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ABSTRACT 

 

AN EXPERIMENTAL AND NUMERICAL STUDY ON EFFECTS OF 

PORE TO THROAT SIZE RATIO ON MACROSCOPIC TRANSPORT 

PARAMETERS IN POROUS MEDIA 

 

Heat and fluid flow in porous media are frequently encountered in natural and 

industrial applications, such as oil recovery, water supply management in 

hydrogeology, ground heat storage, nuclear waste disposals, and ground water flow 

modeling. Fluid flow and heat transfer analyses in porous media have gained recent 

attention. The theoretical analysis of heat and fluid flow in porous media is 

troublesome. That’s why some methods were developed to overcome the difficulties. 

One of these methods is the macroscopic method in which the solid and fluid phases 

are combined and the porous media is represented as an imaginary continuum domain. 

For the application of the macroscopic method onto a porous medium, the macroscopic 

transport properties such as permeability and thermal dispersion of the corresponding 

medium should be known. Many parameters such as pore to throat size ratio, porosity, 

Reynolds number, solid-to-fluid thermal conductivity ratio influence the macroscopic 

transport parameters.  

In this study, the fluid flow and heat transfer in porous media are examined 

numerically to determine the effects of pore to throat size ratio on permeability, 

interfacial convective heat transfer and thermal dispersion coefficients. The heat and 

fluid flow in periodic porous media consisting of rectangular rods are investigated. A 

representative elementary volume is considered and the continuity, Navier-Stokes and 

energy equations are solved to determine the velocity, pressure and temperature fields 

in the voids between the rods. It is shown that the pore to throat size ratio is a 

significant parameter which should be taken into account to suggest a wide applicable 

correlation. Based on obtained computational results, correlations for determination of 

Kozeny constant and interfacial heat transfer coefficient in terms of pore to throat size 

ratio and other related parameters are proposed. An experimental study was conducted 

to validate the numerical results of the present study. In the experimental part, a porous 

channel of square rods is used and the permeability and thermal dispersion coefficient 

are validated with the aid of experimental measurements. A good agreement between 

the experimental and numerical results is observed. 
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ÖZET 

 

GÖZENEKLİ YAPILARDA GÖZENEK İLE BOĞAZ ARASINDAKİ 

BÜYÜKLÜK ORANININ MAKROSKOPİK TAŞINIM 

PARAMETRELERİNE ETKİSİ ÜZERİNE DENEYSEL VE TEORİK 

BİR ÇALIŞMA 
 

Gözenekli ortamlarda akış ve ısı transferi ile hidrojeolojideki su kaynağı yönetimi ve 

zemin ısı depolama gibi birçok doğal ve endüstriyel uygulamada sıklıkla 

karşılaşılmaktadır. Bu sebepten gözenekli ortamlarda akış ve ısı transferi analizleri ilgi 

kazanmaktadır. Gözenekli ortamlarda akış ve ısı transferinin teorik analizi külfetlidir. 

Analizdeki zorlukları gidermek için bazı yöntemler geliştirilmiştir. Bu yöntemlerden 

birisi makroskopik yöntemdir. Makroskopik yöntemde gözenekli ortamdaki katı ve sıvı 

birleştirilmekte ve gözenekli yapı varsayımsal bir sürekli ortam olarak 

gösterilmektedir. Ancak makroskopik yöntemin uygulanabilmesi için gözenekli 

ortamın geçirgenlik ve ısıl dispersiyon katsayısı gibi makroskopik taşınım 

özelliklerinin bilinmesi gerekmektedir. Gözenek ile boğaz arasındaki büyüklük oranı, 

porozite, Reynolds sayısı, katı ile sıvı arası ısıl iletkenlik katsayısı oranı gibi birçok 

parametre makroskopik taşınım özelliklerini etkiler.  

Bu çalışmada, gözenek ile boğaz arasındaki büyüklük oranının geçirgenlik, arayüz ısı 

transfer ve ısıl dispersiyon katsayıları gibi makroskopik taşınım özelliklerine etkisi 

sayısal olarak incelenmiştir. Dikdörtgen çubuklardan oluşan periyodik gözenekli bir 

ortamda akış ve ısı transferi incelenmiştir. Temsili bir birim hacim gözönüne alınmış 

ve süreklilik, Navier-Stokes ve enerji denklemleri çözülerek çubuklar arası boşluktaki 

hız, basınç ve sıcaklık dağılımları bulunmuştur. Gözenek ile boğaz arasındaki 

büyüklük oranının, makroskopik taşınım özelliklerinin doğru bir şekilde 

hesaplanabilmesi için dikkate alınması gereken, önemli bir parametre olduğu 

gösterilmiştir. Kozeny sabiti ve arayüz ısı transfer katsayısının bulunması için gözenek 

ile boğaz arasındaki büyüklük oranı ve diğer ilişkili parametrelere bağlı korelasyonlar 

önerilmiştir. Sayısal sonuçların geçerliliğini göstermek için deneysel bir çalışma 

yapılmıştır. Deneysel çalışmada, kare çubuklardan oluşan gözenekli bir kanal 

kullanılmış ve sayısal olarak bulunan geçirgenlik ve ısıl dispersiyon katsayıları 

doğrulanmıştır. Deneysel ve sayısal sonuçlar arasında iyi bir uyum gözlenmiştir.  
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CHAPTER 1 

 

INTRODUCTION 

 

A porous medium is a composite medium consisting of solid and voids. The 

voids can be interconnected (open cell) or disconnected (closed cell). The fluid flow and 

heat transfer in porous media are considerably studied in recent years due to their wide 

applications in both nature and technical areas. The application of transport in porous 

media is faced in almost all branches of engineering. Food and crop drying processes, 

chemical reactors, filters, membranes, gas separator adsorbent beds, nuclear reactors, 

and heat exchangers can be given as industrial examples in which transport in porous 

media appears as main topic. The flowing of water or petroleum through rocks and soil, 

air flowing in lung, blood flow in liver, biological tissues and veins or even flow of air 

in forests can be presented as examples for transport in porous media in nature.  

In an open cell porous medium, fluid flows in the pores (or voids) between the 

particles. The mechanism of the flow through the pores is complex and the flow is three 

dimensional; hence pore level determinations of the velocity and the temperature fields 

are difficult. For this reason, some approaches are required to overcome the difficulties 

in analyzing heat and fluid flow in porous media. One of the most common 

methods is the macroscopic approach in which heat and fluid flow equations are 

established for a continuum domain involving the whole volume of the porous media 

although a discontinuity in the flow field exists due to the solid phase. This requires 

definitions for the volume averaged velocity, pressure, and temperature including both 

solid and fluid phases. Taking a volume integral of the continuity, momentum, and 

energy equations over a control volume in the domain yields the macroscopic governing 

equations for the continuum domain.  

The application of volume averaging method on continuity, momentum and 

energy equations causes appearing of extra terms in corresponding equations. These 

terms involves macroscopic transport properties such as permeability, Forchheimer, 

thermal dispersion, thermal tortuosity and interfacial convective heat transfer 

coefficients. There are huge numbers of studies in the literature on the determination of 
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the macroscopic transport parameters for various porous media. The main aims in these 

studies generally were to understand the effects of the geometrical and/or flow 

properties such as porosity, Reynolds number, flow direction on the macroscopic 

transport parameters. Correlations and diagrams for determination of these effects were 

presented in the reported studies. Although the effects of many geometrical and flow 

parameters on macroscopic transport properties were studied and reported, still there are 

important parameters that have not been taken into account such as pore to throat size 

ratio.   

The porous media structures considered in the present study are arrays of square 

or rectangular rods in inline arrangement. Mainly, the effects of pore to throat size ratio 

on the permeability, Kozeny constant, interfacial convective heat transfer and thermal 

dispersion coefficients are investigated. Additionally, the effects of porosity and 

Reynolds number on the aforementioned parameters and on Kozeny constant are 

examined. An experimental study was performed to validate the numerical model. The 

type of the porous structure is chosen as a fundamental geometry and a parametric study 

was performed to see the effects of pore to throat size ratio, porosity and Reynolds 

number on the aforementioned macroscopic transport parameters.  

The pore to throat size ratio is an important parameter in porous media, whose 

effect can be encountered in many applications. For example, recently the interests in 

metal foams increase and they are produced to be employed in many heat exchanging 

applications. Pore and throat structures in a metal foam are shown in Figure 1.1. For the 

determination of the macroscopic transport parameters of metal foam, generally the 

ideal models are used since the investigation of the entire porous medium is very 

troublesome.  

 

 

 

Figure 1.1. Pores and throats in a metal foam. 
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Another example for the effect of pore to throat size ratio on transport in porous 

media may be a fin array used for cooling of electronic equipment shown in Figure 1.2. 

There are long rectangular fins in the array and air flow through the fin array can be 

analyzed by using porous media models. Hence, the effect of pore to throat size ratio 

should be taken into account during design of this kind of fin arrays.  

 

 

(a)       (b) 

 

Figure 1.2. A rectangular fin array (a) real case (b) pores and throats in the array. 

 

As it is well known, heat exchangers are widely used in industry. Most of the 

heat exchangers consist of long pipes. Porous media models can be used for analyzing 

of fluid flow and heat transfer between the pipes. Hence, the effect of pore to throat size 

ratio for design of heat exchangers should be considered. As a result, the effect of the 

pore to throat size ratio is encountered in many porous media applications; however, 

number of studies on this parameter is too limited 

 

1.1. The Aim of Study 

 

The aim of the present study is to investigate the effects of pore to throat size 

ratio on the fluid flow and heat transfer in porous media containing inline array of 

rectangular rods. The volume averaging method is used to determine the macroscopic 

transport parameters such as permeability, interfacial convective heat transfer and 

thermal dispersion coefficients. The applicability of Kozeny-Carman permeability 

equation for the considered porous media is examined and a correlation for the 
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determination of Kozeny constant based on the porosity and pore to throat size ratio of 

the considered medium is proposed. A correlation for the determination of the 

interfacial Nusselt number based on the same parameters is also presented. 

An experimental study was performed to validate the numerical results. 

Although numerical studies on heat and fluid flow in packed beds with square rods are 

available in literature, no experimental study on the beds with square rods has been 

reported. Experimental studies were mostly done for unordered packed beds filled with 

spherical particles.  

The present work is a parametric study to show the effects of pore to throat size 

ratio, Reynolds number, and porosity on the macroscopic transport parameters. A wide 

literature survey on the determination of macroscopic transport parameters, microscopic 

and macroscopic governing equations and boundary conditions and computation 

procedure are presented in details.  

 

1.2. The Outline of Thesis 

 

The thesis is divided into eight chapters. In the first chapter an introduction to 

the subject and aim of study are presented.  

In Chapter 2, basic concepts of porous media and background of microscopic 

and macroscopic methods are given. Microscopic governing equations for fluid flow 

and heat transfer and traditional macroscopic equations are presented. The derivation of 

the macroscopic fluid flow and heat transfer equations are written. The mathematical 

definitions of permeability, interfacial heat transfer coefficient and thermal dispersion 

and finally, a few words on the equivalent thermal conductivity models proposed in the 

literature are presented. 

In Chapter 3, a literature review on the determinations of permeability, 

interfacial convective heat transfer and thermal dispersion coefficients is presented. 

Both theoretical and experimental studies are reviewed and the studies are summarized 

in tables.  

In Chapter 4, the considered domain with the geometrical properties of the 

studied porous media is introduced. The governing equations solved to obtain the 

microscopic velocity, pressure and temperature distributions in the REVs and the 
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corresponding boundary conditions for the computation of the aforementioned 

macroscopic transport parameters are explained in detail.  

Chapter 5 consists of the numerical procedure employed in the determination of 

the permeability, interfacial convective heat transfer coefficient and thermal dispersion 

coefficients. Computational details and grid independency tests of the computations are 

presented in this chapter as well. 

In Chapter 6, the components of the experimental setup are introduced and the 

experimental procedure applied in the experimental part of the study is presented in 

detail.  

The obtained results of the numerical and experimental parts of the present study 

are shown and explained in Chapter 7. The required discussions on the results are made 

and the proposed correlations for Kozeny constant and the interfacial convective heat 

transfer coefficient are reported in this chapter. Finally, the concluded remarks based on 

the obtained results are presented in Chapter 8. 
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CHAPTER 2 

 

BACKGROUND OF MACROSCOPIC HEAT AND FLUID 

FLOW ANALYSIS IN POROUS MEDIA 

 

A porous medium is a composite medium containing voids and solid particles. 

The mechanism of the flow through the pores is complex and the flow is three-

dimensional; hence the pore level determination of velocity and temperature 

distributions is cumbersome and difficult. More appropriate approaches are required to 

overcome these difficulties in analysing the heat and fluid flow in porous media. One of 

the most common methods is the macroscopic approach which is explained in this 

chapter. 

In this chapter, the microscopic and macroscopic methods for analysing fluid 

flow and heat transfer in the porous media are introduced. Firstly, an introduction to the 

microscopic point of view and the microscopic concepts of porous media are presented. 

Then, the microscopic fluid flow and heat transfer equations are introduced and 

explained. Finally, the traditional macroscopic equations are presented and the 

derivations of general forms of macroscopic momentum and energy equations are 

explained in detail. 

 

2.1. Microscopic and Macroscopic Views of Porous Media 

 

In a porous medium, the fluid flows in the pores (or voids) between the particles. 

An open porous medium has interconnected voids and solid particles; hence the fluid 

flows in the voids. If there is periodicity in the porous structure, the medium is called as 

ordered or structured. If the structure is random, it is named as disordered (unstructured) 

porous medium (see Figure 2.1).  

Disordered (randomly) packed beds are widely used in industrial processes, 

because of their low cost and ease of packing. But, pressure drops in these packed beds 

are usually much higher compared with the ordered packed beds, and the overall heat 
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transfer performances may be poor. Thus ordered packed beds are considered to be 

promising choices for the industrial applications (Yang et al. 2010). 

 

             

(a)            (b) 

 

Figure 2.1. Schematic views of porous media (a) ordered, (b) disordered porous media 

 

A basic property of a porous medium is porosity. The porosity is defined as the 

volume of the pores to the total volume of the porous media (see Eq. (2.1)).  

 

 

V

V f
  (2.1) 

 

where Vf is the volume of the pores in the porous medium and V is the total 

volume. For the type of porous media in which some of the voids are closed to the fluid 

flow, the effective porosity value is defined to describe the volume in which the fluid 

flows. 

As mentioned before, there are mainly two approaches to handle heat and fluid 

flow in porous media: microscopic and macroscopic approaches. In the microscopic 

approach, fluid motion in pores between particles is studied as it is. It can be studied by 

solving the continuity and Navier-Stokes equations. But it is cumbersome and difficult 

to analyze the heat and fluid flow for whole domain of a porous medium, 

microscopically. The microscopic approach is useful when a periodic structure is 

considered. On the other hand, in the macroscopic approach, heat and fluid flow is 

analyzed for a continuum domain by upscaling the microscopic parameters. Heat and 

fluid flow equations are established for a continuum domain involving the whole 

volume of porous medium in spite of discontinuity in the flow due to the solid phase 

and all properties of the domain are obtained as effective values. Volume integral of the 
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continuity, momentum and energy equations yields the governing equations for the 

whole of porous medium.  

Figure 2.2 shows fluid flow in a channel filled with a porous medium. When 

fluid enters into the channel, fluid particles have 3D motion inside the pores. But 

macroscopically, flow through the porous column is unidirectional and the macroscopic 

velocity can be written as the ratio of volume flow rate to the cross-sectional area. This 

macroscopic velocity is also known as apparent, superficial or Darcian velocity. 

Because of the conservation of mass, this velocity should be constant through the 

channel (Nakayama 1995).  

 

 

 

Figure 2.2. Macroscopic and microscopic flows through a porous channel. 

  

Permeability is a macroscopic transport property used to obtain macroscopic 

velocity. Permeability is a measure of the allowance of the solid structure to fluid flow. 

It is independent of fluid properties and only depends on the properties of the solid 

structure of the considered porous medium (Nield and Bejan 2006). 

There are industrial and natural processes in which heat transfer through porous 

media occurs while fluid flows through the voids. The heat transfer in porous media can 

also be analyzed macroscopically. Interfacial convective heat transfer and thermal 

dispersion coefficients are two macroscopic transport parameters that play important 

role on analyzing heat transfer in porous media. 

Interfacial convective heat transfer coefficient represents the heat transfer 

between fluid and solid phases. It occurs when there is no local thermal equilibrium 

between two phases. When the interfacial convective heat transfer coefficient is studied, 

two phases in the porous medium should be considered, separately. Two energy 

equations (one for solid and another for fluid phase) should be solved to determine 

temperature field for the entire domain.  
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Thermal dispersion occurs in a porous medium due to non-uniform velocity and 

temperature fields, and thermal dispersion coefficients show the effects of these 

microscopic non-uniformities on macroscopic level. Thermal dispersion shows the 

enhanced heat transfer which occurs in response to the interaction between the local 

spatial fluctuations of velocity and temperature at the pore scale (Alshare et al. 2010). 

As flow velocity increases, thermal dispersion becomes a significant parameter in heat 

transfer through porous media, hence it is important to determine the values of thermal 

dispersion coefficients, accurately. Thermal dispersion depends on many parameters 

such as porosity, Reynolds and Peclet numbers, solid-to-fluid conductivity ratio etc. The 

shape of packing and type of porous media (ordered/disordered) affect thermal 

dispersion.  

 

2.2. Microscopic Fluid Flow and Energy Equations 

 

For an incompressible flow of Newtonian fluid with constant thermo-physical 

properties, the continuity and momentum equations, given in Eqs. (2.2) and (2.3), are 

used to obtain the velocity and pressure distributions in the pores of the considered 

porous medium. 

 

 0 u


 (2.2) 
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where u


 is velocity vector, ρf and µf are the density and dynamic viscosity of 

the fluid, respectively, and p is pressure. To obtain the microscopic temperature 

distribution in a porous medium, both solid and fluid phases should be considered 

separately and two microscopic energy equations should be taken into account. With the 

assumption of the negligible viscous dissipation, Eqs. (2.4) and (2.5) are microscopic 

energy equations for fluid and solid phases, respectively. 
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where T is temperature, cp and k are specific heat capacity and thermal 

conductivity, respectively. The subscripts f and s refer to the fluid and solid phases. By 

using above governing equations (Eqs. (2.2)-(2.5)) with appropriate initial and boundary 

conditions, the velocity and pressure distributions in the pores and the temperature 

distributions in both solid and fluid phases can be obtained. However, for a porous 

medium consisting of huge number of pores and complex structure, the microscopic (or 

pore level) analysis by employing these equations may be difficult and time consuming. 

That’s why; the macroscopic method which is explained in the following sections can 

be used to analyse fluid flow and heat transfer in porous media. 

 

2.3. Volume Averaging Method 

 

Volume averaging method is frequently used in macroscopic analysis of heat 

and fluid flow in porous media. In order to apply volume averaging method to a control 

volume within a porous medium, the characteristic length of the control volume ( 3/1V ) 

should be chosen smaller than the macroscopic characteristic length ( 3/1

cV ) (e.g. channel 

height), however it should be much larger than the microscopic characteristic length to 

find meaningful values (see Figure 2.3) (Nakayama 1995).  

 

 

 

Figure 2.3. A microscopic control volume in a porous structure  

(Source: Nakayama 1995) 
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Volume averaging of a quantity over a control volume is calculated as follows:  

 

 

V

dV
V


1

 (2.6) 

 

where V is the volume of chosen control volume. By using Eq. (2.6), the 

macroscopic velocity is defined as below.  

 

 

V

dVu
V

u
 1

 (2.7) 

 

If an average value of a quantity for one of the phases is required, intrinsic 

averaging is used. For example, the average velocity in the fluid phase can be calculated 

from Eq. (2.8). This velocity can also be called as pore or interstitial velocity and it is 

proportional to the macroscopic velocity.  

 

 


fVf

f
dVu

V
u

 1
 (2.8) 

 

where Vf is pore volume. The relation between macroscopic and pore velocities 

is shown by Eq. (2.9) which is known as Dupuit-Forchheimer relation (Kaviany 1995). 

 

 /uu
f
  (2.9) 

 

More details on the fundamentals and applications of volume averaging method 

can be found in the book of Whitaker (Whitaker 1999). 

 

2.4. Traditional Macroscopic Flow Equations: Darcy and Forchheimer 

Motion Equations 

 

It is empirically discovered by Darcy (Darcy 1856, Kaviany 1995) that the 

macroscopic (Darcian) velocity through a column of porous medium is proportional to 

the pressure gradient and inversely proportional to the fluid viscosity. This relation is 
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called as Darcy’s Law and its one-dimensional form is shown by Eq. (2.10). The 

proportionality constant K is called as permeability. The permeability is a tensor in 

which the diagonal terms show the permeability of the porous medium in principal 

directions. Permeability refers to the flow resistance inside the porous medium. It 

depends on the micro-structure of the solid phase and independent of the properties of 

the fluid (Nakayama 1995). Darcy’s Law can be accurately used to obtain average 

velocity in a porous medium for low Reynolds number flows (Red < 1, /Re dud  ) 

because it states a balance between viscous and pressure forces. 
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At higher Reynolds numbers, an additional quadratic term, which includes the 

flow inertia effects, was proposed by Dupuit (Dupuit 1863) and Forchheimer 

(Forchheimer 1901, Nakayama 1995). The resulting equation is called as Forchheimer 

extended Darcy’s Law and its one dimensional form is given by Eq. (2.11). The first 

term on the right hand side accounts for the frictional drag (Darcy term) while the 

second term (Forchheimer) refers to the form drag. 
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where C is Forchheimer coefficient. As can be seen from Eqs. (2.10) and (2.11), 

in order to predict macroscopic velocity for a porous medium accurately, the 

permeability and Forchheimer coefficients should be well known. The most common 

equation for determination of permeability was derived according to Kozeny-Carman 

theory (Kozeny 1927, Carman 1937). The Kozeny-Carman theory and the derivation of 

Kozeny-Carman permeability equation are summarized in the following paragraphs. 

The average velocity for Hagen-Poiseuille flow in a channel with diameter of dt can be 

found as:   
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By using Dupuit-Forchheimer relation (Eq. (2.9)) and comparing Darcy’s Law 

with Eq. (2.12), the permeability value for Hagen-Poiseuille flow in a channel can be 

found as 32/2tdK  . Kozeny considered the medium as a bundle of capillary 

channels with the same radius as shown in Figure 2.4. 

 

 

 

Figure 2.4. Flow through a bundle of capillary tubes  

(Source: Nakayama 1995) 

 

By combining Hagen-Poiseuille velocity equation with Darcy’s Law and using 

tortuosity concept, the following equation for permeability was proposed by Kozeny: 

 

 





32

2

td
K   (2.13) 

 

where τ is tortuosity. Tortuosity can be defined as the ratio of the actual length 

of flow path in the porous medium to the length of flow path in the absence of porous 

medium (i.e., in clear fluid). The tortuosity can be thought as the effect of the 

microstructure of the porous medium (direction of the pores) on the macroscopic flow 

(Liu and Masliyah 2005). Tortuosity used in Eq. (2.13) may be understood as the 

correction to the pressure gradient which is defined for clear fluid (Kaviany 1995). The 

permeability equation of Kozeny was modified later by Carman and the so-called 

Kozeny-Carman equation was introduced to the literature and has been widely used. 

Kozeny-Carman equation which predicts the permeability reasonably well for the 

packed bed of spheres is presented as: 
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where dh is the pore hydraulic diameter of the porous medium. The pore 

hydraulic diameter is defined as: 
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where A0 is the ratio of the fluid-solid interfacial area to the solid volume. The 

symbol of kK in Eq. (2.14) is Kozeny constant which includes the effects of flow path, 

particle shape and their connections (i.e., tortuosity and shape effects) and given equal 

to a constant in Kozeny-Carman theory (kK = 5). For spherical particles, the Kozeny-

Carman equation can be rewritten based on particle diameter as Eq. (2.16). 
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where d is the diameter of the spheres. On the other hand, for 2- or 3-

dimensional cylinders Eq. (2.14) changes into Eq. (2.17). 
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where d is the diameter of the cylinders. 

Ergun (Ergun 1952) studied gas flow through column of packed spheres 

experimentally and determined permeability and Forchheimer coefficients as follows: 
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Thus, Eq. (2.20) is called as Ergun’s Equation. 
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As it was mentioned before, the drag term (Forchheimer term) becomes 

important for high Reynolds number flows. The Reynolds number used in the 

macroscopic fluid flow and heat transfer analysis generally has the following form: 

 

 

f
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where L is characteristic length which may be the dimension of the solid 

particles (d) or the dimension of the representative elementary volume etc. Another 

Reynolds number definition frequently used in the studies is given by Eq. (2.22).  It 

might be useful to mention that for steady flow through porous media, the flow is 

assumed to remain laminar as long as ReK < 300 (Pedras and de Lemos 2001). 
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The traditional macroscopic fluid flow equations are briefly explained in the 

previous paragraphs. The traditional equations were generally obtained intuitionally by 

using the experimental observations. However, general forms of macroscopic fluid flow 

and heat transfer equations can be obtained theoretically by applying volume-averaging 

method on the corresponding microscopic equations. The macroscopic equations and 

the derivation procedure are presented in the following sections.  

 

2.5. General Forms of Macroscopic Motion Equations 

 

General macroscopic flow equations can be obtained by applying the volume 

averaging method on the continuity and Navier-Stokes equations by using below 
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equalities. The following relation can be used for intrinsic average of any multiplication 

φ1φ2 (Nield and Bejan 2006). 

 

 ffff

212121    (2.23) 

 

Where the prime denotes the deviation of the intrinsic average value from the 

microscopic one, such that 
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Eq. (2.23) can be rewritten in terms of the total volume averaged variables with 

using Dupuit-Forchheimer relation (Eq. 2.9) as follows. 
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Also, the following rules which are analogous to Leibnitz rule are used in the 

volume averaging procedure. 
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where Asf is the interfacial area between solid and fluid phases. By using these 

equalities, macroscopic governing equations can be directly derived from the 

microscopic equations. The macroscopic continuity equation can be obtained by 

applying volume averaging method to Eq. (2.2) which is the microscopic continuity 

equation.   
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The integration rule given by Eq. (2.26) is used on Eq. (2.28) to obtain Eq. 

(2.29).  
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The second term vanishes since the flow cannot penetrate through the solid wall. 

Hence the macroscopic continuity equation is found as follows. 

 

 0 u
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Microscopic momentum equation is given by Eq. (2.3). With a similar procedure 

explained for obtaining macroscopic continuity equation, the macroscopic momentum 

equation can also be found. Volume averaging of Eq. (2.3) yields: 
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This equation can be rewritten in the following form by using Eqs. (2.26) and 

(2.27): 
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(2.32) 

 

The last integration on the right hand side of Eq. (2.32) vanishes due to no flow 

penetration into solid. Since the pressure term in the momentum equations is related to 

the fluid phase, the Dupuit-Forchheimer relation can be used to change the total volume 

averaged pressure into the intrinsic volume averaged value. 
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(2.33) 

 

With rearranging terms and dividing the whole equation to porosity, the 

macroscopic momentum equation becomes as follows.  
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(2.34) 

 

The last 3 terms on the RHS of Eq. (2.34) can be thought as an extra source 

terms since they do not exist in the microscopic momentum equations. The last term 

corresponds to the effects of inertia while other 2 terms (3
rd

 and 4
th

 on the RHS) 

together correspond to viscous effects. Vafai and Tien (Vafai and Tien 1981) stated that 

the last three terms in Eq. (2.34) correspond to Forchheimer-extended Darcy’s Law in 

the following form.  
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Thus the macroscopic momentum equation becomes as 
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The left hand side (LHS) terms are macroscopic convective inertia terms. The 

last three terms on the right hand side (RHS) are called as Brinkman (boundary 

friction), Darcy (porous viscous) and Forchheimer (porous inertia) terms, respectively 

(Nakayama 1995). 

 

2.6. Macroscopic Energy Equations 

 

For a porous medium with two phases as a solid phase and an incompressible 

Newtonian fluid flowing through the pores without considerable effect of viscous 

dissipation, the microscopic energy equations for the fluid and solid phases are given in 

Eqs. (2.4) and (2.5). To obtain the macroscopic energy equations for the fluid and solid 

phases of the porous media, volume averaging method can be used. 

By applying volume averaging method on the microscopic energy equations, 

following equations for fluid and solid phases can be found as: 
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Using the equalities given by Eqs. (2.26) and (2.27) on Eqs. (2.38) and (2.39), 

the macroscopic energy equations can be rewritten as follows.  
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(2.40) 
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The integration in the LHS of Eq. (2.40) vanishes because of the non-slip 

boundary condition at the solid-fluid interface. Since the temperature in both equations 

show the temperature of corresponding phases, the representation of intrinsic volume 
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averaged might be better and that’s why Dupuit-Forchheimer relation is used to revise 

Eqs. (2.40) and (2.41). Additionally, Eq. (2.25) is used to re-write the second term on 

the LHS of Eq. (2.40). 
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The 2nd term on the LHS of Eq. (2.42) is rearranged with using macroscopic 

continuity equation and Dupuit-Forchheimer relation in the following way. 

 

 

''''

''''
1

uTTuuTuTTu

uTuTuTuT

fff

f

















  (2.44) 

 

With rearranging the terms, the macroscopic equations in terms of intrinsic 

volume-averaged temperature values can be written as: 
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Eq. (2.45) represents macroscopic form of energy equation for fluid phase, while 

Eq. (2.46) is for the solid phase. The first terms on the right hand sides of these 

equations represent the diffusion heat transfer in the fluid and solid phases. The second 

terms relate to the thermal tortuosity. The last term on the RHS of macroscopic energy 
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equation of fluid (see Eq. (2.45)) shows the thermal dispersion showing the additional 

diffusion heat transfer to the molecular diffusion. The third terms on the RHS of the 

macroscopic energy equations show the heat transfer between the solid surface and the 

fluid flowing in the voids and it can be calculated by using the interfacial convective 

heat transfer concept. Mathematically, the convective heat transfer between solid and 

fluid can be expressed by using the interfacial heat transfer coefficient.  
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where hsf is the interfacial convective heat transfer coefficient and Ass is the 

specific solid-fluid interfacial area (i.e., Ass = Asf/V). The interfacial convective heat 

transfer coefficient can be found by using Eq. (2.48) which directly comes from Eq. 

(2.47). When thermal equilibrium breaks down the interfacial convective heat transfer 

coefficient should be taken into account for the analysis of macroscopic heat transfer 

through porous medium. 
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It should be underlined that the interfacial convective heat transfer coefficient is 

calculated based on the macroscopic temperatures of the solid and fluid phases. Hence it 

is a macroscopic parameter and it is different from the convective heat transfer 

coefficient generally used in the heat transfer problems with clear fluid flow. By using 

definition of interfacial convective heat transfer coefficient, Eqs. (2.45) and (2.46) takes 

the following form: 
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(2.50) 

 

If there is local thermal non-equilibrium in the porous medium, two energy 

equations given above should be solved in order to obtain the macroscopic temperature 

distribution for each phase. Local thermal equilibrium breaks down in the following 

situations as an example. 

 At the entrance region of packed column where a hot gas flows at a high 

speed,  

 Unsteady problems in which heat is transferred from one phase to another, 

 Applications in which the temperature at the solid-fluid interface changes 

significantly with respect to time, 

 Applications in which solid and fluid phases have significantly different heat 

capacities and thermal conductivities. 

In spite of the above cases, there are many applications in which thermal 

equilibrium assumption between solid and fluid phases is valid. Quintard and Whitaker 

(Quintard and Whitaker 1995) developed the constraints that must be satisfied for the 

validity of the thermal equilibrium assumption; the details of these constraints can be 

seen in their study. If thermal equilibrium between two phases is valid, the equality of 

the macroscopic temperatures can be written as 
sf

TTT  and the summation of 

Eqs. (2.45) and (2.46) yields Eq. (2.51) for a porous continuum domain.  
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(2.51) 

 

Here, (ρcp)e and ke are the equivalent thermal capacitance and thermal 

conductivity of the porous continuum domain. These equivalent properties include 

porosity as well as both solid and fluid thermal properties and defined as below. The 

equivalent thermal conductivity is also called as stagnant thermal conductivity. 
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(2.53) 

 

As mentioned before, two distinctive terms appear in the macroscopic energy 

equation. The last two terms in the macroscopic energy equation (Eq. 2.51) have special 

names as tortuosity and thermal dispersion. These terms do not exist in the microscopic 

energy equations and they are resulted due to the volume averaging method. The 

thermal tortuosity term regards the change of the thermal diffusion path due to different 

thermal conductivities between the solid and the fluid. It is described as an elongation in 

the thermal path due to the existence of the solid particles (Hsu 2000). The thermal 

dispersion is caused by the non-uniformities of the pore level velocity and temperature 

fields, and the hydrodynamic mixing effects (Ozgumus et al. 2013). The term 

Tuc pff



  is analogous to the turbulent heat flux in the turbulent convection heat 

transfer, which accounts for the contributions from mechanical dispersion, and can be 

modelled similarly by a gradient-type diffusion hypothesis (Nakayama 1995). Hence, 

the thermal dispersion term in Eq. (2.51) can be written in the form of a heat diffusion 

transport and defined by using the thermal dispersion coefficient (kdis) as follows: 
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Thermal dispersion coefficient is a tensor because of the 3-D nature of heat 

transfer.  
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(2.55) 

 

By substituting Eq. (2.54) into Eq. (2.51) and neglecting the tortuosity term, the 

macroscopic energy equation takes the new form presented by Eq. (2.56). 
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where keff is the effective thermal conductivity which is the summation of the 

equivalent thermal conductivity of the porous continuum domain and the thermal 

dispersion coefficient. 
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2.7. Equivalent Thermal Conductivity Models 

 

It was mentioned in the previous section that the equivalent thermal conductivity 

of a porous medium can be found by using Eq. (2.53). Although the equation directly 

emerges as a result of the volume averaging method and the summation of two 

macroscopic energy equations under the local thermal equilibrium assumption, some 

researchers proposed that this equation is not proper for the determination of the 

equivalent thermal conductivity of porous media. That’s why; several methods were 

proposed in literature for the determination of equivalent thermal conductivity of porous 

media (Hsu et al. 1994, Cheng et al. 1999, Chen and Peterson 2006, Kandula 2011). The 

thermal conductivity value of Eq. (2.53) relates to the thermal resistance of two medium 

(fluid and solid) in parallel connection (Nield and Bejan 2006). If a porous medium has 

the structure that shows the series connection characteristics in which the heat flows 

through both solid and fluid phases, Eq. (2.58), which is the weighted harmonic mean of 

the two thermal conductivities, can be used to find more accurate values for the 

equivalent thermal conductivity.  
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Eqs. (2.53) and (2.58) are the limiting models of the equivalent thermal 

conductivity that shows the upper and lower limits for equivalent thermal conductivity, 

respectively. Nield and Bejan also suggested that for practical purposes, the weighted 

geometric mean of two thermal conductivities (see Eq. (2.59)) gives a good estimate for 
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the equivalent thermal conductivity. The same equivalent thermal conductivity equation 

was used in many reported studies and found that it yields accurate results (Chua et al. 

