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(TÜBİTAK) for its financial support.

Finally, I wish to express my special thanks to my husband, Barış ÇİÇEK for his
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ABSTRACT

CONVERGENCE ANALYSIS OF OPERATOR SPLITTING METHODS
FOR THE BURGERS-HUXLEY EQUATION

The purpose of this thesis is to investigate the implementation of the two operator

splitting methods; Lie-Trotter splitting and Strang splitting method applied to the Burgers-

Huxley equation and prove their convergence rates in Hs(R), for s ≥ 1. The analyses are based

on the properties of the Sobolev spaces. The Burgers-Huxley equation is deal with the two

parts; linear and non-linear parts. The regularity results are shown by using the same technique

in (Holden, Lubich and Risebro, 2013) for both parts. By combining these results with the

numerical quadratures and the Peano Kernel theorem error bounds are derived for the first and

second order splitting methods. In the computational part, the operator splitting methods are

applied to the Burgers-Huxley equation. Finally, the convergence rates for the two splitting

methods are checked numerically. These numerical results confirmed the theoretical results.

iv



ÖZET

BURGERS-HUXLEY DENKLEMİ İÇİN OPERATÖR AYIRMA
METODLARININ YAKINSAKLIK ANALİZİ

Bu tezin amacı, iki operatör ayırma metodu olan Lie-Trotter ve Strang ayırma metot-

larının Burgers-Huxley denklemine uygulanmasını incelemek ve bu methodların yakınsaklık

analizlerini, s ≥ 1 olmak üzere, H s(R) uzayında kanıtlamaktır. Analizler, Sobolev uzayının

özelliklerine dayanmaktadır. Burgers-Huxley denklemi, doğrusal ve doğrusal olmayan olmak

üzere iki bölümde ele alınmıştır. Her iki bölüm için de doğruluk sonuçları (Holden, Lu-

bich and Risebro, 2013) da kullanılan tekniğin aynısı kullanılarak gösterilmiştir. Bu sonuçlar,

sayısal integrasyon ve Peano Kernel teoremi ile birleştirilerek birinci ve ikinci mertebeden

ayırma metotları için hata sınırları elde edilmiştir. Sayısal kısımda, Burgers-Huxley denklem-

ine operatör ayırma metotları uygulanmıştır. Son olarak, bu iki ayırma metodunun yakınsak-

lık hızları sayısal olarak kontrol edilmiştir. Bu sayısal sonuçlar teorik sonuçlar ile doğrulan-

mıştır.
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CHAPTER 1

INTRODUCTION

Partial differential equations have great importance in most field of science. In fact,

partial differential equations originated from the study of surfaces in geometry and for solving

a wide variety of problems in mechanics (Debnath, 2012). Nonlinear partial differential

equations (NPDE) are also important in various fields of science and technology. NPDEs has

been study of nonlinear wave propagation problems. These problems arise in different areas of

applied mathematics, real-world physical systems, including gas dynamics, fluid mechanics,

elasticity, relativity, ecology, neurology, thermodynamics and many more are modelled by

NPDEs.

Being a NPDE, Burgers-Huxley equation (BHE) has a great importance. It describes

the interactions between reaction mechanisms, convection effects and diffusion transports

(Satsuma,1987). This equation was firstly introduced by Bateman (Bateman, 1915), then

used by Burgers (Burgers, 1939) in a mathematical modelling in turbulance. BHE is a per-

turbation problem by having a perturbation parameter (say, ϵ).

There are different approaches for solving NPDEs, but there is no general method

for finding solutions. Therefore, numerical approximation methods are important in physical

problems. BHE has studied by a variety of researchers. The differential transform method

is applied to the generalized Burgers-Huxley equation in (Biazar and Mohammadi, 2010).

In (Ismail, Raslan and Rabbah, 2004) Adomain decomposition method is applied for ap-

proximate solution for the BHE. The iterative differential quadrature method is performed by

(Tomosiello, 2010) for BHE. A numerical solution of the generalized BHE is presented in

(Javidi, 2006), which is solved by using the spectral collocation method. Also, Javidi (Ja-

vidi, 2006) has given a pseudospectral method for generalized BHE. In (Jiwari and Mittal,

2011) they have applied a quasilinearization process which is long and complicated proce-

dure. Then, Zhou and Cheng (Zhou and Cheng, 2011) have applied the operator splitting

method to the BHE by solving two nonlinear subproblems.

Operator splitting method is a powerful method for solving complex models. The

basic idea of the splitting process is splitting the problem into two subproblems and solving

each subproblems iteratively instead of the whole problem. For a detailed explanation and

introduction to the operator splitting methods we recommend the study which is worked by

(Machlachan, 2002) and master thesis (Yazıcı, 2010).

The idea of the operator splitting, which is Lie-Trotter splitting, dates back to the
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1950s. It was in 1957 that this method was first used in the solution of partial differential

equations (Bagrinovskii and Gudunov, 1957). The first splitting methods were developed in

the 1960s and 1970s and were based on the fundamental results of finite difference methods.

The classsical splitting methods are the Lie-Trotter splitting and the Strang splitting method

(Dimov, 2001), (Strang, 1968). A renewal of the methods was done in the 1980s while using

the methods or complex process underlying partial differential methods in (Crandall, 1980).

The main purpose in this thesis is to apply the Lie-Trotter and Strang splitting method

to BHE and prove the convergence rates for these methods in Sobolev spaces. Error esti-

mates for convergence of the Lie-Trotter and Strang splitting methods were studied for the

KdV equation in (Holden, Karlsen, Risebro and Tao, 2011). Since the solutions of the KdV

equation remain bounded in Sobolev space they compound this with the counter argument

guarantees the existence of time step ∆t that avoid the solution blowing up. On the other

hand, (Holden, Lubich and Risebro, 2013) studied equation with a Burgers type nonlinearity

including the KdV equation. They implement an analysis which is based on the statement

of the error terms which are accured in the local error as quadrature forms. In (Jahnke and

Lubich, 2000) and (Lubich, 2008), similar analyses are studied for linear evolution equa-

tions and for nonlinear Schrödinger equations, respectively. We follow the similar approach

in (Holden, Karlsen, Risebro and Tao, 2011) to show the convergence rates of the operator

splitting methods which are implemented on the BHE in Sobolev spaces.

We focus our attention on the case of linear and nonlinear operators such as,

Ut = AU(t) + B(U(t)), with t ∈ [0,T ], U |t=t0 = U0 (1.1)

We employ Lie-Trotter and Strang splitting methods to the one-dimensional Burgers-Huxley

equation,

Ut + αUUx − ϵUxx = β(1 − U)(U − γ)U, (1.2)

with the initial condition

U |t=t0 = U0 (1.3)

where t > 0, α, β ≥ 0 , 0 < ϵ ≤ 1 and 0 < γ < 1. When α = 0 and ϵ = 1, equation (1.2)

reduces to Huxley equation and when β = 0, reduces to Burgers’ equation.

2



There has been intense research in solving BHE. The recent article (Zhou and Cheng,

2011) focuses on solving BHE by using operator spltting methods. They decompose the

equation into two subproblems, i.e. a Burgers equation and a nonlinear ordinary differential

equation. In contrast to that approach, in this thesis we break the (1.2) into linear diffusion

equation and nonlinear reaction equation. In this latter type of the operator splitting, the

simpler equations are solved and then recoupled over the initial conditions in delicate ways

to preserve a certain accuracy. We denote by U(t) = Ωt
A+B(U0) is the solution at the time t

of (3.1) with given initial condition and the approximate split solution is denoted by UN , at

t = N∆t ≤ T , as ∆t → 0, where the split solutions are denoted as follows,

Lie-Trotter Splitting solution,

UN+1 = Ψ
∆t(UN) = Ω∆t

A

(
Ω∆t

B (UN)
)
, N = 0, 1, 2, .... (1.4)

Strang splitting solution,

UN+1 = Π
∆t(UN) = Ω∆t/2

A

(
Ω∆t

B

(
Ω
∆t/2
A (UN)

))
, N = 0, 1, 2, .... (1.5)

In our case we split the equation (1.2) into two subequations,

ut = Au = ϵuxx, (1.6)

and

vt = B(v) = β(1 − v)(v − γ)v − αvvx, (1.7)

acting on appropriate Sobolev spaces.

The outline of this thesis can be given as follows:

In Chapter 2, we introduce the operator splitting methods Lie-Trotter and Strang split-

ting by explaning the basic idea of the splitting and giving their algorithms. Then, we apply

the operator splitting methods to the BHE by dividing the equation into linear and nonlinear

parts. We start our analysis by giving two hypotheses about the local well-posedness of the

solutions to the BHE and boundedness of the solution and the initial condition in Sobolev

spaces. Furthermore, we also present and prove the regularity results for both linear and

3



nonlinear parts of the BHE and prove the lemmas which are about the boundedness of the

nonlinear part in Sobolev spaces. We also use auxillary lemmas about the Sololev spaces

for both Lie-Trotter and Strang splitting methods. The Sobolev spaces and related properties

are introduced in Appendix B. Since the proofs are depends on the differential theory in Ba-

nach spaces we give the definition of the Fréchet derivative in Appendix C. By using these

regularity results, definition of the Fréchet derivative and the quadrature error estimates we

get the local error estimates for the two splitting methods. Finally, we add up all the local

errors and get the global error estimates for both Lie-Trotter and Strang splitting methods. A

brief overview of the concepts of the numerical integration and the Peano Kernel Theorem are

given in Appendix A. As a result of these lemmas and properties we prove that Lie-Trotter

splitting converges as O(∆t), while Strang splitting converges O((∆t)2) in Sobolev spaces.

Chapter 3 deals with the numerical results and simulations for the two operator split-

ting methods applied to the BHE. We employ various numerical schemes for the space dis-

cretization and finally we confirm the convergence results by using the Chebyshev differenti-

ation matrices. These experiments using MATLAB confirm the theoretical results which are

shown in Chapter 2.

Finally, in Chapter 4, we summarize the main results in the thesis and given a brief

conclusion.
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CHAPTER 2

CONVERGENCE ANALYSIS OF THE OPERATOR

SPLITTING METHODS

Operator splitting methods are well known in the field of numerical solution of partial

differential equations. The technique is generally used in one of the two ways: It is used in

methods in which one splits the differential operator such that each split system only involves

derivatives along one of the coordinate axes. Alternatively, it is used as a means to split

the differential operator into several parts, where each part represents a particular physical

phenomenon, such as convection, diffusion, etc. In either case, the corresponding numerical

method is defined as a sequence of solves of each of the split problems. This can lead to very

efficient methods, since one can treat each part of the original operator independently.

Operator splitting means the spatial differential operator appearing in the equations is

split into a sum of different sub-operators having simpler forms, and the corresponding equa-

tions can be solved easier. Operator splitting is an attractive technique for solving coupled

systems of partial differential equations, since complex equation system maybe split into sim-

pler parts that are easier to solve. Several operator splitting techniques exist, but we will apply

a class of methods often referred as fractional step methods.

This work is devoted to analytical prove the converge rates for the two splitting meth-

ods; Lie-Trotter and Strang splitting methods using a new framework recently introduced in

(Holden, Lubich and Risebro, 2013). In (Holden, Lubich and Risebro, 2013), the correct

convergence rate for the Strang splitting in Sobolev spaces is proven, for a large class of par-

tial differential equations. We follow this outline, and in addition we adopt the ideas from the

framework to prove the correct convergence rates for these operator splitting methods for the

Burgers-Huxley equation.

This chapter is divided as follows: First, we introduce the operator splitting methods

for an abstract differential equation, then we apply the Lie-Trotter and Strang splitting meth-

ods to the Burgers-Huxley equation. This is put through by some regularity results for the

both linear and nonlinear parts of the equation. Then, we find the local error estimates for

these splitting methods. Finally, by adding up all the local errors we get the global error.
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2.1. Operator Splitting Method

We focus our attention on the following partial differential equation

Ut = (A + B)U(t), (2.1)

U(0) = U0. (2.2)

where t ∈ [0,T ] with T > 0. A, B are assumed to be differential operators between some

normed spaces, say X and the initial condition U0, solution U(t) are also in X. We can write

the Taylor series expansion for U(t) as follows,

U(t) = U(0) + tUt(0) + O(t2). (2.3)

By substituting (2.1) into the (2.3) we get

U(t) = U(0) + t(A + B)(U0) + O(t2). (2.4)

The idea of the operator splitting method is dividing the problem into simpler sub-

problems and solve them for a small time step ∆t. We discretize the time such that tN ≤ N∆t.

Splitting algorithm is a quite simple procedure. Start with solving the first sub-problem

with the operator A by using the original initial condition of the problem, then we solve

the second sub-problem with the operator B by using the the first sub-problem’s solution as

an initial condition. And the procedure is going on this way. We solve the following sub-

problems instead of solving the whole problem,

ut = Au(t) , t ∈ [tN , tN+1] (2.5)

u(tN) = uN
s , (2.6)

vt = Bv(t) , t ∈ [tN , tN+1] (2.7)

v(tN) = u(tN+1), (2.8)

where split condition is given at t = 0 as u0
s = U0 in (2.2) and the approximate solution at

t = tN+1 is uN+1
s = v(tN+1), where tN+1 = tN + ∆t, ∆t is time step and N = 0, 1, ...n − 1 such that

6



tn = T . Writing out this procedure we get,

UN+1 = Ω
∆t
A (Ω∆t

B (UN))

= Ω∆t
A ◦Ω∆t

B (UN) = [Ω∆t
A ◦Ω∆t

B ]N(U0). (2.9)

where UN is the split solution and Ω is the exact solution operator. This is the Lie-Trotter

splitting.

