuous torque. To comply with the HIPHAD specifications, a brushless direct current 

(BLDC) motor from Maxon Motors was selected to provide a maximum of 310 mNm 

continuous torque to operate without any transmission in direct drive mode. 

BLDC amplifiers to drive these motors are Maxon Motor drivers that receive drive 

signals as analogue voltage inputs in the range of ±10 VDC. The Q8 DAQ can provide 



 

 

65 

±10 VDC analog outputs and therefore, it can drive the motors in their full range. Also 

BLDC amplifiers allow current control of the motors, which means that torque control 

can be done.  Another important feature of these BLDC amplifiers is that their sampling 

rate is 1 KHz, which is sufficient for this haptic device application.  

 

 

Figure 3.2 HIPHAD v1.0 device composed of 1) BLDC amplifier Box 2) Maxon Motor 

BLDCs 3) Quadrature Encoders  

The manufactured prototype of HIPHAD v1.0 is presented in Figure 3.2 with all 

of its components. The electro-mechanical and electronic parts denoted by 1, 2, 3 and 4 

of the system are provided.   

 

3.3. Kinematic Analysis of the Haptic Device 

 

In HIPHAD v1.0, the translational motion demand to be sent to the slave system 

is based on the calculation of the wrist point position Wr with respect to the base frame 

in the task space by utilizing the real-time measurements from the position sensors in 

direct kinematics calculations. Therefore, the wrist location is measured in an indirect 
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way which means, direct kinematics is used to calculate the motion demand. The 

translational mechanism and its parameters are represented in Figure 3.3.  

 

Figure 3.3 Translational parallel mechanism parameters 

Translational parallel mechanism of HIPHAD is an R-Cube mechanism, which 

has decoupled motion along its Cartesian axes shown in the figure as
iu ;  i=1,2,3 . Hence, 

motion along any Cartesian axis is actuated by the actuator located on that axis. In 

Equation 3.1, calculation of the position vector of the wrist point OWr
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   with respect to the 

Cartesian frame,  1 2 3u ,;  u , uO , origin point, O, is described. 

 

 

3

r ri i

i=1

ri i i i1

W = W u
     i=1,2,3

W =S +l sin θ -E


 (3.1) 

S1, S2 and S3 in Figure 3.3 are the distances from the origin to the related actuation 

axis along related Cartesian axis. These parameters define the workspace location with 

respect to the origin, O. Zero/initial/homing position of the mechanism is defined to be in 

the middle of the workspace and the offsets, which defines the positional difference 

between the tip point of each leg and wrist point of HIPHAD, is given by the parameter 
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E in all 3 axes by orthogonal orange lines in Figure 3.3. There is an offset between the 

base and the first link of the parallelogram by an amount of P, which is denoted in Figure 

3.3 by green lines. The initial positions of actuators that define the initial position of the 

wrist point are given in the Figure 3.4(a).  

 

Figure 3.4 (a) Link and joint parameters (b) Joint limit (Dede et al., 2014). 

The zero position of the driving link’s angular position, θi1, is represented with 

solid red line in Figure 3.4(a). 
+

iWc parameter presented in Figure 3.4(b) indicates the 

workspace limitation of the mechanism in the positive direction, which is denoted in 

Figure 3.4(a) with
i1+θ . Therefore, in Figure 3.4, Wci is theoretically half of the workspace 

limit along iu  and the workspace limitation equation is written with respect to the total 

angular range of each driving link T

i1θ , which is less than a half rotation. 

 

3

i i

i=1

T

TOTAL i1 TOTAL

Wc= Wc u       i=1,2,3

Wc =l sin(θ )


 (3.2) 

Inverse kinematics solution of HIPHAD is provided for the whole kinematic chain 

including the passive joints on the three legs. The actuating and passive joint angles in 

the kinematic chain of the leg 1 are given by 11, 12, 13 and 14 respectively and these 

joint angles are denoted in Figure 3.5. As it can be observed from Figure 3.5, axis of 

rotation joint angles 11 and 12 is the 2u  axis and axis of rotation of joint angles 13 and 
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14 is the 1-u  axis. Inverse kinematics analysis to calculate for these angles are used in 

calibration of the device and stiffness analysis of the device. 

 

Figure 3.5 Active and passive joint angles of a leg 

Due to the mechanical structure of HIPHAD, the actuating joints cannot pass the 

joint limits provided in (Dede et al., 2014). Therefore, σ in Equation 3.4 can only be 1. 

 
ri

i1

i

W -S +E
sin(θ )=       i=1,2,3

l

i  (3.3) 

 2

i1 i1cos(θ )=σ 1-sin (θ )       i=1,2,3  (3.4) 

Equation 3.5 provides the solution for i1 using Equation 3.3 and 3.4. 

 i1 i1 i1θ =arctan2(sin(θ ) ; cos(θ ))  (3.5) 

Link 2, which is the coupler link of the parallelogram, is always secured at the 

same angular position due to the parallelogram. Therefore, the angle between the first 

link and the second link, which is given in Figure 3.7 by i2, the link 2 has to be maintained 

parallel and it is given in the Equation 3.6. 
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i1 i2

i2 i1

θ θ 0

θ θ

 

 
 (3.6) 

Once thei1 is found, the rest of the joint angles can be found using the difference 

between the position vectors P1W , P2W , P3W  and rW . These position vectors are given 

in Equations 3.7, 3.8, 3.9 and 3.10. 
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(3.9) 
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(3.10) 

 

 W̅P1 , W̅P2  and W̅P3  is subtracted from the W̅r . This vector will only have two 

components, since it will always be on a plane depending on the actuated axis.  

 r P1 2 21 21 1

3 31 31 11 11 122

0

W  W S +l sin(θ )-E P

S +l sin(θ )-E l cos(θ )-l

 
 

   
 
    

 (3.11) 
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S +l sin(θ )-E l cos(θ )-l

W  W 0

S +l sin(θ )-E P

   
 

 
 
   

 (3.12) 

 

1 21 23 1

r P3 2 32 33 11 13 122

S +l sin(θ )-E P

W  W S +l sin(θ )-E l cos(θ )-l

0

  
 

    
 
  

 (3.13) 

 

Figure 3.6 Geometric and Kinematic properties of 3rd and 4th links of the 1st leg 

Writing the loop closure equations in 𝐮⃗⃗ 𝟐- and 𝐮⃗⃗ 𝟑-directions and then summing the 

squares of these equations will give the result for the i4. 𝐮⃗⃗ 𝟐 and 𝐮⃗⃗ 𝟑 components of the 

loop closure equations are given in Equation 3.14 and 3.15. 

 13 13 14 13 14 R2l sin(θ )+l sin(θ +θ )=W   (3.14) 

 13 13 14 13 14 R3l cos(θ )+l cos(θ +θ )=W   (3.15) 

In order to solve for the inverse task to calculate the passive joint angles, first, 

squares of Equation 3.14 and 3.15 are taken and summed as follows: 
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 2 2 2 2 2 2 2 2

13 13 14 13 14 13 13 14 13 14l sin (θ )+l sin (θ +θ )+l cos (θ )+l cos (θ +θ )+     

13 14 13 13 14 13 14 13 13 142 l l sin(θ ) sin(θ +θ )+2 l l cos(θ ) cos(θ +θ )         

2 2

R2 R3=W +W  

(3.16) 

Equation 3.16 can be reduced to Equation 3.17 by using the difference of two angles of 

cosine. Then the angle 14 can be found by manipulating the Equation 3.17 as given in 

Equations 3.18 to 3.19. It should be noted that workspace of HIPHAD is placed away 

from the singularities. For this reason, there is only one physically possible solution for 

14 within the workspace. 

 
2 2 2 2

13 14 13 14 14 R2 R3l +l +2 l l cos(θ )=W +W    (3.17) 

 

2 2 2 2

R3 R2 13 14
14

13 14

W +W -l -l
cos(θ )=

2 l l 
 (3.18) 

 2

14 14sin(θ )= 1-cos (θ )  (3.19) 

 14 14 14θ =atan2(sin(θ ) ; cos(θ ))  (3.20) 

Once 14 is found, 13 can be calculated using the following matrix equation and 

trigonometric equality provided in Equation 3.21 and 3.22. 

 
4 14 3 4 14 13 R 2

3 4 14 4 14 13 R3

l sin( ) l l cos( ) cos( ) W

l l cos( ) l sin( ) sin( ) W

          
      

          
 (3.21) 

 13 13 13θ =atan2(sin(θ ) ; cos(θ ))  (3.22) 

Angles calculated in this section are used in stiffness calculations of HIPHAD for the two 

proposed methods since the stiffness is dependent on the leg configuration. Another 
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relevant analysis that has to be carried out is the quasi-static force equilibrium analysis 

and it is provided in the following section. 

 

3.4. Quasi-static Equilibrium Force Analysis  

 

In this sub-section, Recursive Newton-Euler (RNE) method is used to find the 

reaction forces on each joint and node assuming that there is no motion and there is an 

external force applied to the moving platform. Therefore, the calculation are carried out 

for the quasi-static equilibrium case. In order to accommodate this complex calculation, 

RNE method is applied for each leg separately. The main reason to calculate the reaction 

forces at each node is that both joint reactions and the internal node reactions are required 

for SMA. In this sub-section, the calculations are shown only for the first leg because, the 

procedure applied for the quasi-static force equilibrium analysis of the other legs is the 

same. 

The geometry of the links used in HIPHAD has complex geometries that has to 

be divided into smaller geometric parts for stiffness analysis. Accordingly, these smaller 

geometries have to be analyzed first and then connected to each other. Therefore, reaction 

forces at these nodes have to be calculated.  
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Figure 3.7 Geometric divisions of links and nodes represented for leg 1 

Considering the structure of HIPHAD, forces exerted on the moving platform are 

received or compensated by the actuators on each leg and the components of the external 

force vector along 𝐮⃗⃗ 𝟏, 𝐮⃗⃗ 𝟐  and 𝐮⃗⃗ 𝟑  are shared among these actuators according to their 

directions. In example, external force in 𝐮⃗⃗ 𝟏-direction is received and balanced by the leg 

1 actuator that has an axis of motion about 𝐮⃗⃗ 𝟐-direction. Leg 1 construction with its nodes 

and flexible links is represented in Figure 3.7.  

Links with passive joints coming after the parallelograms in each leg, are held in 

their static position by the actuation provided by the other two actuators. The necessary 

force application point to keep these links in their static position is the N17 point which 

is shown in Figure 3.7. Considering this design feature, forces that can be balanced by 

each leg are given in Table 3.3. Forces R1i, R2i and R3i are the reaction forces due to the 

weights of the free links of leg i acting at ith leg’s N17 point. F1, F2 and F3 are the external 

force components along u⃗ 1 , u⃗ 2  and u⃗ 3  axes acting on the wrist point, Wr. GE is the 

weight of the mobile platform. In calculating gravitational and external force effects of 

links on each node, RNE calculations are carried out for each leg individually. 
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Table 3.3 Forces transmitted to the N17 node of each leg. 

