TRANSITION METAL CATALYZED 1,5SUBSTITUTION REACTIONS OF CONJUGATED ENYNE OXIRANES LEADING TO ALLYLIC HYDROXY SUBSTITUTED VINYLALLENES

A Thesis Submitted to the Graduate School of Engineering and Sciences of İzmir Institute of Technology in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY
in Chemistry

by
MELİH KUŞ

August 2015
IZMİR

We approve the thesis of Melih KUŞ
Examining Committee Members:

Prof. Dr. Levent ARTOK
Department of Chemistry, İzmir Institute of Technology

Assoc. Prof. Dr. Mustafa EMRULLAHOĞLU
Department of Chemistry, İzmir Institute of Technology

Prof. Dr. Stephen Thomas ASTLEY
Department of Chemistry, Ege University

Prof. Dr. Yüksel ŞAHİN
Department of Chemistry, Adnan Menderes University

Assoc. Prof. Dr. Muhammet Emin GÜNAY
Department of Chemistry, Adnan Menderes University

20 August 2015

Prof. Dr. Levent ARTOK
Supervisor, Department of Chemistry,
İzmir Institute of Technology

Prof. Dr. Ahmet Emin EROĞLU
Head of the Department of
Chemistry

Prof. Dr. Bilge KARAÇALI
Dean of the Graduate School of Engineering and Sciences

ACKNOWLEDGEMENTS

First of all, I would like to thank my advisor Prof. Dr. Levent ARTOK. This thesis could not have been written without him who not only served as my supervisor but also encouraged and challenged me throughout my academic program. He patiently guided me through the evaluation period of the thesis, never accepting less than my best efforts. It was an honour to study with him. I thank him so much.

Special thanks to Assoc. Prof. Dr. Mustafa EMRULLAHOĞLU, Prof. Dr. Stephen Thomas ASTLEY, Prof. Dr. Yüksel ȘAHİN and Assoc. Prof. Dr. M. Emin GÜNAY for participating as committee member and for reviewing my work.

Additionally, during this work I have collaborated with my colleagues Firat Ziyanak, Doğan Taç, Erman Kıbrıs, İsmet Arınç Aytaç, Ezgi Şule Karagöz and Gürkan Eray Akpınar for whom I have great regard, and I wish to extend my warmest thanks to all those who have helped me with my work at Chemistry Department.

I would like to thank to Dr. Hüseyin Özgener for FT-IR analyses, Assist. Prof. Dr. Muhittin Aygün for X-ray analysis, and Salih Günnaz for NMR analyses

I would like to express my thanks to my family for their motivation, continuous support and prayers. They always supported me for my educational decisions. They have always been by my side whenever I needed them.

At last, thanks to The Scientific and Technological Research Council of Turkey (TUBITAK-210T092) and IZTECH (BAP-2011İYTE31) for financial support.

Abstract

\section*{TRANSITION METAL CATALYZED 1,5-SUBSTITUTION REACTIONS OF CONJUGATED ENYNE OXIRANES LEADING TO ALLYLIC HYDROXY SUBSTITUTED VINYLALLENES}

Transition metal-catalyzed reactions are atom economical and environmentally benign processes, which make them superior to traditional stoichiometric reactions. Transition metal-catalyzed carbonylation reactions of unsaturated systems has become an important methodology for the synthesis of carbonyl containing synthetically valuable compounds.

One of these types of reactions is the alkoxycarbonylation of unsaturated systems over transition metals in the presence of alcohol and under CO atmosphere (Scrivanti, et. al. 1998).

Pionering works on palladium-catalyzed alkoxycarbonylation of allylic and propargylic systems with a leaving group at an apropriate positions leading to β, γ unsaturated and allene esters, respectively have been established by several research groups (Tsuji, et al. 2004).

Recently, Artok and co-workers developed new methods for the construction of functionalized vinylallene esters via palladium-catalyzed alkoxycarbonylation of 2,4enyne carbonates (Akpınar, et al. 2011). After tuning the reaction conditions precisely, the methodology could be improved to allow a high degree of center-to-axial chirality transfer (Karagöz, et al. 2014).

Within the context of this study, palladium-catalyzed alkoxycarbonylative 1,5substitution of conjugated enyne oxiranes was also found to provide a diastereoselective route to (E)-configured 7 -hydroxy-2,3,5-trienoates. The reactions proceeded in a highly stereoselective manner, possibly through sequential formation of π-allylpalladium and σ vinylallenyl palladium complexes. The major diastereomeric form of the product was determined by the configuration of the alkenyl moiety of the substrate.

ÖZET

ALLİLíK HİDROKSİ SÜBSTITÜE VİNİALLENLERİN OLUŞUMUNA NEDEN OLAN GEÇİŞ METAL KATALİZLİ KONJUGE ENINOKSİRANLARIN 1,5-SÜBSTITÜSYON TEPKİMELERİ

Geçiş metal katalizli reaksiyon yöntemleri atom-ekonomik ve çevre dostu olmalarından dolayı klasik stokiyometrik reaksiyon yöntemlerine kıyasla gün geçtikçe daha önemli hale gelmektedirler. Doymamıș sistemlerin geçiş metal katalizli karbonilasyon tepkimeleri nitelikli kimyasalların sentezinde sıklıkla kullanılan bir metot haline gelmiştir. Bu bağlamda gerçekleştirilen tepkimelerin bir alt dalı olan alkoksikarbonilasyon tepkimeleri ise karbonil grubu içeren doymamış sistemlerin sentezine, bir metal katalizörü eşliğinde, alkol ve CO gazı altında olanak sağlar (Scrivanti, et. al. 1998).

Propargilik ve allilik pozisyonlarında bir ayrılan grup taşıyan yapıların alkoksikarbonilasyon tepkimeleri ile sırasıyla β, γ-doymamış ve allen ester oluşturan çalışmaları git gide önem kazanmış ve çeşitli araştırma grupları tarafindan başarıyla gerçekleştirilmiştir (Tsuji, et al. 2004).

Yakın bir süre önce çalışma grubumuz tarafından 2,4-enin karbonat yapılarının paladyum-katalizli alkoksikarbonilasyon tepkimeleri başarıyla gerçekleştirilmiş ve fonksiyonlandırılmış vinilallen ester içeren yapılar yüksek verimler ile elde edilmiştir (Akpınar, et al. 2011). Daha sonra titizlik ile yapılan optimizasyon çalışmaları ile metod daha da geliştirilmiş ve enantiyomerik olarak zenginleştirilmiş 2,4-enin karbonat yapılarına uygulandığında metodun merkezden eksene kiralite transferine olanak sağladığı saptanmıştır (Karagöz, et al. 2014).

Bu çalışma kapsamında, 2,4-enin oksiran yapılarının alkoksikarbonilasyon tepkimeleri araştırılmıştır. Geliştirilen metod yüksek verim ve diastereo seçimlilik ile (E)konfigürasyonuna sahip 7-hidroksi-2,3,5-trienoat yapılarının sentezine olanak sağlamıştır.

TABLE OF CONTENTS

LIST OF FIGURES ix
LIST OF TABLES xi
ABBREVIATIONS xii
CHAPTER 1. INTRODUCTION 1
CHAPTER 2. LITERATURE WORKS 3
2.1. Palladium(0)-Catalyzed Reactions of Propargyl Compounds 3
2.2 Carbonylation Reactions of Propargylic Compounds Containing a Leaving Group 6
2.3 Palladium(0)-Catalyzed Reactions of Allylic Compounds 9
2.4 Carbonylation Reactions of Propargylic Compounds Containing a Leaving Group 10
2.5 Synthesis of Vinylallenes 14
2.5.1 Synthesis of Vinylallenes with Grignard Reagent 14
2.5.2 Synthesis of Vinylallenes with Organocopper Reagents 15
2.5.3 Palladium(0)-Catalyzed Synthesis of Vinylallene with Organozinc Reagent 16
2.5.4 Palladium(0)-Catalyzed Synthesis of Vinylallenes by N-Tosylhydrazone Salts 17
2.5.5 Palladium(0)-Catalyzed Synthesis of Vinylallene by Alkenyl Trifluoroborates 17
2.5.6 Rhodium(I)-Catalyzed Reaction of the (Z)-Enyne Acetate with Organoboronic Acids 18
2.5.7 Palladium(0)-Catalyzed Reaction of 2,4-Enyne Carbonates with Organoboronic Acids 18
2.5.8 Palladium(0)-Catalyzed Alkoxycarbonylation
Reaction of 2,4-Enyne Carbonates 19
2.5.9 Vinylallenes in Synthesis 20
CHAPTER 3. EXPERIMENTAL STUDY 22
3.1. General Procedures for Drying the Solvents 22
3.2. Synthesis of Substrates 22
3.2.1. Synthesis of $(Z)-1 \mathrm{a}$ 23
3.2.2. Synthesis of (Z)-1d 24
3.2.3. Synthesis of (Z)-1i and (Z)-1i' 25
3.2.4. Synthesis of $(Z)-1 \mathrm{~m}$ 27
3.2.5. Synthesis of $(Z)-1 \mathrm{q}$ and hydroxyl tethered (Z)- 2,4-enyne oxiranes 28
3.2.6. Synthesis of (Z)-1b, c, h, k, l, n, o, p, s 30
3.2.7. Synthesis of $(Z)-1 \mathrm{e}$ and $(Z)-1 \mathrm{r}$ 31
3.2.8. Synthesis of $(Z)-1 \mathrm{f}$ and $(Z)-1 \mathrm{~g}$ 32
3.2.9. Synthesis of $(E)-1 \mathrm{~b}$ 32
3.2.10. Synthesis of (Z)-1t 33
3.2.11. Synthesis of $(Z)-1 \mathrm{j}$ 34
3.2.12. Carbamate derivatization of 2 ba and crystal growth for X-ray analysis. 35
3.3. Characterization of Reactants 36
3.4. General Procedure for Carbonylation Reactions 43
3.5. Characterization of Products 44
CHAPTER 4. RESULTS AND DISCUSSION 60
CHAPTER 5. CONCLUSION 71
REFERENCES
APPENDICESAPPENDIX A. 1H NMR and 13C NMR SPECTRUMS OF REACTANTS ANDPRODUCTS75
APPENDIX B. MASS SPECTRUMS OF PRODUCTS 179

LIST OF FIGURES

Figure Page
Figure 2.1. Formation of σ-allenylpalladium 1 and propargyl palladium 2. 3
Figure 2.2. Insertion reactions of σ-allenylpalladium 1 intermediate. 3
Figure 2.3. Transmetallation reaction of σ-allenylpalladium 1 intermediate 4
Figure 2.4. Reaction of σ-allenylpalladium which involves nucleophilic attack. 5
Figure 2.5. Reaction of σ-prop-2- ynylpalladium intermediate 5
Figure 2.6. Reaction of propargyl carbonates and oxiranes. 6
Figure 2.7. $\mathrm{Pd}(0)$-catalyzed alkoxycarbonylation of propargyl compounds. 6
Figure 2.8. Alkoxycarbonylation of propargyl carbonates with $\mathrm{Pd}(\mathrm{OAc}) 2 /$ phosphine ligand system. 7
Figure 2.9. Alkoxycarbonylation of propargyl carbonates to form 2, 4- dienyl carboxylate 7
Figure 2.10. Carbonylation reaction of propargylic mesylate to give optically active allenes. 8
Figure 2.11. Carbonylation reaction of optically active propargylic phosphates. 8
Figure 2.12. Alkoxycarbonylation of propargyl alcohol. 8
Figure 2.13. Alkoxycarbonylation of propargyl oxirane. 9
Figure 2.14. Palladium-catalyzed reactions of allylic compounds 10
Figure 2.15. Palladium-catalyzed carbonylation reaction of 3- chloroprop-1-ene. 11
Figure 2.16. Palladium-catalyzed alkoxycarbonylation of allyl carbonates. 11
Figure 2.17. Alkoxycarbonylation mechanism of allyl carbonates 12
Figure 2.18. Palladium-catalyzed alkoxycarbonylation of allyl phosphates. 12
Figure 2.19. Palladium-catalyzed alkoxycarbonylation of allyl acetates 13
Figure 2.20. Palladium-catalyzed alkoxycarbonylation of allyl alcohol. 13
Figure 2.21. Palladium-catalyzed alkoxycarbonylation of allyl alcohol. 13
Figure 2.22. Palladium-catalyzed nucleophilic reactions of allylic oxiranes. 14
Figure 2.23. Palladium-catalyzed alkoxycarbonylation reactions of allylic oxiranes 14
Figure 2.24. Reaction of chloro-enynes with Grignard reagents 15
Figure 2.25. 1, 5 -($\left.\mathrm{S}_{\mathrm{N}} 2^{\prime \prime}\right)$-type Substitution reaction of enyne acetates with dialkyl cuprates. 15
Figure 2.26. 1, 5-($\mathrm{S}_{N} 2$ '')-type Substitution reaction of enyne oxiranes with dialkyl cuprates. 16
Figure 2.27. Synthesis of vinylallenes by organozinc reagents 16
Figure 2.28. Synthesis of vinylallene by N-tosylhydrazone salt 17
Figure 2.29. Synthesis of vinylallene by alkenyltrifluoroborates. 18
Figure 2.30. $\mathrm{Rh}(\mathrm{I})$-catalyzed reaction of the (Z)-enyne acetate with organoboronic acids 18
Figure 2.31. Palladium-catalyzed reaction of 2, 4-enyne carbonates with organoboronic acids 19
Figure 2.32. Palladium-catalyzed alkoxycarbonylation reaction of (Z)- 2, 4-enyne carbonates 19
Figure 2.33. Palladium-catalyzed alkoxycarbonylation reaction of (E and Z)-2, 4-enyne carbonates leading to enantioriched vinyl allene derivatives 20
Figure 4.1. X-ray crystallographic structure of the phenylcarbamate derivative of 2ba 61
Figure 4.2. Methox ycarbonylation of $(Z)-1 \mathrm{t}$ 67
Figure 4.3. The Mechanism of Alkoxycarbonylation of Conjugated Enyne Oxiranes. 69
Figure 4.4. Methoxycarbonylation of $(Z)-1 \mathrm{i}$. 70

LIST OF TABLES

Table Page
Table 4.1. Methoxycarbonylation of Enyne Oxirane (Z)-1a 60
Table 4.2. The Effect of Ligand on Methoxycarbonylation of (Z)-1ba 62
Table 4.3. Alkoxycarbonylation of Enyne Oxirane (Z)-1a 63
Table 4.4. Alkoxycarbonylation of Enyne Oxiranes 65
Table 4.5. Alkoxycarbonylation of Enyne Oxirane (Z)-1o 68

ABBREVIATIONS

		etc.	and other things
Ac	Acetate	equiv.	Equivalent
aq.	Aqueous	g	Grams
Ar	Aryl	h.	Hour(s)
Bu	Butyl	$i-\operatorname{Pr}$	Iso-propyl
BINAP	2,2'- bis(diphenylphosphino)- 1,1'-binaphthalene	M m	Molar Meta
BIPHEP	2,2'- bis(diphenylphosphino)- 1,1'-biphenyl	m-CPBA acid Me	meta-Chloroperbenzoic Methyl
Bn	Benzyl	mg	Milligrams
Cy	Cyclohexyl	min.	Minutes
dba	Dibenzylideneacetone	mL	Milliliters
DCM	Dichloromethane	$\mu \mathrm{m}$	Micrometer
DIBALH hydride	Diisobutylaluminum	p	Ortho Para
DMAP	4-Dimethylaminopyridine	Ph	Phenyl
DMF	N, N-Dimethylformamide	p-Ts	para-Toluenesulfonyl
dppb	1,4-Bis(diphenylphosphino) butane	RT	Room temperature
dppe	1,2-Bis(diphenylphosphino) ethane	t-Bu	Time Tertiary butyl
dppf	1,1'- Bis(diphenylphosphino) ferrocene	TBDMS	Tertiary butyldimethylsilyl chloride
dpph	1,6-Bis(diphenylphosphino) hexane	THF Ts	Tetrahydrofurane Tosyl
DPEphos	Bis[(2- diphenylphosphino)phenyl] ether	Xantphos	4,5- Bis(diphenylphosphino)- 9,9-dimethylxanthene
d.r.	Diastereomeric ratio		
Et	Ethyl		

CHAPTER 1

INTRODUCTION

Allenes are of an important class of organic compounds, which are characterized by two cumulated carbon-carbon double bonds. Biological activity, axially chiral backbone and their presence in many natural products make the allenes crucial materials for organic synthesis.

After the pioneering works in the area of carbonylation type reactions by Roelen and Reppe in 1939 and 1953, respectively, transition metal-catalyzed carbonylation reactions involving the use of carbon monoxide as a reactant have became popular method for building carbonyl containing molecules.

After the first palladium-catalyzed carbonylation reaction of propargylic compounds, bearing a leaving group, reported in 1966 (Tsuji, et al. 1995), the palladiumcatalyzed alkoxycarbonylation reaction of propargylic derivatives under mild conditions has become an important method for the synthesis of functionalized allene derivatives.

Vinyl-substituted allenes are reactive compounds toward various cycloaddition and cyclization reactions. They exhibit particularly a higher activity and selectivity with Diels-Alder reactions, because their configurational equilibrium is more on the side of scis conformer-a prerequisite for a [4+2] cycloaddition reaction to occur effectivelythan for 1, 3-dienes (Bond, et al. 1990). In spite of their synthetic utility in organic reactions, there are only a few methods that can generate vinylallene structures.

Propargylic carbonates, phosphates, and mesylates having a vinyl functionality can undergo palladium-catalyzed transformations in the presence of a hard or soft nucleophile as a coupling partner to afford vinylallene derivatives (Molander, et al. 2006, Ma, et al. 2003, Chen, et al. 2011).

Also, Artok's research group showed that the palladium-catalyzed alkoxycarbonylation reactions of 2,4-enyne carbonates lead to the formation of 2,3,5trienoates in high yields (Akpınar, et al. 2011, Karagöz, et al. 2014).

In this study, we have developed a mild, simple and atom economical method for the diastereoselective synthesis of (E-configured 7-hydroxy-2,3,5-trionates via palladium-catalyzed alkoxycarbonylative 1,5-substitution reactions of conjugated enyne
oxiranes. The reactions proceeded in a highly stereoselective manner, possibly through sequential formation of π-allylpalladium and σ-vinylallenyl palladium complexes. The major diastereomeric form of the product is determined by the configuration of the alkenyl moiety of the substrate.

CHAPTER 2

LITERATURE WORKS

2.1. Palladium(0)-Catalyzed Reactions of Propargyl Compounds

The $\operatorname{Pd}(0)$-catalyzed reactions of propargylic compounds proceed through the formation of two intermediates; the σ-allenylpalladiums $\mathbf{1}$ or the propargylpalladiums $\mathbf{2}$ (Figure 2.1), (Elsevier, et al. 1986).

Figure 2.1. Formation of σ-allenylpalladium $\mathbf{1}$ and propargylpalladium 2.

In consideration of the literature, depending on co-reactant types σ allenylpalladium complexes $\mathbf{1}$ can undergo three types of transformations.

Figure 2.2. Insertion reactions of σ-allenylpalladium $\mathbf{1}$ intermediate.
(Source: Meijere, et al. 2004)

The first one is the insertion of intermediate $\mathbf{1}$ into unsaturated bonds of alkenes, alkynes, and carbon monoxide to generate the alkyl-, alkenyl- and acyl palladium intermediates 3, 4, and 5, respectively. These intermediates undergo further transformations to afford synthetically valuable compounds (Figure 2.2), (Meijere, et al. 2004).

The second type of transformation proceed through the transmetallation of intermediate $\mathbf{1}$ with hard nucleophiles such as metal hydride, Grignard, organozinc, organosilane and organoboron reagents to afford the allene derivatives after subsequent reductive elimination (Figure 2.3), (Tsuji, et al. 2004).

Figure 2.3. Transmetallation reaction of σ-allenylpalladium $\mathbf{1}$ intermediate.

And the last type of transformation is the nucleophilic attack of the nitrogen and oxygen containing nucleophiles and soft nucleophiles to the central allenic carbon atom. This nucleophilic attack results in the formation of intermediate \mathbf{A}, which can be protonated to form alkene derivatives or add a second nucleophile through the formation of π-allylpalladium intermediate, resulting in the formation of alkene derivatives \mathbf{B} (Figure 2.4).

Figure 2.4. Reaction of σ-allenylpalladium which involves nucleophilic attack.
(Source: Meijere, et al. 2004)

In case of propargylpalladium 2 intermediate (Figure 2.5), in the literature two common types of transformations are encountered; hydrogenolysis and β-H elimination (Tsuji, et al. 1995).

Figure 2.5. Reaction of σ-prop-2-ynylpalladium intermediate (2).
$\mathrm{Pd}(0)$-catalyzed reactions of propargyl derivatives exhibit different reactivities depending on the substituents on the propargylic positions. Propargyl alcohols are easily available substrates but they are the least reactive species. However, their esters such as acetates, carbonates, and phosphates are very reactive. The main factor of this reactivity difference is the leaving ability of the propargylic substituents. Acetates, carbonates, and phosphates are good leaving groups compared to alcohols.

Propargyl carbonates $\mathbf{8}$ undergo $\mathrm{Pd}(0)$-catalyzed reactions under mild conditions. The key step of this transformation is the generation of σ-allenyl(methoxy)palladiums 9 . Also alkynyl oxiranes $\mathbf{1 0}$ behave like ester derivatives and undergo facile reactions under mild conditions by forming the complex $\mathbf{1 1}$ as an intermediate (Figure 2.6).

Figure 2.6. Reaction of propargyl carbonates and oxiranes.

2.2 Carbonylation Reactions of Propargylic Compounds Containing a Leaving Group

In $\operatorname{Pd}(0)$-catalyzed alkoxycarbonylation reactions, alkynes substituted with a leaving group at the propargylic positions are frequently used. As discussed in the previous section, the key step of these transformation is the formation of σ allenylpalladium 1 or $\mathbf{1 1}$ intermediates (Tsuji, et al. 1987). Carbon monoxide, (CO), can easily insert into this intermediate to form acyl palladium(II) species which then undergoes nucleophilic addition of alcohol to form ester derivatives. Depending on the reaction conditions mono- and dicarbonylations can take place (Figure 2.7), (Tsuji, et al. 1993).

Figure 2.7. $\mathrm{Pd}(0)$-catalyzed alkoxycarbonylation of propargyl compounds.

As an example from the literature, in 1986, Tsuji and co-workers reported the first alkoxycarbonylation reaction of propargyl carbonates in $\mathrm{Pd}_{2}(\mathrm{dba})_{3}-\mathrm{CHCl}_{3} / \mathrm{PPh}_{3}$ catalytic system. Secondary and tertiary carbonates having internal or terminal alkyne moieties, yielded desired 2,3-dienyl carboxylate products in good yields (Figure 2.8), (Tsuji, et al. 1986).

Figure 2.8. Alkoxycarbonylation of propargyl carbonates with $\mathrm{Pd}(\mathrm{OAc})_{2} /$ phosphine ligand system. (Source: Tsuji, et al. 1986)

Also, they reported that 2,4-dienyl carboxylate was formed instead of allenyl esters if the reaction was performed in ether, and an alcohol was used as a reactant (Figure 2.9), (Tsuji, et al. 1986).

Figure 2.9. Alkoxycarbonylation of propargyl carbonates to form 2, 4-dienyl carboxylate. (Source: Tsuji, et al. 1986)

The carbonylation of chiral propargyl mesylates in the presence of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ and under CO and in the presence of water, yielded allenic acids in good yields which were then converted stereospecifically to butenolides by treatment with AgNO_{3}. A good transfer of chirality was observed, although racemization occurred by the carbonylation of the corresponding propargyl carbonate derivative (Figure 2.10), (Marshall, et al. 1997).

Figure 2.10. Carbonylation reaction of propargylic mesylate to give optically active allenes. (Source: Marshall, et al. 1997)

In addition, a good transfer of chirality was observed in the carbonylation reaction of propargyl phosphates in the $\operatorname{Pd}(\mathrm{OAc})_{2} / 1,6$-bis(diphenylphosphino)hexane catalytic system and thus optically active 2,3-dienoates could be obtained with high enantiomeric excesses (Figure 2.11), (Tsuji, et al. 1995).

Figure 2.11. Carbonylation reaction of optically active propargylic phosphates.
(Source: Tsuji, et al. 1995)

Propargyl alcohols are less reactive than their esters. Carbonylation of the tertiary propargyl alcohol at relatively harsh reaction conditions such as high CO pressures and temperatures was able to provide the formation of 2(5H)-furanones (Figure 2.12), (Alper, et al. 1997).

Figure 2.12. Alkoxycarbonylation of propargyl alcohol. (Source: Alper, et al. 1997)

The $\operatorname{Pd}(0)$-catalyzed reaction of propargylic oxirane substrates with alcohols under CO atmosphere also generates hydroxy-functionalized allenic esters in good yields (Figure 2.13).

Figure 2.13. Alkoxycarbonylation of propargyl oxirane. (Source Tsuji, et al. 2004)

2.3 Palladium(0)-Catalyzed Reactions of Allylic Compounds

Allylic compounds substituted with leaving groups such as acetates, carbonates, phosphates etc. play significantly important role in synthetic organic chemistry due to formation of π-allyl palladium complexes with palladium catalysts. Further transformation of this complex with various types of coupling partners offer many synthetically useful methods for the synthesis of valuable chemicals.

In 1965, Tsiju, et al. reported the first formation of π-allyl palladium complex from allylic compounds. They described the electrophilic property of π-allyl palladium complex and regeneration of the $\operatorname{Pd}(0)$ after coupled with pronucleophiles which offers the possibility of a catalytic process (Figure 2.14).

Figure 2.14. Palladium-catalyzed reactions of allylic compounds.
(Source: Tsuji, et al. 2004)

2.4 Carbonylation Reactions of Propargylic Compounds Containing a Leaving Group

In 1964, Tsuji, et al. showed that β, γ-unsaturated esters can be prepared by carbonylation of allylic compounds. According to researchers, π-allylpalladium chloride can be converted to β, γ-ester derivatives under CO pressures in alcohols with PdCl_{2} as the catalyst (Figure 2.15).

Figure 2.15. Palladium-catalyzed carbonylation reaction of 3-chloroprop-1-ene. (Source: Tsuji, et al. 1964)

In 1984, Tsuji, et al. described the synthesis of β, γ-unsaturated ester derivatives by the reaction of allylic carbonates and alcohol in $\mathrm{Pd}(\mathrm{OAc})_{2} / \mathrm{PPh}_{3}$ catalytic system under mild reaction conditions (Figure 2.16).

Figure 2.16. Palladium-catalyzed alkoxycarbonylation of allyl carbonates. (Source: Tsuji, et al. 1984)

According to the proposed reaction mechanism, π-allylpalladium alkoxide intermediate can be formed from the the oxidative addition of palladium catalyst to an allyl carbonate and subsequent decarboxylation. The following carbon monoxide insertion reductive elimination steps lead to formation of β, γ-unsaturated ester derivatives and regeneration of the $\operatorname{Pd}(0)$ species (Figure 2.17).

Figure 2.17. Alkoxycarbonylation mechanism of allyl carbonates.

In 1993, Murahashi, et al. showed that allyl phosphate derivatives are suitable reagents for $\mathrm{Pd}(0)$-catalyzed carbonylation reactions, although harsh reaction conditions were required. The reaction was carried out over the $\mathrm{Pd}_{2}(\mathrm{dba})_{3}-\mathrm{CHCl}_{3} / \mathrm{PPh}_{3}$ catalytic system at high CO pressures and temperatures to obtain the β, γ-unsaturated esters with high yields. It was noted that isomerization of the double bond was occurred depending on the substituents on the allyl phosphate derivatives (Figure 2.18).