2004, Demir et al. 2009). 
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CHAPTER 3 

 

LITERATURE REVIEW 

 

In this chapter, the literature review on the determination of the macroscopic 

transport properties of porous media is presented. The macroscopic transport properties 

such as permeability, interfacial convective heat transfer coefficient and thermal 

dispersion can be obtained theoretically and/or experimentally. Both theoretical and 

experimental studies on determination of the permeability, Kozeny constant, interfacial 

heat transfer and thermal dispersion coefficients are reviewed. For all studies reviewed 

in this chapter, the aim of studies and assumptions made in the studies are briefly 

explained. The correlations proposed by some of the researchers are presented. The 

tables are constructed to show the theoretical and experimental parameters of the 

studies. It should be noted that the studies on the pore scale analysis of heat and fluid 

flow in packed beds with random (disordered) particles can be found in the literature as 

well as studies with periodical porous media. 

Firstly, the literature review on the determination of permeability and Kozeny 

constant is presented. Numerical and experimental studies on the determination of 

permeability and Kozeny constant are presented in two subsections. The literature 

studies on the interfacial convective heat transfer are reviewed in Section 3.2. 

Theoretical studies are summarized in a Table with considered porous media, range of 

the studied parameters and the proposed Nusselt number correlations. Another table is 

also prepared to show the experimental studies on the determination of interfacial 

convective heat transfer coefficient. Experimental setups and conditions are presented 

for the reviewed studies.  

Finally, the theoretical and experimental studies on the determination of thermal 

dispersion are reviewed. A table is included to present the considered porous media, 

range of the studied parameters and the obtained correlations for the determination of 

thermal dispersion, theoretically. 

In the last section, experimental approaches for the determination of the 

effective thermal conductivity, which directly relates to thermal dispersion via Eq. 
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(2.57), are explained and the reported experimental studies are also presented for each 

method, separately. Based on the thermal boundary condition and heat source type, each 

method is also classified into subgroups. These subgroups are explained in the related 

sections in detail as well. The experimental parameters used for the determination of 

thermal dispersion are summarized in tables. 

 

3.1. Literature Review on Permeability and Kozeny Constant 

 

In this section, the literature studies on determination of permeability and 

Kozeny constant are reviewed. These two parameters are related to each other since 

Kozeny constant is used to determine the permeability by using Kozeny-Carman 

equation. Firstly, the theoretical studies on the determination of permeability and 

Kozeny constant are explained in detail. One of the fundamental studies on theoretical 

determination of Kozeny constant was performed by Happel and Brenner (Happel and 

Brenner 1986). They found Kozeny constant for two porous media consisting of spheres 

and cylinders for wide range of porosity. Table 3.1 shows the change of Kozeny 

constant with porosity for different flow types. As can be seen, Kozeny constant value 

increases with porosity.  Furthermore, Figure 3.1 shows the variation of Kozeny 

constant with porosity according to different researchers. The value of Kozeny constant 

differs considerably with the structure of porous media and employed model.  

Based on the performed literature review, two tables are provided to summarize 

the theoretical studies (Tables 3.2 and 3.3). Table 3.2 is presented to show the porous 

media structures used in the numerical studies for determination of permeability, the 

considered porosity ranges. In some of these studies, a limit Reynolds number for 

validation of Darcy’s Law was proposed. Table 3.3 shows the considered porous media 

for determination of Kozeny constant with the proposed values or correlations. 

Finally, the literature review on the determination of permeability and Kozeny 

constant by employing experimental methods is presented. Table 3.4 shows the 

schematic views of experimental setups along with the experiment conditions for 

determination of permeability. Table 3.5 presents the summary of literature on the 

experimental determination of Kozeny constant. In this table, the reported Kozeny 

constant values and proposed correlations with figure of experimental setup and 

conditions are given. 
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3.1.1. Review of Theoretical Studies on Determination of Permeability 

and Kozeny Constant 

 

Based on Table 3.2 and 3.3 given in this section, brief information about each 

study is also presented in the following part. Petrasch et al. (Petrasch et al. 2008) 

applied a computer tomography based methodology to determine permeability, 

Forchheimer coefficient and interfacial heat transfer coefficient in reticulate porous 

ceramics. A 3-D digital representation of material sample was generated by X-ray 

tomographic scans and a square duct was assumed to encircle the sample medium. 

Finite volume direct pore-level numerical simulation was used with unstructured 

tetrahedral mesh discretization. Ansys-Cfx code was used for 3-D incompressible 

problem. Fluid flow equations were solved for Reynolds numbers between 0.2 and 200. 

A uniform inlet velocity and temperature profile and an outlet pressure were given as 

boundary conditions. Periodicity was not assumed. The non-dimensional pressure 

profile was averaged over the pore space in the cross-sections perpendicular to the main 

flow direction. The permeability and Forchheimer coefficients obtained from these 

solutions were compared to the values predicted by conduit flow model, hydraulic 

radius theory, drag models, fibrous bed correlations and local porosity theory based 

models. The mean dimensionless pressure gradient was found almost constant up to 

Reynolds number of 2 (Darcy regime), while the influence of the Forchheimer term 

increases at high Reynolds numbers. 

Kuwahara et al. (Kuwahara et al. 1996) studied a macroscopically uniform flow 

passing through a lattice of square rods placed regularly in an infinite space. The 

macroscopic flow angle was varied every 5 degree to investigate geometrical effects. 

Due to periodicity of the model, only one structural unit was taken as calculation 

domain. A fully implicit scheme is employed with the hybrid differencing scheme for 

the advection terms. 45x45 non-uniform grid arrangement was used. Porosity was 

varied from 0.1 to 0.96. It is found that the macroscopic pressure drop for a fixed mass 

flow rate is insensitive to the macroscopic flow direction for low Reynolds flows, while 

it becomes sensitive to the flow direction as the Reynolds number grows high. The 

dimensionless pressure gradient stays constant for Reynolds numbers lower than 10, 

irrespective of the flow angle. A sharp increase of the pressure gradient was observed as 

Reynolds number goes beyond 10 where Forchheimer effect becomes effective.  
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Gamrat et al. (Gamrat et al. 2008) studied banks of square rods in aligned and 

staggered arrangement with porosity range of 0.44 to 0.98. Periodicity was assumed and 

a single structural cell was taken as calculation domain. Reynolds numbers between 

0.05 and 40 were considered. FLUENT was used to solve the equations. Darcy’s Law 

was used to estimate permeability as a function of Reynolds number. A constant value 

of permeability was found for single porosity value and it was said that the permeability 

was generally higher for the aligned arrangement for the same porosity value. The 

variation of Forchheimer coefficient with porosity was investigated. It is found that the 

Forchheimer coefficient slightly increased when the porosity was decreased for both 

arrangements. The inertia effects were found to be more pronounced for the staggered 

arrangement.  

Lopez Penha et al. (Lopez Penha et al. 2011) studied an array of staggered 

square rods in an infinite space. The dependence of permeability on the Reynolds 

number, porosity and the flow direction was investigated. Reynolds numbers from 1 to 

600 and porosities from 0.25 to 0.75 were considered. The anisotropy of the apparent 

permeability was investigated by considering flow along the three coordinate axes. A 

parameter study was performed for the staggered arrangement of the rods to 

comprehend the relationship of the apparent permeability and the microscopic fluid 

flow. The effect of solid particles on the fluid flow was modeled using a source term in 

the momentum equation. It was confirmed that the Forchheimer extended Darcy’s Law 

is valid for predicting macroscopically steady and uniform flow through the staggered 

arrangement. 

Teruel and Rizwan-uddin (Teruel and Rizwan-uddin 2009) studied a 

representative elementary volume of a porous medium containing square cylinders of 

staggered arrangement. Reynolds numbers between 10
-3 

and 10
5
 were considered and 

porosities between 0.05 and 0.95 were simulated for each Reynolds number. Solutions 

for Reynolds numbers below 200 were obtained by solving 2-D Navier-Stokes 

equations numerically. Reynolds averaged Navier-Stokes equations were used to 

examine the turbulent regime. The Forchheimer coefficient was found to be weakly 

dependent on the Reynolds number and strongly dependent on the porosity if the flow is 

fully turbulent. The variation of permeability with porosity was investigated and the 

comparison with Carman- Kozeny equation was made. Additionally, the value of 

Kozeny constant was proposed as 8.1875. It was mentioned that the numerical results 

were align with the predicted values by using Kozeny-Carman equation for low 
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porosities. However, for high porosities they observed that the numerically computed 

permeability values become different from the values that predicted by Kozeny-Carman 

equation. The numerically obtained permeability values became lower. Hence, it was 

agreed that the Kozeny constant should be porosity dependent. On the other hand, they 

said that the proposed Kozeny constant value could be used for porosities lower than 

0.95 with some error. 

Yazdchi et al. (Yazdchi et al. 2011) studied the microstructure of fibrous porous 

media to obtain the macroscopic permeability. A finite element based model for 

viscous, incompressible flow through a regular array of cylinders was employed with 

ANSYS. At the inlet and outlet of the REV pressure was defined and at the top and 

bottom periodic boundary condition was set. The effect of porosity was studied. Also 

particle shape (with using elliptic cylinders instead of circle ones), orientation and unit 

cell staggered angle were varied. The results were compared with the Carman-Kozeny 

equation and the Kozeny factor dependence on the microstructural parameters. It was 

found that at high porosities the shape of particles did not affect much the normalized 

permeability, but at low porosities the effect was more pronounced. It was observed that 

the circles had the lowest and horizontal ellipses the highest normalized permeability. It 

was said that the permeability increases with increasing aspect ratio until it reached the 

permeability of slab flow. Additionally, some literature correlations relating 

permeability with porosity were summarized in this study. 

Nakayama et al. (Nakayama et al. 2002) studied 2-D square rods placed in an 

infinite medium. Anisotropy was created by varying the vertical distance between rods, 

i.e. the structural unit dimensions were changed. Structural unit height to length ratio of 

1, 3/2 and 2 were examined. Periodic boundary condition was used at the inlet and 

outlet of the structural unit. The Reynolds number range was between 1 and 600. It was 

said that the presence of the anisotropy in the structure nearly halves the permeability 

for the fixed porosity and rod size. The mean Forchheimer coefficient was found to be 

fairly insensitive to the degree of the anisotropy in the structure.  

Papathanasiou et al. (Papathanasiou et al. 2001) studied square and hexagonal 

arrays of 2-D cylinders. Both uniform size cylinders and varying size cylinders were 

considered. The porosity range was from 0.3 to 0.6. The Reynolds numbers lower than 

160 were considered. The results were compared with the predictions of Ergun and 

Forchheimer equations. It was observed that in the limit of creeping flow (Re < 1) the 

Forchheimer equation was in excellent agreement with the results of numerical 
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computations. The Forchheimer equation was found to be accurately describing the 

parameters when the Forchheimer coefficient was taken a value as a function of 

porosity. 

Tamayol and Bahrami (Tamayol and Bahrami 2009) investigated the 

permeability of ordered porous media analytically. Both normal flow and parallel flow 

were examined. A repeated structural unit was considered. Triangular, square and 

hexagonal arrays of cylinders were considered. The effects of unit cell aspect ratio and 

fibers diameter on the permeability were also investigated. It was found that, in case of 

rectangular fibers arrangement, the permeability is a function of geometrical parameters 

such as porosity, fiber diameter and unit cell aspect ratio. It is claimed that the normal 

permeability decreases with increasing aspect ratio while the parallel permeability 

remains constant. It was also found that the normal and parallel permeability values are 

functions of square of fiber diameter. 

Liu et al. (Liu et al. 2009) studied the equivalent permeability of fractured 

porous media. A mathematical model which consisted of square blocks placed in an 

array with vertical and horizontal fractures between the blocks was proposed. The 

Brinkman extended Darcy’s equation was used to analyze the flow. Horizontal flow was 

assumed in a structural unit with periodic boundary conditions. It was found that the 

model was valid for all macroscopic flow directions. The numerical solutions of 

microscopic equations were used to examine the analytical expression for the 

permeability and 2-D mathematical model was extended to 3D in which cubic blocks 

were placed in a cubic arrangement. The expressions obtained for 2-D and 3-D 

permeabilities were found to agree well with results in the literature. 

Sahraoui and Kaviany (Sahraoui and Kaviany 1992) investigated the 

hydrodynamic boundary condition at the solid-fluid interface of a porous media 

insisting 2-D cylinders. Both slip and no-slip boundary conditions were examined. The 

study was performed for different flow directions, porosity, Reynolds number and 

particle arrangements. Permeability values as a function of distance from the interface 

were calculated. It was found that the lowest permeability values were at the interfaces 

while with increasing distance permeability becomes constant. Different variations of 

permeability were found at the neighborhood of the interface, depending on porosity. 

Saada et al. (Saada et al. 2006) studied microscopic flow in a periodic structure 

consisting square and plus shaped rods. Both inline and staggered arrangements were 

considered. Dimensionless forms of governing equations were solved. Porosity range 
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was chosen between 0.1 and 0.9 while Reynolds numbers lower than 150 were 

considered. The Forchheimer-extended Darcy’s Law was used to obtain permeability 

and Forchheimer coefficient with calculated macroscopic pressure loss. Dimensionless 

pressure drop values were equal to a constant for Re below 10 and they were increased 

for Re > 10. Change of dimensionless permeability (K/H
2
) with porosity was found in 

good agreement with Sahraoui and Kaviany (Sahraoui and Kaviany 1992) whereas 

some difference from Ergun’s (Ergun 1952) values was found for high porosities. 

Forchheimer coefficient was found varying inversely proportional with the porosity. 

This coefficient became nearly constant for certain Re and it was found that the limiting 

value was in good agreement with Ergun’s value (Ergun 1952). 

Alshare et al. (Alshare et al. 2010) studied laminar steady and unsteady fluid 

flow and heat transfer for a periodic array of square rods. The calculations were made 

for different structural unit aspect ratios. Finite volume approach was used with 

SIMPLER algorithm. Macroscopic flow directions were changed from 0
o
 to 90

o
. 

Reynolds numbers between 1 and 1000 were considered. The variations of pressure 

gradient, permeability and Forchheimer coefficient with flow angle were analyzed. It 

was found that the permeability of the isotropic porous medium is uniform, independent 

of the flow angle; however, the permeability varies linearly between two principal 

permeabilities for the anisotropic medium. It was also found that the permeability 

decreases with increasing solid volume fraction. It was shown that the apparent 

permeability has a maximum value along the principal axes and decreases with either 

increasing flow angle of increasing Re. 

Yu (Yu 2008) reviewed the theories, methods, mathematical models, 

achievements and open questions in the field of the flow through fractal porous media 

by referencing numerous papers in this area. Some of the literature models with the 

modifications to Kozeny-Carman equation were summarized in this study. Based on the 

theoretical base for fractal analysis of flow in porous media, the flow resistance, 

permeabilities for both Newtonian and non-Newtonian flows, and Kozeny-Carman 

equation, its modifications and Kozeny constants were reviewed and discussed. It was 

concluded that the fractal geometry and technique may be used to analyze the flow in 

fractal porous media and determine the transport properties.  

Wu and Yu (Wu and Yu 2007) proposed a fractal model for resistance of flow 

through the porous media. The model was expressed as a function of the pore-throat 

ratio, porosity, the properties of fluid, the pore/capillary and the particle sizes, Reynolds 
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number and the fractal dimensions of porous media. They stated that there is no 

empirical constant in their model and the model was constructed with parameters that 

have clear physical meaning. The model was found to be in good agreement with the 

experimental results. It was cautioned that the correct determination of the geometrical 

parameters included into the the fractal model presented in their study might be critical 

for the accuracy of the model.  

Xu and Yu (Xu and Yu 2008) derived an analytical expression for the 

permeability in the homogeneous porous media based on the fractal characters of 

porous media and the capillary model. The proposed model was expressed as a function 

of the fractal dimensions, porosity and the maximum pore size. Linear scaling law 

between the dimensionless permeability and porosity was found. A correlation that 

relates permeability with porosity and the geometrical dimensions of fractal medium 

was proposed. It was found that the model is more effective in determining the 

permeability than the traditional methods and models. A comparative graphics (Figure 

3.1) showing the variation of Kozeny constant with porosity obtained by different 

researchers was presented. They mentioned that Carman reported the value as 4.8±0.3 

for uniform spheres in his experimental study. It was mentioned that the Kozeny 

constant is actually not a constant and depends strongly on porosity and the 

microstructures of pores and capillaries. The analytical Kozeny-Carman constant was 

found with the assumption of square geometrical model. The proposed Kozeny constant 

was expressed based on porosity and fractal dimensions. 

Happel and Brenner (Happel and Brenner 1986) made a theoretical study with 

different flows and particle arrangements. Flow parallel to cylinders, flow perpendicular 

to cylinders, flow through random orientation of cylinders and flow through spheres 

were studied. The proposed results of Happel and Brenner indicate that for the 

porosities between 0.4 and 0.7, Kozeny constant was found between 4.5 and 5.8 for 

both cylinders and spheres. But at higher porosities, Kozeny constant increases sharply 

with porosity (Table 3.1). They proposed a relation for the determination of Kozeny 

constant for parallel flow along the cylinders. 
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Figure 3.1. Kozeny constant comparison between some studies  

(Xu and Yu 2008) 

 

Table 3.1. Kozeny constant values found by Happel and Brenner  

(Happel and Brenner 1986) 

 

ε Flow parallel 

to cylinders 

Flow perpendicular 

to cylinders 

Flow through 

random cylinders 

Flow through 

spheres 

0.4 3.44 5.28 4.66 4.54 

0.5 3.67 5.38 4.97 4.74 

0.6 3.96 5.62 5.07 5.11 

0.7 4.42 6.19 5.60 5.79 

0.8 5.23 7.46 6.72 7.22 

0.9 7.31 11.03 9.79 11.34 

0.99 31.1 53.83 46.25 71.63 

 

Davies and Dollimore (Davies and Dollimore 1980) investigated the variation of 

Kozeny constant with porosity under sedimentation conditions, theoretically. 

Additionally, the experimental data from the literature for silica gel-dry xylene, emery 

powder-diethyl phthalate, glass-aqueous ZnSO4, tapioca-hydrocarbon oil, kaolinite-

water couples were analyzed in the study. It was observed that the Kozeny constant is 

different from its originally given value of 5 and also much greater than this value at 

high porosities. It was found that Kozeny constant does not monotonically change with 

porosity; it has a minimum for some value of porosity, which depends on the 

components of suspension. An equation which relates Kozeny constant with porosity 

was proposed.  
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Eidsath et al. (Eidsath et al. 1983) predicted Kozeny constant for various 

arrangements of square blocks and cylinders. In their numerical study, finite element 

method was used to solve the governing equations. The comparison between the 

experimental studies in the literature was done for the pressure drop through the porous 

media. Kozeny constant was found as 6.3 for in-line arrangement of blocks with 

porosity of 0.37. 

Kaviany (Kaviany 1995) presented the details of Kozeny-Carman theory and 

reviewed some of the literature studies on the determination of Kozeny constant. It was 

mentioned that the experimental Kozeny constant value of 5 is acceptable for porosities 

lower than 0.7; however, much larger values of Kozeny constant was obtained 

theoretically for larger porosities. The variation of Kozeny constant with porosity, 

obtained by different researchers was presented for cylindrical particles and for various 

flow arrangements. Sahraoui and Kaviany (Sahraoui and Kaviany 1992) observed that 

the local permeability near the interface could not be computed by the aid of Kozeny-

Carman equation.  

Nakayama et al. (Nakayama et al. 2007) theoretically studied the determination 

of the equivalent diameter and the Reynolds number related with this diameter to 

generalize the correlations of macroscopic transport parameters available in the 

literature for tube flows and cross flows over banks of cylinders. The Kozeny constant 

was given as 7.5 for the square cylinders in cross-flow, 9.5 for the cubes and 9 for the 

circular cylinders in cross-flow in their study. 

Vidal et al. (Vidal et al. 2009) studied the flow through spherical particles and 

blocks. The highly polydispersed spherical particle packings were constructed with 

Monte-Carlo methods. The simulations were done with lattice-Boltzmann method. The 

experimental data were obtained by using the blocks made of calcium carbonate 

powders compressed at different levels. Porosity values between 0.2 and 0.75 were 

considered. It was observed that with increasing poly-dispersivity, the permeability 

values predicted by Kozeny-Carman equation became higher than the numerically 

obtained values. An expression which relates Kozeny constant with the size distribution 

and compression level was proposed and Kozeny constant varies between 4.9 and 7.1 

for the considered porous media.  

Koponen et al. (Koponen et al. 1997) studied a porous medium constructed with 

randomly placed identical obstacles (square or rectangular particles) with unrestricted 

overlap. Porosity range of 0.38 to 0.95 was considered. Kozeny-Carman permeability 



36 

 

equation was found to be valid within porosity range from 0.7 to 0.9. They made a 

modification to Kozeny-Carman equation such that the porosity was changed with 

effective porosity defined as the ratio of the volume of the conducting pores to the total 

volume. The effective porosity value was defined empirically, based on porosity and 

percolation threshold porosity. Kozeny constant values between 6.5 and 10.4 were 

found, numerically. 

The change of Kozeny constant with porosity was also investigated by Heijs and 

Lowe (Heijs and Lowe 1995) for a random array of spheres and a clay soil. The 

numerical study was done by using lattice-Boltzmann method. The structure of the clay 

soil was obtained by tomography imaging. The porosity of the porous medium 

constructed with random spheres was chosen as 0.6. The comparison of the obtained 

results with the experimental studies was satisfactory. Kozeny-Carman equation was 

found to be less accurate for the determination of the permeability of the soil rather than 

the random spheres.  

Karimian and Straatman (Karimian and Straatman 2008) numerically studied 

pressure drop and heat transfer through metal foam structure. Laminar, periodic fluid 

flow in idealized pore geometry for a wide range of geometry parameters was 

considered. The model developed for pressure drop was based on Kozeny-Carman 

theory. A modified-Kozeny constant was used in their developed numerical model and 

the variation of modified-Kozeny constant obtained in the study with porosity was 

found to be consistent with that reported in literature for other types of pore geometry. 

For high porosity values, modified- Kozeny constant was found increasing with 

increasing porosity. 

Liu and Hwang (Liu and Hwang 2012) proposed a 3D finite element method for 

solving fluid flow through fibrous porous media. The applicability of Kozeny-Carman 

permeability equation for complex 3D structures was investigated. A representative 

volume element was used as computational domain for modeling the repeated 

microstructure. Kozeny constants for various structures such as cross-ply fibers, 3D 

non-woven fibers, woven fiber tows, cross-fly fiber tows, square and hexagonal blocks 

for porosities between 0.3 and 0.95 were found and graphically presented.  

Plessis and Woudberg (Plessis and Woudberg 2008) analyzed flow through the 

cube blocks to investigate the applicability of Ergun’s equation for the prediction of 

permeability. The Blake-Kozeny constant (36kK) values proposed in some literature 

studies were compared and it was observed that the model used in the study predicts a 
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sudden increase of Blake-Kozeny constant for porosities higher than 0.8 while many of 

the researchers gave constant values for all porosities. Porosity dependence of Kozeny’s 

constant was studied for porosities between 0.3 and 0.7. It was found that for this 

porosity range the Kozeny constant was between 5, although a slight change was 

observed. The change of Kozeny constant with porosity for this range was found to be 

less dramatic than the change predicted by Happel and Brenner (Happel and Brenner 

1986). 

Drummond and Tahir (Drummond and Tahir 1984) theoretically solved the 

motion equations for triangular, square and hexagonal arrays of cylinders in parallel and 

perpendicular flow. After exhaustive analytical calculations some values of Kozeny 

constant were obtained for porosities between 0 and 1. With comparing the formula 

given by Happel and Brenner (Happel and Brenner 1986), it was observed that the 

Kozeny constant values were very close for the case of triangular arrangement while the 

increase rate of Kozeny constant with porosity decreases for square and hexagonal 

arrangements. 

Singh and Mohanty (Singh and Mohanty 2000) used lattice-Boltzmann method 

to simulate 3D fluid flow in correlated porous media. The effects of porosity and spatial 

correlation on permeability were studied. Kozeny constant was expressed as a function 

of the correlation length. The modified-Kozeny constant was found to decrease with 

increasing correlation length for low correlation lengths; however, it was found to be 

nearly constant for higher correlation lengths. 

Chen and Papathanasiou (Chen and Papathanasiou 2006) studied transverse flow 

through unidirectional arrays of randomly placed fibers, computationally. The porous 

media was created by using Monte Carlo procedure. Porosity range of 0.45 to 0.8 was 

considered and minimum inter-fiber distance was changed between 10 to 100 % of fiber 

radius. The study was performed in order to explain the effect of fiber spatial 

characteristic on the scatter of the Kozeny constant observed in real fiber beds in the 

experimental studies. It was found that for high porosities Kozeny constant was nearly 

constant for variable mean nearest neighbor inter-fiber spacing. With decreasing 

porosity, the decrease of Kozeny constant with increasing mean nearest neighbor inter-

fiber spacing was observed. If was mentioned that the computationally found Kozeny 

constant values was consistent with the available experimental and numerical values in 

the literature. It was found that the increase of non-uniformity in fiber packing increases 

the Kozeny constant for the considered porosity range. 
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The summary of reviewed theoretical studies on the determination of the 

permeability is given in Table 3.2. In the table, the investigated porous media in the 

theoretical studies, considered porosity ranges and the obtained Reynolds number limit 

under which the Darcy’s Law is valid are presented along with the employed Re 

definitions. 

Additionally, Table 3.3 shows some details of the available theoretical studies on 

the determination of Kozeny constant. The considered porous media and proposed 

Kozeny constants and available correlations are displayed in the table.  

 

Table 3.2. Theoretical studies on the determination of permeability 

 

(Cont. on next page) 

S
tu

d
y
 

Investigated porous medium 
Porosity 

range 

Re limit 

for the 

validity 

of 

Darcy’s 

Law 

Definition of 

Reynolds 

number  

S
ah

ra
o
u
i 

an
d
 

K
av

ia
n
y
 1

9
9
2

 

 

0.48-0.8 3 


 Hu
Re  

 K
u
w

ah
ar

a 
et

 a
l.

 

1
9
9
6
 

 

0.1-0.96 10 


 Hu
Re  

P
ap

at
h
an

as
io

u
 e

t 
al

. 
2
0
0
1

 

 

0.3-0.6 1 


 2/1

Re
Ku

K   



39 

 

Table 3.2. (cont.) 

 

(Cont. on next page) 
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Table 3.2. (cont.) 
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Table 3.3. Theoretical studies on the determination of Kozeny constant  
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Table 3.3. (cont.) 

S
in

g
h
 a

n
d
 

M
o
h
an

ty
 

2
0
0
0
 

 

Graphical presentation 

C
h
en

 a
n
d
 

P
ap

at
h
an

as
io

u
 

2
0
0
6
 

 

Graphical presentations 

N
ak

ay
am

a 
et

 

al
. 
2
0
0
7

 

Square rods, cubes, cylinders 

kK = 7.5 for square rods in 

cross flow 

kK = 9.5 for cubes 

kK = 9 for circular cylinders 

in cross flow 

X
u
 a

n
d
 Y

u
 

2
0
0
8
 

 

Graphical presentation 

K
ar

im
ia

n
 a

n
d
 

S
tr

aa
tm

an
 

2
0
0
8

 

     

Graphical presentations 

P
le

ss
is

 a
n
d
 

W
o
u
d
b
er

g
 

2
0
0
8
 

    

Graphical and table 

presentations 

T
er

u
el

 a
n
d
 

R
iz

w
an

-u
d
d
in

 

2
0
0
9

 

Cross flow, staggered square cylinders kK = 8.1875 for ε < 55 

L
iu

 a
n
d
 H

w
an

g
 

2
0
1
2

 

    

Graphical presentations 



43 

 

3.1.2. Review of Experimental Studies on Determination of 

Permeability and Kozeny Constant 

 

Based on the Tables 3.4 and 3.5 summarize the studies on experimental 

determination of permeability and Kozeny constant, following part is presented to give 

brief information about each study. Sano et al. (Sano et al. 2009) investigated the 

effective permeability of fluid saturated porous media consisting of small and large 

glass spherical particles. Water flowed upward through vertical packed bed filled with 

particles of different sizes. Experiments were conducted at Reynolds numbers of Darcy 

region. Pressure drops between inlet and outlet sections were measured for different 

flow rates. The results were compared with numerical results of Liu-Sano-Nakayama 

model (Liu et al. 2009) and a good agreement was found. Hence, the constructed 

mathematical model by the same researchers was confirmed by using experimental data 

and it was concluded that this theoretical model could be used estimate the permeability 

of porous media consisting of obstacles of different sizes. 

Rodriguez et al. (Rodriguez et al. 2004) studied permeability and porosity 

relationship for glass and natural fiber mats. Glycerin and water mixture was used as 

fluid in the experimental setup. Difference of pressure was measured between the 

location where the fully-developed velocity profile had found and the front of the flow 

(at atmospheric pressure) near the outlet. The measurements were done at high pressure 

in order to have a constant permeability value (it was observed that at low pressures 

permeability increased with increased injection pressure for fiber mats). In order to 

obtain a unidirectional flow, fiber mats were placed in a prismatic bed. Darcy’s law was 

used to find permeability. It was said that the same relationship for glass mats that was 

given in the literature was discovered for natural fiber mats. The experimental 

permeability values were fitted by the Kozeny-Carman equation with two fitting 

parameters: the Kozeny constant and the exponent of the porosity. The obtained 

permeability values for natural fiber mats were greater than the values of glass fiber 

mats for the same porosity. 

Dias et al. (Dias et al. 2007) studied packed beds filled with glass spheres. 

Water-glycerol solution was used in the experiments. It was mentioned that, in the 

region of minimum porosity of particulate binary mixtures, heat transfer and 

permeability were found to be higher than packed beds with mono-sized packing with 
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the same small size particles. It was commented that it is possible to achieve a 

permeability enhancement with dense and loose packing. Permeability was said to be 

increased by a factor of two, if the size ratio between small and large spheres stays in 

the range 0.3-0.5. Dias et al. (Dias et al. 2008) additionally investigated the permeability 

of binary packings of spherical glass particles with different size ratios. A water-

glycerol solution was used as fluid. The permeability was calculated using the measured 

flow velocity at fixed pressure drop in the laminar regime and the Reynolds number was 

less than 0.1. It was found that Kozeny constant is a function of particle size ratio. It is 

said that the permeability of binary mixtures modeled by Kozeny-Carman equation 

could be considerably different from the experimental values. It was concluded that to 

obtain accurate results for the permeability, tortuosity should change with a negative 

power of porosity and this power was defined as a function of the packing content and 

particle size ratio. 

Han et al. (Han et al. 2000) was developed a new measurement technique for 

permeabilities of anisotropic fiber performs with high fiber content. In this method 

pressures at four different locations were measured and used in permeability 

calculations. The experimental device was able to measure permeability in three ways: 

parallel flow, radial flow and transverse flow; hence, the permeability values in 

different directions could be determined. It was said that, with using this technique, the 

permeability of an individual layer in a multi-layered preform could be determined 

using miniature pressure transducers. Fiber mats and silicone oil were used as packing 

particles and fluid.  

Dukhan and Patel (Dukhan and Patel 2008) studied unidirectional air flow 

through several isotropic open-cell aluminum foam samples having different porosities 

and pore densities. Darcian velocities between 0.75 and 3 m/s were considered. Both 

permeability and Forchheimer coefficient were determined. It was proposed that 

Ergun’s correlation is a good fit for the linear pressure drop as a function of the Darcian 

velocity, provided that an appropriate equivalent particle diameter is used. An 

appropriate particle diameter was investigated considering the viscous shear and the 

form drag. It was proposed that the equivalent particle diameter for foams is the 

reciprocal of the surface area density.  

Paek et al. (Paek et al. 2000) investigated the permeability of aluminum foams. 