Strang splitting algorithm is similar to the Lie-Trotter splitting, but the main difference

is we solve the first sub-problem for a half interval with the operator A, then solve for the

whole interval with operator B and again solve the half interval with the operator A. The

algorithm is given as,

ut = Au(t) , t ∈ [tN , tN+1/2] (2.10)

u(tN) = uN
s , (2.11)

vt = Bv(t) , t ∈ [tN , tN+1] (2.12)

v(tN) = u(tN+1/2), (2.13)

wt = Aw(t) , t ∈ [tN , tN+1/2] (2.14)

w(tN) = v(tN+1), (2.15)

where tN+1/2 = tN + 0.5∆t, and the approximate solution at t = tN+1 is uN+1
s = w(tN+1). Writing

out this procedure we get,

UN+1 = Ω
∆t/2
A (Ω∆t

B (Ω∆t/2
A (UN)))

= Ω
∆t/2
A ◦Ω∆t

B ◦Ω∆t/2
A (UN) = [Ω∆t/2

A ◦Ω∆t
B ◦Ω∆t/2

A ]N(U0). (2.16)

We need to show both (2.9) and (2.16) converge the exact solution of the given problem

when ∆t → 0. We know Lie-Trotter splitting as first order and Strang splitting as second order

splitting methods. The main goal of this chapter is to prove these convergence rates for the

Lie-Trotter and Strang splitting methods in Sobolev spaces.

To achieve this goal, we first find the error for one step with splitting methods which

is known as the local error, the by summing up all these errors we get the global error. We

use the same technique in (Holden, Lubich and Risebro, 2013) to find this estimate. We use

the numerical quadratures and the Peano Kernel theorem which are given in the Appendix A

7



and Appendix B for local error estimates in Hs(R), where H s(R) is the Sobolev space with

positive s.

2.2. Application to the Burgers-Huxley Equation

We will investigate the Burgers-Huxley equation as follows,

Ut + αUUx − ϵUxx = β(1 − U)(U − γ)U, (2.17)

U(t0) = U0. (2.18)

where x ∈ R, t ∈ [0,T ] for a fixed time T > 0, α, β ≥ 0 , 0 < ϵ ≤ 1 and 0 < γ < 1. In this

work we will split the complex problem into simpler subequations, each of which solved by

an efficient method. With general formulation of the operator splitting method we formulate

the problem which we shall delve into. Applying the operator splitting method to (2.17), and

splitting it into two subequations gives

ut = A(u) = ϵuxx, (2.19)

vt = B(v) = β(1 − v)(v − γ)v − αvvx. (2.20)

We will investigate the Lie-Trotter and Strang splitting numerically for the given Burgers-

Huxley equation. In the begining of the analysis, we assume that the solutions to the BHE

are locally well-posed and bounded. Thus, the following hypotheses are about the local well-

posedness of the solutions to (2.17) and boundedness of the solution and initial condition in

Sobolev spaces.

Hypothesis 2.1 (Nilsen, 2011) For a fixed time T , there exists M > 0 such that for all U0 in

Hk(R) with ∥U0∥Hk ≤ M, there exists a unique strong solution U in C([0,T ],Hk) of (2.17). In

addition, for the initial data U0 there exists a constant K(M,T ) < ∞, such that

∥Ũ(t) − U(t)∥Hk ≤ K(M,T )∥Ũ0 − U0∥Hk , (2.21)

for two arbitrary solutions U and Ũ, corresponding to two different initial data Ũ0 and U0.
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Hypothesis 2.2 The solution U(t) and the initial data U0 of (3.1) are both in Hk(R), and are

bounded as

∥U(t)∥Hk ≤ M < ρ and ∥Uo∥Hk ≤ C < ∞, (2.22)

for 0 ≤ t ≤ T.

We define following set of integers such that,

s ≥ 1, m = s + 3, n = s + 1 = m − 2. (2.23)

We specify for which integers the hypothesis should hold in the lemmas and theorems for the

operator splitting methods. (Nilsen, 2011)

2.3. Regularity results for the Burgers-Huxley Equation

In this section, we will present and prove several results to estimate the local error for

the operator splitting for the Burgers-Huxley equation. We need to show that there exists a

small time step ∆t for the solutions Ωt
A(u0) and Ωt

B(v0) in a Sobolev spaces.

2.3.1. Results for the Nonlinear Part

In the previous section we split the Burgers-Huxley equation into linear and nonlinear

parts. To prove the convergence of the splitting we need to show that both parts are bounded.

We state which properties B must satisfy in the following lemmas.

Lemma 2.1 For m and n in (2.23) assume the solution Ωt
B(v0) = v(t) of (2.20) with initial

data v0 in Hm(R), satisfies ∥Ωt
B(v0)∥Hn ≤ α for 0 ≤ t ≤ ∆t. Then Ωt

B(v0) is in Hm(R) and in

particular

∥Ωt
B(v0)∥Hm ≤ ecα1t∥v0∥Hm , (2.24)

where α1 = (C + 2Cα +Cα2), C is a general constant and c is independent of v0.
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Proof We use the definition of the norm Hm(R) in the Appendix C and find that v(t) satisfies

the following,

1
2

d
dt
∥Ωt

B(v0)∥2Hm

=
1
2

d
dt
∥v∥2Hm =

1
2

d
dt

m∑
j=0

∫
R

∂ j
xw∂

j
xwtdx

= (v, vt)Hm = (v, βv(1 − v)(v − γ) − αvvx)Hm

= β(1 + γ)
m∑

j=0

j∑
k=0

(
j
k

) ∫
R

∂ j
xv∂

k
xv∂

j−k
x vdx

−β
m∑

j=0

j∑
k=0

k∑
l=0

(
j
k

)(
k
l

) ∫
R

∂ j
xv∂

l
xw∂

k−l
x v∂ j−k

x vdx

−βγ
m∑

j=0

∫
R

∂ j
xv∂

j
xvdx − α

m∑
j=0

j∑
k=0

(
j
k

) ∫
R

∂ j
xv∂

k+1
x v∂ j−k

x vdx. (2.25)

We investigate the each parts for different cases.

Case 1: For j < m and k < j, we obtain for the first term of (2.25)

∣∣∣∣∣∫
R

∂ j
xv∂

k
xv∂

j−k
x vdx

∣∣∣∣∣ ≤ ∫
R

|∂ j
xv∂

k
xv∂

j−k
x v|dx

≤ ∥∂ j
xv∥L∞∥∂max{k, j−k}

x v∥L2∥∂min{k, j−k}
x v∥L2

≤ C∥ v∥Hm∥ v∥Hm∥ v∥Hn

≤ Cα∥ v∥2Hm , (2.26)

where we have used Sobolev inequality and the fact that

max {k, j − k} ≤ j + 1 ≤ m,

min {k, j − k} ≤ j
2
≤ m

2
=

s − 1
2
+ 2 ≤ s + 1 = m − 2 = n,

since m ≥ 4.

10



For the second term of (2.25),

∣∣∣∣∣∫
R

∂ j
xv∂

l
xv∂

k−l
x v∂ j−k

x vdx
∣∣∣∣∣ ≤ ∫

R

|∂ j
xv∂

l
xv∂

k−l
x v∂ j−k

x v|dx

≤ ∥∂ j
xv∥L∞∥∂ j−k

x v∥L∞
∫
R

|∂l
xv∂

k−l
x v|dx

≤ ∥v∥Hm∥v∥Hm∥∂l
xv∥L2∥∂k−l

x v∥L2

≤ C∥v∥2Hm∥v∥Hl∥v∥Hk−l

≤ Cα2∥v∥2Hm . (2.27)

If we take l < k ≤ n and k − l < n.

For the third term of (2.25),

∣∣∣∣∣∫
R

∂ j
xv∂

j
xvdx

∣∣∣∣∣ ≤ ∫
R

|∂ j
xv∂

j
xv|dx

≤ ∥∂ j
xv∥L2 |∂ j

xv∥L2

≤ C∥v∥2Hm . (2.28)

The last term of the (2.25) we have the bound

∣∣∣∣∣∫
R

∂ j
xv∂

k+1
x v∂ j−k

x vdx
∣∣∣∣∣ ≤ ∥∂ j

xv∥L∞∥v∥Hm∥v∥Hn

≤ Cα∥v∥2Hm , (2.29)

see (Nilsen, 2011).

Case 2: For j = m, we obtain for the first term of (2.25)

∣∣∣∣∣∫
R

∂ j
xv∂

k
xv∂

j−k
x vdx

∣∣∣∣∣ ≤ ∥∂k
xv∥L∞∥∂m

x v∥L2∥∂m−k
x v∥L2

≤ C∥∂xv∥Hk∥v∥Hm∥v∥Hm−k

≤ C∥v∥Hk+1∥v∥2Hm . (2.30)
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To find a bound we investigate this inequality in two cases; when k + 1 ≤ n and when k = n.

For the first case we obtain

∣∣∣∣∣∫
R

∂ j
xv∂

k
xv∂

j−k
x vdx

∣∣∣∣∣ ≤ Cα∥v∥2Hm . (2.31)

For the second case, we get

∣∣∣∣∣∫
R

∂ j
xv∂

k
xv∂

j−k
x vdx

∣∣∣∣∣ ≤ ∥v∥Hn+1∥v∥Hm∥v∥Hm−n

≤ Cα∥v∥2Hm , (2.32)

here we have used that n + 1 ≤ n + 2 ≤ m, and m − n = 2 ≤ s + 1 = n.

We are left with 2 cases; k ≤ m and k = m = j. For the first case we get,

∣∣∣∣∣∫
R

∂ j
xv∂

k
xv∂

j−k
x vdx

∣∣∣∣∣ ≤ ∥∂m
x v∥L2∥∂k

xv∥L2∥∂m−k
x v∥L∞

≤ C∥v∥Hm∥v∥Hm∥v∥Hm−k+1

≤ Cα∥v∥2Hm , (2.33)

because m − k + 1 < m − n ≤ 2 ≤ n. For the second case, we have

∣∣∣∣∣∫
R

∂m
x v∂m

x vvdx
∣∣∣∣∣ ≤ ∥v∥L∞∥∂m

x v∥L2∥∂m
x v∥L2

≤ C∥v∥Hn∥v∥2Hm

≤ Cα∥v∥2Hm . (2.34)

For the second term of (2.25),

∣∣∣∣∣∫
R

∂m
x v∂l

xv∂
k−l
x v∂m−k

x vdx
∣∣∣∣∣ ≤ ∥∂l

xv∥L∞∥∂k−l
x v∥L∞∥∂m

x v∥L2∥∂m−k
x v∥L2

≤ C∥v∥Hl+1∥v∥Hk−l+1∥v∥Hm∥v∥Hm−k . (2.35)
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The above inequality is divided in two cases; when l + 1 ≤ n, k − l + 1 ≤ n and l + 1 ≤
n, k = n. For the first case we have

∣∣∣∣∣∫
R

∂m
x v∂l

xv∂
k−l
x v∂m−k

x vdx
∣∣∣∣∣ ≤ C∥v∥Hn∥v∥Hn∥v∥Hm∥v∥Hm

≤ Cα2∥v∥2Hm . (2.36)

For the second case we have

∣∣∣∣∣∫
R

∂m
x v∂l

xv∂
k−l
x v∂m−k

x vdx
∣∣∣∣∣ ≤ C∥v∥Hn∥v∥Hm∥v∥Hm∥v∥Hn

≤ Cα2∥v∥2Hm . (2.37)

Since, n − l + 1 ≤ m, and m − n ≤ 2 ≤ s + 1 = n.

We are left with three cases; l+1 = k = n, l+1 ≤ m, with m = n and k = m = j = l.

For the first case, we obtain

∣∣∣∣∣∫
R

∂m
x v∂l

xv∂
k−l
x v∂m−k

x vdx
∣∣∣∣∣ ≤ ∥∂m−k

x v∥L∞∥∂l
xv∥L∞∥∂m

x v∥L2∥∂k−l
x v∥L2

≤ C∥v∥Hm−k+1∥v∥Hl+1∥v∥Hm∥v∥Hk−l

≤ C∥v∥Hm∥v∥Hn∥v∥Hm∥v∥Hn . (2.38)

Since, n − l ≤ n, m − k + 1 ≤ m. For the second case we get the same result, but now we use

that m − k + 1 ≤ m − n ≤ 2 ≤ n.

For the third case,

∣∣∣∣∣∫
R

∂m
x v∂m

x vvvdx
∣∣∣∣∣ ≤ ∫

R

|(∂m
x v)2v2|dx ≤ ∥v∥2L∞∥∂m

x v∥2L2

≤ C∥v∥2Hn∥v∥2Hm

≤ Cα2∥v∥2Hm . (2.39)

For the third term of (2.25),

∣∣∣∣∣∫
R

∂m
x v∂m

x vdx
∣∣∣∣∣ ≤ ∥∂m

x v∥L2∥∂m
x v∥L2

≤ C∥v∥2Hm . (2.40)
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Finally, the last term of the (2.25) we have the bound

∣∣∣∣∣∫
R

∂m
x v∂k+1

x v∂m−k
x vdx

∣∣∣∣∣ ≤ Cα∥v∥2Hm , , (2.41)

see (Nilsen, 2011).