 Leg 1 Leg 2 Leg 3 

𝑢⃗ 1   -R22+F1       R12 0 

𝑢⃗ 2       R21   -R21+F2 0 

𝑢⃗ 3       R31       R32 GE-R31-R22+F3 

 

In calculation of reaction forces, moment balancing equations are used. These 

equations are derived for joints 4 and 3 of each leg. Figure 3.8 shows the gravitational, 

reaction and external forces acting on leg 1. In this figure, Gni and Cni stands for the mass 

and center of gravity of nth piece of link i respectively. 

 

Figure 3.8 Free Body Diagram of link 3 and link 4 of leg1 

 

10
(0) (0)

J4 17 J45 4 n1 4 n1

n 7

M (J J ) F ((C J ) g G ) M


          (3.23) 
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10
(0) (0)

J3 17 J35 3 n1 3 n1

n 5

M (J J ) F ((C J ) g G ) M


          (3.24) 

 

In the moment equations 3.23 and 3.24, J4M  and J3M  are the moments that can 

be created on the joints. The vector from the O origin to the kth joint is defined as kJ  and 

the vector from the O origin to the nth center of gravity is defined as niC , where i stands 

for the leg number. As long as joint 3 and joint 4 are considered as fully passive joints 

without any frictional resistance, moment around u⃗ 1-direction is always equal to zero for 

the first leg.  

 

21 4 34 31 4 34

(0)
175 4 1 4 34

1 4 34

R l cos( ) R l sin( )

(J -J ) ×F F l cos( )

F l sin( )

        
 

   
 
     

 (3.25) 

 

(0)
175 3

21 3 3 21 4 34 31 3 3 31 4 34

1 3 3 1 4 34

1 3 3 1 4 34

(J -J ) ×F =

R l cos( ) R l cos( ) R l sin( ) R l sin( )

F l cos( ) F l cos( )

F l sin( ) F l sin( )

                
 

      
 
         

 
(3.26) 

Equations 3.25 and 3.26 gives the moments generated by the external forces and reaction 

forces. Vectors A and B, which are given in 3.27 and 3.28, represent the moments 

generated by the gravitational effects in 3.23 and 3.24, respectively. These vectors only 

have their u⃗ i elements not equal to zero for leg i.  

 

10
(0)

n1 4 n1

n 7

A ((C J ) g G )


     (3.27) 

 

10
(0)

n1 3 n1

n 5

B ((C J ) g G )


     (3.28) 
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Using this feature of the moments created by the gravitational effects, R2 and R3 

can be computed by using the linear equation set given in Equation 3.29 and 3.30. This 

equation set is derived from the vector Equations 3.23 and 3.24 by extracting the scalar 

equations in u⃗ 1-direction. 

 21 4 34 31 4 34 1R l cos( ) R l sin( ) A 0           (3.29) 

 
2 1 3 3 21 4 34

31 3 3 31 4 34 1

R l cos( ) R l cos( )

  R l sin( ) R l sin( ) B 0

        

        
 (3.30) 

 R21 and R31 are solved by substituting R31 from Equations 3.29 into 3.30. After 

this operation, R31 and R21 are solved analytically as presented in Equations 3.31 and 3.32. 

 31 1 21 4 34R ( A R l cos( ))       (3.31) 

 

1 21 4 34 3 3 4 34
21

4 34 3 3 4 34

1

3 3 4 34

( A R l cos( )) (l sin( ) l sin( ))
R

l sin( ) (l cos( ) l cos( ))

B
           

l cos( ) l cos( )

          
 

       

    

 (3.32) 

The same calculations are applied to the second leg that has similar structure to the one 

given in Figure 3.8. The only difference in the analysis for reaction force is the direction 

of the external force applied on N17 and the initial orientation of this leg with respect to 

the world frame. Due to these differences, moment arms for the gravitational forces have 

components on u⃗ 3-u⃗ 1 plane this results in a moment about u⃗ 2-axis. Therefore, A  and B  

only have elements in u⃗ 2-direction and the calculation for this part is derived from the 

scalar equations in u⃗ 2-direction. Analytical solution for reaction forces R12 and R32 are 

given in Equation 3.33 and 3.34. 

12 2 32 4 34R ( A R l cos( ))       (3.33) 



 

 

77 

32

2 3 3 4 34 2 4 34

3 3 4 34 4 34 3 3 4 34 4 34

R

A (l sin( ) l sin( )) B l sin( )

(l sin( ) l sin( )) l cos( ) (l cos( ) l cos( )) l sin( )



         

                

 (3.34) 

Once the reaction forces created by free links on mobile platform are calculated and 

distributed among the legs, then the moments and forces created on the nodes can be 

calculated by using free body diagrams (FBD) of the parts that are shown in Figures 3.9, 

3.10 and 3.11. Moment equations are formulated with respect to the node that is closer to 

the HIPHAD base. 

 

Figure 3.9 FBDs of l41, l42, l43 and l44 that are decomposed from link 4. 

 

In Figure 3.9, FBD for link 4 is given. Link 4 is divided into smaller geometric 

parts named link41, link42, link43, link44 respectively from left to right. These smaller 

parts are presented in Figure 3.7 between nodes N13 and N17. a41, a42, a43 and a44 

stand for the magnitude of the position vector from node, which is closer to the base, to 

the gravity center of the related part.  

Force equilibrium condition for part link44; 
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16 10 17

16 10 17

F G F 0

F G F

  

  
 (3.35) 

Moment equilibrium conditions for part link44: 

 

N16

16 44 10 44 17 17

16 44 10 44 17 17

M 0;

M a G l F M 0

M a G l F M



     

     


 (3.36) 

Force equilibrium conditions for part link43: 

 
15 9 16

15 9 16

F G F 0

F G F

  

  
 (3.37) 

Moment equilibrium conditions for part link43: 

 

N15

15 43 9 43 16 16

15 43 9 43 16 16

M 0;

M a G l ( F ) M 0

M a G l ( F ) M



      

      


 (3.38) 

Force equilibrium conditions for part link42: 

 
14 8 15

14 8 15

F G F 0

F G F

  

  
 (3.39) 

Moment equilibrium conditions for part link42: 

 

N14

14 42 8 42 15 15

14 42 8 42 15 15

M 0;

M a G l ( F ) M 0

M a G l ( F ) M



      

      


 (3.40) 
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Force equilibrium conditions for part link41:  

 
13 7 14

13 7 14

F G F 0

F G F

  

  
 (3.41) 

Moment equilibrium conditions for part link41: 

 

N13

13 41 7 41 14 14

13 41 7 41 14 14

M 0;

M a G l ( F ) M 0

M a G l ( F ) M



      

      


 (3.42) 

The same procedure is carried out for link 3 that is given in Figure 3.10. Link 3 is 

divided into smaller geometric parts named l31, l32 respectively from left to right. a31 and 

a32 stands for the magnitude of the position vector from the node, which is closer to the 

base, to gravity center of the related part. 

 

Figure 3.10 Reaction forces and moments on nodes for link 3. 
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12 13

12 13

F F

M M

 

 
 (3.43) 

Force equilibrium condition for part link32;  

 
11 6 12

11 6 12

F G F 0

F G F

  

  
 (3.44) 

 

Moment equilibrium condition for part link32; 

 

 
N11

1211 32 6 32 12

11 32 6 32 12 12

M 0;

M a G l F M 0

M a G l F M



     

     


 (3.45) 

Force equilibrium condition for part link31;  

 
10 5 11

10 5 11

F G F 0

F G F

  

  
 (3.46) 

Moment equilibrium condition for part link31; 

 

N10

10 31 5 31 11 11

10 31 5 31 11 11

M 0;

M a G l ( F ) M 0

M a G l ( F ) M



      

      


 (3.47) 
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Figure 3.11 FBD of the parallelogram 

F⃗ 9 and M⃗⃗⃗ 9 that are exerted on node N9 do not include force along u⃗ 2-axis and 

moment about u⃗ 1-axis. The system presented in Figure 3.11 cannot be solved since the 

parallelogram is a planar mechanism and there is a moment element about u⃗ 3-axis. To 

overcome this problem, component of M⃗⃗⃗ 9  about u⃗ 3 -axis is extracted from the force 

analysis of the parallelogram and then included to the calculation of reaction forces at 

nodes 7 and 8 as couple forces. This assumption enables forcing coming from node 9 to 

be transmitted to nodes 6 and 5. The force equilibrium for link 2 of four bar mechanism 

is written in Equation 3.48. 

 

X X X

Z Z Z

9 8 7

9 8 7

F F F 0

0 0 0 0

F F F 0

       
       

         
             

 (3.48) 

Moment equilibrium taken at node 8 is given in Equation 3.49. 

 

1 1

2

3 33

9 722

9 22 21

9 21 79

F F0 0 l 0 0 0 0 0

M l 0 0 0 0 0 l 0 0

0 0 0 F 0 l 0 F 0M

          
          

               
                   

 (3.49) 

From Equation 3.49, 
37F is calculated as presented in Equation 3.50. 
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 2 1

3

9 9 22

7

21

M F l
F

l

 
  (3.50) 

Once u⃗ 3  component of F⃗ 7  is calculated the u⃗ 1  element of it is written as in 

Equation 3.51. 

 
1 37 11 7F cot( ) F    (3.51) 

Then F⃗ 8 is calculated by substituting F⃗ 7 into Equation 3.47. The reaction forces 

to balance the moment M9z is included into the system by calculating couple forces. This 

calculation is given in Equation 3.52. 

 
Z

Z

N8

M9 9 21

N7

M9 9 21

F M l

F M l

  

 
 (3.52) 

When these reaction force are superposed with F⃗ 8 and F⃗ 7 the resultant forces at 

nodes 7 and 8 are formed as given in Equations 3.53 and 3.54, respectively. 

 

X

Z

8

N8

M9

8

F

F

F

 
 
 
 
 

 (3.53) 

 

X

Z

7

N7

M9

7

F

F

F

 
 
 
 
 

 (3.54) 

Once these forces are calculated, rest of the force analysis for HIPHAD is 

calculated by applying following procedure. 
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6 8

6 8

F F

M M

 

 
 (3.55) 

 
5 7

5 7

F F

M M

 

 
 (3.56) 

 
4 2 6

4 2 6

F G F 0

F G F

  

  
 (3.57) 

 
3 1 5

3 1 5

F G F 0

F G F

  

  
 (3.58) 

Moment equilibrium formulations for link11 and link 12 are provided in 

Equations 3.59 and 3.60. 

 

 
N4

4 11 2 11 6 6

4 11 2 11 6 6

M 0;

M a G l F M 0

M a G l F M



     

     


 (3.59) 

 

 
N3

3 11 2 11 5 5

3 11 2 11 5 5

M 0;

M a G l F M 0

M a G l F M



     

     


 (3.60) 

Finally, forces acting on N2 and N1 nodes are calculated by the following 

equations given in Equations 3.61 and 3.62, respectively. 

 
2 4

2 4

F F

M M

 

 
 (3.61) 
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1 3

1 3

F F

M M

 

 
 (3.62) 

 

3.5. Calibration of the Haptic Device 

 

The purpose of calibration is to match angular position measurements from the 

encoders, which are placed on a grounded leg of each parallelogram, to the wrist point, 

Wr, position. To achieve this, first the absolute position of Wr is measured using stereo 

cameras. Later, the position of the wrist at each end of the cubic workspace is transferred 

into joint space by inverse kinematics calculations in order to find the joint motion limits. 