Porosities of the foams were between 0.89 and 0.96. The static pressure difference 

between the inlet and outlet of the test tube in which the foam placed was measured. It 
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was said that the permeability is substantially affected by porosity and cell size. It was 

observed that the permeability increases as cell size increases. It was also observed that 

the permeability first increases with increasing porosity; however, after reaching a 

maximum, it decreases with increasing porosity. An empirical correlation was proposed 

for the friction factor based on permeability and inertia effect. 

Ergun (Ergun 1952) made an experimental study with a packed bed. The bed 

was randomly packed with spherical particles of different materials as glass, iron, lead 

and copper. Additionally, studies of other researchers with particle types of sphere, 

cylinder, Raschig ring and berl saddle were summarized and compared. Air, N2, CO2, H2 

and CH4 were chosen as the flowing fluids. Different configurations of fluid and 

particles were experimented. The value of 150 is proposed for Blake-Kozeny constant 

which equals to 36kK for packed bed of spheres, which results in approximately 4.17 for 

kK. 

Pacella et. al. (Pacella et al. 2011) studied the permeability of hollow fiber 

bundles for porosities between 0.45 and 0.55, experimentally. Flow of glycerol solution 

through fabric fibers commonly used in the devices like blood oxygenators and artificial 

lungs were examined in the experiments. Different arrangements of fibers as parallel, 

perpendicular and angled stackings were employed. It was observed that the 

permeability values found from Kozeny-Carman equation with a constant Kozeny value 

might differ up to 50% from the experimentally predicted permeabilities. A linear 

relation between Kozeny constant and porosity was proposed for the determination of 

Blake-Kozeny constant which equals to 36kK for spheres. 

Kyan et al. (Kyan et al. 1970) studied the flow of a single-phase fluid through a 

bed of random fibers. Experimentally, glass, nylon and Dacron fibers were used. 

Glycerol solutions and water were used. It was found that Kozeny constant increases 

rapidly for porosities higher than 0.9. A relation between Kozeny constant and porosity 

for the low velocity flows in fibrous beds was proposed. The constants in the proposed 

equation account for the effect of fiber deflection on pressure drop and the effect of 

stagnant space in a fibrous bed on flow. It was mentioned that the effects of these 

parameters have no parallels in a granular bed. 

Li and Gu (Li and Gu 2005) studied fluid flow through fibrous and granular 

beds. A geometric method for the fibrous beds and an experimental method for the 

granular beds were used to determine the Kozeny constant, respectively. Polypropylene 

fibers and nylon fibers were used for the fibrous beds and polypropylene particles were 
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used for the granular beds. Crude oil, mineral oil and water were used a fluid. Both 

single and two phase flows were considered. The pressure drop through the bed was 

accurately predicted by employing Kozeny-Carman equation for the single phase. For 

the two-phase flow, a small increase of pressure drop was observed comparing with 

single-phase flow. They proposed the value of 12.81 for Kozeny constant.  

Mathavan and Viraraghavan (Mathavan and Viraraghavan 1992) investigated 

the applicability of Kozeny-Carman equation for peat beds, experimentally. Standard 

mineral oil in water emulsion was used as fluid and six different flow rates were 

considered. Pressure drop through the bed was measured at 6 different locations. It was 

concluded that the average values obtained by using Kozeny-Carman permeability 

equation could be used to measure overall coalescence in a peat bed.  

The experimental studies on the determination of permeability are summarized 

in Table 3.4. The constructed experimental setups and the experimental conditions are 

presented in this table. The experimental studies on the determination of Kozeny 

constant along with the employed setups and conditions are summarized in Table 3.5. 

The obtained Kozeny constant values or the proposed correlations are also presented in 

this table.  

 

Table 3.4. Experimental studies on the determination of permeability 

 

Study Experimental setup 
Experimental 

conditions 

P
ae

k
 e

t 
al

. 
2
0
0
0

 

 

Solid: Aluminum foam 

Fluid: Air 

0.89 ≤ ε ≤ 0.96 

Cell diameters: 0.65, 

1.25, 2.5 mm 

H
an

 e
t 

al
. 
2
0
0
0

 

 

Solid: Fiber mats 

Fluid: Silicone oil 

Flow rate: 7 l/min 

ε = 0.45 

 

(Cont. on next page) 
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Table 3.4. (cont.) 

R
o
d
ri

g
u
ez

 e
t 

al
. 

2
0
0
4
 

 

Solid: Glass and natural 

fiber mats 

Fluid: glycerin-water 

mixture 

Bed dimensions: 

4x200x500 mm
3
 

0.45 ≤ ε ≤ 0.9 

D
ia

s 
et

 a
l.

 2
0
0
7

 

 

Solid: Soda-lime glass 

spheres 

Fluid: water 

Bed dimensions: A = 

0.08x0.08 m2, L = 0.4 m 

Length of packing section: 

0.1-0.15 m 

d = 0.019, 0.115, 0.15, 

0.3375, 0.875, 1.125, 2, 3, 

4, 5, 6 mm 

0.1 ≤ δ ≤ 1.0 

0.3 ≤ ε ≤ 0.5 

D
ia

s 
et

 

al
. 
2
0
0
8

 

Same with [26] Same with [26] 

D
u
k
h
an

 a
n
d
 

P
at

el
 2

0
0
8

 

 

Solid: Open-cell aluminum 

foams 

Fluid: Air 

0.67 ≤ ε ≤ 0.92 

0.75 m/s < 
u

 < 3 m/s 

 

S
an

o
 e

t 
al

. 
2
0
0
9

 

 

Solid: glass spheres of 

different sizes 

Fluid: water 

Di = 39 mm 

d = 0.5, 1, 2.3, 5 mm 

0.001 m/s < 
u

 < 0.01 m/s 

0.4 ≤ ε ≤ 0.9 

 

Notes: D is the bed (tube) diameter, d is the particle diameter, uD is the Darcian 

velocity, A is the cross-sectional area of the bed, L is the length of the bed, δ is the 

ratio of the diameters of the small and large particles. 
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Table 3.5. Experimental studies on the determination of Kozeny constant 

 
S

tu
d

y
 

Experimental setup 

Experimental Conditions and 

proposed 

Kozeny Constant 

E
rg

u
n
 

1
9
5
2
 

- 
Spheres 

BK = 150 

K
y
an

 e
t 

al
. 
1
9
7
0

 

 

Solid: Glass, Dacron an nylon 

fibers 

Fluid: Water and aqueous glycerol 

solution 

Fiber diameter: 8-28 μm 

 

463

2

)1(16/

4.107

)1(5.2
1

2
3.62












































Kk

 

M
at

h
av

an
 a

n
d
 V

ir
ar

ag
h
av

an
 

1
9
9
2

 

 

Solid: Horticultural peat beds 

Fluid: Oil in water emulsion 

kK = 3.4 

L
i 

an
d
 G

u
 2

0
0
5

 

 

Solid: Fibrous beds of 

polypropylene and nylon fibers 

and granular beds of 

polypropylene particles 

Fluid: Instow crude oil, mineral 

oil and tap water 

kK = 12.81 

V
id

al
 e

t 

al
. 
2
0
0
9

 

- 

Solid: Isometric natural ground 

calcium carbonate 

Fluid: Nitrogen 

4.9 < kK < 7.1 

 

(Cont. on next page) 
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Table 3.5. (cont.) 

P
ac

el
la

 e
t.

 a
l.

 2
0
1
1

 

 

Solid: Hollow fiber membranes of 

Celgard® microporous 

polypropylene oxygenator fibers 

Fluid: Aqueous glycerol solution 

Fiber diameters: 

Do = 300 μm, Di = 240 μm & Do = 

193 μm, Di = 139 μm 

Fiber density: 35, 54, 61 fibers/in. 

128542  BK  (Blake-Kozeny 

constant which equals to 36kK for 

spheres) 

 

3.2. Literature Review on Interfacial Convective Heat Transfer    

       Coefficient 

 

In this section, the reported studies on the determination of interfacial 

convective heat transfer coefficient are reviewed. Firstly, the theoretical studies on the 

determination of interfacial convective heat transfer coefficient are reviewed in detail 

and then the experimental studies are explained. The reviewed studies are also 

summarized by tables. Table 3.6 shows the type of porous media, the range of Reynolds 

number and porosity, assumptions and conditions used in the performed theoretical 

studies. The resulting correlations for the interfacial Nusselt number are also presented 

in the same table. The experimental setups and the experimental parameters with the 

reported correlations are summarized in Table 3.7. 

 

3.2.1. Review of Theoretical Studies on Determination of Interfacial 

Convective Heat Transfer Coefficient 

 

Table 3.6 summaries the studies performed on theoretical determination of 

interfacial heat transfer coefficient for a porous medium. However, in order to have 

better idea about these studies, following part is also prepared to give brief information 

about each study. Petrasch et al. (Petrasch et al. 2008) employed direct pore-level 

numerical simulations to estimate the interfacial heat transfer coefficient in addition to 

permeability in their study. A Nusselt number correlation was derived and compared 

with experimental correlations. The temperature of the solid-fluid interface was 
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specified as constant and the square duct walls are assumed adiabatic. Computations 

were done for Prandtl numbers of 0.1, 0.5, 1 and 10. Viscous dissipation was neglected. 

The local Nusselt number was found dropping to an almost constant value near the inlet. 

Gamrat et al. (Gamrat et al. 2008) performed a study to determine the interfacial 

Nusselt numbers of banks of square rods in inline and staggered arrangements for low 

Reynolds number flows (0.05 < Re < 40). Both constant wall temperature and constant 

volumetric heat source were considered as thermal boundary conditions. Peclet numbers 

between 0.01 and 1000 and Prandtl numbers between 1 and 100 were considered. For 

constant wall temperature boundary condition, continuously decreasing difference 

between the fluid and the wall temperature along the system was created some 

computational difficulties and low Peclet numbers could not be investigated. In the case 

of uniform volumetric source heating, positive linear temperature gradient was created 

in the flow direction. It was shown that the heat transfer in the array of rods was 

insensitive to thermal boundary condition at the interface for the highest values of 

Reynolds and Prandtl numbers and porosity. It was observed that the Nusselt number 

was more influenced by the enhanced convective effect for the staggered arrangement. 

It was found that the heat transfer performance was slightly higher for the staggered 

arrangement, especially for small porosity values. Nusselt correlations were suggested 

for the aligned and staggered arrangements. It was concluded that the thermal boundary 

condition used for the solid phase affects the heat transfer between the solid and fluid 

phases in the thermal non-equilibrium condition.  

Nakayama et al. (Nakayama et al. 2002) studied the interfacial heat transfer 

coefficient in their previously explained study in Section 3.1.1. In the heat transfer part 

of their study, a constant temperature which was different than the temperature of the 

flowing fluid was chosen for the temperature of the rods. Periodic boundary conditions 

were used at the inlet and outlet boundaries. It was observed that for the flow in the 

longitudinal direction, the interfacial Nusselt number does not change very much with 

Reynolds number; however, a slight decrease was seen near Re = 10. A correlation was 

proposed for the Nusselt number with the correlation coefficients that depend on the 

degree of the anisotropy of the medium and the flow direction. The coefficients 

decrease with increasing the degree of the anisotropy.  

Kuwahara et al. (Kuwahara et al. 2001) studied square rods in staggered 

arrangement to determine the interfacial convective heat transfer coefficient. All rods 

were taken isothermal and maintained at a constant temperature which was different 
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than the mean temperature of the fluid. Due to the periodicity of the problem, a single 

structural unit was taken into consideration. The Reynolds number was varied from 0.01 

to 1000 and the porosity from 0.36 to 0.96. Prandtl number was varied from 0.01 to 100. 

Computations were made to obtain a correlation for interfacial Nusselt number for wide 

range of porosities. It was mentioned that the predictions of the correlation was 

consistent with the experimental data in the literature. 

Yang et al. (Yang et al. 2010) studied ordered packed beds with ellipsoidal or 

non-uniform spherical particles. A rectangular channel with large number of particles 

was considered. 3-D Navier-Stokes equations and RNG k-ε turbulence model with 

scalable wall function were used. The channel walls were kept adiabatic and the 

temperature of particle surfaces was set constant. A representative packed channel 

composed of 8 packed cells was chosen as the computational domain. 6 different kinds 

of packed cells with three kinds of packing forms (simple cubic, body center cubic and 

face center cubic) and 3 types of particle shapes (sphere, flat ellipsoidal and long 

ellipsoidal) were used in computations. Also both uniform and non-uniform size 

spherical particles were used in body center packing. The effects of packing form and 

particle shape were examined. Comparison between the flow and heat transfer 

performances of uniform and non-uniform packed beds was made. It was found that, 

with proper selection of packing form and particle shape, the pressure drop can be 

decreased and the heat transfer performances can be improved compared to the random 

packed beds. It is mentioned that both packing form and particle shape had important 

effects on flow and heat transfer characteristics. With spherical particles, the overall 

heat transfer efficiency of simple cubic packing was the highest. With same packing 

form, long ellipsoidal particles were shown the best overall heat transfer performance. 

A Nusselt number correlation was proposed while the constants were found for different 

combinations. 

Pathak and Ghiaasiaan (Pathak and Ghiaasiaan 2011) studied heat transfer 

coefficient during laminar pulsating flow through porous media. 2-D flow in periodic 

arrays of square cylinders was considered with sinusoidal time variation of flow as the 

inlet boundary condition. Porosities between 0.64 and 0.84, frequencies between 0 and 

100 Hz and Reynolds numbers between 70 and 980 were studied. It was found that the 

analysis of a single structural unit was not sufficient for pulsating flow. Therefore, six 

structural units in the direction of flow were used. The solid-fluid interface temperature 

was held constant. It was observed that Nusselt number increases with increasing 
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Reynolds number and Womersley number (which shows the relation of pulsatile flow 

frequency with viscous effects) and it decreases with increasing porosity. 

In their previously introduced study, Alshare et al. (Alshare et al. 2010) focused 

on the effects of the representative elementary volume (REV) aspect ratio, macroscopic 

flow direction and Reynolds number on the interfacial convective heat transfer 

coefficient for the inline arrangement of square rods. Constant heat flux at the interfaces 

was chosen as the temperature boundary condition. The variation of the interfacial 

Nusselt number with Reynolds number for different structural unit aspect ratios for 

periodic array of square rods was showed. It was observed that the interfacial 

convective heat transfer coefficient does not change much with Reynolds number for 

flow in the longitudinal direction while it increases with Reynolds number for flow in 

the direction with 45
o
 angle. The heat transfer coefficients were found to have minimal 

values when the flow was issued along the principal axes, since the flow resembles 

channel flow. 

Saito and de Lemos (Saito and de Lemos 2005) determined the interfacial heat 

transfer coefficient numerically for an infinite porous medium in which fully-developed 

flow condition prevails. Laminar flow conditions were considered for particle based 

Reynolds number range of 4 to 400 and porosity range of 0.44 to 0.9. An array of 

square rods in staggered arrangement was considered and the rods were assumed 

isothermal. The results found by Kuwahara et al. (Kuwahara et al. 2001) were 

confirmed. Saito and de Lemos (Saito and de Lemos 2006) additionally determined the 

interfacial convective heat transfer coefficient for the turbulent flow regime in the same 

porous medium. High and low Reynolds k-ϵ turbulence models were used in 

conjunction of a two-energy equation model. They proposed a correlation for the 

interfacial Nusselt number in terms of porosity, Reynolds and Prandtl numbers for the 

Reynolds numbers between 10
4 

and 10
7
.  

Lopez Penha et al. (Lopez Penha et al. 2012) studied fully-developed flow 

through the square rods for both inline and staggered arrangements to determine the 

macroscopic transport parameters. A constant volumetric heat generation in the rods 

was considered for the various solid-to-fluid thermal conductivity ratios and Reynolds 

numbers. Periodic representative elementary volumes of the porous media were 

considered and a finite volume based algorithm was used to solve the governing 

equations. Their results indicated that the interfacial Nusselt number is approximately 

constant for the solid-to-fluid thermal conductivity ratios higher than 100 while it varies 
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significantly for lower values. It was mentioned that as thermal conductivities approach 

the same order of magnitude, the temperature gradients across the interface diminish 

and consequently, Nu decreases with decreasing solid-to-fluid thermal conductivity 

ratio. 

Teruel and Diaz (Teruel and Diaz 2013) simulated the fluid flow through square 

rods in staggered arrangement. Laminar, steady flow with Peclet numbers between 1 

and 10
3
 and porosities between 0.55 and 0.95 were considered. A single REV for the 

computational domain and hsf was calculated as a function of the REV’s location in the 

porous media to show its dependency on position. It was concluded that that single REV 

simulations were not sufficient to compute hsf. A method that allows capturing the 

microscopic fluctuations of hsf was proposed by employing single REV values. 

Nakayama et al. (Nakayama et al. 2003) developed a numerical model for 3D 

fluid flow and heat transfer through a bank of long cylinders in yaw. Similar to some 

studies mentioned before, a single structural unit was chosen as the computational 

domain. It was shown that under macroscopically uniform flow, 3D governing 

equations could be reduced to quasi-3D forms, in which all derivatives associated with 

the axis of the cylinder can be either eliminated or replaced by other determinable 

expressions. The effects of porosity, degree of anisotropy, Reynolds number and 

macroscopic flow direction on the interfacial heat transfer coefficient were investigated. 

A correlation for the interfacial Nusselt number based on aforementioned parameters 

was proposed.  

 

Table 3.6. Theoretical studies on the determination of interfacial convective heat  

 transfer coefficient 

 

S
tu

d
y
 

Porous Medium 
Studied Parameters and Proposed 

Correlation 

K
u
w
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2
0
0
1

 

 

10
-2 

≤ Re ≤ 10
3 

10
-2

 ≤ Pr ≤ 10
2
 

0.36 ≤ ε ≤ 0.96 

3/16.02/1 PrRe)1(
2

1)1(4
1 DDNu 


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




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

 
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(Cont. on next page) 
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Table 3.6. (cont.) 

N
ak
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a 
et

 a
l.

 2
0
0
2

 

Table 3.2 

10
-2 

≤ Re ≤ 10
3 

Pr = 1 

ε = 0.75, 0.833, 0.875 

 
3/16.03.0

1

2

2

2

1 PrResincos fff dccNu  

 

cf1, cf2 and df1 are coefficients that 

depend on porosity 

α is flow angle 

N
ak
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am

a 
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l.

 

2
0
0
3
 

Same with Kuwahara et al. 1996 

10-2 ≤ Re ≤ 6.103 

ε = 0.75, 0.833 and 0.875 

 

 
3/16.0/2

1

/12

3

2
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2

1

PrResin
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
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f
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



 

All coefficients depend on porosity  

S
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n
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d
e 

L
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2
0
0
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Same with Kuwahara et al. 2001 

4 ≤ ReD ≤ 400 

0.44 ≤ ε ≤ 0.9 

Pr = 1 
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n
d
 d

e 

L
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2
0
0
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Same with Kuwahara et al. 2001 
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4
 ≤ ReD ≤ 10

7
 

0.44 ≤ ε ≤ 0.9 

3/1
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Table 3.2 

0.05 ≤ ReD ≤ 40 

1 ≤ Pr ≤ 100 

0.44 ≤ ε ≤ 0.98 

 

For inline arrangement: 

2.05.0

278.0

PrRe)092.0)1(44.0(

))1(54.2exp()1(02.3

D
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
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For staggered arrangement: 
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Table 3.2 

0.2 ≤ Rednom ≤ 200 

0.1 ≤ Pr ≤ 10 

ε = 0.858 
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Table 3.6. (cont.) 
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0.281 ≤ ε ≤ 0.492 

1 ≤ Re ≤ 5000 
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a1, a2 and n are model constants that 

depend on porosity 
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Table 3.2 

1 ≤ Re ≤ 1000 

ε = 0.75 and 0.875 

 

Graphical presentation 
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70 ≤ Re ≤ 980 

0.64 ≤ ε ≤ 0.84 

0 < f ≤ 100 Hz 
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Where  /2HW   and ω is angular 

frequency. 
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Same with Lopez Penha 2011 

0.01 ≤ Re ≤ 200 

ε = 0.75 

Pr = 1 

1 ≤ ks/kf ≤ 104 

 

Graphical presentation 
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Same with Teruel and Riwanuddin 2009 

1 ≤ Pe ≤ 103 

0.55 ≤ ε ≤ 0.95 

 

Graphical presentation 
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3.2.2. Review of Experimental Studies on Determination of Interfacial 

Convective Heat Transfer Coefficient 

 

According to Table 3.7, the experimental studies for the determination of the 

interfacial convective heat transfer coefficient are summarized in this section. There is 

scarce number of experimental studies on the determination of interfacial heat transfer 

coefficient and available studies are explained in the following paragraphs. 

Yang et al. (Yang et al. 2012) was made an experimental study for the validation 

of the previously made numerical computations (Yang et al. 2010). The interfacial heat 

transfer coefficient was determined. The effects of packing form and particle shape 

were investigated. Air was chosen as flowing fluid in the experimental setup. Glass 

ellipsoidal and uniform/non-uniform size steel spherical particles were used in the 

packed bed. Reynolds numbers higher than 100 were investigated. Before entering the 

bed air was heated. After the bed temperature had reached a certain value the heater was 

turned off and it was waited for packed bed to reach steady temperature. Then cold air 

was flowed through the bed and the temperature of the bed was cooled to ambient 

temperature. During the cooling of the bed, the experimental measurements were made. 

Volume flow rate of air, pressure difference across the test section and temperatures of 

air and particles were measured. In order to reduce wall effects, the heat transfer 

characteristics were only examined for the central packed channel. It was assumed that 

no local thermal equilibrium existed between fluid and particles and also the 

temperatures only changed along the flow direction and time. Measured temperatures 

were used in analytical solution to find heat transfer coefficient. Comparison between 

experimental and numerical results was made. It was found that the numerical model 

proposed in Yang et al. 2010 is sufficient for heat transfer predictions in ordered 

packings. But it was found that it might not be appropriate for the pressure drop 

estimations, especially for low porosity values. Also it was found that Wakao’s equation 

might overpredict the Nusselt number for the ordered porous medium. It was mentioned 

that with simple cubic packing of ellipsoidal particles, the pressure drop can be greatly 

reduced and the heat transfer characteristics can be improved. 

Saidi et al. (Saidi et al. 2006) investigated the heat transfer coefficient for a 

packed bed of shredded materials at low Peclet numbers. It was mentioned that the 

Nusselt number correlations derived for spherical particles overestimate the rate of heat 
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transfer in the packed beds with shredded materials. Both numerical simulations and 

experimental study were performed. The data obtained from experimental 

measurements were used in the numerical simulations and a power law formulation was 

applied. A correlation was proposed based on Peclet number.  

Özdemir and Özgüç (Özdemir and Özgüç 1997) studied the hydrodynamic and 

heat transfer characteristics of a porous medium consisting of wire screen meshes. The 

convection heat transfer experiments for the determination of Nusselt number were 

performed for the uniform heat flux boundary condition. The variation of Nusselt 

number with Peclet and Darcy numbers was determined for both thermally developing 

and fully-developed flows and correlations were proposed for both flow types. 

Schröder et al. (Schröder et al. 2006) studied the heating of the randomly packed 

beds. The packed bed was filled with slate particles and wooden cubes. Local 

measurements were done for particle and gas temperatures. A special arrangement of 

the test particles was used to exclude the effects of heat conduction. The variations of 

gas temperature and flow rate were taken into consideration and the heat transfer 

coefficient was determined by using the temperature measurements. It was observed 

that the increasing flow rate increases the heat transfer coefficient. The radiation heat 

transfer was taken into account numerically by solving the equations of a one-

dimensional particle model and it was observed that under 500 
o
C, the influence of 

radiation is negligible. 

 

Table 3.7. Experimental studies on the determination of interfacial convective heat  

 transfer coefficient 

 

Study Experimental setup 
Experimental 

Conditions 

Y
an

g
 e

t 
al

. 
2
0
1
2

 

 

Solid: Glass 

ellipsoidal or steel 

spherical particles 

(ordered) 

Fluid: Air 

dp = 9, 12 mm 

0.26 ≤ ε ≤ 0.477 

10
2
 ≤ Redh/ϕ ≤ 10

4 

 

 

 

(Cont. on next page) 
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Table 3.7. (cont.) 

Ö
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1
9
9

7
 

 

Solid: 20 wire screen 

meshes Fluid: water 

ε = 0.732, 0.7832 

 

For fully-developed flow: 

  5992.0

2211.0

DaPe

Nu

d

L




 

for 10 ≤ Ped ≤ 50 

 

for thermally developing 

flow: 

  2751.0

7884.0

/

4842.1






Lx

PeNu dx
 

for 10 ≤ Ped ≤ 50 

S
ai

d
i 

et
 a

l.
 2

0
0
6

 

 
Solid: Shredded tobacco 

material 

Fluid: Air 

ε = 0.8 

 
73.011.0015.0
pp dd PeNu 

  
for Pedp < 25 

S
ch

rö
d
er

 e
t 

al
. 
2
0
0
6

 

 

Solid: Bed of slate 

particles and wooden 

cubes 

Fluid: Nitrogen 

dp = 9.5 mm (wood), 5.7 

mm (porous slate), 6.995 

mm (aluminum spheres) 



59 

 

3.3. Literature Review on Determination of Thermal Dispersion 

Coefficients 

 

In this section, the studies performed on the determination of the thermal 

dispersion in porous media are reviewed. There are two subsections containing the 

reviews of the theoretical and experimental studies. Theoretical studies are summarized 

in Table 3.8 with the available correlations for the determination of thermal dispersion. 

Additionally, the considered porous media and the ranges of parameters are provided in 

the same table. The experimental studies are reviewed in detail and also a classification 

of the experimental procedures for the determination of thermal dispersion is proposed. 

Based on this classification, the reviewed experimental studies are separated and the 

experimental procedures are explained for each branch of the classification. Several 

tables are provided to present the assumptions, experimental conditions, particle and 

bed properties and available correlations. Additionally, the considered Reynolds number 

ranges and the available correlations are compared in figures. 

 

3.3.1. Review of Theoretical Studies on Determination of Thermal 

Dispersion Coefficients 

 

Kuwahara et al. (Kuwahara et al. 1996) applied a macroscopically linear 

temperature gradient perpendicularly to the flow direction to obtain the transverse 

dispersion coefficient for the square rods in inline arrangement. Some details of this 

study are presented in Section 3.1.1. Reynolds numbers between 10
-2

 and 10
3
 and solid-

to-fluid thermal conductivity ratios between 2 to 100 were considered. Prandtl number 

was taken as 0.71. It was found that the isotherms obtained at low Reynolds numbers 

show a typical pattern for the case of pure thermal conduction whereas for the high 

Reynolds number flows the temperature patterns become very complex as a result of 

thermal dispersion. Correlations for the determination of the transverse thermal 

dispersion coefficient were proposed. It was mentioned that the resulting correlation for 

high Peclet numbers is consistent with available experimental data. 

Kuwahara and Nakayama (Kuwahara and Nakayama 1999) studied a 

macroscopically uniform flow passing through a lattice of regularly placed square rods 

in an infinite space. Macroscopically linear temperature gradient was applied in parallel 
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and perpendicular to the flow direction to obtain longitudinal and transverse thermal 

dispersion conductivities. The Reynolds number was varied from 0.01 to 1000, solid-to-

fluid thermal conductivity ratio from 2 to 100 and the porosity from 0.1 to 0.96. Prandtl 

number was set to 0.71 and 10. The macroscopic flow angle was varied every 5 degree 

to investigate geometric effects on the dispersion coefficients. For the transverse 

dispersion conductivity above the correlations proposed in the study of Kuwahara et al. 

(Kuwahara et al. 1996) were mentioned confirmed. Correlations for the longitudinal 

dispersion conductivity were proposed. It was said that the longitudinal dispersion is 

substantially higher than the transverse dispersion. The predicted apparent 

conductivities were found in good agreement with experimental data. Later, Nakayama 

and Kuwahara (Nakayama and Kuwahara 2005) developed an algebraic model to 

determine thermal dispersion conductivity. The microscopic and macroscopic governing 

equations were used together to obtain a transport equation for the dispersion heat flux. 

With using definitions of permeability and Forchheimer coefficient in Ergun’s equation, 

a relation was obtained for longitudinal thermal dispersion. It was mentioned that 

thermal dispersion in the longitudinal direction increases with square of Peclet number 

for the low Peclet numbers; however, it changes with Pe for high Pe range. It was said 

that the results of this algebraic relation for longitudinal thermal dispersion was in good 

agreement with previous numerical studies of these researchers and some other 

theoretical studies. 

Yang and Nakayama (Yang and Nakayama 2010) investigated the effects of 

tortuosity and thermal dispersion on the effective thermal conductivity, analytically. A 

general expression for the equivalent thermal conductivity of porous medium was 

derived and this value was compared with numerical and experimental studies in the 

literature. Then using two energy equations for solid and fluid phases with volume 

averaging method, a general expression for the thermal dispersion was found. It was 

shown that the interfacial heat transfer between the solid and fluid phases and thermal 

dispersion were closely related. It was claimed that for small Peclet numbers 

longitudinal thermal dispersion was proportional with Pe
2
 and there was a transition 

zone between laminar and turbulent regimes where longitudinal thermal dispersion was 

proportional with Pe
1.4

. Correlations were proposed for transverse and longitudinal 

thermal dispersion conductivities for laminar and turbulent regimes. 

Jeong and Choi (Jeong and Choi 2011) investigated longitudinal thermal 

dispersion in 2D arrays of uniformly distributed circular and square cylinders and 
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uniformly distributed spheres and cubes by using lattice Boltzmann method. The effects 

of Re, Pr and porosity were examined. Reynolds numbers between 0.1 and 100 and 

Prandtl numbers between 0.1 and 20 were considered. It was said that the in-line 

arrangement yielded higher dispersion than the staggered arrangement. It was also 

claimed that the dispersion depends more on the arrangement than the shape of 

particles. Thermal dispersion was found increasing with increasing Peclet number. New 

correlations were proposed for 2D and 3D cases.  

Xu et al. (Xu et al. 2010) studied periodic array of parallel plates to determine 

the thermal dispersion, analytically. Three cases were considered as a) transient heat 

transfer due to an arbitrary initial temperature distribution within the fluid, b) steady 

heat transfer with constant heat flux on all plate surfaces, and c) steady heat transfer 

with constant wall temperatures. Steady-state laminar flow of an incompressible fluid 

was considered for all cases. For the first two cases thermal dispersion was found to 

change with Pe according to 1+C
.
Pe, where coefficient C is independent of Pe. For the 

last case C is a function of Pe. It was explained that thermal dispersion is not a property 

of the porous medium depending only on pore structure, porosity and the underlying 

fluid flow. It was explained that the thermal dispersion can be influenced by the type of 

thermal setting imposed on the medium since the imposed heat source condition 

contributes the temperature non-uniformity in the channel. It was advised that thermal 

dispersion of a porous medium obtained using one type of thermal setting should be 

used carefully when the thermal boundary conditions are changed.  

Pedras and de Lemos (Pedras and de Lemos 2008) studied the heat transfer in a 

periodic array of elliptic rods in an infinite porous medium. Two different solid-to-fluid 

thermal conductivity ratios were considered. Turbulence flow was assumed and a low 

Re k-ε model was used. Both longitudinal and transverse thermal dispersion 

conductivities were computed. Temperature gradients were imposed by either using 

constant temperature at cell boundaries or constant heat flux at top and bottom 

boundaries. A highly non-uniform grid was used. Peclet numbers from 1 to 4000 and 

porosities from 0.6 to 0.9 were considered. It was claimed that the type of boundary 

condition has little influence on the longitudinal thermal dispersion value and only a 

slight effect on transverse thermal dispersion. Longitudinal dispersion was found to be 

less sensitive to the variations of porosity, conductivity ratio and porous structure. Some 

correlations were proposed. 
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Saada et al. (Saada et al. 2006) investigated thermal dispersion in a periodic 

structure consisting square and plus shaped rods in inline and staggered arrangements. 

Some details of this study are presented in Section 3.1.1. Local fluctuations of 

microscopic velocity and temperature were used to obtain thermal dispersion. Peclet 

numbers between 0.1 and 1000, and solid-fluid thermal conductivity ratios between 0.1 

and 1000 were considered. It was said that depending on the nature of the porous 

medium, the thermal dispersion may have significant effect on heat transfer, especially 

in the longitudinal direction for a highly conducting fluid and certain values of Pe. Both 

transverse and longitudinal thermal dispersion conductivities were computed for various 

porosities, Reynolds and Peclet numbers and solid-to-fluid conductivity ratio values. It 

is found that for the same rod shape the longitudinal thermal dispersion was higher for 

inline arrangements while the transverse one is higher for the staggered arrangement.  

Sahraoui and Kaviany (Sahraoui and Kaviany 1994) considered two-

dimensional periodic arrangement of cylinders and determine the longitudinal and 

transverse total thermal diffusivities which includes both molecular diffusion and 

thermal dispersion coefficients by considering the slip and no-slip temperature 

boundary conditions. It was proposed that the ratio of total thermal diffusivity in the 

longitudinal direction to the thermal conductivity of the fluid change with the square of 

Peclet number for inline arrangement while for the staggered arrangement the ratio 

increases with Peclet number. It was also observed that the total thermal diffusivity is 

almost equal to the stagnant thermal conductivity of the porous medium and the thermal 

dispersion is negligible comparing with the stagnant thermal conductivity for low Peclet 

numbers.  