All in all we get, by summing up the estimates, the following inequality

d
dt
∥v(t)∥2Hm = ∥v(t)∥Hm

d
dt
∥v(t)∥Hm ≤ cα1∥v(t)∥2Hm (2.42)

which leads to

d
dt
∥v(t)∥Hm ≤ cα1∥v(t)∥Hm (2.43)

where α1 = (C + 2Cα +Cα2). This result concludes the proof. (Holden, Lubich and Risebro,

2013) �

Lemma 2.2 Assume ∥v0∥Hk ≤ K for some k ≥ 1 . Then there exists t̄(K) > 0 such that

∥Ωt
B(v0)∥Hk ≤ 2K for 0 ≤ t ≤ t̄(K) .

Proof By doing the same calculations as in the proof of Lemma (2.1) with k instead of m

and using the bound for U0 in Hk(R), we arrive with the following inequality

∥v(t)∥Hk
d
dt
∥v(t)∥Hk ≤ c∥v(t)∥4Hk , (2.44)

which simplifies to

d
dt
∥v(t)∥Hk ≤ c∥v(t)∥3Hk . (2.45)

The result follows by comparing with the solution of the differential equation y′ = cy3. (Nilsen,

2011). �

Lemma 2.3 If ∥v0∥Hs+2 ≤ C0 for s ≥ 1 , then there exists t̄ depending on C0, such that the

solution v(t) of the (2.20) is C3([0, t̄],H s).
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Proof We can define the following equality by using Lemma (2.2) where t ∈ [0, t̄],

ṽ(t) = v0 + tB(v0) +
∫ t

0
(t − s)dB(v(s))[B(v(s))]ds, (2.46)

where dB(.)[.] is the Fréchet derivative. If we calculate the second derivative of ṽ we get the

following,

ṽtt = dB(v(s))[B(v(s))]

= −3βv2(−v3 + (1 + γ)v2 − γv) + 3αv2vvx

+2β(1 + γ)v(−v3 + (1 + γ)v2 − γv) − 2α(1 + γ)vvx

−γβ(−v3 + (1 + γ)v2 − γv) + γαvvx

−βv(−3v2vx + 2(1 + γ)vvx − γvx) + α(vv2
x + v2vxx)

−βvx(−v3 + (1 + γ)v2 − γv) + αvv2
x. (2.47)

By differentiation (2.20) with respect to t, we get

vtt = B(v)t = (−βv3 + β(1 + γ)v2 − βγv − αvvx)t

= −3βv2vt + 2β(1 + γ)vvt − βγvt − αvtvx − αvvxt

= −3βv2(B(v)) + 2β(1 + γ)v(B(v)) − βγ(B(v)) − α(B(v))vx − αv(B(w))x

= ṽtt, (2.48)

we see that ṽ(0) = U0 and ṽt(0) = B(U0) = vt. Thus we have shown that v = ṽ. The same is

also true for ṽttt. It follows that ṽ is C3([0, t̄],H s) (Nilsen, 2011). �

2.3.2. Results for the Linear Part

In this subsection, we need to show that A is continuous and bounded. The criti-

cal point for (2.19) in combination with those for (2.20), is that the Sobolev norm do not

increase.We state this propoerty in the following lemma (Nilsen, 2011).
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Lemma 2.4 (Nilsen, 2011) Let P be a linear polynomial of degree l ≥ 2 with constant

coefficients, which satisfies

ReP(iξ) ≤ 0, for all, ξ ∈ R. (2.49)

In addition, let m be a integer such that m ≥ l, and assume u0 is in Hm+l(R) and the solution

et(u0) = u(t) of ut = P(∂x)u, , u|t=0 = u0 is in Hm(R) and satisfies

∫
R

(∂ j+l/2
x v)2 < ∞,

for all j ≤ m and l even. Then et(u0) has a non-increasing norm in Hm(R), in particular

∥ePt(u0)∥Hm ≤ ∥u0∥Hm+1 .

2.4. Lie-Trotter Splitting

In the previous subsections, we have exhibited results about the linear and nonlinear

parts of the BHE. This section is devoted to show the global error of the Lie-Trotter splitting.

We first estimate the local error of the method then achieve the global error bound.

2.4.1. Local Error in Hs space

Lemma 2.5 Let the Hypothesis 2.2 holds for k = s + 2 where s ≥ 1 for the solution of the

equation (2.17). The local error of the Lie-Trotter splitting is bounded in the Sobolev norm as

follows,

∥Ω∆t
A (Ω∆t

B (U0)) −Ω∆t
A+B(U0)∥Hs ≤ C∆t2, (2.50)

where U0 is in H s+2(R) and C only depends on ∥U0∥Hs+2 .
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Proof In the following proof, we follow similar way to (Holden, Lubich and Risebro,

2013). Burgers-Huxley equation is in the form

Ut = AU + B(U), (2.51)

where AU = (∂2
x)U and B(U) = −βU3 + β(1 + γ)U2 − βγU − αUUx. The exact solution is

U(t) = Ωt
A+B(U0), it can be written as follows

U(t) = Ωt
AU0 +

∫ t

0
Ω

(t−s)
A (B

(
U(s)

)
)ds. (2.52)

This is similar to formula φ(t) − φ(0) =
∫ t

0
φ̇(s)ds when φ(s) = Ω(t−s)

A (U(s)).

φ(t) = U(t), φ(0) = Ωt
AU0, (2.53)

φ′(s) = −AΩ(∆t−s)
A U(s) + Ω(∆t−s)

A U′(s)︸︷︷︸
AU+B(U)

. (2.54)

By using the the following formula with φ(ρ) = Ω(s−ρ)
A (U(ρ))

B(φ(s)) − B(φ(0)) =
∫ s

0
dB(φ(ρ))[φ̇(ρ)]dρ, (2.55)

we get

B(U(s)) = B(Ωs
AU0) +

∫ s

0
dB(Ω(s−ρ)

A U(ρ))[Ω(s−ρ)
A B(U(ρ))]dρ. (2.56)

After inserting Equation (2.56) into Equation (2.52) for t = ∆t, we get

U(∆t) = Ω∆t
A U0 +

∫ ∆t

0
Ω

(∆t−s)
A B(Ωs

AU0)ds + E1, (2.57)
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where

E1 =

∫ ∆t

0

∫ s

0
Ω

(∆t−s)
A dB(Ω(s−ρ)

A U(ρ))[Ω(s−ρ)
A B(U(ρ))]dρds. (2.58)

The Lie-Trotter splitting solution for [0,∆t] interval can be written as

U1 = Ω
∆t
A (Ω∆t

B (U0)), (2.59)

We use the first-order Taylor expansion with integral remainder term in H s

Ω∆t
B (u) = u + ∆tB(u) + ∆t2

∫ 1

0
(1 − θ)dB(Ω∆tθ

B (u))[B(Ω∆tθ
B (u))]dθ. (2.60)

By inserting the expansion into (2.59), for u = U0

u1 = Ω
∆t
A U0 + ∆tΩ∆t

A (B(U0)) + E2, (2.61)

with

E2 = (∆t)2
∫ 1

0
(1 − θ)Ω∆t

A dB(Ω∆tθ
B (U0))[B(Ω∆tθ

B (U0))]dθ. (2.62)

Thus, the error becomes

U1 − U(∆t) = ∆tΩ∆t
A (B(U0)) −

∫ ∆t

0
Ω

(∆t−s)
A (B(Ωs

A(U0)))ds + (E2 − E1), (2.63)

by defining

h(s) = Ω(∆t−s)
A (B(Ωs

A(U0))), (2.64)
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we can rewrite equation (2.63) by using the Peano Kernel for rectangle rule as follows

U1 − U(∆t) =
∫ ∆t

0
KR(t)h′(t)dt + (E2 − E1). (2.65)

By using the substitution θ = t/∆t, the integral is transformed to

∫ ∆t

0
KR(t)h′(t)dt = (∆t)2

∫ 1

0
(θ − 1)h′(θ∆t)dθ = (∆t)2

∫ 1

0
KR(θ)h′(θ∆t)dθ. (2.66)

Then, applying the H s norm and using the triangle inequality,

∥U1 − U(∆t)∥Hs ≤ (∆t)2
∫ 1

0
∥KR(θ)h′(θ∆t)∥Hsdθ + ∥(E2 − E1)∥Hs

≤ (∆t)2
∫ 1

0
∥KR(θ)h′(θ∆t)∥Hsdθ + ∥E2∥Hs + ∥E1∥Hs , (2.67)

where KR is bounded kernel. Here h′(s) = −Ω(∆t−s)
A [A, B](Ωs

A(U0)) with double Lie commuta-

tor

[A, B] = dA(v)[B(v)] − dB(v)[A(v)]. (2.68)

Lemma (2.4) gives that Ωt
A(U0) do not increase the Sobolev norm, and therefore it is sufficient

to consider the commutator for a general vector v. Using (2.19) and (2.20), we write

[A, B](u) = −6uu2
x − 3u2uxx + 2(1 + γ)u2

x + 2(1 + γ)uuxx − γuxx − 2uxuxx − uxuxx − uuxxx

−(−3v2uxx + 2(1 + γ)uuxx − γuxx − uuxxx − uxxux). (2.69)

Hence we get,

∥h′(s)∥Hs = ∥ − 6uu2
x + 2(1 + γ)u2

x − 2uxuxx∥Hs

≤ 6∥u∥Hs∥∂xu∥2Hs + 2(1 + γ)∥∂xu∥2Hs + 2∥∂xu∥2Hs∥∂2
xu∥2Hs

≤ 6∥u∥Hs∥u∥2Hs+1 + (2 + 2γ)∥u∥2Hs+1 + 2∥u∥Hs+1∥u∥Hs+2

≤ 6∥u∥3Hs+2 + (4 + 2γ)∥u∥2Hs+2 ≤ C∥u∥3Hs+2 . (2.70)
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If we combine the Lemma(2.4) with the fact that u = Ωs
A(U0), we get the following inequality

∥h′(s)∥Hs ≤ C∥Ωs
A(U0)∥3Hs+2 ≤ C∥U0∥3Hs+2 . (2.71)

The integral in (2.67) is bounded as

(∆t)2
∫ 1

0
∥h′(θ∆t)∥Hsdθ ≤ C∥U0∥3Hs+2(∆t)2. (2.72)

Next, we will find the error bound for E1 in (2.58),

∥E1∥Hs ≤
∫ ∆t

0

∫ s

0
∥Ω(∆t−s)

A (dB(Ω(s−ρ)
A (U(ρ)))[Ω(s−ρ)

A (B(U(ρ)))]∥Hsdρds

≤
∫ ∆t

0

∫ s

0
∥dB(Ω(s−ρ)

A )(U(ρ))[Ω(s−ρ)
A (B(U(ρ)))]∥Hsdρds

≤
∫ ∆t

0

∫ s

0
∥ − 3(Ω(s−ρ)

A (U(ρ)))2(Ω(s−ρ)
A (B(U(ρ))))∥Hsdρds

+ 2(1 + γ)
∫ ∆t

0

∫ s

0
∥(Ω(s−ρ)

A (U(ρ)))(Ω(s−ρ)
A (B(U(ρ))))∥Hsdρds

+ γ

∫ ∆t

0

∫ s

0
∥(Ω(s−ρ)

A (B(U(ρ))))∥Hsdρds

+

∫ ∆t

0

∫ s

0
∥(Ω(s−ρ)

A (U(ρ))Ω(s−ρ)
A B(U(ρ)))x∥Hsdρds. (2.73)

We can rewrite the above inequality for simplicity,

∥E1∥Hs ≤ I1 + I2 + I3 + I4. (2.74)
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We obtain the following bounds by using the Banach algebra property of H s(R) and non-

increasing of the solution of (2.19),

I1 ≤
∫ ∆t

0

∫ s

0
∥U(ρ)∥2Hs∥B(U(ρ))∥Hsdρds

≤
∫ ∆t

0

∫ s

0
∥U(ρ)∥2Hs

(
∥U(ρ)∥3Hs + (1 + γ)∥U(ρ)∥2Hs + γ∥u(ρ)∥Hs + ∥U(ρ)∥Hs∥U(ρ)x∥Hs

)
≤

∫ ∆t

0

∫ s

0

(
∥U(ρ)∥5Hs + (1 + γ)∥U(ρ)∥5Hs + γ∥U(ρ)∥3Hs + ∥U(ρ)∥3Hs∥U(ρ)∥Hs+1

)
dρds

≤ C
∫ ∆t

0

∫ s

0
R5dρds = CR5

∫ ∆t

0
sds = CR5(∆t)2, (2.75)

we get the following estimate for the second integral

I2 ≤
∫ ∆t

0

∫ s

0
∥U(ρ)∥Hs∥B(U(ρ))∥Hsdρds

≤ C
∫ ∆t

0

∫ s

0
∥U(ρ)∥Hs

(
∥U(ρ)∥3Hs + (1 + γ)∥U(ρ)∥2Hs + γ∥u(ρ)∥Hs + ∥U(ρ)∥Hs∥U(ρ)x∥Hs

)
≤ CR4(∆t)2, (2.76)

we can write the following bound for the third integral

I3 ≤
∫ ∆t

0

∫ s

0
∥B(U(ρ))∥Hsdρds

≤ CR3(∆t)2, (2.77)

for the last integral, we can write the bound as, (see (Nilsen, 2011)).