Finally, the joint limits are matched with joint sensor readings acquired by the quadrature 

encoders that are represented in Section 3.2. 

For absolute measurement of the wrist point, workspace is divided into two 

perpendicular planes, 1 3u u  and
2 3u u . On those planes, location of the mobile 

platform in 1u -, 2u - and 3u -directions are measured by two cameras, which are parallel 

to the normal of the selected planes as shown in the Figure 3.13 with red arrows. Blue 

arrows in this figure represent the Cartesian coordinate axes. 1, 2 and 3 stands for the 1u , 

2u  and 3u  axes respectively. 
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Figure 3.12 Test Setup for calibration  

Before carrying out Wr position measurement tests, camera is calibrated by using 

camera calibration application of Matlab®. For calibration, a checkerboard pattern is 

placed on the mobile platform as represented in Figure 3.14. This is a 6 by 5 checkerboard 

pattern having squares with 7 mm side lengths. Part denoted with 1, is the ball head 

assembly that enables different orientations of the calibration pattern. 

 

  

Figure 3.13 Checkerboard pattern in different orientations for calibration.  



 

 

86 

Once this geometric camera calibration is executed, intrinsic and extrinsic 

parameters of the cameras are obtained. Extrinsic parameters represent the rotation matrix 

and translation vector that relates the world coordinate system (Cartesian coordinates) to 

the camera coordinate system. Intrinsic parameters are described as the skew coefficient, 

the focal length, the principal point and the optical center (Zhang, 2000). Using these 

parameters, lens distortion is eliminated and planar measurements for mobile platform 

are carried out.  

Total translation of the device along each direction, Wci, is divided into two. The 

two parts are denoted as 
iWc  and 

iWc  representing the positive and negative 

translations that will be used for calculating 
i1

  and 
i1

  angles. Test procedure is 

initiated by finding the mid-position of the joint range, where θi1 = 0˚, by using a set-

square. Then the mobile platform is moved to its positive and negative limits along u⃗ i, 

which are denoted with 
iWc  and

iWc , of the mechanism are measured via cameras. 

Measured workspace limits are used for calculating the joint limits 
i1

  and 
i1

  as 

described in the Equation 3.63. This calibration methodology is applied to both versions 

of HIPHAD haptic device that had different position sensors. Previous version of 

HIPHAD had potentiometers as position sensors. The calibration results with the 

potentiometers were presented in (Dede et al., 2014). To eliminate noise on the analog 

signal from the potentiometers, these sensors were changed with encoders that are 

presented in Section 3.1.1. The calibration procedure was first applied on the HIPHAD 

having potentiometers and then, the same calibration technique is conducted for the new 

version with encoders. This section covers these two calibration processes. 

 
i1 i 1i

i1 i 1i

arcsin(Wc l )
               i 1,2,3

arcsin(Wc l )

 

 

 


 
 (3.63) 

 The measured and the calculated parameters for older and newer versions are 

tabulated in Table 3.4 and 3.5 
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Table 3.4 Measured values from cameras and calculated joint limits by using 

potentiometers 

Workspace Limits 
Measured Values 

(mm) 
Joint 

Limits 
Calcul

ated Values (˚) 

1Wc
 / 

1Wc
 60,45 / 60,45 

11 
 / 

11 
 68,44 / 68,44 

2Wc
 / 

2Wc
 58,89 / 60,25 

21 
 / 

21 
 67,95 / 64,96 

3Wc
 / 

3Wc
 58,86 / 62,03 

31 
 / 

31 
 72,60 / 64,90 

 

Table 3.5 Measured Values from Cameras and Calculated Joint Limits by using 

Encoders 

Workspace Limits 
Measured Values 

(mm) 
Joint Limits 

Calculated Values 

(˚) 

1Wc
 / 

1Wc
 60,98 / 61,01 

11 
 / 

11 
 69.74/ 69.82 

2Wc
 / 

2Wc
 60,11 / 60,44 

21 
 / 

21 
 67.63/ 68,41 

3Wc
 / 

3Wc
 61,13/ 61,21 

31 
 / 

31 
 70.12 / 70.33 

 In the tests for the two versions of HIPHAD, two different cameras were used. 

The tests for the potentiometer version was carried out with simple webcams, which were 

not reliable as the ones that were used for the second version. Also for the tests with the 

second version, lens distortion was not taken into account. This difference in test 

procedure resulted in different measurements for the workspace of the mechanism, which 

can be observed from Table 3.4 and 3.5.  

Pulses measured from the encoders at the edges and midpoints of the workspace 

are given in Table 3.6 with respect to the axis numbers that the encoder is mounted to. 

These values that are measured at the joint limits are indicated with “min” and “max” 

subscripts, and also for the mid-position of the workspace, they are indicated with “mid” 

subscript. Data provided in Table 3.6 show the mean values of 20 measurements. The 

confidence level for these measurements are 95%. The procedure for these measurements 
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are first the pulses are measured at the folded position of the mechanisms, then the mobile 

platform is taken to the mid position and retracted back to the initial position. After the 

mechanisms is retracted to its initial position, encoder measurement for the initial position 

is recorded again. Finally, the mechanisms is taken to its fully extended position and it is 

again taken back to its initial position. As a result of this procedure, it can be observed 

that the encoder measurement at the initial position is not equal to zero pulse. The main 

reason for this could be the elastic behavior of the stopper at the bottom of the coupler 

link of the parallelograms. 

The measurement ranges in between the joint limits are provided to be used in 

constant gain, Ki, calculation for converting the raw data received from the encoders 

during operation to measured joint positions. Calculation of Ki is given in Equation 3.64. 

Sri in this equation is the total range of sensed signal which is the pulse range for encoder 

and the voltage range for potentiometer. 

 i i1 i1 iK ( ) Sr      (3.64) 

Table 3.6 Number of pulses read from the encoders.  

Encoder1 Encoder 2 Encoder 3 

Pulse  

Pulse 

Range  

(Sr1) 

Pulse  

Pulse 

Range 

(Sr2) 

Pulse  

Pulse 

Range 

(Sr3) 

Pmin1 6.8 

1593.3 

Pmin2 -4.25 

1595.8 

Pmin3 0.8 

1593.9 Pmid1 795.1 Pmid2 767.6 Pmid3 798.1 

Pmax1 1600.1 Pmax2 1591.6 Pmax3 1594.7 

Once the gain Ki is calculated from calibration, it is used to find the joint angles 

at any instant during operation. This is achieved via Equation 3.65 by using measured 

pulses from the sensors of the joints, Pmi for i=1, 2, 3. 

 i i i i1(Pm Pmid ) K     (3.65) 
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3.6. Stiffness Calculation of HIPHAD Using SMA 

 

Stiffness calculation of HIPHAD is explained under four subsections which are 

listed as general stiffness matrix formulation, coupling geometric constraints with 

stiffness matrix, equivalent stiffness matrix calculation for the desired node and stiffness 

mapping. In SMA method, the procedure explained in literature is followed and important 

parameters are given in this section. Table 3.7 provides the geometric properties of the 

links. L is the length of links and each small partition of the links, A is cross-sectional 

area of the link, Iy, and Iz are the second moment of area of the links about y and z axes 

at the center of volume and finally J is the moment of gyration.  

  

Table 3.7 Material and geometric properties of links  

 Wb1 Wb2 l11 / l12 l21 l22  

L (m) 0.144 0.076 0.065 0.076 0.076  

A (m2) 0.0003 0.0003 0.000112 0.000196 0.000196  

Iy (m4) 0.00000009 0.00000009 1.82933E-09 3.20133E-09 3.20133E-09  

Iz (m4) 6.25E-10 6.25E-10 1.20883E-08 3.20133E-09 3.20133E-09  

J (m4) 9.0625E-08 9.0625E-08 1.39176E-08 6.40267E-09 6.40267E-09  

       

 l31 l32 l41 l42 l43 l44 

L (m) 0.02 0.085071 0.0365514 0.0672424 0.0104433 0.0555788 

A (m2) 0.000084 0.000084 0.000168 0.000168 0.000168 0.000168 

Iy (m4) 1.372E-09 1.372E-09 2.744E-09 2.744E-09 2.744E-09 2.744E-09 

Iz (m4) 8.9962E-09 8.9962E-09 2.016E-09 2.016E-09 2.016E-09 2.016E-09 

J (m4) 1.03682E-08 1.03682E-08 4.76E-09 4.76E-09 4.76E-09 4.76E-09 

These properties are used to calculate the local stiffness matrices of links that are 

represented in this section with the symbols 
Wb1 Wb1K̂ , 

Wb2 Wb2K̂ , 
l11 l11K̂ ,  

l21 l21K̂ , 
l22 l22K̂ , 

l31 l31K̂ , 
l32 l32K̂ , 

l41 l41K̂ , 
l42 l42K̂ , 

l43 l43K̂  and 
l44 l44K̂  from the origin to the mobile 

platform. After these matrices are calculated, the rotation matrices are found using 

forward kinematics. The active and the passive joints’ angular positions are calculated as 

presented in Section 3.1. The rotation matrices formulated with respect to the angular 
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positions of the joints are named 
 b,Wb1

R̂ , 
 b,Wb2

R̂ , 
 b,l11

R̂ , 
 b,l21

R̂ , 
 b,l22

R̂ , 
 b,l31

R̂ , 

 b,l32
R̂ , 

 b,l41
R̂ , 

 b,l42
R̂ , 

 b,l43
R̂ , 

 b,l44
R̂  from the base to the mobile platform.  

After the above calculations, stiffness matrices of the links in world frame are 

calculated using Equation 2.7. As a result of this, stiffness matrices become suitable to be 

integrated into the total stiffness matrix of the respective leg. The stiffness matrices 

rotated into world coordinates are denoted as 
b Wb1K̂ , 

b Wb2K̂ , 
b l11K̂ ,  

b l21K̂ , 
b l22K̂ , 

b l31K̂ , 

b l32K̂ , 
b l41K̂ , 

b l42K̂ , 
b l43K̂  and 

b l44K̂ . Total stiffness matrix of each leg is developed 

using the analogy given in Equation 2.8. The legs of HIPHAD are represented with 17 

nodes which were given in Figure 3.7. These nodes are placed in the beginning and at the 

end of the modeled element and if the node is shared by other modelled elements of the 

leg, it is superposed with the stiffness value of the same node of the neighbor element. 

The superposed resultant matrices are graphically provided in Figure 3.15 with red slots. 

Green slots in this figure denote that the same values of the stiffness matrix of the 

elements are used in the total stiffness matrix, 
TK̂  . Total stiffness matrix provided in this 

figure is a 102 by 102 matrix.  
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Figure 3.14 Construction of the total stiffness matrix 
TK̂  of each leg. 

Geometric constraints for the legs are derived from the orientation matrix. Matrix 

ijÂ  is calculated using Equation 2.11, in which unit vectors in u⃗ 1 - and u⃗ 3 - direction are 

extracted from the rotation matrix of the node that is closer to the base on that specific 

joint. In Figure 3.16, boxes are color coded to indicate the two nodes that are linked by a 

specific joint. This figure shows the structure of matrix
TÂ  , which is a 30 by 102 matrix.  
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Figure 3.15 Construction of the overall
TÂ  matrix of a leg 

Once these matrices are generated, they are combined in an overall stiffness 

matrix, 
GK̂ . The general shape of this matrix is provided in Figure 3.17, which is 

parametrically given in Equation 2.14. The dimension of this matrix is 132 by 132. In 

Figure 3.17, gray areas show the zero matrices.  

