
NEW APPROACHES FOR SOLVING
NONLINEAR OSCILLATION PROBLEMS

A Thesis Submitted to
the Graduate School of Engineering and Sciences of

İzmir Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

in Mathematics

by
Sıla Övgü KORKUT UYSAL

June 2015
İZMİR

We approve the thesis of Sıla Övgü KORKUT UYSAL

Examining Committee Members:

Prof. Dr. Gamze TANOĞLU
Department of Mathematics, İzmir Institute of Technology

Prof. Dr. Emine MISIRLI
Department of Mathematics, Ege University

Prof. Dr. Siraj-ul-ISLAM
Department of Basic Sciences, N-W.F.P. University of Engineering & Technology

Assist. Prof. Dr. Fatih ERMAN
Department of Mathematics, İzmir Institute of Technology

Assist. Prof. Dr. Utku ERDOĞAN
Department of Mathematics, Uşak University

25 June 2015

Prof. Dr. Gamze TANOĞLU
Supervisor, Department of Mathematics
İzmir Institute of Technology

Prof. Dr. Oğuz YILMAZ Prof. Dr. Bilge KARAÇALI
Head of the Department of Dean of the Graduate School of
Mathematics Engineering and Sciences

ACKNOWLEDGMENTS

There are several people I need to acknowledge because of their help during the com-

pletion of this thesis. First and foremost, I am indebted my deepest gratitude to my supervisor

Prof. Dr. Gamze TANOĞLU whose valuable help, encouragement, patient guidance and con-

tributive feedback enabled me to carry out this dissertation.

I also thank The Scientific and Technological Research Council of Turkey (TÜBİTAK)

for its financial support during my Ph.D candidature.

I sincerely thank my friends, Nurcan GÜCÜYENEN, Neslişah İMAMOĞLU and

Yeşim ÇİÇEK for all fruitful interactions, suggestions on my research and their friendly emo-

tional supports. Many thanks also to my workmates, Tina BEŞERİ SEVİM, Oya YARKI-

NOĞLU GÜCÜK and Selma EZBER KURTAR, for all the helpful advice. I would like to

thank Barış ÇİÇEK and Berkant USTAOĞLU for their contribution on improving the techni-

cal design of this thesis.

The last but not least, I also extend my thanks to my husband, Umut UYSAL and to

my family. This thesis would not have accomplished without their encouragement, patience

and their endless supports.

ABSTRACT

NEW APPROACHES FOR SOLVING NONLINEAR OSCILLATION
PROBLEMS

This thesis proposes two different numerical methods for solving nonlinear oscillation

problems which appear in engineering and physics. Thus, the study is conducted in two parts.

The first part introduces and analyzes the new iterative splitting method. In the construction

of this method I utilize both the iterative splitting process and nonlinear Magnus expansion.

Due to the fact that the iterative splitting procedure is employed, the constructed method

can also be considered as a kind of operator splitting method. The second part presents a new

linearization technique, based on the Newton-Raphson method and the Fréchet derivatives, for

oscillation systems. Duffing oscillator and damped oscillator are used for testing the methods,

respectively. Moreover, the proposed iterative splitting method and the proposed linearization

technique are applied to both Van-der Pol equation and cubic nonlinear Schrödinger equation.

Although the examples considered are a small sample of nonlinear oscillation equations, it is

believed that the methods are easily adapted to solve such problems numerically.

iv

ÖZET

LİNEER OLMAYAN TİTREŞİM PROBLEMLERİNİ ÇÖZMEK İÇİN
YENİ YAKLAŞIMLAR

Bu tez, mühendislik ve fizik alanında karşılaşılan lineer olmayan titreşim problem-

lerinin çözümleri için iki farklı sayısal metot önermektir. Bu yüzden çalışma iki parça halinde

yönetilmektedir. Birinci bölüm yeni iteratif ayırma metodunu tanıtmakta ve analiz etmek-

tetir. Bu metodun oluşturulmasında hem iteratif ayırma sürecinden hem de lineer olmayan

Magnus açılımından yararlanılmıştır. Metodun oluşturulmasında iteratif ayırma yönteminin

kullanılmasından dolayı önerilen metod aynı zamanda operatör ayırma metodun bir çeşidi

olarak da ele alınabilir. İkinci bölüm titreşim problemleri için, Newton-Raphson metodu ve

Fréchet türevlerini baz alan, yeni lineerizasyon tekniği sunar. Metotları test edebilmek için

sırasıyla Duffing osilatör ve sönümlü osilatör kullanılmıştır. Ayrıca, önerilen iteratif ayırma

metodu ve önerilen lineerizasyon tekniği hem Van-der Pol denklemi hem de kübik lineer ol-

mayan Schrödinger denklemine uygulanmıştır. Uygulamalarda lineer olmayan titreşim prob-

lemlerinin az sayıda örneklerinin düşünülmüş olmasına rağmen metodun bu şekildeki prob-

lemlere sayısal olarak kolayca adapte edilebileceğine inanılmaktadır.

v

TABLE OF CONTENTS

LIST OF FIGURES . viii

LIST OF TABLES . x

CHAPTER 1. INTRODUCTION . 1

1.1. Introduction . 1

1.2. Layout of Thesis . 4

CHAPTER 2. THE PROPOSED ITERATIVE SPLITTING METHOD (PISM) 6

2.1. Derivation of PISM . 6

2.1.1. Traditional Operator Splitting Methods . 6

2.1.2. Construction of the Proposed Method . 7

2.2. Convergence Analysis of PISM . 10

2.2.1. Analysis for Bounded Operators . 11

2.2.2. Analysis for Unbounded Operators: Abstract Analysis 16

2.2.3. Convergence Results . 25

CHAPTER 3. NUMERICAL TESTS AND SIMULATIONS: THE PROPOSED

ITERATIVE SPLITTING METHOD . 29

3.1. Duffing Equation . 29

3.2. Van-der Pol Equation . 32

3.3. Nonlinear Schrödinger Equation . 35

3.3.1. Equation in the form: i~∂tΨ = β∂
2
xΨ + α|Ψ|2Ψ . 36

3.3.2. Equation in the form: i~∂tΨ = β∂
2
xΨ + (G(x) + α|Ψ|2)Ψ 40

CHAPTER 4. AN ALTERNATIVE METHOD: THE PROPOSED LINEARIZED

METHOD . 44

4.1. Derivation of the Method . 44

4.2. Application to the Three Oscillation Problems . 46

4.2.1. Damped oscillator . 47

4.2.2. Van-der Pol Equation . 48

4.2.3. Nonlinear Schrödinger Equation . 50

vi

CHAPTER 5. NUMERICAL TESTS AND SIMULATIONS: THE PROPOSED

LINEARIZED METHOD . 52

5.1. Damped Oscillator . 52

5.2. Van-der Pol Equation . 54

5.3. Nonlinear Schrödinger Equation . 56

5.3.1. Equation in the form: i∂tΨ + β∂
2
xΨ + α|Ψ|2Ψ = 0 56

5.3.2. Equation in the form: i∂tΨ + β∂
2
xΨ + (G(x) + α|Ψ|2)Ψ = 0 60

CHAPTER 6. CONCLUSION . 65

REFERENCES . 67

APPENDICES

APPENDIX A. MAGNUS EXPANSION . 71

APPENDIX B. EXPONENTIAL INTEGRATORS . 73

APPENDIX C. ANALYTICAL FRAMEWORK . 75

APPENDIX D. MAT-LAB CODES FOR NEW ITERATIVE SPLITTING 77

APPENDIX E. MAT-LAB CODES FOR FRÉCHET TECHNIQUE . 97

vii

LIST OF FIGURES

Figure Page

Figure 2.1. Diagram for the proposed iterative splitting method. 10

Figure 3.1. The Hamiltonian of Duffing Equation (3.1) for ε = 1 on [0, 10]. 32

Figure 3.2. The Hamiltonian of Duffing Equation (3.1) for ε = 3 on [0, 10]. 32

Figure 3.3. The solution of Van-der Pol Equation (3.6) using PISM on the left, ODE23s

on the right. 33

Figure 3.4. Trajectories of Van-der Pol Equation (3.6) for µ = 10 PISM on the left and

ODE23s on the right. 34

Figure 3.5. The Hamiltonian of Van-der Pol Equation (3.6) for µ = 1 on [0, 60]. 34

Figure 3.6. On the left PISM, exact solution on the right. 38

Figure 3.7. Plots of the global energy error vs time and the absolute error vs. time are

presented for Case 1. 39

Figure 3.8. The numerical solutions are obtained on x ∈ [−20, 5] and t ∈ [0, 3] where

Nx = Nt = 100. 40

Figure 3.9. Global Energy Error is on the left and the comparisons of numerical solu-

tion and exact solution for fixed time on the right for Case 2. 41

Figure 3.10. Probability density of the particle in Equation (3.26) for PISM. 42

Figure 3.11. Probability density of the particle in Equation (3.26) for SMS. 42

Figure 4.1. Diagram for the proposed linearized method. 46

Figure 5.1. Exact solution and PLM for solving equation in 4.10. 53

Figure 5.2. PLM vs ODE45 where α = 1. 54

Figure 5.3. PLM vs. ODE23s obtained for various values of µ. 54

Figure 5.4. Limit cycle obtained from the solutions from PLM and ODE23s. 55

Figure 5.5. The Hamiltonian of Van-der Pol Equation (3.6) for µ = 1 on [0, 60]. 55