I4 ≤ CR3(∆t)2. (2.78)

Finally, we get

∥E1∥Hs ≤ C(R5 + R4 + 2R3)(∆t)2 ≤ M(∆t)2. (2.79)
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The final term is estimated similarly as the second term.

∥E2∥Hs ≤ (∆t)2
∫ 1

0
∥(1 − θ)Ω∆t

A (dB(Ωθ∆t
B (u)))[B(Ωθ∆t

B (u))]∥Hsdθ (2.80)

≤ (∆t)2
∫ 1

0
∥dB(Ωθ∆t

B (U0))[B(Ωθ∆t
B (U0))]∥Hsdθ

≤ (∆t)2
∫ 1

0
∥3(Ωθ∆t

B (U0))2(B(Ωθ∆t
B (U0)))∥Hsdθ

+2(1 + γ)(∆t)2
∫ 1

0
∥(Ωθ∆t

B (U0))(B(Ωθ∆t
B (U0)))∥Hsdθ

+(∆t)2
∫ 1

0
∥B(Ωθ∆t

B (U0))∥Hsdθ

+(∆t)2
∫ 1

0
∥(Ωθ∆t

B (U0))(B(Ωθ∆t
B (U0)))∥Hsdθ. (2.81)

By doing the similar approach for E1 we find following bound for E2. The only difference is

the use of the regularity result for the nonlinear part which is given in Lemma (2.2). For a

sufficiently small ∆t, Lemma (2.2) ensures that ∥(Ωθ∆t
B (U0))∥Hs+1 ≤ ∥(Ωθ∆t

B (U0))∥Hs+2 ≤ R.Thus,

the bound for E2 is given as follows,

∥E2∥Hs ≤ C(∆t)2(M1 + M2 + M3), (2.82)

where M1 = (R5 + R4 + 2R3) , M2 = (R4 + 2R3 + R2) and M3 = (R3 + 2R2 + R).

Hence, by combining the estimates, we obtain the following bound for the local error,

∥U1 − U(∆t)∥Hs ≤ c(∆t)2, (2.83)

where c depends only on the initial condition and ∆t is sufficiently small. �

2.4.2. Global Error in Hs space

Theorem 2.1 Suppose that the exact solution U(·, t) of Equation (2.17) is in H s+2 for 0 ≤ t ≤
T. Then Lie-Trotter splitting solution UN has first order global error for ∆t < ∆̄t where ∆̄t > 0
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and tN = N∆t ≤ T,

∥UN − U(·, tN)∥Hs ≤ G∆t, (2.84)

where G only depends on ∥U0∥Hs+2 and T.

Proof By using the local error estimate in (2.5), we determine the global error in H s(R)

and prove the first order convergence for the Lie-Trotter splitting. We need to show that split

solution is bounded at each step in H s+2(R). To achieve this result we have to use the regularity

results for both linear and nonlinear parts of the Burgers-Huxley equation.

For the linear part, we know that A do not increase the Sobolev norm, Lemma (2.4).

To show that the Lie-Trotter splitting has a first order convergence, we need to prove the

boundedness of the split solution UN at each time step. For a better understanding of the proof

we use an induction argument. We begin with assuming that Hypothesis (2.1) and Hypothesis

(2.2) holds for k = s. We use the same notation as in (Holden, Lubich and Risebro, 2013);

we take

Uk
N = Ω

(N−k)∆t
A+B (Uk) = Ω(N−k)∆t(Uk), (2.85)

as the exact solution to (2.17) and we assume that

∥Uk∥Hs ≤ M, (2.86)

∥Uk∥Hs+2 ≤ C1, (2.87)

∥Uk − U(tk)∥Hs ≤ ζ∆t, (2.88)

is true for k ≤ N − 1. We need to show that the above inequalities are true for k = N where C1

is a constant from Lemma (2.1) and ζ = K(M, T )cs(C1) where K(M,T ) is given in (2.21) and

cl(C1) is a constant from Lemma (2.5). Using the telescope sum and the triangle inequality,

we write the error as follows,

∥UN − U(tN)∥Hs =

∥∥∥∥∥∥∥
N−1∑
k=0

Uk+1
N − Uk

N

∥∥∥∥∥∥∥
Hs

≤
N−1∑
k=0

∥Uk+1
N − Uk

N∥Hs , (2.89)
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by using the notation we get,

∥UN − U(·, tN)∥Hs ≤
N−1∑
k=0

∥Ω(N−k−1)∆t(Ψ∆t(Uk) − (Ω∆t(Uk))∥Hs , (2.90)

For k ≤ N − 2 we get by using the Hypothesis (2.2),

∥Ψ∆t(Uk)∥Hs = ∥Uk+1∥Hs ≤ M (2.91)

and the exact solution,

∥Ω∆t(Uk)∥Hs ≤ ∥Ω∆t(Uk) −Ω∆t(U(tk))∥Hs + ∥Ω∆t(U(tk))∥Hs , (2.92)

by using (2.21) we get,

∥Ω∆t(Uk)∥Hs ≤ K(M,T )∥Uk − U(tk)∥Hs + ∥U(tk+1)∥Hs ≤ K(M,T )ζ∆t + ρ, (2.93)

≤ M (2.94)

Hence using the Hypothesis (2.1) and the results in (2.154) and (2.156) for k ≤ N − 1 we

obtain,

∥Ω(N−k−1)∆t(Ψ∆t(Uk) − (Ω∆t(Uk))∥Hs ≤ K(M,T )cl(C1)(∆t)3. (2.95)

By using N∆t ≤ T and adding up all term we get,

∥UN − U(tN)∥Hs ≤ NK(M,T )cl(C1)(∆t)3 ≤ ζ(∆t)3. (2.96)

We also need to prove the boundedness UN . If we choose ζ∆t ≤ M−ρ and use the Hypothesis

(2.2),

∥UN∥Hs = ∥UN − U(tN)∥Hs + ∥U(tN)∥Hs ≤ M − ρ + ρ ≤ M. (2.97)
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To show that UN is bounded in Hs+2(R),we write

∥UN∥Hs+2 = ∥Ω∆t
A ◦Ω∆t

B (UN−1)∥Hs+2 ≤ ∥Ω∆t
B (UN−1)∥Hs+2 , (2.98)

where we have used the boundedness of the linear solution and Lemma (2.2) such that

∥Ω∆t
B (UN−1)∥Hs+2 ≤ 2M as long as ∥UN−1∥Hs+2 is bounded. Thus using the Lemma (2.1) we get

the following result,

∥UN∥Hs+2 ≤ e2α1 M∆t∥UN−1∥Hs+2 ≤ C. (2.99)

If we combine all results, we achieve the main goal as follows,

∥UN − U(·, tN)∥Hs ≤
N−1∑
k=0

∥Ω(N−k−1)∆t(Ψ∆t(U(tk)) − (Ω∆t(U(tk)))∥Hs

≤
N−1∑
k=0

K(R,T )∥Ψ∆t(U(tk)) −Ω∆t(U(tk))∥Hs

≤ NK(R,T )c1(C0)(∆t)2

≤ T K(R,T )c1(C0)(∆t)

≤ G(∆t), (2.100)

this completes the proof. �

2.5. Strang Splitting

We use the same technique as in the Lie-Trotter splitting method to show that the

Strang splitting method has a second order convergence. The main distinction from the Lie-

Trotter is we use second order midpoint rule and higher order series expansion. First, we show

the local error estimates then by using these results prove the global error estimate for Strang

splitting method.
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2.5.1. Local error in Hs space

Lemma 2.6 Let s ≥ 1 be an integer and hypothesis 2.2 holds for k = m for the solution

U(t) = Ω∆t
A+B(U0) of (2.17). If the initial data U0 is in Hm(R), then the local error of the Strang

splitting is bounded in H s(R) by

∥Ω∆t/2
A (Ω∆t

B (Ω∆t/2
A (U0))) −Ω∆t

A+B(U0)∥Hs ≤ cs(∆t)3, (2.101)

where cs only depends on ∥U0∥Hm .

Proof We start with

B(φ(s)) − B(φ(0)) =
∫ s

0
dB(φ(ρ))[φ̇(ρ)]dρ, (2.102)

where φ(ρ) = Ω(s−ρ)
A (U(ρ)) .

Hence we get,

B(u(s)) − B(Ωs
A(U0)) =

∫ s

0
dB(Ω(s−ρ)

A U(ρ))[Ω(s−ρ)
A (B(U(ρ)))]dρ. (2.103)

From the variation of constants formula we have the exact solution of (2.17) such that,

Ωt
A+B(U0) = Ωt

A(U0) +
∫ t

0
Ω

(t−s)
A (B(U(s)))ds. (2.104)

To find the exact solution after one step, we insert (2.103) into (2.104) and get the following,

U(∆t) = Ω∆t
A (U0) +

∫ ∆t

0
Ω

(∆t−s)
A (B(Ωs

A(U(s))))ds

+

∫ ∆t

0

∫ s

0
Ω

(∆t−s)
A (H(U(ρ)))dρds, (2.105)

where H(U(ρ)) is defined for a general vector v as

H(v) = dB(Ω(s−ρ)
A (v))[Ω(s−ρ)

A (B(v))]. (2.106)
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Using (2.103), we get

H(U(ρ))) = H(ΩρA(U0)) +
∫ ρ

0
dH(Ω(ρ−τ)

A (U(τ)))[Ω(ρ−τ)
A (B(U(τ)))]dτ. (2.107)

where

dH(v)[w] = d2B(Ω(s−ρ)
A (v))[Ω(s−ρ)

A (w),Ω(s−ρ)
A (B(v))]

+dB(Ω(s−ρ)
A (v))[Ω(s−ρ)

A (dB(v)[w])]. (2.108)

Substituting the integral formula for H into the (2.105) we get,

U(∆t) = Ω∆t
A (U0) +

∫ ∆t

0
Ω

(∆t−s)
A (B(Ωs

A(U(s))))ds + S 1, (2.109)

where

S 1 =

∫ ∆t

0

∫ s

0
Ω

(∆t−s)
A

(
dB(Ωs

A(U0))[Ω(s−ρ)
A (B(Ωs

A(U0)))]
)

dρds

+

∫ ∆t

0

∫ s

0

∫ ρ

0
dH(Ω(ρ−τ)

A (U(τ)))[Ω(ρ−τ)
A (B(U(τ)))]dτdρds. (2.110)

One step with Strang splitting is

U1 = Ω
∆t/2
A (Ω∆t

B (Ω∆t/2
A (U0))). (2.111)

We can write the second order Taylor expansion for the Ω∆t
B as follows,

Ω∆t
B (v) = v + ∆tB(v) +

1
2
∆t2dB(v)[B(v)]

+(∆t)3
∫ 1

0

1
2

(1 − θ)2
(
d2B(Ωθ∆t

B (v))[B(Ωθ∆t
B (v)), B(Ωθ∆t

B (v))]

+dB(Ωθ∆t
B (v))

[
dB(Ωθ∆t

B (v))[B(Ωθ∆t
B (v))]

])
dθ. (2.112)
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After simplification the notation we rewrite the integrand as

Ω∆t
B (v) = v + ∆tB(v) +

1
2
∆t2dB(v)[B(v)]

+ (∆t)3
∫ 1

0

1
2

(1 − θ)2
(
d2B(B, B) + dBdBB)(Ωθ∆t

B (v)
)

dθ. (2.113)

Inserting this series expansion into (2.111), we obtain

U1 = Ω
∆tA(U0) + ∆tΩ∆t/2

A (B(Ω∆t/2
A (U0)))

+
1
2
∆t2Ω

∆t/2
A (dB(Ω∆t/2

A (U0))[B(Ω∆t/2
A (U0))]) + S 2, (2.114)

where

S 2 = (∆t)3
∫ 1

0

1
2

(1 − θ)2Ω
∆t/2
A (d2B(B, B) + dBdBB)(Ωθ∆t

B (Ω∆t/2
A (U0)))dθ. (2.115)

The local error after one step is,

U1 − U(∆t) = ∆tΩ∆t/2
A

(
B(Ω∆t/2

A (U0))
)
−

∫ ∆t

0
Ω

(∆t−s)
A

(
B(Ωs

A(U(s)))
)

ds

+
1
2

(∆t)2Ω
∆t/2
A

(
dB(Ω∆t/2

A (U0))[B(Ω∆t/2
A (U0))]

)
+ (S 2 − S 1). (2.116)

We can rewrite the above expression in a simpler form by defining,

h(s, ρ) = Ω(∆t−s)
A

(
dB(Ωs

A(U0))[Ω(s−ρ)
A (B(Ωs

A(U0)))]
)
, (2.117)

f (s) = Ω(∆t−s)
A

(
B(Ωs

A(U0))
)
. (2.118)

