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ABSTRACT 
 

DISPLACEMENT ANALYSIS OF NON-CIRCULAR PLANAR CURVED 
BEAMS UNDER IN-PLANE IMPULSIVE LOAD 

 
In this study, time response of a planar curved beam with variable curvatures under 

in-plane impact load is analyzed by two numerical methods which are Finite Difference 

and Finite Element Methods. The solution procedures in both methods are based on 

solution of eigenvalue and time response problems. Catenary form is selected as the axis of 

curved beam. A computer program is developed in Mathematica for the solution with 

Finite Difference Method. Moreover, a computer code is written for the geometric and 

finite element models of curved beam with variable curvature in ANSYS by using APDL 

(ANSYS Parametric Design Language). Solutions of the two methods are compared in 

each other and then good agreement is observed. The effects of impuls and damping 

properties on the time response are investigated. 
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ÖZET 
 

DÜZLEM İÇİ İMPULSİF KUVVET ALTINDAKİ DAİRESEL OLMAYAN 
DÜZLEMSEL EĞRİ ÇUBUKLARIN 

YERDEĞİŞTİRME ANALİZİ 
 

Bu çalışmada, düzlem içi darbe yükü altındaki değişken eğrilikli düzlemsel eğri 

çubukların zaman cevabı sayılsal yöntemler olan Sonlu Farklar ve Sonlu Elemenlar 

Yöntemleri ile incelenmiştir. Her iki metoddaki çözüm usulü özdeğer ve zaman cevabı 

problemlerine dayalıdır. Eğri çubuğun ekseni olarak Katenary biçimi seçilmiştir. Sonlu 

Farklar Yöntemi ile çözüm için Mathematica’da bir program geliştirilmiştir. Ayrıca, 

değişken eğrilikli eğri çubuğun geometrik ve sonlu eleman modelleri için ANSYS de 

APDL (ANSYS Parametrik Tasarım Dili) ile bir bilgisayar kodu yazılmıştır. İki metodun 

çözümleri birbirleri ile karşılaştırılmış ve iyi bir uyum gözlenmiştir. İmpuls ve sönüm 

özelliklerinin zaman cavabına etkileri araştırılmıştır. 
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CHAPTER 1 

 
GENERAL INTRODUCTION 

 
Curved beams can be seen a lot of applications such as stiffeners in 

airplane/ship/roof structures. They can be in the shape of a space curve or a plane curve, 

and also have variable curvature and cross-section. Their geometrical properties are 

basically related with the functional and esthetical requirements. 

Curved beams have two types of motions for in-plane vibrations: (1) bending, (2) 

extensional or axial. Bending and axial motions are coupled. In order to uncouple the 

equations for in plane vibration, inextensionality condition can be used. This condition 

necessitates zero axial strain in neutral axis. 

There are many studies for vibrations of the curved beams, but only a few studies 

for curved beams with variable curvature. The selected studies are introduced in the order 

of publication time as follows: 

Den Hartog (1928) derived formulae for the first and second natural frequencies of 

a part of a circular ring, hinged or clamped at its ends. He shown that the type of vibration, 

in which extension of the fibers occurs, under certain conditions may have a lower natural 

frequency than the non-extensional type of vibration.  

Volterra and Morell (1960) extended the study of Den Hartog (1928). They 

analyzed the free vibration of arches with various geometries such as circle, cycloid, 

catenary, and parabola by using the Rayleigh-Ritz method.  

Romanelli and Laura (1972) calculated the lowest natural frequencies of elastic 

hinged arcs by using Rayleigh's principle. Since they derived the energy equation for non-

circular arcs, they also criticized the bending moment equation given by Volterra and 

Morell (1960). 

Wang (1972) used the Rayleigh-Ritz method to find the lowest natural frequency of 

clamped parabolic arcs to see the effect of the variation of depth and width on natural 

frequencies. 

Wang and Moore (1973) analyzed the lowest natural extensional frequency of 

symmetrical elliptic arcs with clamped-clamped ends by using the Rayleigh-Ritz method. 
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Takahashi et al (1977) researched the in-plane vibrations of curved beam of which 

the center line of an ellipse or of a sinus curve. They used two methods to solve the 

problem: in first one, curvature function is expressed in terms of arch length, in second 

one, arch length function is expressed in terms of curvature. 

Sakiyama (1985) presented an approximate method to analyze the free vibration of 

any type of arches. The solutions of differential equations were obtained in discrete form, 

by translating the differential equations into integral equations and applying numerical 

integrations. 

Lee and Wilson (1989) derived the equations for in-plane vibrations of variable 

curvature arches in parabolic, sinusoidal and elliptic geometries. They solved the equations 

numerically for frequencies and mode shapes. They also validated the lowest four 

predicted frequencies and mode shapes for parabolic arches experimentally. 

Gutierrez et al. (1989) calculated only the lowest natural frequencies in flexure and 

extension for non-circular arches with variable cross-section by using polynomial 

approximations and the Ritz method. 