Figure 5.6. The numerical solutions are obtained for ∆x = 0.25 and ∆t = 0.01 where

Nx = Nt = 100. 57

Figure 5.7. The numerical solutions are obtained for t ∈ [0, 1] and x ∈ [−15, 10] where

Nx = Nt = 100. The exhibited figures belong to global energy error on the

left and the absolute error on the right. 57

Figure 5.8. Comparison of the numerical solution and the exact solution of the Equa-

tion (5.2) with the initial condition given in (5.7) for various values of tend. . . 62

Figure 5.9. Exact and the numerical solutions of Equation (5.2) at certain time. 63

Figure 5.10. Probability density of the particle in Equation (5.9) for PLM. 63

viii

Figure 5.11. Probability density of the particle in Equation (5.9). PLM is given on the

right whereas the RK2 method on the left. 64

Figure 5.12. The numerical solutions obtained from the RK2 method for t ∈ [0, 5]. 64

ix

LIST OF TABLES

Table Page

Table 3.1. Comparison of errors for several h on [0, 10] interval with various methods

where ε = 10−4. The expected order is 2. 30

Table 3.2. Numerical errors are established for different ∆t and different ε on [0, 1]. . . . 31

Table 3.3. Estimated errors using L∞, L2 and L1 norm for conservation of the mass

with Nx = Nt = 100 where ∆x = 0.25. 39

Table 3.4. Estimated errors using L∞, L2 and L1 norm for conservation of the mass

with Nx = Nt = 100 where ∆x = 0.25. 40

Table 3.5. The CPU runtimes are measured in seconds for different Nt and Nx on

x ∈ [−20, 5] and t ∈ [0, 3]. 41

Table 3.6. Elapsed time for different Nt and Nx. 43

Table 5.1. Numerical errors for different ∆t. Estimated errors using L∞, L2 and L1

norm are obtained comparing with the analytical solution on [0, 1]. 53

Table 5.2. Estimated errors using L∞, L2 and L1 norm for conservation of the mass

with Nx = Nt = 100 where ∆x = 0.25. 58

Table 5.3. Estimated errors using L∞, L2 and L1 norm for conservation of the mass

where t ∈ [0, 3] and x ∈ [−20, 5]. 60

Table 5.4. Estimated errors using L∞, L2 and L1 norm for conservation of the mass

where t ∈ [0, 20] and x ∈ [−20, 5]. 60

Table 5.5. The elapsed time is measured in seconds where t ∈ [0, 3] and x ∈ [−20, 5]. . 60

x

CHAPTER 1

INTRODUCTION

Universally, many phenomena exhibit substantially nonlinear behavior. Thus, non-

linear differential equations appear naturally in engineering and science. Because of this,

remarkable attention has been paid to the solution of nonlinear problems. The aim of this

thesis is to propose two different approaches for numerical solutions of nonlinear oscillation

problems.

1.1. Introduction

Nonlinear oscillations play important role in engineering since a great deal of engi-

neering components arise from vibrating systems that may be modeled by oscillatory sys-

tems, see (Nayfeh and Mook, 1995), (Fidlin, 2006) and (Dimarogonas and Haddad, 1992).

Solving the governing equation and the existence of the exact solution are problematic for

vibration problems. Although the traditional perturbation theory may be used to provide a so-

lution, if there is no small parameter, this theory does not work. To approximate the solution

there are considerable studies in the literature such as homotopy analysis methods (Liao and

Cheung,1998), the harmonic balance method (Mickens, 2001), the homotopy perturbation

method (He, 1999), He’s energy balanced method (Ganji et al., 2008) etc.

A great deal of effort have been also spent for developing numerical solutions of non-

linear oscillation problems. The differential transform method is used in (Tabatabaei and Gün-

erhan, 2014) while the Taylor matrix method has been improved for solving Duffing Equation

in (Bülbül and Sezer, 2013). A compact finite difference scheme has been applied to the

nonlinear Schrödinger equation in (Dehghan and Taleei, 2010). Another technique, based

on finding periodic solutions approximated by a trigonometric series, has been proposed for

second and fourth order Duffing equation in (Groves, 1983). Operator splitting method can

be seen in the study of Lubich in (Lubich, 2008).

From a numerical point of view, the operator splitting method is one of the most known

techniques in the literature. Because the time derivative of the described equation depends on

collecting the operators corresponding to the different processes, it is not always possible to

derive an effective method for solving the sum of these operators. The idea behind the operator

splitting procedures is instead of the sum, apply an effective numerical method to each of the

1

operators separately on the condition of accurate solutions. The beauty of the splitting of the

equation into sub-equations is that each sub-equation easy to comprehend. Moreover, these

sub-equations often lead to major facilities in the analysis of the original equation, see the

survey by (McLachlan and Quispel, 2002) and (Holden, Karlsen, Lie and Risebro, 2010).

The idea of sequential splitting, known as Lie-Trotter splitting, dates back to the 1950s.

In (Bagrinovskii and Gudunov, 1957), this method was first applied to a partial differential

equation. During 1960-1970, the first splitting methods were developed. They were con-

nected with finite difference methods. A renovation of the methods was performed in the

1980s while using the methods for complex processes underlying partial differential methods

(Crandall and Majda, 1980). The simplest type is sequential splitting, which in terms of the

local splitting error is first order accurate in time. A second order and more popular method

is Strang splitting in (Marchuk, 1968) and (Strang, 1968). The split-step method for the

nonlinear Schrödinger equation by (Hardin, Tappert, 1973), which is the first example of a

symplectic integrator for a partial differential equations(PDEs).

There is another sort of splitting method, iterative splitting, which is a recently popular

technique of operator splitting methods. The idea of the iterative splitting method goes back at

least to (Kelly, 1995) in 1995. In the study of Kanney et al., (Kanney et al., 2003), the authors

focused on the convergence of an iterative splitting procedure for nonlinear reactive transport

problems. Faragó and Geiser suggest a new scheme which is based on the combination

of splitting time interval and traditional iterative operator splitting in 2007, see (Faragó and

Geiser, 2007). That technique is used in (Geiser, 2008); (Geiser, 2008). The iterative splitting

method combining with the Newton’s method was studied in (Geiser and Noack, 2011) for

a nonlinear equation. We proposed a method for solving linear time-dependent differential

equations in (Tanoğlu and Korkut, 2012). The question of whether the given method in

(Tanoğlu and Korkut, 2012) can be extended to nonlinear problems motivates our work. The

essential tools in the construction of this new scheme include the iterative splitting process

and the Magnus expansion.

Thesis is concerned with non-linear evolutionary problems

d
dt

u(t) = A(t, u)u(t), 0 ≤ t ≤ tend (1.1)

u(0) = u0 ∈ X (1.2)

where the structure of the unbounded nonlinear operator A(t, u) ∈ [0, tend] × X, suggests a

2

decomposition into two parts

A(t, u(t))u(t) = Tu(t) + V(t, u(t))u(t), u(t) : D(T) ∩ D(V)

with the unbounded operator T : D(T) ⊂ X → X and bounded operator V(t, u) : D(V) ∈
[0, tend]×X → X. In the remainder of this thesis X is real or complex Banach space. Although

we apply suitable difference approximation techniques in order to solve differential operator

from the numerical point of view, to analyze the convergence of the given methods we follow

two approaches:

• When T and V(t) are bounded, we use Taylor series expansion.

• When T is unbounded and V(t) is bounded, we use C0 semigroup approaches combining

with the exponential integrator.

Various nonlinear evolutionary equations were recently analyzed by using the splitting meth-

ods. Descombes and Thalhammer, (Descombes and Thalhammer, 2013), use Lie-Trotter

splitting method was used to deduce the error analysis of non-linear Schödinger equation.

In (Lubich, 2008), cubic nonlinear Schrödinger equation was analyzed for Strang splitting

method. The analysis of Strang splitting method for Vlasov-type equations was given in

(Einkemmer and Ostermann, 2013). The error analysis of higher order splitting method was

carried out in (Koch et al., 2013).

Our analysis combines C0 semigroup approaches with the exponential integrator. The

exponential integrator is a tool to analyze the convergence property of the new iterative split-

ting method. A brief introduction to exponential integrators is given in Appendix B. Our

general reference on the exponential integrator is the survey of Hochbruck and Ostermann,

(Hochbruck and Ostermann, 2010).

The second part of this thesis consists of the alternative linearization technique based

on the Fréchet derivative and Newton-Raphson method. The combination of these two tech-

niques is nowadays popular for solving non-linear equations. It originated with Liu & Wu,

(Liu and Wu, 2000), to solve ordinary differential equations of Duffing-type non-linearity. In

that study, the method is combined with the generalized differential quadrature rule (GDQR).

This method was also applied to Blasius and Onsager equations in (Liu and Wu, 2001).

The method also appears in (Fazel et al., 2013), which is our starting point in. The

authors used the Fréchet derivative to convert the nonlinear differential equation into a linear

one via an iterative process. Likewise, all nonlinear term are left in the old step of variables

in an iteration procedure. Henceforth, Fréchet derivative is useful and efficient in solving

3

nonlinear differential equations. The intention of this thesis is to solve oscillation problems as

a system using Fréchet derivative combined with central difference method.

1.2. Layout of Thesis

This thesis presents two different approaches for solving nonlinear oscillation prob-

lems. The first approach is discussed in Chapter 2 and 3; Chapter 4 and 5 discuss the second

approach.

