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Abstract. A theory of wave propagation in fractured porous media is presented based on the double- 
porosity concept. The macroscopic constitutive relations and mass and momentum balance equations 
are obtained by volume averaging the microscale balance and constitutive equations and assuming 
small deformations. In microscale, the grains are assumed to be linearly elastic and the fluids are 
Newtonian. Momentum transfer terms are expressed in terms of intrinsic and relative permeabilifies 
assuming the validity of Darcy's law in fractured porous media. The macroscopic constitutive relations 
of elastic porous media saturated by one or two fluids and saturated fractured porous media can be 
obtained from the constitutive relations developed in the paper. In the simplest case, the final set of 
governing equations reduce to Biot's equations containing the same parameters as of Biot and Willis. 
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1. Introduction 

Although wave propagation in porous media has been studied for quite some time, 
Biot's (1956a,b) work appears to be the first one employing the fundamentals of 
transport phenomena in porous media. Biot's theory is an extension of a consoli- 
daion theory developed earlier (Blot, 1941). It is still well accepted and forms a 
basis for wave propagation in porous media. The theory predicts an additional com- 
pressional wave which was first confirmed experimentally by Plona (1980) (also 
see Berryman, 1980). Because of its highly dissipative behavior, this wave is very 
difficult to observe but contributes the energy losses which effect the characteristics 
of other types of body waves. The physical interpretations of the elastic constants 
in Biot's theory are given by Biot and Willis (1957). Fatt (1959) calculated Biot's 
constants for sandstone. The elastic coefficients were also studied by Geertsma 
and Smith (1961) and Pride et al. (1992). We refer to Corapcioglu (1991) for an 
extensive review of Biot's theory. 

The single-porosity models are shown to be fairly successful to describe the 
behavior of porous materials. However, they are not suitable for fractured (or 
fissured) porous materials (Figure 1). In such systems, although most of the fluid 
mass is stored in the pores, the fracture permeability is much higher than the 
permeability of the pores. This leads to two distinct pressure fields: one in the 
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Figure 1. Conceptual model of a fractured porous medium 

fractures and the other in the pores. Barenblatt et  al. (1960) appear to be the 
first researchers proposing a double-porosity model to repesent naturally fractured 
porous media. A double-porosity model can be considered as a three phase system, 
i.e., solid phase, fluid phase in the pores and fluid phase in the fractures, with fluid 
mass exchange between the pores and fractures. 

Although flow in fractured porous media has been studied extensively (Baren- 
blatt et  al., 1960; Barenblatt, 1963; Warren and Root, 1963; Kazemi, 1969; Shapiro, 
1987; Douglas and Arbogast, 1990; Bear and Berkowitz, 1987; Torsaeter et  al., 
1987), there is limited work in deformable fractured porous media. Duguid and 
Lee (1977) considered incompressible solid grains and used double-porosity con- 
cept in the formulation. They simplified the governing equations by neglecting 
solid displacement from the flow equations and used the finite element method 
for numerical analysis. Aifantis and his co-workers published a series of papers 
on consolidation of saturated fractured porous media (Wilson and Aifantis, 1982; 
Beskos and Aifantis, 1986; Khaled et  al. 1984). The final set of equations is a direct 
generalization of Biot's consolidation theory. The phenomenological coefficients 
of the theory were expressed in terms of measurable quantities by Wilson and 
Aifantis (1982). Uniqueness and some general solutions were presented by Beskos 
and Aifantis (1986). Khaled et  al. (1984) employed the finite element method to 
solve the governing equations for some practical problems. They reduced the num- 
ber of coefficients from fifteen to nine by simply 'physically motivated arguments'. 
Wilson and Aifantis (1984) extended Aifantis' work and studied wave propagation 
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in saturated fractured porous media without detailed derivations. Their analysis 
showed three compressional waves. Similar results were obtained by Beskos who 
published a series of papers on the dynamics of fissured rocks (Beskos, 1989; 
Beskos et al. 1989a; Beskos et al., 1989b). Beskos (1989) assumed that the medi- 
um is linearly elastic. However, the effect of the fluid pressure on the deformation 
of matrix was not considered. Beskos connected this to the definition of partial 
stresses. But when we assume that there is no relative movement between solid 
and fluid phases, Beskos' equation for the deformation of solid phase uncouples 
from fluid pressures. Bear and Berkowitz (1987) suggested a set of constitutive 
relations to model quasistatic behavior of fractured porous media. They assumed 
that the changes in the volume fraction of pores and fractures are linear functions 
of incremental pressures. 

As noted earlier, flow in fractured porous media has been studied extensively by 
a number of researchers and formulated starting from the mass balance equations of 
the individual phases. Since generally the solid matrix was assumed to be rigid, the 
mass balance equations were stated for two phases, i.e., fluid in the fractures and 
fluid in the pores by employing the dual-porosity idealization. In flow problems, the 
inertial effects were neglected by assuming slow phenomena. The assumptions of 
rigid solid matrix and incompressible fluids simplify the macroscopic momentum 
balance equations considerably (Bear and Berkowitz, 1987). In this study, we will 
obtain macroscopic mass and momentum balance equations with compressible 
solid grains, solid matrix and fluid phase. Furthermore, we will incorporate the 
inertial effects in the formulation. Since dual-porosity approach is an accepted 
technique to express entity balance equations in fractured porous media, the same 
idealization can be used to study the wave propagation problems. Consequently, 
the resulting equations are obtained from the momentum balance equations. 