Taking into account the shear deformation and rotary inertia, Yıldırım (1997) 

computed the in-plane and out-of-plane free vibration frequencies of Archimedes-type 

spirals shown in Figure 1.1 by using the transfer matrix method. To compute the overall 

dynamic transfer matrix, she used the complementary functions method and concluded that 

the solution method can be applied to any planar bar. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1. Archimedes-type spiral spring 
(Source: Yıldırım 1997) 
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Huang et al (1998a) developed an exact solution for in plane vibration of arches 

with variable curvature as well as cross section by using Frobenius method combined with 

dynamic stiffness method. Shear deformation and rotary inertia effects are considered. 

They provided some non-dimensional frequencies of parabolic arches in tables and graphic 

charts based on the rise to span length, slenderness ratio, and variation of cross section.  

Oh et al. (1999) derived the differential equations for free in-plane vibrations of 

non-circular arches of which one illustrated in Figure 1.2, including the rotatory inertia, 

shear deformation and axial deformation effects. Figure 1.2 also shows a small element of 

the arch defines the positive directions for its loads: the axial forces N, the shear forces Q, 

the bending moments M, the radial inertia force Pr, the tangential inertia force Pt and rotary 

inertia couple T. In order to obtain frequencies and mode shapes, they solved the 

differential equations numerically. The lowest four natural frequencies are calculated for 

the parabolic, elliptic and sinusoidal geometries with hinged-hinged, hinged-clamped, and 

clamped-clamped end conditions. A wide range of arch rise to span length ratios, 

slenderness ratios, and two different values of shear parameter are also considered. Their 

numerical results are in good agreement with results determined by means of finite element 

method. 

 

 

 

 

 

 

 

 

 

 

Figure 1.2. Arch geometry and loads on an arch element 
(Source: Oh et al. 1999) 

 

Oh et al. (2000) presented additionally experimental results for the free vibration 

frequencies and mode shapes of three quadratic parabolic arches. They concluded that 
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experimental measurements of frequencies and their corresponding mode shapes are close 

agreement with the predicted frequencies and their corresponding mode shapes. 

There are a few studies for transient responses of curved beams with variable 

curvature under different type of loadings. Therefore, the reachable ones related with the 

transient responses of curved beams are mentioned below: 

The oldest reachable literature on curved beam under impact load is a Master of 

Science study in Civil Engineering Department of the Georgia Institute of Technology in 

1954. This study was completed by Arthur Remington White with thesis advisor Professor 

H.C. Saxe. The purpose of this investigation was two-fold; first to begin a study of the 

behavior of curved beams under dynamic loading, with special reference to arches in civil 

engineering use. The secondary purpose is to begin the study of structural dynamics in the 

Civil Engineering Department of the Georgia Institute of Technology by establishing 

experimental techniques. Four factors were analyzed: 

(1) The maximum stress during impact, 

(2) The length of time the striking mass is in contact the model, 

(3) The natural frequencies of the bar, 

(4) The modes of full vibration of the bar. 

The study leads to the follow conclusions: 

(l) Conventional theory gives good results for the maximum stress during impact, 

(2) The time of contact may be predicted with good accuracy by common methods, 

(3) The approximate theory of free vibrations of curved bars gives an accurate 

analysis for bars of small central angles. 

Sheinman (1979) published a paper on a generalization of the dynamic solution for 

an arbitrary plane curved beam with viscous damping, under arbitrary load. The equation 

of motion, based on the linear theory, admits proportionality of the damping to the mass 

and stiffness matrices (Raleigh damping). The numerical solution is obtained by direct 

time-integration, using backward differences (Houbolt’s method). A general computer 

program (CURBEAM) was written for this purpose and a numerical example is presented. 

Yu et al. (1985) published another paper on a quadrantal circular curved cantilever 

beam struck in its plane at its tip by a rigid mass moving radially at an initial speed VO, as 

shown in Figure 1.1.  If the impact duration is very short and the rigid mass adheres to the 

beam after impact, the load pulse may be idealized as impulsive, i.e. of 8-function pulse 

shape. Treating the mass as a particle, the problem then to be analyzed is that of a curved-

beam-lumped-mass system with a specified initial velocity at the mass towards the centre 
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of the quadrant. An 'exact' rigid-plastic solution will be constructed first. This will then be 

compared with a simpler complete solution, with a mode approximation solution, and with 

an elastic-plastic numerical solution by using the finite element code ABAQUS. Bounds 

on displacement and response time according to rigid-plastic theory are also computed and 

presented. 

 

 

 

 

 

 

 

 

 

 

Figure 1.3. A quadrantal circular beam subjected to radial impact in its own plane at its tip 
  by a rigid mass.(Source: Yu et al. 1985) 
 

Huang and Tseng (1996) analytically analyzed in plane transient response of a 

circular arch subjected to a point loading and support motions load by Laplace transform. 