Alshare et al. (Alshare et al. 2010) investigated the change of thermal dispersion 

in an array of square rods with inline arrangement by changing the representative 

elementary volume (REV) aspect ratio. Both transverse and longitudinal thermal 

dispersion conductivities were studied. It was found that the dispersion values are 

dependent on both Peclet number and flow angle. The thermal dispersion coefficient in 

the flow direction was found to be much larger than the thermal dispersion in the 

transverse direction to the flow. It was observed that the dispersion depends more on the 

arrangement than the shape of particles. The results for longitudinal thermal dispersion 

were found in good agreement with Sahraoui and Kaviany (Sahraoui and Kaviany 

1994) and Saada et al. (Saada et al. 2006).  
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In the previously explained study of Pathak and Ghiaasiaan (Pathak and 

Ghiaasiaan 2011), the thermal dispersion during laminar pulsating flow through porous 

media was studied in addition to the interfacial heat transfer coefficient. Thermal 

dispersion was found to be strongly dependent on porosity, Reynolds number and flow 

pulsation frequency. The thermal dispersion conductivity was found to be much larger 

than the molecular thermal conductivity. It was observed that the thermal dispersion 

conductivity is a periodic function of time and the usefulness of the concept of thermal 

dispersion conductivity in pulsating flow is questionable. A correlation relating thermal 

dispersion with Re number, porosity and Womersley number (W = ωL
2
/ν) was 

proposed. 

 

Table 3.8. Theoretical studies on the determination of thermal dispersion coefficients 

 

S
tu

d
y
 

Porous Medium 
Studied Parameters and Proposed 

Correlation 

S
ah

ra
o
u
i 

an
d
 

K
av

ia
n
y
 1

9
9
4

 

Same with Sahraoui and Kaviany 

1992 

10
-2

 ≤ Pe ≤ 10
3
 

10
-2

 ≤ ks/kf ≤ 10
3 

0.5 ≤ ε ≤ 0.95 

 

K
u
w
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ar

a 
et

 a
l.

 1
9
9
6

 

Table 3.2 

10
-2

 ≤ Re ≤ 10
3
 

0.1 ≤ ε ≤ 0.96 

Pr = 0.71 

2 ≤ ks/kf ≤ 100 

 

4/1

7.1
,

)1(
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 D
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f
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w

ah
ar
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N
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a 
1
9
9
9

 

Same with Kuwahara et al. 1996 

Same with Kuwahara et al. 1996 

 

)1(
022.0

2
,
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f

XXdis Pe

k

k
 for PeD < 10 

2/1

,
7.2

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f
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k
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(Cont. on next page) 
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Table 3.8. (cont.) 
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Table 3.2 

Re ≤ 150 

0.1 ≤ Pe ≤ 103 

0.1 ≤ ε ≤ 0.9 

0.1 ≤ ks/kf ≤ 103 

P
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s 
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d
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L
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o
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2
0
0
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1 ≤ Pe ≤ 4000 

0.6 ≤ ε ≤ 0.9 

ks/kf = 2 and 10 
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k

k
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2
0
1
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0.1 ≤ PeD ≤ 10
4
 

Pr = 0.71 and 7.02 

ks/kf = 2.3 and 53.28 

For laminar regime: 
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2
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D
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
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For turbulent regime: 
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Table 3.2 

1 ≤ Re ≤ 10
3 

0.1 ≤ Pe ≤ 10
3
 

0.75 ≤ ε ≤ 0.875 
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Table 3.8. (cont.) 
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Table 3.6 

Table 3.6 
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0.1 ≤ Re ≤ 100 

0.1 ≤ Pr ≤ 20 

0.44 < ε < 0.85 
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a
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For 2D: 

1595.01554.01 a  
2

2 716.1775.1783.1  a  
For 3D staggered arrangement: 

0856.00772.01 a  
2

2 591.0617.1897.0  a  
For 3D inline arrangement: 

1341.0129.01 a  
2

2 6992.02471.0291.1  a  
 

3.3.2. Review of Experimental Studies on Determination of Thermal 

Dispersion Coefficients 

 

In this section, the experimental studies on the determination of the effective 

thermal conductivity, which is the summation of the thermal dispersion coefficient and 

molecular thermal conductivity, are presented in detail. Because of the compact 

structure of the porous media, the thermal dispersion coefficient cannot be obtained 

directly from the experimental measurements and the effective thermal conductivity is 

investigated to see the variation of thermal dispersion coefficients in a specific porous 

medium since the equivalent thermal conductivity is a constant for a porous medium 

with unmoving solid particles (i.e., constant porosity). Different porous shapes were 

used in the performed studies and the employed porous materials show variety as well. 

Some researchers preferred to determine the effective thermal conductivity under steady 
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state circumstances while the others used transient state. Generally, thermal equilibrium 

condition was assumed for the determination of the effective thermal conductivity. 

Basically all the experimental methods follow the same procedure. Experiments 

on the determination of the effective thermal conductivity are generally performed by 

measuring the temperatures at various locations inside a packed bed when a heat input 

was imposed. The heat source used to generate the temperature gradient in the bed was 

applied inside the packed bed or imposed at the bed boundaries. To determine the 

effective thermal conductivity which includes both the equivalent thermal conductivity 

of the porous medium and the thermal dispersion conductivity, the following procedure 

is followed: 

 A temperature gradient in the packed bed is generated by using a heat 

source/sink. 

 Temperatures at the different packed bed locations are measured. 

 The macroscopic energy equation is solved for the packed bed. In the most 

of the studies, analytical methods were used to obtain the solution of the 

macroscopic energy equation.  

 Finally, the effective thermal conductivity for the considered packed bed is 

found by the comparison of the temperature fields obtained from the 

analytical solution and the measurements. 

Analysis of the related literature shows that the experimental studies can be 

classified into three groups (Figure 3.2): 

 1) Heat addition/removal at the lateral boundaries, 

 2) Heat addition at the inlet/outlet boundary, 

 3) Heat addition inside the bed. 

 

 
 

Figure 3.2. The classification of the experimental studies performed for the  

determination of thermal dispersion 
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In the following subsections, these approaches are explained and the reported 

experimental studies are also presented for each method, separately. Based on the 

thermal boundary condition and heat source type, each method is also classified into 

subgroups. These subgroups are explained in the following sections in detail as well. 

Heat addition/removal at constant temperature lateral boundaries was mostly 

preferred in the literature due to the ease of application, probably. The spherical 

particles were favorable shape in the performed studies and air was mostly used. In the 

most of the studies, the shape of the bed was cylindrical to provide an axisymmetrical 

condition. The studies were performed for a wide range of particle-based Reynolds 

numbers. It is important to note that no laminar/turbulent distinction was taken into 

account for the suggested correlations. Peclet number is the main independent 

parameter in the suggested correlations, however there are correlations established 

based on Reynolds number only.  

The present review indicates that although the thermal dispersion conductivity 

plays an important role in the convective heat transfer in porous media, the number of 

the performed experimental studies on the thermal dispersion is limited. The proposed 

correlations are also limited and mostly established for the spherical particle beds.  

 

3.3.2.1. Heat Addition/Removal at Lateral Boundaries 

 

In this approach, the temperature gradient in the bed is provided by imposing 

uniform temperature or heat flux at the lateral boundaries of the packed bed. The 

imposed temperature at the bed boundary should be different than the fluid inlet 

temperature to create the temperature gradient in the bed. The cylindrical packed beds 

were mostly used to provide an axisymmetrical condition. The use of the 

axisymmetrical packed bed provides advantages such as checking of the measured 

temperature at different locations and the simplification of the macroscopic energy 

equation. Steady state heat addition/removal at the lateral boundaries was performed in 

the most of the studies. In the all studies that are discussed in this section, thermal 

equilibrium condition was assumed for the determination of the effective thermal 

conductivity. Hence, the comparison of the solution of the steady state macroscopic 

energy equation with the experimentally achieved temperature profiles at steady state 

yielded the effective thermal conductivity value. The macroscopic energy equation 
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presented by Eq. (3.1) was used to determine the temperature distribution in the bed for 

the most experimental studies in which the cylindrical bed was used. 
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where keff,r and keff,zz are the radial (transverse) and the axial (longitudinal) 

effective thermal conductivities, respectively. The axial diffusion was neglected in some 

studies. Some researchers preferred to include axial heat diffusion while the value of the 

axial effective thermal conductivity was calculated based on the previously reported 

correlations. The assumptions for the components of the effective thermal conductivity 

tensor are summarized in Table 3.9 for all the studies reviewed in this section. 

The imposed boundary conditions for Eq. (3.1) are: 

 Convective heat transfer or constant heat flux at the lateral surface, 

 Uniform temperature at the inlet, 

 Constant temperature that equals to the lateral wall temperature at the outlet 

(if it is required), 

 Symmetry at the center of the packed bed. 

The lateral boundary conditions that used in the studies that employ the heat 

addition/removal at the lateral boundaries method are summarized in Table 3.10. 

 

Table 3.9. The axial and/or radial effective thermal conductivity treatment in the     

                 reported experimental studies 
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Bunnell et al. 1949 X   X   

Kwong and Smith 1957  X  X   

Yagi et al. 1960 X    X  

Vortuba et al. 1972 X    X  

Gunn and Khalid 1975 X   X   

Gunn and De Souza 1974 X    X  

 

(Cont. on next page) 
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Table 3.9. (cont.) 

Clement and Jorgensen 1983 X   X   

Vortmeyer and Adam 1984 X    X  

Levec and Carbonell 1985 X   X   

Borkink and Westerterp 1992a, 1992c  X  X   

Borkink and Westerterp 1992b X   X   

Dixon and van Dongeren 1998   X X   

Thomeo and Freire 2000  X  X   

Demirel et al. 2000  X  X   

Bey and Eigenberger 2001  X  X   

Elsari and Hughes 2002 X    X  

Dekhtyar et al. 2002  X  X   

Smirnov et al. 2003a, 2003b, 2004  X  X   

Metzger et al. 2004 X   X   

Testu et al. 2005, 2007 X   X   

Wen and Ding 2006   X X   

Jorge et al. 2010   X X   

 

Table 3.10. The lateral surface boundary conditions applied in studies with heat 

addition/removal at the lateral boundaries 

 

Study Constant lateral 

wall temperature 

Constant heat 

flux 
Bunnell et al. 1949 X  

Kwong and Smith 1957 X  

Gunn and Khalid 1975 X  

Borkink and Westerterp 1992a, 1992b, 1992c X  

Dixon and van Dongeren 1998 X  

Thomeo and Freire 2000 X  

Demirel et al. 2000  X 

Bey and Eigenberger 2001 X  

Dekhtyar et al. 2002  X 

Smirnov et al. 2003a, 2003b, 2004 X  

Wen and Ding 2006 X  

Jorge et al. 2010 X  

 

In Figure 3.3, the schematic view of an experimental setup that summarizes the 

main components of the apparatus used in the experimental studies is shown. As seen 

from Figure 3.3, the fluid with a specified mass flow rate firstly enters to the pre-heating 

section to increase the fluid temperature to a specified value. The preheating section is 

also filled with the studied porous medium. Then, it passes through the calming section 

providing fully developed velocity field. After the calming section, it enters to the main 

section whose lateral surface temperature is different than the fluid inlet temperature. In 

this section (test section), the temperatures at different points of the bed (longitudinal or 

transverse) are measured. Based on the obtained local temperature, longitudinal or 
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transverse temperature profiles can be obtained. In some studies, the preheating or the 

calming sections were not involved in the setup.  

 

 

 

Figure 3.3. The schematic view of the experimental setups for the use of the heat 

addition/removal at the lateral boundaries method 

 

The available reported studies, which used heat addition/removal at the lateral 

boundaries method, are briefly explained below.  

Smirnov et al. (Smirnov et al. 2003a) studied heat transfer in the cylindrical 

packed beds filled with steel and glass spheres, ceramic cylinders, and ceramic and 

copper Raschig rings. The performed study was done for the range of Reynolds 

numbers from 250 to 2250. The heat diffusion in the axial direction was neglected. The 

heat removal at the lateral boundary was done by circulating water in an annular jacket. 

In the study, the effective thermal conductivity and the related wall heat transfer 

coefficient were found. A model with a linear variation of the radial effective thermal 

conductivity in the vicinity of the wall was proposed for the description of the radial 

heat transfer in the packed bed. A correlation for the radial effective thermal 

conductivity was proposed.  
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Smirnov et al. (Smirnov et al. 2003b) also studied 4-hole and 52-hole cylindrical 

pellets, 6-spoke wheels and 3-hole trilobed particles as packing with the same 

experimental setup that was used in the previous study (Smirnov et al. 2003a). All 

particles were made of ceramic. Reynolds number range of 400 to 2300 was examined. 

It was claimed that the shape of the particles used in the packed bed can significantly 

improve the radial heat transfer and reduce the pressure drop. It was remarked that the 

proposed model can describe the radial thermal conductivity for all type of particles 

used in the study without requiring any additional empirical parameters except the value 

of the convective heat transport parameter K.  

Smirnov et al. (Smirnov et al. 2004) also performed another study and 

investigated the heat transfer in a cylindrical packed bed filled with copper and ceramic 

particles with various shapes (cylinder, Raschig ring, six-spoke wheels etc.). In the 

performed experiments, Reynolds number was greater than 300. The values of the 

convective heat transport parameter used in the proposed correlation for different shapes 

of copper and ceramic particles were found.  

Thomeo and Freire (Thomeo and Freire 2000) studied the heat transfer in a 

cylindrical packed bed filled with glass spheres. Air flow with Reynolds numbers 

between 60 and 190 was studied. The air temperature was reduced at the main test 

section having heat removal at the lateral boundary by imposing constant wall 

temperature. The axial diffusion was neglected. A correlation was not proposed for the 

determination of the radial effective thermal conductivity. 

Demirel et al. (Demirel et al. 2000) studied air flow in a rectangular duct filled 

with polyvinyl chloride Raschig rings for Reynolds numbers with the range of 200 – 

1200, and polystyrene spheres for Reynolds numbers with the range of 200 – 1450. The 

bed was placed horizontally and a uniform heat flux with the range of 50 - 170 W/m
2
 

was applied at the top wall while the other surfaces were insulated. Instead of the 

theoretical solution for the determination of the temperature distribution, a third order 

polynomial function was assumed to predict the temperature distribution in the bed. The 

coefficients of the polynomial function were obtained by using the experimental data. 

The correlations for the determination of the transverse effective thermal conductivity 

of two packings as Raschig rings and spheres were suggested. 

Bunnell et al. (Bunnell et al. 1949) investigated the heat transfer in a cylindrical 

packed bed with alumina cylinders. Reynolds numbers with the range between 30 and 

100 were studied. The lateral surface of the bed was held at a constant temperature (100 



72 

 

o
C) that was lower than the inlet air temperature (400 

o
C) by using boiling water 

circulation in the jacket of the bed. Thermocouples were placed in such a way that both 

fluid and solid temperatures were measured in the radial direction. The effective thermal 

conductivities for the radial and the axial directions were assumed equal and the 

solution Eq. (3.1) was obtained under this assumption. A correlation for the 

determination of the effective thermal conductivities was proposed. 

Wen and Ding (Wen and Ding 2006) studied a cylindrical packed bed of glass 

spheres with air as the fluid. Re with the range between 100 and 700 were considered. 

The whole lateral surface of the packed bed was heated and maintained at constant wall 

temperature. The thermocouples were distributed both in the axial and the radial 

directions. The temperature difference between solid and fluid phases was checked. The 

study was performed for both transient and steady-state conditions. In the transient 

conditions, only the temperature distribution variations with time inside the bed were 

investigated. The radial effective thermal conductivity and the wall heat transfer 

coefficient were determined by the comparison of the steady-state experimental results 

with the analytical solution of Eq. (3.1). The axial effective thermal conductivity was 

directly calculated from Eq. (3.2) which was proposed by Wakao et al. (Wakao et al. 

1978):  

 

 
PrRe5.0

,


f

e

f

zzeff

k

k

k

k
 (3.2) 

 

It was declared that the correlations of the radial effective thermal conductivity 

of Bunnell et al. (Bunnell et al. 1949) and Demirel et al. (Demirel et al. 2000) provide 

well predictions. 

Dixon and van Dongeren (Dixon and van Dongeren 1998) studied a cylindrical 

packed bed with spherical particles of porous ceramic, nylon and steel. The effects of 

the tube (packed bed) and the particle diameters on the heat transfer were investigated 

for the fixed tube-to-particle diameter ratios of 4 and 8. The Re interval was between 

100 and 900. Steam was circulated in the jacket of the tested section to provide constant 

wall temperature. Both the axial and the radial temperature measurements were 

achieved. Eq. (3.1) and its boundary conditions were used to find an analytical 

expression for the temperature distribution through the bed. For the axial effective 

thermal conductivity, the following equation was used: 
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where ks/kf was taken as 18, 8 and 4 for steel, porous ceramic and nylon 

packings, respectively. The radial effective thermal conductivity and the wall Nusselt 

number values were found for various Reynolds numbers. It was found that the radial 

effective thermal conductivity can be described based on the value of tube-to-particle 

diameter ratio rather than the individual tube and particle diameters. 

Borkink and Westerterp (Borkink and Westerterp 1992a) studied a cylindrical 

packed bed with glass spheres of two different diameters as 3.7 mm for the Peclet 

number range of 60 – 300 and 7.2 mm for the Peclet number range of 100 – 800. 

Moreover, porous alumina cylinders for 50 < Pe < 450 and porous alumina Raschig 

rings for 100 < Pe < 450 were studied. The study was performed for three stainless steel 

beds with different inner diameters. Air was used as fluid phase. The experimental setup 

was constructed to measure both the radial and the axial temperature values throughout 

the packed bed. Hot air entered to the bed while cooling of the fluid was made by the 

lateral walls with constant temperature. No calming section was involved in the setup. 

For the steady state, the radial temperature profile was measured near the top section of 

the bed. Dimensionless form of Eq. (3.1) was solved and the axial conduction was 

neglected. A correlation that relates the radial effective thermal conductivity with the 

Peclet number, the particle shape and the number of particles on the tube (packed bed) 

diameter was obtained.  

The same packed bed setup (Borkink and Westerterp 1992a) was studied for Pe 

between 150 and 2100 by the same researchers (Borkink and Westerterp 1992b). 

Similar to the previous study, the dimensionless form of Equation (3.1) without the 

axial dispersion was solved. Based on the obtained results, it was declared that the inlet 

boundary condition in the modeling of the radial effective thermal conductivity is very 

important. If the inlet temperature profile is assumed to be radially flat, although the 

actual profile is curved, an axial dispersion may occur. The radial effective thermal 

conductivity and the wall heat transfer coefficient were found to be strongly cross-

correlated and both parameters were found to be independent of the tube diameter.     

Furthermore, the same experimental setup was used with alumina cylinder 

packings (Borkink and Westerterp1992c). Reynolds numbers between 70 and 600 were 
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considered. The dimensionless form of Equation (3.1) with the axial conduction was 

solved, numerically. The influences of the inlet and the outlet boundary conditions on 

the solution were investigated. The values of the axial effective thermal conductivity, 

the radial effective thermal conductivity and the wall heat transfer coefficient were 

found for various Reynolds numbers and bed diameters. These results were obtained 

with the assumption of a parabolic temperature profile at the inlet. It was declared that 

the inclusion of the axial thermal dispersion in the heat balance does not significantly 

influence the description of the heat transport in wall cooled or heated packed bed if the 

correct radial inlet temperature profile is selected and the employed Reynolds numbers 

exceed 50. 

Kwong and Smith (Kwong and Smith 1957) studied two different sizes of the 

cylindrical packed beds with air and ammonia. The packing materials were steel and 

alumina spheres. Non-heated calming section was not involved in the study, but the 

inlet temperature measurements were taken at about 18 cm above the actual inlet of the 

bed to reduce entrance disturbances. To find theoretical temperature distribution, 

Equation (3.1) was solved, numerically. The term for the axial heat transfer by diffusion 

was neglected. The radial effective thermal conductivity values were found for 

Reynolds numbers between 50 and 450. 

Bey and Eigenberger (Bey and Eigenberger 2001) studied the packed bed (tube) 

with glass and ceramic spheres, and ceramic ring packings with tube-to-particle 

diameter ratios between 3.3 and 11. The studied Reynolds number range was between 

50 and 900 for the spheres and between 0 and 2500 for the rings. The experiments were 

conducted with the packing materials between two parallel plates of different 

temperatures (Figure 3.4). By this way, instead of solving Eq. (3.1) with aforementioned 

boundary conditions (in the case of the cylindrical beds), the radial effective thermal 

conductivity and the wall heat transfer coefficient were described by using Eqs. (3.4) 

and (3.5) where wq   is the wall heat flux and hw is the wall heat transfer coefficient. The 

results of Eqs. (3.4) and (3.5) were compared with the experimental data.  
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Figure 3.4. Experimental setup of Bey and Eigenberger 2001 

 

It was claimed that the value of the radial effective thermal conductivity can be 

well described by the correlation developed by Bauer and Schlünder (Bauer and 

Schlünder 1977) (Eq. (3.6)), where Kr is a correlation constant. Kr values for different 

tube-to-particle diameters were shown in diagrams in their study. 
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Jorge et al. (Jorge et al. 2010) studied a cylindrical packed bed filled with 

cylindrical particles. Air was used as fluid. The packing material was an industrial 

catalyst made of nickel supported on alumina. Reynolds numbers between 87 and 290 

was studied. The radial effective thermal conductivity and the wall heat transfer 

coefficient were estimated from the steady state data while the characteristic bed time 

constant was estimated from the transient data of the experiments. The test section was 

heated by using a steam jacket and the uniform temperature at the lateral surface was 

checked. A new correlation was proposed for the radial effective thermal conductivity. 

Equation (3.1) was numerically solved to obtain the temperature distribution. A 

correlation developed by Dixon and Cresswell (Dixon and Cresswell 1979) (Eq. (3.7)) 

was used for the determination of the axial effective thermal conductivity, where G is 

the superficial mass flow rate.  
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Dekhtyar et al. (Dekhtyar et al. 2002) studied a cylindrical packed bed of glass 

spheres. The fluids were water and 47% aqueous solution of glycerin. Reynolds number 

range of 3 to 700 was examined. Constant heat flux at the surface boundary was used in 

the experimental setup. Equation (3.1) was solved without considering the axial 

component of diffusion heat transfer to obtain an analytical expression for the 

temperature profile. In the obtained analytical solution, temperature depends on r
2
 and 

x. A parabolic temperature profile was assumed in the packed bed and then Eq. (3.8) 

was found by using the parabolic temperature profile.   
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The radial effective thermal conductivity was calculated from Equation (3.8) 

with using the temperature data from the experiment (D is the tube diameter).  A 

correlation was obtained for the radial effective thermal conductivity ratio. It was 

claimed that the proposed correlation was adequate for the turbulent range whereas 

some stratification of data was observed for the low Reynolds number regions. It was 

also mentioned that the effective thermal conductivity ratio is proportional to the square 

root of the Peclet number for the Reynolds numbers below 100. 

Gunn and Khalid (Gunn and Khalid 1975) studied air flowing cylindrical packed 

beds with glass and metallic particles. The investigated Reynolds number range was 

between 1 and 400. The packed bed had an unheated inlet section and then the lateral 

walls were heated by steam. Eq. (3.1) was used to obtain the analytical solution. The 

determination of the axial and the radial thermal dispersion conductivities was achieved. 

The results were shown by the graphics of the axial and the radial Peclet numbers 

constructed with the dispersion conductivities versus Reynolds number. 

 

3.3.2.2. Heat Addition at Inlet/Outlet Boundary  

Heat addition at the inlet/outlet boundary approach used most frequently in the 

early studies of the heat transfer in porous media. A review of those studies can be 

found in the book of Kaviany (Kaviany 1995). In some studies, mass transfer 

experiments were conducted based on this method and the effective thermal 

conductivity values were obtained by analogy between the heat and mass transfer 
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(Delgado 2007). Generally, thermal equilibrium condition was assumed for the 

determination of the effective thermal conductivity. In this method, the bed can be 

heated at the inlet or outlet boundaries to provide a temperature gradient. A sample 

experimental setup for the heat addition at the inlet/outlet boundary is provided and 

shown in Figure 3.5, schematically. Similar to the heat removal/addition at the lateral 

boundaries (Figure 3.3), the experimental setup consists of a calming section and a test 

section. There is an electrical heater array at the inlet of test section and the temperature 

of the bed increases at the inlet boundary of the bed. In some cases, the heat step input 

was provided by pumping the fluids from two different reservoirs at the different 

temperatures. The lateral boundary of the bed is insulated. Then, temperature 

distributions in longitudinal and transverse directions in the bed is measured and 

plotted. Our literature review shows that two methods can be applied for the heat 

addition at the inlet boundary. The methods used for the heat addition at the inlet/outlet 

boundaries are explained below. The first and the second methods are used for the 

heating at the inlet boundary while the third method is used for the heating at the outlet 

boundary. 

 

 

 

Figure 3.5. The schematics of the experimental setups for the heating at the inlet 

boundary 
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A) In the first method used for the heating at the inlet boundary, temperature 

gradient can be generated by a heat source and applied at the bed inlet plane. The effect 

of the temperature gradient at the bed inlet plane is propagated through the bed and then 

it is measured. A temperature gradient in the radial direction of the bed can be obtained 

by partial heating of the inlet section of the packed bed. Generally, steady condition is 

conducted to determine the thermal dispersion. The transverse and longitudinal 

components of the effective thermal conductivity can be found by comparing theoretical 

solution of Equation (3.9) with temperature measurements. 
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where keff,yy and keff,zz are the transverse and the longitudinal (axial) effective 

thermal conductivities, respectively. The imposed boundary conditions are: 

- Radially uniform or non-uniform temperature at the inlet, 

- Zero heat flux at the lateral boundaries, 

- Symmetry at the center of the packed bed, 

- No diffusion heat flux at the outlet. 

B) In the second method used for the heating at the inlet boundary, transient 

experiments were conducted by using radially uniform temperature at the inlet of the 

packed bed. A step change, a pulse heat input, or a sinusoidal temperature variation in 

time can be imposed at the bed inlet and consequently the outlet air temperature varies 

with time. For a step change, a sudden temperature change is applied at the bed inlet 

boundary and then the inlet temperature remains constant. For a pulse heat input, a 

finite amplitude pulse is applied by the heater and it is repeated periodically. With a 

similar arrangement, a sinusoidal change in temperature can also be achieved. The 

measurements are made for temperature in the downstream temperature and/or time lag 

difference between the waves at the inlet and outlet of the packed bed. The walls of the 

bed are insulated and consequently the axial conductive and convective heat transports 

become dominant. Because of these assumptions, one-dimensional transient form of the 

macroscopic energy equation (Eq. (3.10)) can be used to obtain the theoretical solution 

of the temperature in the bed. 
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Following initial and boundary conditions can be implemented for the 

boundaries: 

- For the inlet boundary condition, a time dependent temperature can be used 

(e.g. sinusoidal wave with constant amplitude), 

- A uniform temperature for the initial condition, 

- The measured outlet temperatures can be used. 

C) The third method is used for heating at the outlet boundary. Heating at 

the outlet of the packed bed can be done by using an infrared lamp. Thus, the radiation 

heating from the external of the bed is used to create the temperature gradient inside the 

bed. Eq. (3.9) is considered to obtain the theoretical temperature distribution. Figure 3.6 

displays the schematic view of the experimental setups used in the studies in which the 

radiation heating method was applied. Eq. (3.9) is used without heat diffusion in the 

transverse direction to obtain the analytical temperature distribution in the packed bed. 

 

 

 

Figure 3.6. The schematic of experimental setups in which the radiation heating method 

was used. 
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Gunn and De Souza (Gunn and De Souza 1974) studied the thermal frequency 

response of the packed beds by using a similar method as described above. The packing 

materials were glass, steel and lead spheres. Air was used as fluid and the Reynolds 

number range between 0.05 and 330 was studied. A grid heater was placed at the inlet 

of the packed bed and sinusoidal heating was applied via this heater. Low thermal 

conductivity materials were used at the walls of the packed bed; hence, the radial heat 

transfer was kept small compared to the axial heat transfer. The axial dispersion 

coefficient and the fluid-particle heat transfer coefficient were found by a non-linear 

regression. The experimental frequency response was observed to be mostly influenced 

from the thermal dispersion at Reynolds numbers less than 1. 

Clement and Jorgensen (Clement and Jorgensen 1983) studied the axial and the 

radial dispersion coefficients under non-reacting and reacting conditions. A cylindrical 

packed bed with Pt-impregnated alumina pellets as packing was used. The lateral walls 

were insulated. At the beginning of the experiments, the packed bed was allowed to 

reach the steady state. After some time, a periodical temperature pulse was applied at 

the bed inlet. Then the transient measurements were done. Three steady state 

temperature profiles were examined with different inlet conditions. All experiments 

were conducted for Reynolds number of 10. Thus the values of dispersion coefficients 

for this Reynolds number were found. Dimensionless, 2-D and cylindrical form of Eq. 

(3.10) was solved analytically to obtain the temperature distribution in the bed. It was 

concluded that for non-reacting conditions, in order to obtain accurate values of the 

axial thermal dispersion coefficients, it is necessary to include the radial thermal 

dispersion in spite of the insulation at lateral walls.  

Levec and Carbonell (Levec and Carbonell 1985) investigated the thermal 

response of a rectangular packed bed due to step temperature changes. Water was used 

as fluid. Peclet number range from 10 to 1000 was studied.  The packing was urea 

formaldehyde spheres. A flow distributor was used at the setup to provide uniform 

velocity. Transient experiments were conducted by employing a step temperature 

change in water. Fluid and solid temperatures were measured separately at six axial 

locations as a function of time. Transverse diffusion was neglected and the axial 

effective thermal conductivity values were obtained. Thermal non-equilibrium was 

considered and the macroscopic energy equations for the solid and the fluid phases were 

solved, separately. It was mentioned that there are three factors affecting the axial 

effective thermal conductivity: firstly conduction, secondly hydrodynamic dispersion, 
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and finally the heat exchange between solid and fluid. In their study, some steady 

experiments were conducted to measure the transverse effective thermal conductivity. 

For these measurements non-uniform temperature at the inlet was used by contributing 

different temperatures at the two halves of the packed bed. Eq. (3.9) was used to obtain 

the transverse effective thermal conductivity values with neglecting axial diffusion.  

Elsari and Hughes (Elsari and Hughes 2002) investigated the axial effective 

conductivity for a cylindrical packed bed with different packing materials. Air, nitrogen 

and carbon dioxide were used as fluid in the study. The packing materials were steel 

ball bearings, copper chromite and chromia alumina cylinders, alumina hollow 

cylinders and alumina spheres. Two types of the packed beds were used as a glass bed 

and a thin walled steel bed. The lateral surfaces of the beds were insulated. Heat input 

was given at the outlets of the beds by using an infra-red lamp of 375 W. Eq. (3.9) was 

first considered with using uniform temperatures at the inlet and outlet and with 

neglecting radial conduction. Additionally, in order to calculate the radial heat losses 

Eq. (3.11) was used. It was observed that the axial effective thermal conductivity 

strongly depends on particle size. 
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where hw is the wall heat transfer coefficient, D is the tube diameter and Ti is the 

inlet gas temperature. 

Yagi et al. (Yagi et al. 1960) studied a cylindrical packed bed with insulated 

walls for low Reynolds numbers. Glass and metal spherical particles were used as 

packing materials. The packed bed was heated from the top by an infrared lamp. The 

axial effective thermal conductivity values were obtained by using Eq. (3.9). The radial 

diffusion was neglected. A correlation that related the axial effective thermal 

conductivity with the Peclet number and the dimensionless stagnant thermal 

conductivity was found. 

Vortuba et al. (Vortuba et al.  1972) studied an experimental setup similar to that 

used by Yagi et al. (Yagi et al. 1960) in order to determine the axial effective thermal 

conductivity. Reynolds number range from 0.1 to 1000 was studied for air, oxygen and 

nitrogen. The packing particles were glass, iron, lead, alumina, sand and duracryl 

spheres, ceramic Raschig rings, alumina cylinders and irregular particles. 250 W 
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infrared lamp was used to heat the packed bed from the top. The temperature 

measurements were done at the packed bed axis. Radial measurements were also done, 

but no measurable radial temperature gradient was found. To obtain analytical 

temperature profiles, Eq. (3.9) was used with neglecting radial heat diffusion. A 

correlation for the axial effective thermal conductivity was obtained. 

Vortmeyer and Adam (Vortmeyer and Adam 1984) studied heat transfer in 

cylindrical packed beds filled with spherical particles. The experiments were conducted 

with spherical particles of low thermal conductivity, such as catalyst support material 

Al2O3 or plastic, with glass spheres of moderate thermal conductivity and metal (steel, 

bronze, brass) spheres of high thermal conductivity. Air was used as fluid phase. Radial 

heat losses were included to the analytical solution by using Eq. (3.11). A correlation 

for the axial effective thermal conductivity was derived. Additionally, the experimental 

results of Kunii and Smith (Kunii and Smith 1961) were analyzed to include the effects 

of different gases and another relation was obtained for the axial effective thermal 

conductivity of packed beds with glass spherical packings.  

 

3.3.2.3. Heat Addition Inside Bed 

In this approach, a plane or a point heat source is placed inside the packed bed. 

Time dependent or steady heat sources can be used. Usually rectangular packed beds 

were used. A wire that is placed perpendicular to the fluid flow can be thought as a 

point source or several wires in the same plane can be considered as a plane heat source 

inside the packed bed. Furthermore, a heated spherical particle can be used as a heat 

addition source in the bed. Both the axial and the transverse components of the effective 

thermal conductivity can be determined if the thermocouples distributed throughout the 

packed bed. 

The governing equation, which should be solved to determine the axial and the 

transverse effective thermal conductivities, is given by Eq. (3.12). 
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where keff,zz and keff,yy are the axial and the transverse effective thermal 

conductivities and s is the source strength. The boundary conditions for this equation 
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can be 

- Constant temperature at the inlet,  

- Thermally developed outlet (zero temperature gradient),   

- Insulation at the lateral boundaries.  