Hence we can write the local error in a simplified form,

U1 − U(∆t) = ∆t f (∆t/2) −
∫ ∆t

0
f (s)ds

+
1
2

(∆t)2h(∆t/2,∆t/2) −
∫ ∆t

0

∫ s

0
h(s, ρ)dρds

+S 3 − S 4, (2.119)
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where

S 3 = (∆t)3
∫ 1

0

1
2

(1 − θ)2Ω
∆t/2
A (d2B(B, B) + dBdBB)(Ωθ∆t

B (Ω∆t/2
A (U0)))dθ, (2.120)

and

S 4 =
∫ ∆t

0

∫ s

0

∫ ρ

0
dH(Ω(ρ−τ)

A (U(τ)))[Ω(ρ−τ)
A (B(U(τ)))]dτdρds. (2.121)

The difference of the first two term is the error of the midpoint rule and the second line of

(2.119) is the error of the two dimensional quadrature rule. We can rewrite the equation

(2.119) by using these error rules and triangle rule

∥U1 − U(∆t)∥Hs ≤
∫ ∆t

0
∥k(t) f ′′(t)∥Hsds

+

∥∥∥∥∥∥1
2

(∆t)2h(∆t/2,∆t/2) −
∫ ∆t

0

∫ s

0
h(s, ρ)dρds

∥∥∥∥∥∥
Hs

+ ∥S 3∥Hs + ∥S 4∥Hs , (2.122)

where k(t) is bounded kernel and f ′′(t) is the Fréchet derivative given as

f ′′(s) = Ω(∆t−s)
A

(
(dA(v))2[B(v)] − dA(v)[dB(v)[A(v)]] − d2A(v)[B(v), A(v)]

− dA(v)[dB(v)[A(v)]] + d2B(v)[A(v)]2 + dB(v)[dA(v)[A(v)]]
)
, (2.123)

for v = Ωs
A(U0). We know that Ω(∆t−s)

A is bounded in Sobolev norm. We find the Fréchet

derivatives of the given operators A and B in (2.19) and (2.20),

dA(v)[h] = A(h),

d2A(v)[h, k] = 0,

dB(v)[h] = −3βv2h + 2β(1 + γ)vh − βγh − α(vh)x,

d2B(v)[h, k] = −6βvkh + 2β(1 + γ)kh − α(kh)x. (2.124)
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We get the following,

f ′′(s) = −∂4
xβv

3 + β(1 + γ)∂4
xv

2 + ∂4
x(−3βv2 + 2βγ(1 + γ) − 4v + 2 − γ)

+6∂2
x(v

2∂2
xv) − 4(1 + γ)∂2

x(vvx) + α∂4
x(vvx)

−2α∂2
x((v∂

2
x(v))x) + ((∂2

x(v))2)x + (v∂4
x(v))x. (2.125)

Writing out the argument using the Leibniz’ rule gives

∥ f ′′(s)∥Hs ≤ β
4∑

k=1

(
4
k

) ∥∥∥∂k
xv

2∂4−k
x v

∥∥∥
Hs + (1 + γ)β

4∑
k=1

(
4
k

) ∥∥∥∂k
xv∂

4−k
x v

∥∥∥
Hs

+6β
2∑

k=1

(
2
k

) ∥∥∥∂k
xv

2∂2−k
x v

∥∥∥
Hs + 4(1 + γ)

2∑
k=1

(
2
k

) ∥∥∥∂k
xv∂

2−k
x v

∥∥∥
Hs

+

2∑
k=1

(
4
k

) ∥∥∥∂4−k
x v∂k+1

x v
∥∥∥

Hs + 2
1∑

k=0

(
3
k

) ∥∥∥∂3−k
x v∂2+k

x v
∥∥∥

Hs

+(4 + γ)∥∂4
xv∥Hs + ∥2∂2

xv∂
3
xv∥Hs . (2.126)

Using the Banach algebra property in Appendix(B) and v = Ωs
A(U0) we get,

∥ f ′′(s)∥Hs ≤ C∥Ωs
AU0∥3Hm ≤ C∥U0∥3Hm . (2.127)

The bound for the first term of (2.122) is obtained as,

∫ ∆t

0
∥k(t) f ′′(t)∥Hsds ≤ (∆t)3

∫ 1

0
∥k(θ) f ′′(θ∆t)∥Hsdθ

≤ (∆t)3
∫ 1

0
∥ f ′′(θ∆t)∥Hsdθ ≤ C∥U0∥3Hm(∆t)3. (2.128)

For the second line of (2.122) we use the two dimensional quadrature formula and get

the following result,

∥∥∥∥∥∥1
2
∆t2h(∆t/2,∆t/2) −

∫ ∆t

0

∫ s

0
h(s, ρ)dρds

∥∥∥∥∥∥
Hs

≤ C∆t3(max∥∂h
∂s
∥Hs + max∥∂h

∂ρ
∥Hs), (2.129)

30



We need to find the bound for the partial derivatives of h. Let’s define the following equalities,

v(s) = Ωs
A(U0),

w(s, ρ) = Ω(s−ρ)
A (B(v(ρ))). (2.130)

Now we can write,

h(s, ρ) = Ω(∆t−s)
A (dB(v(s))[w(s, ρ)]). (2.131)

Start with the first derivative,

∥∥∥∥∥∂h∂s
∥∥∥∥∥

Hs
= ∥Ω(∆t−s)

A

(
−A(dB(v)[w]) + d2B(v)[A(v),w] + dB(v)[A(w)]

)
∥Hs

≤ ∥ − A(dB(v)[w]) + d2B(v)[A(v),w] + dB(v)[A(w)]∥Hs

≤ ∥ − Aβ(−3v2w) − 6βvA(v)w − 3βv2A(w)∥Hs

+∥ − A(2β(1 + γ)vw) + 2β(1 + γ)A(v)w + 2β(1 + γ)vA(w)∥Hs

+∥A(vw)x − (A(v)w)x − (vA(w))x∥Hs (2.132)

By using the Fréchet derivative and Leibniz’ rule we get the following result,

∥∥∥∥∥∂h∂s
∥∥∥∥∥

Hs
≤ C1∥u0∥3Hs+3 +C2∥U0∥4Hs+3

≤ C∥U0∥4Hm . (2.133)

Now for the other derivative we use the similar approach to previous one and get the result,

∥∥∥∥∥∂h∂ρ
∥∥∥∥∥ = ∥Ω(∆t−s)

A

(
dB(v)[Ω(s−ρ)

A (−A(B(v)) + dB(v)[A(v)])]
)
∥Hs

≤ C∥U0∥5Hm . (2.134)

31



For the third term in (2.122) we use the triangle inequality and definition of the second

order Fréchet derivative of the operator B which is defined in (2.20),

∥S 3∥Hs ≤ ∥(∆t)3
∫ 1

0
Ω
∆t/2
A (d2B(B, B) + dBdBB)(Ωθ∆t

B (Ω∆t/2
A (U0)))∥Hsdθ

≤ (∆t)3
∫ 1

0

∥∥∥d2B(B, B)(w) + dBdBB(w)
∥∥∥

Hs

≤ (∆t)3
(
∥d2B(B, B)(w)∥Hs + ∥dBdBB(w)∥Hs

)
, (2.135)

where w is redefined as follows,

w = Ωθ∆t
B (Ω∆t/2

A (U0)). (2.136)

The bound for the first term is obtained easily,

∥d2B(B, B)(w)∥Hs ≤ C∥U0∥7Hm , (2.137)

and the second term can be bounded as

∥dBdBB(w)∥Hs ≤ C∥U0∥8Hm . (2.138)

Hence by using these two result, we get

∥S 3∥Hs ≤ C(∆t)3∥U0∥8Hp ≤ C(∆t)3. (2.139)

For the last term in (2.122) we get,

∥S 4∥Hs ≤
∫ ∆t

0

∫ s

0

∫ ρ

0
∥dH(v)[w]∥Hsdτdρds, (2.140)

where H is defined in (2.106) and we redefine v and w as follows,

v = Ω(ρ−τ)
A (U(τ)) and w = Ω(ρ−τ)

A (B(U(τ))). (2.141)
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We need to find a bound for the integrand,

∥dH(v)[w]∥Hs ≤ ∥d2B(Ω(s−ρ)
A (v))[Ω(s−ρ)

A (w),Ω(s−ρ)
A (B(v))]∥Hs

+ ∥dB(Ω(s−ρ)
A (v))[Ω(s−ρ)

A (dB(v)[w])]∥Hs . (2.142)

For the first term, we find a bound by using the same technique as the previous one and get

the following estimate,

∥d2B(Ω(s−ρ)
A (v))[Ω(s−ρ)

A (w),Ω(s−ρ)
A (B(v))]∥Hs

≤ ∥ − 6Ω(s−ρ)
A (v)(Ω(s−ρ)

A (w)Ω(s−ρ)
A (B(v)))∥Hs

+ 2(1 + γ)∥Ω(s−ρ)
A (w)Ω(s−ρ)

A (B(v))∥Hs + ∥(Ω(s−ρ)
A (w)Ω(s−ρ)

A (B(v)))x∥Hs . (2.143)

We find the following by using the Lemma (2.1),

∥d2B(Ω(s−ρ)
A (v))[Ω(s−ρ)

A (w),Ω(s−ρ)
A (B(v))]∥Hs

≤ C(∥U0∥3Hm + ∥U0∥4Hm) (2.144)

and the second term is bounded by,

∥dB(Ω(s−ρ)
A (v))[Ω(s−ρ)

A (dB(v)[w])]∥Hs ≤ C∥U0∥5Hm (2.145)

Using (2.144) and (2.145) we obtain the following result,

∥S 4∥Hs ≤
∫ ∆t

0

∫ s

0

∫ ρ

0
C(∥U0∥3Hm + ∥U0∥4Hm + ∥U0∥5Hm)dτdρds ≤ C(∆t)3. (2.146)

Finally, we get the local error in 2.122 and this completes the proof. �

33



2.5.2. Global error in Hs space

Theorem 2.2 Assume there exists a solution of (2.17). If the Hypothesis (2.1) holds for k =

s+1 and Hypothesis (2.2) holds for k = s+3 then there exists ∆̄t > 0 such that for all ∆t ≤ ∆̄t.

∥UN − U(·, tN)∥Hs ≤ Cs(∆t)2, (2.147)

where UN is Strang splitting solution and ∆t and Cs depends on ∥U0∥Hs+3 and T where T ≥
n∆t.

Proof To prove the global error in H s(R) we use the local error estimate and results for

linear and nonlinear parts of the BHE. The proof relies on the induction argument.

We start with assuming that Hypothesis (2.1) and Hypothesis (2.2) holds for k = s.

We use the same notation as in ( (Holden, Lubich and Risebro, 2013)), we take

Uk
N = Ω

(N−k)∆t
A+B (Uk) = Ω(N−k)∆t(Uk) (2.148)

as the exact solution to (3.1) and we assume that

∥Uk∥Hs ≤ M, (2.149)

∥Uk∥Hs+3 ≤ C1, (2.150)

∥Uk − u(tk)∥Hs ≤ ζ∆t, (2.151)

holds for all k ≤ N − 1. We need to show that the above inequalities are true for k = N

where C1 is a constant from Lemma (2.1) and ζ = K(M, T )cs(C1) where K(M,T ) is given in

(2.21) and cs(C1) is a constant from Lemma (2.5). Using the telescope sum and the triangle

inequality, we write the error as follows,

∥UN − U(tN)∥Hs = ∥
N−1∑
k=0

uk+1
N − uk

N∥Hs ≤
N−1∑
k=0

∥uk+1
N − uk

N∥Hs , (2.152)
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by using the notation we get,

∥UN − U(·, tN)∥Hs ≤
N−1∑
k=0

∥Ω(N−k−1)∆t(Π∆t(Uk) − (Ω∆t(Uk))∥Hs . (2.153)

For k ≤ N − 2 we get by using the Hypothesis (2.2),

∥Π∆t(Uk)∥Hs = ∥Uk+1∥Hs ≤ M, (2.154)

and the exact solution,

∥Ω∆t(Uk)∥Hs ≤ ∥Ω∆t(Uk) −Ω∆t(U(tk))∥Hs + ∥Ω∆t(U(tk))∥Hs , (2.155)

by using (2.21) we get,

∥Ω∆t(Uk)∥Hs ≤ K(M,T )∥Uk − U(tk)∥Hs + ∥U(tk+1)∥Hs ≤ K(M,T )k∆t + ρ, (2.156)

≤ M. (2.157)

Hence using the Hypothesis (2.1) and the results in (2.154) and (2.156) for k ≤ N − 1 we

obtain,

∥Ω(N−k−1)∆t(Π∆t(Uk) − (Ω∆t(Uk))∥Hs ≤ K(M, T )cs(C1)(∆t)3. (2.158)

Summing up all term and using N∆t = T ,

∥UN − U(tN)∥Hs ≤ NK(M,T )cs(C1)(∆t)3 ≤ k(∆t)3. (2.159)

We also need to prove the boundedness UN . If we choose k∆t ≤ M−ρ and use the Hypothesis

(2.2),

∥UN∥Hs = ∥UN − U(tN)∥Hs + ∥U(tN)∥Hs ≤ M − ρ + ρ ≤ M. (2.160)
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To show that UN is bounded in Hs+3(R),we write

∥UN∥Hs+3 = ∥Ω∆t/2
A ◦Ω∆t

B ◦Ω∆t/2
A (UN−1)∥Hs+3 ≤ ∥Ω∆t

B (UN−1)∥Hs+3 , (2.161)

where we have used the boundedness of the linear solution and Lemma (2.2) such that

∥Ω∆t
B (UN−1)∥Hs+3 ≤ 2M as long as ∥UN−1∥Hs+3 is bounded. Thus using the Lemma (2.1) we get

the following result,

∥UN∥Hs+3 ≤ e2α1 M∆t∥UN−1∥Hs+3 ≤ C. (2.162)

Hence we get the following result,

∥UN − U(·, tN)∥Hs ≤
N−1∑
k=0

∥Ω(n−k−1)∆t(Π∆t(U(tk)) − (Ω∆t(U(tk)))∥Hs

≤
N−1∑
k=0

K(R,T )∥Π∆t(U(tk)) −Ω∆t(U(tk))∥

≤ NK(R,T )c1(C0)(∆t)3

≤ T K(R,T )c1(C0)(∆t)2

≤ C(∆t)2, (2.163)

this completes the proof. �
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CHAPTER 3

NUMERICAL RESULTS

In this chapter, we present numerical experiments for the Lie-Trotter and Strang split-

ting methods applied to the BHE. In the previous chapter, we have proved the theoretical

results for these operator splitting methods, we need to show that we have the correct numer-

ical convergence rates for ∆t.