  

 

Figure 3.16 Global stiffness matrix, 
GK̂  of HIPHAD.  

To obtain the equivalent stiffness matrix for desired node on each leg, 
GK̂ has to 

be multiplied with a permutation matrix, P̂ . This permutation matrix that is used for each 

leg is provided in Equation 3.66.  

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Joint 5

Nodes

Joint 6

Joint 1

Joint 2

Joint 3

Joint 4
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(96,96) (96,6) (96,30)

(30,96) (30,6) (30,30)

(6,96) (6,6) (6,30)

ˆ ˆÎ 0 0

ˆ ˆˆ ˆP 0 0 I

ˆ ˆˆ0 I 0

 
 

  
 
  

 (3.66) 

As provided in Equation 2.19, K̂P  is found using 
GK̂ and P̂ . Then equivalent 

stiffness matrix is calculated from Equation 2.25 and the result for this equation yields 

stiffness matrices
(1)

eqK̂ , 
(2)

eqK̂  and 
(3)

eqK̂ , which are equivalent stiffness matrices of 

each leg. Since this method includes large matrix operations, results are obtained semi-

analytically.  

Once these matrices are obtained, same procedure is followed for the mobile 

platform to combine the stiffness matrices of the legs. Calculations are derived from the 

model that is given in Figure 3.18. This figure shows the nodes of the equivalent links 

and the mobile platform. In this model, there are 7 nodes. Among these, nodes 4, 5, 6 and 

7 define a rigid body.  

 

Figure 3.17 Equivalent stiffness model of the mobile platform 
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After the equivalent stiffness matrices and force vectors of the legs are calculated, 

these are assembled for the mobile platform using the model provided in Figure 3.18. 

Stiffness matrices of the legs are collected in the stiffness matrix represented in Equation 

3.67. 

 

(1)

eq (6,6) (6,6) (6,24)

(2)

(6,6) eq (6,6) (6,24)w

T (3)

(6,6) (6,6) eq (6,24)

(24,6) (24,6) (24,6) (24,24)

K 0 0 0

0 K 0 0
K

0 0 K 0

0 0 0 0

 
 
 
 
 
  

 (3.67) 

The geometric constraints are included in the stiffness matrix as shown in 

Equation 3.68. 

 

1,4 (5,6) (5,6) 1,4 (5,6) (5,6) (5,6)

(5,6) 2,5 (5,6) (5,6) 2,5 (5,6) (5,6)

(5,6) (5,6) 3,6 (5,6) (5,6) 3,6 (5,6)w

T

(5,6) (5,6) (5,6) (5,6) (5,6) 4,7

(5,6) (5,6) (5,6) (5,6) (5,6) 5,7

(5,6) (5

A 0 0 A 0 0 0

0 A 0 0 A 0 0

0 0 A 0 0 A 0
A

0 0 0 B 0 0 B

0 0 0 0 B 0 B

0 0








,6) (5,6) (5,6) (5,6) 6,70 0 0 B B

 
 
 
 
 
 
 
 
  

 (3.68) 

The matrices 
TK̂  and 

TÂ  are combined in a global stiffness matrix that is defined 

as 
GK̂  that is formulated in Equation 3.69.  The permutation operation is also applied for 

this stiffness matrix and formulation provided in Equation 2.25 is applied to yield the 

overall stiffness matrix of the haptic device. Results obtained from this method are 

provided in results section. 

 
HIPHAD

T

T T

G

T 33,33

ˆK̂ A
K̂

ˆ ˆA 0

 
  
  

 (3.69) 

After the permutation of global stiffness matrix 
HIPHADGK̂  for the mobile platform, 

equivalent stiffness matrix is calculated using the Equations 2.19 and 2.25. 
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3.7. Stiffness Calculation of HIPHAD Using VJM 

 

Stiffness calculation of HIPHAD using VJM starts with defining the kinematic 

model of a leg first assuming that it is a serial kinematic chain. Another assumption is 

that the parallelogram is reduced into a two joint serial kinematic chain in which the two 

joints’ motion is opposite to each other. This kinematic model is constructed from the 

links, active joints, passive joints and virtual joints. Although a robot link is defined by 6 

DoF link model in VJM, in HIPHAD case, virtual joints are only used to represent 

compliant motion along the directions that the most deformation can occur. The model of 

1st leg of HIPHAD is provided in Figure 3.19. u⃗ 3
(2)

, u⃗ 3
(4)

, u⃗ 3
(7)

 u⃗ 3
(11)

, u⃗ 3
(12)

 stand for the 

active and the passive joint axes. Other joints in this model are the virtual joints.  
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Figure 3.18 Kinematic model of leg 1 of HIPHAD. 
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Table 3.8 Denavit-Hartenberg(D-H) parameters of 1st leg’s VJM model 

 d  a 

1 0 0 Wb 0 

2 0  0     -/2 

3 d2  l1     -/2 

4 0  0      /2 

5 0  0      /2 

6 l22  0      -/2 

7 0  0      /2 

8 0  0      /2 

9 l3  0     -/2 

10 0  0      /2 

11 0  0     -/2 

12 0  l4 0 

13 0  0 0 

 

Once the kinematic model is developed, the D-H parameters are found as shown 

in Table 3.8. Then, the position and orientation equations are written. Orientation and tip 

point position equation of leg 1 is written in Equations 3.70 and 3.71. 

  

 

3 2 2 3 3 4 2 5

3 6 2 7 3 8 2 9

3 10 3 12 3 13 32 11

u θ u θ u θ -u θ(0,13)

-u θ -u θ -u θ u θ

-u θ -u θ -u θ u πu θ

Ĉ e e e e

             e e e e

             e e e e e

   

   

   

    

   

   

  
(3.70) 

 

3 2 2 3 3 4 2 5

3 6 2 7 3 8 2 9

3 10 3 122 11 1

u θ u θ u θ -u θ

-u θ -u θ -u θ u θ

-u θ -u θu θ u π

4

r e e e e

      e e e e

0

      e e e e 0

l

   

   

  

    

   

 
 

   
 
  

  

(3.71) 
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The formulations for r and (0,13)Ĉ  are used to find the Jacobian matrix for both 

passive joints and active joints. It is done by using respective passive and virtual joint 

variables in calculating 
i

r

θ




  and 

(0,13)
(0,13)

i

Ĉ ˆcol[ C ]
θ






T

, which results in velocity influence 

coefficients, Jr̅i and Ja̅i. In this calculation, due to the number of parameters, it is tedious 

to find the Jacobian matrix elements. For this reason, calculation of T T T

i i iJ Jr Ja    is 

executed semi-analytically. Jacobian matrix for virtual joints are represented by Jand 

the Jacobian matrix for passive joints are represented by qJ  which are given is Equations 

3.72 and 3.73. 

 Ĵθ = [
Jr̅2 Jr̅4 Jr̅6
Ja̅2 Ja̅4 Ja̅6

     
Jr̅7 Jr̅9 Jr̅10

Ja̅7 Ja̅9 Ja̅10

     
Jr̅11

Ja̅11

] (3.72) 

 Ĵq = [
Jr̅8 Jr̅12

Ja̅8 Ja̅12

] (3.73) 

Once the Jacobian matrices are calculated for each leg, then the matrix shown in 

Equation 3.73 is calculated, which includes the effect of passive joints into the 

mathematical model of stiffness calculation. In Equation 3.74, Kc1 is the stiffness matrix 

of the respective leg, which the upper left 6x6 matrix. 

 [
Kc1 ∗
∗ ∗

] = [
Ĵθ ∙ K−1 ∙ Ĵθ

𝑇
Ĵq

Ĵq
𝑇

02,2

]

−1

 (3.74) 

In the calculation of stiffness matrices of the other two legs that are leg 2 and leg 

3, the position vector and orientation matrix is rotated. Required rotations to find 

orientation matrix and position vector of their tip points are given in Equations 3.75 and 

3.76.  
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R̂2 = [
cos (π/2) −sin (π/2) 0
sin (π/2) cos (π/2) 0

0 0 1

]

∙ [

1 0 0
0 cos (π/2) −sin (π/2)
0 sin (π/2) cos (π/2)

] 

(3.75) 

 

R̂3 = [
cos (π/2) −sin (π/2) 0
sin (π/2) cos (π/2) 0

0 0 1

]

∙ [
cos (π/2) 0 sin (π/2)

0 1 0
−sin (π/2) 0 cos (π/2)

] 

(3.76) 

Then same procedure is executed and stiffness matrices of the other two legs are 

calculated by using Equation 3.73. Since the legs tip points are defined on the same point 

of mobile platform, the stiffness matrices of legs are superposed (Pashkevich, Wenger & 

Chablat, 2007) as provided in Equation 3.77 

 HIPHAD C1 C2 C3
ˆ ˆ ˆ ˆK K +K +K   (3.77) 
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CHAPTER 4  

 

EXPERIMENTAL TEST SETUP 

 

To verify the accuracy of stiffness matrix calculations, experimental tests are 

required to be conducted. In experimentation, calculated stiffness models are compared 

with the measured stiffness of the mechanism. Experimentation method is described in 

this chapter. The hardware and the software used in the experiments are listed in Table 

4.1. 

Table 4.1 Hardware and software list. 

HARDWARE SOFTWARE 

PC 
MATLAB© Simulink (High-level 

programming) Mathworks Inc. 

Teledyne Dalsa Genie C1600 Quarc v2.1 Quanser© 

HIPHAD  

QUARC Q8 DAQ Card  

Gigabit Ethernet Card  

 

 During the experimentation, a computer is used as media for determining the 

position of the mobile platform of HIPHAD and allows a mapping of the displacement 

values. The indirect measurements of the mobile platform is achieved by acquiring the 

encoder signals via QUARC Q8 DAQ Card. The computer is also used as a media for 

acquiring image information Teledyne Dalsa Genie C1600 cameras to be later processed 

for direct measurement of the mobile platform. The streamline for carrying out direct 

measurement of the mobile platform position is as follows: the acquired raw images are 

taken via Gigabit Ethernet card (GigE) and are processed in Matlab environment.  

In this experiments, stereo cameras are used for direct (absolute) measurement of 

the mobile platform postion. Therefore, the accuracy of the experimentation depends on 
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an appropriate selection of these cameras. The parameters influencing the selection 

process are sensor size, working distance, field of view and focal length. These 

parameters are explained in Figure 4.1. Among these parameters, the field of view for this 

experimentation was selected as 130 mm by 130 mm square surface for both cameras, 

which is enough to cover the total workspace of the mechanism to be acquired from the 

mobile platform position.  

Sensor size of the camera is 5.28x7.04 mm. The lenses used in the cameras are 

FUJINON HF16HA-1B that has 16 mm focal length. With this camera lens composition, 

smallest feature that can be detected by cameras is 0.165 mm calculated for the camera 

axis that has 1600 pixels. Table 4.2 gives the smallest feature that can be detected along 

with the given camera and working distance combinations.  