Huang et al (1998b) proposed a procedure combining the dynamic stiffness method 

with the Laplace transform to obtain accurate transient responses of an arc with variable 

curvature. They also considered the effects of shear deformation, rotary inertia, and 

damping in the proposed procedure. A parabolic and a semi elliptic arch subjected to either 

point loading or base excitation are presented as examples. 

Marur and Kant (2011) proposed a higher order refined model with isoparametric 

elements to study the transient dynamic response of laminated arches/curved beams. They 

solved the equation of motion  by Newmark integration scheme and validated the higher 

order formulation with available results and subsequently applied to arches with various 

curvatures, aspect ratios, boundary conditions, loadings and lamination schemes. 

Bhatti and Kishi (2011) simulated impact-response analysis RC arch-type beams 

without stirrups by conducting falling weight impact loading tests of small-scale arch-

shape RC beams shown in Figure 1.4. Since the preparing of specimens and fitting of 

experimental setup are difficult, they performed numerical simulation methods by using 
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computers in addition to the experiments of which set up shown in Figure 1.5. They 

obtained the impact force time history, maximum displacement at the loading point and 

crack patterns caused in the side-surface of the arch beams. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.4. Dimensions of the RC arch beam model 
(Source: Bhatti and Kishi 2011) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.5. Pictorial view of the experimental setup 
(Source: Bhatti and Kishi 2011) 

 

 Recently, Nikkhoo and Kananipour (2014) proposed a dynamic numerical solution 

for deflections of semicircular curved beams acted upon by moving loads. They used the 
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Euler–Bernoulli beam theory considering polar system, in order to extract the characteristic 

equations of an arch under an in-plane constant moving load, then solved it by using 

differential quadrature method. The obtained results are radial and tangential 

displacements, as well as bending moments. Confirmation of this approach, some 

comparisons have been made between the results obtained by selected methods such as 

differential quadrature method, Galerkin method, and finite element method. The results 

show differential quadrature method is efficient. 

In this study, time response of a planar curved beam in the shape of catenary under 

in-plane impact load is analyzed by Finite Difference and Finite Element Methods. The 

main mathematical problems are to find the eigenvalues and to obtain the time response. A 

computer program is developed in Mathematica for the solution with Finite Difference 

Method. On the other hand, a computer code is written for the geometric and finite element 

models of curved beam with variable curvature in ANSYS by using APDL (ANSYS 

Parametric Design Language). Solutions of the two methods are compared in each other 

and then good agreement is observed. The effects of impuls and damping properties on the 

time response are investigated. 
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CHAPTER 2  

 

THEORETICAL VIBRATION ANALYSIS 

 
2.1. Introduction 

 
A planar curved beam with variable radius of curvature shown in Figure 2.1 is 

considered. A catenary form is selected for the curved beam axis. Formulations about 

catenary form are presented in the next section. Since the Hamilton principle is very 

powerful method for the derivation of equation of motion in continuous system, equation 

of motion and related boundary conditions for in-plane vibrations of curved beam with 

variable curvature are obtained by the Hamilton principle in the following section. Since 

the problem presented in abstract is based on differential eigenvalue problem with variable 

coefficients and the initial value problem associated with particular solution, the solution 

of the problem has two main steps. Due to the variable coefficients in the equation of 

motion, numerical solution is required. Therefore, discretization of continuous systems can 

be accomplished by two methods to validate the results: Finite Difference and Finite 

Element. Transient analysis by Finite Difference Method is based on direct integration 

methods (Cook 1989). On the other hand, transient analysis with Finite Element Method 

provided by ANSYS is presented for three methods: full, reduced and mode superposition. 

Three sample input listings for the methods given above are shown. 

 

 

 

 

 

 

 

 

 

Figure 2.1. A planar curved beam with variable radius of curvature under impact loads. 

x z 

ρ0(s) 

y 

Fn 
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2.2. Geometry of Curved Beam 

 
The catenary curve and its parameters are shown in Figure 2.2. The necessary 

equations are given by Yardimoglu (2010) as follows: 

 

 

 

 

 

 

 

 

 

Figure 2.2. Parameters of catenary beam 
(Source: Yardimoglu 2010) 

 

The catenary curve is expressed in x-z plane in terms of x and z as follows: 

 

]1)/[cosh()( 00 −= RzRzx      (2.1) 

 

The slope α at abscissa z is obtained by differentiation of Equation 2.1 with respect to z: 

 

)/sinh(/)(tan 0Rzdzzdx ==α     (2.2) 

 

The tip co-ordinates (zr, xr) of the curved beam is obtained by using the tip slope αr as 

 

)sinh(tan0 rr arcRz α=      (2.3) 

 

)1cos/1(0 −= rr Rx α       (2.4) 

 