In the numerical examination, we also consider the CPU runtimes and accuracy of

the errors. First, we need to introduce the methods which we use for the time and space

discretizations. Then, we will give the results for the BHE with given initial and boundary

conditions for the different diffusion constants.

3.1. Numerical Results for the Burgers-Huxley Equation

We consider the Burgers-Huxley equation in the form,

Ut + αUUx − ϵUxx = β(1 − U)(U − γ)U, (3.1)

for α = β = 1, γ = 0.5, with initial and boundary conditions as follows (Jiwari and Mittal,

2011),

U(x, 0) = sin(πx), 0 ≤ x ≤ 1

U(0, t) = U(1, t) = 0, 0 ≤ t ≤ T. (3.2)

When we apply the operator splitting on Burgers-Huxley equation, we obtain the two sube-

quations as follows,

ut = A(u) = ϵuxx, (3.3)

vt = B(v) = β(1 − v)(v − γ)v − αvvx, (3.4)
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which are solved subequently for small time steps ∆t. We will use the Chebyshev Differen-

tiation Matrices for the first and the second derivative of u in (3.3) and (3.4). To find these

matrices, we will give the following theorem,

Theorem 3.1 (Trefethen) For each N ≥ 1, let the rows and columns of the (N + 1) × (N + 1)

Chebyshev spectral differentiation matrix DN be indexed from 0 to N. The entries of this

matrix are

(DN)00 =
2N2 + 1

6
, (DN)NN = −

2N2 + 1
6

,

(DN) j j =
−x j

2(1 − x j)2 , j = 1, . . . ,N − 1 ,

(DN)i j =
ci

c j

(−1)i+ j

(xi − x j)
, i , j, i, j = 1, . . . ,N − 1 ,

where

ci =

 2 i=0 or N,

1 otherwise.

A picture makes the pattern clearer
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The jth column of DN contains the derivative of the degree N polynomial interpolant

p j(x) to the delta function supported at x j, sampled at the grid points xi.

For the time integration of the nonlinear part, we consider the semi-implicit RK method

wt = B(w) = β(1 − w)(w − γ)w − αwwx. (3.5)

The semi-implicit Runge-Kutta method is given as follows,

wn+1
i = wn

i + b1k1 + b2k2,

k1 = ∆t(1 − a1F(wi)∆t)−1B(wi),

k2 = ∆t(1 − a2F(wi + ak1)∆t)−1B(wi + ak1), (3.6)

where

F(w) = B(w)w = −3βw2 + 2β(1 + γ)w − γ,

b1 = −0.41315432, b2 = 1 − b1,

a1 = 1 +

√
6

6
, a2 = 1 −

√
6

6
,

a =
−6 −

√
6 +

√
58 + 20

√
6

6 + 2
√

6
. (3.7)

Therefore we obtain for the first subequation,

du
dt
= Au, (3.8)

where A is the Chebyshev differentiation matrix for uxx. For the second part (nonlinear part),

we apply the semi-implicit RK scheme, which is well-known for the numerical stability and

less computational cost.
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3.1.1. Lie-Trotter Splitting Solutions

Since there is no exact solution to (3.1), we compare the results to the higher order

exponential method to prove convergence of the Lie-Trotter splitting and show the correct

convergence rates. The time step length ∆t = 0.001 is used for the numerical experiment. The

Figure 3.1 and Figure 3.2 show the layer behaviour of the problem at different values of time

t and ϵ.
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Figure 3.1. Lie-Trotter splitting solutions of BHE for different values of ϵ at T= 0.2.
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Figure 3.2. Lie-Trotter splitting solutions of BHE for different values of time at ϵ = 2−9.
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Figure 3.3. Lie-Trotter splitting solutions of BHE for ∆t = 0.001 and ϵ = 2−5.

2.6 2.7 2.8 2.9 3 3.1 3.2 3.3 3.4 3.5
−4.2

−4

−3.8

−3.6

−3.4

−3.2

−3

−2.8

−2.6

−2.4

−2.2

Log(N.EVAL) 

lO
G

(E
R

R
O

R
)

Lie−Trotter Splitting

 

 

1

1

1

L
1

L
2

L∞

Figure 3.4. Order of L1, L2 and L∞ errors.

The errors are given in Table 3.1 and in the Figure 3.3 Lie-Trotter solution is given for

∆t = 0.001. Finally in Figure 3.4, we give the expected orders. We observe that Lie-Trotter

splitting obtain numerical convergence results which is correct with the theoretical results.

We also check the running times for Lie-Trotter splitting and nonsplit solution in Table 3.2.

We observe that, Lie-Trotter splitting results in faster CPU runtimes.
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ϵ = 2−3 ϵ = 2−7

T ∆t = 0.001 ∆t = 0.002 Order ∆t = 0.001 ∆t = 0.002 Order
0.2 8.0990e − 04 0.0016 0.9823 0.0016 0.0031 0.9542
0.4 8.2993e − 04 0.0017 1.0345 0.0109 0.0212 0.9597
0.6 5.3939e − 04 0.0011 1.0281 0.0137 0.0263 0.9409
0.8 3.1277e − 04 6.2554e − 04 1 0.0096 0.0186 0.9542
1 1.7619e − 04 3.5230e − 04 0.9997 0.0065 0.0126 0.9549

Table 3.1. Estimated errors and convergence rates for ϵ = 2−3 and ϵ = 2−7.

time step L1 L2 L∞ S R NR
0.02 0.0566 0.0113 0.0035 0.5858 2.0430
0.01 0.0284 0.0057 0.0018 0.7763 4.0540

0.002 0.0057 0.0011 3.5230e − 04 1.1576 5.3499
0.001 0.0028 5.7345e − 04 1.7619e − 04 2.1738 15.5342

0.0005 0.0014 2.8577e − 04 8.8101e − 05 4.0955 16.1621

Table 3.2. Estimated errors and convergence rates for ϵ = 2−3 at fixed time T .
(SR=Splitting Runtime, NR=Nonsplitting Runtime)

3.1.2. Strang Splitting Solutions

The numerical convergence rates for ∆t are found similar as for the Lie-Trotter split-

ting method. Since there is no exact solution we use a reference solution and prove the second

order convergence rates by comparing the split solution to the solution which is found by

using the semi-implicit RK method.

The numerical results are presented in Figures 3.5, Figure 3.6 and Figure 3.7 for dif-

ferent values of ϵ and T . Figure 3.8 shows the computed solution in x − t plane. Expected

orders are shown in Figure 3.9.

The convergence of the Strang splitting solution is given by Table 3.3. It shows that

if the grid point increase, we get the stable solution. Since there is no exact solution to BHE

for given initial and boundary condition, we compare the numerical results with the reference

solutions which are obtained by using the Differential Quadrature method (Jiwari and Mittal,

2011). These solutions for given time T and space x are given in Table 3.4
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Figure 3.5. Strang splitting solutions of BHE for different values of time at ϵ = 2−1.
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Figure 3.6. Strang splitting solutions of BHE for different values of time at ϵ = 2−9.
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Figure 3.7. Strang splitting solutions of BHE for different values of ϵ at time T=0.1.

Figure 3.8. Strang splitting solutions of BHE for ∆t = 0.001 and ϵ = 2−5.
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Figure 3.9. Order of L1, L2 and L∞ errors.

T ϵ N = 8 N = 10 N = 20 N = 50
0.2 2−2 0.593005 0.593038 0.593037 0.593037

2−16 0.870798 0.865167 0.865763 0.865763
0.4 2−2 0.353251 0.353265 0.353265 0.353265

2−16 0.502698 0.502690 0.502690 0.502690
0.6 2−2 0.206562 0.206568 0.206568 0.206568

2−16 0.023272 0.023861 0.023860 0.023860
0.8 2−2 0.118291 0.118294 0.118294 0.118294

2−16 0.030732 0.030741 0.030741 0.030741
1.0 2−2 0.066753 0.066752 0.066752 0.066752

2−16 0.029940 0.029945 0.029945 0.029945

Table 3.3. Convergence of Strang splitting for BHE at different values of ϵ and time.

We solve the Burgers-Huxley equation in (3.1) by without splitting using the semi-

implicit Runge Kutta method and compare the Strang splitting solution with these solutions

and get the following results.

The errors are given in Table 3.5 and in the Figure 3.9 we see the expected orders

for the Strang splitting method. In the Table 3.6, numerical convergence rates are given for

∆t = 0.001 and ∆t = 0.0005.
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T x ϵ Strang splitting solution Reference solution
0.1 0.25 2−3 0.52586 0.52588

2−7 0.56849 0.56854
0.9 0.25 2−3 0.15065 0.15062

2−7 0.18190 0.18172

Table 3.4. Comparison between the split and the reference solution for N = 21 and
∆t = 0.001.

Time Step L1 L2 L∞
10−3 0.0489 0.0103 0.0038

10−3/2 0.0238 0.0050 0.0018
10−3/4 0.0118 0.0025 9.0087e − 04
10−3/8 0.0059 0.0012 4.4465e − 04

10−3/10 0.0047 9.495e − 04 3.5469e − 04

Table 3.5. Estmated errors for ϵ = 2−9 at a fixed time T .

ϵ = 2−9

T ∆t = 0.001 ∆t = 0.0005 Order
0.2 0.087082 0.022781 1.9345
0.4 0.075154 0.020701 1.8601
0.6 0.064051 0.018097 1.8234
0.8 0.56221 0.015092 1.8976
1 0.048867 0.010773 2.1818

Table 3.6. Estimated errors and convergence rates for ϵ = 2−9 .
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CHAPTER 4

CONCLUSION

In this thesis, we investigated the convergence of the operator splitting methods, namely

Lie-Trotter and Strang splitting method in Sobolev spaces for BHE. The analyses depend on

the differential theory of operators in Banach spaces. Numerical quadratures are used for

the error terms. We adopted the same idea in (Holden, Lubich and Risebro, 2013) for the

proof of the local and global errors of the splitting methods. We proved first and second order

convergence of the Lie-Trotter and Strang splitting methods in Hs(R).

In the numerical experimentation, since there is no exact solution of the BHE for given

initial and boundary conditions, we compare the numerical results with the reference solution.

We divide the problem into linear and nonlinear parts and solve each subproblems connected

the via-initial conditions. We implement different schemes for the subproblems from the

splitting process, and test them to find the best combination for the operator splitting. We

observe that Chebyshev grid points produced accurate solutions. Comparing the technique in

(Jiwari and Mittal, 2011), we solve the BHE in a simpler way by using the operator splitting

methods. We presented the errors of the splitting process measured by L1, L2 and L∞ norms

and investigateed the numerical convergence rates for ∆t. Finally, numerical results show that,

expected order of the accuracy for Lie-Trotter and Strang splitting methods are confirmed.
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APPENDIX A

NUMERICAL NTEGRATION

Numerical integration computes the approximations to the definite integrals by using

numerical techniques. Consider the definite integral,

I( f ) ≡
∫ b

a
f (x)dx. (A.1)

If the function f (x) is continuous on the closed interval [a, b], so that I( f ) exists.

In this appendix, we introduce the one dimensional quadrature formulas and give the

Peano Kernel theorem. We will use this theorem to show the error terms in a compact form.

A.1. One Dimensional Quadratures

Quadrature formula is a method for approximate of the definite integrals. We consider

a quadrature formula as follows (Valeov, 2010),

Qn( f ) =
n∑

k=1

αi f (xi), (A.2)

where xi are called nodes of the quadrature formula Qn and αi are called coefficients of the

quadrature formula for k = 1, ...n. If f ∈ Cn+1([a, b]) and Qn be a quadrature formula of degree

n then the error functional is given as,

En( f ) = Qn( f ) −
∫ b

a
f (x)dx, (A.3)

There are different forms for (A.3) exist, but we deal with the Peano Kernel form, which is

defined as follows.
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A.1.1. The Peano Kernel Theorem

We begin with a verification of the expansion of f (x) as a Taylor polynomial and error

term expressed as an integral. Suppose that f n+1 exists on [a, b], (Phillips, 2003) then

f (x) = f (a) + f ′(a)(x − a) + ... +
f (n)(a)(x − a)

n!
+ Rn( f ), (A.4)

for a ≤ x ≤ b, where

Rn( f ) =
1
n!