- The initial condition can be a uniform reference temperature. 

Metzger et al. (Metzger et al. 2004) investigated transient heat transfer in a 

rectangular packed bed filled with glass spheres. Water flow from the top to the bottom 

in the packed bed with constant inlet temperature and the Peclet numbers below 130 

were considered. The experimental setups are shown in Figure 3.7. Two different 

configurations of the heat sources were analyzed in the study. A single wire near the 

inlet of the packed bed was used as a point heat source (Figure 3.7a) and a plane heat 

source was made by wires placed in the same plane (Figure 3.7b). Thirteen 

thermocouples in the downstream measured the temperature response to a step heat 

input. Ordinary least squares and Gauss-Markov methods were used to estimate 

unknown effective thermal conductivity values in the analytical solution of Eq. (3.12). 

Monte Carlo simulations were done to assess the estimation errors. As a result of these 

simulations, it was claimed that the axial effective thermal conductivity has been 

estimated with higher accuracy whereas the lateral one has lower accuracy. A 

correlation was proposed for the axial effective thermal conductivity.  

Testu et al. (Testu et al. 2005) studied the same experimental setup for the line 

heater shown in Figure 3.7a. Air was used as fluid phase and glass spheres and ceramic 

grains with internal porosity were used as the packing particles. The Peclet number 

range between 10 and 70 were studied. Eq. (3.9) was used to obtain the analytical 

temperature distribution. The medium was approximated as infinite. The ordinary least 

squares method was used to predict the unknown coefficients of the analytical solution 

with using the experimental temperature data. Both the axial and the transverse effective 

thermal conductivities were obtained. Some diagrams were constructed for the axial and 

the transverse effective thermal conductivities of the packed bed filled with spheres for 

various Peclet numbers. It was also claimed that the thermal equilibrium assumption is 

valid even for the fluid and the packing materials of different thermophysical properties. 

Testu et al. (Testu et al. 2007) examined the setup in Figure 3.7a with glass 

spheres. Both air and water were used as fluid. Water flow was examined for Reynolds 

numbers below 18 while air flow was examined for Reynolds numbers between 12 and 

100. The same procedure in the study of Testu et al. (Testu et al. 2005) was followed. It 
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was claimed that the size of the beads has no effect on the dispersion in air. The 

correlations were constructed for the axial and the transverse effective thermal 

conductivity values of water and air flows. Furthermore, another correlation was 

claimed to be valid to predict the axial effective thermal conductivity values for both 

fluids.  

The packing particles that used for the construction of the packed beds of porous 

media in the reviewed studies on the determination of the effective thermal conductivity 

are summarized in Table 3.11. The particles shapes, materials and dimensions of the 

particles are provided in this table for all the explained studies in this section. The 

shapes and dimensions of the packed beds used in the reviewed studies on the 

determination of effective thermal conductivity are summarized in Table 3.12. 

Additionally, the chosen fluids that flow through the packed beds are provided in this 

table. 

 

Table 3.11. The properties of the packing particles used in the experimental studies on 

the determination of the effective thermal conductivity 

 

Study Sphere Cylinder Raschig ring Others 
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Alumina 

3.175 mm 
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K
w

o
n
g
 a

n
d
 

S
m

it
h
 1

9
5
7
 

Steel 

6.35 mm and 3.97 mm 

Alumina 

6.35 mm and 9.525 mm 

- - - 

Y
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Glass 

Metal 
-  

Broken pieces of 

limestone 
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1
9
7
2
 

Glass 0.45, 2.25,  

3.9, 6.5 mm 

Iron 5, 5.15 mm 

Lead 2.25 mm 

Duracryl 1.3 mm 

Alumina 3.4 mm 

Sand 0.25 mm 

Alumina 

d=5.4 mm 

l=4 mm 

Ceramic 

do=l=6.5 mm, 

t=3.5 mm 

Irregular particles 

0.5 mm<d<2 mm 

 

 (Cont. on next page) 
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Table 3.11. (cont.) 
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 Glass  0.275, 0.46, 

1.15, 2.2, 3, 6 mm 

Steel 3.16, 6.32 mm 

Lead 0.8 mm 

- - - 
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Lead 1 mm, 7 mm 

Nickel 6.8 mm 

Steel 6.4 mm 

Glass 0.5 mm, 1.2 

mm, 3 mm, 6 mm 

- - - 
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- 

Pt-
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alumina 

3.7 mm  

(d and l) 

- 
- 
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 Al2O3 5, 6 mm,  

Plastic 6 mm  

Glass 5, 8 mm  

Steel 2<d<10 mm  

Bronze 6 mm  

Brass 6 mm 

- - - 
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Urea Formaldehyde 

2.5, 5.5 mm 
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Glass 

3.7 mm and 7.2 mm 

Porous 

alumina 

d=6.4 mm 

and 

l=5.2 mm 

Porous 

alumina 

do=8.5 mm, 

t=5.4 mm,  

l=8.6 mm 

- 
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te
rt

er
p
 

1
9
9
2
b
 

- 
Same with 

1992a 
- - 

D
ix

o
n
 a

n
d
 

v
an

 D
o
n
g
er

en
 

1
9
9
8
 

Porous ceramic, 

nylon, steel 

3.275 mm <d< 24.95 

mm 

- - - 

 

(Cont. on next page) 
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Table 3.11. (cont.) 

T
h
o
m

eo
 

an
d
 F

re
ir

e 

2
0
0
0
 

Glass 

3.1 mm 
- - - 

D
em

ir
el

 

et
 a

l.
 

2
0
0
0
 Polystyrene 

48 mm, 38 mm, 29 

mm 

- 

Polyvinyl 

chloride 

dp = 38.5 mm, 

32.6 mm 

- 

D
ek

h
ty

ar
 

et
 a

l.
 

2
0
0
2
 

Glass 

0.9, 3.2, 8.9 mm 
- - - 

E
ls

ar
i 

an
d
 H

u
g
h
es

 

2
0
0
2
 Stainless steel 

3.17 mm 

Alumina 

6.4 mm 

Copper 

chromite  

d=3.26 mm 

l=3.62 mm 

Chromia 

alumina 

d=4.07 mm 

l=4.18 mm 

Alumina 

t=6 mm, 

do=l=8 mm 

- 

S
m

ir
n
o
v
 e

t 
al

. 

2
0
0
3
a 

Steel 

16 mm 

Glass 

19 mm 

Ceramic 

10 mm (d 

and l) 

19 mm (d 

and l) 

Ceramic 

14 mm (do and 

l) and t=3.5 mm 

Copper 

14 mm (do and 

l) and t=1 mm 

- 

S
m

ir
n
o
v
 e

t 

al
. 
2
0
0
3
b

 

- - 
- 

 

4-hole and 52-hole 

cylindrical pellets, 

6-spoke wheels, 3-

hole trilobed 

particles 

M
et

zg
er

 

et
 a

l.
 

2
0
0
4
 

Glass 2 mm - - - 

S
m

ir
n
o
v
 e

t 
al

. 

2
0
0
4

 

- 

Ceramic 

d=14 mm 

and l=9 mm 

d=9 mm and 

l=19 mm 

Same with 

2003a 

Same with 

2003a 

Ceramic wheel 

with six holes, 

ceramic 52-hole 

block, ceramic 4-

hole pellet 

W
en

 

an
d
 D

in
g
 

2
0

0
6
 

Glass 

5 mm 
- - - 

 

(Cont. on next page) 
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Table 3.11. (cont.) 

T
es

tu
 e

t 
al

. 

2
0
0
5
, 
2
0
0
7
 

Glass 2 mm - - - 

Note: d, do and dp are particle, outer and equivalent diameters while l and t are the 

length and the thickness, respectively. 

 

Table 3.12. The features of the experimental setups used in the reported studies on the 

determination of the effective thermal conductivity 

 

 Bed shape 

Tube-to-

particle 

diameter ratio 

Employed 

fluid 

Study Cylindrical Rectangular   

B
u
n
n
el

l 

et
 a

l.
 

1
9
4
9
 

Di=50.8 mm 

L=965.2 mm 
- 16 Air 

K
w

o
n
g
 

an
d
 S

m
it

h
 

1
9
5
7
 

Di=50.8, 101.6 mm - Btw 5 and 26 
Air 

Ammonia 

Y
ag

i 

et
 a

l.
 

1
9
6
0
 

Di=50, 68 mm - - Air 

V
o
rt

u
b
a 

et
 a

l.
 

1
9
7
2
 

Di=26 mm - 
Btw 3.85 and 

104 

Air, O2, 

N2 

G
u
n
n
 a

n
d
 

D
e 

S
o
u
za

 

1
9
7

4
 

L=30 and 60 mm - - Air 

G
u
n
n
 a

n
d
 

K
h
al

id
 

1
9
7
5
 

Di=95.25 mm 

L=304.8 mm 
- 

Btw 13.5 and 

190.5 
Air 

 

(Cont. on next page) 
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Table 3.12. (cont.) 

D
ek

h
ty

ar
 e

t 

al
. 
2
0
0
2

 
Di=52 mm 

L=531 mm 
- 

Btw 5.8 and 

58 

Water 

47% aqueous solution of 

glycerin 

E
ls

ar
i 

an
d
 

H
u
g
h
es

 

2
0
0
2
 

Di=25 mm 

L=230 mm 
- 

Btw 3.9 and 

8 
Air, N2, CO2 

S
m

ir
n
o
v
 e

t 
al

. 
2
0
0
3
a,

 

2
0
0
3
b
, 
2
0
0
4

 

Di=84 mm 

L=1130 mm 

(330 mm 

heating, 

150 mm 

calming, 

650 mm cooled 

test sections) 

- 
Btw 4 and 

5.25 
Air 

M
et

zg
er

 

et
 a

l.
 

2
0
0
4
 

- 

L=400 mm 

H=100 mm 

w=200 mm 

- Water 

W
en

 a
n
d
 

D
in

g
 

2
0
0
6
 

Di=41 mm 

L=1100 mm 
- 8.2 Air 

T
es

tu
 e

t 

al
. 
2
0
0
5
, 

2
0
0
7
 

- 

Same with 

Metzger et al. 

2004 

- Air/Water 

Jo
rg

e 
et

 a
l.

 

2
0
1
0
 

Di=60 mm 

L=650 mm 

(250 mm 

calming, 400 

mm heating test 

sections) 

- ~16 Air 

Di is the inner diameter, L is the length, H is the height and w is the width of the tubes 

 

Figure 3.7 shows the ranges of the studied Reynolds numbers by different 

researchers. A wide range of Reynolds numbers was studied. Most of the researchers 

preferred to study on the Reynolds numbers less than 1000. This may be due to the 

possibility of the occurrence of turbulent flow. The solution of the macroscopic 

turbulent energy equation in the voids between the particles is not easy because in 

addition to unknown effective thermal conductivities in different directions, the 

turbulent thermal diffusivity should also be predicted. The suggested correlations for the 
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determination of the effective thermal conductivities are presented in Table 3.13. The 

validity conditions for the correlations are provided in the table as well. 

 

 

 

Figure 3.7. The Reynolds number ranges in the reported experimental studies on the 

determination of the effective thermal conductivity 

 

Table 3.13. The suggested correlations for the determination of the effective thermal 

conductivity 

 

Studies Correlation Constant values and validation conditions 

B
u
n
n
el

l 

et
 a

l.
 

1
9
4
9
 Re061.00.5

,,


f

reff

f

zzeff

k

k

k

k
  

For alumina cylinders 

Y
ag

i 
et

 

al
. 
1
9
6
0

 

Pe
k

k

k

k

f

e

f

zzeff


,

   

δ=0.8 for glass beads 

δ=0.7  for metal spheres 

V
o
rt

u
b
a 

et
 a

l.
 

1
9
7
2

 













PrRe
1

5.14

PrRe 3

,

C
d

kk

dGc

k

p

fe

pp

zzeff
 

G is mass flow rate, 

C3 is experimental parameter 

 

(Cont. on next page) 
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Table 3.13. (cont.) 

E
ls

ar
i 

an
d
 H

u
g
h
es

 1
9
5
7

 
Pe

k

k

f

zzeff
49.824.7

,
  

 

Steel ball bearings 

Pe
k

k

f

zzeff
20.725.4

,
  

 

Copper chromite cylinder 

Pe
k

k

f

zzeff
47.624.3

,
  

 

Chromia alumina cylinder 

Pe
k

k

f

zzeff
21.368.9

,
  

 

Alumina hollow cylinder 

Pe
k

k

f

zzeff
12.363.8

,
  

 

Alumina spheres 

V
o
rt

m
ey

er
 a

n
d
 

A
d
am

 1
9
8
4

 

p

p

f

e

f

zzeff

dh

dg

k

k

k

k

Re/1

Re/,






    

g=1420, 1060, 600 s/m and h=70, 96, 110 

s/m for metal, glass, and catalyst, 

respectively. 

  is kinematic viscosity 

 
p

p

f

e

f

zzeff

dp

dk

k

k

k

k

Re/1

Pr/Re,






  

For glass spheres and any gases. 

k and p are experimental parameters found 

for CO2, air and He. 

B
o
rk

in
k
 a

n
d
 W

es
te

rt
er

p
 

1
9
9
2
a 

B

Pe

k

k

k

k

f

e

f

reff


,

 

ke/kf= 4.7 and B=8.8 for 3.7-mm-diameter 

spheres and N=13.5 

ke/kf=6.2 and B=10.9 for 7.2-mm-diameter 

spheres and 7<N<14 

ke/kf=4 and B=7.6 for cylinders and 

8<N<17 

ke/kf=4.5 and B=4.2 for Raschig rings and 

8≤N≤16 

N is number of particles on a diameter 

D
em

ir
el

 e
t 

al
. 

2
0
0
0
 Re068.0894.2

,


f

reff

k

k

 

 

For polyvinyl chloride Raschig rings 

Re0481.0432.10
,


f

reff

k

k
 

 

For polystyrene spheres 

B
ey

 a
n
d
 

E
ig

en
b
er

g
er

 

2
0
0
1

  
rf

e

f

reff

K

Pe

k

k

k

k


,
 

Kr is empirical constant and its values were 

given in graphics 

D
ek

h
ty

ar
 e

t 

al
. 
2
0
0
2

 PrRe083.0
,


f

reff

k

k
 

For glass spheres 

 

(Cont. on next page) 
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Table 3.13. (cont.) 

S
m

ir
n
o
v
 e

t 
al

. 
2
0
0
3
a 

 

 

PrRe
,

 K
k

k

k

k

f

e

f

reff

 

K=0.089 for steel spheres 

K=0.091 for glass spheres 

K=0.146 for 10-mm-diameter ceramic 

cylinders 

K=0.14 for 19-mm-diameter ceramic 

cylinders 

K=0.16 for 3.5-mm-diameter ceramic 

Raschig rings  

K=0.21 for 1-mm-diameter copper 

Raschig rings 

S
m

ir
n
o
v
 e

t 
al

. 
2
0
0
4

 Same correlation with Smirnov et 

al. 2003a 

K=0.14 for ceramic cylinder of D. 14 

mm and L. 9 mm 

K=0.16 for ceramic cylinder of D. 9 mm 

and L. 19 mm 

K=0.17 for ceramic wheel w. thickness 2 

mm 

K=0.23 for ceramic wheel w. thickness 1 

mm 

M
et

zg
er

 e
t 

al
. 

2
0
0
4
  59.1,

073.0 Pe
k

k

k

k

f

e

f

zzeff
  

For water and glass spheres 

ek 0.86 W/mK  

Jo
rg

e 
et

 a
l.

 2
0
1
0

 

 PrRe16.0
,


f

e

f

reff

k

k

k

k
 

For nickel supported on alumina 

cylinders  

Where  

n

f

s

f

e

k

k

k

k














  

)/log(057.0log757.028.0 fs kkn    

(Krupiczka 1967) 

T
es

tu
 e

t 
al

. 
2
0
0
7

 

 59.1,
Re61.1

f

e

f

zzeff

k

k

k

k
 

 

Water, 0<Re<18 

 

45.1,
126.0 Pe

k

k

k

k

f

e

f

zzeff
  

 

Air, 12<Re<100 

 








 




32.6

)02.7(Pr543.0)7.0(Pr87.8

Re)1(1 5.1,


e

f

e

zzeff

k

k

k

k

 

 

 

Both water and air 

 Pe
k

k

f

yyeff
113.04.6

,
                              

 

Air, 12<Re<130 

Pe
k

k

k

k

f

e

f

yyeff
04.0

,
            

 

Water, 0.5<Re<18 
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In Figure 3.8, the comparison of the change of radial (or transverse) effective 

thermal conductivity ratios, found by using the proposed correlations in Table 3.13, 

with Reynolds number is shown. The radial effective thermal conductivity ratios are 

calculated for air. The variation of the radial effective thermal conductivity with 

Reynolds number for sphere, cylinder and Raschig ring particle beds with Reynolds 

number are shown in Figure 3.8a, 3.8b and 3.8c, respectively. The range of the 

experimented Reynolds numbers is considered in this diagram and the results are not 

extended out of the reported range. Figure 3.8a shows the variation of the radial 

effective thermal conductivity ratio with Reynolds number for the beds with the 

spherical particles. The experimental results of the beds with the spherical particles have 

good agreement with each other. As can be seen from the figure, the obtained 

experimental results for low Reynolds numbers (i.e. Re < 400) have excellent 

agreement. However by the increase of Reynolds number, the consistency between the 

results decreases. This might be due to the occurrence of turbulent flow and the 

increasing effects of the surface roughness of the particles as well as the particle 

arrangement in the packed bed. Figure 3.8b shows the change of the radial effective 

thermal conductivity ratio for the cylindrical particle beds. Four correlations on the 

cylindrical particle beds could be found in the literature. A good consistency between 

the correlations can be observed. Finally, Figure 3.8c illustrates the change of ker/kf with 

Re for Raschig ring particles. The correlations of different studies do not align with 

each other. This difference between the results of the correlations might be due to the 

different shapes of the experimented Raschig rings and the different bed porosities 

because of the different thicknesses of Raschig rings. For instance, Bey and Eigenberger 

(Bey and Eigenberger 2001) performed experiments with thick Raschig rings (do=5, 

di=2.2, and L = 5 mm). However, Sminov et al. (Smirnov et al. 2003a) used relatively 

thin Raschig rings (do=14, di=13, and L = 14 mm). The comparison between the axial 

effective thermal conductivity correlations cannot be made because of the diversity of 

the employed packing particles and fluids. 
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(a) 

 
(b) 

 
(c) 

 

Figure 3.8. The comparison of reported correlations for determination of radial effective 

thermal conductivity ratios for a) spherical b) cylindrical c) Raschig ring 

particles 
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CHAPTER 4 

 

CONSIDERED DOMAIN, GOVERNING EQUATIONS 

AND BOUNDARY CONDITIONS  

 

In this chapter, the considered porous media for the determination of the effects 

of pore to throat size ratio on the macroscopic transport parameters are presented. The 

governing equations used in the numerical simulations and the employed boundary 

conditions are explained in detail. The full forms of the governing equations for fluid 

flow and heat transfer are previously presented in Chapter 2. In this chapter, the 

equations employed to obtain microscopic velocity, pressure and temperature 

distributions in the present study are given. Additionally, the boundary conditions 

required for the solution of the microscopic equations are presented.  

 

4.1. Considered Domain 

 

The considered porous medium and the representative elementary volume 

(REV) that used as computational domain are shown in Figure 4.1. The square or 

rectangular rods are assumed very long in z-direction; hence, two-dimensional model 

can be used. 

 

 
 

Figure 4.1. Schematic view of the considered porous medium and the REV. 
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The considered porous media are infinite media consisting rectangular rods. A 

periodic REV with the dimensions HxH (10x10 mm
2
) is considered to investigate the 

throat effect. 10x10 mm
2
 is chosen because of the dimensional analysis applied in the 

numerical study and it does not change the obtained results if the dimension HxH is 

chosen different with considering the units of other parameters accordingly (see Table 

4.1). The dimension of the REV is held constant for all cases. The square or rectangular 

particles are placed with in-line arrangement. The particles are rectangular with 

dimensions Dx and Dy. The pore to throat size ratio is defined as β = H / (H-Dy) and its 

value is changed between 1.63 and 7.46. Some sample REVs showing the change of 

particle shapes and pore to throat size ratio for the same porosity are shown in Figure 

4.2.  

 

 

 

Figure 4.2. REVs with pore to throat size ratios of 1.63, 3.04 and 7.46 for ε = 0.7. 

 

The fluid flowing through the medium is assumed to be Newtonian and 

incompressible with constant properties. The properties of the fluid are given in Table 

4.1. The geometrical properties of the considered REVs are given in Table 4.2. For all 

studied REVs in the present study, the porosity range of 0.7 to 0.9 is considered. The 

investigated flows remained in the laminar regime and the macroscopic flow is 

unidirectional. The REV is taken from an infinite region so the flow is fully-developed 

and periodical.  

 

Table 4.1. The properties of fluid (air) used in numerical computations 

 

ρf (kg/m
3
) 1.205 

μf (kg/m
.
s) 1.821

.
10

-5 

kf (W/m
.
K) 0.0258 

cp,f (J/kg
.
K) 1006.43 
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Table 4.2. Geometric properties of investigated REVs 

 

 β=1.63 β=2.21 β=3.04 β=4.44 β=7.46 

ε = 0.7 

A* 0.5 1 1.5 2 2.5 

Dx/H 0.776 0.547 0.446 0.388 0.346 

Dy/H 0.388 0.547 0.670 0.776 0.866 

dh/H 1.207 1.276 1.250 1.207 1.155 

dp/H 0.776 0.820 0.804 0.776 0.742 

ε = 0.75 

A* 0.6 1.2 1.8 2.4 3 

Dx/H 0.646 0.456 0.372 0.323 0.289 

Dy/H 0.388 0.547 0.670 0.776 0.866 

dh/H 1.454 1.492 1.434 1.368 1.300 

dp/H 0.727 0.746 0.717 0.684 0.650 

ε = 0.8 

A* 0.75 1.5 2.25 3 3.75 

Dx/H 0.518 0.365 0.297 0.259 0.231 

Dy/H 0.388 0.547 0.670 0.776 0.866 

dh/H 1.775 1.751 1.645 1.553 1.459 

dp/H 0.665 0.657 0.617 0.582 0.547 

ε = 0.9 

A* 1.5 3 4.5 6 7.5 

Dx/H 0.260 0.182 0.149 0.129 0.115 

Dy/H 0.388 0.547 0.670 0.776 0.866 

dh/H 2.802 2.458 2.193 1.991 1.827 

dp/H 0.467 0.410 0.366 0.332 0.305 

 

 

4.2. Governing Equations and Boundary Conditions for Determination 

of Permeability and Kozeny Constant 

  

For the determination of permeability, the fluid flow through the REV is 

analyzed by using microscopic continuity and momentum equations. Steady flow is 

assumed. Also, computations are done with governing equations in 2-D with the 

assumption of very long rods (in z-direction). Hence, the microscopic governing 

equations that are solved to determine the microscopic velocity and pressure 

distributions in the REVs are given as follows. For the determination of permeability 

and Kozeny constant, the flows in the Darcy region (low Reynolds number flows) are 

considered. 
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0










y

v

x

u
 (4.1) 
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
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
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y
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x

p

y
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x

u
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






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

























2

2

2

2

y

v

x

v

y

p

y

v
v

x

v
u ff   (4.3) 

 

For the solution of Eqs. (4.1), (4.2) and (4.3) the boundary conditions for 

velocities at the boundaries of REVs and at the fluid-solid interfaces are required. In 

order to obtain the periodical conditions an iterative procedure, which is explained in 

detail in Chapter 5, is applied to solve these governing equations. At the final step of the 

iterative procedure, a velocity profile f(y) which fulfils the requirement of periodicity of 

the flow is provided for the u-velocity at the fluid inlet boundary and v velocity is 

chosen as zero at the same boundary. At the solid-fluid interfaces no-slip boundary 

condition is applied. The velocity gradient at the fluid outlet boundary is assumed zero, 

hence no diffusion transport exists. Mathematically, the defined boundary conditions 

can be presented as follows.  

 

On the fluid-solid 

interfaces and on the walls: 
0 vu  (4.4) 

For the top and the bottom 

boundaries: 
0










y

v

y

u
 (4.5) 

For the inlet boundary: 0),(  vyfu  (4.6) 

For the outlet boundary: 0









y

u

x

u
 (4.7) 

For the studied Reynolds numbers, the Darcy’s Law (Eq. (2.10)) is valid and it 

can be made dimensionless by rearranging the parameters in the following way: 

 

 

dx

pd

u

H

K

H
f

Re
2

2


  (4.8) 
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where ff uH  /Re  . Eq. (4.8) is the dimensionless form of Darcy’s Law 

and the term at the right hand side is called as the dimensionless macroscopic pressure 

drop through the porous medium while H
2
/K is the inverse of dimensionless 

permeability. As can be seen from Eq. (4.8) there is a linear relationship between the 

dimensionless pressure drop and inverse of dimensionless permeability. This relation is 

only accurate in the Darcian region (Re < 1), although it is observed that the 

applicability of this equation can be expanded to Re < 10 with considerable accuracy. 

Since the permeability only depends on the porous structure and independent of the 

fluid and flow properties, its value for a REV should be a constant independent of 

Reynolds number. However, for high Re, the inertia effects become important and the 

Forchheimer term contributes to the dimensionless pressure drop. Hence, the obtained 

permeability value for the high Re becomes the apparent permeability if Darcy’s Law is 

used without considering the Forchheimer term. On the other hand, the value of 

dimensionless pressure drop should be identical for all values of Re below 10 while 

some differences can be observed while approaching Re = 10.   

It should be also underlined that the non-dimensional form of Darcy’s law is 

constructed with the representative elementary volume dimension, H. Since Darcy’s law 

is a macroscopic flow equation, the usage of the macroscopic dimension, H, for the non-

dimensionalisation is appropriate and it is also provide convenience for the comparison 

of the permeabilities of the considered REVs.  

The volume averaged values in the dimensionless form of Darcy’s law may be 

obtained by applying the volume averaging on the microscopic velocity and pressure 

values. 

 

 
V

udVu  (4.9) 

 


fV

f
pdVp  (4.10) 

 

Macroscopic velocity and pressure values found by using volume averaging 

integrations can be substituted into Eq. (4.8) and the permeability value can be 

computed by plotting the dimensionless pressure drop versus inverse of permeability for 

the considered REV.  
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In order to find Kozeny constant, Kozeny-Carman equation is employed with 

the computed permeability values. The pore hydraulic diameters of the REVs are 

computed with using Eq. (2.15).   

As mentioned before, Reynolds number is defined as follows for the 

computations.  

 

 



Hu
Re  (4.11) 

 

As can be seen from Eq. (4.11), Reynolds number is based on REV dimension. 

Some of the reasons for this selection are mentioned in the previous text. Since the 

macroscopic transport parameters are found in this study and the dimension of the REV 

is held constant, it is both useful and necessary to use H as the characteristic length in 

Reynolds number definition. For the microscopic investigations, pore hydraulic 

diameter can be used; however, it is not chosen in this study. Additionally, the 

definition given in Eq. (2.22) can be used; but it is not suitable for the analysis 

explained in the present study. The selection of H for the characteristic length is also 

seen in many reported studies (Nakayama et al. 2002, Alshare et al. 2010, Lopez Penha 

et al. 2012). 

 

4.3. Governing Equations and Boundary Conditions for Determination  

of Interfacial Convective Heat Transfer Coefficient 

 

For the determination of the interfacial convective heat transfer coefficient, in 

addition to the motion equations, the microscopic form of energy equation of fluid is 

solved with the assumption of steady state. The governing equations are solved for 1 ≤ 

Re ≤ 100 for these computations. Macroscopically, local thermal non-equilibrium 

between solid and fluid phases is assumed. A uniform and constant temperature 

distribution is assumed in the solid phase and the energy equation for the solid phase is 

not taken into account.  
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For the solution of Eq. (4.12), temperature boundary conditions at the 

boundaries of REVs and at the interfaces of solid and fluid phases are required. 

Considering the REV in Figure 4.1, the boundary conditions for the microscopic energy 

equation for fluid phase are chosen as symmetry for the top and the bottom of the REV. 

Periodic temperature profiles are generated for the inlet and outlet boundaries. The 

temperature gradient at the fluid outlet boundary is assumed zero, hence no diffusion 

transport exists. At the interface of the solid and fluid phases, the equality of 

temperature is assumed. The employed boundary conditions mathematically can be 

written as follows:  

 

In the solid phase: sT  = constant (4.13) 

On the fluid-solid 

interfaces: sTT   (4.14) 

For the top and the bottom 

boundaries: 
0





y

T
 (4.15) 

For the inlet boundary: )(ygT   (4.16) 

For the outlet boundary: 0




x

T
 (4.17) 

 

The function g(y) is the temperature profile which provides thermal periodicity 

of the REV. To obtain this function, another iterative procedure, which is explained in 

Chapter 5, is applied. By applying these boundary conditions and solving the 

microscopic energy equation for the REV with periodic boundaries, the microscopic 

temperature distribution in the fluid phase is obtained. Then, Eq. (2.48) can be used to 

compute the value of the interfacial convective heat transfer coefficient of the 

considered REV.  

As can be seen from Eq. (2.48), macroscopic temperatures of both phases are 

required to compute the interfacial convective heat transfer coefficient. The 

macroscopic temperature of the solid phase equals to the chosen reference temperature 
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and the macroscopic temperature of the fluid phase can be calculated by using intrinsic 

volume averaging on the microscopic temperature. 

 

 
ref

s
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The interfacial Nusselt number can be defined as follows: 

 

 

f

sf

k

Hh
Nu   (4.20) 

 

Although different characteristic lengths such as hydraulic diameter and particle 

height may be employed to define Nusselt number for the studied porous structure, the 

dimension of the REV is selected. The same characteristic length is also selected in 

many reported studies (Nakayama et al. 2002, Alshare et al. 2010, Lopez Penha et al. 

2012). Furthermore, a local interfacial heat transfer coefficient is defined based on the 

macroscopic temperature differences between the solid and fluid phases in order to 

explain the change of the convective heat transfer with Re, ε and β. 
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where T  is the local temperature gradient through the solid–fluid interface. 

Hence, the local interfacial Nusselt number (relates to the interfacial Nusselt number at 

any point of the solid–fluid interface), NuL, is defined as: 

 

 

f

L
L

k

Hh
Nu   (4.22) 

 

The interfacial Nusselt number can be calculated directly from Eqs. (2.48) and 

(4.20), or by the determination of the area based average of the local interfacial Nusselt 

number calculated by using Eq. 4.22. 
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4.4. Governing Equations and Boundary Conditions for Determination 

of Thermal Dispersion Coefficients 

 

For the determination of thermal dispersion coefficients in the longitudinal and 

transverse directions, microscopic energy equations for both phases are considered in 

addition to fluid motion equations with steady state assumption. These computations are 

done for the range of Re from 1 to 100. 
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For the solution of these equations in order to obtain the microscopic 

temperature distribution throughout the REVs, boundary conditions at both solid and 

fluid boundaries of the REVs and at the interfaces of fluid and solid phases are required. 

At the solid-fluid interfaces, the equalities of temperature and heat flux are set. At the 

fluid outlet boundary change of temperature gradient is set to zero, which means no 

diffusive transport at this boundary. The aforementioned boundary conditions are 

common for the computations of both the longitudinal and transverse dispersion 

coefficients. However, boundary conditions for other boundaries are chosen different as 

to create macroscopic temperature gradient along the desired direction. For the 

computation of the longitudinal thermal dispersion coefficient, zero change of the 

temperature gradients in the y direction are chosen as boundary conditions for top and 

bottom boundaries. The temperature values at the solid boundaries at the inlet and outlet 

of the REV are set constants as Tref and Tref+ΔT, respectively. Here, Tref is a chosen 

reference temperature and ΔT is the imposed macroscopic temperature difference value. 

Hence, a macroscopic temperature difference between inlet and outlet solid boundaries 

(along the longitudinal direction) is imposed by using this boundary condition. For the 

fluid inlet boundary, a temperature profile g(y), which is obtained by using an iterative 

procedure (see Chapter 5), is chosen as the temperature boundary condition. g(y) profile 

fulfils the temperature periodicity of the REV and additionally helps to create the 

macroscopic linear temperature gradient of ΔT between the inlet and outlet boundaries 
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of the REV. Different boundary conditions are set for the computation of the transverse 

thermal dispersion coefficient because of the desired temperature difference in the 

transverse direction. Constant temperature values are provided to the top and bottom 

boundaries by using Tref and ΔT. Hence, the macroscopic temperature gradient in the 

transverse direction is created. For the solid boundaries at the inlet and outlet of the 

REV, a linear temperature profile h(y) is set to provide the linear change along 

transverse direction. For the fluid inlet boundary, the same temperature profile h(y) is 

chosen as temperature boundary condition. Mathematically, the defined boundary 

conditions can be presented as given in Table 4.3. 