In this study, we use the volume averaging technique to investigate the wave 
propagation in fractured porous media saturated by two immiscible fluids based 
on the double-porosity approach. Mass and momentum balance equations as well 
as the constitutive relations are obtained by volume averaging the equations and 
relations expressed at the microscopic scale. The volume averaging technique has 
been employed after the development of the theorem for volume average of a 
gradient (Slattery, 1967; Anderson and Jackson, 1967; Marle, 1967; Whitaker, 
1967). We refer to Bear and Bachmat (1984) for an overview of the volume 
averaging technique. De la Cruz and Spanos (1985) made an attempt to formulate 
the constitutive relations and balance equations of wave propagation in saturated 
porous media. In a subsequent paper, de la Cruz and Spanos (1989) extended their 
theory to include the thermodynamic considerations. Pride et al. (1992) obtained 
Biot's (1941, 1956a,b) equations for saturated porous media by employing the 
volume averaging technique. The resulting constitutive relations of Pride et al. 
(1992) contained the same parameters as of Biot and Willis (1957). 

The paper starts with a brief review of volume averaging theorems. The macro- 
scale mass and momentum balance equations and constitutive relations are obtained 



240 KAGAN TUNCAY AND M. YAVUZ CORAPCIOGLU 

by volume averaging the corresponding micro-scale equations. In the micro-scale, 
the grains are assumed to be linearly elastic and the fluids are Newtonian. The coef- 
ficients of macroscopic constitutive relations are expressed in terms of measurable 
quantities in a novel way. When the volume fraction of fractures vanishes, these 
constitutive relations reduce to those given by Tuncay and Corapcioglu (1996) for 
porous media saturated by two immiscible Newtonian fluids. Momentum transfer 
terms are formulated in terms of intrinsic and relative permeabilities assuming the 
validity of Darcy's law in fractured porous media. 

2. Volume Averaging Theorems 

A fractured porous medium is composed of two subsystems: an interconnected 
network of fractures and porous blocks. In such a medium, there are four different 
scales, i.e., pore, fracture, averaging volume and macroscopic scales. The pore 
scale is the pore opening of nonfractured solid matrix. Fractures are assumed to 
have openings greater than the pore scale. In their literature survey, Wilson and 
Aifantis (1982) reported fracture openings varying from 0.0025 to 0.75 cm which 
justifies this assumption. The scale associated with the fractures is the spacing 
between two fractures. Fracture spacings range from a couple of centimeters to the 
order of meters (Wilson and Aifantis, 1982). The averaging volume should be large 
enough to consider both porous blocks and fractures. Hence, the averaging volume 
scale in double-porosity approach is much greater than the scale in single-porosity 
approach. Since the characteristic length of a wave propagation problem is the 
wavelength, double-porosity approach restricts our study to low frequency wave 
propagation. We continue with the definitions used in volume averaging literature. 
Let Bi be a field quantity of phase i, then volume average of Bi is defined as 

1 /R Bi dV, 
= f , 

(1) 

where V is the averaging volume, R~ is the region occupied by phase i. The intrinsic 
volume average of Bi, i.e., the mean volume of Bi in Ri, is given by 

-- 1 /R Bi dV, 
B i =  ~i i (2) 

where t~ is the volume of phase i in the averaging volume. These two averages are 
related by 

(Bi) = cqB~, (3) 

where c~i is the volume fraction of phase i. Now, we set the volume average theorem 
for a gradient and a time derivative (Slattery, 1967, 1981) 

1 Is  BinidA, i # j , j =  1 , . . . , N ,  (vB ) : V(B ) + P (4) 
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( ~ } _ _  O(Bi) 1 ~ B i u . n i d Z ,  i # j , j = l , . . . , N ,  (5) 
Ot V ~ 

where SiN is the interface between phase i and phase j ,  ni is the outward normal of 
SiN and u �9 ni is the speed of displacement of S/N into other phases. The theorem 
of volume average of a divergence is stated as 

1 
f s  B i . n i d A ,  i # j , j =  1 , . . . , N .  (6) ( v .  Bd : v .  (Bd + V ,j 

If B~ is taken to be a constant, Equations (4) and (5) take the following forms 

1 
ffs ni dA, i # j, j = 1, . . . , N, (7) 

Oai= 
+ l  f u . n i d A ,  i r j , j  = 1 , . . . , N .  (8) 

Ot v JS~ 

3. Microscopic Constitutive Relations, and Mass and 
Momentmn Balance Equations 

In this study, the compressible porous medium consists of compressible solid 
grains, and two immiscible Newtonian fluids. The porous medium is assumed to 
have fractures which are referred as secondary pores. The pores in the nonfractured 
part of the porous medium are referred as primary pores. The secondary pores 
are assumed to be saturated by the wetting fluid, whereas the primary pores are 
assumed to be saturated by the wetting and nonwetting fluids. Therefore, there 
are four phases in the system: solid phase, wetting fluid phase in the secondary 
pores, wetting and nonwetting fluid phases in the primary pores. The solid phase 
is assumed to be initially at rest, linearly elastic, isotropic, and experiencing small 
deformations. Then the microscopic constitutive relations are given by 