∫ x

a
f (n+1)(t)(x − t)ndt. (A.5)

By using integration by parts in (A.5) we get,

Rn( f ) = − f (n)(a)
n!

(x − a)n + Rn−1( f ). (A.6)

A second application of this recurrence relation yields,

Rn( f ) = − f (n)(a)
n!

(x − a)n − f (n−1)(a)
(n − 1)!

(x − a)n−1 + Rn−2( f ). (A.7)

Applying the same recurrence relation n times and noting that,

R0( f ) =
∫ b

a
f ′(t)dt = f (x) − f (a). (A.8)

We can write if f (n+1) is continuous,

Rn( f ) =
f (n+1)(ξx)

n!

∫ x

a
(x − t)ndt =

f (n+1)(ξx)
(n + 1)!

(x − a)n+1. (A.9)

where a < ξx < x.
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Definition A.1 For any fixed real number x and any nonnegative integer n, we write (x − t)n
+

to be denote the function of + for −∞ < t < ∞ as follows,

(x − t)n
+ =

 (x − t)n , −∞ < t ≤ x,

0 , t > x.

This is called a truncated power function.

With the definition of the truncated power function, the expansion of f as a Taylor polynomial

plus remainder can be written as (A.4) where,

Rn( f ) =
1
n!

∫ b

a
f (n+1)(t)(x − t)n

+dt. (A.10)

Definition A.2 Let f ∈ Cn+1([a, b]), Qn be a quadrature formula of degree n ≥ 0, let the error

function En, be defined in (A.3). Then the function Kn(t) = En(x − t)n
+ is called the Peano

kernel of the quadrature formula Qn of degree n.

Theorem A.1 Let f ∈ Cn+1([a, b]) where n ≥ 0 and Qn be a quadrature formula. Then the

error functional En can be represented as

En( f ) =
1
n!

∫ b

a
Kn(t) f (n+1)(t)dt, (A.11)

where Kn(t) is the peano kernel of the quadrature Qn of degree n (Valeov, 2010).

A.1.2. Peano Kernel for The Rectangle Rule

Suppose that we want to approximate the integral as follows,

∫ ∆t

t0
f (x)dx ≈ f (t0)∆t, (A.12)
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which is known as one dimensional rectangle rule where t0 = 0. The error is given as,

E( f ) = ∆t f (t0) −
∫ ∆t

t0
f (x)dx, (A.13)

we get the Peano kernel for the rectangle rule as follows,

K(t) = E((x − t)0
+) = ∆t(0 − t)0

+ −
∫ ∆t

t0
(x − t)0

+dx = t − ∆t. (A.14)

Hence the error can be written as,

E( f ) =
∫ ∆t

t0
K(t) f ′(t)dt. (A.15)

A.1.3. Peano Kernel for The Midpoint Rule

The midpoint rule is given as,

∫ ∆t

t0
f (x)dx ≈ f

(
∆t
2

)
∆t. (A.16)

We obtain the Peano kernels as follows,

K1(t) = E((x − t)0
+) = ∆t

(
∆t
2
− t

)0

+

−
∫ ∆t

t0
(x − t)0

+dx = t, (A.17)

K2(t) = E((x − t)1
+) = ∆t

(
∆t
2
− t

)
+

−
∫ ∆t

t0
(x − t)+dx (A.18)

= ∆t
(
∆t
2
− t

)
− (∆t − t)2

2
. (A.19)
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A.2. Two Dimensional Quadratures

We will derive a two dimensional midpoint rule for the double integral (Nilsen, 2011)

∫ h

0

∫ x

0
f (x, y)dydx. (A.20)

The Taylor series expansion for F(x) in Cn+1([0, 1]) is given as

F(1) = F(0) + F′(0) +
F′′(0)

2!
+ ... +

F(n)(0)
n!

+
F(n+1)(ξ)
(n + 1)!

, (A.21)

for ξ ∈ [0, 1]. Define the parametrization of F as

F(t) = f (a + th, b + tk), (A.22)

for some f (x, y) and t in [0, 1]. We assume that f (x, y) has continuous partial derivatives up to

order n+ 1 at all points in an open set containing the line segment joining the points (a, b) and

(a + h, b + k) in its domain. We only derive the formula for n = 1 (see (Adams, 2003), for n).

The derivatives of F(t) is given as

F′(t) = h fx(x + th, y + tk) + k fy(x + th, y + tk),

F′′(t) = h2 fxx(x + th, y + tk) + 2hk fxy(x + th, y + tk) + k2 fyy(x + th, y + tk). (A.23)

Thus by using (A.21) and (A.22) we obtain

F(1) = f (a + h, b + k) = f (a, b) + h fx(a + h, b + k) + k fy(a + h, b + k)

+
1
2

(
h2 fxx(a + ξh, b + ξk) + 2hk fxy(a + ξh, b + ξk)

)
+k2 fyy(a + ξh, b + ξk) + ... (A.24)
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Letting h = x − a and k = y − b, we obtain the second order Taylor formula for f (x, y),

f (x, y) = f (a, b) + (x − a) fx(a, b) + (y − b) fy(a, b)

+
1
2

(
h2 fxx(a + ξ(x − a), b + ξ(y − b))

)
+2hk fxy(a + ξ(x − a), b + ξ(y − b))

+k2(h2 fyy(a + ξ(x − a), b + ξ(y − b)) (A.25)

If we return to the double integral, we obtain using (A.25)

∫ h

0

∫ x

0
f (x, y)dydx. =

∫ h

0

∫ x

0
f (a.b)dydx + R( f ), (A.26)

where

R( f ) =
∫ h

0

∫ x

0

(
(x − a) fx(a, b) + (y − b) fy(a, b)

)
dydx

+

∫ h

0

∫ x

0

1
2

(
h2 fxx(a + ξ(x − a), b + ξ(y − b))

)
+2hk fxy(a + ξ(x − a), b + ξ(y − b))

+k2(h2 fyy(a + ξ(x − a), b + ξ(y − b))dydx. (A.27)

The integral on the right-hand-side in (A.26) is just the area of integration domain times the

function itself. Thus, an approximation for the double integral is given as

∫ h

0

∫ x

0
f (x, y)dydx =

h
2

f (a, b) + R( f ), (A.28)

and the error is given as

E( f ) =
∫ h

0

∫ x

0
f (x, y)dydx − h2

2
f (a, b) = R( f ), (A.29)
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which by (A.27) is bounded as

|E( f )| ≤ max
T
| fx|

∣∣∣∣∣∣
∫ h

0

∫ x

0
(x − a)dydx

∣∣∣∣∣∣ +max
T
| fy|

∣∣∣∣∣∣
∫ h

0

∫ x

0
(y − b)dydx

∣∣∣∣∣∣
+

h2

2
max

T
| fxx|

∫ h

0

∫ x

0
(x − a)2dydx

+2hk max
T
| fxy|

∫ h

0

∫ x

0
(x − a)(y − b)dydx

+
h2

2
max

T
| fyy|

∫ h

0

∫ x

0
(y − b)2dydx (A.30)

where T = (x, y) : 0 ≤ y ≤ x ≤ h. By evaluating all of the above integrals we get the following

|E( f )| ≤ max
T

∣∣∣∣∣∂ f
∂x

∣∣∣∣∣ ∣∣∣∣∣13h3 − a
2

h2
∣∣∣∣∣ +max

T

∣∣∣∣∣∂ f
∂y

∣∣∣∣∣ ∣∣∣∣∣16h3 − 2
2

h2
∣∣∣∣∣

+
h2

2
max

T

∣∣∣∣∣∣∂2 f
∂x2

∣∣∣∣∣∣
∣∣∣∣∣∣14h4 − 2a

3
h3 +

a2

2
h2

∣∣∣∣∣∣
+hk max

T

∣∣∣∣∣∣ ∂2 f
∂x∂y

∣∣∣∣∣∣
∣∣∣∣∣14h4 − 2b

3
h3 − a

3
h3 + abh2

∣∣∣∣∣
+

k2

2
max

T

∣∣∣∣∣∣∂2 f
∂y2

∣∣∣∣∣∣
∣∣∣∣∣∣ 1
12

h4 − b
3

h3 +
b2

2
h2

∣∣∣∣∣∣ , (A.31)

which is the error bound for the two dimensional midpoint rule in (A.28).
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APPENDIX B

SOBOLEV SPACES

The Sobolev spaces are important in analysis and the theory of the partial differential

equations. The aim of this appendix is to give a brief overview on basic results of the theory

of the Sobolev spaces with the imbedding lemmas and give the definition of weak derivative.

B.1. Sobolev Spaces

Let us denote the linear space of p−th order integrable functions on a bounded domain

Ω in Rn as Lp(Ω), and L∞(Ω) as the linear space of essentially bounded functions which are

Banach space with respect to norms (Hoppe, 2010),

∥u∥p :=
(∫
Ω

|u(x)|pdx
)1/p

, (B.1)

∥u∥∞ := esssupx∈Ω|u(x)|. (B.2)

For p = 2, the space L2(Ω) is a Hilbert space with respect to the inner product,

(u, v) :=
∫
Ω

uvdx. (B.3)

Since the Sobolev spaces are based on the weak derivative we need to give the definition of

the weak derivative.

Definition B.1 (Hoppe, 2010) Let u ∈ L1(Ω) and α ∈ Nd
0. The function u is said to have a

weak derivative Dαwu, if there exists a function v ∈ L1(Ω) such that,

∫
Ω

uDαθdx = (−1)|α|
∫
Ω

vθdx, (B.4)

where θ ∈ C∞0 (Ω). We then set Dαwu := v.
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Definition B.2 The linear space Wm,p(Ω) where p ∈ [1,∞] is given by,

Wm,p(Ω) := u ∈ Lp(Ω)|Dαwu ∈ Lp, |α| ≤ m (B.5)

is called a Sobolev space. It is a Banach space with the norm,

∥u∥m,p,Ω :=

∑
|α|≤m

∥Dαwu∥pp,Ω


1/p

, p ∈ [1,∞), (B.6)

∥u∥m,p,Ω := max
|α|≤m
∥Dαwu∥∞,Ω. (B.7)

We see that Wm,2(Ω) is a Hilbert space with respect to the inner product,

(u, v)m,2,Ω :=
∑
|α|≤m

∫
Ω

DαwuDαwvdx. (B.8)

These spaces are denoted as Hm(Ω) = Wm,2.

B.1.1. Sobolev Spaces of Integer Order

Definition B.3 We call Sobolev space of order 1 on Ω the space

H1(Ω) = u ∈ L2(Ω), ∂xiu ∈ L2(Ω), 1 ≤ i ≤ d. (B.9)

where Ω ⊂ Rd.

Definition B.4 Let m ∈ N. A function u ∈ L2(Ω) belongs to the Sobolev space of order m,

denoted Hm(Ω), if all the derivatives of u up to the order m, in the distributional sense, belong

to L2(Ω). By convention, we note that H0 = L2(Ω).

Theorem B.1 The spaces Hm(Ω), m ≥ 0 with the following inner product are Hilbert spaces:

(u, v)Hm =
∑
|α|≤m

∫
Ω

∂αu(x) ¯∂αu(x)dx, (B.10)
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with the associated norm

∥u∥Hm =

∑
|α|≤m

∥∂αu∥2L2(Ω)


1/2

. (B.11)

Definition B.5 For every 1 ≤ p ≤ ∞ and for every m ∈ N, m ≥ 1, the Sobolev spaces as,

Wm,p = {v ∈ Lp(Ω), ∂αv ∈ Lp(Ω), ∀α ∈ Nd, |α| ≤ m}, (B.12)

endowed with the norm,

∥v∥W1,p =

∑
|α|≤m

∫
Ω

|∂αv|p


1/p

. (B.13)

We will consider here the spaces Wm,2(Ω) = Hm(Ω). We will use the auxilary lemmas in the

Sobolev spaces which are about the imbedding results and the Banach algebra property. It is

clear from the definition of the Hilbert space, we can say that Hm(R) is imbedded in Hn(R) for

m > n in the following way,

∥v∥Hn ≤ ∥v∥Hm , (B.14)

for v ∈ Hn(R).

The first lemma shows that Hm(R) is imbedded in L∞(R) for m ≥ 1.

Lemma B.1 If v ∈ Hm(R) for m ≥ 1, then v ∈ L∞(R). Hence we can write the following,

∥v∥L∞(R) ≤
1
√

2
∥v∥H1 ≤ Cm∥v∥Hm , (B.15)

where Cm depends only on m.