Figure 2.18. Palladium-catalyzed alkoxycarbonylation of allyl phosphates. (Source: Murahashi, et al. 1993)

They also showed that β, γ-unsaturated esters could be synthesized by the reaction of allyl acetates at high CO pressures and temperatures. The reaction was carried out over the $\mathrm{Pd}_{2}(\mathrm{dba})_{3}-\mathrm{CHCl}_{3} / \mathrm{PPh}_{3}$ catalytic system, and NaBr was used as a co-catalyst (Figure 2.19). NaBr accelerates the reaction because, after the generation of π allylpalladium acetate complex ligand exchange of acetate with bromide took place, this making the CO insertion more facile (Figure 2.19), (Murahashi, et al. 1993).

Figure 2.19. Palladium-catalyzed alkoxycarbonylation of allyl acetates.. (Source: Murahashi, et al. 1993)

Harsh reaction conditions were needed for less reactive allylic alcohols. However, carbonylation of allylic alcohols proceeds smoothly in the presence of phenol as a nucleophile. 4-Phenyl-3-butenoate was obtained in a good yield from cinnamyl alcohol under 5 atm of CO at $100{ }^{\circ} \mathrm{C}$ with $\mathrm{Pd}_{2}(\mathrm{OAc})_{2} / \mathrm{PPh}_{3}$ catalytic system (Satoh, et al. 1997).

Figure 2.20. Palladium-catalyzed alkoxycarbonylation of allyl alcohol. (Source: Satoh, et al. 1997)

Allyl alcohol was carbonylated under a high pressure of $\mathrm{CO}_{2}(50 \mathrm{~atm})$ and $\mathrm{CO}(50$ atm) mixture at $110^{\circ} \mathrm{C}$ in dioxane to provide 2-butenoic acid as the major product and 3butenoic acid as the minor product (Sakamoto, et al. 1996).

Figure 2.21. Palladium-catalyzed alkoxycarbonylation of allyl alcohol.
(Source: Sakamoto, et al. 1996)
$\operatorname{Pd}(0)$-catalyzed reactions of alkenyloxiranes afford either 1,4-adducts or 1,2adducts. 1,4-Adducts are mainly obtained under usual conditions due to the electronic effect of the epoxide oxygen atom (Figure 2.22), (Tsuji, et al.1981, Trost, et al. 1981).

Figure 2.22. Palladium-catalyzed nucleophilic reactions of allylic oxiranes.
β, γ-Unsaturated δ-hydroxyesters are obtained by regioselective carbonylation of isoprene oxide in EtOH using a ligand-free Pd catalyst at room temperature under high CO pressure (30 atm). (Figure 2.23), (Shimizu, et al. 1993).

Figure 2.23. Palladium-catalyzed alkoxycarbonylation reactions of allylic oxiranes.
(Source: Shimizu, et al. 1993)

2.5 Synthesis of Vinylallenes

Vinylallenes are reactive compounds toward various cycloaddition and cyclization reactions. They exhibit particularly higher activity and selectivity with DielsAlder reactions, because their configurational equilibrium is more on the side of s-cis conformer -a prerequisite for a [4+2] cycloaddition reaction to occur effectively-than for 1, 3-dienes (Bond, et al. 1990).

2.5.1 Synthesis of Vinylallenes with Grignard Reagent

In 1972, Gore, et al. developed a method for the synthesis of vinyl substituted allenes by the reactions of 1-chloro-2-en-4-ynes with methylmagnesium iodide and trimethylsilylmagnesium chloride in moderate to good yields (Figure 2.24). The method was just limited to methylmagnesium iodide and trimethylsilylmagnesium chloride, other Grignard reagents completely failed to yield desired vinylallene derivatives.

$$
1 a: R^{1}=R^{2}=H, R^{3}=M e \quad 2 a: 50 \%
$$

$1 b: R^{1}=M e, R^{2}=R^{3}=H \quad 2 b: 52 \%$
1c: $R^{1}=R^{2}=\mathrm{Me}, R^{3}=H \quad$ 2c: 75%
$1 \mathrm{~d}: \mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{R}^{3}=\mathrm{Me} \quad$ 2d:78\%

Figure 2.24. Reaction of chloro-enynes with Grignard reagents.
(Source: Gore, et al. 1972)

2.5.2 Synthesis of Vinylallenes with Organocopper Reagents

In 1999, Krause, et al. developed a regioselective 1,5-($\mathrm{S}_{N} 2$ ' $\left.{ }^{\prime}\right)$-type reaction of (E) 2, 4-enyne acetates with various lithium dialkylcuprates affording the vinylallenes exclusively. However, this method afforded the desired vinylallene structures as a mixture of E - and Z - isomers. Moreover, the method was not suitable for aryl- or alkenyl lithium cuprates.

Figure 2.25. 1, 5-($\mathrm{S}_{\mathrm{N}} 2$ ' ${ }^{\prime}$)-type Substitution reaction of enyne acetates with dialkyl cuprates. (Source: Krause, et al. 1999)

They also applied their methodology to $(E)-2,4$ enyne oxirane substrates, which were treated with $\mathrm{Me}_{2} \mathrm{CuLi} \mathrm{LiI}$ or $t-\mathrm{Bu}_{2} \mathrm{CuLi} \cdot \mathrm{LiCN}$. The substrate reacted cleanly with the tert-butylcuprate to afford the alkylated vinylallene with a primary hydroxyl group,
whereas its reaction with the lithium dimethylcuprate reagent proceeded without coupling and led to exclusive reduction to a vinylallene.

Figure 2.26. 1, 5-(S $\left.\mathrm{S}_{N} 2^{\prime}{ }^{\prime}\right)$-type Substitution reaction of enyne oxiranes with dialkyl cuprates. (Source: Krause, et al. 1999)

2.5.3 Palladium(0)-Catalyzed Synthesis of Vinylallene with Organozinc Reagent

In 2003, Ma, et al. showed that vinyl allene structures can be formed by the palladium-catalyzed coupling reaction of propargyl mesylates with alkoxycarbonylethenyl zinc complexes with excellent yields in the presence of $[\{\operatorname{PdCl}(\pi$ $\left.\left.-\mathrm{C}_{3} \mathrm{H}_{5}\right)\right\}_{2}$]/2-diphenylphosphino-2'-hydroxy-1,1'-binaphthalene (L) catalytic system under mild conditions (Figure 2.27).

Figure 2.27. Synthesis of vinylallenes by organozinc reagents. (Source: Ma, et al. 2003)

2.5.4 Palladium(0)-Catalyzed Synthesis of Vinylallenes by \mathbf{N} Tosylhydrazone Salts

In 2011, Chen, et al. reported that diazo compounds generated in-situ from N tosylhydrazone salts in the presence of a base, behave as a nucleophile and react with the propargylic carbonates to form vinylallene structures in the presence of $\left[\mathrm{Pd}_{2}(\mathrm{dba})_{3}\right]$ (Figure 2.28).

$$
\begin{array}{lll}
\text { 1a }: \mathrm{Ar}^{1}=\mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{R}^{1}=i-\mathrm{Pr}, \mathrm{R}^{2}=\mathrm{H} & \mathrm{Ar}^{2}=\mathrm{C}_{6} \mathrm{H}_{5} & \mathbf{3 a}=64 \% \\
\text { 1b }: \mathrm{Ar}^{1}=\mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{R}^{1}=n-\mathrm{Pr}, \mathrm{R}^{2}=\mathrm{H} & & \mathbf{3 b}=51 \% \\
\text { 1c }: \mathrm{Ar}^{1}=p-\mathrm{MeOC} & 6 \\
\mathrm{H}_{5}, \mathrm{R}^{1}=\mathrm{Et}, \mathrm{R}^{2}=\mathrm{H} & & \mathbf{3 c}=70 \% \\
\text { 1d }: \mathrm{Ar}^{1}=\mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{R}^{1}=i-\mathrm{Pr}, \mathrm{R}^{2}=\mathrm{H} & \mathbf{3 d}=44 \% \\
\text { 1e }: \mathrm{Ar}^{1}=\mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{2}=\mathrm{Me} & \mathbf{3 e}=40 \%
\end{array}
$$

Figure 2.28. Synthesis of vinylallene by N-tosylhydrazone salt.
(Source: Chen, et al. 2011)

2.5.5 Palladium(0)-Catalyzed Synthesis of Vinylallene by Alkenyl Trifluoroborates

In 2006, Molender, et al. reported $\operatorname{Pd}(0)$-catalyzed cross-coupling reaction of enantio-enriched propargylic carbonates and phosphates with alkenyltrifluoroborates. The method allowed center-to-axial chirality transfer and the desired vinylallene structures were synthesized in good enantiomeric excesses (Figure 2.29).

Figure 2.29. Synthesis of vinylallene by alkenyltrifluoroborates. (Source: Molander, et al. 2006)

2.5.6 Rhodium(I)-Catalyzed Reaction of the (Z)-Enyne Acetate with Organoboronic Acids

In 2011, Üçüncü, et al. reported that $\mathrm{Rh}(\mathrm{I})$-catalyzed reaction of (Z)-2,4-enyne acetates with organoboronic acids afforded vinylallenes. The reaction is suitable for arylboronic acids having both electron-withdrawing or -donating groups (Figure 2.30).

Figure 2.30. $\mathrm{Rh}(\mathrm{I})$-catalyzed reaction of the (Z)-enyne acetate with organoboronic acids.
(Source: Üçüncü, et al. 2011)

2.5.7 Palladium(0)-Catalyzed Reaction of 2,4-Enyne Carbonates with Organoboronic Acids

Üçüncü, et al. also (2011), showed that arylboronic acids having different electron deficient or electron donating substituents are good coupling partner for $\operatorname{Pd}(0)$-catalyzed reaction of both (E) - and (Z)-2,4-enyne carbonates, yielding exclusively the (E) configured vinylallene derivatives (Figure 2.31).

Figure 2.31. Palladium-catalyzed reaction of 2, 4-enyne carbonates with organoboronic acids. (Source: Üçüncü, et al. 2011)

2.5.8 Palladium(0)-Catalyzed Alkoxycarbonylation Reaction of 2,4Enyne Carbonates

In 2011, Akpinar, et al. showed for the first time that conjugated (Z)-2,4-enyne derivatives bearing a carbonate as a leaving group at the allylic moiety underwent $\operatorname{Pd}(0)$ catalyzed reaction to lead 2,3,5-trienoate products in high yields (Figure 2.32).

Figure 2.32. Palladium-catalyzed alkoxycarbonylation reaction of (Z)-2, 4-enyne carbonates. (Source: Akpınar, et al. 2011)

The reaction conditions were also applied to an enantio-enriched (Z)-2, 4-enyne carbonates. It was found that the reaction proceeded with complete racemization. But after tuning the reaction parameters, moderate to good transfer of chirality was observed depending on the olefin geometry and substituents on the alkyne moiety (Figure 2.32), (Karagöz, et al. 2014).

Figure 2.33. Palladium-catalyzed alkoxycarbonylation reaction of (E and Z)-2, 4-enyne carbonates leading to enantio-enriched vinylallene derivatives. (Source: Karagöz, et al. 2014)

2.5.9 Vinylallenes in Synthesis

Vinylallenes are valuable dienophiles in Diels-Alder reactions. As an example from the literature, Krause, et al. showed that vinylallenes reacted with maleic anhydride in refluxing toluene within 30 h to provide cycloadduct exclusively (Krause, et al. 1996).

Figure 2.34. Diels-Alder reactions of vinyallenes. (Source: Krause, et al. 1996)

Vinylallenes are also good reactants for varios cycloisomerization reactions. In 2006, Toste, et al. developed a gold(I)-catalyzed cycloisomerization of vinyl allenes for the synthesis of cyclopentadienes. The mild reaction conditions of this gold(I)-catalyzed carbon-carbon bond-forming reaction provide a regiospecific method for the synthesis of highly functionalized cyclopentadienes.

Figure 2.35. Gold-catalyzed cycloisomerization reactions of vinylallenes.
(Source: Toste, et al. 2006)

Also, Iwasawa, et al. developed a PtCl_{2}-catalyzed preparation of highly substituted cyclopentadiene derivatives from 1,2,4-trienes. This reaction proceeds under mild conditions to afford a variety of well-defined, highly substituted cyclopentadienes effectively.

Figure 2.36. Platinium-catalyzed cycloisomerization reactions of vinylallenes.
(Source: Iwasawa, et al. 2006)

CHAPTER 3

EXPERIMENTAL STUDY

3.1. General Procedures for Drying the Solvents

THF, DMF, and DCM solvents were all purified by a solvent purification system. $\mathrm{Et}_{2} \mathrm{O}$ was distilled from benzophenone-ketyl under argon prior to use. Methanol and ethanol were dried over Mg turnings in the presence of iodine and stored on molecular sieve $3 \AA ̊$ under Ar. 1-Propanol and 2-propanol were dried first by stirring over anhydrous CaO followed by refluxing over Mg turnings in the presence of iodine. 1-Butanol was dried first by stirring over anhydrous MgSO_{4} and then refluxed over Mg turnings in the presence of iodine. tert- BuOH was stirred over $\mathrm{CaH}_{2}(5 \% \mathrm{w} / \mathrm{v})$, distilled, and stored on molecular sieve $3 \AA$ under Ar.

3.2. Synthesis of Substrates

Syntheses of all enyne oxirane starting materials (1) were performed under Ar gas and purification of all synthesized molecules was performed by column chromatography on silica gel. Silica gel material used for the purification of enyne oxirane substrates had a particle size range of 60-200 mesh and treated by NEt_{3} before use. It must be noted that the column chromatography of the substrate $\mathbf{1}$ on an untreated silica gel always resulted in decomposition. All other column purifications were performed on silica gel 60 (35-70 $\mu \mathrm{m})$. All substrates appeared either colorless or pale yellow oils. The $\mathrm{Pd}_{2}(\mathrm{dba})_{3}-\mathrm{CHCl}_{3}$ complex was synthesized in the laboratory (Ukai, et al. 1974).

3.2.1. Synthesis of (Z)-1a

To the mixture of commercially available, (Z)-pent-2-en-4-yn-1-ol (S1) (1.92g, 20 mmol) and 3,4-dihydropyran ($2.2 \mathrm{~mL}, 24 \mathrm{mmol}$) was added p-toluenesulfonic acid (44 $\mathrm{mg}, 0.02 \mathrm{mmol}$) and then stirred for 45 min at room temperature (RT). Then, the mixture was diluted with 40 mL of dry THF under Ar and cooled to $-78^{\circ} \mathrm{C}$. At that temperature, 24 mmol of BuLi (1.6 M in hexane, 15 mL) was added dropwise via a syringe. After stirring the reaction mixture for 1 h at $0^{\circ} \mathrm{C}$, butyl bromide ($4.3 \mathrm{~mL}, 40 \mathrm{mmol}$) was added and the mixture was stirred for 5 days at reflux. The reaction was quenched by the addition of saturated $\mathrm{NH}_{4} \mathrm{Cl}(a q)$ solution and the reaction solution was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic phase was washed with water, dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The residue was used in the following step without any other purification (Betzer, et al. 1997).

To a solution of the preceding crude compound (S3) in methanol (60 mL) p toluenesulfonic acid ($1.2 \mathrm{~g}, 6 \mathrm{mmol}$) was added and the resulting solution was stirred at RT for $45-60 \mathrm{~min}$. Then, triethylamine was added (1.8 mL), and the solution was concentrated under reduced pressure. The mixture was taken into DCM and washed with water. The combined extracts were washed with brine, dried over MgSO_{4}, filtered, and concentrated under reduced pressure. Purification by column chromatography on silica gel gave the enynol S4 (hexane-EtOAc, yield: $2.43 \mathrm{~g}, 80 \%$), (Ukai, et al. 1974).

To the solution of $\mathbf{S 4}(\approx 17 \mathrm{mmol})$ in 60 mL of dry diethyl ether, activated MnO_{2} ($30 \mathrm{~g}, 0.3 \mathrm{~mol}$) was added, and the mixture was stirred overnight at RT. After filtration through Celite, the solution was concentrated under reduced pressure. The crude aldehyde (S5) was used in the next step (Betzer, et al. 1997).

A hexane solution of $\operatorname{BuLi}(4.8 \mathrm{~mL}, 12 \mathrm{mmol}, 2.5 \mathrm{M})$ was added dropwise to a solution of isopropyl(triphenyl)phosphonium iodide ($4.32 \mathrm{~g}, 10 \mathrm{mmol}$) in THF (30 mL) at $0{ }^{\circ} \mathrm{C}$, and stirred for further 1 h . The enyne aldehyde $\mathbf{S 5}(1.8 \mathrm{~g}, 12 \mathrm{mmol})$, was added dropwise to the resulting mixture and stirred for 1 h at RT . The reaction was quenched by the addition of saturated $\mathrm{NH}_{4} \mathrm{Cl}(a q)$ solution, and the organic layer was extracted with diethyl ether. The combined extracts were dried over MgSO_{4}, and chromatographed on a silica gel column to obtain pure S3a (hexane/EtOAc, yield: 1.65 g , 78\%), (Ming-Yuan, et al. 2004).

To a solution of $\mathbf{S 6}(352 \mathrm{mg}, 2 \mathrm{mmol})$ in DCM (30 mL) was added 12 mL solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{aq})(25 \%)$ followed by $3.4 \mathrm{mmol}(587 \mathrm{mg}) ~ m$-chloroperbenzoic acid dropwise at $0{ }^{\circ} \mathrm{C}$. The mixture was stirred at same temperature and monitored with TLC until the reactant was consumed completely. At the end of the epoxidation process, the mixture was extracted with DCM, dried over anhydrous MgSO_{4}, filtered, and concentrated under reduced pressure. The crude mixture was chromatographed on NEt_{3}-pretreated short silica gel column which afforded the enyne oxirane (Z)-1a as a colorless oil (hexaneEtOAc, yield: $269 \mathrm{mg}, 70 \%$).

3.2.2. Synthesis of (Z)-1d

(Z)-1d

To a solution of NaH ($525 \mathrm{~g}, 22 \mathrm{mmol}$) in THF (50 mL) was added triethyl phosphonoacetate ($4.8 \mathrm{~mL}, 24 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$, and the mixture stirred 1 h at RT. Subsequently, to the reaction mixture was added $\mathbf{S 5}(3 \mathrm{~g}, 20 \mathrm{mmol})$ dropwise at $-78{ }^{\circ} \mathrm{C}$ and stirred for 1 h at RT. The reaction was terminated by the addition of aqueous $\mathrm{NH}_{4} \mathrm{Cl}(a q)$ solution and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was dried over MgSO_{4}, filtered and concentrated under reduced pressure to give E / Z isomer 95:5 isomeric ratio. The crude mixture was purified on silica gel column to obtain $\mathbf{S} 7$ in pure isomeric form (hexane-EtOAc, yield: $3.17 \mathrm{~g}, 72 \%$), (Urabe, et al. 1997).

A DIBALH ($44 \mathrm{~mL}, 44 \mathrm{mmol}, 1.0 \mathrm{M}$ in cyclohexane) solution was added dropwise to the solution of $\mathbf{S 7}(3.85 \mathrm{~g}, 17.5 \mathrm{mmol})$ in DCM $(120 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$. After the reaction mixture was stirred for 4 h at the same temperature, $1 \mathrm{M} \mathrm{HCl}(a q)$ solution was added before extracting with DCM. The organic layers were combined, washed with brine, dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The crude mixture was subjected to silica gel column chromatography to purify the corresponding S8 compound (hexane-EtOAc, yield: $2.65 \mathrm{~g}, 85 \%$), (Kajikawa, et al. 2009).

The epoxidation of $\mathbf{S 8}(356 \mathrm{mg}, 2 \mathrm{mmol})$ and isolation of the product (Z) - $\mathbf{1 d}$ was performed as specified for (Z)-1a (hexane-EtOAc, yield: $233 \mathrm{mg}, 60 \%$).

3.2.3. Synthesis of (\mathbf{Z})-1i and (\mathbf{Z})-1i'

1-Hexyne ($2.3 \mathrm{~mL}, 20 \mathrm{mmol}$) was added dropwise to a solution of $\mathrm{BBr}_{3}(22 \mathrm{~mL}$, $22 \mathrm{mmol}, 1 \mathrm{M})$ in dry DCM at $-7{ }^{\circ} \mathrm{C}$. The mixture was allowed to warm to ambient temperature, and stirred for 1 h . The reaction mixture was re-cooled to $-78{ }^{\circ} \mathrm{C}$ and a solution of 2, 3-dimethylbutan-2,3-diol $(2.84 \mathrm{~g}, 24 \mathrm{mmol})$ in dry DCM $(20 \mathrm{~mL})$ was added dropwise. Following this addition, the mixture was warmed to ambient temperature and stirred for 1 h . Then, the mixture was quenched by brine and extracted with DCM. The combined organic layers were dried over MgSO_{4}, filtered and evaporated. The residue was purified on silica gel column to afford $\mathbf{S 9}$ as a colorless oil (hexane-EtOAc, yield: 3.57 g, 62\%), (Wang, et all. 2009).

To a stirred solution of $\mathbf{S 9}(4.64 \mathrm{~g}, 16 \mathrm{mmol})$ and $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(1 \mathrm{~mol} \%, 112 \mathrm{mg}$, 0.16 mmol) in dry THF (20 mL) was added a solution of 1-hexynylzinc chloride, which was generated by treatment of 1-hexyne ($1.6 \mathrm{~g}, 19.2 \mathrm{mmol}$) with $\mathrm{BuLi}(8.5 \mathrm{~mL}, 20.7$ $\mathrm{mmol}, 2.5 \mathrm{M}$ in hexane) in dry THF (20 mL) for 30 min at $-78^{\circ} \mathrm{C}$ and following treatment with $\mathrm{ZnCl}_{2}(2.72 \mathrm{~g}, 19.2 \mathrm{mmol})$ for 30 min at $0^{\circ} \mathrm{C}$. The resultant reaction mixture was stirred at RT for 1 h before quenching by $0.5 \mathrm{M} \mathrm{HCl}(a q)$. The content of the reaction medium was extracted with ether, washed with saturated $\mathrm{NaHCO}_{3}(a q)$ and brine, dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The residue was purified on silica gel column to afford $\mathbf{S 1 0}$ as a colorless oil (hexane-EtOAc, yield: $3.9 \mathrm{~g}, 84 \%$), (Wang, et all. 2009).

A mixture of $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(137 \mathrm{mg}, 0.15 \mathrm{mmol}, 3 \mathrm{~mol} \%$ of Pd$), \mathrm{AsPh}_{3}(184 \mathrm{mg}, 0.6$ $\mathrm{mmol}, 6 \mathrm{~mol} \%$ of As), and 15 mL of $1 \mathrm{M} \mathrm{KOH}(\mathrm{aq})$ in 50 mL of THF was cooled to $0^{\circ} \mathrm{C}$ before the addition of the compound $\mathbf{S 1 0}(2.9 \mathrm{~g}, 10 \mathrm{mmol})$. Then, a THF solution $(10 \mathrm{~mL})$ of trans- (Stille, et al. 1987) or cis-1-iodo-1-hexene (Denmark, et al. 2005) ($2.52 \mathrm{~g}, 12$ mmol), which were synthesized according to the literature procedures, was added dropwise and the reaction stirred for 30 min at RT. After the completion of the reaction, water was added to the resulting mixture before extracting with ether. The combined extracts were dried over MgSO_{4}, filtered and concentrated under reduced pressure. The residue was purified on silica gel column to afford $\mathbf{S 1 1}$ or $\mathbf{S 1 1}$ ' as yellowish oil products (hexane-EtOAc, yield of S11: $1.89 \mathrm{~g}, 77 \%$; yield of $\mathbf{S 1 1}$ ': $1.25 \mathrm{~g}, 51 \%$), (Fang, et al. 2010).

To a solution of $\mathbf{S 1 1}$ or $\mathbf{S 1 1}^{\prime}(492 \mathrm{mg}, 2 \mathrm{mmol})$ in DCM (30 mL) was added 12 mL solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{aq})(25 \%)$ followed by 587 mg of m-CPBA (3.4 mmol) at $0{ }^{\circ} \mathrm{C}$. The mixture was stirred at the same temperature and monitored with TLC until the reactant was consumed completely. At the end of the epoxidation process, the mixture
was extracted with DCM , dried over anhydrous MgSO_{4}, filtered, and concentrated under reduced pressure. The crude mixture was chromatographed on NEt_{3}-pretreated short silica gel column which afforded the enyne oxirane $(Z) \mathbf{- 1 i}$ or $(Z)-\mathbf{1 i}$ ' in about 85% purities as pale yellow oil products (hexane-EtOAc, yield of (Z)-1i: $300 \mathrm{mg}, 57 \%$; yield of (Z)1i': $158 \mathrm{mg}, 30 \%$).

3.2.4. Synthesis of (Z)-1m

To the mixture of commercially available, (Z)-pent-2-en-4-yn-1-ol (S1) (1.92g, 20 mmol) in 80 mL of dry diethyl ether, 37 g of activated $\mathrm{MnO}_{2}(0.4 \mathrm{~mol})$ was added, and the mixture was stirred overnight at RT. After filtration through Celite, the solution was concentrated under reduced pressure. The crude aldehyde was used in the next step (Betzer, et al. 1997).

To a solution of $\mathrm{NaH}(525 \mathrm{~g}, 22 \mathrm{mmol})$ in THF (50 mL) was added triethyl phosphonoacetate ($4.8 \mathrm{~mL}, 24 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$, and the mixture stirred 1 h at RT. Subsequently, to the reaction mixture was added $\mathbf{S 1 2}(1.88 \mathrm{~g}, 20 \mathrm{mmol})$ dropwise at -78 ${ }^{\circ} \mathrm{C}$ and stirred for 1 h at RT. The reaction was terminated by the addition of aqueous $\mathrm{NH}_{4} \mathrm{Cl}(a q)$ solution and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was dried over MgSO_{4}, filtered and concentrated under reduced pressure to give E / Z isomer 95:5 isomeric ratio. The crude mixture was purified on silica gel column to obtain $\mathbf{S 1 3}$ in pure isomeric form (hexane-EtOAc, yield: $2.3 \mathrm{~g}, 70 \%$), (Urabe, et al. 1997).

A DIBALH ($44 \mathrm{~mL}, 44 \mathrm{mmol}, 1.0 \mathrm{M}$ in cyclohexane) solution was added dropwise to the solution of $\mathbf{S 1 3}(2.87 \mathrm{~g}, 17.5 \mathrm{mmol})$ in $\mathrm{DCM}(120 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$. After the reaction mixture was stirred for 4 h at the same temperature, $1 \mathrm{M} \mathrm{HCl}(a q)$ solution was added before extracting with DCM. The organic layers were combined, washed with
brine, dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The crude mixture was subjected to silica gel column chromatography to purify the corresponding S14 compound (hexane-EtOAc, yield: 1.81g, 85\%), (Kajikawa, et al. 2009).

The epoxidation of $\mathbf{S 1 4}$ ($244 \mathrm{mg}, 2 \mathrm{mmol}$), isolation of the product $\mathbf{S 1 5}$, methylation of the pendant hydroxyl group of $\mathbf{S 1 5}(166 \mathrm{mg}, 1.2 \mathrm{mmol})$, and isolation of the product (Z)-1m were performed as specified for (Z)-1a and (Z)-1d, respectively, (hexane-EtOAc, yield of S15: $166 \mathrm{mg}, 60 \%$; yield of (Z)-1m: $144 \mathrm{mg}, 87 \%$).