Table 4.2 Camera Parameters 

Field 

of 

View 

(mm) 

Working 

Distance 

(mm) 

Focal 

Length 

(mm) 

Sensor Size 

(mm) 

Pixel 

Size 

(mm) 

Smallest 

Feature 

(mm) 

130 393.9394 16 5.28  
0.0044 

0.216667 

130 295.4545 16  7.04 0.1625 

  

To increase measurement accuracy and precision, sub-pixel interpolation is 

implemented in the image processing algorithm. Therefore, the smallest feature that can 

be detected by the cameras needs to be recalculated. To accommodate this calculation, 

radius of 4 circles with different radii are measured. The selected diameter of the circles 

are 3.03, 3.08, 3.5, 4 mm. The diameter of circle with 3.03 mm diameter is measured 20 

times with the cameras and average of this measurement came out to be 68.2289 pixels 

with a standard deviation of σ=0.0277. For the circle having 3.08 mm diameter, image 

processing algorithm resulted in 70.2525 pixels for average diameter measurement with 

a standard deviation of σ=0.0798251. As a result, cameras along with the developed 

image processing algorithm found to be capable of measuring 0.025 mm with 1 pixel. 

The other two circles were used to verify this result. 
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Figure 4.1 Parameters affecting the selection of cameras for machine vision              

(Source: Calculating Camera Sensor Resolution and Lens Focal Length, 

27.06.2014, http://digital.ni.com/) 

Throughout the experiments, some external forcing is applied on HIPHAD. This 

forcing deforms the mechanism of HIPHAD. However, not only the mechanism but the 

basement for the haptic device deformed and vibrated during the experimentation. 

Experiencing these effects during tests alters the real deformations and this leads to a 

decreased accuracy in experimentation. For this reason, a test rig is constructed using 

Aluminum sigma profiles, which is denoted with 2 in Figure 4.2, and a basement block 

is manufactured by precise machining to add more weight to the test rig for stable and 

accurate operation is denoted by 1 in Figure 4.2. When the HIPHAD mechanism is 

mounted on the basement block, it also ensures the orthogonality of the HIPHAD with 

respect to the coordinates of cameras. The cameras are also attached to this basement 
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construction, which absorbs the vibration and allows taking snapshots with reduced 

blurring effect.  

 

Figure 4.2 Experimentation basement. 

To conduct this experimentation, HIPHAD is also modified. This modification 

includes the removal of the actuators of the haptic device and substituting a brake for in 

their places. By this way, compliance of the actuators are eliminated and only the 

mechanism’s compliance is measured. This brake is shown in Figure 4.3. The brakes are 

working simply by fastening two screws to the brake to apply enough pressure on the 

actuation shaft in order to maintain its angular position. The actuation shaft and braking 

screw on a brake assembly are provided in Figure 4.3 with 1 and 2, respectively. 
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Figure 4.3 Brake replacement for the actuators 

For increasing accuracy and repeatability of the measurements, the illumination 

is provided by led arrays that are placed on the black wall shown in Figure 4.5. 

Experimental setup is composed of a closed black room covering the surrounding of the 

test rig, mechanism, cameras, and light sources. Complete experimentation setup is 

presented in Figure 4.5. HIPHAD, QUANSER Q8 DAQ card, PC for taking sensor 

signals for calculating position information, PC for processing images for stereo 

measurements, walls of the dark room, led strays and camera looking towards plane 23 

are denoted in Figure 4.4 with numbers from 1 to 8, respectively. 
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Figure 4.4 Complete experimentation setup 

The experiments are carried out by first determining the nodes to be used for 

measuring compliant displacements under some load. The cubic workspace of the 

mechanism defined for the motion of the wrist point is divided into equal three parts on 

each side of the cube resulting in 27 measurement nodes.  

To settle the wrist point of the HIPHAD on this specified positions, the encoders 

are used. After the calibration process that is explained in Section 3.5, kinematics is used 

to move the wrist point to a specified node. Once the HIPHAD is positioned on the node, 

the image acquisition process is initiated. For this operation, a GigE camera object is 

created in Matlab script that allows frame transfer from camera to Matlab. At this stage, 

2 images are acquired which are taken before and after the force along the direction of 

measurement is applied on the mobile platform of HIPHAD. This testing procedure is 

schematically explained in Figure 4.5, in which numbers denote the sequence of the 

stages. The sequence from 1 to 6 in Figure 4.5 is as follows: (1) measurement of the 

mobile platform’s indirect position measurement using encoders and acquiring via 

Quanser Q8 DAQ card, (2) position calculation of mobile platform to settle mobile 

platform on the designated node, (3) image acquisition of the mobile platform without 

external forces, (4) application of external forces on the mobile platform by calibrated 
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weights, (5) image acquisition of the mobile platform under external forces, (6) image 

processing and compliant displacement calculation. 

 

Figure 4.5 Experimentation stages 

  After image acquisition, these images are processed by high pass filter and 

converted to a binary image. Following that, a blob analysis is applied on this binary 

image that is extracted from the raw image and measurement of the tracking object is 

carried out in camera coordinates. The camera coordinates are represented in Figure 4.6 

with black arrows. The coordinate system has its x-direction aligned with the world 

coordinate that is given with red arrows. The y-direction of camera coordinate system, 

however, is in the opposite direction of the z-axis of the world coordinate system. 
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Figure 4.6 Meshes applied on the image plane 

The tracking image is composed of 4 circles having different diameters placed on 

a white background. Differences in circle diameters allow the measuring algorithm to 

detect the four circles. This is important for calibrating each measurement by itself using 

long and short sides of the rectangle defined among the centers of these circles and 

following a circle precisely. Otherwise, blob analysis algorithm might select a circle 

randomly and this gives false results. Once the algorithm detects each circle, it tracks it 

between 2 images that are taken for 2 cases, which are the one without external forces 

and the one under external forces. 

  

Figure 4.7 (a) Tracking patterns having 4 different circles. (b) Result of pattern tracking 

These two images are taken for the same node. Once these two images are tracked 

by the algorithm the compliant displacement of the wrist point is illustrated as provided 

in Figure 4.7 (b). Blue and red circles display the initial and final positions of the tracked 

pattern, respectively. In this measurement technique, measurement performance is 

increased by applying sub-pixel interpolation and image filtering such as a 2D median 

filter. To illustrate the efficiency of image processing techniques employed in this work, 

a non-interpolated and non-filtered measurement result and the resultant image that is 
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created after the image processing techniques are applied are shown in Figure 4.8 (a), (b), 

respectively. 

 

Figure 4.8 (a) Non-interpolated and non-filtered measurement result. (b) Sub-pixel 

Interpolated and filtered measurement result. 
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CHAPTER 5  

 

RESULTS  

 

Calculation of stiffness model of HIPHAD haptic device is studied by using 2 

semi-analytical methods. The results of these calculations are evaluated by comparing 

them to the compliance of HIPHAD acquired from the experimentation throughout its 

workspace. It should be noted that actuated joints of each leg are fixed at a position by 

brakes and experimentation is carried out without the inclusion of the actuator 

compliances. The cubic workspace of the manipulator is sliced into 8 cubes with equal 

lengths. Measurements are carried out at each corner of these cubes. In Figure 5.1, the 

color coded dots indicate the nodes in which the compliant displacement measurements 

are done. Nodes are placed along each axis with equal distances from each other so that 

the first node is placed on 160th, the second node is placed on the 220th and the third node 

is placed on 280th mm away from the world frame that is provided in Figure 5.1 with 

black color.  

 

 

Figure 5.1 Placement of the nodes for experimentation. 
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Initially, various external forces along 3u  -axis are applied on the mobile platform 

of HIPHAD at the position (220,220,220) and they are listed in Table 5.1. When the 

actuated joint of the HIPHAD is fixed rigidly, the displacements of the mobile platform 

with respect to the applied forces are shown in Figure 5.2. The displacement graph of 

HIPHAD shows a linear trend along all axes. The compliant displacements along x and y 

are due to the deformation of the base platform and this resulting applied force to have 

components along these directions. 

Table 5.1 External forces resulting in displacements given in Figure 5.2. 

Forcing, N 

-0,981 z-axis -1.962 z-axis -4.905 z-axis -6,867 z-axis 

 

 

Figure 5.2 Force vs Compliant Displacement at (220,220,220). 

This test is carried out to find the joint stiffness values that are not known and can 

only be found experimentally. The procedure is outlined in Figure 5.3. In HIPHAD case, 

compliant deformations are calculated in VJM by modelling only the links as flexible 

bodies. After obtaining the test result for compliant displacements, the compliant 

displacement calculated using the VJM model is subtracted from the measured 
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deformations and resultant vector dC is accepted to be the compliant displacement due to 

the joint stiffness values. Then a model is formulated for the compliance resulting from 

the joint stiffness values and equated to the compliance difference, dC . This model is the 

simplified stiffness model of HIPHAD and it includes only the joint stiffness values. The 

model is valid under some assumptions: (1) In this experimentation force is applied on 

negative z axis therefore, stiffness model of HIPHAD is formulated only using third leg, 

(2) this leg is assumed to be a fully actuated serial kinematic chain, (3) stiffness values of 

6th and 7th joints are assumed to be equal to the 10th and 11th joints. By this way Equation 

5.1 can be decomposed to 3 scalar equations with unknowns 4K , 6K  and 7K . These 

joint stiffness values are used in VJM to model joint compliances of passive joints. 
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Figure 5.3 Procedure of joint stiffness estimation 

 

Joint stiffness values of KQ4, KQ6, KQ7, KQ10 and KQ11 are found using the 

formulation described in Equation 5.1.  The formulation yields the joint stiffness values 

for KQ4, KQ6, KQ7, KQ10 and KQ11 to be at 11.0974, 99.25, 99.25, 99.25 and 99.25 

rad/Nm, respectively. 



 

 

113 

 

T
4 4

T
6 6

T
4 6 7 10 11 7 7

T
dz Z10 10

T
11 11

Kθ 0 0 0 0 J

0 00 Kθ 0 0 0 J

0 J J J J J 00 0 Kθ 0 0 J

C F0 0 0 Kθ 0 J

0 0 0 0 Kθ J

  
  

     
               
        

     

  
(5.1) 

 

5.1. Experimental Results 

 

In this section, compliant displacement measurements are carried out when forces 

are applied along the Cartesian frame axes. The force along each axis is provided by 

pulling the mobile platform by hanging a 700 g of weight that is passing through a plate 

which changes the direction of the force. The weight provides forces in positive directions 

with respect to the world frame along u⃗ 1- and u⃗ 2-axes. However, along u⃗ 3-axis, the force 

created by the weight is in the negative direction of the u⃗ 3 -axis. The compliant 

displacements are measured at each node presented in Figure 4.6. It should be noted that 

the compliant displacement measurements at 9 nodes, which are on the same plane, are 

used in an interpolation algorithm to estimate the compliant displacement values in 

between the nodes. The compliant displacements throughout the planes of measurement 

are plotted in the figures below.  