 

Table 4.3. The boundary conditions for the determination of thermal dispersion 

coefficients 

 

At the solid-

fluid 

interfaces: 
sf TT  ,    ssfsfffs TknTkn 


 (4.25) 

At the fluid 

outlet 

boundary: 

0




x

T
 (4.26) 

 

For the computation of 

longitudinal thermal 

dispersion coefficient 

For the computation of 

transverse thermal 

dispersion coefficient 

 

At the top and 

bottom 

boundaries: 

0




y

T
 

refTHyT  )2/(  

TTHyT ref  )2/(  
(4.27) 

At the solid 

boundaries of 

inlet and outlet 

: 

refTxT  )0(  

TTHxT ref  )(  

)()0( yhxT   

)()( yhHxT   
(4.28) 

At the fluid 

inlet boundary: 
)(ygT   )(yhT   (4.29) 

 

By using aforementioned boundary conditions and solving microscopic energy 

equations, the microscopic temperature distributions in the solid and fluid phases are 

obtained. For the computation of longitudinal and transverse thermal dispersion 

coefficients, Eqs. (4.30) and (4.31), which come directly from the equality given by Eq. 

(2.54), can be used. 
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where subscripts xx and yy show the longitudinal and transverse directions. The 

volume averaged value of the multiplication of temperature and velocity fluctuations 

can be found by using Eqs. (4.32) and (4.33). 
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CHAPTER 5 

 

SOLUTION TECHNIQUE AND COMPUTATIONAL 

DETAILS 

 

 

In this chapter, the numerical solution procedure employed for solution of the 

governing equations is explained in detail. Iterative procedures are employed to obtain 

the hydraulically and thermally periodical boundary conditions for the considered 

REVs. The details of iterative procedures, computational method and employed 

parameters are presented in this chapter. The performed grid independency checks for 

the numerical computation of the macroscopic transport parameters are also presented.  

 

5.1. Numerical Procedure  

 

In this section the iterative procedures employed to obtain periodical heat and 

fluid flow are explained in details. Different iterative procedures are applied to 

determine flow and temperature boundaries. It should be mentioned that the iterative 

procedure to obtain thermally periodical boundaries for determination of interfacial 

convective heat transfer coefficient is different than that for thermal dispersion.  

 

5.1.1. Iterative Procedure for Obtaining Periodical Fluid Flow 

Boundaries 

 

The boundary conditions for the motion equations, presented in Section 4.2, are 

the periodical boundary conditions which are found by using an iterative procedure. 

Hence, the function f(y) (see Eq. (4.6)) chosen for the fluid inlet boundary provides 

hydraulic periodicity for the inlet and outlet boundaries of the considered REV. The 

iterative procedure is employed in the following way.  
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 At the beginning of the iterative procedure, a fully developed velocity 

profile is defined for the fluid inlet boundary.  

 After solving the governing equations and obtaining the microscopic 

velocity and pressure distributions in the REV, the outlet velocity profile 

is substituted to the inlet boundary.  

 This iterative procedure continues until the same velocity distribution at 

the inlet and outlet boundaries are obtained.  

 Additionally, the value of permeability is calculated at each iteration step 

and iterative procedure also continues until negligible change of the 

value of permeability is observed between the successive steps.  

 

The obtained inlet and outlet velocity distributions for the REV with pore to 

throat size ratio of 1.63, porosity of 0.7 and the flow with Reynolds number of 100 is 

shown in Figure 5.1 as an example. The obtained velocity profiles are shown in the 

upper left corner and they seem similar at the first look. However, the detail of the 

velocity profiles (larger graph) indicates that the inlet and outlet velocity profiles differ 

from each other for the first two steps of this computation. Then, the velocity profile at 

the fluid outlet boundary of the third run becomes similar to the inlet profile.  

 

 

 

Figure 5.1. The change of velocity profiles at the inlet and outlet through the iterative 

procedure to obtain periodic velocity distribution in the studied REV (β = 1.63, ε = 0.7 

and Re =100). 

 

Additionally, the relative difference of the permeability values obtained for the 

successive iterations become acceptable. Since the value of permeability should not be 
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changed if the hydraulic periodicity for the flow field is achieved. Eventually, the 

periodicity of the flow boundaries is assumed to be valid. After these boundary 

conditions are reached, the computations of the permeability and Kozeny constant for 

the considered REV are completed as the explained way in Section 4.2. 

 

5.1.2. Iterative Procedure for Obtaining Periodical Thermal 

Boundaries for Determination of Interfacial Convective Heat 

Transfer Coefficient 

 

The governing equations and the boundary conditions to obtain the microscopic 

temperature distribution in order to determine the interfacial convective heat transfer 

coefficient are presented in the previous chapter. To compute the interfacial convective 

heat transfer coefficient of the considered REV, periodical temperature boundaries 

should be exist at the inlet and outlet boundaries of the REV since it is taken from 

infinite periodical porous medium. Hence, the boundary conditions given in Section 4.3 

are the periodical boundary conditions. The function g(y) (see Eq. (4.16)), which is 

imposed at the inlet fluid boundary, is the temperature profile which provides thermal 

periodicity of the inlet and outlet boundaries of the REV. This function is found by the 

following method.  

 At the beginning of this iterative procedure, a uniform temperature which 

is different from the solid temperature is defined for the fluid inlet 

boundary  

 The temperature field for the entire fluid domain is obtained by solving 

the energy equation for fluid.  

 The temperature profile at the inlet for the subsequent computation is 

determined from the dimensionless temperature profile at the outlet 

boundary of the recent iteration.  

 The iterative process continues until no change in the dimensionless 

temperature distribution between the inlet and outlet and no variation of 

the interfacial Nusselt number are observed since if a thermally fully-

developed convection heat transfer is valid, no change of the 

dimensionless temperature and interfacial convective heat transfer should 
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be observed in the sequential REVs through the flow direction in the 

porous medium. 

The dimensionless temperature is defined by Eq. (5.1).  
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where Ts and Tb are the solid and bulk temperatures, respectively. Tb is defined 

as follows. 
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The applicability of this periodic condition for the determination of the 

interfacial convective heat transfer coefficient is checked by considering the forced 

convection in a channel with walls at constant temperature. A short channel segment 

with height of H and length of 2H in an infinitely long channel is considered to validate 

the applicability of outletinlet    as a fully-developed and periodical temperature 

boundary condition. Iterative procedures are applied to obtain the fully-developed flow 

and temperature distributions. Nusselt number is computed for various Reynolds 

numbers. As a result of this procedure Figure 5.2 is obtained for the variation of Nusselt 

number. Additionally, the results of Kuwahara et al. (Kuwahara et al. 2001), Gamrat et 

al. (Gamrat et al. 2008) and Shah and London (Shah and London 1978) for the channel 

flow Nu are shown in the figure. As can be seen from the figure, There are some 

differences between the present results and the results of Kuwahara et al. and Gamrat et 

al. for 1 ≤ Re ≤ 10, but the difference is not exceed 2% for any of the considered 

Reynolds numbers. The results are well agreed with the results of Shah and London. It 

is also seen that Nusselt number approaches its fully developed value, 7.54, as Re 

increases, which is an expected situation and validates the computation procedure. 
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Figure 5.2. The variation of Nu with Re for channel flow 

 

Similar to the channel segment, the periodicity of the temperature boundaries for 

the considered REV is succeeded by applying an iterative process. The change of the 

dimensionless temperature profiles at the inlet and outlet of the REV through the 

iterative procedure for obtaining a periodical temperature field is shown in Figure 5.3 

for the REV with pore to throat size ratio of 1.63, porosity of 0.7 and the flow with Re = 

100 as an example. At the beginning of the iterative procedure, a uniform temperature 

profile for the inlet of the REV (i.e., the inlet of 1st run) is assigned to the program. 

Then, the dimensionless temperature profile at the outlet of the REV is calculated based 

on the computed outlet temperature profile. The inlet temperature profile is calculated 

from the dimensionless outlet temperature profile according to the equality of inlet and 

outlet dimensionless temperature profiles and the computation is repeated with the new 

inlet temperature profile. The iterative procedure is terminated when the dimensionless 

temperature profiles at the inlet and outlet of the REV become identical and the change 

of the interfacial Nusselt number becomes negligible (e.g. the inlet and outlet 

temperature profile of the 5th run). 
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Figure 5.3. The change of dimensionless temperature (θ) profiles at the inlet and outlet 

through the iterative procedure to obtain periodic temperature distribution in the studied 

REV (β = 1.63, ε = 0.7 and Re =100). 

 

5.1.3. Iterative Procedure for Obtaining Periodical Thermal 

Boundaries for Determination of Thermal Dispersion 

Coefficients  

 

The boundary conditions used for the determination of the thermal dispersion 

coefficients are different from the boundary conditions used for the determination of 

interfacial heat transfer coefficient. The solid particles are assumed to have constant 

temperature for the computation of the interfacial heat transfer coefficient and 

additionally, the periodicity condition mentioned in Section 5.1.2 is used directly to 

provide inlet temperature profiles in the iterative procedure. On the other hand, the 

temperature of the solid particles are not constant in the computation of thermal 

dispersion and the energy equation for solid phase is solved along with the energy 

equation of fluid with the proper boundary conditions to obtain the temperature 

distribution in the REVs. Again, an iterative procedure is applied to obtain the final 

temperature distribution for the computation of the thermal dispersion coefficients. 

Similarly, the periodicity of the temperature boundaries is provided for both the 

longitudinal and transverse thermal dispersion; however, different iterative methods and 

periodicity conditions are applied. 

For the determination of longitudinal thermal dispersion coefficient the 

following iterative method is used to provide periodic boundary condition to the REVs 

and determine g(y) function (see Eq. (4.29)). For the calculation of the longitudinal 
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thermal dispersion, as it was mentioned in the previous chapter, the temperature values 

at the solid boundaries of the inlet and outlet of the REV are set as Tref and Tref + ΔT, 

respectively. In order to provide the same ΔT for the fluid inlet and outlet boundaries, 

the iterative procedure is performed in the following way.  

 A uniform fluid temperature for the inlet boundary is selected and the 

temperature profile at the outlet boundary is obtained.  

 The macroscopic temperature difference (ΔT) is subtracted from the 

obtained outlet fluid temperature profile and then used as the inlet 

boundary condition.  

 The procedure continues until the following condition is satisfied: 

 

 TyTyHT  ),0(),(  (5.3) 

 

The last temperature profile which satisfies Eq. (5.3) is shown by g(y). The 

temperature profile of g(y) fulfils the microscopic temperature periodicity of the REV 

and additionally helps to create a macroscopic linear temperature gradient through the 

flow direction/between the inlet and outlet boundaries.  

For the calculation of the transverse thermal dispersion the macroscopic 

temperature gradient is desired to be in the transverse direction. That is why; constant 

and uniform temperatures are applied to the bottom and top boundaries (including 

symmetry and solid boundaries) as Tref and Tref+ΔT, respectively. A linear temperature 

profile h(y) (see Eq. (4.29)), which is a 1st order function of y-direction that changes 

from Tref to Tref+ΔT, is provided to the entire inlet boundary including both solid and 

fluid boundaries. The same temperature profile is also set to the outlet solid boundary. 

Hence, the macroscopically linear temperature gradient is generated along the 

transverse direction. The periodicity of the temperature distributions in the REVs are 

created automatically by using the aforementioned boundary conditions. After 

completing the iterative procedures for the computation of the longitudinal and 

transverse thermal dispersion coefficients, the equality of the dimensionless 

temperatures, which are calculated by Eq. (5.1), of the inlet and outlet fluid boundaries 

are achieved as a natural result.  
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5.2. Computational Details 

 

The microscopic fluid flow and energy equations are solved for the considered 

REVs, computationally. The grid size is chosen as 500x250 for the half of the REV 

which is employed as the computational domain. A commercial code based on the finite 

volume method is used to solve the governing equations (ANSYS/Fluent 12). The 

power law scheme is employed for the discretization of the convection terms in the 

momentum and energy equations. SIMPLE (Semi-Implicit Method for Pressure Linked 

Equations) method is used for handling the pressure-velocity coupling. The residual 

convergence criteria are set to 10
-9

 for flow equations and 10
-12 

for temperature. For 

velocity and temperature boundary conditions used in the iterative procedure, UDFs are 

provided to the computational program. A computer with Intel Core Duo processor 

(2.13 GHz, 1066 MHz, 3MB) and 4 GB RAM is used for the numerical computations. 

A typical computation time with flow equations is approximately 15 hours considering 

the iterative procedure. The solution of the energy equations considering iterative 

procedures had taken much less computational time (about 2.5 hours). 

 

5.3. Grid Independency Tests 

 

Grid independency tests are applied to select the best grid size for the accurate 

computation of permeability, interfacial convective heat transfer and thermal dispersion 

coefficients. Firstly, the computation of flow equations is made with different grid sizes 

that are changed from 50x25 to 1000x500. The change of dimensionless pressure drop 

with grid size is shown in Figure 5.4 for the REV with square rods (ε = 0.75) and the 

flow with Re = 100. The dimensionless pressure drop values (Eq. 4.8) are computed 

after the periodicity of the flow field is achieved for all the considered grid sizes. This 

REV is used for the comparison of the present results with the results in the literature 

studies. Hence, the accurate computation of the flow field is important. As can be seen 

from the figure, the dimensionless pressure drop becomes constant for grid sizes larger 

than 250x500. Actually, for low Reynolds number flows, lower grid sizes are capable of 

capturing the accurate dimensionless pressure drop values, which is directly related with 

permeability. However, the computations of the interfacial convective heat transfer and 
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thermal dispersion coefficients are made for high Reynolds numbers as well as lower 

ones. Hence, 250x500 grid size is chosen for the computations. 

 

 

 

Figure 5.4. The effect of number of grid on the obtained dimensionless pressure drop 

values for the REV with square rods (ε = 0.75 and Re = 100). 

 

The grid independency study is also done for the computation of the interfacial 

heat transfer coefficient. Two extreme cases with β = 1.63 and β = 7.46 when ε = 0.9 

and Re = 100 are considered and the results are displayed in Figure 5.5. As can be seen, 

the employed grid number is sufficient to discretize the computational domain to 

achieve an accurate value for the interfacial Nusselt number. Hence, it is concluded that 

the grid size is sufficient to solve the flow and energy equations. 

 

 

 

Figure 5.5 The effect of number of grid on the obtained interfacial Nusselt numbers for 

the REVs with β = 1.63 and  7.46 (ε = 0.9) and the flow with Re = 100. 
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CHAPTER 6 

 

EXPERIMENTAL STUDY, MATERIALS AND METHOD 

 

In this chapter, the experimental setup used for the validation of permeability 

and thermal dispersion coefficients is explained in details. The experimental conditions, 

the materials and the procedure of the experiments are presented with tables and 

pictures. In the first section, the experimental setup is introduced and explained. In the 

second section, the preparation of the experiments is presented and finally, the 

experimental procedure is reported. 

 

6.1. Experimental Setup and Its Components 

 

In this section, the experimental setup and its components are explained in 

detail. The size of the components and setup, and the features of measurement devices 

are presented. The setup and devices used in the setup are shown by pictures.  

The schematic of the experimental setup is shown in Figure 6.1 and the setup 

picture is presented in Figure 6.2. As can be seen from both pictures, the experimental 

setup mainly consists of a fan, a long clear channel section to provide the fully-

developed velocity distribution, a porous channel constructed with long square rods, 

plate type heaters at the top and bottom surfaces of the test section of the porous 

channel and measurement and control devices. The detailed information on the 

components of the experimental setup is given in the following sections.  

 

6.1.1. Components of Experimental Setup 

 

The experimental setup consists of a fan, a preheater and a long rectangular 

channel system which consists of clear entrance and porous channels. These 

components of the experimental setup are explained in the following paragraphs 

separately.  
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Figure 6.1. The schematic of the experimental setup. 

 

 

(a) 

 

(b) 

 

Figure 6.2. The complete views of the experimental setup (a) the side view, (b) the 

porous channel outlet view 
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Fan: The air flow was provided with a a fan which has nominal flow rate of 600 

m
3
/h and pressure drop of 1.5 kPa. A frequency converter is used to change the mass 

flow rate, so the experiments could be done for different mass flow rates (Reynolds 

numbers). The fan and its control panel are shown in Figures 6.3 and 6.4.  

 

 

 

Figure 6.3. A view of fan used in the experimental setup 

 

  

 

Figure 6.4. Control panel of fan and preheater 

 

Preheater: A preheater is located in the experimental setup to provide air at 

constant temperature at the inlet of the packed bed. Hence any fluctuations of the room 

temperature would not affect the experimental results. The maximum power of the 

preheater is 10 kW.  

Channels: A channel system is placed after the fan and diffuser. The air from the 

fan flows through these channels and finally returns back to the room from the outlet. 

As can be seen from Figures 6.1 and 6.2, the first channel is a clear channel named as 

the entrance channel and it is placed between the diffuser and porous channel. The 

second channel is the porous channel (i.e., packed bed) that is after the entrance channel 

with the cross-section of 300x1000 mm
2
 and total length of 1800 mm in the flow 
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direction. It is filled with long aluminum rods with square cross-section in inline 

arrangement. There are some materials such as perforated plates, a close-fitted textile 

and a plastic honey comb (see Figure 6.5) inserted in different location of the entrance 

channel to provide uniform velocity.  

 

 

 

Figure 6.5. The view of the honeycomb plate  

 

Porous channel (Packed bed): The pictures of the porous channel when no 

square rods exist are shown in Figure 6.6. As can be seen, it is a rectangular channel 

whose width is highly wider than its height. The schematic of the porous channel is 

shown in Figure 6.7 to present the size of the channel and the arrangement of the square 

rods. Porous channel has length of 1800 mm and cross-sectional area of 300x1000 mm
2
. 

The width of channel is larger than its height in order to reduce the effects of the side 

walls and convert the 3D flow into 2D. The porous channel (packed bed) was filled by 

placing square rods inside. The aluminum (6082) square cylinder rods with cross-

section of 10x10 mm
2
 and length of 1 m are placed perpendicular to the flow. The rods 

are placed with 10 mm intervals between each other in the parallel and perpendicular 

directions to the main flow. The number of rod rows perpendicular to flow is 15 and 

number of rows along the flow direction is 90. Total number of rods is 1350. The 

porosity of the channel is 0.75 with this placement of the rods. In order to place the 

square rods, wooden plates were inserted to the vertical side walls of the porous channel 

(see Figure 6.8). 
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Figure 6.6. Views of porous channel before placing the rods  

 

 

 

Figure 6.7. Schematic view of the packed bed (porous inlet, test and outlet sections) 

 

           

 

Figure 6.8.  Outlet of the packed bed, a) wooden plates used for the placement of rods 

b) the located rods in the channel 

 

Porous channel has three sections as inlet, test and outlet sections with length of 

500, 900 and 400 mm, respectively. The location of these sections is shown in Figure 

6.9 and details are presented below. 
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Figure 6.9. Schematic view of porous channel (inlet, test and outlet sections) - top (or 

bottom) view 

 

The porous inlet section is placed after the entrance channel. It is filled with the 

square rods. The inlet section of the porous channel is unheated and insulated. The 

length of this section is 500 mm and the cross-sectional area is the same with the 

entrance channel as 300x1000 mm
2
. The porous inlet section can also be called as 

calming section. The aim of this section is to provide a periodic flow before entering of 

air into the test section. The experimental measurements were done at the next section 

(test section) without considering the inlet effect. In the porous inlet channel, 15 rods 

are placed perpendicular to air flow while 25 rods are place in parallel direction to air 

flow. Total number of rods is 375 in the inlet section. Totally 10 holes with diameter of 

10 mm  in two different rows are drilled at the inlet section to measure air velocity and 

temperature at different locations as shown in Figure 6.10.  

Porous test section is located after the inlet section of the packed bed. The test 

section has the same structure with the porous inlet section. The main difference is the 

plate type heaters placed at the top and bottom walls of the test section (see Figure 

6.11). The heating of air was done in this section by using top and bottom heaters. The 

plate type heaters are electrical resistance heaters with the inlet voltage of 220 V. 
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Figure 6.10. The holes for the velocity measurement – top view of the packed bed 

 

Total of 10 plate type heaters (5 on top and 5 on bottom wall) are used to heat 

the top and bottom surfaces. Total of 13.5 kW power (6.75 kW for each wall) is 

supplied to the test section when the heaters are fully operated. Heaters were tightly 

fixed to the top and bottom walls to reduce the contact resistance between the wall and 

the heater surface. The power of each plate type heater was controlled by PID 

controllers, automatically.  

 

   

 

Figure 6.11. The plate type heaters at the top wall of the porous test section and the 

equipment to fix the heaters to the wall.  

 

It should be mentioned that the aluminum rods with the same dimensions were 

placed inside the test section. 15 rods were placed in the direction perpendicular to the 

flow and 50 rods were placed in the direction parallel to the flow. Total of 750 rods 

were placed inside the test section. For the velocity and temperature measurement 25 

holes in 5 rows with diameter of 10 mm were drilled at the top wall as seen from Figure 

6.10. 
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Porous outlet section is the last section of the porous channel. Air flows through 

the porous outlet section and then it is dispersed into the room. The outlet section has 

the same structure with the rest of the porous channel. The length of the outlet section is 

400 mm. Aluminum rods were placed in the outlet section to get rid of the end effects. 

Total number of rods in the outlet section is 225. The walls of the outlet section are 

insulated. 

 

6.1.2. Measurement and Control Devices 

 

Several measurement and control devices were used during the experiments for 

the determination of the permeability and thermal dispersion of the packed bed. Mainly, 

the velocity and temperature measurements were done at different locations in the 

porous channel. These measurements were done to calculate the mass flow rate and the 

macroscopic temperatures. The detailed explanation of the devices is given in the 

following paragraphs. 

PID Controllers and Electrical Table:  For controlling the power of plate type 

heaters placed on the top and bottom walls of the test section, ENDA 4420 model PID 

controllers were used. There are 10 plate type heaters on the walls of the test section and 

each of them were controlled by different PID controller. The PID control was planned 

to regulate the power supplied to the heaters in order to achieve constant wall 

temperature value chosen by the user. The thermocouples were fixed on the top and 

bottom walls of channel and at the midpoints of heaters. The measured temperature 

signals were processed by the PID controllers. PID controllers compare the measured 

temperature with set temperature and regulate the electrical power input in order to 

achieve the set temperature. If the measured temperature is smaller than the set 

temperature, the power input to the heaters is allowed by PID controllers. PID 

controllers were placed into an electrical table. The electrical table, which is shown in 

Figure 6.12, also consists of contactors, fuses and solid state relays. Solid state relays 

(SSR) were placed in the control panel to increase the speed of the control process. 

 



122 

 

    

(a)      (b) 

 

Figure 6.12. PID controllers and the electrical table (a) inside (b) cover door 

 

Velocity Measurement Device: Testo 435-2 multi-function instrument was used 

to measure the air velocities at different locations. The instrument is shown in Figure 

6.13. The measurement range of this device is from 0 to +20 m/s and the resolution is 

0.01 m/s. A hot wire probe was used with the measurement device. The velocity 

measurement probe was inserted inside the channel from the holes drilled on the top 

wall and the velocity measurements were done at different positions through the all 

principal axes. To achieve accurate velocity measurements and prevent the motion of 

sensor, a magnetic mechanism was used and it is shown in Figure 6.13b. 

 

               

(a)      (b) 

 

Figure 6.13. Velocity measurement device (Testo 435-2) (a) main device, (b) hot wire 

probe and a magnetic mechanism for the velocity measurement 

 

Temperature Measurement:  For the temperature measurements in the channel, 

K type (NiCr-Ni) thermocouple wires were used. The diameter of the wires is 0.5 mm 
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and wires have Teflon insulation around them. The operating temperature range is from 

- 25 to + 200 
o
C. As mentioned before, 10 thermocouples were used to measure the top 

and bottom wall temperatures of the test section and the generated signals were 

transferred to the PID controllers. The temperature measurements in the porous channel 

were also made by using thermocouples. In order to collect measured temperature, 

Agilent 34972-A model data logger with 34908-A modules with 120 channels (3 

modules with 40 channels) were used. The temperature values collected by data logger 

can be transferred and saved by a computer using software (see Figure 6.14). 

 

 

 

Figure 6.14. Data logger and its computer software 

.  

6.2. Experimental Procedure 

 

After calibration of temperature measuring devices, the experiments in order to 

validate the numerically calculated permeability and thermal dispersion coefficients 

were started. Three different mass flow rates (i.e. three different Reynolds numbers) 

were chosen for experiments. After completing experiments for the empty channel, the 

rods were placed into the porous channel and the main experiments were conducted. All 

of the experimental measurements were performed in the steady state condition. 

Velocity measurements were done at least 2 hours of fan work and temperature 

measurements were done after 4 hours of heating. The steady state conditions were also 

checked with the measured values at different times and also the energy input values 

measured by electricity meters. The details of experimental procedure are presented in 

the following two sections. 

 

 

 



124 

 

6.2.1. Experiments with Empty Channel  

 

The procedures of taking the experimental measurements in empty channel are 

explained in the following paragraphs step by step. 

a) Air velocity was measured by using the velocity measurement device. The hot 

wire probe was inserted into the empty channel from the holes drilled at the top wall. 

The coordinate axes considered for the measurements are shown in Figure 6.18. 

Velocity measurements were done at the inlet plane of the empty channel (z = 0) and 

outlet plane of the test section (z = 1400 mm) in 5 different horizontal and 10 different 

vertical locations perpendicular to the air flow (total of 50 locations per plane). The 

velocity measurement positions in xy plane are shown in Figure 6.19. Considering a 

plane perpendicular to the main flow direction, there are 2 holes near the side walls of 

the porous channel at the x = 12 and 988 mm locations and 3 more holes at x = 250, 500 

and 750 mm locations. 

 

 

 

Figure 6.15. The coordinate axes considered for the velocity measurements 

 

 

 

Figure 6.16. The velocity measurement locations at the inlet plane of porous channel 

and outlet plane of test section 

 

The velocity measurements were conducted with data collecting frequency of 1 

Hz. Two sample measurements that show the fluctuations of velocity values for Re = 



125 

 

192 and 424 for points near the wall during the data collecting interval of 1 minute are 

shown in Figure 6.20. The time averaged value of measured velocity during 1 minute 

was used as the measured velocity value of the corresponding position. 

 

 

(a) 

 

(b) 

 

Figure 6.17. The fluctuations in the measured velocities (a) Re = 192, (b) Re = 424 

 

b) In order to obtain mass flow rate, the planes perpendicular to the air flow were 

divided into 5x10 grids that are shown in Figure 6.21. The time averaged velocities of 

the grid centers were obtained and then the average velocity, Reynolds number and the 

mass flow rate are calculated by using Eqs. (6.1), (6.2) and (6.3). 
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

HumRe  
(6.2) 

 Aum m  (6.3) 

 

where um is the average velocity, ui is the velocity along the main flow direction 

(z-direction, see Figure 6.30) at the i
th

 cell center, Ai are area of the i
th

 cell, H is the 

representative elementary volume dimension of the porous medium, m  is the mass flow 

rate, ρ is the density of air and A is the total cross-sectional area of the channel. 

 

 

 

Figure 6.18. 5x10 grid used for the calculation of average velocity, temperature and 

mass flow rate 

 

The velocity measurements were conducted for 3 different mass flow rate that 

adjusted by using the regulating switch of the fan. All measurements were repeated 

twice on different days and there was no considerable change between the 

measurements. The average of the two measurements was used for the calculations. 

c) The temperatures were measured at the same locations that the velocity 

measurements were performed for all considered Reynolds numbers. For the 

temperature measurements in the empty channel a thermocouple connected to data 

logger was fixed in a slim pipe to provide support to the wire. Similar to the velocity 

measurement, the thermocouple in the pipe was inserted from the holes on the top wall 

of the empty channel and the temperature measurements were done at different y-

locations. Total of 50 measurements for the inlet and outlet planes were taken at the 

same locations shown in Figure 6.19. Temperature measurements in empty channel 

were done with 10 Hz data collecting frequency in 10 second. Two samples of the 

fluctuations that were observed in the temperature measurements are shown in Figure 
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6.22. The fluctuations remained in ±0.05 
o
C interval which is ignorable. The time 

averaged values of measured temperatures was used as the measured temperature of the 

corresponding location. 

 

   

(a) 

 

(b) 

 

Figure 6.19. The fluctuations in the measured temperatures (a) Re = 192, (b) Re = 424. 

 

The temperature measurements were repeated on separate days for all 

considered Reynolds numbers and no considerable change was observed. The average 

of two measurements was employed in the calculations.  

d) In order to calculate the mass-weighted (bulk) temperature, the following 

formula is employed. 
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where Ti is the measured temperature at the i
th

 cell center. 
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6.2.2. Experiments with Porous Channel 

 

The velocity and temperature measurements were performed with the empty 

channel as explained in the previous section. After completing the experiments with 

empty channel, aluminum rods were placed to create the porous channel. Velocity and 

temperature measurements were done in the porous channel by employing the 

procedures employed for the experiments with the empty channel. The additional 

procedures employed for the porous channel are explained in the following text. 

a) The velocity measurements were performed to calculate the mass flow rate and 

to validate the permeability value obtained in the numerical part of the study. To 

compute the mass flow rate, the velocity measurements were done at the entrance 

channels since the rods create fluctuations in the velocity in the porous channel.  

b) The velocity measurements in the porous channel were performed at the REV 

centers and at the midpoint of the two adjacent rods as shown in Figure 6.23. Then the 

macroscopic velocity of i
th

 REV was obtained by the following relation: 
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where u and V are measured velocity and volume, respectively. The subscripts 

top, bottom and center correspond to the measurement locations in the i
th

 REV. For the 

top and bottom voids between the particles in the REVs, the volume is 

2/)()( DHDH   while for the central measurement its value is )( DHH  . A 

sample velocity measurement between the rods is shown in Figure 6.24. The velocity is 

made dimensionless by dividing the measured velocity values to the channel average 

velocity. The effects of rods on the velocity distribution can be clearly seen from the 

figure since the velocity values between the rods are smaller than the velocities 

measured at the center of the REVs.  
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Figure 6.20. Schematic view of the velocity and temperature measurement locations in 

the porous channel 

 

 

 

Figure 6.21. A sample measured local velocity distribution in the porous channel (x = 

500 mm and z = 1400 mm) 

 

c) Thermocouple wires were fixed by the rods and the temperature measurement 

terminals were placed in such a way that the measurements were done at the REV 

centers and at the midpoint of the two adjacent rods as shown in Figure 6.23. The 

measurements were done at different y locations at z = 1400 mm to compute the 

macroscopic temperature values of the REVs with a similar procedure used for the 

computation of macroscopic velocities of the REVs. 

  The temperature and velocity measurements in the porous channel were done for 

the same mass flow rates (Reynolds numbers) considered for the empty channel.  

The validation of the numerically obtained permeability and thermal dispersion 

coefficient values was done by using the computed macroscopic velocity and 

temperature values in the following method. The permeability of the porous structure of 

square rods with porosity of 0.75 was computed numerically by performing the 

numerical computations explained in Chapter 5. Then, the porous module of Fluent 12 

was used with the numerically computed permeability value and the experimental mass 

flow rates. The macroscopic velocity distribution in a 2D porous channel with height of 
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300 mm and length of 2500 mm was obtained. By employing porous module of Fluent 

12, Eqs. (2.37) and (2.56), which are the governing equations of fluid flow in porous 

media, were solved for the considered porous channel. Finally, the numerically and 

experimentally found macroscopic velocity distributions were compared. For thermal 

dispersion validation, the longitudinal and transverse thermal dispersion coefficients for 

the corresponding Reynolds numbers were computed, numerically, as explained in 

Chapter 5. The porous module of Fluent 12 was used with the numerically computed 

thermal dispersion coefficients for the 2D porous channel that the macroscopic velocity 

distributions were obtained before. It should be mentioned that the porous module of 

Fluent 12 requires the effective thermal conductivity values, which are the summation 

of the equivalent thermal conductivity and thermal dispersion coefficients, in the 

longitudinal and transverse directions (Eq. 2.57). Eq. (2.59) was used to compute the 

equivalent thermal dispersion value of the porous channel. Finally, the macroscopic 

temperature profiles obtained from this numerical computation were compared with the 

experimentally obtained profiles. 
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CHAPTER 7 

 

RESULTS AND DISCUSSION 

 

In this chapter, the obtained results for permeability, Kozeny constant, 

interfacial convective heat transfer and thermal dispersion coefficients are presented and 

discussed. The comparison of results of employed numerical model with the results of 

reported studies is presented in the first section. The results of the fluid flow and heat 

transfer computations are presented in the next three sections separately. Finally, the 

results obtained in the experimental study and experimental validation of numerical 

model are presented in the last section.  

 

7.1. Comparison of Numerical Model with Literature 

 

Prior to analyze the effects of pore to throat size ratio on the permeability, 

interfacial convective heat transfer and thermal dispersion coefficients, numerical 

computations are done for some porous structures reported in the literature and the  

obtained results are compared with the results of the reported studies. 

For the validation of the present numerical model, the obtained velocity and 

pressure distributions are compared with the results given by researchers. A REV of 

square rods in inline arrangement with porosity of 0.75 is considered and fluid flow 

equations are solved for this porous medium. The obtained velocity fields are compared 

with the results of Lopez Penha et al. (Lopez Penha et al. 2011) for Reynolds numbers 

of 1 and 100. As seen from Figure 7.1, the resulted streamlines and velocity fields of 

two studies are well agreed with each other. The identical flow patterns in the upper and 

lower gaps between the particles are found. The dimensionless pressure drop values (see 

Eq. 4.8) obtained for the square rods in inline arrangement are compared with the 

numerical values found by Kuwahara et al. (Kuwahara et al. 1996) (for porosity 0.64 

and 10
-2 

< Re < 10
3
) and Saada et al. (Saada et al. 2006) (for porosity 0.3 and 10

-2 
< Re 

< 10
2
) as displayed in Figure 7.2. The obtained values of the present study and the 

reported literature values for dimensionless pressure drop are in a good agreement.  
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(a) 

 

(b) 

 

Figure 7.1. Comparison of the results of present study with the results of Lopez Penha et 

al. for Re = 1 (left) and Re = 100 (right) a) Lopez Penha et al. 2011, b) 

present study. 
 