Chapter 2 aims to construct and analyze a new iterative method for the numerical

solutions of the oscillation equations in the classes of nonlinear science. The idea behind the

construction is based on both the iterative splitting procedure and the Magnus expansion. A

short overview of Magnus expansion is provided in Appendix A. Due to the iterative process

this method can also be considered as a linearization technique. Furthermore, we provide

an overview and comparison with other traditional splitting methods involving the Magnus

expansion. For simplicity we restrict ourselves to second order splitting methods. Section 2.2

analyze of the developed method. We focus on consistency, stability and order. The method

is analyzed for not only bounded operators but also for unbounded ones. To establish the

convergence results we impose extra assumptions both in the bounded and the unbounded

cases. At the end we utilize the "Lady windermere’s fan" argument to complete the proof of

the convergence.

Various numerical examples of the method are given in Chapter 3. The effectiveness is

demonstrated by comparing other splitting methods and ODE23s code in MATLAB. We test

the performance of our construction on the Duffing equation. We observe that the numerical

solutions are in perfect agreement with the theoretical results. Although the traditional split-

ting methods have the reduction of order, our method achieves the expected order, namely 2.

In addition to this, we test our method on different oscillation problems, such as: Van-der Pol

equation and nonlinear Schrödinger equation. Numerical simulations and tests are illustrated

in this Chapter 3.

An alternative method is proposed in Chapter 4 and is based on the Newton- Raphson

and the Fréchet derivatives. Throughout the thesis, it is called as PLM. A brief overview of

these concepts is provided in Appendix C. We introduce the method for nonlinear systems.

In order to see how to apply the proposed method to any nonlinear differential equations we

carry out various nonlinear oscillation equations.

Chapter 5 deals with the numerical tests and simulations for the method proposed in

Chapter 4. The purpose of Chapter 5 is to test the suggested method on various oscillation

problems. We use the damped oscillation equation, the Van-der Pol equation and the nonlinear

4

Schrödinger equation and its solitary waves. The testing parameters are the accuracy, the CPU

time and the conservation of the qualitative properties of the equations.

Finally, Chapter 6, ends with several remarks and a brief conclusion.

5

CHAPTER 2

THE PROPOSED ITERATIVE SPLITTING METHOD

(PISM)

This chapter develops and analyzes the proposed iterative splitting method (PISM).

Section 2.1 is devoted to the construction of PISM after a brief introduction for the tradi-

tional splitting methods. The convergence analysis is investigated in Section 2.2 for not only

bounded operators but also unbounded operators.

2.1. Derivation of PISM

The particular goal of this section is to develop a kind of the second operator splitting

methods combining with some efficient tools. In order to accomplish this, we investigate the

numerical scheme for solving the operators separately providing the efficiency. Therefore,

recall the nonlinear evolutionary problems

∂u
∂t
= A(t, u)u(t), u(0) = u0, 0 ≤ t ≤ tend, (2.1)

where A(t, u) ∈ [0, tend]× X. Assume that A(t, u(t))u(t) = Tu(t)+ V(t, u(t))u(t), u(t) : D(T)∩
D(V) ⊂ X → X with the linear operator T : D(T) ⊂ X → X and nonlinear operator V(t, u) :

D(V) ∈ [0, tend] × X → X. In Subsection 2.1.1, the frequently employed second order splitting

methods are combined with the nonlinear Magnus expansion. Appendix A has an overview on

the nonlinear Magnus expansion. Subsection 2.1.2 suggests a new iterative splitting method

combining the iterative splitting process and the nonlinear Magnus expansion.

2.1.1. Traditional Operator Splitting Methods

Here our main objective is to produce formulas of the well-known second order split-

ting methods by means of the Magnus expansion. For that purpose, we focus on Equation

6

(2.1) and then separate it into two sub-equations as follows:

∂w
∂t
= Tw(t), w(0) = u0 (2.2)

∂v
∂t
= V(t, v)v(t), v(0) = w(t). (2.3)

Note that the numerical solution at time t = nh, as h→ 0, is given by un+1 = Φ
h
T ◦Φh

V(t,u)un, in

which Φh
T and Φh

V(t,u) are numerical flow of Equation (2.2) and Equation (2.3), respectively.

Next consider the second order splitting methods. For convenience of the reader we

give the numerical solutions on [0, h].

• Starting with Strang splitting method, the solution is

Usp(h) = eT h
2 eΩV (h,u(h))eT h

2 u0. (2.4)

Due to the Magnus expansion in Appendix A for the numerical flow of ΩV(h, u(h)), we

obtain

Usp(h) = eT h
2 e

h
2 (V(0,u0)+V(h,u(h)))eT h

2 u0. (2.5)

• Alternatively, using symmetrically weighted splitting,

Usp(h) =
1
2

(eTh eΩV (h,u(h)) + eΩV (h,u(h)) eTh)u0. (2.6)

With the help of the Magnus expansion which is defined in Appendix A for the numer-

ical flow of ΩV(h, u(h)). Thus, we have

Usp(h) =
1
2

(eTh e
h
2 (V(0,u0)+V(h,u(h))) + e

h
2 (V(0,u0)+V(h,u(h))) eTh)u0 (2.7)

For more details, see (Bátkai, Csomós and Nickel, 2009). We will compare the above two

approaches with PISM in Chapter 3. These two splitting methods are given because of this

comparison.

7

2.1.2. Construction of the Proposed Method

This subsection a whole develops the new method. The keypoint of the new approach

is to combine the iterative splitting process, which is a class of operator splitting methods,

with the Magnus expansion. We start with the general initial value problem given in (2.1) on

the time interval [0, tend] where tend ∈ R+.
Our objective is to extend the method, which is constructed for non-autonomous linear

problems in (Tanoğlu and Korkut, 2012), to nonlinear problems. For the sake of clarity, the

second order iterative process is described below on each subinterval [0, h],

u̇1 = Tu1 + V(t, u0)u0 u1(0) = u0, (2.8)

u̇2 = Tu1 + V(t, u2)u2 u2(0) = u0. (2.9)

In general, the formal solution of the sub-equations given in (2.8) and (2.9) on the time interval

[t, t + h] can be written as

ui(t + h) = Φi(t + h, t) U(t) +
∫ t+h

t
Φi (t + h, s)Fi(s) ds, i = 1, 2 (2.10)

where F1 = V(t,U(t))U(t), F2 = Tu1(t) and

Φ1(t + h, t) = ehT

Φ2(t + h, t) = eΩV (h,u(h)).

Due to the time-dependence and nonlinearity of V(t, u), Φ2(t + h, t) is expressed by means of

the nonlinear Magnus expansion. Here ΩV(h, u(h)) is as follows:

ΩV(h) =
∫ h

0
V(s, eΩ

[1]
u0)ds. (2.11)

We utilize from trapezoidal rule in order to get the second order Magnus expansion which is

in accordance with the order of method. It leads to

ΩV(h) =
∫ h

0
V(s, eΩ

[1]
u0)ds =

h
2

(
V(0, u0) + V(h, eΩ

[1]
u0)
)
+ O(h3), (2.12)

8

where eΩ
[1]

u0 corresponds the Equation (2.13). Detailed discussion for the nonlinear Magnus

expansion can be found in (Casas and Iserles, 2006). Substituting in (2.14)

Φ1(t + h, t) = ehT (2.13)

Φ2(t + h, t) = e
h
2 [V(t,u(t))+V(t+h,u1(t+h))]. (2.14)

In regard to the derivation of the proposed method, we approximate the integral in (2.10) using

the trapezoidal rule to obtain. Thus, we have

∫ t+h

t
Φi Fi ds =

h
2

[Fi(t + h) + Φi(t + h, t)Fi(t)] + O(h3). (2.15)

Note thatΦi(t+h, t+h) = I. Combining approximation (2.15) with the iterative schemes (2.8),

(2.9) and rearranging expressions, we obtain the first order approximation

un+1
1 = eTh[un

1 +
h
2

V(tn, u0(tn))un
0] +

h
2

V(tn + h, un+1
0)un+1

0 , (2.16)

and the second order approximation

un+1
2 = e

h
2 [V(tn,un)+V(tn+h,un+1

1)][U(tn) +
h
2

Tun
1] +

h
2

Tun+1
1 , (2.17)

where U(tn+h) = u2(tn+h) and un
i = ui(tn). Repeat this procedure by taking u0(tn) = u2(tn+h)

for next interval until the desired time tend is reached.

9

Figure 2.1. Diagram for the proposed iterative splitting method.

2.2. Convergence Analysis of PISM

This section is devoted to analyze the convergence of the method given in the previous

section. To do so, we study separately two cases:

• When T and V(t) are bounded, we use Taylor series expansion.

• When T is unbounded and V(t) is bounded, we use C0 semigroup combined with the

exponential integrator.

For the convergence issue, we use the concepts of consistency, stability and order. In

our analysis, we define an operator norm ∥.∥X←X on a (complex) Banach space X, (X, ∥.∥X). To

10

simplify the notations, we write ∥.∥ instead of ∥.∥X. Throughout the analyses u(h) and U(h)

represent exact solution and numerical solution, respectively.

Lastly, we utilize the "Lady Windermere’s fan" argument for the convergence results

of both bounded and unbounded cases.