Test results for compliant displacement along the 1u -direction on plane 1 

(described in Figure 5.1) yields the results provided in Figure 5.4. In this figure, 

displacement values range between 1.75 and 0.7 mm. The maximum displacement on this 

plane is found on node defined at N(160,280), which is 1.72 mm and minimum 

displacement is measured at node N(160,160) that is 0.84 mm in (+)u⃗ 1-direction. The 

surface plot shows an increase in the displacement values on the nodes defined at the 

workspace boundary along u⃗ 3-axis. On the left and right bottom corners, HIPHAD gives 

the lowest compliant displacements and on the top corners, it gives the highest ones. In 

the middle ranges of  u⃗ 1 direction, HIPHAD has lower compliances through all levels 

along u⃗ 3-axis. The stiffness variations through the plot indicate that for plane 1, HIPHAD 

has a greater stiffness at the bottom corners and less stiffness at the top corners. This is a 
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result of increasing moment arm due to the extension of HIPHAD. This moment arm is 

defined between wrist point Wr and the tip point of the parallelogram Wp, which means 

that any increase of distance in between these points results in an increase of HIPHAD 

compliance. 

 

Figure 5.4 Compliant displacement values of HIPHAD in u⃗ 1-axis on Plane 1. 

On Plane 2, the compliant displacement values are measured and interpolated as 

given in Figure 5.5. Maximum and minimum displacement values on this plane are found 

on the nodes defined at N(280,280) and N(210,160), which are 2.56 and 1.33 mm, 

respectively. As it was the case for the 1st plane, the compliant displacement values 

measured for the 2nd plane show an increasing trend towards the workspace boundary 

along u⃗ 3-axis. The arc having dark blue to green colors shows that HIPHAD has a greater 

stiffness in the middle for all levels along u⃗ 3-axis. The dark blue area in the middle is a 

result of the distance between wrist point, Wr, and WP becoming the smallest at that node. 

For Plane 2, distance between Wr and WP decreases as mobile platform is moved from 

160 mm to 220 mm along u⃗ 1-axis. After 220th mm, compliant displacement map of 

HIPHAD becomes the mirror of the previous part.   
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Figure 5.5 Compliant displacement values of HIPHAD in u⃗ 1-axis on Plane 2. 

Figure 5.6 is plotted according to the data acquired on Plane 3. For this 

measurement set, maximum and minimum values of compliant displacements are 

measured on nodes N(280,280) and N(210,160), which came out to be 3.442 and 1.630 

mm, respectively. On this plane, HIPHAD’s mobile platform experience larger compliant 

displacements and shows the similar trend with the plane 2 in terms of having an arc of 

minimum compliance in the middle of the u⃗ 1 -axis. Another similarity between the 

measurements on all planes is that the compliant displacements are increased towards the 

outer boundary of the workspace along u⃗ 3-axis. This is a confirmation of the previously 

described observations for compliant displacement along u⃗ 1-axis. Plane 3 is located at the 

extended boundary of the workspace along u⃗ 2-axis and as a result of this, the distance 

between the Wr and WP increases with respect to the previous planes, which result in 

largest compliant displacement values measured on this plane. 
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Figure 5.6 Compliant displacement values of HIPHAD in u⃗ 1-axis on Plane 3. 

To provide better visualization of HIPHAD compliance map, in between the 

nodes that measurements are received, interpolation is carried out for the whole 

workspace. It can be observed from Figure 5.7 that HIPHAD shows an increasing 

compliance (or decreasing stiffness) values when the mobile platform is moved from the 

fully folded position at 160, 160 and 160 mm to fully extended position at 280, 280 and 

280 mm along  u⃗ 1 , u⃗ 2 and u⃗ 3 directions respectively.   

  

Figure 5.7 Compliant displacement of the HIPHAD under 700 g of force along (+)u⃗ 1-

axis throughout its workspace. 

Test results for compliant displacement in the 2u -direction on plane 1 yields the 

results provided in Figure 5.8. In this figure, displacement values measured between 



 

 

117 

2.490 and 0.7903 mm. The maximum displacement on this plane is found on node defined 

at N(220,160,280), which is 2.490 mm and minimum displacement is measured at node 

N(160,160,160) that is 0.7903 mm in (+) 2u -direction. The surface plot shows an increase 

in the displacement values on the nodes defined at the workspace boundary along u⃗ 3-

axis. On the right bottom corner, HIPHAD gives the lowest displacement and along u⃗ 1 

axis compliance displacement of HIPHAD increases. On the top corners, it gives the 

highest displacement values. The stiffness change through the plot shows that for this 

plane HIPHAD has a greater stiffness on the right bottom corner and less stiffness on the 

top edge of the workspace. 

 

Figure 5.8 Compliant displacement values of HIPHAD in u⃗ 2-direction on Plane 1. 

 

HIPHAD gives the displacement values on Plane 2 as provided in Figure 5.9. 

Maximum and minimum displacement values on this plane are given on the nodes defined 

at N(160,220,280) and N(210,220,280) which are 2.491 and 0.6752 mm, respectively. As 

it was the case for the 1st plane, the compliant displacement values measured for the 2nd 

plane show an increasing trend towards the workspace boundary along u⃗ 3-axis. The dark 

blue region compressed towards the bottom edge of the workspace shows that HIPHAD 

has a greater stiffness. This region corresponds to the region where the parallelogram is 

moving.  In this region difference between Wr, and WP gets the smallest values. For Plane 

2, distance between Wr and WP decreases as mobile platform is moved from 160 mm to 

220 mm along u⃗ 3-axis.  
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Figure 5.9 Compliant displacement values of HIPHAD in u⃗ 2-direction on Plane 2. 

Displacement values measured on Plane 3 are provided in Figure 5.10. Maximum 

and minimum displacement values on this plane are given on the nodes defined at 

N(280,280,250) and N(160,160,280) which are 1.693 and 0.5095 mm, respectively. 

Likewise, the 1st and 2nd planes, displacement values measured for 3rd plane show an 

increasing trend for higher u⃗ 3  values. The arc, having dark blue color shows that 

HIPHAD has a greater stiffness on the nodes defined at the workspace boundary along 

u⃗ 1-axis. Compared to Plane 2, compliant displacements of HIPHAD becomes smaller on 

this plane. The displacement trend represented for previous planes of the same direction 

of compliance displacement is also given for Plane 3 that is greater stiffness values are 

observed on the edge along u⃗ 1-axis.   

 

Figure 5.10 Compliant displacement values of HIPHAD in u⃗ 2-direction on Plane 2. 
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Visualization of HIPHAD compliance throughout its workspace is provided in 

Figure 5.11. HIPHAD shows an increasing compliance or decreasing stiffness values 

when the mobile platform is moved from 160 to 280 mm in u⃗ 2 direction. It is clear that 

compliance of HIPHAD depends more on the displacement of the mobile platform in 

u⃗ 1 and u⃗ 3 directions. 

 

 

 

Figure 5.11 Compliance displacement of the HIPHAD under 700 g forcing along (+)u⃗ 2-

direction throughout its workspace. 

 

Test results for compliant displacement in the 3u -direction on plane 1 yields the 

results provided in Figure 5.12. The maximum displacement on this plane is found on 

node defined at N(230,160,220), which is -0.323 mm and minimum displacement is 

measured at node N(230,160,160) that is -0.020 mm in  3u -direction. The surface plot 

shows an increase in the displacement values on the nodes defined at the workspace 

boundary along u⃗ 1-axis, however, compared to the previous plots provided for other two 

axes, this plot does not show a clear trend for compliance. The displacement values are 

denoting a close change on the plane. Along u⃗ 1  axis, the compliance of HIPHAD 

increases in a region that narrows in the middle of u⃗ 1  axis then spreads on the edge of 

the plane. 



 

 

120 

 

 

 

Figure 5.12 Compliant displacement values of HIPHAD in u⃗ 3-direction on Plane 1. 

Test results for compliant displacement in the 3u -direction on plane 2 yields the 

results provided in Figure 5.13. The maximum displacement on this plane is found on 

node defined at N(280, 220,280), which is -3.181 mm and minimum displacement is 

measured at node N(160,220,220) that is -1.234 mm in  3u -direction. The surface plot 

shows an increase in the displacement values on the nodes defined at the workspace 

boundary along u⃗ 1-axis. The arc-shaped increase in compliance of HIPHAD happens 

here for the 3u -axis but propagates along u⃗ 1 axis.  

 

Figure 5.13 Compliant displacement values of HIPHAD in u⃗ 3-direction on Plane 2. 
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Displacement values measured on Plane 3 are provided in Figure 5.14. Maximum 

and minimum displacement values on this plane are given on the nodes defined at 

N(280,280,160) and N(160, 280,210) which are -3.499 and -1.618 mm along 3u -axis. 

The surface plot shows an increase in the displacement values on the nodes defined at the 

workspace boundary along u⃗ 1-axis. The arc-shaped increase in compliance of HIPHAD 

happens here for the 3u -axis but propagates along u⃗ 1  axis. Likewise, the 2nd plane, 

displacement values measured for 3rd plane show an increasing trend at the nodes defined 

towards the edge of the workspace along the u⃗ 1 axis. The arc having dark blue to green 

colors shows that HIPHAD has a greater stiffness that is on the right edge of the plane 

which are the smaller values of u⃗ 1 axis. Compared to Plane 2, compliant displacements 

of HIPHAD becomes larger on this plane. 

 

 

Figure 5.14 Compliant displacement values of HIPHAD in u⃗ 3-direction on Plane 3. 

To provide better visualization of HIPHAD compliance map, in between the 

nodes that measurements are received, interpolation is carried out for the whole 

workspace. It can be observed from Figure 5.15 that HIPHAD shows an increasing 

compliance (or decreasing stiffness) values when the mobile platform is moved from the 

fully folded position at 160, 160 and 160 mm to fully extended position at 280, 280 and 

280 mm along  u⃗ 1 , u⃗ 2 and u⃗ 3 directions respectively.   
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Figure 5.15 Compliance displacement of the HIPHAD under 700 g forcing along (-)u⃗ 3-

direction throughout its workspace. 

In the measurement taken for all three axes, HIPHAD shows a decreasing stiffness 

when the legs are extended. The decrease in stiffness for all three axes shows resembling 

compliance trends with different magnitudes. As it is observed from the compliant 

displacement figures, the stiffness of HIPHAD in u⃗ 1  and u⃗ 3 directions shares the same 

trend that shows dependency on the position of the mobile platform in all directions 

equally. On the other hand stiffness in u⃗ 2  direction shows a dependency more on u⃗ 1 

and u⃗ 3 directions. In following subsection results for analytical methods are provided. 

 

5.2. Semi-Analytical Results 

 

This section provides compliant displacement results obtained by semi-analytical 

methods on Planes 1, 2 and 3, which are the same planes used in the experimental tests. 

Same number of nodes are used in the semi-analytical studies as well. In VJM method 

calculations, joints’ stiffness values that were determined by the formulation provided in 

Section 3.7 are used. Nodes from 0 to 27 represent the positions of the mobile platform 

in between 160 mm and 280 mm. Among these, measurements on nodes 1, 14 and 27 are 
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the ones to be compared with the experimental results obtained on the nodes used for 

experimental tests. 

 

5.2.1. Semi-Analytical Results of VJM 

 

Maximum and minimum compliant displacements on Plane 1 along u⃗ 1-axis under 

+ 6.867 N force are calculated on nodes N(212,160,160) and N(280,160,280), which 

came out to be 1.351 and 0.372 mm, respectively. The surface plot in Figure 5.16 shows 

higher values near the right top corner, which is around 1.2 mm. However, it was expected 

that the larger compliant displacements would happen at the left top corner where the 

mobile platform is at the extended boundary of the workspace. On the contrary, the largest 

stiffness value was calculated at the top left corner of this plot.  