3.2.5. Synthesis of (Z)-1q and hydroxyl tethered (Z)-2,4-enyne oxiranes

To a solution of alkynoic ester $\mathbf{S 1 6}(40 \mathrm{mmol})$ and acetic acid ($240 \mathrm{mmol}, 13.8$ mL or $512 \mathrm{mmol}, 20.8 \mathrm{~mL}$ when $\mathbf{S 1 6}$ is ethyl 4, 4-dimethylpent-2-ynoate and ethyl 3cyclohexylpropiolate) was added sodium iodide ($9.6 \mathrm{~g}, 64 \mathrm{mmol}$ or $19.2 \mathrm{~g}, 128 \mathrm{mmol}$ when $\mathbf{S 2 3}$ is ethyl 4, 4-dimethylpent-2-ynoate and ethyl 3-cyclohexylpropiolate) and stirred for 3 h at $115{ }^{\circ} \mathrm{C}$. After completion of the reaction, the brown mixture was transferred while hot to a separatory funnel containing water ($10 \mathrm{~mL} / \mathrm{mmol}$ of the ester substrate). The reaction flask was washed with a mixture of water (5 mL) and diethyl ether ($30 \mathrm{~mL} / \mathrm{mmol}$ of the ester substrate). The washings were combined in a separatory funnel. The phases were separated and the aqueous phase was extracted with diethyl ether.

The combined organic phases were treated sequentially with saturated aqueous $\mathrm{NaHCO}_{3}(a q), \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(a q)(1 \mathrm{M})$, and brine and then dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The product was purified by column chromatography on silica gel (hexane-EtOAc, yields; $\mathrm{R}^{2}=\mathrm{H}, 7.6 \mathrm{~g}, 84 \% ; \mathrm{R}^{2}=\mathrm{Me}, 8.4 \mathrm{~g}$, $87 \% ; \mathrm{R}^{2}=\mathrm{t}-\mathrm{Bu}, 9.6 \mathrm{~g}, 85 \% ; \mathrm{R}^{2}=\mathrm{Cy}, 10.6 \mathrm{~g}, 86 \%$), (Piers, et al. 1994).

A mixture of $\mathbf{S 1 7}(30 \mathrm{mmol}), \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(210.6 \mathrm{mg}, 0.3 \mathrm{mmol}, 1 \% \mathrm{~mol}$ of Pd$)$, and $\mathrm{CuI}(29 \mathrm{mg}, 0.15 \mathrm{mmol}, 0.5 \% \mathrm{~mol}$ of Cu$)$ in 140 mL of $\mathrm{Et}_{3} \mathrm{~N}$ was stirred for 10 min at RT under Ar, and then, to this mixture was added a terminal alkyne (36 mmol). The mixture was stirred at RT for 3 h . At the end of the reaction, water was added to the resulting mixture and then extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were dried over MgSO_{4}. The solvent was evaporated in vacuo and the product $\mathbf{S 1 8}$ was purified by column chromatography on silica gel (hexane-EtOAc, yields: $\mathrm{R}^{1}=\mathrm{Bu}, \mathrm{R}^{2}=\mathrm{H}, 4.97 \mathrm{~g}$, $92 \% ; \mathrm{R}^{1}=\mathrm{Ph}, \mathrm{R}^{2}=\mathrm{Me}, 5.97 \mathrm{~g}, 93 \% ; \mathrm{R}^{1}=\mathrm{Cy}, \mathrm{R}^{2}=\mathrm{Me}, 5.94 \mathrm{~g}, 90 \% ; \mathrm{R}^{1}=t-\mathrm{Bu}, \mathrm{R}^{2}=\mathrm{Me}$, $\left.4.95 \mathrm{~g}, 85 \% ; \mathrm{R}^{1}=\mathrm{Bu}, \mathrm{R}^{2}=\mathrm{t}-\mathrm{Bu} 6.23 \mathrm{~g}, 88 \%, \mathrm{R}^{1}=\mathrm{Bu}, \mathrm{R}^{2}=\mathrm{Cy}, 6.21 \mathrm{~g}, 79 \%\right)$.

A DIBALH ($\sim 3 \mathrm{eq}, 1.0 \mathrm{M}$ in cyclohexane) solution was added dropwise to the solution of $\mathbf{S 1 8}$ in DCM $(\sim 6 \mathrm{~mL} / \mathrm{mmol} \mathbf{S 1 8})$ at $-78{ }^{\circ} \mathrm{C}$. After the reaction mixture was stirred for 4 h at the same temperature, $1 \mathrm{M} \mathrm{HCl}(\mathrm{aq})$ solution was added before extracting with DCM. The organic layers were combined, washed with brine, dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The crude mixture was subjected to silica gel column chromatography to purify the corresponding $\mathbf{S 1 9}$ compound (hexaneEtOAc; yields of S19: $\mathrm{R}^{1}=\mathrm{Bu}, \mathrm{R}^{2}=\mathrm{H}, 3.14 \mathrm{~g}, 91 \% ; \mathrm{R}^{1}=\mathrm{Bu}, \mathrm{R}^{2}=\mathrm{Cy}, 4.89 \mathrm{~g}, 89 \% ; \mathrm{R}^{1}=$ $\mathrm{Cy}, \mathrm{R}^{2}=\mathrm{Me}, 3.60 \mathrm{~g}, 81 \% ; \mathrm{R}^{1}=t-\mathrm{Bu}, \mathrm{R}^{2}=\mathrm{Me}, 3.57 \mathrm{~g}, 94 \% ; \mathrm{R}^{1}=\mathrm{Bu}, \mathrm{R}^{2}=t-\mathrm{Bu}, 4.2 \mathrm{~g}, 88 \%$; $\mathrm{R}^{1}=\mathrm{Ph}, \mathrm{R}^{2}=\mathrm{Me}, 3.87 \mathrm{~g}, 90 \%$), (Kajikawa, et al. 2009).

To the solution of $\mathbf{S 1 9}(\approx 20 \mathrm{mmol})$ in 70 mL of dry diethyl ether, activated MnO_{2} $(35.1 \mathrm{~g}, 0.35 \mathrm{~mol})$ was added, and the mixture was stirred overnight at RT. After filtration through Celite, the solution was concentrated under reduced pressure. The crude aldehyde (S20) was used in the next step (Betzer, et al. 1997).

To a solution of $\mathrm{NaH}(1.1 \mathrm{eq})$ in THF ($2.5 \mathrm{~mL} / \mathrm{mmol} \mathbf{~ S 2 0}$) was added triethyl phosphonoacetate (1.2 eq) at $0^{\circ} \mathrm{C}$ and the mixture stirred for 1 h at RT. Subsequently, to the reaction mixture was added $\mathbf{S 2 0}(6.5-10 \mathrm{mmol})$ dropwise at $-78{ }^{\circ} \mathrm{C}$, and stirred for 1 h at RT. The reaction was terminated by the addition of saturated $\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{aq})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was dried over MgSO_{4}, filtered, and concentrated under reduced pressure to obtain $\mathbf{S 2 1}$ with E / Z isomeric ratios varying in the range of $97: 3$ to 95:5 (Urabe, et al. 1997). The crude mixture was purified on silica gel column (hexane-

EtOAc) to obtain $\mathbf{S 2 1}$ in pure isomeric form (yields of $\mathbf{S} 21 \mathrm{R}^{1}=\mathrm{Bu}, \mathrm{R}^{2}=\mathrm{H}, 1.48 \mathrm{~g}, 72 \%$; $\mathrm{R}^{1}=\mathrm{Bu}, \mathrm{R}^{2}=\mathrm{Cy}, 1.4 \mathrm{~g}, 68 \% ; \mathrm{R}^{1}=\mathrm{Cy}, \mathrm{R}^{2}=\mathrm{Me}, 1.97 \mathrm{~g}, 80 \% ; \mathrm{R}^{1}=t-\mathrm{Bu}, \mathrm{R}^{2}=\mathrm{Me}, 1.80 \mathrm{~g}$, $\left.82 \% ; \mathrm{R}^{1}=\mathrm{Bu}, \mathrm{R}^{2}=t-\mathrm{Bu}, 2.12 \mathrm{~g}, 81 \% ; \mathrm{R}^{1}=\mathrm{Ph}, \mathrm{R}^{2}=\mathrm{Me}, 2.04 \mathrm{~g}, 85 \%\right)$.

A DIBALH (~ 3 eq, 1.0 M in cyclohexane) solution was added dropwise to the solution of $\mathbf{S 2 1}$ in DCM $(\sim 6 \mathrm{~mL} / \mathrm{mmol} \mathbf{S 2 1})$ at $-78^{\circ} \mathrm{C}$. After the reaction mixture was stirred for 4 h at the same temperature, $1 \mathrm{M} \mathrm{HCl}(a q)$ solution was added before extracting with DCM. The organic layers were combined, washed with brine, dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The crude mixture was subjected to silica gel column chromatography to purify the corresponding $\mathbf{S 2 2}$ compound (hexaneEtOAc; yields of S22: $\mathrm{R}^{1}=\mathrm{Bu}, \mathrm{R}^{2}=\mathrm{H}, 1.12 \mathrm{~g}, 95 \% ; \mathrm{R}^{1}=\mathrm{Bu}, \mathrm{R}^{2}=\mathrm{Cy}, 1.1 \mathrm{~g}, 94 \% ; \mathrm{R}^{1}=\mathrm{Cy}$, $\mathrm{R}^{2}=\mathrm{Me}, 1.55 \mathrm{~g}, 95 \% ; \mathrm{R}^{1}=t-\mathrm{Bu}, \mathrm{R}^{2}=\mathrm{Me}, 1.39 \mathrm{~g}, 95 \% ; \mathrm{R}^{1}=\mathrm{Bu}, \mathrm{R}^{2}=t-\mathrm{Bu}, 1.6 \mathrm{~g}, 90 \% ;$ $\mathrm{R}^{1}=\mathrm{Ph}, \mathrm{R}^{2}=\mathrm{Me}, 1.6 \mathrm{~g}, 92 \%$), (Kajikawa, et al. 2009).

The epoxidation of $\mathbf{S 2 2}(2 \mathrm{mmol})$ and isolation of the corresponding $\mathbf{S 2 3}$ products were performed as specified for (Z)-1a (yields of $\mathbf{S 2 3}: \mathrm{R}^{1}=\mathrm{Bu}, \mathrm{R}^{2}=\mathrm{H}, 0.19 \mathrm{~g}, 55 \% ; \mathrm{R}^{1}=$ $\mathrm{Bu}, \mathrm{R}^{2}=\mathrm{Cy}, 0.26 \mathrm{~g}, 49 \% ; \mathrm{R}^{1}=\mathrm{Cy}, \mathrm{R}^{2}=\mathrm{Me}, 0.25 \mathrm{~g}, 57 \% ; \mathrm{R}^{1}=t-\mathrm{Bu}, \mathrm{R}^{2}=\mathrm{Me},(Z)-\mathbf{1 q}, 0.25$ $\left.\mathrm{g}, 65 \% ; \mathrm{R}^{1}=\mathrm{Bu}, \mathrm{R}^{2}=t-\mathrm{Bu}, 0.24 \mathrm{~g}, 50 \% ; \mathrm{R}^{1}=\mathrm{Ph}, \mathrm{R}^{2}=\mathrm{Me}, 0.26 \mathrm{~g}, 60 \%\right)$.

3.2.6. Synthesis of (Z)-1b, c, h, k, l, n, o, p, s

As for the alkylation of the pendant hydroxyl group of S23, a suspension of sodium hydride (1.1 eq) in DMF (1 mL) was added to a solution of $\mathbf{S 2 3}$ (1 mmol) in DMF $(1 \mathrm{~mL} / \mathrm{mmol} \mathbf{~ S 2 3})$ at $-20^{\circ} \mathrm{C}$. The mixture was stirred for further 30 min before the addition of methyl iodide (1.2 eq) or benzyl bromide (1.2 eq). The mixture was stirred for 4 h at the same temperature and then the reaction was terminated by the addition of MeOH (5 mL) and brine (5 mL), and extracted with DCM. The combined extracts were dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The crude mixture was subjected to column chromatography over NEt_{3}-pretreated short silica gel column to
afford the corresponding alkoxy-substituted enyne oxirane products as colorless oil (hexane-EtOAc, yields: (Z)-1b, $0.18 \mathrm{~g}, 87 \%$; (Z)-1c, $0.22 \mathrm{~g}, 77 \%$; (Z)-1h, $0.17 \mathrm{~g}, 90 \%$; (Z)-1k, $0.24 \mathrm{~g}, 87 \%$; (Z)-11, $0.21 \mathrm{~g}, 83 \%$; (Z)-1n, $0.19 \mathrm{~g} ; 84 \%$; (Z)-10, $0.19 \mathrm{~g}, 90 \%$; (Z)$\mathbf{1 p}, 0.24 \mathrm{~g}, 85 \%$; (Z)-1s, $0.20 \mathrm{~g}, 87 \%$), (Caldentey, et al. 2011).

3.2.7. Synthesis of (Z)-1e and (Z)-1r

(Z)-1d; $\mathrm{R}^{1}=\mathrm{Bu}, \mathrm{R}^{2}=\mathrm{Me}$
$(Z)-1 q ; \mathrm{R}^{1}=t-\mathrm{Bu}, \mathrm{R}^{2}=\mathrm{Me}$

(Z)-1e; $\mathrm{R}^{1}=\mathrm{Bu}, \mathrm{R}^{2}=\mathrm{Me}$
$(Z)-1 r ; R^{1}=t-B u, R^{2}=M e$

A mixture of (Z)-1d (194, mg, 1 mmol$)$ or (Z$) \mathbf{- 1 q}(227 \mathrm{mg}, 1.17 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}$ ($0.18 \mathrm{~mL}, 1.3 \mathrm{mmol}$), t-butyldimethylsilyl chloride ($0.2 \mathrm{~g}, 1.3 \mathrm{mmol}$), and 4 dimethylaminopyridine (DMAP) ($15 \mathrm{mg}, 0.12 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(12 \mathrm{~mL})$ was stirred at RT for 24 h . Then, the reaction was terminated by water and the content of the reaction flask was extracted with DCM. The organic solution was dried with MgSO_{4}, filtered, and evaporated. The residue was chromatographed over NEt_{3}-pretreated short silica gel column to afford silylated enyne oxiranes as a colorless oil (hexane-EtOAc, yields: (Z) $\mathbf{1 e}, 0.28 \mathrm{~g}, 79 \%$; (Z)-1r, $0.25 \mathrm{~g}, 81 \%$), (Schmidt, et al. 2002).

3.2.8. Synthesis of (Z)-1f and (Z)-1g

(Z)-1g

To the dry $\mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL})$ solution of $\mathbf{S 7}(1.1 \mathrm{~g}, 5 \mathrm{mmol})$ was added an ethereal (15 $\mathrm{mL})$ solution of 2.1 eq. $\mathrm{MeMgI}(5.25 \mathrm{~mL}, 10.5 \mathrm{mmol}, 2 \mathrm{M})$ dropwise at $-50^{\circ} \mathrm{C}$, and then the mixture stirred for 6 h at the same temperature. The mixture was allowed to warm to $0{ }^{\circ} \mathrm{C}$ and quenched by the addition of 30 mL of saturated $\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{aq})$ solution before extracting with $\mathrm{Et}_{2} \mathrm{O}$. The combined extracts were dried over MgSO_{4}, filtered, and evaporated. The resulting residue was purified on a silica gel column to afford $\mathbf{S 2 5}$ (hexane-EtOAc, yield: $0.49 \mathrm{~g}, 80 \%$).

The epoxidation of $\mathbf{S} \mathbf{2 5}$ ($412 \mathrm{mg}, 2 \mathrm{mmol}$), and isolation of the product $(Z)-\mathbf{1 f}$ was performed as specified for (Z) - $\mathbf{1 i}$ (hexane-EtOAc, yield: $0.27 \mathrm{~g}, 60 \%$).

The hydroxyl group of (Z)-1f ($222 \mathrm{mg}, 1.0 \mathrm{mmol}$) was methylated as described above furnishing the enyne oxirane (Z) $\mathbf{- 1 g}$ in 90% yield $(0.21 \mathrm{~g})$.

3.2.9. Synthesis of (\boldsymbol{E})-1b

Synthesis of (E) - $\mathbf{1 b}$ was performed starting from (E)-configured $\mathbf{S} \mathbf{1}$ following the same method employed for the synthesis of $(Z) \mathbf{- 1 b}$. Yields: $\left(\mathrm{R}^{1}=\mathrm{Bu}, \mathrm{R}^{2}=\mathrm{Me}\right):(E)-\mathbf{S} \mathbf{7}$, $1.12 \mathrm{~g}, 79 \% ;(E)-\mathbf{1 d}, 0.83 \mathrm{~g}, 91 \%$; (produced from 4.6 mmol of $(E)-\mathbf{S 8}), 0.43 \mathrm{~g}, 47 \%$; (E) $\mathbf{1 b}$ (produced from 2.2 mmol of $(E)-1 d), 0.40 \mathrm{~g}, 88 \%$.

3.2.10. Synthesis of (Z)-1t

$\operatorname{PBr}_{3}(1.4 \mathrm{~mL}, 13.8 \mathrm{mmol})$ was added dropwise to a mixture of DMF $(1.2 \mathrm{~mL}$, $15.3 \mathrm{mmol})$ and chloroform $(10 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ and then the resulting mixture was stirred for 1 h . Subsequently, 0.5 g of cyclohexanone (6 mmol) was added dropwise and stirred for 8 h at RT. The reaction was terminated with water, neutralized with the addition of solid NaHCO_{3}, and extracted with DCM. The extract was washed with brine, dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The purification on short silica gel column provided the compound $\mathbf{S 2 6}$ (hexane-EtOAc, $0.92 \mathrm{~g}, 81 \%$), (Lian, et al. 2006).

A mixture of $\mathbf{S 2 6}(945 \mathrm{mg}, 5 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(123 \mathrm{mg}, 0.1 \mathrm{mmol}, 2 \mathrm{~mol} \%$ of $\mathrm{Pd})$, and $\mathrm{CuI}(21 \mathrm{mg}, 0.1 \mathrm{mmol}, 2 \mathrm{mmol} \%$ of Cu$)$ in 10 mL of $\mathrm{Et}_{3} \mathrm{~N}$ was stirred for 10 min at RT followed by the addition of 1-hexyne $(0.5 \mathrm{~g}, 6 \mathrm{mmol})$. After being stirred for 3 h at RT , water was added and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic phases were dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel to obtain endocyclic enyne aldehyde S27 (hexane-EtOAc, $0.84 \mathrm{~g}, 90 \%$), (Lian, et al. 2006).

The conversion of $\mathbf{S} \mathbf{2 7}(840 \mathrm{mg}, 4.42 \mathrm{mmol})$ to dienyne ester $\mathbf{S 2 8}$ was performed by HWE reaction as described above (hexane-EtOAc, 0.96 g, 84%). Further successive synthetic procedures; which involved the reduction of the ester $\mathbf{S 2 8}(960 \mathrm{mg}, 3.7 \mathrm{mmol})$ to the enyne alcohol S29 ($730 \mathrm{mg}, 91 \%$ yield), the epoxidation of $\mathbf{S 2 9}$ ($436 \mathrm{mg}, 2 \mathrm{mmol}$)
to $\mathbf{S 3 0}$ ($260 \mathrm{mg}, 55 \%$ yield), and finally methyl derivatization of hydroxyl group of $\mathbf{S 3 0}$ ($260 \mathrm{mg}, 1.1 \mathrm{mmol}$) to obtain (Z) $\mathbf{- 1 r}(0.22 \mathrm{~g}, 90 \%$) were all conducted as described above.

3.2.11. Synthesis of (Z)-1j

To a stirred solution of diphenylethylphosphine oxide ($4.6 \mathrm{~g}, 20 \mathrm{mmol}$) in dry THF (70 mL) was added $\operatorname{BuLi}(2.5 \mathrm{M}$ in hexane, $8.8 \mathrm{~mL}, 22 \mathrm{mmol})$ dropwise at $0{ }^{\circ} \mathrm{C}$ and stirred for a further 30 min . The solution was cooled to $-78{ }^{\circ} \mathrm{C}$ and then the dienyne ester S18' (3.88 g, 20 mmol) was added dropwise. The solution was allowed to warm to ambient temperature and subsequently stirred overnight. Saturated $\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{aq})$ solution was added and subsequently its THF content was removed under reduced pressure. The aqueous residue was diluted with brine (20 mL) and extracted with DCM. The combined organic phases were dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The product $\mathbf{S 3 1}$ was purified by column chromatography on silica gel (hexaneEtOAc, yield: $1.9 \mathrm{~g}, 25 \%$), (Buss, et al. 1985).

To a stirred solution of $\mathbf{S 3 1}(1.9 \mathrm{~g}, 5 \mathrm{mmol})$ in ethanol (50 mL) was added NaBH_{4} ($189 \mathrm{mg}, 5 \mathrm{mmol}$) in one portion and stirred for a further 8 h at ambient temperature. The reaction afforded $\mathbf{S 3 2}$ enriched in threo form. Saturated $\mathrm{NH}_{4} \mathrm{Cl}(a q)(15 \mathrm{~mL})$ was added and subsequently its ethanol content was removed under reduced pressure. The aqueous mixture was diluted with brine (20 mL), extracted with DCM. The combined organic layers were dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The product $\mathbf{S 3 2}$ was isolated in pure threo form by column chromatography on silica gel (hexane-EtOAc, yield: $1.31 \mathrm{~g}, 69 \%$), (Buss, et al. 1985).

To a stirred solution of $\mathbf{S 3 2}$ ($1.31 \mathrm{~g}, 3.45 \mathrm{mmol}$) in DMF (50 ml) was added NaH (60% dispersion in oil; $138 \mathrm{mg}, 3.45 \mathrm{mmol}$) in one portion at ambient temperature and
stirred for a further 3 h . The reaction was quenched by the addition 25 mL of water and 15 mL of brine and subsequently extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined extracts were washed with water, dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The product $\mathbf{S 3 3}$ was purified by column chromatography on silica gel (hexane, yield: 330 mg , 59\%), (Buss, et al. 1985).

The epoxidation of $\mathbf{S 3 3}$ ($162 \mathrm{mg}, 1 \mathrm{mmol}$) and isolation of the product (Z) $\mathbf{- 1 \mathbf { j }}$ was performed as specified for (Z)-1i (Hexane-EtOAc, yield: $35.6 \mathrm{mg}, 20 \%$).

3.2.12. Carbamate derivatization of 2ba and crystal growth for X-ray analysis

The mixture of vinylallene ester ($45.2 \mathrm{mg}, 0.2 \mathrm{mmol}$), phenyl isocyanate (31 mg , 0.26 mmol), and dry pyridine ($15.8 \mathrm{mg}, 0.2 \mathrm{mmol}$) in 2 mL of toluene was stirred at RT for 5 days. The mixture was taken into $\mathrm{Et}_{2} \mathrm{O}$ and washed with brine, dried over MgSO_{4}, and filtered. The solvent was removed in vacuum, and the crude residue was purified by column chromatography on silica gel (hexane-EtOAc; 5:1, yield: $0.62 \mathrm{~g}, 80 \%$). The pure white solid material was dissolved in a boiled hexane and gradually cooled down to 30 ${ }^{\circ} \mathrm{C}$ all through overnight.

3.3. Characterization of Reactants

NMR spectra were recorded on a 400 MHz spectrometer. Chemical shifts are reported in ppm downfield from $\mathrm{Me}_{4} \mathrm{Si}$.

(Z)-1a
(Z)-1a: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 5.38(\mathrm{dq}, J=8.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{~d}, J=$ $8.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.34(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.87(\mathrm{~s}, 3 \mathrm{H}), 1.56-1.36(\mathrm{~m}, 4 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H}), 1.27$ (s, 3H), 0.9 (t, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 130.7,125.5,95.9$, 79.1, 62.6, 60.5, 30.9, 24.9, 24.2, 22.1, 19.6, 19.3, 13.7.

(Z)-1b: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 5.23$ (dd, $J=8.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.74 (dd, $J=$ $8.9,2.4 \mathrm{~Hz}, 1 \mathrm{H}$), 3.71 (dd, $J=11.6,3.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.40 (dd, $J=11.6,5.7 \mathrm{~Hz}, 1 \mathrm{H}$), 3.40 (s, 3 H), 3.08 (ddd, $J=5.7,3.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.87$ (d, $J=1.2 \mathrm{~Hz}, 3 \mathrm{H}$), $1.55-1.40(\mathrm{~m}, 4 \mathrm{H}), 0.92(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\{1 \mathrm{H}\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 131.5$, $125.7,95.9,78.7,72.5,59.2,58.3,54.2,30.7,23.8,21.9,19.1,13.6$.

(E)-1b
(E)-1b: $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 5.35$ (dd, $J=9.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.67 (dd, $J=11.3$, $3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{dd}, J=9.0,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{dd}, J=11.3,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{~s}, 3 \mathrm{H})$, 3.06 (ddd, $J=5.1,3.0,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.28(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.93$ (d, $J=1.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.54-$ $1.37(\mathrm{~m}, 4 \mathrm{H}), 0.90(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\{1 \mathrm{H}\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 131.3,125.2$, $90.3,82.4,80.0,59.2,58.6,51.9,30.7,21.9,18.9,18.2,13.6$.

(Z)-1c: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta: 7.24-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.14-7.10(\mathrm{~m}, 2 \mathrm{H}), 7.05$ (dt, $J=7.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.14(\mathrm{dd}, J=8.9,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.35\left(\mathrm{~d}, \mathrm{~A}\right.$ of $\mathrm{AB}, J_{\mathrm{AB}}=12.1 \mathrm{~Hz}$, $1 \mathrm{H}), 4.31\left(\mathrm{~d}, \mathrm{~B}\right.$ of $\left.\mathrm{AB}, J_{\mathrm{AB}}=12.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.01(\mathrm{dd}, J=8.9,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.45$ (dd, $J=11.4$, $3.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.25 (dd, $J=11.4,5.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.95 (ddd, $J=5.5,3.0,2.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.06 (t, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.71(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.29-1.16(\mathrm{~m}, 4 \mathrm{H}), 0.7(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta: 138.5,132.8,128.2,127.4,127.3,124.8,95.5,79.1$, $72.8,70.0,58.2,53.8,30.6,23.5,21.8,18.9,13.3$.

(Z)-1d: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 5.25(\mathrm{dd}, J=9.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.96$ (dd, $J=$ $12.6,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{dd}, J=9.0,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{dd}, J=12.6,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.11-3.09$ $(\mathrm{m}, 1 \mathrm{H}), 2.36(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.88(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.56-1.39(\mathrm{~m}, 4 \mathrm{H}), 0.92(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR ($100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta: 132.5,124.8,95.7,79.1,61.1,59.5$, 53.7, 30.6, 23.5, 21.8, 19.0, 13.3.

$(Z)-1 \mathbf{e}:{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 5.22(\mathrm{dd}, J=9.1,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{dd}, J=$ $12.1,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.76$ (dd, $J=9.1,2.4 \mathrm{~Hz}, 1 \mathrm{H}$), 3.71 (dd, $J=12.1,4.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.00 (ddd, $J=4.8,3.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.33(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.86(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.56-1.37(\mathrm{~m}$, 4 H), $0.91(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 131.9,125.3,95.7,78.7,63.0,60.1,54.3,30.8,25.8,23.8,22.0,19.1$, 18.3, 13.6, -5.3, -5.4.