2.2.1. Analysis for Bounded Operators

Although T is unbounded operator, it is possible to accept to be bounded by means of

any difference approximation. We also assume that V(t, u) is bounded operator. In our proofs,

we use the following auxiliary assumptions:

Assumption 2.1 There are non-negative constant K̃, R̃ and M̃ with

sup
0≤t≤tend

∥V(t, u)∥ ≤ K̃,

∥T∥ ≤ R̃ on 0 ≤ t ≤ tend,

∥u(t)∥ ≤ M̃ on 0 ≤ t ≤ tend.

Assumption 2.2 In regard to the Assumption 2.1, there exists a non-negative constant such

that sup0≤t≤tend
∥A(t, u)∥ ≤ S̃ .

Assumption 2.3 Let Assumption 2.1 hold. V(t, u) is bounded linear operator on some Banach

space X. Due to the equation (A.5) and the Assumption 2.1, we get

eΩV (t,u(t)) ≤ et∥V(t,u(t))∥ ≤ etK̃ , (2.18)

where ΩV(t, u) ≈ Ω[2](t). As the convergence of Magnus expansion, we refer to (Casas and

Iserles, 2006) and the references therein.

Assumption 2.4 For existence of Equation (1.1), we guaranteed that the Lipschitz condition

is satisfied. That is,

∥A(t, u) − A(t, ǔ)∥ ≤ LA∥u − ǔ∥.

11

Furthermore, it is valid for V(t, u) operator as follows,

∥V(t, u) − V(t, ǔ)∥ ≤ LV∥u − ǔ∥.

The following remark is a direct consequence of the Assumptions 2.3 and 2.1.

Remark 2.1 Due to the Assumption 2.1 and Assumption 2.3, there exist C1 and C2 such that

∥Φ1(t + h, s)∥ ≤ C1, 0 ≤ s ≤ tend,

∥Φ2(t + h, t)∥ ≤ C2, 0 ≤ s ≤ tend.

Under these conditions, the following consistency and stability analyses are obtained for the

proposed iterative splitting method.

Proposition 2.1 The proposed iterative splitting is first order for only one iteration given in

(2.8) with error bound

∥u(h) − U(h)∥ ≤ βh2. (2.19)

Here β only depends on LV , C1, S̃ and M̃.

Proof

We denote the local error by e j = U(t j) − u(t j), j = 0, 1, 2, . . . , n. For simplicity we

only consider the time interval [0,h]. The exact solution of Equation (1.1) is

u(h) = eThu0 +

∫ h

0
eT (h−s)V(s, u(s))u(s)ds. (2.20)

A primary tool for the derivation of local error representation is variation-of-constant formula.

The first order numerical solution of (2.1) is

U(h) = eThu0 +

∫ h

0
eT (h−s)V(s, u0)u0ds. (2.21)

12

Subtracting (2.45) from (2.46) leads to

∥u(h) − U(h)∥ = ∥
∫ h

0
eT (h−s)V(s, u(s)) − V(s, u0)ds∥.

Assumption 2.4 and Remark 2.1 give

∥u(h) − U(h)∥ ≤ hLVC1∥u(s) − u0∥. (2.22)

To obtain the error bound for ∥u(h) − u0∥ we use Assumption 2.1 and Assumption 2.2,

u(h) = u0 +

∫ h

0
A(s, u(s))u(s)ds

∥u(h) − u0∥ = h∥A(s, u(s))u(s)∥ ≤ hS̃ ∥u∥

∥u(h) − u0∥ ≤ hS̃ M̃. (2.23)

By substituting (2.23) in Equation (2.22), we get

∥u(h) − U(h)∥ ≤ h2LVC1S̃ M̃ = βh2, (2.24)

where β = LVC1S̃ M̃. �

Proposition 2.2 The new iterative splitting is the second order for two iterations given in

Equation (2.8) and Equation (2.9) with error bound

∥u(h) − U(h)∥ ≤ γh3. (2.25)

Here γ only depends on C2, R̃, and β.

Proof The proof follows the lines of previous one. We start with writing the exact solution

as follows:

u(h) = Φ2(t + h, t)u0 +

∫ h

0
Φ2(h, s)Tu(s)ds, (2.26)

13

where the numerical solution is

U(h) = Φ2(t + h, t)u0 +

∫ h

0
Φ2(h, s)Tu1ds. (2.27)

To estimate the error bound subtract Equation (2.27) from Equation (2.26), we have

u(h) − U(h) =
∫ h

0
Φ2(h, s)T [u(h − s) − u1]ds.

After taking norm, Assumption 2.1 and Remark 2.1 imply

∥u(h) − U(h)∥ ≤ h C2 R̃ ∥u(h − s) − u1∥, (2.28)

where u1 is the solution of Equation (2.8). Using the bound given in Equation (2.24), we have

∥u(h) − U(h)∥ ≤ h C2 R̃ β h2 = h3γ (2.29)

where the constant γ depends on C2, β and R̃.Note that the constant C2 depends on K̃ because

of Remark 2.1. �

Proposition 2.3 The new first order iterative splitting scheme is stable on [0, tend] if

Φ1(h, s) ≤ 1 for 0 ≤ s ≤ h.

Proof To prove the stability of the new first order method, we employ standard techniques.

Start by rewriting the formulation of the method in the following form

U1 = U(h) = Φ1(h, s) +G1, U0 = u0, (2.30)

where

G1 =

∫ h

0
eT (h−s)V(s, u0)u0,

14

which is bounded by ∥G1∥ ≤ hC1K̃∥u0∥ where C1 is the bound for Φ1(t + h, s) defined in

Remark 2.1. By rearranging Equation (2.30),

∥U1∥ = ∥eThU0 +G1∥ ≤ ∥eThU0∥ + ∥G1∥

∥U1∥ ≤ C1 ∥u0∥ + hC1 K̃ ∥u0∥ = (C1 (1 + hK̃)) ∥u0∥. (2.31)

Recursively we get the stability polynomial for iterative scheme at first order,

∥Un∥ ≤ C1
n(1 + hK̃)n∥u0∥ = ζ ∥u0∥, (2.32)

where ζ = C1
netend K̃ . As a result, if

∥Φ1(h, s)∥ ≤ C1 ≤ 1,

then the proof follows. �

Proposition 2.4 Similarly, the new second order iterative splitting scheme is stable on [0, tend]

if Φ2(h, s) ≤ 1 for 0 ≤ s ≤ h.

Proof

In order to obtain the stability bound for second order method, we employ the same

line with the proof of Proposition 2.3. Then Equation (2.9) is rewritten as in the following

form

U1 = U(h) = Φ2(t + h, t)U0 +G2, U0 = u0, (2.33)

where

G2 =

∫ h

0
Φ2(h, s)Tu1,

15

which is bounded by ∥G2∥ ≤ hC2R̃∥u1∥. As we mentioned in Remark 2.1, C2 is the bound for

the fundamental set of solution of (2.9), namely Φ2(h, s). By rearranging the equation (2.33),

∥U1∥ = ∥C2U0 +G2∥ ≤ C2∥U0∥ + ∥G2∥

∥U1∥ ≤ C2∥u0∥ + hC2R̃∥u1∥

∥U1∥ ≤ C2 ∥u0∥ + hC2 R̃ (C1(1 + hK̃))∥u0∥ = (1 + hJ) C2 ∥u0∥. (2.34)

Here J = R̃ (C1(1 + h K̃)). Recursively we get the stability polynomial for iterative scheme at

second order,

∥Un∥ ≤ C2
n(1 + hJ)n∥u0∥ = C2

netend J∥u0∥. (2.35)

As a consequence,the statement holds provided that

∥Φ2(h, s)∥ ≤ C2 ≤ 1.

�

2.2.2. Analysis for Unbounded Operators: Abstract Analysis

This subsection focuses on the abstract analysis of the proposed iterative splitting

method which introduced in Subsection 2.1.2. For the convergence, we will investigate con-

sistency, stability and order issues. We assume that T is unbounded whereas V(t, u) is bounded

operator. In our proofs, we will use the following auxiliary assumptions:

Assumption 2.5 Let X be the Banach space with the norm ||.||. We assume T is a linear

operator on X and that T is the infinitesimal generates C0 semigroup etT on X. Particularly,

this assumption implies that there exist constants such that C and ω such that

∥etT ∥ ≤ Ceωt ≤ 1, t ≥ 0. (2.36)

Assumption 2.6 In order to simplify the calculations, we denote V(t, u(.))u(.) as g(u(.)) through-

16

out this section. Then, there exists a constant αk, k = 0, 1, 2, . . . such that

∥g(k)(u(t))∥ ≤ αk (2.37)

Assumption 2.7 Let V(t, u) ∈ D(T) ∩ H1. Assume there exist a constant S̃ k such that

∥Tg(k)(u(t))∥ ≤ S̃ ku0 (2.38)

Assumption 2.8 Let u(.) be the solution of Equation (2.1). Then, there exists a constant

Mk, k = 0, 1, 2, . . . such that

∥Tu(k)∥ ≤ Mku0 (2.39)

The proposed iterative splitting method is analyzed with the help of the φ−functions, namely

the exponential integrators. A short overview for exponential integrators is given in Appendix

B, see Hochbruck and Ostermann, (Hochbruck and Ostermann, 2010) and further reference

therein for details.

Remark 2.2 Observe that [T, φk(sT)] = 0, k = 1, 2, 3, . . . where [T, esT] = 0.