The results obtained for the variation of the dimensionless permeability with 

porosity is compared with the results of Saada et al. (Saada et al. 2006) in Figure 7.3. 

The obtained results of the present study and the results reported in the study of Saada 

et al. for the variation of dimensionless permeability are aligning with each other. 

After validating the numerical results of motion equations, the validation is performed 

for the computation of the interfacial convective heat transfer coefficient by solving the 

microscopic energy equation of fluid phase in addition to the Navier-Stokes equations. 

For the comparison, computations for porous media with square rods in inline 

arrangement and porosity of 0.75 are made. The interfacial Nusselt numbers found for 

this porous media are compared with the results of Nakayama et al. (Nakayama et al. 

2002), Lopez Penha et al. (Lopez Penha et al. 2012) and Gamrat et al. (Gamrat et al. 

2008) and the comparison is displayed in Figure 7.4. As can be seen from Figure 7.4, 

there is agreement between the results of present study and the literature results for a 
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wide range of Reynolds number. For low Re, the results obtained in the present study 

are aligning with the results of Nakayama et al. However, a little difference with the 

results of Gamrat et al. and Lopez Penha et al. is observed. 

  

 

 

Figure 7.2. Comparison of the results of present study with the results of Kuwahara et 

al. 1996 and Saada et al. 2006 for the change of dimensionless pressure drop 

with Re. 

 

 

 

Figure 7.3. Comparison of the obtained results with the study of Saada et al. (Saada et 

al. 2006) for the change of dimensionless permeability with porosity. 
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Figure 7.4. Comparison of the obtained results for the change of interfacial Nusselt 

number with the results of the reported studies. 
 

The validation of the present numerical study continues by the comparison of 

the obtained numerical results for thermal dispersion coefficients with the reported 

results in the literature for porous media consisting of square rods in inline arrangement. 

For comparison of longitudinal effective thermal conductivity, the studies of Kuwahara 

and Nakayama (Kuwahara and Nakayama 1999), Jeong and Choi (Jeong and Choi 

2011), Sahraoui and Kaviany (Sahraoui and Kaviany 1994), Saada et al. (Saada et al. 

2006) and Alshare et al. (Alshare et al. 2010) are considered. For the comparison of 

transverse effective thermal conductivity, the results of Sahraoui and Kaviany (Sahraoui 

and Kaviany 1994) and Alshare et al. (Alshare et al. 2010) are used. The variation of the 

effective thermal conductivity ratio (keff/kf, computed by using Eqs. 2.51 and 2.55) in 

the longitudinal direction with Peclet number is shown in Figure 7.5 for different 

porosity and solid-to-fluid thermal conductivity ratios. The variation of the effective 

thermal conductivity ratio in the transverse direction with Pe is displayed in Figure 7.6. 

The obtained results of the present study are in good agreement with those values 

reported in the literature. 
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(a) 

 

 

(b) 

 

Figure 7.5. Comparison of the present results obtained for the longitudinal effective 

thermal conductivity with the results of reported studies (a) ε = 0.64 and 

ks/kf = 2 and (b) ε = 0.64 and 0.5, ks/kf = 1. 
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Figure 7.6. Comparison of present results obtained for the transverse effective thermal 

conductivity with the results of reported studies ε = 0.75 and ks/kf = 1.  

 

7.2. Results for Permeability and Kozeny Constant 

 

In this part of the numerical study, the effects of pore to throat size ratio on the 

permeability and Kozeny constant are investigated. Numerical study is performed for 

the array of rectangular rods with different pore to throat size ratios and porosities. 

 

7.2.1. Darcy and Non-Darcy Regions 

 

In this part of the study, firstly REVs of the rectangular rods in inline 

arrangement with porosity of 0.7 are considered to determine the permeability. The pore 

to throat size ratios between 1.63 and 7.46 are studied and the effects of pore to throat 

size ratio on the permeability are investigated. The study is performed for Reynolds 

number from 10
-2

 to 10
3
. 

The microscopic governing equations with appropriate boundary conditions 

explained in previous chapters are solved and dimensionless pressure drop values are 

found according to Eq. (4.8). The change of the dimensionless pressure drop versus 

Reynolds number for different β values are shown in Figure 7.7. According to the 

figure, the dimensionless pressure drop increases with increasing of pore to throat size 

ratio and consequently the permeability value decreases. The dimensionless pressure 

drop of the porous medium with low value of β approaches to the dimensionless 

pressure drop of a straight channel flow, as expected. For the flow in the porous 
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medium with β = 1.63, the dimensionless pressure drop is almost constant and the 

Darcy's law is valid for the entire studied region. For the flows with β = 2.21, 3.04, 4.44 

and 7.46, the form drag effect becomes significant in the region of Re > 10. The effect 

of the form drag on the fluid flow in the porous medium becomes more important for 

high values of the pore to throat size ratio (i.e. β = 7.46). For the pore to throat size ratio 

of 7.46, the value of the dimensionless pressure drop at Re of 1000 is approximately 77 

% greater than the value at Re = 0.01.  

 

 

 

Figure 7.7. The change of dimensionless pressure drop with Reynolds number for 

porous media with different ratios of pore to throat size (ε = 0.7). 

 

The variation of the dimensionless permeability with the pore to throat size ratio 

is illustrated in Figure 7.8. The dimensionless permeability decreases with the increase 

of the pore to throat size ratio and the resistance to flow increases, as expected. The 

increase of β value from 1.63 to 7.46 causes the dimensionless permeability decreases 

from 0.0198 to 0.0004.  

It is found that the permeability can be considerably different for two porous 

media with the same porosity, particle arrangement, hydraulic pore and equivalent 

particle diameters, but different pore to throat size ratios. The porosity, hydraulic 

diameter and the particle diameter of the studied porous media are presented in Table 

4.1. As indicated in the table, for the porous medium with β = 1.63 and 4.44, the 

porosity, hydraulic diameter and the particle diameter are identical (for porosity of 0.7). 

Hence the same permeability value for these two structural units is expected if the 

porosity and the hydraulic diameters are the only required parameters for the 
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determination of permeability. However, the dimensionless pressure drop (inverse 

dimensionless permeability) values for these REVs are approximately ten times 

different from each other (50.44 for β = 1.63 and 583.45 for β = 4.44). This result is 

important since many correlations for the determination of the permeability are 

proposed or derived based on porosity and hydraulic or particle diameters (Xu and Yu 

2008). However, the present study shows that it is possible to have different 

permeability for two porous media with the same arrangement, porosity, hydraulic and 

particle diameters. 

 

 

 

Figure 7.8. The variation of dimensionless permeability with pore to throat size ratio. 

 

7.2.2 Effect of Pore to Throat Size Ratio on Kozeny Constant 

 

The analysis of the effects of pore to throat size ratio on fluid flow is extended to 

investigate its effects on Kozeny constant since Kozeny-Carman permeability equation 

is an important relation for the determination of permeability in porous media. The 

applicability of Kozeny-Carman equation for the periodic porous media is investigated 

and the effects of porosity and pore to throat size ratio on Kozeny constant are studied. 

The continuity and Navier-Stokes equations are solved to determine the velocity and 

pressure fields in the voids between the rods. Based on the obtained flow fields, the 

permeability values for different porosities from 0.2 to 0.9 and pore to throat size ratios 

values from 1.63 to 7.46 are computed. The minimum porosities for different values of 

β are shown in Table 7.1. The investigated flows remained in the laminar region and 

Darcy regime (Re < 1).  
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Table 7.1 Minimum achievable porosities for the considered pore to throat size ratios 

 

β Porosity of channel flow 

1.63 0.613 

2.21 0.452 

3.04 0.329 

4.44 0.225 

7.46 0.134 

 

As mentioned in the literature review chapter, the value of Kozeny constant was 

proposed as 7.5 by Nakayama et al. (Nakayama et al. 2007) for the array of square rods. 

Then Kozeny-Carman equation can be written as Eq. (7.1). In this equation, the 

dimension of the rods is used for the determination of the permeability. 
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In Figure 7.9, K/D
2
 values found by numerical computations and the results 

found from Eq. (7.1) are plotted against ε
3
/(1-ε)

2
 for square rods. Since Kozeny constant 

has a fixed value in Eq. (7.1), a linear change of K/D
2
 with ε

3
/(1-ε)

2 
is observed. 

However, the numerical results show that Kozeny constant may have a fixed value for a 

wide range of porosity but it deviates from linear behavior at high porosities. Average 

value found by our numerical computations for Kozeny constant is approximately 7.5 

for the porosities lower than 0.85 as Nakayama et al. proposed. But for higher porosities 

Kozeny constant increases, rapidly. As mentioned before, Happel and Brenner (Happel 

and Brenner 1986) also indicated that Kozeny constant increases at high porosities for 

different types of porous media while a fixed value can be used for lower porosities. 

This situation was also obtained by various researchers (see Chapter 3).  

The change of dimensionless pressure drop with Re for the considered range of ε 

and β values are checked to ensure the validity of Darcy’s Law. The plot of the 

dimensionless pressure drop versus Re for different pore to throat size ratios is given in 

Figure 7.10. For different values of porosity, the dimensionless pressure drop does not 

vary with Re for the region of Re < 10 which is Darcy region. The value of 

dimensionless pressure drop increases with decrease of porosity for a fixed pore to 

throat size ratio. For instance, the value of dimensionless pressure drop for the porous 
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Figure 7.9. The variation of K/D
2
 with ε

3
/(1- ε)

2
 

 

media with β = 7.46 increases from 1069.4 to 2257.4 by decrease of ε from 0.9 to 0.7. It 

is also observed that the dimensionless pressure drop is much greater for high values of 

pore to throat size ratios for a fixed porosity value. For example, for the porosity of 0.7, 

the dimensionless pressure drop is approximately 50.44 for pore to throat size ratio of 

1.63 while this value is approximately 2257.4 for the pore to throat size ratio of 7.46.  

 

 

 

Figure 7.10. The variation of dimensionless pressure drop with Re for various porosity 

and pore to throat size ratios. 
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In order to understand the change of flow field in the voids between the rods, the 

streamlines and the normalized pressure distribution in the REVs with β = 7.46 are 

shown in Figure 7.11 for various porosities. The normalized pressure is obtained by 

dividing the obtained pressure values to the intrinsic averaged inlet pressure. The 

normalized pressure distributions are presented by colour contours and the legend on 

the top of the figures is valid for all cases of Figure 7.11. The normalized pressures at 

the inlets are around 1 for all cases. For pore to throat size ratio of 7.46, porosities as 

low as 0.2 can be examined and the streamlines are shown for porosities between 0.2 

and 0.9. It is revealed in these figures that the pressure drop through the REV decreases 

with increasing porosity. The highest pressure drop occurs when the porosity of the 

REV equals to 0.2. Furthermore, the flow in the same REV resembles the channel flow 

more, as expected. Flow patterns in the figures show variety. Many secondary flows 

with different shapes at different regions of the REVs are seen. There are many 

additional flows to the main flow through the REVs. Although the mass flow within the 

vortices may be very low, their existence cannot be ignored. As can be seen from the 

figures, pressure drop mainly occurs at the corners of the rods for the high porosity 

REVs whereas pressure drop through the structural unit is nearly linear for low 

porosities. The number of vortices in the pore between the rods decreases as porosity 

increases from 0.2 to 0.4. The flow enters to the bottom and top gaps by the increase of 

the porosity. The areas occupied by the secondary flows also decrease. There is only 

one secondary flow between the rods for porosities between 0.4 and 0.6. For porosity of 

0.7 the secondary flow in the gap split up into two vortices. There are two secondary 

flows in the gap for the porosities higher than 0.7. The entrance of the main flow into 

the top and bottom gaps is such that the top and bottom secondary flows split to two 

separate vortices for porosity of 0.8 and 0.9, as seen from the figure. These secondary 

flows become closer to the lower corners of the REVs while porosity increases. 

The streamlines and the normalized pressure distributions for different values of 

pore to throat size ratios are displayed in Figure 7.12 for ε = 0.75. Similar to Figure 

7.11, the pressure distributions in the REVs are normalized and plotted by colored 

contours. The legend on the top of Figure 7.12 is valid for all cases of the figure. The 

values of normalized pressures at the inlets are around 1 for the all the presented cases. 
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Normalized pressure 

 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

  
(g) (h) 

 

Figure 7.11. Streamlines and pressure contours in the porous media with β = 7.46 for 

porosities of a) 0.2, b) 0.3, c) 0.4, d) 0.5, e) 0.6, f) 0.7, g) 0.8, h) 0.9  
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Normalized pressure 

 

  
(a) (b) 

  
(c) (d) 

 

Figure 7.12. Streamlines and normalized pressure contours in porous media with ε = 

0.75 and for pore to throat size ratios of a) 1.63, b) 2.21, c) 3.04, d) 4.44 

 

As can be seen from Figure 7.12, the pressure drop is relatively low for β = 1.63. There 

are vortices in the top and bottom gaps between the rods. These secondary flows are 

split up into two vortices except for the case of β = 1.63. The main flow is straight 

forward and does not enter to the top and bottom gaps between the rods. The pressure 

drop increases and the main flow penetrate to the top and bottom gaps by the increase of 

β. Hence the vortices in the secondary flow approach to the rods. There are almost four 

vortices at the different regions of the REV of porous medium with β = 4.44. There are 

sudden pressure decrease (expansion) and pressure increase (compression) at the 

corners of the rods. These pressure changes are higher for lower pore to throat size 

ratios while the throat effect is getting more significant for high pore to throat size 

ratios. 

The change of dimensionless pressure gradient with porosity for the porous 

media with different ratios of pore to throat size is shown in Figure 7.13. The limiting 

values represent dimensionless pressure gradients in the straight channel flows with the 

same throat sizes. The schematics of the structural units for β = 1.63 with different 
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porosities are also shown in Figure 7.13. For small values of pore to throat size ratio, 

structural cells with lower porosities are not achievable because of geometrical 

restrictions. While the pore to throat size ratio increases, REVs with lower porosities 

can be obtained. The limiting values at low porosities show channel flows with the same 

throat size. The dimensionless pressure drop values are highest at this flow. It is shown 

in the figure that the dimensionless pressure drop decreases with increasing porosity for 

all cases. As mentioned above, the dimensionless pressure drop increases while pore to 

throat size ratio increases. It means that while the throat size decreases throat effect 

become influential on the pressure drop through porous media and the pressure drop 

increases rapidly. As mentioned before, the dimensionless pressure gradient for low 

Reynolds number flows is equivalent to the inverse of the dimensionless permeability. 

Since the dimension of the REV is constant, it can be said that the permeability 

increases with decreasing pore to throat size ratio and increasing porosity. 

 

 

 

Figure 7.13. The change of dimensionless pressure gradient with porosity for porous 

media with different pore to throat size ratios. 

 

The variation of 2/ hdK  values with porosity for different ratios of pore to throat 

size ratios is shown in Figure 7.14. The main form of Kozeny-Carman equation (Eq. 

2.14) relates 2/ hdK  with porosity. It is shown in this figure that the pore to throat size 
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ratio should be taken into consideration while using Kozeny-Carman equation. For the 

same porosity value, the values for 2/ hdK  are very different from each other for 

different pore to throat sizes. Hence, porosity alone cannot be sufficient to determine the 

Kozeny constant.  

The dimensionless pressure drop is defined based on the REV dimension (i.e., 

H). This value is the same for all the studied REVs considered in the present study. 

However, in order to obtain Kozeny constant values of different REVs, Eq. (2.14) 

should be used in which the permeability is defined based on the hydraulic diameter of 

the considered REV. The variation of Kozeny constant with porosity is illustrated in 

Figure 7.15 for the considered pore to throat size ratios. As can be seen from the figure, 

the value of Kozeny constant depends on both ε and β. Almost, a linear variation of 

Kozeny constant with porosity is observed for the all values of pore to throat size ratio 

values at low porosities (i.e., ε < 0.7). However, the slope of Kozeny constant with ε is 

changed for ε > 0.7.   

 

 

 

Figure 7.14. The variation of 2/ hdK  with porosity for different pore to throat size ratios 
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Figure 7.15. The variation of Kozeny constant with porosity for different pore to throat 

size ratios 

 

An attempt is performed to obtain a general equation for Kozeny constant based 

on pore to throat size ratio and porosity. As can be seen from Figure 7.15, Kozeny 

constant generally changes with a power of porosity. Therefore, Eq. (7.2) may be a 

proper mathematical relationship for the change of Kozeny constant with porosity for 

0.2 < ε < 0.9 and 1.63 < β < 7.46. 

 

 B

K Ak   (7.2) 

 

where A and B coefficients are functions of pore to throat size ratio and the 

following equations are proposed to calculate  their values. 
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Based on the obtained Kozeny constant values, the coefficients of Eqs. (7.3) and 

(7.4) are calculated and given in Table 7.2 for two different regions separated by the 

porosity value of 0.7 (ε < 0.7 and ε ≥ 0.7). The coefficient of determination (R
2
) values 
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for A and B coefficients are 1 for ε < 0.7 region and 0.9998 and 0.9992 for ε ≥ 0.7, 

respectively.  

 

Table 7.2. The empirical coefficients for the determination of Kozeny constant 

 

 For ε < 0.7 For ε ≥ 0.7 

C0 -0.6372 0.3496 

C1 12.358 -5.6485 

C2 -72.413 36.482 

C3 199.52 -77.519 

C4 -172.44 80.773 

D0 0.0079 0.0242 

D1 -0.1684 -0.4878 

D2 1.33 3.6015 

D3 -4.7367 -11.958 

D4 9.7242 18.028 

 

Based on Eq. (2.14), a linear variation exists between the term of 2/16 hK dKk  

and ε. This linear variation with slope of 45 degree can be seen in Figure 7.16 as a solid 

line. For all cases considered in this study, the values of Kozeny constant, hydraulic 

diameter and permeability are determined by using Eqs. (2.13), (2.14) and (7.2), then  

 

 

 

Figure 7.16. The comparison of the predicted 2/16 hK dKk  values by using Eqs. (2.13), 

(2.14) and (7.2) with Kozeny-Carman permeability equation. 
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the ratio of 2/16 hK dKk  is determined and plotted with respect to ε. As seen from Figure 

7.16, the computed results (based on the proposed model) linearly changes with ε when 

ε < 0.7. Although the computed values for ε ≥ 0.7 do not fit solid line as well as for ε < 

0.7, a good agreement can be observed. This linear relationship between the computed 

values from the proposed model and ε exists if only the Kozeny constant is determined 

as a function of both porosity and pore to throat size ratio. Hence, the suggested relation 

for the determination of Kozeny constant can gather the effects of both porosity and 

pore to throat ratio into a single mathematical relation and provides acceptable results 

for calculation of permeability for wide ranges of porosity and pore to throat size ratio 

of porous media. It should be mentioned that the proposed relation is valid for a porous 

medium with rectangular rods in a periodic inline arrangement and square REV. 

 

7.3. Results for Interfacial Convective Heat Transfer Coefficient 

 

In this study, the effects of pore to throat size ratio on the interfacial heat 

transfer coefficient for a periodic porous media containing inline array of rectangular 

rods are investigated, numerically. As it was mentioned in the literature review of the 

studies on the determination of the interfacial heat transfer coefficient, the effects of 

porosity, Re, particle arrangement and flow direction were widely investigated in the 

literature. However, the effect of pore to throat size ratios on the interfacial heat transfer 

coefficient was not studied. In this thesis, the interfacial heat transfer coefficients of 

porous media with different porosity and pore to throat size ratios are investigated, 

numerically. The continuity, Navier–Stokes, and energy equations are solved for the 

representative elementary volume (REV) of the porous media to obtain the microscopic 

velocity and temperature distributions in the voids between the rods (see Chapter 4 and 

5). Based on the obtained microscopic temperature distributions, the interfacial 

convective heat transfer coefficients and the corresponding interfacial Nusselt numbers 

are computed. The study is performed for pore to throat size ratios between 1.63 and 

7.46, porosities from 0.7 to 0.9, and Reynolds numbers between 1 and 100. 
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7.3.1. Effects of Pore to Throat Size Ratio on Interfacial Nusselt 

Number 

 

First of all, the effects of pore to throat size ratio on the interfacial Nusselt 

number is investigated independent of porosity. The streamlines and temperature 

contours for β = 1.63, ε = 0.7 and for different Reynolds numbers are displayed in 

Figure 7.17. In order to compare different temperature fields, a dimensionless 

temperature definition is used as: 

 

 

minmax

min

TT

TT
f

f




  (7.5) 

 

where Tmin and Tmax are the minimum and maximum temperatures in the REV, 

respectively. For all presented Reynolds numbers, two types of flow as main and 

secondary flows are observed. The main flow generally resembles a clear channel flow 

through the porous medium while the secondary flows occur in the gaps between the 

particles. The temperature distribution considerably changes with Reynolds number.  

For Re = 1, the fluid slowly passes through the REV (i.e., weak convective 

transport) and its residence time in the REV is longer. As a result, the fluid temperature 

can increase to the solid temperature just after the inlet throat and the volume averaged 

dimensionless fluid temperature is high ( 862.0
f

 ). The local heat transfer 

coefficient near the inlet section is expected to be very large compared to other surfaces 

of the solid in REV. As Reynolds number increases to Re = 10, the convective heat 

transport becomes stronger and the residence time of the fluid particles in the porous 

medium diminishes. Furthermore, thermal boundary layers occur on the horizontal 

surfaces of the solid particles, which create a thermal resistance for the heat flow in the 

transverse direction of the fluid flow. As a result, a remarkable temperature difference 

between the center and the solid surface region is observed. The volume averaged 

dimensionless temperature, 
f

  reduces to 0.673. Further increase in Re number (Re = 

100) causes the decrease of the thermal boundary layer thickness. As Re increases, the 

convection heat transfer become stronger, the residence time of the fluid in the REV 
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decreases, and a uniform temperature along the flow direction is observed. For Re = 

100, 
f

  becomes as 0.472. 

 

 

 
Figure 7.17. The streamlines (on the right) and temperature contours (on the left) for β = 

1.63 and ε = 0.7 and (a) Re = 1, (b) Re = 10, (c) Re = 100. 

 

The variation of local interfacial Nusselt numbers along the solid–fluid interface 

for β = 1.63 are displayed in Figure 7.18. The figure indicates that the local interfacial 

Nusselt number value for Re = 1 is the highest at the inlet of the REV (i.e., point a) and 

then a sharp decrease is seen toward the edge of the inlet particles (i.e., point b). The 
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reason of the high value of NuL at the inlet is the long residence time of the fluid in the 

inlet region due to the low velocity. The convective transport becomes stronger by 

increase of Re and consequently the residence time of the fluid and the value of NuL in 

the inlet region decrease. The stronger convection transport causes the increase of NuL 

on the interface of the right particles in the REV (d–e and e–f surfaces) since the solid 

surface touches colder fluid. For Re = 100, the value of NuL are almost constant at the 

inlet and outlet throat of the REV (a–b and e–f surfaces). Although NuL values at the 

interfaces considerably vary with Re and the location, one may find that the average 

interfacial Nusselt number (i.e., the area between the curves and x-axis in Figure 7.18) 

may be close to each other.  

 

 

 

Figure 7.18. The variations of local interfacial Nusselt number along the solid-fluid 

interface for β = 1.63 and ε = 0.7 

 

For β = 7.46, the corresponding streamlines and the dimensionless temperature 

contours are displayed in Figure 7.19. As the value of β increases, the vertical distance 

between the solid particles decreases and the throat effect becomes stronger. Similar to 

the flows presented in Figure 7.17, there are secondary flows in the top and bottom gaps 

between the particles. For Re = 1, the main flow penetrates into the gaps and distorts the 

secondary flows in such way that two additional vortices occur in the main secondary 

flows. The temperature distribution is mainly influenced by the conduction heat transfer 

and the fluid temperature rapidly increases to the solid temperature when the main flow 

passes through the inlet throat. The residence time of the fluid in the porous structure is 
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long and 
f

  is very close to the dimensionless solid temperature (
f

  = 0.991). By 

the increase of Re to 10, the main flow enters into the gaps and the fluid particles crush 

the vertical walls of the right solid particles of the REV. The thermal boundary layer on 

the horizontal sides of the inlet solid particles can be seen from the dimensionless  

 

 

 
Figure 7.19. The streamlines (on the right) and temperature contours (on the left) for β = 

7.46 and ε = 0.7 and (a) Re = 1, (b) Re = 10, (c) Re = 100. 

 

temperature contour of Re = 10. The influence of fluid inlet temperature is enhanced as 

Re increases. The value of 
f

  decreases to 0.891 for Re = 10. As Re increases to 100, 
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the residence time in the REV further decreases. For this Re, the secondary flows play 

an important role on the temperature distribution in the REV. A strong crush of the fluid 

with the vertical edges of the outlet solid particles causes the penetration of the heat into 

the gaps. Due to the strong convective heat transport, the fluid temperature remains 

smaller than the solid temperature and 
f

  = 0.73. 

The variations of NuL along the solid–fluid interface for different Re are 

displayed in Figure 7.20 when β = 7.46. For Re = 1, the value of NuL in the inlet section 

of the left is considerably greater than the outlet section. This change of NuL is expected 

since the temperature gradient in the inlet of the REV is much higher than the remaining 

part. For Re = 10 and 100, the heat transfer occurs both in the inlet and outlet throats 

and on the vertical sides of the solid particles (especially at of the right particles). The 

heat transfer on the surfaces of the inlet particles for Re = 10 considerably decreases 

while an increase of the heat transfer in the outlet particle of the REV is observed. For 

Re = 100, the considerable increase of the heat transfer on the vertical walls of the right 

particles is due to the strong crush of fluid to the vertical walls. An increase in the 

interfacial Nusselt number for Re = 100 may be expected.  

 

 

 

Figure 7.20. The variations of local interfacial Nusselt numbers along the solid-fluid 

interface for β = 7.46 and ε = 0.7. 

 

The variations of the interfacial Nu with Reynolds number for the studied pore 

to throat size ratio values are shown in Figure 7.21 for ε = 0.7. Additionally, the 
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interfacial Nu for the flow in a straight channel with thick walls when ε = 0.7 is shown 

on the same figure. The lowest interfacial Nu are obtained for the straight channel flow 

and it does not change with Re, since the flow is thermally fully developed. For porous 

structures with ε = 0.7, the increase of interfacial Nu with β is observed. The increase of 

β causes the mixing of the fluid in the voids between the particles. For Re = 1 and β = 

1.63, the value of 
f

 = 0.862 while it is 0.991 for β = 7.46 due to the mixing effect. 

For β = 1.63 and 2.21, a small change of the interfacial Nu with Re is observed since the 

flow is similar to the channel flow. Further increase of β causes a dramatic change of 

the interfacial Nu with Re. For high β values (e.g., β = 7.46), the interfacial Nu 

decreases along the region of Re between 1 and 10 and takes a minimum value at Re = 

10. The decrease of Nu may be due to the decrease of the residence time of the fluid in 

the porous media and the formation of the thermal boundary layer on the horizontal 

surfaces of the inlet solid particles cause the decline of NuL in the inlet region. Further 

increase of Re from 10 to 100 increases the interfacial Nu. Based on our observation, 

the reason of the increase of Nu with Re for high values of β for the region of Re > 10 is 

the crush of the fluid to the vertical wall of the outlet particle, as indicated before. The 

increase of the NuL at the vertical walls of the right particle for Re = 100 can be 

observed from Figures 7.19 and 7.20. 

 

 

 

Figure 7.21. The change of interfacial Nusselt number with Reynolds number for 

porous structure with ε = 0.7 and different pore to throat size ratios. 
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As it was mentioned before, the pore hydraulic and equivalent particle diameters 

of REVs with β = 1.63 and β = 4.44 are the same as well as their porosity. However, as 

can be seen from Figure 7.21, the values of interfacial Nu of these two porous media are 

considerably different for the same Re. Hence, Nu cannot be determined only based on 

the geometrical parameters such as dh, dp, and ε along with Re and Pr; the pore to throat 

size ratio should be taken into consideration in order to develop a general correlation for 

the determination of interfacial Nusselt number for a porous medium.  

 

7.3.2. Effects of Porosity on Interfacial Nusselt Number 

 

For the second part of the study, the effects of porosity on the interfacial 

convective heat transfer coefficient are investigated for different pore to throat sizes. 

The change of the local interfacial Nusselt number for β = 1.63 and Re = 1 for the 

porosities from 0.7 to 0.9 is shown in Figure 7.22. As can be seen, the most of the heat 

transfer between the surfaces of solid particles and the fluid occurs at the inlet throat of 

the REVs. For low Re, the horizontal surfaces of the particles play an important role on 

the heat transfer compared to the vertical walls. The comparison of the change of NuL  

 

 

 

Figure 7.22. The variations of local interfacial Nusselt numbers along the solid-fluid 

interfaces with porosity for β = 1.63 and Re = 1 

 

for ε = 0.7 and 0.9 shows that the interfacial Nu may not be higher for the porous 

medium with porosity of 0.7 due to longer surface for ε = 0.7. The change of NuL for β 
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= 1.63 and Re = 100 for the studied porosities are displayed in Figure 7.20. The values 

of NuL of the inlet and outlet regions are comparable and almost have a symmetrical 

distribution for ε = 0.7. The values of NuL increases sharply near the outlet region of the 

porous medium due to the strike of the fluid to the vertical walls of the right particles in 

the REVs. 

 

 

 

Figure 7.23. The variations of local interfacial Nusselt numbers along the solid-fluid 

interfaces with porosity for β = 1.63 and Re = 100. 

 

The variation of the interfacial Nu with Re for β = 1.63 and for different 

porosities are shown in Figure 7.24. The interfacial Nu values change between 7 and 10 

for the studied porosities when β = 1.63. The interfacial Nu increases with ε due to the 

increase of the void for proper mixing of the fluid. For porosity of 0.7, the interfacial Nu 

is almost constant and similar to the fully developed flow in the channel. For higher 

porosities, Nu decreases with the increase of Re due to the occurrence of the boundary 

layer on the horizontal surfaces of the solid particles and the decrease of the residence 

time of the fluid in the REV. However, for ε = 0.8 and 0.9, an increase of Nu is 

observed after Re = 10. The expansion of the flow after leaving the inlet throat and then 

the strike of the fluid to the vertical walls of the outlet solid particles in the REV causes 

the mixing of the fluid in the REV. The effect of the strike of the fluid to the vertical 

walls of the outlet particles in the REV can be observed by the comparison of the 

isotherms for ε = 0.7 and 0.9 when β = 1.63 and Re = 100 in Figure 7.25. As can be 

seen, the strike of the flowing fluid to the vertical walls of the outlet solid particles 
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causes the entrance of the colder fluid into the top and bottom gaps between the 

particles. As a result, the heat transfer on the vertical walls of the particles increases. 

 

 

 

Figure 7.24. The change of interfacial Nusselt number with Re number for β = 1.63 and 

different porosities. 

 

 

 

Figure 7.25. The dimensionless temperature contours in porous media with Re = 100, β 

= 1.63 and a) ε = 0.75, b) ε = 0.9. 
 

The change of NuL along the solid–fluid interface for β = 7.46, Re = 1, and 

different porosities are displayed in Figure 7.26. For the flows with low Re, the heat is 

mainly transferred from the horizontal surfaces of the inlet solid particles of the REV. 

Hence, the heat transfer mainly occurs at the inlet throat and it is negligible at the rest of 

the REV. The value of NuL decreases as ε increases due to the decrease of the horizontal 

surface along the throat length. The change of NuL for β = 7.46, the porosity from 0.7 to 

0.9 and Re = 100 is shown in Figure 7.27. The changes of NuL for all porosities are 
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similar to each other. The strong crush of the fluid to the vertical walls of the right solid 

particles in the REV and the strong secondary flows in the gap between the particles 

cause the increase of NuL at the vertical surfaces of the particle in REV.  

 

 

 

Figure 7.26. The variations of local interfacial Nusselt numbers along the solid-fluid 

interfaces with porosity for β = 7.46 and Re = 1 

 

 

 

Figure 7.27. The variations of local interfacial Nusselt numbers along the solid-fluid 

interfaces with porosity for β = 7.46 and Re = 100. 

 

The change of the interfacial Nu with Re for β = 7.46 is shown in Figure 7.28. 

The values of Nu become closer to each other as Re increases and they are almost the 

same at Re = 100. This behavior can be explained by Figure 7.27 where the areas under 

NuL curves are comparable with each other and additionally, the length of the solid 
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particles are almost close to each other. It is observed that for high β values (i.e., β = 

7.46), the increase of e reduces Nu and this behavior is the reverse of the change of Nu 

with ε for the low β values (e.g., β = 1.63). In the light of the present numerical results, 

a correlation relating the interfacial Nusselt number with porosity, pore to throat size 

ratio, and Reynolds and Prandtl numbers is developed for the considered porous media. 

The proposed correlation is shown in the following equation: 

 

     3/16.0

3210 PrReaaaaNu    (7.6) 

 

where ai are functions of β and defined as 

 

 2

321  iiii aaaa   (7.7) 

 

The values of the empirical coefficients are given in Table 7.3.  

 

 

 

Figure 7.28. The change of interfacial Nusselt number with Re number for porous 

media with β = 7.46. 
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Table 7.3. The empirical coefficients of the proposed correlation for the determination 

of the interfacial Nusselt number. 