Ts = I sv.. 1+ c s  + ( v . J  - u l), (9) 

where us, %, K~, G~, I are the displacement, incremental stress tensor, bulk mod- 
ulus, shear modulus of the solid phase, and the unit tensor, respectively. The 
superscript T denotes the transpose of a tensor. We assume that both fluid phases 
are Newtonian with microscopic constitutive relations 

Ti = PiI + #i (Vui + (Vui) T - 2 V . u i I )  , i =  1,2, f ,  (10) 

where ui, vi, Pi and #i are the velocity, incremental stress tensor, incremental pore 
fluid pressure, and shear viscosity of fluid phase i, respectively. From now on, 
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subscripts 1, 2 and f will refer to the nonwetting fluid phase in the primary pores, 
wetting fluid phase in the primary pores, and fluid phase in the secondary pores 
(fractures). In Equation (10), the bulk viscosity of fluids is assumed to be negligible. 
The state equation of fluid phases is assumed to be in the form of 

1 dP* 1 dpi 

K i  dt Pi dt 
i =  1,2, f ,  (11) 

where Ki  is the bulk modulus, pi is the mass density of phase i and P* is the 
pressure of  phase i. We should note that the material properties of  fluid phase 2 
and fluid phase f are identical, i.e., K2 = K f , # 2  = # f  and P2 = Pf. The mass 
balance equations are expressed as 

1 dpi _ - V . u i ,  i = 1,2, f .  (12) 
Pi dt 

By combining Equations (11) and (12), we obtain 

1 dP* _ _ V . u i ,  i =  1,2, f. (13) 
Ki dt 

The pressure increment t9i can be written as 

- P i  = K i V . u i ,  i = 1,2, f ,  (14) 

where ui is the displacement of the fluid phase i from a reference position, i.e., 
incremental displacement. We continue with the microscopic momentum balance 
equation in terms of  incremental stresses and velocities 

Ouj j = s, 1,2, f .  (15) 
V .  rj = pj Ot ' 

We neglect the convective acceleration since the displacements are assumed to 
be small. We note that the body forces do not appear in Equations (15) because 
equations are expressed in terms of incremental stresses. The boundary conditions 
at the solid-fluid interfaces are expressed as 

u~ = u i  and " r ~ . n ~ + ' c i . n i = O  on S~i, i =  1,2, f ,  (16) 

where the subscript (si) denotes the interface between the solid phase and fluid 
phase i and nj is the unit outward vector normal to the interface. The boundary 
conditions at the fluid-fluid interfaces are (Slattery, 1981) 

ul = u2 and 7i - nl + T2 �9 n2 = VeT - 2 H T n ,  on $12, (17) 

Y2 = u] and r 2 . n 2  + ry "n f  = O, on S2I, (18) 
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where V,,, 7, H are the surface gradient operator, interracial tension, and mean 
curvature of the interface, respectively. The terms on the right-hand side of Equation 
(17) may be interpreted as the rate of momentum production per unit area of 
the phase interface. The first term on right-hand side incorporates the position 
dependency of surface tension upon the interface. Therefore the surface gradient 
operator incorporates the spatial variation of the surface tension along the phase 
interface. 

4. Macroscopic Mass Balance Equations 

Employing the averaging theorems (Equations (4)-(6)), the volume average of 
Equation (12) is obtained as 

O(pj____)) + V.(-fij@j) + A) = V p j (u -  ~,j).njdA, 

j ~ i , i= s,l,2, f, (19) 

where 

A = ( p y j )  - (20)  

For slightly compressible materials A can be neglected. The right-hand side of 
Equation (19) corresponds to the mass transfer between the phases. The only mass 
exchange allowed is between the fluid phase in the fractures and the wetting fluid 
phase in the primary pores. This is usually approximated by (Barenblatt et al., 
1960; Bear and Berkowitz, 1987; Beskos, 1989). 

1 f& p2(u_ze2).n2dA 1 Js p2 (u -y f ) . nydA  

= Rp2(Pf - P2), (21) 

where R is a material property of the porous medium and the wetting fluid, P2 and 
Pf are the pressures in fluid phase 2 and phase f ,  respectively. Barenblatt et al. 
(1960) proposed R as 

R -  cKfA2 (22) 
#2 

where A is the area of fracture-block contact per unit volume, c denotes a dimen- 
sionless shape factor of the fractured medium, and K] is the intrinsic permeability 
of the fractures. 
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5. Macroscopic Constitutive Relations 

Our next step is to obtain macroscopic constitutive relations by averaging the 
microscopic relations over a representative elementary volume (Bear, 1972). Vol- 
ume averaging of Equation (9) yields 

r ~ d V = K ,  V . ( a , g , ) + 7 7  u , . n d A  I+ 

+ V ,  " V ( ~ , g ~ ) + ( V ( ~ , g , ) ) T - Z v . ( c t , g , ) I + K , i ) ,  i= 1,2, f ,  (23) 

where 

K,, = V (u~ns + n,u, - ~(us .n,)I)  dA, i= 1,2, f .  (24) 
si 

is a second-order tensor with zero trace. Since there is no mass exchange between 
the solid phase and fluid phases, the velocity of the interface is equal to the velocity 
of a point at the interface, i.e., material surface. Hence, by employing Equation (8), 
the integral in Equation (23) can be expressed as 