Proof This proof follows the line of induction. Consider k = 1. Using the definition of the

φ − f unction and the identity [T, esT] = 0, we have

[T, φ1(sT)] = Tφ1(sT) − φ1(sT)T

= T
esT − I

sT
− esT − I

sT
T

=
TesT − T

sT
− esT T − T

sT

=
TesT − esT T

sT

=
[T, esT]

sT
= 0. (2.40)

Assume that [T, φk(sT)] = 0. In order to show [T, φk+1(sT)] = 0, note that

φk+1(sT) =
φk(sT) − φk(0)

sT
, φ0(sT) = esT (2.41)

17

holds. Thus

[T, φk+1(sT)] = Tφk+1(sT) − φk+1(sT)T

= T
φk(sT) − φk(0)

sT
− φk(sT) − φk(0)

sT
T

=
Tφk(sT) − Tφk(0)

sT
− φk(sT)T − φk(0)T

sT

=
Tφk(sT) − Tφk(0) − (φk(sT)T − φk(0)T)

sT

=
Tφk(sT) − φk(sT)T − (Tφk(0) − φk(0)T)

sT

=
[T, φk(sT)] − [T, φk(0)]

sT
. (2.42)

Due to the assumption [T, φk(sT)] = 0 and the definition of φk(0), we have

[T, φk+1(sT)] =
[T, φk(sT)] − [T, φk(0)]

sT
= 0. (2.43)

�

Under these assumptions and remark, the consistency results of the proposed iterative splitting

method are achieved with the expected order.

Proposition 2.5 The proposed iterative splitting is first order if we consider (2.8) with the

error bound

∥u(h) − U(h)∥ ≤ βh2. (2.44)

Here β only depends on α1.

Proof Denote the local error by e j = U(t j)− u(t j), j = 0, 1, 2, . . . , n. For simplicity we only

consider the time interval [0, h]. The exact solution of Equation (2.1) is,

u(h) = eThu0 +

∫ h

0
eT (h−s)g(u(s))ds. (2.45)

18

To establish the local error, we employ the variation-of-constant formula. The first order

numerical solution of (2.1) is

U(h) = eThu0 +

∫ h

0
eT (h−s)g(u0)ds. (2.46)

Subtracting (2.45) from (2.46) leads to

∥u(h) − U(h)∥ = ∥
∫ h

0
eT (h−s)g(u(s)) − g(u0)ds∥.

≤ ∥
∫ h

0
eT (h−s)(∫ s

0
∂g(u(ρ))dρ

)
ds∥. (2.47)

By Assumption 2.5 and Assumption 2.6, we have

∥u(h) − U(h)∥ ≤ βh2.

�

Proposition 2.6 Let Assumption 2.5 and Assumption 2.7 hold. Then, the proposed method

has second order approximation if we consider Equation (2.17) with the error bound

∥u(h) − U(h)∥ ≤ Gh3. (2.48)

Here G depends on E1, R̃2 and S̃1 where E1 is the bound for ∥Φ2(h, s)∥ and R̃2 is the bound

for φ2(hT).

Proof By employing the variation-of-constant formula for obtaining the solutions of Equa-

tion (2.8) and Equation (2.9), we get

u1(h) = eThu0 +

∫ h

0
eT (h−s)V(u0)u0ds, (2.49)

u2(h) = Φ2(h, 0)u0 +

∫ h

0
Φ2(h, s)Tu1(s)ds, (2.50)

respectively. Here, Φ2(h, 0) is the numerical flow of Equation (2.9). We construct this flow by

using Magnus expansion due to the nonlinearity of the operator.

19

On the other hand, the exact solution can be written as

u(h) = eThu0 +

∫ h

0
eT (h−s)V(u(s))u(s)ds, (2.51)

or

u(h) = Φ2(h, 0)u0 +

∫ h

0
Φ2(h, s)Tu(s)ds. (2.52)

Moreover,

u(h) = u0 +

∫ h

0
F(u(s))ds, (2.53)

where F(u(s)) = Tu(s) + V(s, u(s))u(s).

By substituting Equation (2.49) into Equation (2.50), we have

u2(h) = Φ2(h, 0)u0 +

∫ h

0
Φ2(h, s)TeThu0

+

∫ h

0
Φ2(h, s)T

(∫ s

0
eT (s−ρ)g(u0)dρ

)
ds. (2.54)

Further, substituting Equation (2.51) into Equation (2.52) leads to

u(h) = Φ2(h, 0)u0 +

∫ h

0
Φ2(h, s)TeThu0

+

∫ h

0
Φ2(h, s)T

(∫ s

0
eT (s−ρ)g(u(ρ))dρ

)
ds. (2.55)

Since T is unbounded, to prove the consistency of the second order method, we restrict

ourselves to the φ − f unction representation. Then, Equation (2.54) and Equation (2.55) are

represented by φ − f unction as follows:

u2(h) = Φ2(h, 0)u0 +

∫ h

0
Φ2(h, s)TeThu0

+

∫ h

0
Φ2(h, s)Tφ1(sT)sg(u0)ds, (2.56)

20

whereas the rearranged exact one is

u(h) = Φ2(h, 0)u0 +

∫ h

0
Φ2(h, s)TeThu0

+

∫ h

0
Φ2(h, s)T sΣp

k=1φk(sT)sk−1g(k−1)(u0)ds

+

∫ h

0
Φ2(h, s)

∫ τ

0

(τ − ξ)p−1

(p − 1)!
Tg(p)(ξ)dξds. (2.57)

To estimate the error bound subtract (2.56) from (2.57). The remaining term is

u(h) − u2(h) =
∫ h

0
Φ2(h, s)T sΣp

k=2φk(sT)sk−1g(k−1)(u0)ds

+

∫ h

0
Φ2(h, s)

∫ τ

0

(τ − ξ)p−1

(p − 1)!
Tg(p)(ξ)dξds. (2.58)

From Remark 2.2, we have

u(h) − u2(h) =
∫ h

0
Φ2(h, s)sΣp

k=2φk(sT)sk−1Tg(k−1)(u0)ds

+

∫ h

0
Φ2(h, s)

∫ τ

0

(τ − ξ)p−1

(p − 1)!
Tg(p)(ξ)dξds, (2.59)

taking norm on both sides, we have

∥u(h) − u2(h)∥ = ∥
∫ h

0
Φ2(h, s)Σp

k=2φk(sT)skTg(k−1)(u0)ds

+

∫ h

0
Φ2(h, s)

∫ τ

0

(τ − ξ)p−1

(p − 1)!
Tg(p)(ξ)dξds∥. (2.60)

The triangle inequality implies

∥u(h) − u2(h)∥ ≤
∫ h

0
∥Φ2(h, s)s2φ2(sT)Tg′(u0)∥ds + δp

3

≤ E1

∫ h

0
s2∥φ2(sT)Tg′(u0)∥ds + O(h4) (2.61)

21

Since V(t, u) is bounded in the above, E1 denotes the bound for ∥Φ2(h, s)∥. Moreover,

δ
p
3 =

∫ h

0
Φ2(h, s)

∫ τ

0

(τ − ξ)p−1

(p − 1)!
Tg(p)(ξ)dξds (2.62)

where ∥δp
3∥ is bounded by O(h4), see (Hochbruck and Ostermann, 2010) for details.

Due to the Assumption 2.5 and using the definition of φ− f unctions given in Equation

(B.5) in Appendix B, we can deduce that

∥φk(hT)∥ ≤
∫ 1

0
∥ θk−1

(k − 1)!
∥dθ.

∥φk(hT)∥ ≤ R̃k (2.63)

By using the Equation (2.63) and Assumption 2.7, Equation (2.61) becomes

∥u(h) − u2(h)∥ ≤ E1 R̃2 S̃ 1 h3 + O(h4) (2.64)

Here R̃2 is the bound for φ2(hT), which proves that the second order proposed iterative split-

ting method is also consistent. �

Proposition 2.7 The new first order iterative splitting scheme is stable on [0, tend] with the

bound

∥Un∥ ≤ K1∥u0∥ (2.65)

where the constant K1 depends on tend and α0.

Proof To prove the stability we start with rewriting the formulation of the method as in the

following form

U1 = U(h) = eThu0 +G1, U0 = u0, (2.66)

22

where

G1 =

∫ h

0
eT (h−s)V(s, u0)u0 ds,

which is bounded by ∥G1∥ ≤ hα0∥u0∥. Rearranging Equation (2.66),

∥U1∥ = ∥eThU0 +G1∥ ≤ ∥eThU0∥ + ∥G1∥

∥U1∥ ≤ ∥u0∥ + hα0∥u0∥ = ((1 + hα0))∥u0∥. (2.67)

Recursively we get the stability polynomial for iterative scheme at first order,

∥Un∥ ≤ (1 + hα0)n∥u0∥ ≤ etendα0∥u0∥, (2.68)

which concludes the proof. �

Proposition 2.8 The new second order iterative splitting scheme is stable if ∥Φ(t, s)∥ ≤ 1 on

[0, tend] with the bound

∥Un∥ ≤ K2u0

where K2 depends on E1, tend, R̃1, S̃ 0 and M0. The constants E1 and R1 are the bounds for

Φ2(h, s) and φ1, respectively.

