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On the Splitting Parameter in the Ewald Method
Alp Kustepeli and Anthony Q. Martin

Abstract—An investigation of the Ewald method is presented.
The method involves a splitting parameter that is theoretically an
arbitrary number. An analysis is presented to show why the split-
ting parameter cannot always be treated as arbitrary in calcula-
tions and how this parameter should be chosen for all periodic
spacing of a structure.

Index Terms—Acceleration, periodic structures, planar arrays,
series, waveguides.

I. INTRODUCTION

T HE efficient evaluation of Green’s functions involving
slowly convergent series is an important issue for the

analysis of many structures by integral equation methods. In
waveguide, cavity, or periodic array problems, one may use the
free-space periodic Green’s function (FSPGF) as the kernel of
integral equations. The Ewald method [1] is a powerful means
to efficiently evaluate the FSPGF. In the Ewald method the
FSPGF is expressed as the sum of a “spectral” and a “spatial”
series. The terms of these series possess Gaussian decay and
this leads to a series representation that exhibits a very rapid
convergence rate.

In the evaluation of the FSPGF for two-dimensional (2-D) pe-
riodic arrays with the Ewald method, the spectral and the spatial
series, which are written in terms of the complementary error
function, involve a splitting parameter. In [2] it is stated that

is an arbitrary number and its optimum value, , is given to
balance the convergence rate between these two series thereby
causing the total number of terms needed for the calculation to
be minimized. If is increased beyond then successive
terms in the spatial series decay faster while successive terms in
the spectral series decay slower. In studies involving the Ewald
method [2], [3], the value is generally used to sum the spec-
tral and the spatial series arising in the analysis of structures
having small periodic spacing. Although the splitting parameter
is theoretically arbitrary, we show that one cannot get correct
results even when for structures having large enough
periodic spacing. Therefore the splitting parameter should al-
ways be chosen carefully in calculations. One can also apply the
Ewald method for the calculation of the FSPGF due to three-di-
mensional (3–D) periodic arrays [1]. In [4], for 3-D, a value
of is first determined by examining only the convergence of
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the spatial series and this value is used in the computations. As
stated for 2-D arrays, the choice of this parameter is also very
important in 3-D for balancing the convergence rate in the anal-
ysis of structures with small periodic spacing and for obtaining
correct values in the analysis of structures having large periodic
spacing.

In this letter we present an expression for which can be
used for the calculation of the FSPGF for 3-D periodic arrays
of small periodic spacing. We compare results obtained by the
Ewald method with those obtained by the well-known Shanks’
transform [5] computed by Wynn’s-algorithm [6]. We demon-
strate the importance of the splitting parameter, comment on
how it should be chosen for large spacing, and show the effi-
ciency of the Ewald method with carefully chosen.

II. EWALD METHOD

The FSPGF for 2-D periodic arrays is given by

(1)

where

(2)

with

(3)

The term in (1) represents the distance between the ob-
servation point at and the periodic source points lo-
cated in the plane. The quantities and represent the
periodic spacing of the structure in theand directions, re-
spectively. For 3-D the FSPGF is given by

(4)

where

(5)

When employing the Ewald method for the evaluation of (1),
the Green’s function is expressed as a sum of two series such
that

(6)

In (6), and utilize the complementary error function,
erfc . By virtue of the presence of the complementary error
function in these series, a very rapid convergence rate, resulting
from the Gaussian decay found in the terms of the series, is
achieved. Since Gaussian decay is involved in each series, the

1051–8207/00$10.00 © 2000 IEEE



KUSTEPELI AND MARTIN: SPLITTING PARAMETER IN THE EWALD METHOD 169

value of the summation is generally obtained in a very small
number of terms if is properly chosen. The spectral series
is given by

erfc

erfc (7)

where

(8)

The spatial series is given by

Re erfc (9)

For 3-D the Green’s function in (4) is also expressed as a sum
of two series as given in (6). In this case the spectral series
is written as

(10)

where

(11)

and the spatial series is written as

Re erfc (12)

.
The optimum splitting parameter , used for the compu-

tation of (7) and (9), is given in [2] as

(13)