- -  u ~ - n ,  d A = ( o ~ , - s  ~  i =  1,2, f ,  (25) 
V ,i 

where the superscript (0) refers to the reference configuration. Since the displace- 
ments are assumed to be small, by definition gj  .V~j ~ 0. Then volume averaged 
constitutive relations for the solid phase can be expressed as 

~ = G ( ~ V . ~  + / X ~ ) I  + G ( ~ W ~  + ~ ( W  S - 

-~cesV.g~I+ IGi), i = 1 , 2 , / ,  (26) 

where ~-~ is the intrinsic averaged incremental stress of the solid phase. Similarly, 
the volume averaged constitutive relations for nonwetting fluid phase are 

oel~l = Kl(~ V" U'I q- Aoq)I  + ]~I(O~IV~I q- O q ( V ~ l )  T -- 

--20~1V " V I / +  Jli), i = G2,  f ,  (27) 

where 

1 
Is  (uini + niui - 2u~ . niI)da. (28) 

= V ,j 

Since there is mass transfer between the primary pores and secondary pores, by 
employing Equation (8), we write 

1 JS2j 1 JS (Ud- U2)'n2 dA = A ~ 2 -  M, (29) U2" n2 dA = A~2 - ~ z, ~ 
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1 u f . n f d A = A a f  V I2 V j, - ( U d - U f ) . n i d A = A c e  I + M ,  (30) 

where ud is the displacement of the interface. Comparison of Equations (29), (30) 
and (21), for slightly compressible fluids experiencing small deformations, yields 

OM 
Ot = R ( P f  - P2). (31) 

We note that p2OM/Ot is equal to the mass transfer rate of wetting fluid phase 
between the primary pores and fractures. Then the volume averaged macroscopic 
constitutive relations of phase 2 and phase f become 

OZ2T2 = K2(~ " u'2 -1- A~ - M ) I  + #2(og2VF2 --}- 0~2(V~2) T - 

-32-&2V- ~21 + J2i),  i = s , l , f ,  (32) 

c~fv s = K2(cuV �9 ~y + Ac U - M ) I  + #2(cuVF f + c u ( V F f )  T - 

- 2 c u V . F f I + J f i ) ,  i = s ,  1,2. (33) 

Under the small deformations assumption, the interfaces of the phases are not 
allowed to experience large deformations. If we assume Oui/Ot >> ui �9 Vui ,  then 
dij = OKij/Ot. K 0 and Jij couple the shear deformation of the phases. In almost 
all studies associated with the deformation of the solid matrix, these coupling terms 
are neglected assuming that all shear resistance is provided by the matrix only. 

The microscopic boundary condition at the fluid-fluid interface (Equation (17)) 
shows that there is a jump in the stresses of the immiscible fluids because of the 
presence of interfacial tension and curvature of the interface. Assuming smooth 
pressure variations within the averaging volume, we can write 

P 1  - P ;  = /~  (34) 

where T~ and P=~ are the intrinsic averaged pressures. Pcap also known as capillary 
pressure is assumed to be a function of S1 (saturation of the non-wetting phase) 
only. We recall that phases 1 and 2 are the nonwetting and wetting fluid phases, 
respectively. S1 is related to the volume fractions by 

S i -  c~i , i =  1,2. (35) 
1 - o e ,  - ~ f  

Then S1 + $2 = 1. Note that the fluid pressures we work with are the incremental 
pressures. Then, as a first-order approximation we can write 

dPcap AS1 = PcapAS1 (36) P1 - P2 = d& 
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provided that change in saturation AS1 is small. 
Deformation of a porous medium can be investigated by independently consid- 

ering the volume change behavior (nonzero trace) and shear deformation behavior 
(zero trace). In the following, we first consider the part of constitutive relations 
associated with the volume changes. After examining the shear deformations, we 
combine these two to finalize the macroscopic constitutive relations. 

To explore the constitutive relations associated with the volume changes, we 
start by introducing Pj  as the average trace of the volume averaged stress tensor 
of phase j 

-ajP--d = �89 I(d(c~jV.g j + Aozj), j =  s,1, (37) 

-c~2ff2 = ltr(c~2V2) = Kz(~ jV "u2 + Ac~2- M),  (38) 

-~f- f f  r = �89  Is f q- AO~ s q- M). (39) 

Equations (37)-(39) do not contain any rotational deformations. 
In the following, we derive an expression for the dilatation V �9 g~ for saturat- 

ed fractured porous media by superposing three cases (Tuncay and Corapcioglu, 
1995). We analyze three different stress state conditions individually. In each of 
these cases, we obtain an expression for the dilatation of the solid matrix V �9 G 
by introducing macroscopic material coefficients when necessary. Then we will 
superpose these expressions to obtain a relation for V �9 G when P~, P f  and Pp 
are simultaneously present. P f  and Pp are intrinsic averaged pressures in the frac- 
tures and in the pores, respectively. Superposition is justified by the linearity of the 
system. 