Proof The proof follows the previous one. To obtain the stability bound for the second

order proposed iterative splitting method, Equation (2.9) is rewritten as

U1 = U(h) = Φ2(t + h, t)U0 +

∫ h

0
Φ2(h, s)Tu1, (2.69)

23

where U0 = u(0). Substituting u1 given in Equation (2.49) into Equation (2.69) and using the

linearity of T leads to

U1 = U(h) = Φ2(h, 0)u0 +

∫ h

0
Φ2(h, s)TeThu0

+

∫ h

0
Φ2(h, s)T

(∫ s

0
eT (s−ρ)g(u0)dρ

)
ds. (2.70)

Rearranging the above equation using the φ−functions, we have

U1 = U(h) = Φ2(h, 0)u0 +

∫ h

0
Φ2(h, s)TeThu0 (2.71)

+

∫ h

0
Φ2(h, s)T sφ1(sT)g(u0)ds.

Taking norm and employing Assumption 2.7 and Assumption 2.8 leads to

∥U1∥ ≤ ∥Φ2(h, 0)u0∥ + ∥
∫ h

0
Φ2(h, s)M0∥

+ ∥
∫ h

0
Φ2(h, s)T sφ1(sT)g(u0)ds∥.

Since V(t, u) is bounded, we get

∥U∥1 ≤ E1u0 +

∫ h

0
E1M0u0ds +

∫ h

0
E1sφ1(sT)∥Tg(u0)∥ds,

where E1 is the bound for Φ2(h, s), 0 ≤ s ≤ h. Finally, by the Assumption 2.7, we have

∥U∥1 ≤ E1u0 + h E1 M0u0 +
h2

2
E1 R̃1 S̃ 0U0

≤ E1
(
1 + hM0 + h2 R̃1 S̃ 0

2
)
U0,

where R̃1 is the bound for φ1(sT) as shown in Equation (2.63). Recursively,

∥U∥n ≤ En
1etendγU0

24

where γ depends on R̃1, S̃ 0 and M0. As a consequence, the second order scheme is stable if

∥Φ2∥ ≤ 1. �

2.2.3. Convergence Results

Next we investigate convergence of PISM. To that end, we utilize the "Lady Winder-

mere’s fan" argument. As mentioned before un and Un represents the exact and numerical

solutions at t = tn, respectively.

In general, the local error bound is defined as

dn = D(hn−1)u(tn−1) = (Ψ(hn−1) − E(hn−1))u(tn−1) (2.72)

with t0 < t1 < t2 < . . . < tN = tend.Here hn−1 = tn−tn−1, 1 ≤ n ≤ N,Ψ(hn−1) denotes numerical

flow and E(hn−1) denotes the exact solution.

Theorem 2.1 Lady Windermere’s Fan. To establish the global and local error, we employ

the telescopic identity,

UN − uN =

N−1∏
j=0

Ψ(h j)(U0 − u0) +
N∑

n=1

N−1∏
j=n

Ψ(h j)dn (2.73)

Proof The validity of relation Equation (2.73) is verified by a short calculation as follows

N−1∏
j=0

Ψ(h j)(U0 − u0) +
N∑

n=1

N−1∏
j=n

Ψ(h j)dn

=

N−1∏
j=0

Ψ(h j)(U0 − u0) +
N∑

n=1

N−1∏
j=n

Ψ(h j)(Ψ(hn−1) − E(hn−1))un−1

=

N−1∏
j=0

Ψ(h j)U0 −
N−1∏
j=0

Ψ(h j)u0

+

N∑
n=1

N−1∏
j=n−1

Ψ(h j)un−1 −
N∑

n=1

N−1∏
j=n

Ψ(h j)un

= UN −
N−1∏
j=0

Ψ(h j)u0 +

N−1∑
n=0

N−1∏
j=n

Ψ(h j)un −
N∑

n=1

N−1∏
j=n

Ψ(h j)un

25

= UN −
N−1∏
j=0

Ψ(h j)u0 +

N−1∏
j=0

Ψ(h j)u0 − uN

= UN − uN .

�

Rearranging the Equation (2.73) leads to

UN − uN =

N1∑
j=0

Ψ(N− j−1)h(Ψhu(t j) − u(t j+1)
)

=

N1∑
j=0

Ψ(N− j−1)h(Ψh − Eh)
)
u(t j), (2.74)

where t j = jh and h is uniform mesh. To achieve the convergence result, we use appropriate

norm, ∥.∥ and we have

∥UN − u(tN)∥ = ∥
N1∑
j=0

Ψ(N− j−1)h(Ψh − Eh)
)
u(t j)∥

≤
N1∑
j=0

∥Ψ(N− j−1)h∥ ∥(Ψh − Eh)
)∥ ∥u(t j)∥. (2.75)

We note that ∥Ψ(N− j−1)h∥ and ∥(Ψh − Eh)
)∥ correspond to the stability and the consistency

results of the proposed iterative splitting method, respectively. The well-posedness of the

initial value problem given in Equation (2.1) implies the boundedness of ∥u(t j)∥ for all t j, j =

1, 2, 3, . . . ,N.

Therefore, the following assertion is an immediate consequence of the fact that the

consistency and the stability results of the proposed iterative splitting method for both bounded

and unbounded case.

Theorem 2.2 (Bounded Case) Suppose assumptions 2.1-2.4 hold. The proposed iterative

splitting method is convergent if Φ2(t, s) ≤ 1. Then, the second order global error

∥Un(h) − un(h)∥ ≤ F h2.

The constant F in general depends on tend, but not on h.

26

Proof The proof is given when T and V(t, u) are bounded operators. Therefore, we need

Assumptions 2.1-2.4. With the help of Proposition 2.2 and Proposition 2.4, we have

∥UN − u(tN)∥ = ∥
N1∑
j=0

Ψ(N− j−1)h(Ψh − Eh)
)
u(t j)∥

≤
N1∑
j=0

∥Ψ(N− j−1)h∥∥(Ψh − Eh)
)∥∥u(t j)∥

≤
N1∑
j=0

ζ∥u0∥γh3∥u(t j)∥

≤ NF1h3

≤ tendF1h2 = Fh2 (2.76)

where ζ and γ are defined in Equation (2.32) and Equation (2.25), respectively. Thus, conver-

gence is achieved. �

Theorem 2.3 (Unbounded Case) Suppose assumptions 2.5-2.8 hold. The proposed iterative

splitting method is convergent with the second order global error

∥Un(h) − un(h)∥ ≤ F̂ h2.

The constant F̂ is independent from h.

Proof The proof follows is similar to the preceding one. We consider the case when T is

unbounded but V(t, u) is bounded operator. We assume that assumptions 2.5-2.8 hold. Using

Proposition 2.6 and Proposition 2.8 we have

∥UN − u(tN)∥ = ∥
N1∑
j=0

Ψ(N− j−1)h(Ψh − Eh)
)
u(t j)∥

≤
N1∑
j=0

∥Ψ(N− j−1)h∥∥(Ψh − Eh)
)∥∥u(t j)∥

≤
N1∑
j=0

K2∥u0∥Gh3∥u(t j)∥

≤ tendF̂1h2 = F̂h2. (2.77)

27

Here, F̂ depends on the G given in Equation (2.48) and K2 can be found in the proof of

Proposition 2.8. Thus, the proposed iterative splitting method is convergent for not only the

bounded case but also the unbounded case. �

28

CHAPTER 3

NUMERICAL TESTS AND SIMULATIONS: THE

PROPOSED ITERATIVE SPLITTING METHOD

Having established the theoretical convergence rates for the proposed method in Chap-

ter 2, we now provide supporting numerical tests and simulations. We choose three oscillation

problems. Numerical solutions are derived with MATLAB. The codes are given in Appendix

D.

In the numerical examples, we consider the efficiency of the methods in terms of the

errors, the convergence rates for ∆t and the CPU runtimes. In order to get the errors we use

the L1, L2 and L∞ norms

∥.∥L1 =

n=N∑
n=0

|u(nh) − U(nh)|,

∥.∥L2 =
(n=N∑

n=0

|u(nh) − U(nh)|2)1/2
∥.∥L∞ = max

0≤n≤N
|u(nh) − U(nh)|.

Throughout this section, the proposed iterative splitting method is labeled as PISM.

3.1. Duffing Equation

The one dimensional unforced Duffing oscillator is

q′′ + αq + εq3 = 0. (3.1)

Here α controls the size of the stiffness and ε controls the amount of nonlinearity in the

restoring force. First, we redefine the variables as q(t) = q1(t) and q̇(t) = q2(t), and u(t) =

29

(q1(t), q2(t))T . Thus, it yields

 q̇1

q̇2

 =
 0 1

−1 − εq2
1 0


 q1

q2


=

 0 1

−1 0


 q1

q2

 +
 0 0

−εq2
1 0


 q1

q2

 . (3.2)

To compare the size of errors for different splitting methods described in Chapter 2, we solve

Equation (3.1) for tend = 10 with ε = 10−4 for various values ∆t. We take the initial conditions

as q1(0) = 1 and q2(0) = 0, and the analytic solution is given in (Bender and Orszag, 1999)

as

q(t) = cos t + ε[
1

32
cos 3t − 1

32
cos t − 3

8
t sin t], ε→ 0+. (3.3)

In Table 3.1, the convergence orders are presented numerically in the discrete L∞-

norm. The obtained numerical results are in a agreement with theoretical results given in

Section 2.2. Table 3.1 reveals that the new second order iterative splitting scheme is more ef-

ficient than not only Strang splitting method (SMS) but also symmetrically weighted splitting

(SWS).