Since the arc length s from origin 0 to any point (z, x) on the curve is 

 

z

R0 

ρ0 

α

x 

0 

αr (zr, xr) 

sL 



 10

αtan)/)((1()( 00

2 Rdzdzzdxzs
s

=+= ∫    (2.5) 

 

Equation 2.5 gives a relationship between s and α. Moreover, radius of curvature at 

abscissa z is found by using the well-known radius of curvature eqaution as follows: 

 

[ ] )/(cosh
/)(

)/)((1)( 0
2

022

2
32

0 RzR
dzzxd
dzzdxz =

+
=ρ   (2.6) 

 
Eliminating the variable z in Equation 2.6 by using Equation 2.2, radius of curvature can be 

written in terms of α as follows: 

 

ααρ 2
00 cos/)( R=       (2.7) 

 
Now, cos α can be expressed in terms of s by using Equation 2.5 as 
 

22
00 /cos sRR +=α      (2.8) 

 

Therefore, radius of curvature can also be written in terms of s as follows: 

 

0
2

00 /)( RsRs +=ρ          (2.9) 
 

2.3. Derivation of the Equation of Motion 

 
 The present curved beam is shown in Figure 2.3. 

 

 

 

 

 

 

 

 

Figure 2.3. A curved beam with internal forces and moments 
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N 
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It can be seen from Figure 2.3 that N, T and My are internal normal and shear forces and 

bending moment, respectively. Displacements of any point on curved beam in x and z 

directions are denoted by u and w, as usual. Dynamic curvature 1κ′  in x-z plane is given by 

Love (1944) as 

 

)( 001 w
ds
du

ds
d κκκ ′++′=′      (2.10) 

 

where 0κ ′  is initial curvature or static curvature. Axial force T is given as (Love 1944) 

 

εAET =        (2.11) 

 

where ε is tangential strain due to tension and expressed as 

 

u
ds
dw

0κε ′−=        (2.12) 

 

Bending moment My is written as follows 

 

)( 01 κκ ′−′= BM y       (2.13) 

 

where B is bending rigidity of curved beam material, generally expressed as EI. 

 
The Hamilton principle is expressed as follows (Meirovitch 2001): 

 

0)(
2

1

=+−∫ dtWSEKE
t

t
ncδ      (2.14) 

 

where KE, SE and Wnc are the kinetic, strain energies and the work of the non-conservative 

forces, respectively. For the present problem, they are given as follows; 

 

dswmumKE LS
)(

2
1 2

0

2 && += ∫      (2.15) 
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where Am ρ=  is mass per unit length, in which A is area of the cross-section. 

 

dsMSE LS

y )(
2
1

010
κκ ′−′= ∫      (2.16) 

 

By using Equation 2.13 along with Equation 2.10 in Equation 2.16, the following strain 

energy expression is obtained: 

 

dsw
ds
d

ds
udBSE LS 2

00 2

2

)]([(
2
1 κ ′+= ∫     (2.17) 

 

dswssFussFW LtL

S

nnc
L ))2/()2/((

2
1

0
−+−= ∫ δδ   (2.18) 

 

where Fn and Ft are external forces acting in normal and tangential directions, respectively, 

as shown in Figure 2.1. δ(s-sL/2) is a spatial Dirac delta function applied at s=sL/2 and 

defined as (Meirovitch 2001) 

 

2/,0)2/( LL ssss ≠=−δ    (2.19) 

and 

1)2/(
0

=−∫ dsssLS

Lδ       (2.20) 

 

If central line of curved beam is assumed as unextended, the inextensionality 

condition is obtained from Equation 2.12 as 

 

0κ′= u
ds
dw        (2.21) 

 

By substituting Equations 2.15, 2.17 and 2.18 along with Equation (2.21) in 

Equation 2.14, governing differential equations and the boundary conditions for the present 

problem are obtained as follows: 
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where 
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The boundary conditions are as follows: 

a) Either bending moment is zero (pinned or free), or slope is zero (clamped). 

b) Either shear force is zero (free), or displacement is zero (pinned or clamped). 

c) Either bending moment is zero (pinned or free), or displacement is zero (pinned or 

clamped). 

 

2.4. Discretization of Continuous Systems 

 

2.4.1. Finite Difference Method for Transient Analysis 

 
Transient analysis is also called time-history analysis. This analysis is interested in 

the dynamic response of a structure under the effect of dynamic loads. Dynamic response 

may be the time-dependent displacements, strains, stresses, and forces in a structure. 

The partial differential equation for the forced vibration of a damped continuous 

system is given by Yardimoglu (2012) as follows, 

 

),()],([)],([)],([ tsFtswLtswCtswM =++ &&&    (2.24) 
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where M[ ], C[ ], and L[ ] are linear differential operators having derivatives with respect to 

s and F(s, t) is external loading. 

In the FDM, the derivatives of dependent variables w(s, t) in Equation 2.24 with 

respect to s are replaced by the finite difference approximations at mesh points shown in 

Figure 2.3. Therefore, the following matrix equation is obtained: 

 

)}({)}(]{[)}(]{[)}(]{[ tFtqKtqCtqM =++ &&&    (2.25) 

 

where {q(t)} is the displacement vector obtained by discretizing w(s, t) at the mesh points. 