In the first case, we consider a drained porous medium, i.e., P f  = Pp = O. 
Introducing the drained bulk modulus of the fractured porous medium Kfr, we 
write 

- a ~ P ~  = Kf rV 'g~  (40) 

By substituting Equation (40) in (37), we obtain 

Ao~s = -- ozs c~s P's. 
K f r  

(41) 

Kfr can be evaluated experimentally by testing a drained fractured porous sample. 
In the second case, we consider a stress state where P~ = P I  = Pp. This 

case corresponds to a fractured porous medium immersed in a fluid subjected to 
external pressure. Because of the homogeneity and isotropy of the medium, all 
volume fractions remain constant and Equation (37) yields 

w 

- P s  = K s V  . gs. (42) 
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In the third case which is a thought experiment, we assume that the volume 
fraction change of the fractures is zero and, furthermore, Pv = 0. As in the second 
case, the fractured porous sample is immersed in a fluid. The pressure in the 
fractures P f  is equal to the applied pressure. Then P~ is 

P:< = c~ffs + c u f f  s or ~ _ 1 - o e ~ ~ ] .  (43) 
OL s 

Introducing K ~  as the drained bulk modulus of the nonfractured porous matrix, 
we write 

m m -c~,P~ = Kfr V �9 g~. (44) 

Experimentally K ~  can be determined by extracting a nonfractured sample from 
the fractured porous medium. The third case will be discussed in more details after 
the superposition of three cases. The volume fraction change of the solid phase can 
be solved from Equations (37) and (44) as 

g (45) 

The stress states can be summarized as 
I _ _  I 

Case 1 �9 P , = PcI , Pp = O, P f = O, 

Case 2" P~ = Pc2, P ;  = Pc2, P y  = Pc2, 

C a s e  3 �9 P~ - - - P c 3 ,  Pp = O, P y = Pc3, 
OZ s 

(46) 

where subscripts 1, 2 and 3 refer to cases 1, 2 and 3, respectively, Since we seek 
expressions when P~, Pp and P y  are simultaneously present in the system, Pc1, P~2 
and P~3 must satisfy 

1 --  oz] 
Pcl + Pc2 + Pc3 = Ps ,  

O~ s 

_ _  b 

Pc2 = Pv ,  Pc3 + P~2 = P f .  (47) 

Solution of Equations (47) for P c l ,  Pc2  and Pc3 yields 

- -  - -  1 - c U 
PcI  + Ps  - Pp (Py -- Pp) ,  Pc2 = Pp,  

OZ s 

/:'ca = Pf  - Pp. (48) 

i I 

In the third case, we observe that Pc 3  = P f  - Pp. Hence, case 3 corresponds to 
the dilatation of the fractured solid matrix due to the pressure difference between 



248 KAGAN TUNCAY AND M. YAVUZ CORAPCIOGLU 

the pores and fractures. In other words, there are three components of the matrix 
dilatation associated with three bulk moduli, Ks, Ker, K~r. 

The dilatation of the fractured solid matrix is obtained by superposing Equations 
(40), (42) and (44) and substituting the expressions for P ,  (Equations (46)) as 

V .  gs (49) 
Kfr Ks  K ~  o~ s 

Substitution of Equation (48) in (49) yields 

v . ~ -  ~ ~ - ~  ~2 

Pp 1 - _~S (Ps - Pp). (50) 
Ks K ~  

Similarly, A a ,  is obtained from Equations (41) and (45) as 

( ~  ~ ( T , - p  v 1 - - ~  
A'~ = - E ~ 1  ,~ 

( ~  2 )  1 -oz f  
~" ~* (Fs - Fp) .  (51) 

Kf7 ~ ,  

We assume that in case of two fluids in the primary pores Pp is given by 

Pp = S1P1 + (1 - S1)P2. (52) 

We note that, among the cases mentioned above, the volume fraction of fractures 
changes only in case 1. Since the sum of changes in volume fractions is zero, i.e., 
AOZ s + AOZ 1 -+- Ao~ 2 q- Aoz] = 0, from Equations (51) and (52), we can write the 
following equation for case 1 

Aozf --1- AOZ 1 n t- AOZ 2 

(OZs ~2'~ ( P s - S 1 P 1 -  ( 1 -  S 1 ) P 2  - 
= - t , ~  = ~ K~r] 

1 - o~ s ( F  s _ & F ~  - (1 - & ) F 2 ) ) .  (53 )  
~s 

We propose the following expression for the change in volume fraction of fractures 

(O~s O~2 ~ ( p s _  S1Pl _ ( 1 _  S1)p 2 _ 
~'~s = F K~ Kfr/ 

1 -- O~f (-~f _ S I ~ I  _ (1 - $1)T2)) , 
O~ s 

(54) 
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where F is a material property of the fractured porous medium. When a drained 
fractured porous medium is subjected to external loads, both the volume fraction of 
fractures and primary pores change. Since the sum of changes in volume fractions 
is zero, a fraction of Aof, should be equal and opposite to sign to Aofy. If the 
bulk modulus of the porous blocks Kf~ is much greater then the bulk modulus of 
the fractured medium Kfr, i.e., K ~  >> Kfr, the volume of porous blocks does not 
change and F approaches unity. We can express the changes in volume fraction of 
phases 1 and 2 as 

Aof 1 = ( 1 -  Of~ - o~})AS 1 - S~ + z~o~f)- 
- A S l ( A o f ,  + a a ~ )  (55) 

(1 - Of~ - Ofs)~x& - Sl(/Xof~ + ~xofs), 

o @ ) A S l  - (1 - S~  + Aoff)-t- Aof2 = - ( 1  - Ofs - 

+ASl(Aofs  + Aofs) (56) 

- ( 1 -  a~ - O f / ) A S l -  (1 - Sl)(Z~ofs + Aoff). 