The proof of this lemma is given in (Nilsen, 2011) in detailed.
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Lemma B.2 The space Hm is a Banach algebra for m ≥ 1. In particular, if u, v are in Hm

then,

∥uv∥Hm ≤ Cm∥u∥Hm∥v∥Hm . (B.16)

We refer (Nilsen, 2011) for the detailed proof.
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APPENDIX C

DERIVATIVE IN BANACH SPACES

In this appendix, we give the definition of the Fréchet differential since we will con-

sider the differentiability of the operators in Banach spaces. Then we will explain the rules

for this differential.

C.1. The Fréchet Derivative

We introduce the Fréchet differential which is a map between the Banach spaces. Then

we derive the elementary rules for differentiation.

Definition C.1 (Jost, 2010) Let U and V be Banach spaces, Ω ⊂ U open, f : Ω→ V a map

and x0 ∈ Ω. The map f is said to be differentiable at x0 if there is a continuous linear map

L := D f (x0) : U → V such that

lim
x→x0
x,x0

∥ f (x) − f (x0) − L(x − x0)∥
∥x − x0∥

= 0. (C.1)

D f (x0) is called the derivative of f at x0. f is said to be Fréchet differentiable in Ω if it is

differentiable at every x0 ∈ Ω. L is called Fréchet differential of f at point x0, and is denoted

by,

L = D f (x0). (C.2)

Lemma C.1 (Jost, 2010) Let f be a differentiable at x0. Then D f (x0) is uniquely determined

(Jost, 2010).

Theorem C.1 Let U,V,W be Banach spaces, Ω ⊂ U open, x0 ∈ Ω, f : Ω → V differentiable

at x0, and Λ ⊂ V open with y0 := f (x0) ∈ Λ and g : Λ→ W differentiable at y0. Then g ◦ f is

defined in an open neighborhood of x0 and it is differentiable at x0 with

D(g ◦ f )(x0) = Dg(y0) ◦ D f (x0). (C.3)
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Proof of this theorem is given in detailed in (Jost, 2010).

Definition C.2 Let U,V be Banach spaces, Ω ⊂ U open, x0 ∈ Ω, f : Ω→ V differentiable. If

the derivative D f is differentiable at x0 then f is said to be twice differentiable at x0 and the

derivative of D f in x0 is denoted by D2 f (x0).

Note that f is a function from Ω into V , hence D f is a map from Ω to B(U,V), which is again

a Banach space. Therefore, D2 f (x0) ∈ B(U, B(U,V)).

62



APPENDIX D

MAT-LAB CODES FOR BURGERS-HUXLEY

EQUATION

D.1. Codes for Lie-Trotter Splitting

%%%% Burger huxley u0=sin(pi*x) Lie Trotter splitting

tic

clear all

close all

clc

%for k=1:4

alpha=1;

beta=1;

gama=0.5;

%eps=2^((-k-1));

eps=2^((-2*5)+1);

xp=0;X=1;tp=0;T=1;N=50;

%Nt=500;

dt=0.001;

Nt=(T-tp)/dt

dx=1/N;

%dt=(T-tp)/Nt;

w1=1+(6^(1/2)/6);

w2=1-(6^(1/2)/6);

b1=-0.41315432;

b2=1-b1;

a=(-6-sqrt(6)+sqrt(58+20*sqrt(6)))/(6+2*sqrt(6));

g1(N-1,1)=gama;

[D,x]=chebab(N,0,1);

D2=D^2;

D2=D2(2:N,2:N);

D1=D(2:N,2:N);
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x1=x(2:N);

x=x’;

t=tp:dt:T;

%u0=(1-cos(x1));

u0=sin(pi*x1);

u_sol(:,1)=u0;

D3=diag(diag(D1));

for i=1:Nt

u1=expm(eps*D2*dt)*u0;

k1=dt*(-alpha*u1.*(D1*u1)-beta*(u1.^3)

+(1+gama)*beta*u1.^2-gama*u1)./

(1-w1*(-alpha*D1*u1-D3*u1-3*beta*u1.^2

+2*(1+gama)*beta*u1-g1)*dt);

k2=dt*(-alpha*(u1+a*k1).*(D1*(u1+a*k1))

-beta*((u1+a*k1).^3)+beta*(1+gama)*(u1+a*k1).^2-gama*(u1+a*k1))./

(1-w2*(-alpha*D1*(u1+a*k1)-3*beta*(u1+a*k1).^2

+2*(1+gama)*beta*(u1+a*k1)-g1)*dt);

u2=u1+b1*k1+b2*k2;

u0=u2;

u_sol(:,i+1)=u0;

end

[D,x]=chebab(N,0,1);

AA=D^2;

A=AA(2:N,2:N);

B=D(2:N,2:N);

x1=x’;

f(1:N+1,1)=sin(pi*x1);

u(:,1)=f(2:N,1)’;

for i=1:Nt

jac=eps*A-diag(u(:,i))*B-B*diag(u(:,i))-3*diag((u(:,i)).^2)

+3*diag(u(:,i))-(0.5)*eye(N-1,N-1);

[V,D]=eig(dt*jac);

d=diag(D);

g(:,i)=eps*A*u(:,i)-u(:,i).*(B*u(:,i)) - (u(:,i)).^3

+(1.5)*(u(:,i)).^2-(0.5)*(u(:,i));

u(:,i+1)=expm(jac*dt)*u(:,i)+dt*V*diag(phi1(d,dt,1))

*inv(V)*(g(:,i)-jac*u(:,i));
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end

u1=real(u);

v1(:,1:Nt+1)=0;

v2(:,1:Nt+1)=0;

usol=vertcat(v1,u1,v2);

K=vertcat(v1,u_sol,v2);

litrotter=K;

exp=usol;

er1=max(abs(usol(:,201)-K(:,201)));

er2=max(abs(usol(:,401)-K(:,401)));

er3=max(abs(usol(:,601)-K(:,601)));

er4=max(abs(usol(:,801)-K(:,801)));

er5=max(abs(usol(:,1001)-K(:,1001)))

save(’lie.mat’,’litrotter’);

save(’exp.mat’,’exp’);

plot(x,K(:,201),’ro’)

hold all

plot(x,K(:,401),’b-’)

hold all

plot(x,K(:,601),’--’)

hold all

plot(x,K(:,801),’k*’)

toc

function [D,x] = chebab(N,a,b)

if N==0, D=0; x=1; return, end

x = cos(pi*(0:N)/N)’;

c = [2; ones(N-1,1); 2].*(-1).^(0:N)’;

X = repmat(x,1,N+1);

dX = X-X’;

D = (c*(1./c)’)./(dX+(eye(N+1)));

D = D - diag(sum(D’));

D = D*2/(b-a); x = a+(b-a)/2*(1+x);

Lie-Trotter Solution with different times

clear all

close all

clc

%for k=1:4
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alpha=1;

beta=1;

gama=0.5;

%eps=2^((-k-1));

eps=2^((-2*5)+1);

xp=0;X=1;tp=0;T=1;N=50;Nt=1000;

dx=1/N;

dt=1/Nt;

w1=1+(6^(1/2)/6);

w2=1-(6^(1/2)/6);

b1=-0.41315432;

b2=1-b1;

a=(-6-sqrt(6)+sqrt(58+20*sqrt(6)))/(6+2*sqrt(6));

g1(N-1,1)=gama;

[D,x]=chebab(N,0,1);

D2=D^2;

D2=D2(2:N,2:N);

D1=D(2:N,2:N);

x1=x(2:N);

x=x’;

t=tp:dt:T;

%u0=(1-cos(x1));

u0=sin(pi*x1);

u_sol(:,1)=u0;

D3=diag(diag(D1));

for i=1:Nt

u1=expm(eps*D2*dt)*u0;

k1=dt*(-alpha*u1.*(D1*u1)-beta*(u1.^3)

+(1+gama)*beta*u1.^2-gama*u1)./

(1-w1*(-alpha*D1*u1-D3*u1-3*beta*u1.^2

+2*(1+gama)*beta*u1-g1)*dt);

k2=dt*(-beta*(u1+a*k1).*(D1*(u1+a*k1))

-beta*((u1+a*k1).^3)+beta*(1+gama)*(u1+a*k1).^2

-gama*(u1+a*k1))./(1-w2*(-alpha*D1*(u1+a*k1)

-3*beta*(u1+a*k1).^2+2*(1+gama)*beta*(u1+a*k1)-g1)*dt);

u2=u1+b1*k1+b2*k2;

u0=u2;
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u_sol(:,i+1)=u0;

end

plot(x1,u_sol(:,201),’ro’)

hold all

plot(x1,u_sol(:,301),’b-’)

hold all

plot(x1,u_sol(:,501),’--’)

hold all

plot(x1,u_sol(:,701),’k*’)

D.2. Codes for Strang Splitting

%%%% Burger huxley u0=sin(pi*x)full_semi_implicit

%tic

clear all

close all

clc

alpha=1;

beta=1;

gama=0.5;

%eps=2^((-k-1));

eps=2^((-2*5)+1);

xp=0;X=1;tp=0;T=1;N=50;

%Nt=500;

dt=0.0001;

Nt=(T-tp)/dt;

dx=1/N;

%dt=(T-tp)/Nt;

w1=1+(6^(1/2)/6);

w2=1-(6^(1/2)/6);

b1=-0.41315432;

b2=1-b1;

a=(-6-sqrt(6)+sqrt(58+20*sqrt(6)))/(6+2*sqrt(6));

g1(N-1,1)=gama;

[D,x]=chebab(N,0,1);
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D2=D^2;

D2=D2(2:N,2:N);

D1=D(2:N,2:N);

x1=x(2:N);

x=x’;

t=tp:dt:T;

u0=sin(pi*x1);

u_sol(:,1)=u0;

D3=diag(diag(D1));

g2=eig(D2);

for i=1:Nt

u1=u0;

k1=dt*(eps*D2*u1-alpha*u1.*(D1*u1)

-beta*(u1.^3)+(1+gama)*beta*u1.^2-gama*u1)./

(1-w1*(eps*g2-alpha*D1*u1-D3*u1-3*beta*u1.^2

+2*(1+gama)*beta*u1-g1)*dt);

k2=dt*(eps*D2*(u1+a*k1)-alpha*(u1+a*k1)

.*(D1*(u1+a*k1))-beta*((u1+a*k1).^3)

+beta*(1+gama)*(u1+a*k1).^2-gama*(u1+a*k1))

./(1-w2*(eps*g2-alpha*D1*(u1+a*k1)-3*beta*(u1+a*k1).^2

+2*(1+gama)*beta*(u1+a*k1)-g1)*dt);

u2=u1+b1*k1+b2*k2;

u0=u2;

u_sol(:,i+1)=u0;

end

v1(:,1:Nt+1)=0;

v2(:,1:Nt+1)=0;

K=vertcat(v1,u_sol,v2);

plot(x,K(:,end),’ro’)

%Strang Splitting Solution

dtt=dt/2;

for i=1:Nt

u1=expm(eps*D2*dtt)*u0;

k1=dt*(-alpha*u1.*(D1*u1)-beta*(u1.^3)

+(1+gama)*beta*u1.^2-gama*u1)

./(1-w1*(-alpha*D1*u1-3*beta*u1.^2

+2*(1+gama)*beta*u1-g1)*dt);
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k2=dt*(-beta*(u1+a*k1).*(D1*(u1+a*k1))-

beta*((u1+a*k1).^3)+beta*(1+gama)*(u1+a*k1).^2

-gama*(u1+a*k1))./(1-w2*(-alpha*D1*(u1+a*k1)

-3*beta*(u1+a*k1).^2+2*(1+gama)*beta*(u1+a*k1)-g1)*dt);

u2=u1+b1*k1+b2*k2;

u3=expm(eps*D2*dtt)*u2;

u0=u3;

u_sol(:,i+1)=u0;

end

v1(:,1:Nt+1)=0;

v2(:,1:Nt+1)=0;

K=vertcat(v1,u_sol,v2);

litrotter=K(end,:);

save(’lie.mat’,’litrotter’);

plot(x,K(:,201),’ro’)

hold all

plot(x,K(:,401),’b-’)

hold all

plot(x,K(:,601),’--’)

hold all

plot(x,K(:,801),’k*’)

function ordertriangle(order, varargin)

if(nargin==2)

b_loglog = varargin{1};

else

b_loglog = false;

end

if(nargin==3)

color = varargin{2};

else

color = ’k’;

end

[x y] = ginput(2);

posinit = struct(’x’, x(1), ’y’, y(1));

width = x(2)-x(1);

if(b_loglog)
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a = y(1)/( x(1)^order);

posy = a* x(2)^order;

posxt= sqrt(x(2)*x(1));

posyt= a* (posxt)^order;

else

posy = (posinit.y+width*order);

posxt = posinit.x+width/2;

posyt = posinit.y+width/2*order;

end

if(order>0)

text(posxt, posyt, sprintf(’%i’, order),...

’VerticalAlignment’,’bottom’,...

’HorizontalAlignment’,’right’);

else

text(posxt, posyt, sprintf(’%i’, -order),...

’VerticalAlignment’,’top’,...

’HorizontalAlignment’,’right’);

end

line([posinit.x (posinit.x+width)

(posinit.x+width) posinit.x],...

[posinit.y posy (posinit.y) posinit.y],...

’Color’, color);

end
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Çiçek Y. and Tanoğlu G.,: "Strang Splitting Methods for Burgers-Huxley Equation.

Applied Mathematics and computation (submitted)."