PISM SMS SWS

∆t Error Order Error Order Error Order

1/8 3.4097e-006 - 7.2936e-006 - 7.2704e-006 -
1/16 8.4748e-007 2.0336 3.6175e-006 1.0116 3.6150e-006 1.0080
1/32 2.08912e-007 2.0203 1.7779e-006 1.0248 1.7774e-006 1.0242

Table 3.1. Comparison of errors for several h on [0, 10] interval with various methods
where ε = 10−4. The expected order is 2.

Although, there is a reduction of order of the convergence of the SMS, PISM achieves

second order accuracy.

From Table 3.2, we observe that PISM is more accurate than the other splitting meth-

ods.

30

Method ε ∆t L∞ L2 L1

PISM 0.01 2−3 3.5838e-005 5.8357e-005 1.3204e-004
SMS 0.01 2−3 5.5170e-005 7.5197e-005 1.4932e-004
SWS 0.01 2−3 5.7048e-005 7.9755e-005 1.6290e-004
PISM 0.01 2−4 4.7238e-006 1.3086-005 4.4547e-005
SMS 0.01 2−4 2.6018e-005 4.7427e-005 1.3360e-004
SWS 0.01 2−4 2.6453e-005 4.9006e-005 1.3999e-004
PISM 0.01 2−5 4.2273e-006 8.0718e-006 2.6895e-005
SMS 0.01 2−5 9.9518e-006 2.5903e-005 1.0542e-004
SWS 0.01 2−5 1.0057e-005 2.6468e-005 1.0853e-004
PISM 0.005 2−3 1.9641e-005 3.1267e-005 7.0055e-005
SMS 0.005 2−3 2.9255e-005 3.9719e-005 7.8598e-005
SWS 0.005 2−3 3.0161e-005 4.1933e-005 8.5252e-005
PISM 0.005 2−4 3.8650e-006 9.1589e-006 2.9788e-005
SMS 0.005 2−4 1.4741e-005 2.6540e-005 7.4137e-005
SWS 0.005 2−4 1.4950e-005 2.7302e-005 7.7258e-005
PISM 0.005 2−5 3.3566e-007 1.2292e-006 5.8964e-006
SMS 0.005 2−5 6.7342e-006 1.6797e-005 6.6791e-005
SWS 0.005 2−5 6.7847e-006 1.7066e-005 6.8307e-005

Table 3.2. Numerical errors are established for different ∆t and different ε on [0, 1].

Moreover, Equation (3.1) is a Hamiltonian system. The Hamiltonian of the Duffing

equation is expressed as follows:

q̇1 = −Hq2

q̇2 = Hq1 (3.4)

where Hq2 = −q2 and Hq1 = −q1 − εq1
3. By integrating Equation (3.4), one can obtain

H(q1, q2) = −q1
2

2
− q2

2

2
− εq1

4

4
, (3.5)

where H
(
q1(0), q2(0)

)
= − 1

2 −
ε
4 .

The conservation of the Hamiltonian of Equation (3.1) is exhibited the in Figure 3.1 and

Figure 3.2 for ε = 1 and ε = 3 on [0, 10], respectively.

31

0 2 4 6 8 10
0

1

2

x 10
−4

time

|H
(q

1,q
2)−

H
(q

10 ,q
20)|

Hamiltonian of Proposed Method

(a) PISM

0 2 4 6 8 10
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

time

|H
(q

1,q
2)−

H
(q

10 ,q
20)|

Hamiltonian of Strang Splitting

(b) SMS

Figure 3.1. The Hamiltonian of Duffing Equation (3.1) for ε = 1 on [0, 10].

0 2 4 6 8 10
0

0.02

0.04

0.06

0.08

0.1

0.12

time

|H
(q

1,q
2)−

H
(q

10 ,q
20)|

Hamiltonian of Proposed Method

(a) PISM

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

time

|H
(q

1,q
2)−

H
(q

10 ,q
20)|

Hamiltonian of Strang Splitting

(b) SMS

Figure 3.2. The Hamiltonian of Duffing Equation (3.1) for ε = 3 on [0, 10].

To see the Hamiltonian conservation examine |H(q1, q2)−H(q0
1, q

0
2)|where q0

i = qi(0), i =

1, 2. From Figure 3.1 and Figure 3.2 suggest that the difference is smaller for PISM than Strang

splitting method. Thus, PISM is more accurate than Strang splitting with regards to energy

preservation.

3.2. Van-der Pol Equation

Our second example is the Van-der Pol equation which is one of the widely studied

systems in nonlinear dynamics. Here, we concentrate on the second order autonomous Van-

32

der Pol equation

ẍ + µ(x2 − 1)ẋ + x = 0, x(0) = 2, ẋ(0) = 0. (3.6)

The parameter µ is a positive scalar denoting the nonlinearity and the strength of the damping.

By redefining Equation (3.6) with ẋ1 = x2, ẋ2 = −µ(x1
2 − 1)x2 − x1 and by splitting the

operators as follows:

 ẋ1

ẋ2

 =
 0 1

−1 0


 x1

x2

 +
 0 0

0 −µ(x1
2 − 1)


 x1

x2

 . (3.7)

To illustrate the effects of the nonlinearity, in our implementation, we set µ = 10. Then

PISM is in agreement with the solution ODE23s-code in MATLAB.

0 10 20 30 40 50 60
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
Proposed Method

time

ch
ar

ge

10

(a) PISM

0 10 20 30 40 50 60
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

time

ch
ar

ge

ODE23

10

(b) ODE23s in MATLAB

Figure 3.3. The solution of Van-der Pol Equation (3.6) using PISM on the left,
ODE23s on the right.

We deal with the phase diagram of the solution for different methods in Figure 3.4.

Although PISM is explicit, it preserves the limit cycle of Equation (3.6).

Equation (3.6) is also a Hamiltonian system with Hamiltonian

ẋ1 = −Hx2

ẋ2 = Hx1 (3.8)

33

−15 −10 −5 0 5 10 15
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
Proposed Method

\dot{x}

x

10

(a) PISM

−15 −10 −5 0 5 10 15
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
Limit Cycle of ODE23s

x
2

x 1

(b) ODE23s in MATLAB

Figure 3.4. Trajectories of Van-der Pol Equation (3.6) for µ = 10 PISM on the left and
ODE23s on the right.

where Hx2 = −x2 and Hx1 = −µ(x1
2 − 1)x2 − x1. By integrating Equation (3.8), we have

H(x1, x2) = − x1
2

2
− x2

2

2
− µ(

x1
3

3
− x1)x2, (3.9)

where H
(
x1(0), x2(0)

)
= −2.

To see the conservation of the Hamiltonian considering PISM and ODE23s on Equa-

tion (3.6), the Figure 3.5 is presented for µ = 1 on [0, 60].

0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

time

|H
(x

1,x
2)−

H
(x

10 ,x
20)|

Hamiltonian of Proposed Scheme

(a) PISM

0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

time

|H
(x

1,x
2)−

H
(x

10 ,x
20)|

Hamiltonian of ODE23s

(b) ODE23s in MATLAB

Figure 3.5. The Hamiltonian of Van-der Pol Equation (3.6) for µ = 1 on [0, 60].

Note that the ODE23s code is an implicit solver in MATLAB. Although PISM is an

34

explicit method, it achieves the same results with the ODE23s both for the solutions and the

Hamiltonian.

3.3. Nonlinear Schrödinger Equation

After showing the efficiency of PISM on ordinary differential equations, we now look

at the effectiveness of PISM on partial differential equations. For that purpose, we focus on

the cubic nonlinear Schrödinger (NLS) equation

i~∂tψ = Ĥψ(x, t) (3.10)

i~∂tψ = β∂2
x ψ +

(
G(x) + α|ψ|2)ψ (3.11)

where ψ(x, t) denotes the probability amplitude of the particle to be found at position x at time

t, and ~ is the Planck constant. Here, ∂2
x denotes the spatial derivative. To approximate it, we

use central difference. We consider the Dirichlet boundary conditions

ψ(xL, t) = ψ(xR, t) = 0, t ∈ [0, tend], (3.12)

with the initial condition

ψ(x, 0) = ψ0, x ∈ (xL, xR). (3.13)

To split the equation, we first change the variable ψ to η + iξ in Equation (3.11). Then

i~(ηt + iξt) = β(ηxx + iξxx) +
(
G(x) + α(|η|2 + |ξ|2)

)
(η + iξ)

iηt − ξt = βηxx + iβξxx +
(
G(x) + α(|η|2 + |ξ|2)

)
η

+ i
(
G(x) + α(|η|2 + |ξ|2)

)
ξ. (3.14)

35

Rearranging Equation (3.14), we obtain

~ηt = βξxx +
(
G(x) + α(|η|2 + |ξ|2)

)
ξ

~ξt = −βηxx −
(
G(x) + α(|η|2 + |ξ|2)

)
η

which corresponds the system of equations:

~

 η̇
ξ̇

 =
 0 β∂x

2

−β∂x
2 0


 η
ξ

 +
 0

(
G(x) + α(|η|2 + |ξ|2)

)
−(G(x) + α(|η|2 + |ξ|2)

)
0


 η
ξ


(3.15)

We split the system as T + V(x, ψ) where

T =

 0 β∂x
2

−β∂x
2 0

 , V(x, ψ) =

 0
(
G(x) + α(|η|2 + |ξ|2)

)
−(G(x) + α(|η|2 + |ξ|2)

)
0


We note that 0 denotes the zero matrix whose size equals to the size of ∂x

2 and that the matrices

in Equation (3.15) are skew-symmetric. Therefore, the eigenvalues are purely imaginary,

which guarantees that the solutions are bounded.