Similarly, {F(t)} is the force vector obtained by discretizing F(s, t) at the mesh points. 

Moreover, [K], [M], and [C] are stiffness, mass and damping matrices, respectively. 

 

 

 

 

 

 

 

Figure 2.4. A curved domain divided into six sub domains. 
(Source: Cangar 2013) 

 
If the damping matrix [C] is linear combination of stiffness matrix [K] and mass 

matrix [M], damping is called as Rayleigh damping and expressed as (Inman, 2001): 

 

][][][ KMC βα +=       (2.26) 

 

where α and β are constant coefficients. It is also called proportional damping. 

If the coefficients α and β are known, the following equation is used to determine 

the modal damping ratio ξi  

 

)/(5.0 iii βωωαξ +=   ni ,......2,1=    (2.27) 
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where ωi is the i-th natural frequency of the system. On the other hand, if the modal 

damping ratios ξm and ξn associated with two specific frequencies (modes) ωm, ωn are 

known, the coefficients α and β can be found by using Equation (2.26) as (Clough 2003) 
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Where ωm is the fundamental frequency. Since the variation of damping ratio with 

frequency rarely is available, it is assumed that ξm = ξn = ξ. Therefore,  
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Transient analysis can be performed by direct integration methods or step-by-step 

methods (Cook 1989). In this method, again finite difference approximation is used to 

replace the time derivatives appearing in Equation (2.25). 

This method has the advantage that the frequencies and modes of free vibration of 

the undamped system do not have to be calculated prior to the response analysis. In order 

to evaluate the response at time Tf, the time interval (0, Tf) is divided into N equal time 

intervals ∆t = Tf / N. The response is then calculated at the times ∆t, 2∆t, 3∆t, . . . , Tf, by 

an approximate technique. The error in these approximations is of the order (∆t)2. The 

procedure is outlined below (Petyt 2010): 

 

First, solve the following equation 

 

}{}]{[}]{[}]{[ 0000 FqKqCqM =++ &&&     (2.30) 

 

for the acceleration vector }{ 0q&& . Second, calculate }{ 1q  by using the next equation: 

 

}{)2/)((}{}{}{ 0
2

001 qtqtqq &&& ∆+∆+=     (2.31) 

 

Then, calculate the }{ 1+jq  starting with j=1, from the following equation 
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until desired time Tf. Selection of the value of ∆t is critical for numerical stability and 

accuracy. For good accuracy, it is selected as twenty times of natural period (Petyt 2010). 

 

2.4.2. Finite Element Method for Transient Analysis 

 
By using the Finite Element Method (Petyt 2010), Equation 2.24 is reduced to 

multi-degree-of-freedom system. Therefore equation of motion of the system is given by 

 

)}({)}(]{[)}(]{[)}(]{[ tFtqKtqCtqM =++ &&&    (2.33) 

 

In order to perform the transient analysis in this thesis, the common commercial 

software ANSYS is used. The ANSYS program uses the Newmark time integration 

method or an improved method called HHT to solve these equations at discrete time 

points. Three methods are available to do a transient dynamic analysis: full, mode 

superposition, and reduced (ANSYS 2004). The methods are summarized below. 

 

 

2.4.2.1. Full Solution Method 

 
The full method uses the full system matrices to calculate the transient response. It allows 

all types of nonlinearities such as plasticity, large deflections, large strain, and so on. Time 

stepping procedure is used automatically to determine the time step size required for each 

time step. Nonzero initial conditions are input either directly or by performing a static 

analysis load step(s) prior to the start of the transient itself. 

A sample input listing for a full transient analysis is shown below: 

 
!  Build the Model 
/PREP7                     ! Enter PREP7 
---...                     ! Generate model 
FINISH 
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!  Apply Loads and Obtain the Solution 
/SOLU                      ! Enter SOLUTION 
ANTYPE,TRANS               ! Transient analysis 
TRNOPT,FULL                ! Full method 
D,...                      ! Constraints 
F,...                      ! Loads 
SF,... 
ALPHAD,...                 ! Mass damping 
BETAD,...                  ! Stiffness damping 
KBC,...                    ! Ramped or stepped loads 
TIME,...                   ! Time at end of load step 
AUTOTS,ON                  ! Auto time stepping 
DELTIM,...                 ! Time step size 
OUTRES,...                 ! Results file data options 
LSWRITE                    ! Write first load step 
---...                     ! Loads, time, etc. for 2nd load step 
---...                     ! 
LSWRITE                    ! Write 2nd load step 
SAVE 
LSSOLVE,1,2                ! Initiate multiple load step solution 
FINISH 

 

2.4.2.2. Reduced Solution Method 

 
The reduced solution method uses reduced structure matrices based on the sub-

structuring technique solve the time-dependent equation of motion for linear structures. 