AS1, Aofs, and A a :  can be eliminated from Equations (37)-(39) by using Equa- 
tions (36), (50) and (54) to obtain 

-ofsrs = a l lV  "~-s~- al2V "Ul + a13 ~7"u'2 -[- a14 ~r '~ ' f  -~- 

+ (a14 a13 / M, (57) 
\ Off Of 2 f 

-of lP1 = a21V �9 gs -I- a22V �9 Ul + a23V �9 u2 q- a24V �9 u ]  + 

+ ( a 2 4  a231M ' 
\ Off Of 2 f 

(5s) 

m 

-of2P2 a31V �9 ~s + a32V �9 Ul + a33V �9 u2 + a34V �9 u f  + 

+(a 4 a 3/. ' 
Of: Of2 / 

(59) 

- o f f P f  = a 4 1 V ' U s + a 4 2 V ' U l  + a 4 3 V ' u 2 + a 4 4 V ' u f  + 

+(a,4 
\ aS Of2 / 

(60) 
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The  constants  are given by  

a l i A 3  = [asay (a  p + E1Kfr )  -- OepE3K2(1 + E2Kfr)  -- 

- E 1 E 3 K f r K 2 ( 1  - a f )]( A l a s K f r I ( s )  - 

- -  O ~ ] ) _ / [ 2 S  1 - -  - { a f a p a s A 2  -}- a p E 3 [ - ( 1  ~'2 

- - P ' a p & ( 1  -- & ) ( K 2 ( 1  - ~ S & )  + ~ s & K 1 )  - 

- - / (1 / s  -- o01(1 -- O~f))]}(Is 
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(61) 

a12A3 = [OesO~I(O~p -k E1Kfr )  - O~pE3I(2(1 + E 2 I ( f r )  - 

-E1E3I ( f r [ (2 (1  - o~f)][K 2 q- PclapS1 (1 -- S1 ) ] (a lKsK1) ,  (62) 

a13A3 = [OesOef(O~p q- E1Kfr )  - O:pE31(2(1 + E 2 K f r )  - 

-E1E3t(frI(2(1 - o~f)][K2 q- PctapSl(1 - r (63) 

a14A3 = -{[-ozsO~p(af  -t- E2Kfr )A2  -t- [~p q- K f r ( E l ( 1  - a f )  + 

+ C~p E2)] [I(3A 1 } ( a f I ( s t ( 2 ) ,  (64) 

a21A3 [--ozfoG q- E3 / (2 (1  -t- E2Kfr)](oqo~sKsK1) • 

X[1r + PctapSl(1 - Sl ) ]  q- 

q-( oz fas  -- o~] E 3 K s  - E3K2 if  a fE3K2) (oqKf rK1)  x 

x [ K 2  "1- ectapSl(1 -- S l ) ] ,  (65) 

a22A3 -KsS l (Oe  yCepCes - apE3K2(1  + E2Kfr ) )  • 

• -t- Pclap(1 - Sl)]OZlIs - K'2PclapSl( 1 -- S l )  2 X 

x[-o~so~(% + F1Kf~) + %E3K2(1 + E2Kfr) + 

q-E1E3t(fr(  K2(1 - o~ f ) -1- Kso~ / )]( oq K1) ,  (66) 
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a23A3 = {[o~pE3K2(1 + C2Kfr) - o~do~s(o~ p + E1Kfr) + 

+ E1E3Kfr( K2(1 - a y ) + o~ f l G  )][P~capSl (1 - S1)] + 

+Ks[-o~poqfo~ + a p E 3 K 2 ( l  + E2Kfr)]} X 

X(c~p[(lI(2(1 - S1)S1) (67) 

a24A3 = (-(xfcxs - a~E2Krr + E3Ks  q- E2E3KfrKs)  x 

X[I(  2 q- PctapSl(l - Sl)](o~f~lIl'lIC2) , (68) 

a31A3 = (-O~sO~f q- E3K2(1 q- E2t(fr))[K1 q- -PctapSl(l - S,)] x 

x(o~soe2KsK2) + (o~fO~s - o~yE3Ks - E3K2 + ovE3K2 ) • 

Z [./i" 1 q- pctapSl(1 - Sl)](o~2/(frK2), (69) 

a32A3 = {[O~sE31(2(1 q- C2/(fr) - o~fO~s(O~p q- Ell '(fr) q- 

q-E1E31(fr(1(2(1 - o~ f ) q- o~ f t(s)][PtcapSl(1 - Sl)] q- 

+ ICs[-O~pO~ fOls q- 0~pE3t(2(1 -}- E2I(fr)]} z 

X(O~pKlli'2(1 -- Sl )S l ) ,  (70) 

a33A3 = - K s ( 1  - S,)(o~fcepO~s - o~pE3/(2(1 + E2/(fr))  x 

x (K1  + PctapS1)oqK1 ! 2 --/-(1Pcap,.-q'l (1 - S1) • 

• [-0~i0~(0~ p + E~Kf~) + ~pE3.u + E2~fr) + 

+El E3KfdK2(1 - or) + K~,~j)] (,~dC2), (71) 

a34A3 = ( - o L s o z f  - c~sE2Kfr + E3Ks + E2E3KfrKs)  X 

x[tcl + G p S 1 ( a -  s,)](~2~fK~2), (72) 
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a41 A3 = - (E l  E3AlasO~y KfrKsK2) - ( - E 3 K s A 2  + E3A1) • 