(Z)-1f: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 5.26(\mathrm{dd}, J=8.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{dd}, J=$ $8.8,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.88(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.87(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 3 \mathrm{H})$, $1.78(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.57-1.40(\mathrm{~m}, 4 \mathrm{H}), 1.31(\mathrm{~s}, 3 \mathrm{H}), 1.25(\mathrm{~s}, 3 \mathrm{H}), 0.92(\mathrm{t}, J=6.8 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}\{1 \mathrm{H}\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 132.0,125.1,78.8,73.8,64.7,53.3,50.7,30.7$, 23.7, 22.2, 21.9, 21.0, 19.1, 13.5.

(Z)-1g: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 5.24$ (dd, $J=8.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.69 (dd, $J=$ $8.9,2.3 \mathrm{~Hz}, 1 \mathrm{H}$), $3.29(\mathrm{~s}, 3 \mathrm{H}), 2.87(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.87(\mathrm{~d}$, $J=1.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.56-1.39(\mathrm{~m}, 4 \mathrm{H}), 1.18(\mathrm{~s}, 3 \mathrm{H}), 1.15(\mathrm{~s}, 3 \mathrm{H}), 0.92(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 132.2,125.3,95.8,79.0,74.0,64.9,53.4,50.9,30.9$, 23.9, 22.4, 22.0, 21.1, 19.2, 13.7.

(Z)-1h: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 5.75(\mathrm{dtd}, J=10.8,2.4,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.44$ (dd, $J=10.8,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{dd}, J=8.8,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.74$ (dd, $J=11.2,2.8 \mathrm{~Hz}, 1 \mathrm{H})$, $3.44-3.38$ (m, 1H), 3.41 (s, 3H), 3.11 (dt, $J=5.4,2.6 \mathrm{~Hz}, 1 \mathrm{H}$), 2.36 (td, $J=6.8,2.3 \mathrm{~Hz}$, $2 \mathrm{H}), 1.58-1.41(\mathrm{~m}, 4 \mathrm{H}), 0.92(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ : $137.2,115.4,97.1,72.3,59.2,58.2,53.3,50.4,30.6,21.9,19.2,13.5$.

(Z)-1i: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta: 5.32(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{dd}, J=8.7,2.3$ $\mathrm{Hz}, 1 \mathrm{H}$), 2.71 (td, $J=5.5,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.11(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.10(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H})$, $1.54-1.15(\mathrm{~m}, 14 \mathrm{H}), 0.84-0.70(\mathrm{~m}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR ($100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta: 137.5,133.3$, 95.7, 78.6, 59.6, 56.4, 37.4, 31.8, 30.7, 30.3, 28.0, 22.4, 22.0, 21.8, 19.0, 13.7, 13.6, 13.3.

(Z)-1i': ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 5.38(\mathrm{~d}, J=9.0,1 \mathrm{H}), 3.90(\mathrm{dd}, J=9.0,4.8$ $\mathrm{Hz}, 1 \mathrm{H}$), 3.11 (q, $J=4.8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.37 (t, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}$), 2.15 (td, $J=7.6,0.8 \mathrm{~Hz}, 2 \mathrm{H}$), $1.60-1.25(\mathrm{~m}, 14 \mathrm{H}), 0.95-0.88(\mathrm{~m}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 130.8$, $128.9,96.4,78.1,59.1,55.4,37.5,30.8,30.2,28.5,28.2,22.5,21.9,21.9,19.2,14.0$, 13.9, 13.8.

(Z)-1j: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta: 5.16(\mathrm{dd}, J=8.9,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{dd}, J=$ $8.9,2.1 \mathrm{~Hz}, 1 \mathrm{H}$), $2.64(\mathrm{qd}, J=5.4,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.08(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.73(\mathrm{~d}, J=1.4$ $\mathrm{Hz}, 3 \mathrm{H}), 1.31-1.20(\mathrm{~m}, 4 \mathrm{H}), 1.04(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.72(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR (100 MHz, $\mathrm{C}_{6} \mathrm{D}_{6}$) $\delta: 133.7,123.9,95.2,79.3,57.4,55.2,30.6,23.4,21.8,19.0$, 17.3, 13.2.

$(Z) \mathbf{- 1 k}:{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 5.21(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{dd}, J=8.7$, $2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.72$ (dd, $J=11.5,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{dd}, J=11.5,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{~s}, 3 \mathrm{H})$,
3.07 (dt, $J=5.7,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.37$ (t, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), 2.02-1.97 (m, 1H), 1.76-1.20 (m, $14 \mathrm{H}), 0.92(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\{1 \mathrm{H}\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 136.3,129.1,97.0$, 76.7, 72.6, 59.2, 58.5, 54.3, 45.4, 31.7, 31.6, 30.8, 29.7, 26.2, 26.0, 22.0, 19.2, 13,6.

(Z)-11: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 5.24(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{dd}, J=8.9$, $2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{dd}, J=11.2,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.42-3.38(\mathrm{~m}, 1 \mathrm{H}), 3.41(\mathrm{~s}, 3 \mathrm{H}), 3.10$ (ddd, $J=5.6,3.1,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.59-1.41(\mathrm{~m}, 4 \mathrm{H}), 1.11(\mathrm{~s}, 9 \mathrm{H}), 0.93(\mathrm{t}$, $J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\{1 \mathrm{H}\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 140.2,127.4,97.4,72.7,59.2,58.5$, 54.7, 36.1, 30.8, 28.9, 21.9, 19.2, 13.6.

(Z)-1m: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta: 5.10(\mathrm{dq}, J=8.9,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{dd}, J=$ $8.9,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.25(\mathrm{dd}, J=11.5,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.06-2.99(\mathrm{~m}, 1 \mathrm{H}), 3.05(\mathrm{~s}, 3 \mathrm{H}), 2.83$ (ddd, $J=5.5,3.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.74(\mathrm{~s}, 1 \mathrm{H}), 1.57(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta: 136.0,122.9,82.4,81.5,72.2,58.4,58.0,53.2,22.7$.

$(Z)-\mathbf{1 n}:{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta: 5.14(\mathrm{dq}, J=9.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{dd}, J=$ $9.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.35 (dd, $J=11.3,3.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.16 (dd, $J=11.3,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.09$ (s, $3 \mathrm{H}), 2.91$ (ddd, $J=5.5,3.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.34(\mathrm{~m}, 1 \mathrm{H}), 1.71$ (d, $J=1.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.66-1.03$ (m, 10H); ${ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR (100 MHz, $\mathrm{C}_{6} \mathrm{D}_{6}$) $\delta: 132.7,124.7,99.5,79.2,72.4,58.5,58.1$, 53.7, 32.5, 32.4, 29.6, 25.7, 24.6, 23.5.

(Z)-10: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta: 5.12(\mathrm{dd}, J=8.5,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{dd}, J=$ $8.5,2.3 \mathrm{~Hz}, 1 \mathrm{H}$), 3.34 (dd, $J=11.5,3.1 \mathrm{~Hz}, 1 \mathrm{H}$), 3.16 (dd, $J=11.5,5.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.09 (s, 3 H), 2.90 (ddd, $J=5.5,3.1,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.68(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.12(\mathrm{~s}, 9 \mathrm{H}),{ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR (100 MHz, $\mathrm{C}_{6} \mathrm{D}_{6}$) $\delta: 132.8,124.5,103.4,77.7,72.4,58.5,58.0,53.7,30.6,27.9$, 23.4.

(Z)-1p: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.35-7.28(\mathrm{~m}, 5 \mathrm{H}), 5.22(\mathrm{dq}, J=8.9,1.4$ $\mathrm{Hz}, 1 \mathrm{H}), 4.61\left(\mathrm{~d}, \mathrm{~A}\right.$ of $\left.\mathrm{AB}, J_{\mathrm{AB}}=12.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.57\left(\mathrm{~d}, \mathrm{~B}\right.$ of $\left.\mathrm{AB}, J_{\mathrm{AB}}=12.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.81$ (dd, $J=11.3,3.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.76 (dd, $J=8.9,2.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.53 (dd, $J=11.3,5.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.13 (ddd, $J=5.5,3.0,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.86(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.24(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}\{1 \mathrm{H}\} \mathrm{NMR}$ (100 MHz, CDCl_{3}) $\delta: 140.0,137.9,131.3,128.4,127.7,125.7,104.0,77.1,73.3,70.1$, 58.6, 54.3, 31.0, 28.1, 23.8.

(Z)-1q: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta: 5.17$ (dd, $J=8.9,1.1 \mathrm{~Hz}, 1 \mathrm{H}$), 4.1 (dd, $J=$ $8.9,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.54-3.48(\mathrm{~m}, 1 \mathrm{H}), 3.34-3.30(\mathrm{~m}, 1 \mathrm{H}), 2.75-2.73(\mathrm{~m}, 1 \mathrm{H}), 1.73(\mathrm{~d}, \mathrm{~J}=$ $1.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.17(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR ($100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta: 132.5,124.6,103.7,77.6$, 61.0, 59.4, 53.6, 30.6, 27.9, 23.4.

(Z)-1r: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 5.21(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{dd}, J=12.0$, $3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~m}, 2 \mathrm{H}), 3.01(\mathrm{~m}, 1 \mathrm{H}), 1.86(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{~s}, 9 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.08(\mathrm{~s}$, $6 \mathrm{H}) ;{ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR: $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 131.6,125.3,103.8,77.1,62.9,60.2,54.3$, 31.0, 28.1, 25.9, 23.9, 18.3, -5,3.

(Z)-1s: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.46-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.32(\mathrm{~m}, 3 \mathrm{H}), 5.38$ (dq, $J=9.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.84 (dd, $J=9.0,2.4 \mathrm{~Hz}, 1 \mathrm{H}$), 3.74 (dd, $J=11.7,3.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.43 (dd, $J=11.7,6.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.42 (s, 3 H) 3.14 (ddd, $J=6.0,3.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.00(\mathrm{~d}$, $J=1.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\{1 \mathrm{H}\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 133.1,131.5,128.5,128.3$, 124.9,122.9, 94.5, 87.3, 72.5, 59.2, 58.5, 54.1, 23.4.

(Z)-1t
(Z)-1t: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 4.00-3.97(\mathrm{~m}, 1 \mathrm{H}), 3.73(\mathrm{dt}, J=11.2,2.8$ $\mathrm{Hz}, 1 \mathrm{H}$), 3.45-3.30 (m, 4H), 3.20 (sext, $J=2.8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.34 (t, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}$), 2.21-2.10 (m, 2H), 2.02-1.91 (m, 2H), 1.79-1.32 (m, 6H), 0.98-0.79 (m, 5H); ${ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 137.3,121.7,94.2,79.5,73.1,59.2,56.2,55.2,30.9,30.8,22.4,22.2$, 21.9, 21.7, 19.2, 13.6.

S31

S31: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $8: 7.86-7.74(\mathrm{~m}, 4 \mathrm{H}), 7.55-7.43(\mathrm{~m}, 6 \mathrm{H}), 6.34$ (d, $J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{dq}, J=13.5,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.89(\mathrm{~d}, J=1.2$ $\mathrm{Hz}, 3 \mathrm{H}), 1.60-1.51(\mathrm{~m}, 2 \mathrm{H}), 1.47-1.38(\mathrm{~m}, 5 \mathrm{H}), 0.92(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$.

S32
S32: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.83-7.71(\mathrm{~m}, 4 \mathrm{H}), 7.56-7.43(\mathrm{~m}, 6 \mathrm{H}), 5.53$ (dd, $J=8.3,1.2 \mathrm{~Hz}, 1 \mathrm{H}$), 4.80 (dt, $J=13.8,8.3 \mathrm{~Hz}, 1 \mathrm{H}$), 2.82-2.71 (m, 1H), 2.15 (t, $J=7.2$ $\mathrm{Hz}, 2 \mathrm{H}$), 1.65 (d, $J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.40-1.28(\mathrm{~m}, 4 \mathrm{H}), 1.04(\mathrm{dd}, J=17.2,7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.78$ (t, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}$).

S33: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 6.48(\mathrm{ddq}, J=15.4,10.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.11$ (d, $J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.80(\mathrm{dq}, J=15.4,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.86(\mathrm{~s}, 3 \mathrm{H})$, $1.79(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.60-1.52(\mathrm{~m}, 2 \mathrm{H}), 1.51-1.44(\mathrm{~m}, 2 \mathrm{H}), 0.94(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.

3.4. General Procedure for Carbonylation Reactions

A palladium complex, phosphine ligand and 1 mL of alcohol were added successively to a Schlenck apparatus that is attached to an Ar line and stirred 1 h at $25^{\circ} \mathrm{C}$ before the addition of the substrate. A CO full balloon was then fixed to the reaction vessel and 1 mL alcohol solution of the substrate was added. When the reaction was complete as judged by TLC analysis the solvent content was evaporated and the residue was purified by column chromatography on silica gel to afford $\mathbf{2}$ as a pale yellow oil.

3.5. Characterization of Products

The synthesized carbonylation products were analyzed by GC and GC-MS. NMR spectra were recorded on a 400 MHz spectrometer. Chemical shifts are reported in ppm downfield from $\mathrm{Me}_{4} \mathrm{Si}$. Infrared spectra were obtained by ATR method with neat samples. High-resolution mass spectral analyses of new compounds were performed using EI-High Resolution Double Focusing Magnetic Sector (ionization mode: 70 eV , emission current: 1 mA , source temperature: $160^{\circ} \mathrm{C}$, resolution: 10,000 (10% valley definition)) and ESILTQ Orbitrap (source voltage: +3.8 kV , capillary voltage: 41 V , capillary temperature: $275{ }^{\circ} \mathrm{C}$, tube lens voltage: 140 V , system resolution: 60,000 (10\% valley definition)). The coupling constants of olefinic protons and NOE studies confirmed (E)-configured structures. ${ }^{1} \mathrm{H}$ NMR analyses of vinylallene products, except that of $\mathbf{2 i a}$ ', were performed in $\mathrm{C}_{6} \mathrm{D}_{6}$. With this solvent, the ${ }^{1} \mathrm{H}$ NMR signals of diastereomers were resolved adequately, allowing to determine diastereomeric ratios smoothly. In contrast, when using CDCl_{3} solvent, diastereomeric signals were all overlapped.

2aa
2aa: Yield: $24.9 \mathrm{mg}(99 \%)$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 6.13$ (d, $J=16.0 \mathrm{~Hz}$, $1 \mathrm{H}), 5.76(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 2.22(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.85(\mathrm{~s}, 3 \mathrm{H}), 1.37-$ $1.27(\mathrm{~m}, 10 \mathrm{H}), 0.86(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\{1 \mathrm{H}\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 213.4,167.7$, $137.8,122.9,103.1,99.7,70.9,52.0,30.1,29.8,28.6,22.1,14.8,13.8$; FTIR ($v_{\max } / \mathrm{cm}^{-1}$): 3409, 2957, 2930, 2871, 1940, 1714, 1436, 1378, 1264, 1133, 1083, 1019, 966, 912, 723, 696; MS (EI, m/z): 252 (1, M ${ }^{+}$), 234 (2), 205 (7), 194 (7), 179 (5), 151 (23), 135 (35), 121 (15), 107 (32), 91 (43), 77 (25), 65 (15), 59 (46), 43 (100); HRMS (ESI) $\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{O}_{3}$ $(\mathrm{MH})^{+}, 253.1798$ (calculated); 253.1799 (found).

2ba
2ba: Yield: $25.2 \mathrm{mg}(94 \%)$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta: 6.43$ (dd, $J=15.7,1.6$ $\mathrm{Hz}, 1 \mathrm{H}$, major), 6.41 (dd, $J=15.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}$, minor), 5.51 (dd, $J=15.7,5.5 \mathrm{~Hz}, 1 \mathrm{H}$, major), 5.51 (dd, $J=15.7,5.5 \mathrm{~Hz}, 1 \mathrm{H}$, minor), 4.23-4.19 (m, 1H), 3.36 ($\mathrm{s}, 3 \mathrm{H}$, major), $3.35\left(\mathrm{~s}, 3 \mathrm{H}\right.$, minor), 3.03 (dd, A of $\left.\mathrm{ABX}, J_{\mathrm{AB}}=9.2 \mathrm{~Hz}, J_{\mathrm{AX}}=4.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.98(\mathrm{dd}, \mathrm{B}$ of $\left.\mathrm{ABX}, J_{\mathrm{AB}}=9.2 \mathrm{~Hz}, J_{\mathrm{BX}}=7.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.95(\mathrm{~s}, 3 \mathrm{H}), 2.39(\mathrm{td}, J=7.5,2.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.23$ (bs, $1 \mathrm{H}), 1.69(\mathrm{~s}, 3 \mathrm{H}), 1.47-1.39(\mathrm{~m}, 2 \mathrm{H}), 1.23$ (sext, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 0.78$ (t, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}$, major), 0.78 (t, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}$, minor); ${ }^{13} \mathrm{C}\{1 \mathrm{H}\} \mathrm{NMR}:\left(100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta: 213.5,166.9$, $129.2,127.3,103.1,76.5,70.6,58.2,51.3,30.3,28.9,22.2,14.5,13.7$; FTIR $\left(v_{\max } / \mathrm{cm}^{-1}\right)$: 3419, 2955, 2928, 2870, 1943, 1715, 1456, 1436, 1379, 1266, 1241, 1193, 1129, 1016, 966; MS (EI, m/z): 268 (1, M ${ }^{+}$), 236 (1), 223 (4), 205 (1), 191 (6), 151 (2), 135 (7), 121 (6), 93 (8), 91 (14), 77 (10), 59 (6), 45 (100); HRMS (ESI): $\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{O}_{4}(\mathrm{MH})^{+}, 269.1747$ (calculated); 269.1747 (found).

2ba'
2ba': Yield: $23.3 \mathrm{mg},(87 \%)$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta: 6.42$ (dd, $J=15.7,1.6$ $\mathrm{Hz}, 1 \mathrm{H}$, major), 6.40 (dd, $J=15.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}$, minor), 5.52 (dd, $J=15.7,5.7 \mathrm{~Hz}, 1 \mathrm{H}$), 4.22-4.20 (m, 1H), 3.37 ($\mathrm{s}, 3 \mathrm{H}$, major), $3.35\left(\mathrm{~s}, 3 \mathrm{H}\right.$, minor), $3.03\left(\mathrm{dd}, \mathrm{A}\right.$ of $\mathrm{ABX}, J_{\mathrm{AB}}=9.6$ $\left.\mathrm{Hz}, J_{\mathrm{Ax}}=4.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.99\left(\mathrm{dd}, \mathrm{B}\right.$ of $\left.\mathrm{ABX}, J_{\mathrm{AB}}=9.6 \mathrm{~Hz}, J_{\mathrm{BX}}=8.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.96(\mathrm{~s}, 3 \mathrm{H})$, 2.38 (td, $J=7.6 \mathrm{~Hz}, 1.8 \mathrm{~Hz}, 2 \mathrm{H}$), 2.29 (bs, 1H), 1.70 (s, 3H), 1.48-1.40 (m, 2H), 1.25 (sext, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 0.79(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\{1 \mathrm{H}\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta: 213.5,166.9$, $129.2,103.1,100.0,76.5,70.6,58.2,51.3,30.3,28.9,22.2,14.5,13.7 ;$ FTIR $\left(v_{\max } / \mathrm{cm}^{-1}\right)$: 3419, 2955, 2928, 2870, 1943, 1715, 1456, 1436, 1379, 1266, 1241, 1193, 1129, 1016, 966; MS (EI, m/z): 268 (1, M ${ }^{+}$), 236 (1), 223 (4), 205 (1), 191 (6), 151 (2), 135 (7), 121 (6), 93 (8), 91 (14), 77 (10), 59 (6), 45 (100); HRMS (ESI): $\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{O}_{4}(\mathrm{MH})^{+}, 269.1747$ (calculated); 269.1747 (found).

2bb
2bb: Yield: $23.7 \mathrm{mg}(84 \%) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta: 6.44$ (dd, $J=15.4,1.6$ $\mathrm{Hz}, 1 \mathrm{H}$, major), 6.43 (dd, $J=15.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}$, minor), 5.54 (dd, $J=15.4,5.6 \mathrm{~Hz}, 1 \mathrm{H}$), 4.24-4.18 (m, 1H), $3.99(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.03\left(\mathrm{dd}, \mathrm{A}\right.$ of $\mathrm{ABX}, J_{\mathrm{AB}}=9.6 \mathrm{~Hz}, J_{\mathrm{AX}}=4.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.98\left(\mathrm{dd}, \mathrm{B}\right.$ of $\left.\mathrm{ABX}, J_{\mathrm{AB}}=9.6 \mathrm{~Hz}, J_{\mathrm{BX}}=7.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.95(\mathrm{~s}, 3 \mathrm{H}), 2.41(\mathrm{td}, J=7.2,2.4$ $\mathrm{Hz}, 2 \mathrm{H}) 2.28$ (bs, 1H), 1.71 ($\mathrm{s}, 3 \mathrm{H}$), 1.49-1.41 (m, 2H), 1.25 (sext, J=7.2 Hz, 2H), 0.92 (t, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}$, major), 0.91 ($\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}$, minor) 0.79 (t, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}$, major), 0.79 ($\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}$, minor); ${ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR: $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 213.5,167.1,128.7$, 127.8, 103.1, 100.3, 76.4, 71.1, 60.8, 59.1, 30.2, 28.6, 22.2, 14.7, 14.3, 13.9; FTIR $\left(v_{\max } / \mathrm{cm}^{-1}\right): 3418,2956,2926,2858,1940,1708,1458,1367,1322,1261,1240,1172$, 1118, 1062, 1023, 965, 864, 713. MS (EI, m/z) : 282 (1, M ${ }^{+}$), 238 (1), 237 (4), 209 (2), 191 (5), 135 (3), 121 (5), 107 (6), 93 (8), 91 (12), 77 (7), 65 (5), 55 (7), 45 (100); HRMS (ESI): $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{O}_{4}(\mathrm{MH})^{+}, 283.1904$ (calculated); 283.1909 (found).

2bc
2bc: Yield: $25.8 \mathrm{mg}(87 \%)$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta: 6.44$ (dd, $J=15.8,1.6$ $\mathrm{Hz}, 1 \mathrm{H}$, major), 6.43 (dd, $J=15.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}$, minor), 5.53 (dd, $J=15.8,5.6 \mathrm{~Hz}, 1 \mathrm{H}$), 4.23-4.19 (m, 1H), 4.02-3.92 (m, 2H), 3.03 (dd, A of ABX, $J_{\mathrm{AB}}=9.6 \mathrm{~Hz}, J_{\mathrm{AX}}=4.4 \mathrm{~Hz}$, $1 \mathrm{H}), 2.98\left(\mathrm{dd}, \mathrm{B}\right.$ of $\left.\mathrm{ABX}, J_{\mathrm{AB}}=9.6 \mathrm{~Hz}, J_{\mathrm{BX}}=7.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.94(\mathrm{~s}, 3 \mathrm{H}), 2.41(\mathrm{td}, J=7.3$, $1.6 \mathrm{~Hz}, 2 \mathrm{H}$), 2.22 (bs, 1H), 1.72 (s, 3H), 1.49-1.33 (m, 4H), 1.25 (sext, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$), 0.79 (t, $J=7.4 \mathrm{~Hz}, 3 \mathrm{H}$, major), $0.80(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}$, minor), 0.66 ($\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}$, major), $0.65\left(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}\right.$, minor); ${ }^{13} \mathrm{C}\{1 \mathrm{H}\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 213.6,167.2$, $128.6,127.9,103.1,100.3,76.5,71.1,66.3,59.1,30.2,28.5,22.2,22.0,14.7,13.9,10.3 ;$ FTIR $\left(v_{\max } / \mathrm{cm}^{-1}\right): 3406,2958,2928,1941,1709,1458,1397,1322,1263,1172,1132$, 1062, 1015, 965, 713; MS (EI, m/z): 296 (1, M ${ }^{+}$), 278 (1), 251 (3), 236 (1), 209 (3), 191
(5), 135 (4), 121 (5), 91 (10), 79 (6), 65 (3), 45 (100); HRMS (ESI): $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{O}_{4}(\mathrm{MH})^{+}$, 297.2060 (calculated), 297.2065 (found).

2bd

2bd: Yield: $25.7 \mathrm{mg}(83 \%)$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta: 6.45$ (dd, $J=16.0,1.2$ $\mathrm{Hz}, 1 \mathrm{H}$, major), 6.43 (dd, $J=16.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}$, minor), 5.53 (dd, $J=16.0,5.6 \mathrm{~Hz}, 1 \mathrm{H}$, major), 5.53 (dd, $J=16,5.6 \mathrm{~Hz}, 1 \mathrm{H}$, minor), 4.24-4.19 (m, 1H), 4.09-3.99 (m, 2H), 3.04 (dd, A of ABX, $\left.J_{\mathrm{AB}}=9.6 \mathrm{~Hz}, J_{\mathrm{AX}}=4.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.99\left(\mathrm{dd}, \mathrm{B}\right.$ of $\mathrm{ABX}, J_{\mathrm{AB}}=9.6 \mathrm{~Hz}, J_{\mathrm{BX}}=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.95(\mathrm{~s}, 3 \mathrm{H}), 2.41(\mathrm{td}, J=7.4,2.4 \mathrm{~Hz}, 2 \mathrm{H}) 2.26(\mathrm{bs}, 1 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H}$, minor), 1.73 (s, 3 H , major), 1.46 (quint, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), 1.36 (quint, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$), 1.25 (sext, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.12(\mathrm{sext}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 0.80(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}$, minor), $0.79(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 3 \mathrm{H}$, major), $0.68\left(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}\right.$, major), $0.67\left(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}\right.$, minor) ${ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 213.6,167.2,128.6,127.8,103.1,100.3,76.4,71.1,64.7$, $59.1,30.6,30.2,28.5,22.2,19.2,14.7,13.9,13.7$; FTIR $\left(v_{\max } / \mathrm{cm}^{-1}\right): 3428,2958,2929$, 2873, 1940, 1710, 1458, 1379, 1322, 1261, 1131, 1062, 1016, 965, 713; MS (EI, m/z): 310 ($1, \mathrm{M}^{+}$), 293 (1), 265 (1), 235 (2), 207 (4), 191 (4), 161 (3), 121 (3), 105 (5), 91 (10), 79 (5), 57 (15), 45 (100); HRMS (ESI): $\mathrm{C}_{18} \mathrm{H}_{31} \mathrm{O}_{4}(\mathrm{MH})^{+}, 311.2217$ (calculated), 311.2219 (found).

2be

2be: Yield: 26.1 mg (88%); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta: 6.43$ (dd, $J=16.0,1.6$ $\mathrm{Hz}, 1 \mathrm{H}$), 5.51 (dd, $J=16.0,5.6 \mathrm{~Hz}, 1 \mathrm{H}$), 5.05 (sept, $J=6.4 \mathrm{~Hz}, 1 \mathrm{H}$, major), 5.05 (sept, $J=$ $6.4 \mathrm{~Hz}, 1 \mathrm{H}$, minor), 4.23-4.16 (m, 1H), $3.02\left(\mathrm{dd}, \mathrm{A}\right.$ of $\mathrm{ABX}, J_{\mathrm{AB}}=9.2 \mathrm{~Hz}, J_{\mathrm{AX}}=4.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.97\left(\mathrm{dd}, \mathrm{B}\right.$ of $\left.\mathrm{ABX}, J_{\mathrm{AB}}=9.2 \mathrm{~Hz}, J_{\mathrm{BX}}=7.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.94(\mathrm{~s}, 3 \mathrm{H}), 2.42(\mathrm{td}, J=7.6$, $2.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.21(\mathrm{bs}, 1 \mathrm{H}), 1.71(\mathrm{~s}, 3 \mathrm{H}), 1.45$ (quint, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$), 1.25 (sext, $J=7.6$ $\mathrm{Hz}, 2 \mathrm{H}), 1.02(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.01(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.79(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}$, major),
0.79 (t, $J=7.6 \mathrm{~Hz}, 3 \mathrm{H}$, minor), ${ }^{13} \mathrm{C}\{1 \mathrm{H}\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 213.5,166.7,128.9$, 127.6, 103.0, 100.7, 76.5, 71.1, 68.1, 59.1, 30.2, 28.6, 22.2, 21.9, 21.8, 14.7, 13.9; FTIR $\left(v_{\max } / \mathrm{cm}^{-1}\right) \delta: 3442,2957,2927,1942,1706,1457,1373,1322,1264,1107,1062,1014$, 966,831,713; MS (EI, m/z): 296 (1, M ${ }^{+}$), 282 (1), 251 (2), 209 (3), 191 (4), 180 (1), 121 (6), 107 (4), 91 (7), 77 (6), 55 (4), 45 (100); HRMS (ESI): $\mathrm{C}_{17} \mathrm{H}_{29} \mathrm{O}_{4}(\mathrm{MH})^{+}, 297.2060$ (calculated), 297.2060 (found).