The solution method imposes the following additional assumptions and restrictions: 

1. Constant [M] and [K] matrices. This implies no large deflections or change of stress 

stiffening, as well as no plasticity, creep, or swelling. 

2. Constant time step size ∆t. 

3. No element load vectors. This implies no pressures or thermal strains. Only nodal forces 

applied directly at master DOF (Degrees Of Freedom) or acceleration effects acting on 

the reduced mass matrix are permitted. 

4. Nonzero displacements may be applied only at master DOF. 

This method usually runs faster than the full transient dynamic analysis. A sample 

input listing for a reduced transient analysis is shown below: 

 
!  Build the Model 
/PREP7                 ! Enter PREP7 
---                    ! Generate model 
FINISH 
 
!  Apply Loads and Obtain the Solution 
/SOLU 
ANTYPE,TRANS           ! Transient dynamic analysis 
TRNOPT,REDUC           ! Reduced transient analysis 
DELTIM,...             ! Integration time step sizes 
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M,...                  ! Master DOF 
D,...                  ! Constraints 
OUTRES,...             ! Results-file data controls 
F,...                  ! Force = 0 at Time = 0 
SOLVE 
TIME,...               ! Time at end of second load step 
F,...                  ! Force at end of second load step  
SOLVE 
 
FINISH 

 

2.4.2.3. Mode Superposition Solution Method 

 
The mode superposition method uses the natural frequencies and mode shapes of a 

linear structure to predict the response to transient forcing functions. This solution method 

imposes the following additional assumptions and restrictions: 

 

1. Constant [K] and [M] matrices. This implies no large deflections or change of stress 

stiffening, as well as no plasticity, creep, or swelling. 

2. Constant time step size ∆t. 

3. There are no element damping matrices. However, various types of system damping are 

available. 

4. Time varying imposed displacements are not allowed. 

A sample input listing for this method is shown below: 

 
!  Build the Model 
/PREP7          ! Enter PREP7 
---             ! Generate model 
FINISH 
 
!  Obtain the Modal Solution 
/SOLU           ! Enter SOLUTION 
ANTYPE,MODAL    ! Modal analysis 
MODOPT,REDU     ! Reduced method 
M,...           ! Master DOF 
TOTAL,... 
D,...           ! Constraints 
SF,...          ! Element loads 
ACEL,... 
SAVE 
SOLVE 
FINISH 
 
!  Obtain the Mode Superposition Transient Solution 
/SOLU           ! Reenter SOLUTION 
ANTYPE,TRANS    ! Transient analysis 
TRNOPT,MSUP,... ! Mode superposition method 
LVSCALE,...     ! Scale factor for element loads 
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F,...           ! Nodal Loads 
MDAMP,...       ! Modal damping ratios 
DELTIM,...      ! Integration time step sizes 
LSWRITE         ! Write first LS which is solved statically at time=0 
---             ! Loads, etc. for 2nd load step 
TIME,...        ! Time at end of second load step 
KBC,...         ! Ramped or stepped loads 
OUTRES,...      ! Results-file data controls 
LSWRITE         ! Write 2nd load step (first transient load step) 
SAVE 
LSSOLVE         ! Initiate multiple load step solution 
FINISH 
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CHAPTER 3 

 
NUMERICAL RESULTS AND DISCUSSION 

 
3.1. Introduction 

 
In this chapter, impulse response of a curved beam with variable curvature is 

studies by the following numerical methods: (a) FDM (Finite Difference Method), (b) 

FEM (Finite Element Method). Since there is no similar study in the available literature, 

the numerical results are compared with each other to check the present results. 

A symbolic program is developed in Mathematica for the FDM. On the other hand, 

the geometry and finite element model of curved beam with variable curvature is generated 

in ANSYS by using APDL (ANSYS Parametric Design Language). BEAM3 which is 2-D 

Elastic Beam is selected to model the curved beam. 

Three different fixed-fixed curved beams with Ro={80, 100, 120} mm, sL=200 mm 

are considered as curve models. The geometrical models generated in ANSYS are shown 

in Figure 3.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1. The three geometrical models of the curved beam 
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3.2. Convergence Studies for Natural Frequency 
 

In order to decide the proper minimum number of grid point in FDM and number of 

element in FEM, the natural frequencies of a fixed-fixed curved beam with the parameters 

b=2 mm, h =8 mm, Ro=100 mm, sL=200 mm are obtained for various discretizations. 

Material properties of curved beam are given in Table 3.1. 

 

Table 3.1. Material properties in the models 
 

E (MPa) 200000 

ρ (ton/mm3) 7.85 10-9 

G (MPa) 80000 

 
The results are .given in Table 3.2 and Table 3.3 for FDM and FEM, respectively. 

From Table 3.2, the reasonable number of grid point n is selected as 100. Similarly, From 

Table 3.3, reasonable number of element N is selected as 20. 