• (aj,  ozpKfrK2), 

a42A3 = -E1E3~fCelKfrKsK1K2[K2 + Pc/apSl(1 - -  S 1 ) ] ,  

a43A3 = -E1E3cefce2KfrK, K2[K1 + PcrapSl(1 - o~ 

(73) 

(74) 

(75) 

a44A3 = -[ (  E1E3KfrKs - Olpas - o~sE1Kfr)ozd A1 + 

+o~ ]OZptxsKsA2]( oz y K2 ), 

where 

C~p = 1 - c~s - c~], 

~- I 2 K2 Pclap S1 ( 1 S1 ) 2  A1 = KIK2  +/~lPcapSl(1 - -  o01) + 

A2 = KI (1  - -  ,5'1) + K2S1 + PclapSl(1 - S1), 

(76) 

(77) 

(78) 

(79) 

A 3 = [oefc~s(c~p + E1Kfr) - o~pE3K2(1 + E2Kfr) - 

-KfrE1E3( K2(1 - oz f ) + off Ks)]A1 + 

q-[--OgpOg fO~s -I- CepE3K2(1 + E2Kfr)]KsA2 (8o) 

1 1 - ~ f  
E1 - - - ,  (81) 

Ks K ~  

E 2 -  1 - c ~ f  1 (82) 
K ~  Kfr '  

E 3 : r Kss t ( f r ] "  
(83) 

As noted earlier, we assume that all shear resistance of  the porous medium is 
provided by the solid matrix only. Then, we can write 

OLsT? + O~I~D1 -t- 0~1 ~D -Jr- O~f'Tlf ~'~ Gfr (~7"~s -Jr- (~7~s)T -- 2V  "-Us[) , (84) 
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where ~D is the deviatoric stress of phase j and Gfr is the shear modulus of the solid 
matrix. In other words, the fluids are viscous but the mechanical shear response 
of the solid medium is provided by the solid matrix only. Fluid viscosities will be 
taken into consideration later when we discuss the momentum transfers between the 
phases. We can rewrite the complete constitutive relations by combining Equations 
(84) and (57)-(60) as 

o~s-Ts = ( a l l V  �9 ~s + a l 2 V  �9 Ul q- a l 3 V  �9 ~2 q- a l 4 V  �9 u f  + 

+(a,4 

~IT1 : a21 ~-s + " 31 -1- ~2 + " u f  + V a22V a23 ~7 a24V o o 

\ o~s o~2 / 
(86) 

B 

~2T2 a31V us q- "Ul q- u2 -t- u f  + a32V g33 v a34 ~7 i @ o 

ozf a2 ] 
(87) 

cefYf = ( a 4 1 V  �9 ~-s + a42V �9 ~1 -t- a43 v �9 ~-2 -t- a44V - ~ f  + 

(a4  / 
+ o~f a2 ] 

(88) 

When the volume fraction of the fractures vanishes, i.e., c~f = M = E 2 = 0 and 
Kf~ = Kfr, these constitutive relations reduce to the ones obtained by Tuncay and 
Corapcioglu (1996) for elastic porous media saturated by two fluids. Furthermore, 
by setting $1 = 0, we obtain the constitutive relations identical to that of Biot 
(1956a) for saturated porous media with the same definitions given by Biot and 
Willis (1957). 
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6. Macroscopic Momentum Balance Equations 

Employing the averaging theorems (Equations (4)-(6)), the volume average of 
Equation (15) is obtained as 

p j - - ~ - = V . ( w j ) +  V T j . n j d A ,  j • i ,  i = s , l , 2 ,  f .  (89) 

Following Pride et al. (1992), for low frequencies 

0.j\ _a(~j) 
P J --5-i / = P J (90) 

Average velocities and displacements for all phases are related by 

(Ouj~ O(uj) 1 fSj ujvj.njdA ' 
( ' J ) =  o r ~ -  ot v , 

j C i, i = s , l , 2 ,  f .  (91) 

Since we are interested in the low frequency wave propagation, i.e., characteristic 
length of the microscopic scale is smaller that the wavelength, the displacements 
appearing in the integrand in Equation (91) can be assumed to be constant. Then, 
Equation (91) can be rewritten by employing Equations (3) and (8) as 

O~j Oc~j ~j ./~. O~j 
Ot V _ ~i vj " nj dA = ~j Ot ' 

j r  i = s , l , 2 , f .  (92) 

Substitution of Equation (92) in (89) yields 

02-ffJ V .  ('rj) + 1 /s~ 
(PJ) Ot 2 -- V , r J ' n j d A '  

j r  i = s , l , 2 ,  f .  (93) 