 

 Re < 10 Re > 10 

a01 -12.164 20.96 

a02 30.362 -13.555 

a03 -11.581 0.0149 

b01 19.699 -10.926 

b02 -28.234 11.771 

b03 11.551 0.0561 

c01 8.5755 0.5923 

c02 -10.652 0.1241 

c03 2.879 0.0172 

d01 -8.3585 -0.932 

d02 10.097 0.2443 

d03 -2.8843 -0.032 

 

Our observation reveals that the variation of Nu with Re is considerably 

different for the regions before and after Re = 10. Hence, the coefficients are found for 

two different regions of Re as can be seen in Table 7.3. The values of the interfacial Nu 

found from the computational study and the suggested correlation are compared in 

Figure 7.29. As can be seen, the proposed correlation provides acceptable values for the 

interfacial Nu of a porous medium consists of rectangular rods.  

 

 

 

Figure 7.29. The comparison of the obtained numerical values of Nu with the suggested 

correlation 
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Additionally, the comparison between the proposed correlation and the results 

reported in the literature for square rods in inline arrangement (ε = 0.75 and β = 2) is 

shown in Figure 7.30. The interfacial Nusselt numbers found by the present correlation 

seem to align with the results achieved by other researchers. 

 

 

 

Figure 7.30. The comparison of the suggested correlation with the reported values in 

literature for ε = 0.75 and β = 2. 

 

7.4. Results for Thermal Dispersion 

 

In this section the results concerning the effects of pore to throat size on the 

thermal dispersion coefficients in the longitudinal and transverse directions are 

presented. By solving the microscopic equations with using the aforementioned 

boundary conditions, the pore-level velocity and temperature distributions inside the 

REVs are obtained. In order to use the same legend for the presented results, the 

dimensionless temperature and velocity values are defined as: 
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where Tmin and Tmax are the minimum and maximum temperature values in the 

REVs. Additionally, a dimensionless value for ''Tu  is defined in order to explain the 

variation of longitudinal thermal dispersion with pore to throat size ratio.  

 

 
 

Tu

Tu
Tu






*
 (7.9) 

 

where ∆T is macroscopic temperature difference. In Figure 7.31, the streamlines 

and temperature contours in REVs with porosity of 0.7, pore to throat size ratios of 

1.63, 3.04 and 7.46 are presented for Reynolds numbers of 1 and 100. As it was 

mentioned before, the temperature contours show the distribution of dimensionless 

temperature (  in the REVs. Figure 7.31(a) shows the streamlines and 

dimensionless temperature distributions for the pore to throat size ratio of 1.63, porosity 

of 0.7 and Re = 1. As can be seen from the streamline patterns, the main flow along the 

REV goes straight like a channel flow since the particles (i.e. rods) are almost flat in 

flow direction. A small flow penetration to the gaps between the rods can be observed. 

There are secondary flows in the upper and lower gaps between particles. Temperature 

almost linearly drops from the left to the right side of the REV. Figure 7.31(b) presents 

the streamlines and dimensionless temperature contours for the same REV when Re = 

100. The streamlines in the REV does not change very much, however the strong 

convection effect in the flow direction can be observed from the isotherms. The 

streamlines and dimensionless temperature distribution in the porous medium with the 

same porosity but pore to throat size ratio of 3.04 when Re = 1 are shown in Figure 

7.31(c). The main flow penetrates to the upper and lower gaps and compresses the 

secondary flows in the gaps. The dimensionless temperature distributions in the Figure 

7.31(a) and (c) are similar; however, the linearity of the temperature distributions in the 

flow direction can be observed more clearly in Figure 7.31(c). By increasing Re from 1 

to 100 for the REV shown in Figure 7.31(c), the streamlines and dimensionless 

temperature distribution considerably change as can be seen from Figure 7.31(d). The 

main flow resembles the channel flow and the secondary flows cover the entire gaps. 

Similar to Figure 7.31(b), a strong convection effect can be seen in the center of the 

REV due to high value of Re. Furthermore, the strike of the main flow onto the vertical 

walls of the particles at the right side of the REV causes the entrance of cold fluid to the 
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gaps between the particles and decreases the temperature inside the gaps. The 

streamlines and the dimensionless temperature contour in the REV with β = 7.46 for the 

flow with Re = 1 are shown in Figure 7.31(e). The penetration of the main flow into the 

upper and lower gaps become stronger, the shape of the secondary flows is distorted and 

the centers of the secondary flows move nearer to the inlet section. The linear 

temperature gradient along the longitudinal direction is obvious from the temperature 

distribution.  

 

T
*

 

Re = 1 Re = 100 

    
(a) (b) 

β = 1.63 

    
(c) (d) 

β = 3.04 

    

(e) (f) 

β = 7.46 

 

Figure 7.31. The streamlines and dimensional temperature contours with longitudinal 

temperature gradient 

 

The streamlines and temperature contours are presented in Figure 7.31(f) for Re 

= 100 of the same REV. Because of high Re flow, the main flow has nearly straight 

streamlines through the REV. Similar to the flow in Figure 7.31(d), the strike of the 
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main flow to the solid particles at the outlet of the REV causes the entrance of fluid 

particles to the upper and lower gaps. The cooling effect in the gaps is more evident in 

the temperature contour of Figure 7.31(f). For the all presented figures, the linearity of 

the temperature gradient is more pronounced for low Re because of the low velocities 

and consequently low convection effect. Thermal dispersion is resulted due to 

fluctuations in the pore level temperature and velocity of the porous media. It is seen 

from Figure 7.31 that the fluctuations of temperature is very low for Re = 1. 

Additionally, the magnitude of velocity fluctuations is also small because of the low 

microscopic velocity values. As Re increases, the temperature non-uniformity in the 

REV increases and the fluctuation of the temperature become sensible. Furthermore, the 

magnitude of the velocity fluctuations increases due to the increase of pore-level 

velocity. Hence, the increase of longitudinal thermal dispersion with Reynolds number 

is expected. 

The change of thermal dispersion with pore to throat size ratio and Reynolds 

number can be understood better by examining the distribution of dimensionless Tu   

values in the REV. The change of 
*)( Tu   in the REVs with pore to throat size ratios of 

1.63, 3.04 and 7.46 and for Re = 1 and 100 when ε = 0.7 are shown in Figure 7.32. The 

distribution of 
*)( Tu   in the REV with β = 1.63 and Re = 1 is shown in Figure 7.32(a). 

The local 
*)( Tu   is stronger in the solid particles; however, its direction changes with 

location (i.e., positive in the right particles and negative in the left ones). This means 

that the thermal dispersion creates diffusion type heat fluxes with opposite directions. 

Hence, the integration of 
*)( Tu   for the entire of the REV becomes negligible and there 

is no considerable thermal dispersion for the porous media with β = 1.63 when Re = 1. 

By increasing of Re to 100, all values of 
*)( Tu   become negative in the entire REV 

(Figure 7.32(b)). Additionally, the magnitude of 
*)( Tu   values become greater than 

those values of Re = 1. The distribution of 
*)( Tu   in the REV with β = 3.04 for the 

flows with Re = 1 and 100 are presented in Figure 7.32(c) and (d). In the REV with Re 

= 1, the negative values of 
*)( Tu   are observed at the inlet fluid boundary while an 

opposite transport effect is seen at the outlet fluid boundary. These dispersion effects 

cancel each other and the magnitude of the thermal dispersion in the longitudinal 

direction becomes small. For Re = 100, 
*)( Tu   values are negative in the entire REV 

and the highest negative values, which contribute greater thermal dispersion, exist at the 
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core of the main flow in the first half of the REV and also inside the solid particles. 

When pore to throat size ratio becomes 7.46, 
*)( Tu   distribution becomes very 

different for the flow with Re = 1 (Figure 7.32(e)). Almost whole of the REV has 

approximately zero 
*)( Tu   values except the inlet and outlet throats. The negative 

values of 
*)( Tu   are present at the inlet throat where 

*)( Tu   values have opposite 

direction at the outlet throat. Hence the resulted thermal dispersion coefficient has a 

small value. For the flow with Re = 100 in the REV with β = 7.46 (Figure 7.32(f)), the 

largest negative value of 
*)( Tu   of Figure 7.32 is observed at the inlet throat and then 

its magnitude decreases along the center of the REV, but still very high negative values 

are seen. Hence the main flow through the REV highly contributes to the increase of the 

longitudinal thermal dispersion. The values of 
*)( Tu   values in the upper and lower 

gaps have small positive values. The entrance of the fluid into the gaps results in the 

mixing effect that decreases the value of the longitudinal thermal dispersion in the gaps. 

By considering Figure 7.31 and7.32, it can be seen that for low values of Reynolds 

number (Re = 1), a linear increase of temperature exists in the REV and negative and 

positive values for 
*)( Tu   (which cancel each other) can be observed since the 

conduction heat transfer is dominant. Furthermore, the magnitude of 
*)( Tu   values in 

the REV is small due to the magnitude of velocity. That’s why the thermal dispersion 

becomes negligible for the low values of Re. It can also be said that the strike of the 

fluid particles to the walls of the outlet solid particles and the entrance of the fluid into 

the gaps at the top and bottom of the REV makes temperature of these regions closer to 

the REV average temperature and this reduces the magnitude of 
*)( Tu   in the gaps. 

However, high velocity values and consequently high deviations from the average 

velocity increases the total magnitude of 
*)( Tu  . 
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Re = 1 Re = 100 

  

  
(a) (b) 

β = 1.63 

  

  
(c) (d)  

β = 3.04 

  

  
(e) (f) 

β =7.46 

 

Figure 7.32. The distributions of  *Tu   in the REVs 

 

The change of the ratio of the longitudinal thermal dispersion coefficient to the 

fluid thermal conductivity with the pore to throat size ratio for different Reynolds 

numbers and for porosities of 0.7, 0.8 and 0.9 are shown in Figure 7.33. As expected, 

the longitudinal thermal dispersion coefficient is very small for Re ≤ 10, hence the 

thermal dispersion is negligible for the flows with Re ≤ 10. For higher Re, the 

dispersion effect along the longitudinal direction becomes stronger due to the increase 

of the convective heat transfer, and the value of thermal dispersion coefficient increases. 

It is observed that for the considered porosities in this study, the longitudinal thermal 
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dispersion coefficient increases with pore to throat size ratio for the range of 1.63 ≤ β ≤ 

3.04 and then further increase of β reduces kdis,xx. By the increase of β from 1.63 to 3.04, 

the longitudinal thermal dispersion increases almost 43 %. However, by further 

increasing β to 7.46 causes decrease of the thermal dispersion by 29 %.  

 

        

(a)      (b) 

 

(c) 

 

Figure 7.33. The variation of the longitudinal thermal dispersion with β for different Re 

a) ε = 0.7, b) ε = 0.8, c) ε = 0.9 

 

The maximum value of the longitudinal thermal dispersion is found for the 

REVs with β = 3.04. Hence, it can be said that there is an optimum value of pore to 

throat size ratio for the maximization of longitudinal thermal dispersion in a porous 

medium. The largest or narrowest throats have the lowest values of the longitudinal 

thermal dispersion. When the dimension of the particles in flow direction is slightly 

smaller than the dimension along the transverse direction, thermal dispersion takes the 
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greatest value. Figure 7.33 also shows that, the value of the longitudinal thermal 

dispersion increases with the increase of porosity. 

 

T
*

 

Re = 1 Re = 100 

  
(a) (b) 

β = 1.63 

  
(c) (d) 

β = 3.04 

  
(e) (f) 

β = 7.46 

 

Figure 7.34. The streamlines and dimensional temperature contours with transverse 

temperature gradient for different REVs and two Reynold numbers. 

 

In order to determine the thermal dispersion in the transverse direction, the 

macroscopic temperature gradient is applied in y-direction. The temperature profiles at 

the inlet and outlet of the REV are similar to each other; hence, the dispersion in the 

longitudinal direction is omitted and only the dispersion in the transverse direction is 

focused on. The obtained dimensionless temperature contours for the REVs with 
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porosity of 0.7, β = 1.63, 3.04 and 7.46, and for Re = 1 and 100 are presented in Figure 

7.34. The same flow conditions are employed for the computation of the transverse 

thermal dispersion coefficient; hence, the streamlines for these flows are the same with 

the ones that shown in Figure 7.31. For the flows with low Reynolds number (Figure 

7.34(a), (c) and (e)) the macroscopically linear temperature gradient is not much 

disturbed by the flow since the convection effect in transverse direction is weak. For Re 

= 100 and pore to throat size ratio of 1.63 (Figure 7.34(b)) the temperature distribution 

in the REV is similar to the REVs with Re = 1.  The areas of the gaps between particles 

in the upper and lower parts are small and there is no strong flow in the transverse 

direction. That’s why; in spite of high Reynolds number, a linear temperature gradient 

in y direction is observed. For Re = 100, as the pore to throat size ratio increases,  the 

main flow strikes to the walls of the solid particles at the right side of the REV and 

enters to the upper and lower gaps. Because of the mixing of main and secondary flows, 

the temperature distribution in the upper and lower gaps changes (Figure 7.34(d)). By 

increasing pore to throat size ratio to 7.46, the mixing of main and secondary flows in 

the gaps further increases as can be seen from Figure 7.34(f). 

The variation of the ratio of the transverse thermal dispersion coefficient to the 

thermal conductivity of the fluid with Reynolds number is shown in Figure 7.35 for 

various values of pore to throat size ratio and porosities of 0.7, 0.8 and 0.9. The 

transverse thermal dispersion is computed by using Eqs. (4.31) and (4.33) for the REVs 

in which a temperature gradient in the transverse direction is created. If Figure 7.33 and 

7.35 are compared, it is observed that the transverse thermal dispersion coefficient 

values are much smaller than the longitudinal thermal dispersion coefficients for the 

inline arrangement of rectangular rods. As expected, the transverse thermal dispersion 

increases with the increase of Reynolds number, however the rate of increase depends 

on the pore to throat size ratio. For low pore to throat size ratios (i.e., β = 1.63), the 

change of transverse thermal dispersion coefficient with Re is negligible. For high 

values of β, the transverse thermal dispersion considerably changes with Re. The 

transverse thermal dispersion coefficient directly increases with pore to throat size ratio 

and porosity. For instance, for Re = 100, the increase of β from 1.63 to 3.04 causes the 

enhancement of the thermal dispersion by approximately 34 %. Further increasing β to 

7.46 increases the thermal dispersion value 114 % more. 
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(a)                   (b) 

 
(c) 

 

Figure 7.35 The variation of the transverse thermal dispersion with Reynolds number 

for different β a) ε = 0.7, b) ε = 0.8, c) ε = 0.9 

 

Most of correlations suggested for the determination of thermal dispersion are 

expressed in terms of Reynolds and Prandtl numbers, porosity and solid to fluid thermal 

conductivity ratio as discussed in Chapter 3. The present study shows that the thermal 

dispersion of two porous media having the same porosity, hydraulic diameter (or 

equivalent particle diameter) for the identical working fluid and flow conditions may be 

considerably different. The thermal dispersion coefficients of the porous media with the 

same geometrical parameters (β = 1.63 and 4.44 for ε = 0.7) are considerably different. 

For Re = 100, the longitudinal and transverse values of kdis/kf of porous medium with β 

= 1.63 are 97.62 and 1.22
.
10

-3
, respectively, while for the porous medium with β = 4.44, 

these values are 128.15 and 0.633. Hence, the pore to throat size ratio plays an 

important role on the mechanism of thermal dispersion and it should be considered in 

the suggested correlations in order to prevent the possible mistakes in correlations and 

achieve a relationship that is valid for various geometries of porous media.  
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7.5. Experimental Results 

 

An experimental setup was designed and constructed to validate the numerical 

model employed in the present study. Detailed explanation of the experimental setup 

and procedure is presented in Chapter 6. In this section the experimental measurements 

and obtained results are presented with necessary discussion. 

The experimental measurements were done for 3 different mass flow rates. The 

corresponding Reynolds numbers for these mass flow rates are 192, 329 and 424 (Eq. 

6.2). The studied Reynolds numbers and corresponding mass flow rates are shown in 

Table 7.4. The velocity and temperature measurements for all considered Reynolds 

numbers were repeated twice on separate days and no considerable change was 

observed. 

 

Tablo 7.4. The Reynolds number, average velocity and mass flow rate values for the 

experiments in the empty channel 

 

Re um (m/s) m  (kg/s) 

192 0.28 0.1 

329 0.48 0.17 

424 0.62 0.22 

 

The velocity profiles obtained by the measurements in the empty channel are 

shown in Figure 7.35, 7.36 and 7.37 for the considered Reynolds numbers. The 

corresponding coordinate system is shown in Figure 6.15. The velocity profiles at the 

inlet of empty channel and the outlet of the test section are presented in the 

dimensionless form made by using the average velocity ( muuu /*  ). In addition to the 

experimental measurements, numerically computed velocity profiles are shown in the 

same figures. Numerical velocity profiles are computed for a 2D channel with the 

height of 300 mm and length of 2500 mm for the same mass flow rates by using Fluent 

12. In this computation, the governing equations shown by Eqs. (4.1), (4.2) and (4.3), 

which are continuity and momentum equations for clear fluid, are solved. As can be 

seen from the figure, there are small differences between the numerically obtained and 

experimentally measured velocities at the inlet of the porous channel.  

 



172 

 

 
(a) 

 
(b) 

 

Figure 7.36. Experimental and numerical velocity profiles in empty channel for Re = 

192 (a) empty channel inlet (z = 0), (b) test section outlet (z = 1400 mm) 

 

In addition to the velocity measurements, temperature measurements in the 

empty channel were performed. The details of the temperature measurement procedure 

are explained in Chapter 6. During the experimental measurements for temperature, the 

temperatures of top and bottom walls of the test section were fixed at 60 
o
C. The 

obtained dimensionless temperature profiles for different Reynolds numbers are shown 

in Figure 7.38, 7.39 and 7.40 for the considered Reynolds numbers. The dimensionless 

temperature is calculated based on Eq. (7.10). 
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(a) 

 

(b) 

 

Figure 7.37. Experimental and numerical velocity profiles in empty channel for Re = 

329 (a) empty channel inlet (z = 0), (b) test section outlet (z = 1400 mm) 

 

where Tm,i is the mass-weighted temperature at the inlet of the empty channel 

(see Eq. 6.4) and Tw is the top/bottom wall temperature of the test section (60 
o
C). 

Additionally, the obtained temperature profiles from the numerical computations are 

shown in the same figures. The numerical results for temperature were found for the 

same 2D channel with the same solver. The top and bottom walls of the test section are 

taken 60 
o
C and the top and bottom walls of the inlet and outlet sections of channel are 

taken as insulated. The inlet temperature boundary is given uniform and its value equals 

to the average inlet temperature of the channel during the experiment. Eq. (4.12), which 

is the steady form of energy equation for clear fluid, is solved numerically. As can be 

seen from Figure 7.38, there is a good agreement between the numerical and 

experimental temperature profiles. The best agreement between experimental and 

numerical profiles was observed for Re = 424.  
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(a) 

 
(b) 

 

Figure 7.38. Experimental and numerical velocity profiles in empty channel for Re = 

424 (a) empty channel inlet (z = 0), (b) test section outlet (z = 1400 mm) 

 

 

 

Figure 7.39. Experimental and numerical temperature profiles at the test section outlet 

in empty channel for Re = 192 
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Figure 7.40. Experimental and numerical temperature profiles at the test section outlet 

in empty channel for Re = 329 

 

 

 

Figure 7.41. Experimental and numerical temperature profiles at the test section outlet 

in empty channel for Re = 424 

 

After completing the necessary measurements in the empty channel, the 

aluminium rods were placed into the porous channel as explained in Chapter 6. The 

velocity and temperature measurements were repeated for the porous channel. 

Additionally, the velocity measurements were done in the entrance channels to 

determine the mass flow rate. The same mass flow rate (Reynolds number) values were 

achieved to compare the velocity and temperature profiles in the porous channel with 

the empty channel profiles.  

The velocity measurements between the rods in the porous channel were 

performed. The width of channel is larger than the height of channel to reduce the 

dimensional order of the problem from 3D to 2D. With this assumption, only the 

velocity profiles on the y-z plane at x = 500 mm (vertical mid-plane along the flow 

direction) are needed for the validation of the numerical computations. The velocity 

measurement points in the porous channel were at the REV center and between the two 

adjacent rods in the flow direction (see Figure 6.20). The details of measurement 
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procedure are presented in Chapter 6. The average (macroscopic or Darcian) velocities 

of the REVs were computed with using the measured velocity values for the 

corresponding REV, i.e. the volume averaging procedure was applied to the measured 

velocity. The calculated average velocity profiles for the different Reynolds numbers 

are shown in Figures 7.41, 7.42 and 7.43 in dimensionless form. These profiles show 

the average velocities of REVs on y-z plane at x = 250, 500 and 750 mm locations. As 

can be seen from the figures, the average velocity profiles obtained for these 3 sections 

are very close to each other. Hence the effects of the side walls on these velocity 

profiles can be neglected and problem can be considered as 2D.  

The numerical model is used to obtain the permeability value of the porous 

channel of the experimental setup with procedure given in Chapter 5. For a REV with 

square rods in inline arrangement and porosity of 0.75, the permeability is found as 

1.3027
.
10

-6
 m

2
, numerically. For the validation of this value, the porous module of 

Fluent 12 was employed as explained in Chapter 6. Flow in a 2D channel with the same 

dimensions of porous channel was analyzed by providing the experimental mass flow 

rate, porosity and numerical permeability to Fluent software. This means that the steady 

forms of Eqs. (2.30) and (2.37), which are the governing equations for fluid flow in 

porous channel, are solved by the computational program. It should be mentioned that 

for these computation, the drag force is neglected. The drag (Forchheimer) term is very 

small for the flow through the principal axes of the inline arrangements of square rods 

and Darcy’s law is valid even for high values of Reynolds numbers (Kuwahara et al. 

1996, Saada et al. 2006, Steggel 1998). Based on the obtained numerical results, the 

computed macroscopic velocity profiles are also shown in the Figures 7.41-7.43. As can 

be seen from three figures, the experimental macroscopic velocity profiles are in good 

agreement with the numerical macroscopic velocity profiles. Hence, the permeability 

values obtained this study is validated by the experimental results.  
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Figure 7.42. The experimental and numerical average velocity profiles in porous 

channel for Re = 192  

 

 

 

Figure 7.43. The experimental and numerical average velocity profiles in porous 

channel for Re = 329  

 

 

 

Figure 7.44. The experimental and numerical average velocity profiles in porous 

channel for Re = 424  

 

The temperature measurements in the porous channel were performed for the 

considered Reynolds numbers. The temperatures of the top and bottom walls of the test 

section were fixed at 60 
o
C to create the temperature gradient in the porous channel. The 

thermocouples were distributed in the channel and due to limited number of data logger 
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channels only the outlet temperature profile in the center of channel at y direction could 

be measured. The thermocouples were fixed on the rods to measure the temperatures at 

the REV center and between the two adjacent rods in the flow direction. The measured 

local temperatures were used to compute the macroscopic temperatures of the REVs by 

applying the volume averaging method. The obtained macroscopic temperature profiles 

at the outlet of the test section are shown in Figures 7.44-7.46 in dimensionless form 

(Eq. 7.10).  

The experimentally obtained macroscopic temperature profiles are used to 

validate the thermal dispersion computation by employing the present numerical model. 

The transverse and longitudinal thermal dispersion coefficients for the porous channel 

in the experimental setup were computed, numerically. The details of the numerical 

model are given in Chapter 5. Again, a REV of the square rods in inline arrangement 

with porosity of 0.75 was considered for all the studied Reynolds numbers. The 

computed values of the thermal dispersion coefficients are given in Table 7.5. For the 

validation of computed thermal dispersion values, steady form of macroscopic energy 

equation (see Eq. 2.56) along with the macroscopic motion equations was solved with 

using the porous module of Fluent 12, as explained in Chapter 6. The thermal dispersion 

coefficients with porosity and experimental mass flow rate values were submitted to the 

computational program. The obtained macroscopic temperature profiles at the same 

locations are shown in Figures 7.44-7.46. Because of the arrangement of the rods, the 

transverse thermal dispersion coefficients were found to be very low and the intended 

temperature profiles could not be achieved. Nevertheless, the validity of the numerical 

model for the thermal dispersion computations could also achieved by the aid of the 

experiments. 

 

Table 7.5. Thermal dispersion coefficients that computed by using the numerical model 

 

Re kdisp,xx (W/mK) kdisp,yy (W/mK) 

192 14.141 0.0020 

329 39.483 0.0034 

424 62.846 0.0042 
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Figure 7.45. The experimental and numerical average temperature profiles in porous 

channel for Re = 192  

 

 

 

Figure 7.46. The experimental and numerical average temperature profiles in porous 

channel for Re = 329  

 

 

 

Figure 7.47. The experimental and numerical average temperature profiles in porous 

channel for Re = 424  
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CHAPTER 8 

 

CONCLUSION 

 

The study is focused on the effects of pore to throat size ratio on the 

macroscopic transport parameters as permeability, interfacial heat transfer and thermal 

dispersion coefficients of porous media The pore to throat size ratio is an important 

parameter that affects fluid flow and heat transfer in porous media. A parametric study 

was performed for porous media consisting of rectangular rods in inline arrangement to 

investigate the effects of pore to throat size ratio on those parameters. An experimental 

setup was designed and constructed to validate the obtained numerical results. Based on 

the obtained results the following remarks are achieved.  

 The pore to throat size ratio is a very important parameter for the determination 

of the flow resistance in porous media. The change of the pore to throat size 

ratio can change flow patterns in the voids between the particles and 

consequently the permeability changes, considerably. It was found that 

permeability increases with decrease of pore to throat size ratio since the 

streamlines become similar to that of straight channel. Furthermore, the 

permeability increases with increase of porosity. 

 The flow in the porous medium with low values of pore to throat size ratio 

approaches to the straight channel flow and no form drag is observed.  However, 

by the increase of pore to throat size ratio value, the throat effect occurs and this 

causes the increase of form drag. Our numerical observations showed that the 

form drag should be taken into account when Re > 10 for porous media with 

pore to throat size ratio greater than 2.21.   

 For two porous media with the same porosity and hydraulic diameter (dh/H = 

1.207, ε = 0.7), but different values of pore to throat size ratio (i.e., β =1.63 and 

3.04), the values of permeability is different. Hence, Kozeny constant does not 

depend only on porosity and the effect of pore throat size ratio should be taken 

into account to enhance the applicability of Kozeny-Carman equation for wide 

ranges of the geometrical parameters.  
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 An equation for Kozeny constant in terms of porosity and pore to throat size 

ratio is suggested for the studied periodic structure. The proposed equation 

provides accurate results for the determination of the permeability for porosity 

range from 0.2 to 0.9 and pore to throat size ratios values from 1.63 to 7.46.  

 The present study reveals that the pore to throat size ratio should also be taken 

into account for the determination of the interfacial convective heat transfer 

coefficient. The increase of pore to throat size ratio causes the mixing of the 

fluid in the voids between the particles and consequently the interfacial Nusselt 

number increases. For the porous media with the low value of pore to throat size 

ratio (i.e., β = 1.63), the interfacial Nusselt number is almost constant, and the 

heat transfer in the porous media behaves similar to the fully developed heat 

transfer in a straight channel. For the porous media with high values of pore to 

throat size ratio (e.g., β = 7.46), the interfacial heat transfer coefficient decreases 

for the range up to Re = 10 and then it increases with Re. The strike of the fluid 

to the vertical walls of the outlet solid particles and the entrance of fluid into the 

gaps between the particles are the main reasons for the enhancement of heat 

transfer for the region of Re > 10.  

 Two opposite behaviours are observed for the effect of porosity on the 

interfacial Nusselt number. For the low pore to throat size ratios, the increase of 

porosity enhances the Nusselt number because the flow is penetrated deeply into 

the gaps and the vertical walls of solid particle contribute on the heat transfer. 

For high pore to throat size ratios, the Nusselt number decreases with the 

increase of porosity due to the reduction of horizontal surface of solid particles.  

 A correlation in terms of porosity, pore to throat size ratio, Reynolds and Prandtl 

numbers is suggested for the determination of the interfacial Nusselt number in 

porous media with rectangular rods. The suggested correlation has good 

agreement with the previously reported correlations however it can be used for 

the wider range of geometrical parameters of the studied porous structure.  

 The effects of pore to throat size ratio on the thermal dispersion coefficients in 

the longitudinal and transverse directions are investigated. It is found that the 

longitudinal thermal dispersion coefficient is much higher than the transverse 

thermal dispersion coefficient for the studied porous structure. Both longitudinal 

and transverse thermal dispersion coefficients are ignorable for low values of 
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Reynolds numbers (Re ≤ 10); however, for flows with Re > 10, the longitudinal 

and transverse thermal dispersion coefficients increase with Re due to the 

stronger convection effect. 

  For the flows with Re >10, the effect of the pore to throat size ratio on 

longitudinal thermal dispersion is noticeable. The longitudinal thermal 

dispersion increases with pore to throat size ratio for β < 3.04 due to strike of the 

fluid particles to walls of solid particles at the outlet of the REVs and the 

entrance of fluid into the gaps.  However, further increase of pore to throat size 

ratio causes the penetration of the fluid into the gaps and the increase of mixing 

effect reduces the longitudinal thermal dispersion. There is an optimum value of 

pore to throat size ratio for maximum thermal dispersion in the longitudinal 

direction.  

 The transverse thermal dispersion coefficient increases with Reynolds number, 

however the rate of increase depends on the pore to throat size ratio. For low 

values of pore to throat size ratio, it does not change with Reynolds number, 

considerably.  

 Both the longitudinal and transverse thermal dispersion coefficients increase 

with increase of porosity for the studied range of geometrical parameters.  

 The numerical model that was used for the determination of the permeability and 

thermal dispersion coefficients were validated by using the experimental 

measurements. A good agreement between the numerical and experimental 

results is observed showing that the employed theoretical models in this study 

provides accurate results. 

For the practical application of the obtained results, following items can be 

declared: 

 The results of the present study can be used for many types of porous media 

such as metal foams and slotted fin heat sinks since the effects of pore to throat 

size ratio is important for these kind of porous media as well. The present study 

provides important hints for prediction of pore to throat size ratio effects on the 

permeability, interfacial convective heat transfer and thermal dispersion 

coefficients.  

 Narrower throats increases pressure drop and also increases the interfacial heat 

transfer and transverse thermal dispersion coefficients. Hence, similar to heat 
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exchanger designs, a conflict between fluid flow and heat transfer exits. For the 

use of metal foams for enhancement of heat transfer, the value of pore to throat 

size ratio should be fixed based on the application requirements. 

 As it was mentioned before, there is an optimum value of pore to throat size 

ratio for the maximization of longitudinal thermal dispersion in a porous 

medium. The largest or narrowest throats have the lowest values of the 

longitudinal thermal dispersion. When the dimension of the particles in flow 

direction is slightly smaller than the dimension along the transverse direction, 

thermal dispersion in the longitudinal direction takes the greatest value. 

Future investigations may be done on the relationship between hydraulic 

tortuosity with porosity and pore to throat size ratio to provide further understanding of 

the effects of pore to throat size ratio on permeability. The effects of pore to throat size 

ratio on the thermal tortuosity is also another topic required to be investigated. For the 

experimental study, it was observed that the transverse thermal dispersion in porous 

media consisting of square or rectangular rods is very small. Hence obtaining a 

temperature gradient in transverse direction requires high temperature difference. The 

experimental setup should resists against the generated high temperature gradient.  
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APPENDIX A 

 

CALIBRATION OF PID CONTROLLERS AND DATA 

LOGGER 

 

In order to ensure the accuracy of measured temperature, the calibration of the 

measurement devices was performed. A heating equipment was established to calibrate 

the temperature measurements of PID controllers and data logger. A container was put 

on a electrical heater device to heat the water inside. The surfaces of container were 

strongly insulated except the bottom touching the surface of electrical heater. The power 

of the electrical heater is adjustable. The accurate temperature of the water inside the 

container was measured by two thermometers.   Firstly, a glass thermometer whose 

sensitive part is inside the container was used to measure the water temperature. The 

sensitivity of the glass thermometer is 1 
o
C.  Secondly, a thermocouple calibrator (Fluke 

714) with sensitivity of 0.1 
o
C was used for measuring of the water temperature. The 

setup is shown in Figure A.1. 

 

 

Figure A.1. Temperature calibration setup 

 

The thermocouples used in the experiments were inserted into the water filled 

container. The temperature of the water was measured both by glass type thermometer, 

calibrator and thermocouples which were connected to random PID controllers. The 

measurements were done with ten minute time intervals and temperature was changed 

from 20 
o
C to 80 

o
C. It was observed that the temperature values taken from the PID 
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controllers were about 2.5 
o
C higher than the values measured by the calibrator. Hence 

the measured temperatures were revised such that TPID = Tmeasured - 2.5 to achieve the 

exact temperature value. Figure A.2 shows the difference between the calibrator and 

PID controller temperatures. The difference between the revised temperature of PID and 

calibrator is generally within ± 0.5 
o
C.  

 

 

(a) 

 

(b) 

 

Figure A.2. Modified temperature differences of PID controller with calibrator for 

random PID controllers. a) PID controller #2, b) PID controller #4. 

 

For calibration of data logger, the same procedure was followed.  The 

temperature measurements were taken with an average of 5 measurements in 1 second 

(data collecting frequency of 5 Hz) for randomly selected channels. It was observed 

there is a difference between the measured temperature of data logger and calibrator.   

The measured temperature by data logger were revised as Tdtlg = Tmeasured + 0.5. Figure 

A.3 was presented for the modified temperatures. As can be seen from the figure, 

modified temperature differences are in the acceptable interval which is ± 0.5 
o
C. 
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Figure A.3. Modified temperature differences of channels of the data logger with 

calibrator with measurements taken with 5 Hz. 
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