 

Table 3.2. Convergence of natural frequencies based on FDM 
 

n f1 (Hz) 

20 2085.08 

40 2304.53 

60 2383.4 

80 2424.35 

100 2449.48 

120 2450.73 
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Table 3.3. Convergence of natural frequencies based on FEM 
 

N f1 (Hz) 

4 2504.3 

6 2467.4 

8 2457.3 

10 2453.1 

12 2450.9 

14 2449.7 

16 2448.9 

18 2448.3 

20 2447.9 

 
Convergence of first natural frequency based on FDM is plotted in Figure 3.2. 

Also, convergence of first natural frequency based on FEM is plotted in Figure 3.2. It is 

seen from Figure 3.2 that the selected number of grid points and elements are reasonable. 

 

 

 

 

 

 

 

 

 

 

Figure 3.2. Convergence of first natural frequency by FDM and FEM 
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3.3. Natural Frequencies for Different Models 

 
 To see the effects of catenary curve parameter Ro and the height of the cross-section 

h of the curved beam on natural frequencies, various values for Ro and h are selected. The 

other parameters are b=2 mm, sL=200 mm are taken. The results are given in Figures 3.2-

3.5. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3. Effects of h and Ro on first natural frequencies 
 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4. Effects of h and Ro on second natural frequencies 
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Figure 3.5. Effects of h and Ro on third natural frequencies 
 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6. Effects of h and Ro on fourth natural frequencies 
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3.4. Proportional Damping Parameters 

 
Assuming the all the modal damping ratios are equal to each others, the coefficients 

α and β are calculated from Equation (2.29) for the damping ratio. Three different damping 

ratios { ξa, ξb, ξc } are considered. First, the coefficients αa= βa= 0 are taken for ξa=0. 

Second, the coefficients αb=932 and βb=2.56 10-6 are found for ξb=0.05. Third, the 

coefficients αc=1863.5 and βc=5.13 10-6 are found for ξc=0.1. 

 

3.5. Comparison Studies for Impact Response 

 
Unit impact load at mid-point of the curved beam is applied at duration 2 ms. Time 

response of the curved beam of which parameters given in Section 3.2 with ξb=0.05 are 

given by FDM and FEM are given separately in Figure 3.7 and Figure 3.8, respectively. 

 

 

 

 

 

 

 

Figure 3.7. Time response for ξb=0.05 by FDM 

 

 

 

 

 

 

 

 

 

 

Figure 3.8. Time response for ξb=0.05 by FEM 
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 In can be seen from Figure 3.7 and Figure 3.8 that in general both of them are in 

good agreement except FEM model damping tendency is not smooth as in FDM. 

 

3.6. Impact Responses for Different Models 

 
 Up to this section, the necessary background for the displacement analysis of non-

circular planar curved beams under in-plane impulsive load is obtained by: 

• carrying out convergence studies for natural frequencies, 

• finding the natural frequencies for different models based on the parameters set 

R0={ 80, 100, 120} mm, h={ 6, 8, 10} mm. 

• calculating the proportional damping parameters for selected three damping ratios 

ξ={ 0, 0.05, 0.1 } 

• comparing the impact response plot obtained by FDM with the impact response 

plot obtained by FEM for ξb=0.05. 

Therefore, in this section, impact responses for different models are presented 

considering model parameters based on the sets R0={100, 120} mm, h={8, 10} mm, and 

ξ={0.05, 0.1}. For the sake of simplicity, the model numbers are given in Table 3.4. 

 

Table 3.4. Parametric details of the models 
 

Models number sL (mm) b (mm) h (mm) Ro (mm) ξ (-) 

Model 1 200 2 8 100 0.05 

Model 2 200 2 8 100 0.1 

Model 3 200 2 8 120 0.05 

Model 4 200 2 8 120 0.1 

Model 5 200 2 10 100 0.05 

Model 6 200 2 10 100 0.1 

Model 7 200 2 10 120 0.05 

Model 8 200 2 10 120 0.1 

 
Time responses of Model 1 to Model 8 found by FDM are given in Figure 3.9 to 

Figure 3.16. 
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Figure 3.9. Time response for Model 1: h=8 mm, Ro=100 mm, ξ=0.05 

 

 

 

 

 

 

 

 

 

 

Figure 3.10. Time response for Model 2: h=8 mm, Ro=100 mm, ξ=0.1 

 

 

 

 

 

 

 

 

 

 

Figure 3.11. Time response for Model 3: h=8 mm, Ro=120 mm, ξ=0.05 
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Figure 3.12. Time response for Model 4: h=8 mm, Ro=120 mm, ξ=0.1 

 

 

 

 

 

 

 

 

 

 

Figure 3.13. Time response for Model 5: h=10 mm, Ro=100 mm, ξ=0.05 

 

 

 

 

 

 

 

 

 

 

Figure 3.14. Time response for Model 6: h=10 mm, Ro=100 mm, ξ=0.1 
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Figure 3.15. Time response for Model 7: h=10mm, Ro=120 mm, ξ=0.05 

 

 

 

 

 

 

 

 

 

 

Figure 3.16. Time response for Model 8: h=10 mm, Ro=120 mm, ξ=0.1 

 

 The time response plots presented in the Figure 3.9 to Figure 3.16 are compared in 

each others, then the increasing and decreasing effects are given in tabular form in Tables 

3.5 to 3.7. 