2bg
2bg: Yield: $26.8 \mathrm{mg}(91 \%)$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta: 6.43$ (dd, $J=15.6,0.8$ $\mathrm{Hz}, 1 \mathrm{H}), 5.72-5.62(\mathrm{~m}, 1 \mathrm{H}), 5.52(\mathrm{dd}, J=15.6,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{dq}, J=18.8,1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.89(\mathrm{dq}, J=6.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.53-4.41(\mathrm{~m}, 2 \mathrm{H}), 4.23-4.19(\mathrm{~m}, 1 \mathrm{H}), 3.04(\mathrm{dd}, \mathrm{A}$ of $\left.\mathrm{ABX}, J_{\mathrm{AB}}=9.6 \mathrm{~Hz}, J_{\mathrm{AX}}=4.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.99\left(\mathrm{dd}, \mathrm{B}\right.$ of $\mathrm{ABX}, J_{\mathrm{AB}}=9.6 \mathrm{~Hz}, J_{\mathrm{BX}}=7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 2.95(\mathrm{~s}, 3 \mathrm{H}), 2.39(\mathrm{td}, J=7.2,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.31(\mathrm{bs}, 1 \mathrm{H}), 1.70(\mathrm{~s}, 3 \mathrm{H}), 1.44$ (quint, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), 1.24 (sext, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 0.79(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}$, minor), $0.78(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 3 \mathrm{H}$, major); ${ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 213.7,166.8,132.4,128.5,128.1$, $117.4,103.2,100.0,76.4,71.1,65.2,59.1,30.1,28.5,22.2,14.7,13.9 ;$ FTIR $\left(v_{\max } / \mathrm{cm}^{-1}\right)$: 3417, 2956, 2928, 2873, 1939, 1710, 1647, 1456, 1379, 1322, 1259, 1236, 1172, 1129, 1062, 1015, 965, 928, 837, 713. MS (EI, m/z): 294 (1, M ${ }^{+}$), 261 (1), 249 (2), 221 (1), 191 (5), 165 (3), 121 (6), 91 (11), 77 (9), 65 (4), 55 (7), 45 (100); HRMS (ESI): $\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{O}_{4}$ $(\mathrm{MH})^{+}, 295.1904$ (calculated), 295.1910 (found).

2ca

2ca: Yield: 31.0 mg (90%); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) 8: 7.24-7.01 (m, 5H), 6.44 (dd, $J=15.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}$, major), 6.42 (dd, $J=15.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}$, minor), 5.49 (dd, $J=15.8$, $5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.29-4.23(\mathrm{~m}, 1 \mathrm{H}), 4.21\left(\mathrm{~d}, \mathrm{~A}\right.$ of $\left.\mathrm{AB}, J_{\mathrm{AB}}=12.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.19(\mathrm{~d}, \mathrm{~B}$ of AB , $\left.J_{\mathrm{AB}}=12.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.36\left(\mathrm{~s}, 3 \mathrm{H}\right.$, major) $3.34\left(\mathrm{~s}, 3 \mathrm{H}\right.$, minor), $3.18\left(\mathrm{dd}, \mathrm{A}\right.$ of $\mathrm{ABX}, J_{\mathrm{AB}}=9.2$
$\left.\mathrm{Hz}, J_{\mathrm{AX}}=3.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.11\left(\mathrm{dd}, \mathrm{B}\right.$ of $\left.\mathrm{ABX}, J_{\mathrm{AB}}=9.2 \mathrm{~Hz}, J_{\mathrm{BX}}=7.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.38$ (td, $J=$ $7.6,2.8 \mathrm{~Hz}, 2 \mathrm{H}$), 1.69 (s, 3H), 1.42 (quint, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$), 1.23 (sext, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$), 0.78 $(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\{1 \mathrm{H}\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 213.6,167.6,137.7,128.5,128.4$, $128.0,127.9,127.8,103.2,99.9,74.0,73.4,71.2,52.1,30.1,28.6,22.2,14.7,13.9 ;$ FTIR $\left(v_{\max } / \mathrm{cm}^{-1}\right): 3416,2954,2928,2869,1943,1714,1454,1435,1379,1322,1266,1134$, 1016, 965, 738, 698. MS (EI, m/z): 344 (1, M ${ }^{+}$), 312 (1), 279 (3), 253 (2), 191 (2), 167 (20), 149 (77), 113 (10), 104 (12), 91 (65), 70 (35), 57 (42), 57 (54), 43 (80), 41 (100); HRMS (ESI): $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{O}_{4}(\mathrm{MH})^{+}, 345.2060$ (calculated); 345.2065 (found).

2da
2da: Yield: 21.3 mg (84%); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta: 6.35(\mathrm{~d}, J=16.0 \mathrm{~Hz}$, 1 H , major), 6.34 (d, $J=16.0 \mathrm{~Hz}, 1 \mathrm{H}$, minor), 5.48 (dd, $J=16.0,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.10-4.04$ (m, 1H), 3.44-3.24 (m, 2H), 3.37 ($\mathrm{s}, 3 \mathrm{H}$), 2.39 (td, $J=7.6,3.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.70(\mathrm{~s}, 3 \mathrm{H}), 1.44$ (quint, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$), 1.25 (sext, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 0.80(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}$, major), 0.80 (t, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}$, minor); ${ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR: ($100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta: 213.6,167.0,129.2,128.0$, $103.2,100.1,72.8,66.3,51.4,30.3,28.9,22.2,14.5,13.7$; FTIR $\left(v_{\max } / \mathrm{cm}^{-1}\right): 3384,2954$, 2928, 2871, 1940, 1715, 1436, 1379, 1265, 1240, 1131, 1076, 1017, 965, 875; LCMS/MS: 255 (100, MH^{+}), 237 (20), 227 (8), 225 (20), 223 (42), 207 (12), 205 (50), 195 (12), 193 (15), 177 (18), 175 (18), 163 (15), 149 (8); HRMS (ESI): $\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{O}_{4}(\mathrm{MH})^{+}$, 255.1596 (calculated); 255.1591 (found).

2ea
2ea: Yield: 30.2 mg (82%); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta: 6.45$ (dd, $J=15.8,1.6$ $\mathrm{Hz}, 1 \mathrm{H}$, major), 6.34 (dd, $J=15.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}$, minor) 5.54 (dd, $J=15.8,5.6 \mathrm{~Hz}, 1 \mathrm{H}$, major), 5.50 (dd, $J=15.8,5.6 \mathrm{~Hz}, 1 \mathrm{H}$, minor), 4.19-4.10 (m, 1H), 3.42 (dd, A of ABX, $\left.J_{\mathrm{AB}}=9.6 \mathrm{~Hz}, J_{\mathrm{AX}}=4.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.37(\mathrm{~s}, 3 \mathrm{H}), 3.31\left(\mathrm{dd}, \mathrm{B}\right.$ of $\mathrm{ABX}, J_{\mathrm{AB}}=9.6 \mathrm{~Hz}, J_{\mathrm{BX}}=7.2$ $\mathrm{Hz}, 1 \mathrm{H}), 2.39(\mathrm{td}, J=7.2,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.24(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.72$ (s, 3 H , major), 1.69 (s, 3 H, minor), 1.44 (quint, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), 1.24 (sext, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), 0.89 (s, 9 H, minor),
0.85 (s, 9H, major), 0.79 (t, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}$), -0.06 (s, 6 H); ${ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR (100 MHz , $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta: 213.5,166.9,129.2,127.5,103.1,100.0,72.4,67.2,51.3,30.3,28.9,25.6,22.2$, 18.1, 14.5, 13.7, -5.6, -5.7; FTIR ($v_{\max } / \mathrm{cm}^{-1}$): 3465, 2954, 2928, 2858, 1940, 1716, 1463, 1435, 1361, 1258, 1118, 963, 837, 777; MS (EI, m/z): 368 (1, M ${ }^{+}$), 339 (1), 311 (2), 279 (1), 249 (3), 219 (2), 191 (4), 175 (5), 159 (6), 145 (3), 121 (5), 117 (15), 105 (30), 91 (20), 77 (20), 75 (100), 73 (50), 57 (85), 41 (60); HRMS (ESI): $\mathrm{C}_{20} \mathrm{H}_{37} \mathrm{O}_{4} \mathrm{Si}(\mathrm{MH})^{+}$, 369.2456 (calculated), 369.2470 (found).

2fa
2fa: Yield: $25.4 \mathrm{mg}(90 \%) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta: 6.29$ (dd, $J=15.7,1.2$ $\mathrm{Hz}, 1 \mathrm{H}$, minor), 6.28 (dd, $J=15.7,1.2 \mathrm{~Hz}, 1 \mathrm{H}$, major), $5.63(\mathrm{dd}, J=15.7,6.6 \mathrm{~Hz}, 1 \mathrm{H}$, minor), 5.62 (dd, $J=15.7,6.6 \mathrm{~Hz}, 1 \mathrm{H}$, major), $3.73(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.36$ (s, 3 H , major), 3.34 (s, 3H, minor), $2.38(\mathrm{td}, J=7.2,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.15(\mathrm{bs}, 1 \mathrm{H}), 2.00(\mathrm{bs}, 1 \mathrm{H}), 1.71(\mathrm{~s}$, 3 H , minor), 1.71 (s, 3H, major), 1.43 (quint, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), 1.23 ($\mathrm{sext}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), $1.06(\mathrm{~s}, 3 \mathrm{H}$, major), 1.05 ($\mathrm{s}, 3 \mathrm{H}$, minor), $1.03(\mathrm{~s}, 3 \mathrm{H}$, minor), 1.02 ($\mathrm{s}, 3 \mathrm{H}$, major), 0.78 (t, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR ($100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta: 213.5,166.9,129.3,128.4,103.2$, $100.0,79.2,72.3,51.3,30.3,28.8,26.1,23.8,22.1,14.5,13.6 ;$ FTIR $\left(v_{\max } / \mathrm{cm}^{-1}\right): 3407$, 2956, 2929, 2860, 1940, 1714, 1436, 1377, 1265, 1242, 1133, 1015, 965, 898; MS (EI, $\mathrm{m} / \mathrm{z}): 282\left(2, \mathrm{M}^{+}\right), 250(2), 222(1), 191$ (3), 164 (4), 134 (4), 121 (20), 91 (7), 77 (16), 65 (5), 59 (100), 43 (37); HRMS (ESI): $\mathrm{C}_{16} \mathrm{H}_{27} \mathrm{O}_{4}(\mathrm{MH})^{+}: 283.1904$ (calculated), 283.1908 (found).

2ga

2ga: Yield: $26.3 \mathrm{mg}(89 \%)$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta: 6.45$ (dd, $J=15.8,1.6$ $\mathrm{Hz}, 1 \mathrm{H}$), 5.68 (dd, $J=15.8,6.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.96 (d, $J=6.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.36 ($\mathrm{s}, 3 \mathrm{H}$, major), 3.33 ($\mathrm{s}, 3 \mathrm{H}$, minor), $2.86(\mathrm{~s}, 3 \mathrm{H}), 2.44(\mathrm{bs}, 1 \mathrm{H}), 2.38(\mathrm{td}, J=7.6,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H}), 1.43$ (quint, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$), 1.23 (sext, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$), $0.93(\mathrm{~s}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 3 \mathrm{H}), 0.78(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR ($100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta: 213.4,166.9,129.1,103.2,99.9,77.6$,
$77.1,51.3,48.6,30.3,28.9,22.1,20.2,19.2,14.6,13.7$; FTIR $\left(v_{\max } / \mathrm{cm}^{-1}\right): 3446,2953$, 2928, 2859, 1939, 1712, 1459, 1435, 1380, 1321, 1264, 1241, 1118, 1062, 1015, 965, 861, 833, 740, 713; MS (EI, m/z): 296 (1, M ${ }^{+}$), 265 (1), 233 (1), 221 (1), 191 (1), 121 (3), 91 (5), 74 (4), 73 (100), 59 (5), 43 (20); HRMS (ESI): $\mathrm{C}_{17} \mathrm{H}_{29} \mathrm{O}_{4}(\mathrm{MH})^{+}: 297.2060$ (calculated), 297.2063 (found).

2ha
2ha: Yield: 22.1 mg (87%): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta: 6.24$ (ddd, $J=15.2$, $10.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.98(\mathrm{dt}, J=10.6,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.46(\mathrm{ddd}, J=15.2,4.8,0.8 \mathrm{~Hz}, 1 \mathrm{H})$, 4.16-4.08 (m, 1H), $3.36\left(\mathrm{~s}, 3 \mathrm{H}\right.$, major), $3.35\left(\mathrm{~s}, 3 \mathrm{H}\right.$, minor), $2.99\left(\mathrm{dd}, \mathrm{A}\right.$ of $\mathrm{ABX}, J_{\mathrm{AB}}=$ $\left.9.6 \mathrm{~Hz}, J_{\mathrm{AX}}=4.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.93\left(\mathrm{dd}, \mathrm{B}\right.$ of $\left.\mathrm{ABX}, J_{\mathrm{AB}}=9.6 \mathrm{~Hz}, J_{\mathrm{BX}}=7.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.93(\mathrm{~s}$, $3 \mathrm{H}), 2.41-2.29(\mathrm{~m}, 2 \mathrm{H}), 2.20(\mathrm{bs}, 1 \mathrm{H}), 1.42$ (quint, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), 1.23 (sext, $J=7.2 \mathrm{~Hz}$, $2 \mathrm{H}), 0.79\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}\right.$, minor), $0.78\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}\right.$, major) ${ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR (100 $\mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta: 213.8,166.6,132.7,124.1,101.9,97.0,76.3,70.3,58.2,51.3,30.2,28.6$, 22.1, 13.6. FTIR ($v_{\max } / \mathrm{cm}^{-1}$): 3423, 2955, 2930, 2872, 1941, 1716, 1436, 1322, 1268, 1133, 1062, 967, 853, 713; MS (EI, m/z): 254 (1, M ${ }^{+}$), 223 (1), 209 (2), 177 (4), 149 (3), 135 (4), 125 (6), 107 (8), 91 (7), 77 (10), 65 (5), 59 (10), 45 (100); HRMS (ESI): $\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{O}_{4}$ $(\mathrm{M})^{+}: 255.1591$ (calculated), 255.1593 (found).

2ia

2ia: Yield: $26.4 \mathrm{mg}(82 \%) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 6.08(\mathrm{~d}, J=15.8 \mathrm{~Hz}$, $1 \mathrm{H}), 5.72(\mathrm{dd}, J=15.8,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 2.31-2.15(\mathrm{~m}$, $4 \mathrm{H}), 1.62-1.28(\mathrm{~m}, 16 \mathrm{H}), 0.93(\mathrm{~m}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR: $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 213.1$, $167.8,132.8,126.2,108.2,101.4,73.1,52.0,37.0,30.3,29.6,28.7,28.3,27.6,22.6,22.4$, $22.3,14.0,13.9,13.8 ;$ FTIR $\left(v_{\max } / \mathrm{cm}^{-1}\right): 3418,2956,2929,2860,1937,1716,1465,1435$, 1378, 1265, 1133, 1072, 964; MS (EI, m/z): 322 (1, M ${ }^{+}$), 236 (3), 194 (5), 163 (5), 119 (5), 105 (6), 91 (17), 85 (12), 69 (30), 57 (50), 41 (100); HRMS (ESI): $\mathrm{C}_{20} \mathrm{H}_{35} \mathrm{O}_{3}(\mathrm{MH})^{+}$: 323.2581 (calculated), 323.2584 (found).

2ia'
2ia': Yield: $25.5 \mathrm{mg}(80 \%)$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 6.08(\mathrm{~d}, J=15.7 \mathrm{~Hz}$, $1 \mathrm{H}), 5.72(\mathrm{dd}, J=15.7,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{q}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 2.30-2.14(\mathrm{~m}$, $4 \mathrm{H}), 1.71-1.18(\mathrm{~m}, 15 \mathrm{H}), 0.97-0.82(\mathrm{~m}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}\{1 \mathrm{H}\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 213.1$, $167.8,132.8,126.1,108.2,101.4,73.0,52.0,37.1,30.4,29.6,28.7,28.4,27.6,22.6,22.4$, 22.3, 14.0, 13.9; FTIR ($v_{\max } / \mathrm{cm}^{-1}$): 3422, 2956, 2928, 2859, 1937, 1716, 1465, 1435, 1379, 1264, 1132, 1074, 963; MS (EI, m/z): 322 (1, M ${ }^{+}$), 236 (20), 231 (21), 205 (20), 195 (36), 194 (90), 179 (35), 177 (42), 165 (39), 163 (50), 152 (38), 135 (55), 121 (61), 107 (68), 105 (60), 93 (72), 91 (74), 85 (69), 79 (62), 57 (100), 55 (41); HRMS (ESI) $\mathrm{C}_{20} \mathrm{H}_{35} \mathrm{O}_{3}(\mathrm{MH})^{+}$: 323.2581 (calculated), 323.2584 (found).

2ja

2ja: Yield: $20.7 \mathrm{mg}(87 \%)$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta: 6.16$ (dd, $J=15.6,1.2$ $\mathrm{Hz}, 1 \mathrm{H}$), 5.50 (dd, $J=15.6,6.2 \mathrm{~Hz}, 1 \mathrm{H}$, minor), 5.49 (dd, $J=15.6,6.2 \mathrm{~Hz}, 1 \mathrm{H}$, major), 4.03 (quint, $J=6.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.38 (s, 3H, major), 3.37 (s, 3H, minor), 2.39 (td, $J=7.4,1.2$ $\mathrm{Hz}, 2 \mathrm{H}$), $1.70(\mathrm{~s}, 3 \mathrm{H}), 1.49-1.41(\mathrm{~m}, 2 \mathrm{H}), 1.25(\mathrm{sext}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.04(\mathrm{~d}, J=6.2 \mathrm{~Hz}$, $3 \mathrm{H}), 0.80\left(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}\right.$, minor), $0.80\left(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}\right.$, major); ${ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR (100 $\mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta: 213.3,166.9,134.7,125.2,103.1,99.9,68.0,51.2,30.3,28.9,23.1,22.1$, 14.5, 13.6; FTIR ($v_{\max } / \mathrm{cm}^{-1}$): 3410, 2956, 2928, 1941, 1715, 1436, 1322, 1266, 1135, 1062, 1016, 965, 714; MS (EI, m/z): 238 (3, M ${ }^{+}$), 205 (5), 194,(15), 181 (15), 164 (13), 151 (55), 135 (45), 121 (100), 107 (30), 93 (90), 77 (45), 65 (10), 55 (14), 43 (92); HRMS (ESI): $\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{O}_{3}(\mathrm{MH})^{+}: 239.1648$ (calculated), 239.1652 (found).

2ka
2ka: Yield: 29.9 mg (89%): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta: 6.27$ (dd, $J=15.8,1.4$ $\mathrm{Hz}, 1 \mathrm{H}$, major), 6.26 (dd, $J=15.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}$, minor), 5.78 (dd, $J=15.8,5.5 \mathrm{~Hz}, 1 \mathrm{H})$, 4.27-4.23 (m, 1H), $3.38\left(\mathrm{~s}, 3 \mathrm{H}\right.$, major), $3.37\left(\mathrm{~s}, 3 \mathrm{H}\right.$, minor), $3.05\left(\mathrm{dd}, \mathrm{A}\right.$ of $\mathrm{ABX}, J_{\mathrm{AB}}=$ $\left.9.6 \mathrm{~Hz}, J_{\mathrm{AX}}=4.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.02\left(\mathrm{dd}, \mathrm{B}\right.$ of $\left.\mathrm{ABX}, J_{\mathrm{AB}}=9.6 \mathrm{~Hz}, J_{\mathrm{BX}}=7.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.94(\mathrm{~s}$, $3 \mathrm{H}), 2.46-2.41(\mathrm{~m}, 2 \mathrm{H}), 2.34(\mathrm{bs}, 1 \mathrm{H}), 2.16-2.09(\mathrm{~m}, 1 \mathrm{H}), 2.03-1.99(\mathrm{~m}, 1 \mathrm{H}), 1.92-1.87$ $(\mathrm{m}, 1 \mathrm{H}), 1.66-1.60(\mathrm{~m}, 2 \mathrm{H}), 1.54-1.45(\mathrm{~m}, 3 \mathrm{H}), 1.33-1.01(\mathrm{~m}, 7 \mathrm{H}), 0.81(\mathrm{t}, J=7.2 \mathrm{~Hz}$, 3 H , major), 0.81 (t, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}$, minor); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta: 212.3$, 167.1, $129.0,125.9,113.8,102.7,76.5,70.8,58.2,51.3,38.0,32.8,32.4,30.6,29.0,26.4,26.4$, 26.2, 22.4, 13.7; FTIR ($v_{\max } / \mathrm{cm}^{-1}$): 3426, 2925, 2853, 1924, 1713, 1435, 1322, 1263 , 1240, 1195, 1173, 1119, 1062, 1016, 964, 890, 841, 713; MS (EI, m/z): $336\left(2\right.$, M $\left.^{+}\right), 291$ (60), 273 (8), 259 (100), 241 (20), 231 (30), 213 (27), 203 (30), 189 (19), 175 (21), 161 (22), 145 (21), 133 (21), 119 (19), 105 (25), 91(47), 79 (33), 67 (21), 55 (45), 45 (65); HRMS (ESI): $\mathrm{C}_{20} \mathrm{H}_{33} \mathrm{O}_{4}(\mathrm{MH})^{+}: 337.2380$ (calculated), 337.2384 (found).

21a

2la: Yield: $21.1 \mathrm{mg}(68 \%) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta: 6.22$ (dd, $J=15.6,1.6$ $\mathrm{Hz}, 1 \mathrm{H}$, major), 6.21 (dd, $J=15.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}$, minor), 5.92 (dd, $J=15.6,5.2 \mathrm{~Hz}, 1 \mathrm{H}$), 4.23-4.15 (m, 1H), 3.38 ($\mathrm{s}, 3 \mathrm{H}), 3.01\left(\mathrm{dd}, \mathrm{A}\right.$ of $\left.\mathrm{ABX}, J_{\mathrm{AB}}=9.2 \mathrm{~Hz}, J_{\mathrm{Ax}}=3.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.95$ (dd, B of ABX, $\left.J_{\mathrm{AB}}=9.2 \mathrm{~Hz}, J_{\mathrm{BX}}=7.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.92(\mathrm{~s}, 3 \mathrm{H}), 2.44-2.37(\mathrm{~m}, 2 \mathrm{H}), 2.29$ (bs, 1 H), 1.51-1.46 (m, 2H), 1.26 (sext, J=7.2 Hz, 2H), 1.07 (s, 9H), 0.81 (t, J=7.2 Hz, 3H); ${ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR ($100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta: 208.6,167.4,132.0,123.6,117.1,102.7,76.4,70.6$, 58.2, 51.3, 33.8, 30.5, 30.1, 28.9, 22.4, 13.7; FTIR ($v_{\max } / \mathrm{cm}^{-1}$): 3455, 2957, 2929, 2871, 1940, 1713, 1459, 1435, 1395, 1363, 1322, 1264, 1239, 1195, 1172, 1132, 1062, 1017, 963, 713; LC-MS/MS: 311 (67, MH ${ }^{+}$), 292 (19), 279 (80), 261 (27), 255 (10), 251 (5), 247 (10), 237 (9), 229 (60), 223 (100), 219 (8), 205 (8), 201 (9), 191 (8), 179 (26), 177 (8), 169 (10); HRMS (ESI): $\mathrm{C}_{18} \mathrm{H}_{31} \mathrm{O}_{4}(\mathrm{MH})^{+}: 311.2223$ (calculated), 311.2220 (found).

2ma
2ma: Yield: $17.2 \mathrm{mg}(81 \%) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta: 6.29(\mathrm{~d}, J=16.0 \mathrm{~Hz}$, 1 H , major), $6.26(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}$, minor), $5.69-5.66(\mathrm{~m}, 1 \mathrm{H}), 5.47$ (ddd, $J=15.9,5.2$, $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.17-4.12(\mathrm{~m}, 1 \mathrm{H}), 3.32(\mathrm{~s}, 3 \mathrm{H}$, major), $3.31(\mathrm{~s}, 3 \mathrm{H}$, minor), $3.00(\mathrm{dd}, \mathrm{A}$ of $\left.\mathrm{ABX}, J_{\mathrm{AB}}=9.6 \mathrm{~Hz}, J_{\mathrm{AX}}=4.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.95\left(\mathrm{dd}, \mathrm{B}\right.$ of $\mathrm{ABX}, J_{\mathrm{AB}}=9.6 \mathrm{~Hz}, J_{\mathrm{BX}}=7.2 \mathrm{~Hz}$, 1 H), 2.95 ($\mathrm{s}, 3 \mathrm{H}$), 2.08 (bs, 1 H), 1.55 (d, $J=2.7 \mathrm{~Hz}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}\{1 \mathrm{H}\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right.$) $\delta: 216.1,165.0,130.2,126.0,103.5,87.5,76.3,70.5,58.2,51.1,14.0 ;$ FTIR $\left(v_{\max } / \mathrm{cm}^{-1}\right)$: 3429, 2925, 1944, 1721, 1438, 1395, 1260, 1196, 1153, 1126, 1028, 966, 840; MS (EI, m / z): 212 (2, M ${ }^{+}$), 193 (1), 167 (3), 135 (6), 110 (6), 107 (11), 81 (5), 77 (20), 67 (6), 59 (11), 45 (100); HRMS (ESI): $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{O}_{4}\left(\mathrm{MH}^{+}\right): 213.1121$ (calculated), 213.1120 (found).

2na

2na: Yield: $27.0 \mathrm{mg}(92 \%)$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta: 6.46(\mathrm{dd}, J=15.7,1.6$ $\mathrm{Hz}, 1 \mathrm{H}$), 5.53 (dd, $J=15.7,5.5 \mathrm{~Hz}, 1 \mathrm{H}$), 4.27-4.20 (m, 1H), 3.36 (s, 3H, major), 3.35 (s, 3 H , minor), 3.05 (dd, A of $\mathrm{ABX}, J_{\mathrm{AB}}=9.6 \mathrm{~Hz}, J_{\mathrm{Ax}}=4.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.00 (dd, B of ABX, $\left.J_{\mathrm{AB}}=9.6 \mathrm{~Hz}, J_{\mathrm{BX}}=7.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.96(\mathrm{~s}, 3 \mathrm{H}), 2.64(\mathrm{tt}, J=11.4,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.33(\mathrm{bs}, 1 \mathrm{H})$, $1.95(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.71(\mathrm{~s}, 3 \mathrm{H}), 1.64-1.55(\mathrm{~m}, 2 \mathrm{H}), 1.53-1.45(\mathrm{~m}, 1 \mathrm{H}), 1.30-0.94$ $(\mathrm{m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta: 213.2,166.6,129.1,105.9,104.3,76.5,70.6$, 58.2, 51.2, 37.6, 32.8, 26.4, 26.3, 26.0, 14.6; FTIR $\left(v_{\max } / \mathrm{cm}^{-1}\right): 3420,2924,2851,1936$, $1712,1435,1369,1322,1254,1228,1192,1128,1093,1071,1026,997,965,891,872$, 780; MS (EI, m/z): 294 (2, M ${ }^{+}$), 262 (1), 249 (2), 217 (3), 189 (1), 171 (4), 135 (2), 119 (3), 105 (5), 91 (6), 77 (6), 67 (4), 55 (8), 45 (100); HRMS (ESI): $\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{O}_{4}(\mathrm{MH})^{+}$: 295.1904 (calculated), 295.1908 (found).