TABLE I
Log OF RELATIVE DIFFERENCE

BETWEEN THERESULTS OBTAINED BY THE EWALD METHOD AND THE

SHANKS’ TRANSFORM FORG OF (1) FOR VARIOUS VALUES OFE

TABLE II
Log OF RELATIVE DIFFERENCEBETWEEN THERESULTSOBTAINED BY

THE EWALD MEHOD AND THE SHANKS’ TRANSFORM FORG OF (4) FOR

VARIOUS VALUES OFE

This parameter appears incorrectly in [2] because of a mis-
print. In some papers dealing with the Ewald method [7]–[9],
the given in [2] is used. In [10], the value of used is not
given. Since there appears to not be an expression for the op-
timum parameter available in the literature for 3-D arrays, we
present the expression

(14)

which is used to balance the convergence rate between the two
series in (10) and (12) for small periodic spacing. The derivation
of (14) is given in [11].

III. RESULTS

Tables I and II present the of the relative difference be-
tween the numerical results obtained by the application of the
Shanks’ transform and the Ewald method, for various values of

, for the computation of the series given in (1) and (4), respec-
tively. All calculations were performed using single precision
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arithmetic in FORTRAN 77 on a DEC ALPHA processor. In the
tables, the quantities in the parenthesis are the number of terms
required in the summation of the spectral and the spatial series
to achieve a relative change in the partial sums of less than.
Also, the complex error function needed in each series was com-
puted using the algorithms given in [12] and [13]. Inspection of
data in both tables reveals that values ofequal to or less than

do not work once the periodic spacing gets large. One can
remedy this problem by increasinga sufficient amount, which
depends on the spacing, beyond the value of . This increase
in causes the number of terms needed to sum the spectral
series to increase and the number of terms needed to sum the
spatial series to decrease. Even though the convergence rates of
the two series are unbalanced as a result of increasing, the
total number of terms needed in the Ewald method is still much,
much smaller than that needed by the Shanks’ transform. For ex-
ample, in the calculation of the series (1) for a periodic spacing
of the Shanks’ transform, with a convergence factor
of [5], needs 19 321 terms. This number is very
large compared to the 98 terms needed in the Ewald method
with (see Table I). One notes from the data in
the tables that fails to be sufficient when the periodic
spacing is large enough that the two series exhibit an unequal
convergence rate.

The reasons why less than or equal to does not work
for larger periodic spacing can be explained as follows. For
large argument the complementary error function behaves as

and this is the reason for using this method for the
calculation of the FSPGF. For large periodic spacing given
by (13) and/or (14) becomes small and the imaginary part of the
argument of erfc becomes large and dominant for the first
several terms of the series. As a consequence, erfcbecomes
very large and therefore one gets very large numbers for the first
several terms of these series. Similar comments can be made
for the series of (10) that includes the Gaussian function di-
rectly. Gaussian decay is again achieved for terms with large
indices and the two series and converge to very large
nearly- equal-in-magnitude numbers of opposite sign. Since the
values of the spectral and the spatial sums are very, very large
but have opposite sign, one suffers severe accuracy loss upon
adding the sums of the two series due to finite precision. The
result is the apparent convergence to incorrect values as demon-
strated in Tables I and II. By increasing beyond , one
obtains small values for the imaginary part of the argument of
the complementary error function and small positive values for

in (10) for the first several terms of the series. As
a result, one avoids the loss of accuracy resulting from adding
numbers that are of nearly equal magnitude but of opposite sign
and a correct sum is obtained for.

By examining the data in the tables, one can see the effects
of the periodic spacing on the results obtained by the use of
the Ewald method. The importance of adjustingso that the
method may be applied for large structure periodicity becomes

apparent if one chooses to use this method for acceleration (1)
of (4) in waveguide and cavity problems. By the application
of the image theory to get a periodic array of cells, one may
have relatively large structure periodicity and by not using a
suitable value for the splitting parameter, incorrect results
may be obtained. Therefore, in general, an arbitrary value for
the splitting parameter should not be used in the Ewald method
and for some array spacing the optimal value is not suitable. One
can detect situations where is not suitable by looking
for an imbalance in the convergence rates of the spectral and
spatial series.

IV. CONCLUSIONS

This letter has demonstrated how the periodicity of a struc-
ture affects the results obtained by computations with the Ewald
method. Also, the importance of carefully selecting the value of
the splitting parameter is shown. We presented an expression
for optimum splitting parameter for the 3-D free-space periodic
Green’s function and we also illustrated the correct usage of the
Ewald method for problems having large periodic spacing.
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