 

Figure 5.16 Calculated compliant displacement values of HIPHAD by VJM in u⃗ 1 -

direction on Plane 1. 
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The surface plot constructed with the analytical results obtained for compliant 

displacements on Plane 2 along 1u -direction is shown in Figure 5.17. This plot shows a 

region of larger compliant displacement values of HIPHAD at the top right corner. The 

maximum value of compliance displacement is 2.020 mm and minimum are 0.814 mm. 

These values are acquired on nodes N(160,220,280) and N(257,220,160). It was again 

expected that the larger compliant displacements would happen at the left top corner 

where the mobile platform is at the extended boundary of the workspace. 

 

Figure 5.17 Calculated compliant displacement values of HIPHAD by VJM in u⃗ 1-

direction on Plane 2. 

Compliant displacements calculated on Plane 3 are provided in Figure 5.18. In 

this figure, compliant displacements range between 2.58 mm and 0.77 mm. These 

maximum and minimum values are calculated on the nodes N(280,280,280) and 

N(205,280,160). Dark blue elements are the displacement values around 0.8 mm, the 

transition region between blue and green regions are giving displacements around 1.4 mm 

and yellow areas are representing displacement values around 2.4 mm. On this plane, as 

expected, the stiffness of HIPHAD shows an increasing compliance towards the edge of 

the workspace along the u⃗ 3 and u⃗ 1-axis. The arc having dark blue to green colors shows 

that HIPHAD has a greater stiffness in the middle for all levels along u⃗ 3-axis.  
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Figure 5.18 Calculated compliant displacement values of HIPHAD by VJM in u⃗ 1-axis on 

Plane 3. 

Figure 5.19 shows the compliant displacement values of HIPHAD in 2u -direction 

on Plane 1. The data here has a range between 1.892 and 0.593 mm on the nodes 

N(280,160,187) and N(191,160,280). Dark blue regions show values around 0.8 mm 

while yellow areas are changing between 1.8 mm. On the top left corner compliant 

displacement of the HIPHAD shows a local peak and gives a 1.402 mm displacement. 
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Figure 5.19 Calculated compliant displacement values of HIPHAD by VJM in u⃗ 2 -

direction on Plane 1. 

In the surface plot provided in Figure 5.20, which is given for Plane 2, low 

stiffness areas given with yellow are splitting along the left edge and the higher stiffness 

regions on right top corner get smaller. Maximum and minimum values for HIPHAD on 

this plane are 2.070 mm and 0.755 mm on the middle of the left edge. According to the 

VJM model HIPHAD gets stiffer to towards the positive u⃗ 1 direction. The nodes for the 

maximum and minimum values are N(280,220,280) and N(160,220,200). 
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Figure 5.20 Calculated compliant displacement values of HIPHAD by VJM in u⃗ 2 -

direction on Plane 2. 

The plot in Figure 5.21 is built with the results calculated on Plane 3 for compliant 

displacements in the 2u -direction. This plot shows a distributed region of lower 

compliance of HIPHAD to the top edge. The maximum value of compliance displacement 

is 2.729 mm and minimum are 0.3689 mm. These values are acquired on nodes N(280, 

280,280) and N(160, 280, 280). Other than the dark blue region settled to the right top 

corner there is one more dark blue area on the right bottom corner which are giving 

displacement values around 0.5 mm. Moreover, there is a trend for high compliance 

values to shift to the top edge which is clearly seen when 2nd and 3rd Planes are compared 

to each other.  
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Figure 5.21 Calculated compliant displacement values of HIPHAD by VJM in u⃗ 2 -

direction on Plane 3. 

Test results for compliant displacement in u⃗ 3 -direction on plane 1 yields the 

results provided in Figure 5.22. Displacement values on this plane are measured between 

-0.415 and -2.239 mm. The maximum displacement on this plane is found on node 

defined at N(280, 160,160), which is -2.239 mm and minimum displacement is measured 

at node N(160,160,280) that is -0.415 mm in u⃗ 3-direction.The surface plot shows an 

increase in the displacement values on the nodes defined at the higher u⃗ 1 values. The 

compliance along 3u -axis propagates along u⃗ 1  axis. The dark blue region shows the 

displacement values around -0.5 mm, light blue region denotes displacements of -0.8 to -

1.2 mm and yellow region provides the displacement values between -2.2 mm. 
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Figure 5.22 Calculated compliant displacement values of HIPHAD by VJM in u⃗ 3 -

direction on Plane 1. 

In the surface plot provided in Figure 5.23, which is given for Plane 2, low 

stiffness areas, which are given with yellow, are splitting along the left edge and the 

higher stiffness regions on right top corner get smaller. Maximum and minimum values 

for HIPHAD on this plane are -2.091 mm and -0.589 mm. According to the VJM model 

HIPHAD gets stiffer towards the negative u⃗ 1 direction. The nodes for the maximum and 

minimum values are N(280,220,250) and N(160,220,280). 
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Figure 5.23 Calculated compliant displacement values of HIPHAD by VJM in u⃗ 3 -

direction on Plane 2. 

Displacement values calculated on Plane 3 are provided in Figure 5.24. Maximum 

and minimum displacement values on this plane are given on the nodes defined at 

N(280,280,160) and N(160, 280,210) which are -2.835 and -0.347 mm. Dark blue 

elements are the displacement values around -0.6 mm, area between yellow and dark blue 

regions shows the displacement values between -2 and -1 mm and yellow areas are 

representing displacement values above -2.2 mm. Likewise, the 2nd plane, displacement 

values measured for 3rd plane show an increasing trend for higher u⃗ 1  values. The 

compliance calculation reveals that HIPHAD has a greater stiffness that is on the right 

edge of the plane which are the smaller values of  u⃗ 1 axis. Compared to Plane 2, compliant 

displacements of HIPHAD becomes larger on this plane. 
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Figure 5.24 Calculated compliant displacement values of HIPHAD by VJM in u⃗ 3 -

direction on Plane 3. 

In the following sub-section, results of SMA method will be written and 

discussed. 

 

5.2.2. Semi-Analytical Results of SMA 

 

Displacement values calculated via SMA based stiffness matrices yield values of 

3.5x10-6 mm at maximum in all three measurements of displacements on Planes 1, 2 and 

3. The surface plots for these calculations are provided in Figures 5.25, 5.26 and 5.27. In 

Figure 5.25 compliant displacements of HIPHAD shows a symmetry along the line 

intersecting u⃗ 3  axis at node N(280,160,280). The maximum value for compliant 

displacement is 2.7x10-6 mm and minimum displacement is -4x10-6 mm at node 

N(240,160,160). The stiffness values on the left edge of this plane show higher values.   
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Figure 5.25 Calculated compliant displacement values of HIPHAD by SMA in u⃗ 1 -

direction on Plane 1. 

For the 2nd Plane compliant displacement values, provided in Figure 5.26, shares 

the same trend for compliant displacement but for this plane displacement values gets 

higher values. In this plane, maximum value for compliant displacement is 1x10-6 mm 

and minimum displacement is -3x10-6 mm at nodes N(160,220,160) and N(260,220,160).   
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Figure 5.26 Calculated compliant displacement values of HIPHAD by SMA in u⃗ 1 -

direction on Plane 2. 

In Figure 5.27, high compliance region closes the neck in the middle of the Plane 

2 and creates a compliant displacement plot given in Plane 3. Other than the increasing 

values for the displacements, the stiffness does not change a lot and shows slightly more 

displacements than the one calculated on Plane 2. 



 

 

134 

 

Figure 5.27 Calculated compliant displacement values of HIPHAD by SMA in u⃗ 1 -

direction on Plane 3. 

Displacement values calculated for u⃗ 2-direction are bounded between 2.5 x10-7 

and -1.5 x10-7 mm. Compliancy trends are not matching the experimental results. 

According to the previously presented results of VJM and experimental, dark blue areas 

should lean on the left bottom corner that is not the case for u⃗ 2 – direction compliance 

for Plane 1.   
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Figure 5.28 Calculated compliant displacement values of HIPHAD by SMA in u⃗ 2 -

direction on Plane 1. 

The results given in Figure 5.28 and Figure 5.29, shows a resembling trend with 

the experimental results, however, magnitude of the compliant displacement is far less 

than the one measured in experimentation. As measured in experiments, stiffness model 

developed with SMA shows higher stiffness values in the left bottom corner, where the 

HIPHAD is at the folded position. The other high stiffness region calculated by SMA 

model is the difference of the trend given by SMA and real device. 
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Figure 5.29 Calculated compliant displacement values of HIPHAD by SMA in u⃗ 2 -

direction on Plane 2. 

 

 

Figure 5.30 Calculated compliant displacement values of HIPHAD by SMA in u⃗ 2 -

direction on Plane 3. 
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Displacement values calculated in u⃗ 3-axis on Plane 1, 2 and 3 are provided in 

Figures 5.31-33. Maximum and minimum displacement values on this plane are -3.5 x 

10-7 mm and 1.5 x 10-7 mm. From Plane 1 to Plane 3 displacement values change between 

the levels of −5𝑥10−7  and 5𝑥10−7 . On second plane, compliant regions of the 

workspace leans on the right edge. On 3rd Plane, stiff regions of HIPHAD are 

concentrated on the left edge of the plane and displacement values are ranging between 

1.5 x 10-7 mm.  

 

Figure 5.31 Calculated compliant displacement values of HIPHAD by SMA in u⃗ 3 -

direction on Plane 1. 

For SMA it is expected to represent changes in stiffness from one plane to the 

other. This is due to the highly non-linear model of stiffness model of HIPHAD. However, 

there is no joint stiffness defined in SMA, which is more dominant in compliant 

displacement of HIPHAD. Therefore, without joint stiffness values, SMA provides 

inaccurate results.    
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Figure 5.32 Calculated compliant displacement values of HIPHAD by SMA in u⃗ 3 -

direction on Plane 2. 

In 3rd plane, dark blue region denotes the displacement values around 2 x10-7 mm 

and yellow region defines the displacement values close to -5 x10-7. With the extension 

of legs along the direction of u⃗ 1.  
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Figure 5.33 Calculated compliant displacement values of HIPHAD by SMA in u⃗ 3 -

direction on Plane 3. 

 

5.3. Comparison 

 

Results obtained in VJM for the compliance in u⃗ 1-axis on Plane 1, has close local 

maximum and local minimum points with the experimental results that are placed on the 

folded position along u⃗ 1-axis. These points are on N(160,160,280) and N(160,160,160). 

From the right bottom corner, the propagation of the compliance also shares the similar 

trends, however, the resemblance fades away towards the node N(280,160,280). The 

range of compliant displacement calculation errors are provided in Figure 5.34. It is 

clearly seen in the subplot for Plane 1 that when HIPHAD moves towards the 

N(280,160,280) error values are around -2mm. Other than this particular spot, error 

values range between -0.5 mm and -1mm. 
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Figure 5.34 Surface plots representing the errors between VJM displacements and 

measured displacements on u⃗ 1-direction 

For the second plane, the region of higher stiffness values is generated on the same 

edge, while the maximum displacements are obtained on different corners. Other than the 

nodes in which maximum compliant displacements are calculated, results obtained by 

VJM range between 1.2 and 1.6 mm. The experimental results for this plane also show a 

small change in displacements that is in the range of 1.5 to 2 mm. In Figure 5.34, error in 

between the calculated compliant displacements with the measured ones are bounded in 

the region of -0.2 to -1.8mm.  