$20 a$

20a: Yield: $23.9 \mathrm{mg}(89 \%) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta: 6.43$ (dd, $J=15.8,1.6$ $\mathrm{Hz}, 1 \mathrm{H}), 5.51(\mathrm{dd}, J=15.8,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.25-4.20(\mathrm{~m}, 1 \mathrm{H}), 3.32(\mathrm{~s}, 3 \mathrm{H}$, major), $3.30(\mathrm{~s}$, 3 H, minor), $3.04\left(\mathrm{dd}, \mathrm{A}\right.$ of $\left.\mathrm{ABX}, J_{\mathrm{AB}}=9.6 \mathrm{~Hz}, J_{\mathrm{AX}}=4.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.99(\mathrm{dd}, \mathrm{B}$ of ABX , $\left.J_{\mathrm{AB}}=9.6 \mathrm{~Hz}, J_{\mathrm{BX}}=7.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.96(\mathrm{~s}, 3 \mathrm{H}), 2.34(\mathrm{bs}, 1 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{~s}, 9 \mathrm{H}) ;$ ${ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR ($100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta: 212.4,165.9,128.9,108.8,103.2,76.5,70.7,58.2$, $50.9,34.2,29.3,14.6$; FTIR ($\mathrm{v}_{\text {max }} / \mathrm{cm}^{-1}$): 3419, 2955, 2870, 1934, 1717, 1435, 1362, 1322, 1258, 1226, 1132, 1062, 965; MS (EI, m/z): 268 (1, M ${ }^{+}$), 236 (1), 223 (2), 191 (3), 163 (5), 145 (5), 135 (15), 119 (5), 105 (6), 91 (12), 79 (15), 65 (5), 59 (7), 57 (25), 45 (100); HRMS (ESI): $\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{O}_{4}(\mathrm{MH})^{+}: 269.1747$ (calculated), 269.1748 (found).

20b
2ob: Yield: 25.7 mg (91%): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta: 6.44$ (dd, $J=15.5,1.6$ $\mathrm{Hz}, 1 \mathrm{H}$, major), 6.42 (dd, $J=15.5,1.6 \mathrm{~Hz}, 1 \mathrm{H}$, minor), $5.52(\mathrm{dd}, J=15.5,6.0 \mathrm{~Hz}, 1 \mathrm{H})$, 4.23-4.19 (m, 1H), 3.95 (qd, $J=7.2 \mathrm{~Hz}, 1.2 \mathrm{~Hz}, 2 \mathrm{H}$), 3.03 (dd, A of ABX, $J_{\mathrm{AB}}=9.6 \mathrm{~Hz}$, $\left.J_{\mathrm{AX}}=4.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.99\left(\mathrm{dd}, \mathrm{B}\right.$ of $\left.\mathrm{ABX}, J_{\mathrm{AB}}=9.6 \mathrm{~Hz}, J_{\mathrm{BX}}=7.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.95(\mathrm{~s}, 3 \mathrm{H}), 2.32$ (bs, 1 H), $1.70(\mathrm{~s}, 3 \mathrm{H}), 1.31(\mathrm{~s}, 9 \mathrm{H}), 0.89(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR (100 MHz , CDCl_{3}) $\delta: 212.1,166.2,129.0,127.4,109.2,103.1,76.5,71.1,60.3,59.1,34.2,29.5$, 14.8, 14.2; FTIR ($v_{\max } / \mathrm{cm}^{-1}$): 3420, 2959, 1939, 1713, 1459, 1366, 1322, 1255, 1223, 1112, 1060, 965; MS (EI, m/z): 282 (2, M ${ }^{+}$), 249 (1), 237 (3), 208 (2), 191 (4), 163 (6), 135 (15), 105 (7), 91 (11), 77 (16), 65 (4), 57 (18), 45 (100); HRMS (ESI): $\mathrm{C}_{16} \mathrm{H}_{27} \mathrm{O}_{4}$ $(\mathrm{MH})^{+} ; 283.1904$ (calculated), 283.1908 (found).

20e
20e: Yield: $26.0 \mathrm{mg}(88 \%){ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta: 6.43$ (dd, $J=15.6,1.6$ $\mathrm{Hz}, 1 \mathrm{H}), 5.53(\mathrm{dd}, J=15.6,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.01(\mathrm{sept}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.22-4.19(\mathrm{~m}, 1 \mathrm{H})$, $3.03\left(\mathrm{dd}, \mathrm{A}\right.$ of $\left.\mathrm{ABX}, J_{\mathrm{AB}}=9.6 \mathrm{~Hz}, J_{\mathrm{Ax}}=4.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.99\left(\mathrm{dd}, \mathrm{B}\right.$ of $\mathrm{ABX}, J_{\mathrm{AB}}=9.6 \mathrm{~Hz}$, $\left.J_{\mathrm{BX}}=7.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.95(\mathrm{~s}, 3 \mathrm{H}$, major), $2.94(\mathrm{~s}, 3 \mathrm{H}$, minor), $2.26(\mathrm{bs}, 1 \mathrm{H}), 1.71(\mathrm{~s}, 3 \mathrm{H})$, $1.31(\mathrm{~s}, 9 \mathrm{H}), 1.00(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.99(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\{1 \mathrm{H}\} \mathrm{NMR}(100 \mathrm{MHz}$, CDCl_{3}) $\delta: 211.8,165.9,129.1,127.3,109.7,103.1,76.5,71.1,67.8,59.0,34.1,29.5$, 21.8, 21.8, 14.7; FTIR ($v_{\max } / \mathrm{cm}^{-1}$): 3410, 2960, 2926, 2896, 2825, 1935, 1708, 1458, 1373, 1322, 1255, 1226, 1049, 1021, 964, 833, 783, 713; MS (EI, m/z): $296\left(1, \mathrm{M}^{+}\right), 278$ (1), 251 (2), 236 (2), 191 (6), 163 (7), 135 (15), 105 (14), 91 (17), 77 (16), 65 (5), 57 (40), 45 (100); HRMS (ESI): $\mathrm{C}_{17} \mathrm{H}_{29} \mathrm{O}_{4}(\mathrm{MH})^{+}: 297.2060$ (calculated); 297.2064 (found).

20 g
20g: Yield: $25.9 \mathrm{mg}(88 \%)$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta: 6.42(\mathrm{dd}, J=15.6,1.6$ $\mathrm{Hz}, 1 \mathrm{H}$, major), 6.40 (dd, $J=15.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}$, minor), 5.64 (ddt, $J=17.2,10.8,4.8 \mathrm{~Hz}$, 1 H), 5.53 (dd, $J=15.6,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{dq}, J=17.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.87(\mathrm{dq}, J=10.8$, $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.48-4.37(\mathrm{~m}, 2 \mathrm{H}), 4.24-4.19(\mathrm{~m}, 1 \mathrm{H}), 3.03\left(\mathrm{dd}, \mathrm{A}\right.$ of $\mathrm{ABX}, J_{\mathrm{AB}}=9.6 \mathrm{~Hz}$, $\left.J_{\mathrm{AX}}=4.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.99\left(\mathrm{dd}, \mathrm{B}\right.$ of $\left.\mathrm{ABX}, J_{\mathrm{AB}}=9.6 \mathrm{~Hz}, J_{\mathrm{BX}}=7.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.95(\mathrm{~s}, 3 \mathrm{H}$, major), $2.94\left(\mathrm{~s}, 3 \mathrm{H}\right.$, minor), $2.28(\mathrm{bs}, 1 \mathrm{H}), 1.69(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{~s}, 9 \mathrm{H}),{ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR (100 MHz , CDCl_{3}) $\delta: 212.4,165.7,132.5,128.7,127.7,117.1,108.9,103.2,76.5,71.1,64.7,59.1$, 34.2, 29.4, 14.8; FTIR ($v_{\max } / \mathrm{cm}^{-1}$): 3410, 2957, 2927, 1935, 1713, 1647, 1457, 1398, 1362, 1321, 1252, 1217, 1172, 1131, 1061, 1027, 1016, 964, 928, 836, 781, 713; MS (EI, m/z): 294 (1, M ${ }^{+}$), 249 (3), 236 (2), 191 (4), 163 (5), 135 (6), 105 (5), 91 (10), 77 (9), 65 (3), 57 (16), 45 (100); HRMS (EI): $\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{O}_{4}(\mathrm{MH})^{+}: 295.1904$ (calculated), 295.1907 (found).

2pa

2pa: Yield: $29.6 \mathrm{mg}(86 \%) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) δ : 7.17-7.05 (m, 5H), 6.43 (dd, $J=15.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.49$ (dd, $J=15.8,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.28-4.24(\mathrm{~m}, 1 \mathrm{H}), 4.20(\mathrm{~s}, 2 \mathrm{H}$, major), 4.17 ($\mathrm{s}, 2 \mathrm{H}$, minor), $3.31(\mathrm{~s}, 3 \mathrm{H}), 3.19$ (dd, A of $\mathrm{ABX}, J_{\mathrm{AB}}=9.2 \mathrm{~Hz}, J_{\mathrm{AX}}=3.6 \mathrm{~Hz}$, $1 \mathrm{H}), 3.12$ (dd, B of $\left.\mathrm{ABX}, J_{\mathrm{AB}}=9.2 \mathrm{~Hz}, J_{\mathrm{BX}}=7.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.32(\mathrm{bs}, 1 \mathrm{H}), 1.67(\mathrm{~s}, 3 \mathrm{H}), 1.34$ (s, 9 H , minor), 1.29 (s, 9 H , major); ${ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR: $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 212.4,166.5$, $137.8,128.8,128.5,127.9,127.8,127.7,108.8,103.1,74.0,73.4,71.2,51.6,34.2,29.4$, 14.8; FTIR ($v_{\max } / \mathrm{cm}^{-1}$): 3422, 2954, 2865, 1934, 1715, 1496, 1479, 1454, 1434, 1391, 1362, 1257, 1225, 1104, 1060, 1029, 965, 781, 737, 698; MS (EI, m/z): $344\left(2, \mathrm{M}^{+}\right), 311$ (2), 296 (2), 223 (2), 191 (3), 168 (4), 135 (11), 107 (7), 91 (100), 57 (50), 41 (25); HRMS (ESI): $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{O}_{4}(\mathrm{MH})^{+}: 345.2060$ (calculated), 345.2068 (found).

2qa
2qa: Yield: $22.1 \mathrm{mg}(87 \%) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta: 6.32$ (dd, $J=15.8,1.6$ $\mathrm{Hz}, 1 \mathrm{H}$, major), 6.09 (dd, $J=15.8,6.0 \mathrm{~Hz}, 1 \mathrm{H}$, minor), 5.74 (dd, $J=15.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}$, minor), 5.43 (dd, $J=15.8,6.0 \mathrm{~Hz}, 1 \mathrm{H}$, major), 4.03-3.99 (m, 1H), 3.35 (dd, A of ABX, $\left.J_{\mathrm{AB}}=11.2 \mathrm{~Hz}, J_{\mathrm{AX}}=3.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.32(\mathrm{~s}, 3 \mathrm{H}), 3.23\left(\mathrm{dd}, \mathrm{B}\right.$ of $\mathrm{ABX}, J_{\mathrm{AB}}=11.2 \mathrm{~Hz}, J_{\mathrm{BX}}=$ $7.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.44 (bs, 1H), 2.22 (bs, 1H), 1.67 (s, 3H, major), 1.57 (s, 3H, minor), 1.34 (s, 9H, minor), 1.29 (s, 9H, major); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta: 212.4,165.9,128.9$, 108.9, 103.2, 72.8, 66.3, 50.9, 34.1, 29.3, 14.6; NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 212.4,166.5$, $129.2,127.9,108.9,103.1,73.0,66.4,51.7,34.2,29.4,14.8 ;$ FTIR ($v_{\max } / \mathrm{cm}^{-1}$): 3368, 2955, 2926, 2865, 1934, 1717, 1641, 1458, 1434, 1363, 1257, 1225, 1060, 1029, 965 , 925, 862, 781; MS (EI, m/z): 254 (3, M ${ }^{+}$): 207 (7), 194 (11), 179 (10), 148 (13), 119 (15), 105 (20), 91 (35), 73 (20), 59 (20), 57 (100), 41 (50); HRMS (EI): $\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{O}_{4}(\mathrm{MH})^{+}$: 255.1591 (calculated), 255.1590 (found).

2ra

2ra: Yield: 30.9 mg , (84%): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta: 6.43$ (dd, $J=15.6,1.6$ $\mathrm{Hz}, 1 \mathrm{H}$, major), 6.41 (dd, $J=15.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}$, minor), 5.53 (dd, $J=15.6,5.6 \mathrm{~Hz}, 1 \mathrm{H}$), 4.17-4.12 (m, 1H), 3.42 (dd, A of ABX, $\left.J_{\mathrm{AB}}=10.0 \mathrm{~Hz}, J_{\mathrm{AX}}=4.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.32(\mathrm{dd}, \mathrm{B}$ of $\left.\mathrm{ABX}, J_{\mathrm{AB}}=10.0 \mathrm{~Hz}, J_{\mathrm{BX}}=7.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.32(\mathrm{~s}, 3 \mathrm{H}), 2.23(\mathrm{bs}, 1 \mathrm{H}), 1.71(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{~s}$, 9 H), 0.85 ($\mathrm{s}, 9 \mathrm{H}$), $-0.06(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR ($100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta: 212.4,165.9,129.1$, $108.8,103.2,72.5,67.2,50.9,34.1,29.3,25.6,18.1,14.6,-5.6,-5.7$; FTIR ($v_{\max } / \mathrm{cm}^{-1}$): 3467, 2954, 2927, 2857, 1935, 1718, 1462, 1434, 1362, 1256, 1225, 1111, 1062, 1005, 963, 837, 777; MS (EI, m/z): 368 (1, M ${ }^{+}$), 351 (1), 311 (3), 279 (2), 237 (10), 223 (8), 191 (10), 177 (15), 163 (20), 159 (43), 145 (20), 135 (25), 105 (30), 89 (45), 75 (85), 73 (100), 57 (55), 41 (38); HRMS (ESI): $\mathrm{C}_{20} \mathrm{H}_{37} \mathrm{O}_{4} \mathrm{Si}(\mathrm{MH})^{+}: 369.2456$ (calculated), 369.2463 (found).

2sa

2sa: Yield: 25.1 mg (87%); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) δ : 7.71-7.67 (m, 2H), 7.147.11 (m, 2H), 7.03-6.99 (m, 1H), 6.41 (dd, $J=15.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}$, major), 6.38 (dd, $J=15.8$, $1.2 \mathrm{~Hz}, 1 \mathrm{H}$, minor), $5.56(\mathrm{dd}, J=15.8,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.21-4.16(\mathrm{~m}, 1 \mathrm{H}), 3.38(\mathrm{~s}, 3 \mathrm{H}$, major), $3.36\left(\mathrm{~s}, 3 \mathrm{H}\right.$, minor), 3.03-2.96(m, 2H), $2.96(\mathrm{~s}, 3 \mathrm{H}), 2.30(\mathrm{bs}, 1 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR ($100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta: 215.9,165.8,133.2,130.5,128.7,128.2,127.5,126.2,104.4$, 102.7, 76.4, 70.6, 58.2, 51.5, 14.2; FTIR ($\left.v_{\text {max }} / \mathrm{cm}^{-1}\right): 3419,2922,2851,1926,1716,1492$, 1434, 1369, 1321, 1273, 1195, 1171, 1123, 1062, 1039, 964, 918, 898, 781, 694; MS (EI, m / z): $288\left(2, \mathrm{M}^{+}\right), 256$ (3), 211 (5), 183(5), 155 (17), 115 (8), 89 (4), 77 (9), 51 (5), 45 (100); HRMS (ESI): $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{O}_{4}(\mathrm{MH})^{+}: 289.1434$ (calculated), 289.1439 (found).

2ta
2ta: Yield: $25.4 \mathrm{mg}(82 \%) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta: 5.80(\mathrm{~d}, J=8.2,1.6 \mathrm{~Hz}$, 1 H , minor), $5.75(\mathrm{dt}, J=8.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}$, major), $4.55-4.50(\mathrm{~m}, 1 \mathrm{H}), 3.36(\mathrm{~s}, 3 \mathrm{H}), 3.08-$ 3.03 (m, 2H), 2.96 (s, 3H), $2.40(\mathrm{td}, J=7.6,2.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.25-2.11$ (m, 4H), 1.60-1.20 (m, $4 \mathrm{H}), 0.86-0.78(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta: 207.1,167.4,137.2,125.6$, 109.3, 99.6, 76.3, 66.9, 58.3, 51.4, 30.7, 30.5, 28.9, 28.5, 25.6, 25.5, 22.2, 13.9; FTIR $\left(v_{\max } / \mathrm{cm}^{-1}\right): 3456,2928,2857,2859,1946,1713,1436,1436,1266,1241,1128,1063$, 957; MS (EI, m/z): 308 (1, M+), 276 (25), 231 (65), 201 (35), 175 (40), 161 (50), 117 (55), 91 (95), 77 (40), 55 (30), 45 (100); HRMS (ESI): $\mathrm{C}_{18} \mathrm{H}_{29} \mathrm{O}_{4}(\mathrm{MH})^{+}: 310.2067$ (calculated), 310.2067 (found).

4ba

4ba: M.P.: 67-69 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta: 7.38(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.32-$ $7.28(\mathrm{~m}, 2 \mathrm{H}), 7.06(\mathrm{tt}, J=7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{bs}, 1 \mathrm{H}), 6.33(\mathrm{dd}, J=15.8,1.2 \mathrm{~Hz}, 1 \mathrm{H})$, $5.70(\mathrm{dd}, J=15.8 \mathrm{~Hz}, 6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.53(\mathrm{qd}, J=5.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.60(\mathrm{~d}$, $J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.42(\mathrm{~s}, 3 \mathrm{H}), 2.25(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.89(\mathrm{~s}, 3 \mathrm{H})$, $1.40-1.28(\mathrm{~m}, 4 \mathrm{H}), 0.88(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\{1 \mathrm{H}\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 213.8$, $167.5,152.6,137.7,130.0,129.1,124.8,123.5,118.6,103.0,100.0,74.1,73.5,59.3$, 52.1, 30.1, 28.6, 22.1, 14.7, 13.9 .

CHAPTER 4

RESULTS AND DISCUSSION

We initiated our study using the enyne oxirane (Z) - $\mathbf{1 a}$ whose oxirane terminus is dimethyl substituted. We were pleased to observe that, with just our first attempt, the substrate (Z)-1a was converted to the desired 2,3,5-trienoate product 2aa, which is exclusively in (E)-configuration, and carries a hydroxyl group on the allylic position, almost quantitatively under very mild reaction conditions; the conversion was complete within just 1 h , when the reaction was performed in the presence of a $\mathrm{Pd}_{2}(\mathrm{dba})_{3}-\mathrm{CHCl}_{3}$ ($0.5 \mathrm{~mol} \% \mathrm{Pd}$) and $\mathrm{PPh}_{3}(2 \mathrm{~mol} \%)$ combination in MeOH , and under balloon pressure of CO at $25^{\circ} \mathrm{C}$ (Table 4.1, entry 1). The catalyst loading could even be reduced by half $\left(0.25 \% \mathrm{Pd}, 1 \% \mathrm{PPh}_{3}\right)$ without compromising the product yield (entry 2). The optimum $\mathrm{PPh}_{3} / \mathrm{Pd}$ ratio appears to be $4: 1$, because any deviation from this ratio resulted in a decrease in the reaction rate (entries 1-4). Finally, the controlled experiments proved that no conversion for the substrate would be possible in the absence of a phosphine ligand or a palladium source (entries 5 and 6).

Table 4.1. Methoxycarbonylation of Enyne Oxirane (Z)-1a. ${ }^{\text {a }}$

entry	Pd $\%$	$\mathbf{P P h}_{3} \%$	$\boldsymbol{t}(\mathbf{h})$	${\text { yield } \boldsymbol{\%}^{\boldsymbol{b}}}^{\prime}$
1	0.5	2	1	$>99^{c}$
2	0.25	1	2	>99
3	0.5	3	3	>99
4	0.25	0.5	5	>99
5	1	0	16	0
6	0	4	16	0

[^0]Having determined that the enyne oxirane $(Z) \mathbf{- 1 a}$ is a perfectly amenable reagent toward palladium catalysis as a means to synthesize vinylallene structures, we next probed the diastereoselectivity-directly associated with the level of center-to-axial chirality transfer-of the method over the substrate (Z) $\mathbf{- 1 b}$, using a variety of mono- and bidentate ligands. The corresponding vinylallene product $\mathbf{2 b a}$ was in 96% yield with a good diastereomeric ratio (92:8) when PPh_{3} was used as the ligand (Table 4.2, entry 1). The relative configuration of its major diastereomer was determined by X-ray crystallography of its phenylcarbamate derivative (Figure 4.1), (Kuş, et al. 2015).

Figure 4.1. X-ray crystallographic structure of the phenylcarbamate derivative of 2ba.

Typically, comparable yields are obtained with a variety of monodentate phosphine ligands tested herein, with varying reaction times required for a full conversion. However, it has been found that the level of the chirality transfer is strongly dependent on the ligand type that is used. The reactions in the presence of a prepared catalyst $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ or $\mathrm{P}\left(2-\mathrm{MeC}_{6} \mathrm{H}_{4}\right)_{3}$ ligand proceeded with similar selectivities when compared with PPh_{3} (entries 2 and 3), whereas electron rich phosphines and a heteroaryl substituted phosphine all showed inferior stereoselectivities (entries 4-7). The best diastereoselectivity was obtained with the use of an electron poor phosphine ligand, $\mathrm{P}(4-$ $\left.\mathrm{CF}_{3} \mathrm{C}_{6} \mathrm{H}_{4}\right)_{3}$, which afforded 2ba with 94% yield and $94: 6$ diastereoselective ratio (dr) within just 30 min (entry 8). Finally, the use of bidentate ligands brought about dismal selectivities or low activities in some cases (entries 9-14).

Table 4.2. The Effect of Ligand on Methoxycarbonylation of (Z)-1ba.

${ }^{a}$ Reaction conditions: 0.1 mmol of $(Z) \mathbf{- 1 b}, 2 \mathrm{~mL}$ of $\mathrm{MeOH}, 1 \mathrm{~mol} \%$ of $\mathrm{Pd}, \mathrm{P} / \mathrm{Pd}$ ratio is $4: 1$, under CO filled balloon, $25{ }^{\circ} \mathrm{C}$. dppf: 1,1'-bis(diphenylphosphino)ferrocene; dppe: 1,2-bis(diphenylphosphino)ethane; dppb: 1,4bis(diphenylphosphino)butane; Xanthphos: 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene; BINAP: 2,2'-bis(diphenylphosphino)-1, 1^{\prime}-binaphthalene; BIPHEP: 2,2'-bis(diphenylphosphino)-1,1'-biphenyl. ${ }^{b}$ Determined by ${ }^{1} \mathrm{H}$ NMR analysis using benzaldehyde as the internal standard. ${ }^{c}$ Diastereomeric ratio (dr) was determined by ${ }^{1} \mathrm{H}$ NMR. ${ }^{d} \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ was the catalyst of this reaction. ${ }^{\mathrm{e}}$ Isolated yield. ${ }^{f}$ The conversion of $(\mathrm{Z})-1 \mathrm{~b}$ was $49 \% .111$

Having determined $\mathrm{P}\left(4-\mathrm{CF}_{3} \mathrm{C}_{6} \mathrm{H}_{4}\right)_{3}$ as the optimal ligand, next we explored the suitability of a number of alcohol reagents for their reactions with (Z) - 1b. Except those with t - BuOH (Table 4.3, entry 5), the vinylallene products could be obtained at yields within the range of $83-91 \%$ with all alcohol reagents tested herein. Surprisingly, however, the reactions performed with alkyl alcohols, including $\mathrm{EtOH}, \mathrm{PrOH}, \mathrm{BuOH}$, and $i-\mathrm{PrOH}$; all proceeded with relatively lower stereoselectivities (entries 1-5). Nevertheless, gratifyingly an additional functionality could be introduced to a 7-hydroxy-2,3,5trienoate structure with the use of allyl alcohol, which yielded the corresponding product 2bg in 91% yield and with 93:7 dr, albeit with higher Pd loading to complete the reaction (entries 6-7).

Table 4.3. Alkoxycarbonylation of Enyne Oxirane (Z)-1a. ${ }^{a}$

		R $\mathrm{ROH}, \mathrm{CHCl}$			
entry	ROH	product	t (h)	yield \%	dr ${ }^{\text {b }}$
1	EtOH	2bb	1	84	80:20
2	PrOH	2 bc	3	87	88:12
3	BuOH	2bd	4	83	86:14
4	$i-\mathrm{PrOH}$	2be	2	88	86:14
5	t - BuOH	2bf	10	0	-
6^{c}	Allyl	2bg	6	25	93:7
$7{ }^{\text {d }}$	alcohol		1	91	93:7

${ }^{a}$ Performed under the conditions of Table 4.2. ${ }^{b}$ Determined by ${ }^{1} \mathrm{H}$ NMR. ${ }^{c}$ Conversion of (Z)-1b was 75\%. ${ }^{d}$ Reaction was performed with $3 \mathrm{~mol} \%$ of Pd and $12 \mathrm{~mol} \%$ of ligand.

It seems that the method is also suitable for enyne oxiranes containing an (E) configured alkenyl moiety; a carbonylation reaction of $(E) \mathbf{- 1 b}$ in MeOH under the standard conditions (conditions denoted in Table 4.2) required remarkably longer reaction period for complete conversion, and resulted in a diastereomer of $\mathbf{2 b a}$ ($\mathbf{2 b a}$) with a high yield, but slightly decreased selectivity of 92:8 dr (Figure 4.2). This result also proves that the configuration of alkenyl moiety of substrate regulates the stereomeric outcome of the product. Nonetheless, because of some difficulties encountered during the synthesis of enyne oxiranes with (E)-alkenyl group, such as partial isomerization of the alkenyl group, further studies were continued using only (Z)-configured reagents.

2ba'
87\% yield 92:8 dr

Figure 4.2. Methoxycarbonylation of (E) - $\mathbf{1 b}$

Next we explored the scope of the protocol over a variety of substrates containing (Z)-alkenyl and (E)-oxirane moieties. Except in one case, alkoxycarbonylation reactions proceeded rather smoothly and provided the expected products at yields within the range of 81-92\%.

It was interesting to observe that the form of pendant oxygen functionality within R^{3} group is an important factor for the stereoselectivity of the process. Substituting the methoxymethyl group in R^{3} position with a benzyloxymethyl group ($\left.(Z)-\mathbf{1 c}\right)$ had no detectable effect on both the reactivity and stereoselectivity (Table 4.4, entry 1). However, when R^{3} was a carbinol group $((Z)-\mathbf{1 d})$ or its hydroxyl group was silyl protected $((Z)-1 \mathbf{e})$, the corresponding methoxycarbonylated products 2da and 2ea were obtained with 90:10 and 89:11 dr, respectively (entries 2 and 3).