7. Momentum Transfer (Interaction Terms) 

One of the challenges in mechanics of porous media is the momentum transfer terms 
which appear in volume averaged momentum balance equations. Since the integral 
is over a representative volume of the microstructure, it requires the characterization 
and solution of the pore-scale equations. This is usually done by assuming a simple 
periodic microstructure. After solving the pore-scale equations, the solutions are re- 
lated to the macroscopic variables (Biot, 1956a). An alternative approach is the use 
of empirical relations. In this study, due to the complexity of the pore-scale problem, 
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we approximate the interaction terms by assuming the validity of Darcy's law. Since 
the theory is formulated for low frequency we propagation, the assumption of 
laminar flow is a reasonable one. We assume that the momentum transfer between 
the fluid phases can be neglected. These terms result in the cross permeabilities 
known as Yuster effect in the literature (Yuster, 1953; Scott and Rose, 1953). The 
Yuster effect can be neglected for practical purposes (Bear, 1972). Then assuming 
the validity of relative Darcy's law in the primary pores, we can write (Bear and 
Corapcioglu, 1981) 

1 f (1 - a~ - a:)2S2#1 
V JS~I "t'S;" ns dA = Kpk~l (~1 Us), (94) 

1 [ (1 - as - otf)2(1 - ~1)2#2(~. 2 
V Ys~z rs " ns dA = J[(p[gr2 - Ps), (95) 

where Kp is the intrinsic permeability of the nonfractured porous medium and 
kri is the relative permeability of phase i. Similarly (Bear and Berkowitz, 1987; 
Beskos, 1989; Wilson and Aifantis, 1982) 

-- vs'nsdd- ~f [vf-Y~), (96) 
V ~: 

where If] is the intrinsic permeability of the fractures. 

8. Final Set of Equations 

Substitution of the constitutive relations (Equations (85)-(88)) and the interaction 
terms (Equations (94)-(96)) in the averaged momentum balance equations yield 

(fls) - ~  -- V a l l  q- - -  V . ~ s q - a l 2 V - U l - f f a l 3 V . ~ 2 q -  

+a l4V "uf  q - ( a 1 4  a13) M ) q _ V . ( G f r V . ~ s ) q  - 
\ oV ~2 / 

+ e l ( u 1  - us)  + c2(u2  - us)  + c 3 ( u s  - us)  (97) 

(P l )  02~1 
Ot 2 

/ 
~7 ~ a 2 1 V  . U-s + a22 ~7 �9 Ul -{- a23 ~7 "~2 q- 

\ a f  o~2 
(98) 
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0292 
(P2) Gq,2 

f 
_ X~7 ~a31V . "fls q- a32 ~7 "Ul q- a33V " "f12 qt_ 

q-ct34V''flf + (a34\ a] q33) M) (99) 

02-fly ( 
(pf) Gqt2 -- V a41V" "fls q- a42V �9 Ul + a43V �9 u2 -}- 

/ 
-ka44V-f ly  q- [a44 

\ a f  
a43 ) M )  - C3(-ff f - ,] (100) 

where 

C1 (1 - ggs - 0zf)2S12lZl 
, (101) 

Kpkrl 

C2 = ( 1  - -  O~ s - -  O e ] ) 2 ( 1  - -  oO1)2/Z2 
G / ~ r  2 , (102) 

C3 _ ~ ) # 2  
Kf  

(lO3) 

Equations (97)-(100) (12 equations) with Equations (59)-(60) and (31) are 15 
equations for low frequency wave propagation in a fractured porous medium satu- 
rated by two fluids with fifteen unknowns us, ul, u2, uy, P2, Pf and M. Equations 
simplify considerably when M = 0, i.e., no mass exchange between the frac- 
tures and porous blocks. When the deformations are small, this can be a rational 
assumption. 

9. Conclusions 

A theory of wave propagation in fractured porous media saturated by two immis- 
cible fluids is presented. The macroscopic equations are obtained by volume aver- 
aging the micro-scale mass and momentum balance equations, and constitutive 
relations. The main limitations of the theory are the low frequency and small 
deformations assumptions. The macroscopic constitutive relations contain the bulk 
modulus of the fractured porous medium, bulk modulus of the nonfractured medi- 
um, bulk modulus of the solid grains and shear modulus of the solid matrix. The 
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capillary pressure effects are taken into account by assuming the validity of the 
relationship between capillary pressure and saturation. The momentum transfer 
terms are expressed in terms of intrinsic and relative permeabilities as a first order 
approximation. The final set of equations has an hyperbolic behavior with dissipa- 
tion due to interaction terms. 

A further study of the subject by the authors (Tuncay and Corapcioglu, 1996a) 
shows that an analysis of governing equations (Equations (97)-(100)) reveals the 
existence of two compressional waves in addition to the two compressional waves 
analogous to the fast and slow compressional waves in Biot's theory. One of these 
additional waves arises because of fractures whereas the other is associated with the 
pressure difference between the fluid phases in the porous blocks. So far there are a 
very limited number of studies available on wave propagation in fractured porous 
media. However, we hope that theoretical studies in this area will stimulate interest 
for future experimental research. It should be noted that the second compressional 
wave in Biot's theory was confirmed experimentally by Plona (1980) a quarter of 
a century after the theoretical prediction. 
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