 

Table 3.5. Comparisons of the model response in the form of )sin()( φω += tUtu  
 

Model compared with Model h u(t) 

1: h=8, Ro=100, ξ=0.05 5: h=10, Ro=100, ξ=0.05 ↑  ↓  

3: h=8, Ro=120, ξ=0.05 7: h=10, Ro=120, ξ=0.05 ↑  ↓  

2: h=8, Ro=100, ξ=0.10 6: h=10, Ro=100, ξ=0.10 ↑  ↓  

4: h=8, Ro=120, ξ=0.10 8: h=10, Ro=120, ξ=0.10 ↑  ↓  
 

2 4 6 8
time HmsL

-0.02

0.02

0.04

0.06

0.08

uHmmL

2 4 6 8
time HmsL

-0.04

-0.02

0.02

0.04

0.06

0.08

uHmmL



 31

Table 3.6. Comparisons of the model response in the form of )sin()( φω += tUtu  
 

Model compared with Model ξ U 

1: h=8, Ro=100, ξ=0.05 2: h=8, Ro=100, ξ=0.10 ↑  ↓  

3: h=8, Ro=120, ξ=0.05 4: h=8, Ro=120, ξ=0.10 ↑  ↓  

5: h=10, Ro=100, ξ=0.05 6: h=10, Ro=100, ξ=0.10 ↑  ↓  

7: h=10, Ro=120, ξ=0.05 8: h=10, Ro=120, ξ=0.10 ↑  ↓  
 

 

Table 3.7. Comparisons of the model response in the form of )sin()( φω += tUtu  
 

Model compared with Model Ro U 

1: h=8, Ro=100, ξ=0.05 3: h=8, Ro=120, ξ=0.05 ↑  ↓  

2: h=8, Ro=100, ξ=0.10 4: h=8, Ro=120, ξ=0.10 ↑  ↓  

5: h=10, Ro=100, ξ=0.05 7: h=10, Ro=120, ξ=0.05 ↑  ↓  

6: h=10, Ro=100, ξ=0.10 8: h=10, Ro=120, ξ=0.10 ↑  ↓  

 
 From Table 3.5, it is clear that when depth of the beam h increases, time response 

function u(t) decreases for a fixed time value. 

 It can be observed from Tables 3.6 and 3.7 that when damping ratio ξ and catenary 

parameter Ro increase, the magnitude U of the response function u(t) is decreased. 
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CHAPTER 4 

 
CONCLUSIONS 

 
Time response of a planar curved beam with variable curvatures under in-plane 

impact load can be analyzed by two numerical methods which are Finite Difference and 

Finite Element Methods when the equation of motion with variable coefficients is not 

solvable exactly as in this study. The variable coefficients in the present equation of 

motion appear since the axis of the curved beam is function of the axial coordinate which 

is curvilinear coordinate system. 

Mathematica for the solution with Finite Difference Method can be used to develop 

a computer program regarding the titled problem. For finite element models and solution 

ANSYS Parametric Design Language can be used effectively. 

 It is found that when catenary parameter Ro increases for all depth of the beam h in 

the range of considered in this study, first and fourth natural frequencies increase. 

However, the tendencies of natural frequencies observed for first and fourth natural 

frequencies reverse for second and third natural frequencies. 

 As related with the time response of the curved beam against to impact load, it is 

found that when depth of the beam h increases, time response function u(t) decreases for a 

fixed time value. Also, when damping ratio ξ and catenary parameter Ro increase, the 

magnitude U of the response function u(t) is decreased. 
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APPENDIX A 
 

CENTRAL DIFFERENCES 

 
Table A.1. Central differences approximations of O(h2) 

 
Term Central Difference Expressions 

ds
dw  h

iwiw
2

)1()1( −−+  

2

2

ds
wd  2

)1()(2)1(
h

iwiwiw −+−+  

3

3

ds
wd  32

)2()1(2)1(2)2(
h

iwiwiwiw −−−++−+  

4

4

ds
wd  4

)2()1(4)(6)1(4)2(
h

iwiwiwiwiw −+−−++−+  

5

5

ds
wd  5

)3()2(4)1(5)1(5)2(4)3(
h

iwiwiwiwiwiw −−−+−−+++−+  

6

6

ds
wd  6

)3()2(6)1(15)(20)1(15)2(6)3(
h

iwiwiwiwiwiwiw −+−−−+−+++−+

 

 