The same trend was also obvious for the reactions of (Z) - $\mathbf{1 f}$ and $(Z)-\mathbf{1 g}$, where R^{3} is dimethylcarbinol and dimethylmethoxy methyl, respectively. Though comparably good yields could be achieved with both reagents, the products 2fa and 2ga were obtained with significantly different level of stereoselectivities, 85:15 and 95:5 dr, respectively (entries 4 and 5).

It seems that for an effective stereoselectivity, the alkenyl carbon that is proximal to the alkynyl moiety is required to be fully substituted, because the carbonylative reaction of the enyne oxirane containing a disubstituted alkenyl moiety $((Z)-\mathbf{1 h})$ with MeOH proceeded with an inferior stereoselectivity (entry 6). As a model for substrates with all alkyl substituents, the enyne oxirane $(Z)-\mathbf{1 i}$, where all $\mathrm{R}^{1}, \mathrm{R}^{2}$, and R^{3} positions were occupied by butyl groups, also gave rise to the expected product $\mathbf{2 i a}$ with a high selectivity of 93:7 dr (entry 7). However, (Z) $\mathbf{- 1} \mathbf{j}$ possessing a methyl group in the R^{3} interestingly afforded the lowest $\mathrm{dr}(82: 18)$ as compared to other enyne oxiranes tested herein (entry 8). While the method tolerated a larger cyclohexyl group in the R^{2} (entry 9) under the reaction conditions, the presence of the tert-butyl group at this position ((Z)-11) brought about the formation of an allylic esterified byproduct (3la) along with the desired product $2 \mathbf{l a}$ with a high dr (entry 10).

It was also intriguing to find that there appears to be a direct relation between the diastereoselectivity and the size of R^{1} (entries 11-13). For instance, when (Z) - $\mathbf{1 m}$, which contains a terminal alkynyl moiety, was subjected to the methoxycarbonylation, the product 2 ma was obtained with only $88: 12$ dr Nevertheless, the substrate $(Z)-10\left(\mathrm{R}^{1}=t\right.$ Bu) afforded the expected product $\mathbf{2 0 a}$ in an excellent level of selectivity ($97: 3 \mathrm{dr}$).

The remarkable improvement on the stereoselectivity of the process that was gained with the presence of the tert-butyl group on the alkynyl moiety appears enduring; in contrast to the results obtained with $(Z) \mathbf{- 1 b}$, when $\mathrm{R}^{1}=$ tert-butyl, the replacement of the methoxy group with benzyloxy $((Z)-\mathbf{1 p})$, hydroxyl $((Z)-\mathbf{1 q})$, or silyl protected $((Z)-\mathbf{1 r})$ groups within R^{3} only slightly impacted the dr of the corresponding products (entries 1416).

Table 4.4. Alkoxycarbonylation of Enyne Oxiranes. ${ }^{a}$

(cont. on next page)

Table 4.4. (cont.)

6

7

10

11

12

13

90

90
 87

2ha

82
93/7
2ia

$87 \quad 82 / 18$
2ja
 $89 \quad 94 / 6$

2ka
 68 95/5

2la
110

$14 \quad \mathrm{ND}^{\mathrm{c}}$

81 88/12
2ma
 92 94/6

2na
 89 97/3

20a
(cont. on next page)

Table 4.4. (cont.)

${ }^{a}$ Performed under the conditions of Table 4.2. ${ }^{b}$ Determined by ${ }^{1} \mathrm{H}$ NMR. ${ }^{\mathrm{c}}$ Not determined.

The enyne oxirane (Z)-1s with a phenyl substituent at alkynyl terminus yielded the product 2sa with 88:12 dr (entry 20), and the substrate $\mathbf{1 t}$ having an endocyclic double bond also successfully underwent methoxycarbonylation to generate an exocyclic conjugated vinylallene structure 2ta with a relatively lower but synthetically still useful dr (Figure 4.3).

Figure 4.3. Methoxycarbonylation of (Z)-1t

Moreover, the carbonylative reaction of (Z) $\mathbf{- 1 0}$ with other alcohols also provided the corresponding vinylallenes with high dr values (Table 4.5).

Table 4.5. Alkoxycarbonylation of Enyne Oxirane (Z)-10. ${ }^{a}$

entry	ROH	product	$\mathbf{t}(\mathbf{h})$	yield \% $^{\text {\% }}$	$\mathbf{d r}^{\boldsymbol{b}}$
1	EtOH	$\mathbf{2 o b}$	2	91	$95: 5$
2	i-PrOH	$\mathbf{2 o e}$	3	88	$94: 6$
3^{c}	Ally alcohol	$\mathbf{2 o g}$	1	88	$95: 5$

$\overline{{ }^{a} \text { Performed under the conditions of Table 4.2. }{ }^{b} \text { Determined by }{ }^{1} \mathrm{H} \text { NMR. }{ }^{\text {c }} \text { Reaction was performed with } 3 \mathrm{~mol} \% \text { of Pd }}$ and $12 \mathrm{~mol} \%$ of ligand.

The mechanisms illustrated in Figure 4 are proposed to account for the stereoselective formation of $\mathbf{2}$ and $\mathbf{2}^{\prime}$. The reaction cycle should begin with ring-opening by the attack of a palladium complex to both $(Z) \mathbf{- 1}$ and $(E) \mathbf{- 1}$ in anti-mode, leading to the formation of π-allylpalladium complexes \mathbf{A} and \mathbf{A}^{\prime}, respectively, given the formation of vinylallenes exclusively in (E)-configuration for both intermediates (\mathbf{A} and \mathbf{A}^{\prime}), the alkanolate group $\left(\mathrm{CHR}^{3} \mathrm{O}^{-}\right)$on the planar allyl ligand should be oriented syn with respect to the middle allylic C-H. These intermediates additionally undergo a palladium shift to the far alkynyl carbon proceeding mainly with retention to form vinylallenyl palladium complexes \mathbf{B} and \mathbf{B}^{\prime}, respectively. The relative position of the R^{2} group and alkynyl moiety on \mathbf{A} and \mathbf{A}^{\prime} may also be inverted via the $\pi-\sigma-\pi$ interconversion into \mathbf{C} and \mathbf{C}^{\prime}, respectively, before undergoing such a Pd shift. The favored configuration of this side of the complex should be regulated by the inherent structure of R^{2}. For instance when R_{2} is hydrogen the thermodynamically more stable π-allyl complexes should bear alkynyl and $\mathrm{CHR}^{3} \mathrm{O}^{-}$moieties in syn, syn positions (\mathbf{A}^{\prime} and \mathbf{C}).

Figure 4.4. The Mechanism of Alkoxycarbonylation of Conjugated Enyne Oxiranes.

However, such configurational transitions cannot alter the outcome of the reaction, because both isomeric intermediates \mathbf{C} and \mathbf{C}^{\prime} would also lead to \mathbf{B} and \mathbf{B}^{\prime}, respectively. These σ-allenylpalladium complexes undergo successive CO insertion and reductive elimination, as verified previously, to yield $\mathbf{2}$ and $\mathbf{2}^{\prime}$ stereoselectively.

The loss of stereochemical integrity of the resulting products should take place during the course of the reaction cycle because subjecting the purified 2ba again to the standard conditions for 4 h had no influence on its original diastereomeric ratio. Though we cannot completely disregard the occurrence of the π-allylpalladium isomerization or its formation through syn-attack of the palladium, the back side migration of the palladium over the alkynyl side (by inversion of configuration) could be the primary basis for the formation of the minor diastereomeric form in each case, and particularly increased sizes of R^{1} and R^{2} might have limited the occurrence of such transitions in an inverted manner. However, the presence of a highly encumbered group, such as tert-butyl, at R^{2} also retards the effective migration of the π-allyl coordinated palladium, and as a result (Z)-11 partly underwent allylic alkoxycarbonylation to form the byproduct 3la.

Finally, the enyne oxirane $(Z)-\mathbf{1 i}$ ' containing a (Z)-configured oxirane moiety was also the subjected to the standard reaction conditions. The reaction proceeded smoothly in accordance to the proposed mechanism, and thus yielded the vinylallene product $\mathbf{2 i a}{ }^{\prime}$, which is the diastereomer of $\mathbf{2 i a}$ (see entry 7 of Table 4.4), with a high level of dr (Figure 4.5).

Figure 4.5. Methoxycarbonylation of (Z)-1i.

CHAPTER 5

CONCLUSION

In summary, we have developed a mild, simple and atom economical method for the synthesize of anti-substituted (E)-configured vinylallenes bearing a hydroxyl group on the allylic position via palladium-catalyzed alkoxycarbonylative 1,5-substitution reactions of conjugated enyne oxiranes.

The optimization studies showed that the reactions can be performed in the presence of $\mathrm{Pd}_{2}(\mathrm{dba})_{3}-\mathrm{CHCl}_{3}$ catalyst, an electron poor phosphine ligand, $\mathrm{P}\left(4-\mathrm{CF}_{3} \mathrm{C}_{6} \mathrm{H}_{4}\right)_{3}$, and balloon pressure of carbon monoxide, which afforded the desired vinyallene structures with good yields and diastereoselectivities.

The reactions proceeded in a highly stereoselective manner, possibly through sequential formation of π-allylpalladium and σ-vinylallenyl palladium complexes and the major diastereomeric form of the product is determined by the configuration of the alkenyl moiety of the substrate.

REFERENCES

Akpınar, G. E.; Kuş, M.; Üçüncü, M.; Karakuş, E.; Artok, L. Org. Lett. 2011, 13, 748751.

Alper, H.,; Yu, W. Y. J. Org. Chem. 1997, 62, 5684-5687.

Betzer, J. F.; Delaloge, F.; Muller, B.; Pancrazi, A.; Prunet, J. J. Org. Chem. 1997, 62, 7768-7780.

Bond, D. J. Org. Chem. 1990, 55, 661-665.

Buss, A. D.; Warren, S. J. Chem. Soc. Perkin Trans. I 1985, 2307-2325.

Caldentey, X. C.; Cambeiro, X. C.; Pericàs, M. Tetrahedron 2011, 67, 4161-4168.

Chen, Z.; Duan, X.; Wu, L.; Ali, S.; Ji, K.; Zhou, P.; Liu, X.; Liang, Y. Chem. Eur. J. 2001, 17, 6918-6921.

Denmark, S. E.; Wang, Z. Org. Synth. 2005, 81, 42-52

Elsevier, C.J.; Kleijin, H.; Boersma, J.; Vermeer, P. Organometallics 1986, 5, 716-720.

Fang, Z.; Liao, P. C.; Yang, Y. L.; Yang, F. L; Chen, Y. L.; Lam, Y.; Hua, Y. F.; Wu, S. H. J. Med. Chem. 2010, 53, 7967-7978.

Gore, J.; Dulcere, J.P. J. Chem. Soc. Chem. Comm. 1972, 867.

Kajikawa, T.; Aoki, K.; Singh, R. S.; Iwashita, T.; Kusumoto, T.; Frank, H.A.; Hashimoto, H.; Katsumura, S. Org. Biomol. Chem. 2009, 7, 3723-3733.

Krause, N.; Purpura, M. Eur. J. Org. Chem. 1999, 1, 265-275.

Kuş, M.; Artok, L.; Aygün, M. J. Org. Chem. 2015, 80, 5494-5506. (CCDC 1019595 contains the supplementary crystallographic data of phenylcarbamate derivative of 2 ba . This data can be obtained free of charge from The Cambridge Crytallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif)

Lian, J. J.; Chiang, P. C.; Lin, Y. P.; Ting, H. C.; Liu, R. S. J. Am. Chem. Soc. 2006, 128, 11372-11373.

Ma, S.; Wang, G. Angew. Chem. Int. Ed. 2003, 42, 4215-4217.

Marshall, J. A.; Wolf, M. A.; Wallace, E. M J. Org. Chem. 1997, 62, 367-371.

Meijere, A.; Diederich de F. Metal-Catalyzed Cross-Coupling Reactions. Volume 1: WILEY-VCH Verlag GmbH \& Co. KgaA, 2004.

Ming-Yuan, L.; Madhushaw, R. J.; Liu, R. S. J. Org. Chem. 2004, 69, 7700-7704.

Molander, G. A.; Sommers, E.M.; Baker, S. R. J. Org. Chem. 2004, 71, 1563-1568.

Murahashi, S. I.; Imoda, Y.; Taniguchi, Y.; Higashiura, S. J. Org. Chem. 1993, 58, 15381545.

Piers, E.; Wong, T.; Coish, P.; Rogers, C. Can. J. Chem. 1994, 72, 1816-1819.

Sakamoto, M.; Shimizu, I.; Yamamoto, A. Bull. Chem. Soc. Jpn. 1996, 69, 1065-1078.

Satoh, T.; Ikeda, M.; Kushino, Y.; Miura M.; Nomura, M. J. Org. Chem., 1997, 62, 26622664.

Schmidt, B.; Pohler, M.; Costisella, B. Tetrahedron 2002, 58, 7951-7958.

Shimizu, I.; Maruyama, T.; Makuta, T.; Yamamoto, A. Tetrahedron Lett. 1993, 34, 21352142.

Stille, J. K., Simpson, J. H. J. Am. Chem. Soc. 1987, 109, 2138-2152

Trost, B. M.; Molander, G. A. J. Am. Chem. Soc. 1981, 103, 5969.

Tsuji, J;, Kataoka, H.; Kobayashi, Y. Tetrahedron Lett. 1981, 22, 2575.

Tsuji, J.; Sato, K.; Okumoto, H. J. Org. Chem. 1984, 49, 1341-1344.

Tsuji, J.; Watanabe, H.; Minami, I.; Schmizu, I. J. Am. Chem. Soc. 1985, 107, 2196-2198.

Tsuji, J.; Sugiura, T.; Minami, I. Tetrahedron Lett. 1986, 27, 731-734.

Tsuji, J.; Suqiura, T.; Yuhara, M.; Minami, I. J. Chem. Soc. Chem. Comm. 1986, 922924.

Tsuji, J.; Mandai, T. J. Organomet. Chem. 1993, 451, 1-15.

Tsuji, J.; Mandai T. Angew. Chem. Int. Ed. 1995, 34, 2589-2612.

Tsuji, J. Palladium Reagents in Organic Synthesis; John Wiley and Sons: New York, 1995: 453-471.

Tsuji, J., Palladium Reagents and Catalysts-New Perspectives for the 21st Century: WILEY-VCH Verlag GmbH \& Co. KgaA, 2004.

Ukai, T.; Kawazura, H.; Ishii, Y.; Bonnet, J. J.; Ibers, J. A. J. Organomet. Chem. 1974, 65, 253-266.

Urabe, H.; Suzuki, K.; Sato, F. J. Am. Chem. Soc. 1997, 119, 10014-10027.

Üçüncü, M.; Karakus, E.; Kuş, M.; Akpınar, G.E.; Aksın-Artok, Ö.; Krause, N.; Karaca, S.; Elmacı, N.; Artok, L. J. Org. Chem. 2011, 76, 5959-5971.

Wang, C.; Tobrman, T.; Xu, Z.; Negishi, E. Org. Lett. 2009, 11, 4092-4095

APPENDIX A

1H NMR and 13C NMR SPECTRUMS OF REACTANTS AND PRODUCTS

3K-12

Sample Name
Data collected
vnmis400-vinara400
Archive directory: sfople directory: YKa-12_20141021_01 F华F11e: proton

Dule sequence: protion (a2pul) solvent: edel3
Date collected on: ost 212014
Te $25.0 \mathrm{C} / 298.1=$ Opefator: ueor 1
felax, delay 1,000 gec
Duf 5045.0 degrees
Acy. time 2.556 oec
wi th 6410.3 Ex
8 Eapotitions
OBsERVE H1, 399.9161069 NGz date procrasing
FT E1ze 32768
Totel time 0 fin 28 am
(Z) $\mathbf{- 1 a}$

Gradient ahiming
sample Namo:
sample Name:
FZ-FX037-FR2
Data Collected on:
vimesu00-viars400
archive directory:

F2-FX037-FR2 20130715_01
Fidfile: pronow
Dulee sequence: frotor (a2pul
Solvent: cdol3
Data collected on: Jul 15201
Temp. $25.0 \mathrm{c} / 998.1 \mathrm{~K}$
operator: vami
Relax. dolay 1.800 gec
Dulse 45.0 degrdes
Acq. t 1 ma 2.556 sec
8 rapatitions
OBSERVE HI, 399.9161069 mGz data droczasimg
FT a1ze 32768
Total time $0=1 \mathrm{n} \mid 28 \mathrm{aec}$

F2-FX048-13C
Sample Name:
F2-Fx048-13C
Data collected on:
vimra400-vamra400
Archive directory:
/bome/vimili/vimiryya/data
F2-Fx048-13C
FZ-FX048-13C_20130912_01
FidFile: Casbon
Sulae sequance: CARBOM (a2pul)
Data collected on: Sep 122013

Temp. $25.0 \mathrm{C} / 298.1 \mathrm{E}$
operator: vami
Relax. delay 1.000 gec Dulae 45.0 degrees
Acq. time $1.311=0$
width 25000.0 Ez
512 rapetitions
OBgERVE C13, 100.5589851 mGz decouple II, 399.9181065 mex
Dower 46 dB
continuously on
Data proczesing
Data Droczasing Line broadening 0.5 Hz
FT a1ze 65536
Total time 19 min

sample jeane:

cete Colloctod or:
frchive directory:
Frehive directory:
/hane/userl/varrs sys/atz

fiafile: caxpon
 solvent: cacls
Iate collected on: Deac 192013

Tamp. 25.0 C/ 298.1 K
Oporztor: usal
$5012 x$. delzy 1.000 sec Fulse 45.0 Cogrees
heq- time 1.311 se
Triath 25000.0 H
6o ropetitions
OBEEVE C13, 100.5589851 HRT
HOVFLE H1, 399.91\$1065 the
Eower 42 ab
mintz-16 modulzto
Milti-16 Motulz
Line brcenening 0. 5 Hs
FT sise 65536
Tokzl time ${ }^{3}$ min

Data Collected on:
Archive directory,
/boma/vimilvinirsya/data

Tula segence canonn solvent: a6d6
Solvent: c6d6 2013
Tamp. $25.0 \mathrm{C} / 298.1 \mathrm{z}$
Operator: vamr1
Relax. delay 1.000 ace Dulae 45.0 degreas
Acq. $t 1 m e 1.311 \mathrm{sec}$
width 25000.0 Ez
128 ropetitions
DECOUPLE $\# 1,399.9181425 \mathrm{NET}$
Dower 46 dB
continuously on
wailz-16 modula
DATA DROCEssing \quad Line broadening 0.5 EI FT a1ze 65536

Agilent Technologies

F2-FX077
sample Name:
F2-FX077
Data Collected on:
Archive 11 vactory
Archive directory:
samp it directory:
samplif directory:
pidefie: pronon
Pulse Pequence: proton (o2pul) solvent: cdo13
Data cpllected on: May 212014
Tamp. $25.0 \mathrm{C} / 298.1 \mathrm{~F}$
Operater: viar 1
Relax. delay 1.000 gec
Dulae 45.0 degrees
Acq. E1me 2.556 sec
width 6410.3 Ez
ObsERVE H1, 399.9161069 MEz
ata droczseing
Ta1ze 32768
Total Fime 0 min 28 sec
Coseres)

Sample Name:
mx-OTBS-REACT
Data collected on:
vimesolevinars40
Archive directoryt
/bome/ueer $1 /$ vniraya/dat
sample directory:
 FidFile: protok_01

Dulse sequance: DROTON (02 pul
solvent: odel3
Data collected on: Sop 302014

Tanp. $25.0 \mathrm{C} / 298.1 \mathrm{E}$
Operator: ueer 1
Relax. delay 1.000 gec
Dulae 45.0 degreas
Acq. time 2.556 sec
width 6410.3 Ez
8 repetitions
ObsERVE H1, 399.9161069 mezz
data proczsetmg
FT a1ze 32768
Total time 0 fin 28 aec

MK-OTRS-REACT
Sample Name:
yK-OTBs-REACT
Data Collected on:
vamisa00-vinra400
archive directory:
/bome/user1/vnirsyy/data
ample directory:
mK-OTse-REACT 20140930_01 fidfile: Carbon_01 Solvant: ade13
Data collected on: Sep 302014

Tamp. $25.0 \mathrm{C} / 298.1 \mathrm{E}$ operator: yeer 1

Relax. delay 1.000 aec Vulas 45.0 degreas Acq. time 1.311 gec
1 dth 25000.0 E
368 repatitions
OBSERVE C13, 100.5589851 MGz DECOUPLE H1, 399.9181065 NHz
Dower 46 dB
continuously on
WALTZ-16 modulated
data procgastag
Line broadening 0.5 Hz
FT a1ze 65536
Total tima 38 min

vx-1107E

sample Name:
Mg-11078
Data collected on:
vimra400-vimrs
Archive directory:
Archive directory:
sample directory:
sx-1107E_20130712_02
FidFile: Carbons
Sulse sequence: CARBON (a2pul
Solvent: edel3
Data collected on: Jul 122013

Temp. $25.0 \mathrm{C} / 298.1 \mathrm{~F}$
Operator: vanri
Relax. delay 1.000 geo
Dulae 45.0 degreen
Acq. time 1.311 sec
W1dth 25000.0 Ex
observe c13, 100.5589851 mecz

Dower 46 dB
continuously on
WALIZ-16 modulate
data processing
Line broadening 0.5 Hz
FT a1ze 65536
Total time 19 min

$\stackrel{\sim}{0}$.

(Z)-1f

va-3107ons
Sample Name:
Data collected on:
vimrs400-viara400
archive directory:
/bome/vnari/vxarays/data sample directory: MK-31070ME 20

Sulae sequance: Carbos (s2pul)
solvent: adel3 Carbos (s2pul)
Datz collected on: Jul 312013
Temp. $25.0 \mathrm{C} / 298.1 \mathrm{~K}$
Operator: vinil
Relax. delay 1.000 gec Dulae 45.0 degrees
Acq. time 1.311 sec
width 25000.0 Ez
80 ropetitions
observe C13, 100.5589851 MEz
DECOUDLE H1, 399.9181065 NGI
Dowar 46 dB
continuously on
data proczesing
Inc broadening 0.5 Hz
Ta1ze 65536
Total time 19 min

Agilent Technologies

rotal time 19

mk-bu-y

sample Name:
mk-bu-y
Data Collocted on:
Vrimra400-vinra400
Archive directory:
/bome/vnimilvinays/data
sample directory:
mk-bu-y_20130629_03 FidFile: Casbon
tulae sequance: capros (a2pul)
olvent: c6d6
bata collected on: Jun 292013
Temp. $25.0 \mathrm{C} / 298.1 \mathrm{I}$ Operator: vimi 1

Relax. delay 1.000 nec Dulae 45.0 degreas Acq. t1me 1.311 sec
W1dth 25000.0 Ez W1dth 25000.0 Ex 512 rapatitions
bserve C13, 100.5589941 mez DECOUPLE M1, 399.9181425 NGz Dower 46 dB
continuously on
data proczastmg
Ine broadening 0.5 Hz
FT a1ze 65536
Total time 19 min

(Z)-1

A. Agilent Technologies

ジ

mk-monometilrea
mk-monometilraz
Data Collected on:
varian 400 -nercury 400
Archive directory:
/bome/vnarl/vinaraya/data

 FidFile: proton_01

Dulae Sequance: DROTON ($a 2 \mathrm{puly}$
Da a collected on: Jan 292015

Temp. $30.0 \mathrm{C} / 303.1$ E
operator: vanrl
folax. delay 1.000 aec
phase 45.0 degreen
A.f. time 2.561 gec
whith 6398.0 Ez
 DAEA DROCBSETNG
DAFA Droczasin
FT
a1ze 32768
Tofal time 0 nin 31 gec

Sample Nama:
mk-monometilreac-c13
Data Collected on
varian400-nercury 400
archive directory:
/bome/vimil/viniraya/data
sample directory:
mk-monomet1lreac-c13_20150129_01 FidFile: Casbon_01
Dulse sequence: CARBOM ($a 2$ pul) Solvent: a6d6 Data collected on: Jan 292015

Tamp. $30.0 \mathrm{C} / 303.1 \mathrm{E}$ operator: vanrl

Relax. delay 2.000 gec
Dulae 45.0 degrees
Acq. time 1.304 sec
width 25125.6 Ez
872 repetition
OBSERVE C13, 100.5499849 NG:
DECOUPLE II, 399.8823589 mEz
Dower 44 dB
continuously on
wairz-16 modulated
data drocessing
Line broadening 0.5 Hz FT a1ze 65536
Total time 0 min 0 aec

57.359
55.201

sample Name

MK-CBoms
Data Collected on:
vimra400-vinira400
archive directory:
Arch1ve directory:
/home/user1/vrniraya/data
sapple directory:
良-CHOME_20141230_01
Fibpile: proton
Dulde sequence: protor (a2pul) Solvent: ade13
Date collected on: Dec 302014
Tesp. $25.0 \mathrm{C} / 298.1 \mathrm{x}$
opezator: ueer1
Relax. delay 1.000 aec Du1 50 45.0 degrees Acd. time $2.556=0$ W1 th 6410.3 Ez
8 zepetitions
OBSERVE H1, 399.9161069 MHz
data proczasing
FT alze $^{2} 2768$
Tot: 1 time 0 min 28 aec
(Z)-1k

Agilent Technologies

MK-CHONE

Sample Name:
sample Name
Data collected on:
vimis400-vnirs 400
Archive directory
/home/user1/vmirays/data
sample directory
wx-croms 20141230 O1
FidFile: Carbon
Tulae sequence: CARBOM solvent, cdo13 Data collected on: Dec 30201

Tamp. $25.0 \mathrm{C} / 298.1 \mathrm{~F}$
operator: ueer 1
Relax. delay 1.000 gec Dulae 45.0 degrees Acq. time 1.311 ace Width 25000.0 E
152 rapetitions
OBSERVE C13, 100.5589851 MEz DECOUPLE H1, 399.9181065 mez Dower 46 dB
continuously on
WALTZ-16 modulated
ata proczasing
Line broadening 0.5 Hz T a1ze 65536 Total time 38 mi

ME-1211-EDO
Sample Name:
max-1211-Epo
Data collected on:
vnmra400-vnara400
archive directory: sample directory: mx-1211-EPO_20131112_02 FidFile: carbon

Dulse sequence: CARBON (a2pul) Solvent: cdo13
Data collected on: Nov 122013

Temp. $25.0 \mathrm{C} / 298.1 \mathrm{I}$
operator: vamr 1
Relax. delay 1.000 gec Dulae 45.0 degrees
Acq. time 1.311 sec
width 25000.0 Ez
264 repetitions
OBSERVE C13, 100.5589851 NGI DECOUDLE H1, 399.9181065 NEz Dower 46 dB
continuously on
WALIZ-16 modulate
data processing
Line broadening 0.5 Hz
FT a1ze 65536
Total time 38 min