Finally, for the displacement values in the same direction on Plane 3, calculated 

and measured local maximum and minimum values for the compliant displacements are 

spotted at the similar nodes. Propagation of the stiffness characteristics of HIPHAD 

obtained through experimentation and through VJM calculation shares the same trend on 

this plane. Considering the values of the compliant displacements, the results obtained 

with VJM calculation range between 0.8 to 2.6 mm while measured compliant 

displacements at the same nodes came out to be between 1.7 and 3.2 mm. The error values 

between the calculated and the measured compliant displacements are represented in 

Figure 5.34 in Error on Plane 3 subplot. This subplot shows that error is bounded between 

-0.1 and -0.9 mm. Root mean squares (RMS) of the errors for VJM method are given in 

Table 5.2, which is calculated by using errors at nodes that are used in experimental tests.   
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Table 5.2 RMSE of compliant displacements calculated by VJM calculations 

results and experimental measurements in u⃗ 1-axis 

RMS Errors of Displacements in 𝐮⃗⃗ 𝟏-axis 

Plane 1 Plane 2 Plane 3 

0.4878 mm 0.7537 mm 1.3659 mm 

 

The VJM method fails to provide the trend of the experimental results in all three 

sets of measurements for u⃗ 2-direction that is executed on Planes 1, 2 and 3. On plane 1, 

displacement calculation using VJM for u⃗ 2-direction yields a range that is 0.6 to 1.9 mm. 

The higher displacements occur on the left edge that intersects the measured values on 

the outermost corner, which is the vicinity of the node N(280,160,280). In experimental 

case, HIPHAD deforms in the range of 0.8 to 2.2 mm that is on the top edge of the same 

plane. Error surface plot for displacement values in the u⃗ 2-direction on Plane 1 is given 

in Figure 5.35 under the title Error on Plane 1. Clearly given in this surface plot that, VJM 

provides a low overall error other than the error that is colored by blue in Figure 5.35, 

which corresponds to the right top corner of the same plane. The error for this plane is 

bounded between -0.1 and 0.6 mm.  

The same outcome is read from the two figures that are plotted for the Plane 2 and 

3. In VJM method likewise the first section, the higher displacement values are calculated 

on the left edge and the displacement range of HIPHAD model is between 0.8 and 2.2 

mm. Other than the trend stiffness propagation, the range of displacements measured in 

experimentation settles in the range of 0.8 to 2.2 mm from bottom to top of the same 

plane. Giving the error plot for this surface that is provided in Figure 5.35 under the title 

of Error on Plane 2, the error is bounded between -0.4 and 0.5 mm and it is symmetrically 

distributed around the line that intersects 220 mm on u⃗ 3 axis. 

In the third plane, displacement measurements are between 0.5 and 2.5 mm for 

analytical calculations held in VJM while the experimental results are between 0.6 and 

1.7mm. Looking over the error plot given in Figure 5.32 under the title Error on Plane 3, 

the error is bound to -1.5 to 1 mm.   
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Figure 5.35 Surface plots representing the errors between VJM displacements and 

measured displacements on y-direction 

The RMSE results are provided in Table 5.3 to give a clue on the overall 

performance. 

 

Table 5.3 RMSE of displacements calculated by VJM and measured in experimentation 

in u⃗ 2-direction  

RMS Errors of Displacements in 𝐮⃗⃗ 𝟐-direction 

Plane 1 Plane 2 Plane 3 

0.4467 mm 0.5674 mm 1.999 mm 

 

Among all three displacement calculations with VJM, the one for u⃗ 3-direction 

gives the best fit for the creation and propagation of the stiffness characteristic on two out 

of three planes. On Plane 1, VJM gives a compliance of HIPHAD that results in a 

displacement range of -2.2 to -0.4 mm. The trend for stiffness characteristic change with 

respect to the coordinate axis fits at some point where the local maximum displacements 

are occurring with the experimental results, the displacement calculations have an offset 
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between the real displacement measurements on this plane that the experimental results 

are floating in the range of -0.1 to 0.25. 

The displacement measurements on Plane 2 and 3 fits with the VJM results in the 

sense of developing the manner of the stiffness characteristics. Moreover, the calculated 

displacements are close to the one that is measured on HIPHAD. The calculated 

displacements for HIPHAD on Planes 2 and 3 are in the ranges of -2 to -0.6 and -2.5 to -

0.5 mm. The error plot for the planes is given in Figure 5.36 respectively. 

 

 

Figure 5.36 Surface plots representing the errors between VJM displacements and 

measured displacements on u⃗ 3-direction 

The RMSE results are provided in Table 5.3 to give the overall performance.  
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Table 5.4 RMSE of displacements calculated by VJM and measured in 

experimentation in u⃗ 3-direction 

RMS Errors of Displacements in 𝐮⃗⃗ 𝟑-direction 

Plane 1 Plane 2 Plane 3 

1.7315 mm 1.4336 mm 1.3084 mm 

Compared to the VJM and experimental results, SMA results are not comparable 

in terms of accuracy. The ranges for displacements are around 10-7 mm for calculations 

in u⃗ 1-, u⃗ 2- and u⃗ 3-directions. Considering the trend of stiffness propagation throughout 

the workspace, SMA is able to give the resembling trend with the experimental data in 

u⃗ 1-, u⃗ 2- and u⃗ 3-directions.  

Computational cost of the two semi-analytical methods is also measured. To 

measure the time for executing one loop, codes are run for computing compliant 

displacements on one node. Same computational environment, which is Matlab, is used 

for this test. As a result, computational times required for the same calculation with SMA 

and VJM are measured to be 0.074 s and 0.035s, respectively.  

In this section, experimental and semi-analytical results for obtaining compliant 

displacements are visualized with the figures. These displacement values show the change 

of stiffness value of HIPHAD in its workspace. Once the results for experimental and 

semi-analytical data are discussed, then results with VJM method and experimental 

results are compared to each other by means of calculating the difference of compliant 

displacement result at each node throughout the workspace. Then the RMSE values are 

provided to show the overall error of the semi-analytical method calculation.  

In the following section, these results are discussed and possible reasons for errors 

in calculated compliance of HIPHAD are given.   
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CHAPTER 6  

 

CONCLUSIONS 

 

In this thesis, stiffness matrix calculation of HIPHAD haptic device is executed 

by two semi-analytical methods. The methods used in this master thesis are selected 

among the possible methods in the literature of stiffness matrix calculation methods. In 

this thesis, first, the possible sources of errors in accuracy and repeatability of robots are 

presented and the compensation methods used in the literature are provided. Then, the 

methods for calculating stiffness matrix is provided and the experimental methods used 

by other researchers are presented. 

This thesis explains three main studies on obtaining the stiffness characteristics of 

HIPHAD haptic device, which are stiffness calculation using VJM, SMA and measuring 

compliant displacements of the HIPHAD due to the stiffness characteristics by using 

stereo vision cameras. The cameras are initially used in calibration of encoders, which is 

used to measure the angular positions of actuated joints and thus, indirectly measure the 

position of the wrist point. After the calibration process, the experimentation is carried 

out to reveal the stiffness characteristic of HIPHAD. Two cameras are used to measure 

the absolute position of the mobile platform, specifically the wrist point position. By this 

way, compliant displacement of the mobile platform is measured along three orthogonal 

axes.  

VJM is one of the methods that is used in this thesis. To carry out VJM 

calculations, each leg of HIPHAD is modeled with active joints, passive joints, and virtual 

joints. Then, Jacobian matrices for passive joints and virtual joints are calculated and 

Cartesian stiffness matrix of each are found. These Cartesian stiffness matrices are 

superposed to develop HIPHAD’s equivalent stiffness matrix. In the other semi-analytical 

method called SMA, the stiffness matrix of HIPHAD is constructed by assembling the 

stiffness matrices of links by defining geometric constraints. These geometric constraints 

include constraints defined by a joint and rigid body constraints.  



 

 

146 

Experimental results indicate that HIPHAD becomes more compliant on the most 

extended positions. In addition, the measured displacement of the mobile platform under 

forces is not only caused by the compliance of manipulator but due to the wear and 

backlash in the joints. Due to this reason, any method to be used to model stiffness of 

HIPHAD should include the effects of the joint clearances within the model. However, 

joint clearance models are not included in the VJM or SMA method of stiffness 

modelling. 

The analytical results with VJM modelling came out to be closer to the results 

obtained by experimentation. RMS of errors calculated by the difference between the 

VJM and experimentation results changes from 1.38 mm to 0.20 mm. In addition, VJM 

shows the best resemblance of the actual stiffness map of HIPHAD considering the 

stiffness change with respect to the position of the wrist point along u⃗ 1-, u⃗ 2- and u⃗ 3-axes.  

The reason of the error between VJM results and experimental results are the 

calculation of the joint stiffness values. They are calculated on the node defined at 

220mm, 220mm, 220mm along u⃗ 1-, u⃗ 2- and u⃗ 3-axes however, these stiffness values are 

used in calculations for the whole workspace with the assumption that they are the same 

at any location. Another reason of inaccuracy of the model is the simplified stiffness 

model of HIPHAD to reduce computational expenses. As a result of using a simplified 

model, VJM takes 0.035s to run a single loop.  

Analytical results for SMA shows similar results considering the change of 

stiffness throughout the workspace. However, SMA model results in very small 

compliant displacements since it only includes links stiffness matrices. However, the 

most flexible parts of the HIPHAD mechanism is observed to be the joint structures 

compared to the link structures. SMA gives the most detailed illustration of stiffness 

variation of HIPHAD throughout it workspace since it includes all of the compliance 

elements other than the joint stiffness values. The calculation of stiffness matrix using 

this method took 0.074s to run a single loop. 

It should be noted that VJM provides an easier implementation of joint stiffness 

values without any need of changing matrices of high dimensions. This allows the 

designer to change the stiffness model easily. Evaluating the flexibility, simplicity, 
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computational cost and accuracy of two methods that are applied for the calculation of 

stiffness matrix of HIPHAD, VJM provides better results under the same conditions. 

As a future work, joint stiffness values should be recalculated without using the 

assumptions made in this thesis. This calculation can be accommodated by measuring 

rotational compliant displacements in addition to the translational compliant 

displacements. It can be observed from HIPHAD mechanism’s current condition that 

most of the initial displacement when a force is applied is due to the joint clearances 

which have increased due to joint wear in time. Therefore, joint clearance models can be 

included in the stiffness model to increase accuracy of the model output. However, it is 

foreseen that addition of joint stiffness and possibly joint clearance to the SMA method 

would make the calculations even more complex and decrease the computation time 

drastically even if a solution can be obtained. Nevertheless, addition of accurately 

calculated joint stiffness models and joint clearance should be studied as a future work 

on VJM method.  

Additionally, based on the obtained stiffness characteristics of HIPHAD, future 

work on the design changes for the HIPHAD mechanism can include an improved joint 

structure design that has smaller joint clearances and use of materials with high strength-

to-weight ratio, such as carbon-fiber pipes, for constructing the links.   
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