(Z)-1I

F Agilent Technologies


```
ma-1206z
    Sample Name
    mg.1206z
    Data collected on
    vmmra400-vmma40
    Arch1ve directory:
    /bome/vmmr1/vmaraya/dat2
    mple directory:
    vx-1206z 20130612_03
    FidF1le: Carbok
Dulse sequance: CAREON (a2pul) Solvent: c6d6
Data collected on: Jun 122013
Temp. \(25.0 \mathrm{C} / 298.1\) I Operator: vamr 1
Relax. delay 1.000 gec Dulae 45.0 degreen Acq. time 1.311 sec Width 25000.0 E
OBSERVE C13, 100.5589941 NEz
```



``` Dower 46 dB
Dower 46 dB
waitz-16 modulated data proczasing
Line broadening 0.5 Hz
FT alze 65536
Total time 9 min 52 aec
```



```
๗. \({ }_{\infty}^{\infty}\) पी \({ }^{m}\) 웅 \({ }^{\infty}\)
(Z)-1m
```


Agilent Technologies

mk-2506eome
Sample Name:
mk-250600me
Data collected on:
vimis 400 -vmara 400
Archive directory:
/bome/vnimi $1 /$ vniraya/data sample directory
mk-250500ne_2
Dulse sequence: CMRBOM (s2pul) solvent: c6d6 2013 Data collected on: Jun 252013

Temp. $25.0 \mathrm{C} / 298.1$ I
Operator: vanr 1
Relax. delay 1.000 gec Dulae 45.0 degreas Acq. time 1.311 sec width 25000.0 Ez OBSERVE C13, 100.5589941 MEz DECOUPLE II, 399.9181425 maz Dower 46 dB
continuously on
waitz -16 modulated
data proczasing
Line broadening 0.5 Hz
FT a1ze 65536
Total timo $3 \mathrm{hr}, 12 \mathrm{~min}$

(Z)-1n

Sample Namo: ma-28060Ms
Data Collected on:
vnmrs400-vnars400
archive directory:
/home/vmar 1/vmaraya/data
sample directory
ME-28060ME_20130628_02
Fidfile: carbon
Dulas sequence: CARBON (s2pul) solvent: a6d6
Data collected on: Jun 282013

Temp. $25.0 \mathrm{C} / 298.1 \mathrm{~K}$ operator: vinr 1

Relax. delay 1.000 aec Dulae 45.0 degrees Acq. time $1.311 \approx 0$
width 25000.0 Ez
512 rapetitions
Observe C13, 100.5589941 MGz DECOUDLE M1, 399.9181425 MEIz Dower 46 dB
continuoualy on
WALTz-16 modulated
WALTZ-16 modula
data processemg
Line broadening 0.5 Hz FT a1ze 65536 Total time 19 in


```
mx-1807E2
Sample Name: ME-1807E2
Data collected on:
vimra400-vimisa 40
Archive directory:
/bome/vmin 1/vimirays/data sample directory:
max-1807E2_20130718_02 F1dFile: capron
Fulse sequence: CAFBOM (a2pul) olvent: edel3
fata collected on: Jul 182013
Temp. \(25.0 \mathrm{C} / 298.1 \mathrm{~F}\)
perator: vamr 1
Relax. delay 1.000 gee
Dulae 45.0 degrean
Acq . time \(1.311=0\)
512 repetitiona
OBgerve C13, 100.5589851 Ma DECOUDLE H1, 399.9181065 MH
Dower 46 dB
continuously on
WALTz-16 modulated
data procsasing
Line broadening 0.5 Hz
FT a1ze 65536
Total time 19 min
```



```
(Z)-1p
```

```Agilent Technologies
```


vax-1410E

sample Name:
MK-1410E
Data Collected on:
vimra400-vinra400
archive directory: /home/vinoc $1 /$ vrinraya/data sample directory Max-1410E_20130614_03 FidFile: Carbon

Dulae sequence: CARBOM (a2pul) solvent: c6a6 Solvant: collected on: Jun 142013

Tamp. $25.0 \mathrm{C} / 298.1=$ operator: vmin 1
Relax. delay 1.000 gec Dulae 45.0 degreas Acq. time 1.311 sec W1deh 25000 E
OBSERVE C13, 100.5589941 MEH OBSERVE C13, 100.5589941 MEz DECOUDLE H1, Dower 46 dB continuously on
data proczasing
Line broadening 0.5 Hz FT a1ze 65536
Total time 9 nin 52 aec

$\stackrel{\rightharpoonup}{4}$
$(Z)-1 q$
103.665 E
(2. Agilent Technologies
 • $\cdot \angle \tau$
. 0ε

vx-1807E1
sample Mame:
ME-180781
Data Collected on:
vimra400-vinre40
Archive directory: sample directory: ME-1807E1_20130718_01 Fidpile: capbon
ulae sequance:
Data collected on: Jul 182013
Temp. $25.0 \mathrm{c} / 298.1 \mathrm{x}$
operator: vmar 1
Relax. delay 1.000 gec
Dulao 45.0 degreos
Acq. time 1.311 ac
w1dth 25000.0 Ez
512 repetitions
OBSERVE C13, 100.5589851 MEH
DECOUDLE H1, 399.9181065 NEFz
Dower 46 dB
continuously on
waitz-16 modulat
data processing
Line broadening 0.5 Hz
FT a1ze 65536
Total time 19 min

MS
$(Z)-1 r$
$\stackrel{\text { ® }}{\text { © }}$

uf D82014 14116 か3

Agilent Technologies

MR-25101

sample jrame

tre-25101
Tete collectod on:

frehive airectary:
emple dirantory:
HRK-25101_201310

(Z)-1t

Fulso sequencos: carkcor (sipul) solvent: cacls retz collected on: oct 252013

Tamp. $25.0 \mathrm{C} / 298.1 \mathrm{~K}$ Oporztor: vanr 1
solve. delzy 1.000 sec
Fulso 45.0 cagrees
cq. timn 1.31130
12% ropotitions
OESEVE C13, 100.5589851
WrVE C13, 100.55\$9851 th OHPOVFLE
Fower 46 AB
AB
ontinuously on
miltz-16 modulzted
DKTA FROCESSIIG
tine broedening 0.5 Hs
FT sise 65536
Tokz1 time 9 min 52 sec

200
180
160
140
120
100
60

40
20
1 Tr

T11111111T1T111111T111

220	200	180	160	140	120	100	80	60	40	20	0

Gradient ahiming
sample Name:
Max-1502co2saz
Data Collected on:
vachive directory:
archire dreetory
sample dimetory:

Pulse sequepoe: proron (quil) solvent: cbl6
bata collected on: Feb 15201
Tamp. 25. © C / 298.1 k
Operator: vinr1
Rolax. dolay 1.000 anc Pulae 45.0 degrees
heq. time 2.556 sec
W1dth 6410.3 Ex
8 repetitipns

data proczesing

2ba

Data collected on:

archive directory:
2 bb

$\mathbf{M E}-\mathrm{Kn}_{1} 7 \mathrm{~s}-\mathrm{CDCL}_{3}$

sample Name:
Mg-M17s-CDCL 3
Data Collected on:
Vnimesa00-vnara400
Archive directory:
/homo/usorl/vingays/data
ample direstory:
cL3 20140927_01 FidFile: CNfBon 01

Dulse sequer ce: CARBON (a2pul) olvent: edell3 Solvant: cdefl 3 , 272

Temp. 25.0 =/298.1
operator: uepr1
Relax. delay 1.000 ae Dulas 45.0 degrees Acq. time 2.311 sec
width 25000 . 0 Ez
7408 repetitions
OBSERVE C13, 100.5589851 MEz
DECOUDIE \#y, 399.9181065 NHz
Dower 46 ds
continuously on
wailz-16 modulated
data proceastiga
Line broadening 0.5 Hz
FT a1ze 65536
Total tima $12 \mathrm{hr}, 50 \mathrm{~min}$

yK-M1982-CDCL3
sample Name:
MK-M19s2-CDCL3 Data Collected on: vnmra400-vinra400 Archive directory: Archive directory:
/home/userl/vmarsya/data sample direbtory:
mx-M19a2-CDCL3_20140927_0 FidFile: CfReon 01
Dulse sequedce: CARBON ($a 2 \mathrm{pul}$) solvent: edd 13 Solvent: odg 13
Data collected on: sep 272014

Temp. 25.0 C / 298.1 K Operator: uger1

Relax. delay 1.000 aec Dulse 45.0 degrees Acq. $\mathrm{time} 2 \cdot 311 \mathrm{sec}$ width 2500 d .0 Ez 3040 repatitions OBSERVE C1 $2,100.5589851 \mathrm{NHz}$
 DECOUDLE H. 399.9181065 MGI Dower 46 d! continuousily on WALIZ-16 mgaul data droczsetng Line broadaning 0.5 Hz T aize 6553 Total time $\mid 2 \mathrm{hr}, 50 \mathrm{~min}$

mplo Namo: Mx-M20s-CDCL3
Data collected on
vnara400-vinisa400
Archive directory:
/bome/user1/vniraya/data
ample directory:
ma-M20s-CDCL3_20140927_01 FidFile: Carbon_01

Dulse Sequence: CARBON (02 pul) Solvent: ado13
Data collected on: sep 272014
Temp. $25.0 \mathrm{C} / 298.1 \mathrm{~K}$ Operator: ueor 1

Relax. dolay 1.000 gec
Dulae 45.0 degreas
Acq. time 1.311 sec
W1dth 25000.0 Ez
9736 repetition
OBSERVE C13, 100.5589851 MEIz DECOUPLE H1, 399.9181065 mHz
Dower 46 dB
continuously on
WALT2-16 modulata
data proczssing
Line broadening 0.5 Hz FT alze 65536 Total time $6 \mathrm{hr}, 25 \mathrm{~min}$

2bd

MK-M188

Sample Name:

Data collected on:
ata collecto
vnimes00-vnimes40
archive directory:
sample direftory:
MK-K18s_20140926_01
FidFile: Caldent_01
Dulae sequardee: CARBON (a2pul Solvent: adcl3
Data collectod on: Esp 262014

Tamp. 25.0 = / 298.1 F Operator: user1

Relax. delaf 1.000 ae Dulae 45.0 liegrees
Acq. time 1.311 gec
width 25000.0 Ez
4232 repattitiona
OBSERVE C13, 100.5589851 NGIz OBSERVE C13, 100.5589851 NEIz DECOUDLE HI, 399.9181065 NHz Dower 46 d
continuously on
wALTZ-16 modulat
data proczasthg
Line broadeping 0.5 Hz
FT alze 6553F
Total time $3 / \mathrm{hr}, 12 \mathrm{~min}$

Gradient Shiming

ma-m108-cncL3
Sample Name:
MK-M108-CDCL3
Data Collected on:
vimra400-vnmra400
archive directory:
/home/user1/vrirgya/data
wK-M108-CDCL3 20140928_01
FidFile: Cflemon 01
Dulae sequerco: Carbon (a2pul)
Solvent: cdel3
Data collected on: sep 282014
Temp. 25.0 C / 298.1 E Operator: ufor1

Relax. delsy 1.000 ge Dulse 45.0 degrees
Acq. time 2. 311 gec
width 25000.0 Ez
512 repetitions
ObsERVE C1Z, 100.5589851 MEHz decouple 표 399.9181065 MEz
Dower 46 d月
continuousily on
waLIz-16 mqdulate
data procesetmg
Line broadening 0.5 Ez
FT a1ze 65536
Total time $z^{2} \mathrm{hr}, 50 \mathrm{~min}$

Gradient shiming

sample Namo:

Data collected on:
vnars400-vanre400
archive directory:
 Banole directory:
Fan -1207c02 20130712_02

2fa
F19̆F1le: PROTOK
Pul = sequence: PROTOK (a2pul)
sol ont : 66 d 6
Dat of collected on: Jul 122013
Telp. $25.0 \mathrm{C} / 298.1 \mathrm{E}$
opefator: vanr
Relax. delay 1.000000
Pulae 45.0 degreas
Pulae 45.0 degreas
neq. time 2.556
8 repetitiona

DATR PROCESBINO
PT :1ze 32768
Total time 0 min 28 aec

sample Name:
Max-1207c02
Data collected on: vimrs400-vinra40
archive directory:
/homa/vimr $1 / \mathrm{vinraya}$ /data Bample diraztory: MK-1207C052_20130712_03 FidFile: Cont
Pulse sequerde: Casson (s2pul) Solvant: 66 b
Data collected on: Jul 122013
Tamp. 25.0 = / 298.1 k
operator: vari
Relax. delaf 1.000 gec
Pulse 45.0 jegrees
141.q. time 2500 -
512 repetitiona
OBsERVE C13, 100.5589941 nTE DECOUPLE II, 399.9181425 MEz
Power 46 ds
continuousip on
DATA PROCBSETRG
Line broadening 0.5 Ez
FT a1ze 6553 .
Total time 10 min

- \mid

Agilent Technologies

ํㅜㅇ

mk-3107co
sample Name: Bample Nama:
wik- $3107 c 0$
Data Collected on:

2ha
Archive directory
home/vamr1/vraroya/data
Bample dir\&ctory:
sample direstory:
mk-3107a太 20130731_02 Fidpile: coñor
Pulse sequerdee: carson (a2pul) solvent: 0646
Data collected on: Jul 312013

Tamp. 25.0 C / 298.1 = operator: vprl
Relax. deldy 1.000 sec
Pulae 45.0 degreas
heq. time $3 \cdot 311=0$
Width 2500 d .0 E
OBaERVE C13, 100.5589941 MEz

ECOUPLE 피, 399.9181425 MEz
Power 46 d月
waitiz-16 madulated
DATA Proczssinc
Line brosidning 0.5 Ex
Tasize 65536
Total time 23 min

Agilent Technologies

$$
\begin{array}{lllll}
220 & 200 & 180 & 160 & 140
\end{array}
$$

120
100
80
60
40
20
0 ppm

mk-monomet11co
Sample Name:
mk-monomotilco
Data Collected on:
archive directory:
/homa/vnmr $1 /$ vnargya/data
ample directory sis $\% 8$ Pulae sequence: proros (a2pul) solvent: c6ab

Solvent: collected on: Jan 2015 Temp. $30.0 \mathrm{C} / 303.1$ operator: vanr1 Relax. delay 1.000 Dulae 45.0 degreas Acq. time 2.561 sec W1ath 6398.0 E | 8 repatitions |
| :--- |
| OBSERVE |
| HI, | DATA DRocgastag FT a1ze 32768 Total time 0 min 31 add

| \mid

2ja

vx-3012co
Sample Namo:
max-3012c0
Data Collected on:
vimra400-vnirs400
Arch1ve directory:
/bome/user1/vinraya/data
sample direatory:
mx-301200 20141230_01
FidFile: cabson
Dulse sequende: CARBOM (s2pul)
Solvent: a6d k an: Dec 302014
Data collected on: Dec 302014
Temp. 25.0 o / 298.1 K
operator: user 1
Relax. delay 1.000 gec Dulae 45.0 ogreas
Acq. time 1.311 sec
W1dth 25000 . 0 Ez
256 repetitions
observe C13, 100.5589941 NHz DeCouvie Hi, 399.9181425 mez Dower 46 dB
continuously on
continuously on
data proczseing
Line broadering 0.5 Hz
Line broader
FT a1ze 65536
Total tima 9 In 52 aec

Data Collected on:
vnmra400-vnara400

/bome/user1/vnurgya/datz
sample dire\&tory:
mx-M2s-CDC̈L3_20140928_01
FidFile: Cadaon 01
Dulse sequenge: CARBOM (a2pul)
Solvent: adel3
Data collectdd on: sep 282014

Temp. 25.0 \& / 298.1 I operator: uedrl

Relax. delay 1.000 nec bulae 45.0 degrees
Acq. time 1.311 gec
width 25000 . 0 Ex
1056 rapetitions
OBSERVE C13. 100.5589851 MCIz $\begin{array}{ll}\text { DESCOUPLE } & \text { HI }\end{array}, \begin{aligned} & 100.5589851 \mathrm{MEIz} \\ & 399.9181065 \mathrm{MEz}\end{aligned}$ DECOUDLE HI, 399.9181065 MEF Dower 46 dB continuousl on WALTZ-16 modulate
data droczasing
Line broadening 0.5 F
FT a1ze 6553
Total tima $12 \mathrm{hr}, 50 \mathrm{~min}$

mex-m-3
Sample Name:
MK-M-3
Data Collected on:
vnimes 400 -vnimra 400
Archive directory:
/home/user1/vmirgya/data
sample dire@tory:
MK-M-3_20 $\mathrm{Cl}_{4} 40925$ _01
FidFile: Caftson_01
Dulse sequango: CARBON (02 pul) solvent: ado13
Data collectdd on: Sep 252014
Temp. $25.0 ¢ / 298.1 \mathrm{x}$
operator: uedr1
Relax. delay 1.000 aec
Dulas 45.0 degrees
Acq. time 1 . 311 aec
Acq. time $1 .\left\{\begin{array}{l}311 \mathrm{sec} \\ \text { Width } \\ 25000\end{array} \mathrm{O}_{\mathrm{Ez}}\right.$
728 ropetitions
OBSERVE C13, 100.5589851 NGFz

DECOUPLE II 399.9181065 mEz
Dower 46 dB
continuousl on
waitz-16 modulated
data proczasagg
Line broadering 0.5 Ez
FTa1ze 6553
$\begin{array}{ll}\text { FT } 11 z e & 6553 \\ \text { Total tima } 1 & \text { hr, } 17 \mathrm{~min}\end{array}$

\%. Agilent Technologies

E

o

yx-1707c0
sample Name:
Mx.170700

Data collected on:
vnirs 400 -vnars 40
/home/vinril/vinraya/data /homa/vmri/vanroye/dat vex-1707c0"20130717_02 prdpile: Cajan

Pulse sequendo: Casbon (a2pul) Solvent: c6d Data collect od on: Jul 1 operator: valur 1
relax. delay $1.000=00$ Pulae 45.0 degreas heq. time 1.311 se
width 25000 O Ez
128 ropetit fons
OBSERVE C13. 100.5589941 HEE
DECOUPLE MI, 399.9181425 MEZ
Power 46 dB
caitz 16 mon
KALTZ-16 modula
Line broadening 0.5 Bx FT a1ze 6553
Total time 10 min

vax-3007-C0

Sample Name
vax-3007-C
Data Collected on
vamrs400-vinisa400
arch1ve directory:
/home/vamr 1/vinaraya/data
sample directorfir
sax-3007-co_20120730_01
FidFile: PROTON
Pulse sequance: Feotok (s2pul
Data collected on: Jul 302013
Tomp. $25.0 \mathrm{C} / 298.1 \mathrm{E}$
operator: vanr
Relax. delay 2.000 se
Pulae 45.0 degréfo
heq. time 2.556
width 6410.3 Ez
$\begin{array}{cc}16 \text { repetitions } \\ \text { OBSERVE } & \text { H1, } 399.9161429 \text { nEz }\end{array}$ DATA proczasinc
FT alze 32768
Total time 1 min

Agilent Technologies
vax-3007-C0
sample Name: samp-3007-co Data Collected on:

arch1ve directory

sample difectory:
$\mathrm{ME}-3007^{\circ} \mathrm{CO} 201$
Fidpile: "
pulse sequance: Carbon (o2pul) solvent: apd6
ata collefted on: Jul 30201

Tamp. $25.0 \mathrm{C} / 298.1 \mathrm{E}$
perator: manrl
Relax. defay 1.000 sec
Pulse 45. 0 degrees
weq. time 1.311000
144 ropet tions
ogserve C13, 100.5589941 hEz escouple fir 399.9181425 nEz
Power 46 AB
continuouply on
wALTZ-16 podulated
data proczesing
Line broaliening 0.5 Ez
Ta1ze $65{ }^{2} 36$
Total time 19 min

\qquad

Agilent Technologies

sax-kristal
sample Name:
Max-kriatal
Data collected on:
vnmra400-vinra40

4ba
rchive directory:
/homa/ueer $1 /$ vinigys/data sample dirgctory: Max-kriat Fidpile: conabon

Dulse sequarce: Cafbon (a2pul) Solvent: cad 13 Data collected on: oct 212014

Tamp. 25.0 C / 298.1
operator: uperl
Relax. deljy 1.000 aec
Dulae 45.0 degrees
Acq. time 3.31180
Width 2500 g .0 Ex
1576 repety tions
ObsERVE C13, 100.5589851 nerz
DECOUPLE B. 399.9181065 mez Dower 46 d
waitz-16 modulate
DATA DROCESATMG
Line broaddning 0.5 Hz
FT a1ze 65536
Total time $\left\{\begin{array}{l}\text { br, } 17 \mathrm{~min}\end{array}\right.$
?
$\tau \tau \tau^{\circ} 0 \varepsilon \tau-$
$\tau \varepsilon \iota^{\circ} \angle \varepsilon \tau-$ zt $\tau \cdot 0 \varepsilon \mathrm{t}$ 훙․
․․
국

Agilent Technologies

APPENDIX B

MASS SPECTRUMS OF PRODUCTS

MK-M7 \#3407 RT: 17.58 AV: 1 NL: 2.44E6
T: $\{0,0\}+\mathrm{c}$ El Full ms [40.00-500.00]

MK-M7 \#3407 RT: 17.58 AV: 1 NL: 2.44E6
T: $\{0,0\}+\mathrm{c}$ El Full ms [40.00-500.00]

MK-M17 \#3499 RT: 17.90 AV: 1 NL: 4.01E6
T: $\{0,0\}+$ c El Full ms [40.00-500.00]

MK-M18 \#3480 RT: 17.83 AV: 1 NL: 7.98E6

T: $\{0,0\}+\mathrm{c}$ El Full ms [40.00-500.00]

MK-M10 \#5146 RT: 23.50 AV: 1 NL: 9.51E5
T: $\{0,0\}+\mathrm{c}$ El Full ms [40.00-500.00]

MK-M4 \#3661 RT: 18.45 AV: 1 NL: 1.79E6
$\mathrm{T}:\{0,0\}+\mathrm{c}$ El Full ms [40.00-500.00]

MK-M6 \#3705 RT: 18.60 AV: 1 NL: 9.65E7
T: $\{0,0\}+c$ El Full ms [40.00-500.00]

MK-M21 \#4127 RT: 20.03 AV: 1 NL: 1.09E7
T: $\{0,0\}+\mathrm{c}$ EI Full ms [40.00-500.00]

MK-M21 \#4127 RT: 20.03 AV: 1 NL: 1.09E7
T: $\{0,0\}+\mathrm{c}$ El Full ms [40.00-500.00]

ea-m26\#165-211 RT: 2.14-2.74 AV: 47 SB: 40 1.16-1.67 NL: 1.22E4
$\mathrm{T}:+\mathrm{C}$ ESI [50.00-1000.00]

2ma

MK-M5 \#4113 RT: 19.98 AV: 1 NL: 1.03E7
T: $\{0,0\}+$ c El Full ms [40.00-500.00]

MK-M12 \#2991 RT: 16.17 AV: 1 NL: 1.17E8
$\mathrm{T}:\{0,0\}+\mathrm{C}$ El Full ms [40.00-500.00]

MK-M13 \#3079 RT: 16.47 AV: 1 NL: 6.83E7
T: $\{0,0\}+\mathrm{c}$ El Full ms [40.00-500.00]

MK-M3 \#4919 RT: 22.73 AV: 1 NL: 2.01E6
T: $\{0,0\}+$ CEI Full ms $40.00-500.00]$
T: $\{0,0\}+\mathrm{c}$ El Full ms [40.00-500.00]

|MK-M16 \#3973 RT: 19.51 AV: 1 NL: 3.05E8
T: $\{0,0\}+c$ El Full ms [40.00-500.00]

MK-M1 \#4394 RT: 20.94 AV: 1 NL: 9.29E5

MELİH KUS

Place of Birth / Date: Izmir / 1984

RESEARCH

Transition metal catalyzed C-C bond forming reactions, new reaction strategies

EDUCATION

2009-2015 Doctor of Philosophy: The Graduate School of Engineering and Sciences Izmir Institute of Technology

2007-2009 Master of Science: The Graduate School of Engineering and Sciences Izmir Institute of Technology
2002-2007 Bachelor of Science: Department of Chemistry-Izmir Institute of Technology

PUBLICATIONS

- Kus, M.; Artok, L.; Aygün, M. Palladium-Catalyzed Alkoxycarbonylation of Conjugated Enyne Oxiranes: A Diastereoselective Method in Synthesis of 7-Hydroxy-2,3,5-Trionates J. Org. Chem., 80, 5494-5506, 2015.
- Karagöz, E.S.; Kus, M.; Akpinar, G.E.; Artok, L. Regio- and Stereoselective Synthesis of 2,3,5-Trionates by Palladium Catalyzed Alkoxycarbonylation of Conjugated Enyne Carbonates J. Org. Chem., 79, 9222-9230, 2014.
- Üçüncü, M.; Karakus, E.; Kus, M.; Akpınar, G. E.; Aksın-Artok, Ö.; Krause, N.; Karaca, S.; Elmacı, N.; Artok, L. Rhodium- and Palladium-Catalyzed 1,5Substitution Reactions of 2-En-4-yne Acetates and Carbonates with Organoboronic Acids J. Org. Chem., 76, 5959-5971, 2011.
- Ziyanak, F.; Kus, M.; Artok, L. Rhodium-Catalysed Alkoxycarbonylative Cyclisation Reactions of 1,6-Enynes Adv. Synth. Catal. 353, 6, 897, 2011.
- Akpınar, G. E.; Kuş, M.; Üçüncü, M.; Karakuş, E.; Artok, L. Palladium-Catalyzed Alkoxycarbonylation of (Z)-2-En-4-yn Carbonates Leading to 2,3,5-Trienoates Org. Lett. 13, 748, 2011.
- Artok, L.; Kus, M.; Ürer, B. N.; Türkmen, G.; Aksın-Artok, Ö. Rhodium Catalysed Chemo-and Stereoselective Arylative and Alkenylative Cyclisation Reactions of Unsymmetric Diynes Containing a Terminal Alkyne Moiety with Organoboronic Acids Org.Biomol. Chem. 8, 2060, 2010.
- Artok, L.; Kus, M.; Aksın-Artok, Ö.; Dege, F. N.; Özkılınç, F. Y. Rhodium Catalyzed Reaction of Internal Alkynes with Organoborons Under CO Atmosphere: A Product Tunable Reaction Tetrahedron, 65, 9125, 2009.
- Kus, M.; Artok-Aksin, Ö.; Ziyanak, F.; Artok, L. Synthesis of Alpha-Beta-Unsaturated Ketones by Rhodium-Catalyzed Carbonylative Arylation of Internal Alkynes with Arylboronic Acids Synlett, 17, 2587, 2008

CONFERENCES

- 8th Asian-European Symposium on Metal-Mediated Efficient Organic Synthesis (AES-MMEOS 2014), Izmir Institute of Technology, İzmir, Turkey, 7-10 September 2014. (Organizing Committee)
- Chemical Physics IX Congress, Izmir Institute of Technology, İzmir, Turkey, 14-16 October 2010. (Organizing Committee)
- EU-COST D40 (Innovative Catalysis: New Processes and Selectivities), Gazi University, Ankara, Turkey, 25-27 May 2010 .(Poster)
-Organometallic Chemistry and Cataylst, İnonü Universty, Malatya, Turkey, 16-17 May 2010 (Poster)
-XXII. National Chemistry Congress, Eastern Mediterranean Universty, Cyprus, 6-10 October 2008 (Oral Presentation)
-X. National Spectroscopy Congrees, Izmir Institute of Technology, İzmir, Turkey, 0407 July 2007 (Organizing Commitee)

[^0]: ${ }^{\text {a }}$ Reaction conditions: 0.3 mmol of (Z) $\mathbf{- 1 a}, 2 \mathrm{~mL}$ of MeOH , under CO filled balloon, $25{ }^{\circ} \mathrm{C}$. ${ }^{\mathrm{b}}$ Determined by ${ }^{1} \mathrm{H}$ NMR analysis using benzaldehyde as the internal standard. ${ }^{\text {c I Isolated yield. }}$