3.3.1. Equation in the form: i~∂tΨ = β∂
2
xΨ + α|Ψ|2Ψ

We start with the NLS equation given in Equation (3.11) without external force, namely

G(x) = 0. Inspired by Polyanin & Zaitsev, (Polyanin and Zaitsev, 2003), we take α = β = −1

and ~ = 1, to get

i
∂ψ

∂t
+
∂2ψ

∂x2 + |ψ|
2ψ = 0, (3.16)

ψ(xL, t) = ψ(xR, t) = 0,

where the analytic solution for the above equation is

ψ(x, t) = A
√

2sech(Ax − 2ABxt +C2)ei(Bx+(A2−B2)t+C1). (3.17)

36

Here A, B,C2 and C1 are arbitrary real constants, see (Polyanin and Zaitsev, 2003) and refer-

ences therein.

The NLS equation above conserves many densities. In this study, we only focus on

the mass and energy (or Hamiltonian) conservation. For the purpose of comparative analysis,

we consider the study by Aydın and Karasözen, (Aydın and Karasözen, 2011), for the case of

v = 0, α1 = 1, β = γ = Γ = 0 in their work. The mass and the energy conservations are as

follows:

M(t) :=
∫ xR

xL

|ψ|2dx := M(0), (3.18)

E(t) :=
∫ xR

xL

(− |ψx|2 +
|ψ|4
2
)
dx := E(0). (3.19)

In discrete space, mass and energy conservations are expressed as follows:

AE = ∆x
Nx∑

k=1

|Mn
k − M0

k |. (3.20)

GE = ∆x
Nx∑

k=1

(En
k − E0

k). (3.21)

Here, E0 and M0 denote the initial energy and mass, respectively. Moreover, AE and GE

denote the absolute error and the global energy error, respectively. Then, from Equations

(5.5) and (5.6), we have

En
i = −1

4
((ηn

i)2
+ (ξn

i)2)2 +
1
2

((an
i)2
+ (bn

i)2) (3.22)

Mn
i = (ηn

i)2 + (ξn
i)2, (3.23)

where a = ηx, b = ξx and En
i is the energy at t = n∆t. To check the validity of the solutions,

we compute the absolute errors using Equation (3.20).

For the numerical results, we consider two different initial conditions:

Case 1 The initial condition is ψ(x, 0) = 2eix

cosh(
√

2x)
, then the analytic solution is

ψ(x, t) =

√
2ei(x+t)

cosh(
√

2x − 2
√

2t)
. (3.24)

37

where A =
√

2, B = 1, and C2 = C1 = 0.

Case 2 The initial condition is ψ(x, 0) =
√

2sech(x + 10)eix/4, then the analytic solution is

ψ(x, t) =
√

2sech(x − t
2
+ 10)ei(x

4+
15
16 t), (3.25)

where A = 1, B = 1/4, C2 = 10, and C1 = 0.

Figure 3.6 and Figure 3.7 present the numerical results of Case 1 on the space interval

[−15, 10] divided into 100 uniform grid points with ∆x = 0.25. We integrate the system using

PISM with the time step size ∆t = 0.01 up to final time t = 1. We obtain the solutions which

are in a perfect agreement with the analytic one, see Figure 3.6.

−15
−10

−5
0

5
10

0

0.5

1
0

0.5

1

1.5

2

2.5

x

Iterative Solution

t

|ψ
|

(a) Numerical Solution

−15
−10

−5
0

5
10

0

0.5

1
0

0.5

1

1.5

2

2.5

x

Exact Solution

t

|ψ
|

(b) Exact Solution

Figure 3.6. On the left PISM, exact solution on the right.

The subsequent Figure 3.7 illustrates conservation of the energy and the mass.

Furthermore, the conserved density from the analytic solution is

∫ 10

−15
|ψ|2dx = 5.6569,

∫ 10

−15

(− |ψx|2 +
|ψ|4
2
)
dx = 3.1884

while from the numerical solution at t = 1.0 we have

∫ 10

−15
|ψ|2dx = 5.6560,

∫ 10

−15

(− |ψx|2 +
|ψ|4
2
)
dx = 3.2704.

38

0 0.2 0.4 0.6 0.8 1
1.64

1.66

1.68

1.7

1.72

1.74

1.76
Global Energy Error

(a) Global Energy Error

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
x 10

−3

time

|M
n −

M
0 |

Absolute Energy Error

(b) Absolute Error

Figure 3.7. Plots of the global energy error vs time and the absolute error vs. time are
presented for Case 1.

The absolute error with different norms and various final time is presented in Table 3.3 where

Nx = Nt = 100.

tend ∆t L∞ L2 L1
0.3 0.003 1.6650e-005 8.9497e-005 7.2631e-004
0.5 0.005 8.7306e-005 4.9791e-004 0.0042
0.8 0.008 3.9789e-004 0.0024 0.0203
1 0.01 8.2197e-004 0.0050 0.0432

Table 3.3. Estimated errors using L∞, L2 and L1 norm for conservation of the mass
with Nx = Nt = 100 where ∆x = 0.25.

For Case 2, we study the space interval [−20, 5] divided into 100 uniform grid points

with ∆x = 0.25. We integrate the system using PISM with time-step size ∆t = 0.03 up to

a final time t = 3. Although PISM is an explicit scheme, in all solutions it preserves the

qualitative properties.

Moreover, Figure 3.9 presents the accuracy of PISM with respect to the global energy

error. In addition to this, due to the solitary wave, it can be seen the solutions of Equation

(3.11) with the initial condition given in Case 2 at some fixed time on the right.

Additionally, the conserved density from the analytic solution is

∫ 5

−20
|ψ|2dx = 4.0000,

∫ 5

−20

(− |ψx|2 +
|ψ|4
2
)
dx = 1.1749,

39

−20
−15

−10
−5

0
5

0

1

2

3
0

0.5

1

1.5

x

Proposed Method

t

|ψ
|

(a) PISM

−20
−15

−10
−5

0
5

0

1

2

3
0

0.5

1

1.5

x

Exact Solution

t

|ψ
|

(b) Exact Solution

Figure 3.8. The numerical solutions are obtained on x ∈ [−20, 5] and t ∈ [0, 3] where
Nx = Nt = 100.

while we have from the numerical solution at t = 3.0.

∫ 5

−20
|ψ|2dx = 3.9991,

∫ 5

−20

(− |ψx|2 +
|ψ|4
2
)
dx = 1.2167,

where Nx = Nt = 100 in our calculations.

The absolute errors computed using different norms are in Table 3.4. The elapsed

time L∞ L2 L1
0.5 2.0479e-006 1.1582e-005 9.6575e-005
1 1.9412e-005 1.1707e-004 0.0010
2 2.1047e-004 0.0013 0.0113
3 9.2325e-004 0.0056 0.0494

Table 3.4. Estimated errors using L∞, L2 and L1 norm for conservation of the mass
with Nx = Nt = 100 where ∆x = 0.25.

time are in Table 3.5, from which we deduce that the constructed method is more efficient

than the Strang splitting method with regards to CPU runtimes.

40

0 0.5 1 1.5 2 2.5 3
−0.0258

−0.0256

−0.0254

−0.0252

−0.025

−0.0248

−0.0246

−0.0244

−0.0242

−0.024

(a) Global Energy Error

−20 −15 −10 −5 0 5
0

0.5

1

1.5

t=3
t=1.5
t=0

(b) The Solutions

Figure 3.9. Global Energy Error is on the left and the comparisons of numerical solu-
tion and exact solution for fixed time on the right for Case 2.

Nx Nt Strang Splitting PISM
50 100 1.5156 1.1250

100 100 7.2031 5.7344
100 150 9.6875 6.5313
150 150 29.7344 26.3125

Table 3.5. The CPU runtimes are measured in seconds for different Nt and Nx on
x ∈ [−20, 5] and t ∈ [0, 3].

3.3.2. Equation in the form: i~∂tΨ = β∂
2
xΨ + (G(x) + α|Ψ|2)Ψ

We turn our attention to the cubic nonlinear Schrödinger Equation (3.11) with real-

valued external force. We consider ~ = 1, β = − 1
2 and G(x) = 1

1+sin2 x
. That is,

ß∂t ψ = −1
2
∂x

2 ψ + (
1

1 + sin2 x
+ α ∗ |ψ|2)ψ (3.26)

where α = 30. We set the initial condition as ψ(x, 0) = γesin 2x.

Physically, the probability density of any particle in Equation (3.26) is

∫ xR

xL

|ψ|2dx ≤ 1.

41

To see the effects of PISM on the numerical solutions, we need to start with ∥ψ(x, 0)∥ ≤ 1. We

set γ as
1
∥ψ0∥

since

∫ xR

xL

|ψ0|2dx = 1.

To solve Equation (3.26), we follow the splitting process given in Equation (3.15). The nu-

merical solutions and the contour plots are demonstrated for PISM and SMS in Figure 3.10

and Figure 3.11, respectively.

0
2

4
6

8

−20

−10

0

10

20
0

0.01

0.02

0.03

0.04

tx

pr
ob

ab
ili

ty
 d

en
si

ty
 o

f N
ew

 it
er

at
iv

e
sp

lit
tin

g

(a) Numerical Solution of Equation (3.26)

0

1

2

3

4

5

6

7

8

−20−15−10−505101520

t
 x 0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

(b) Contour Plot

Figure 3.10. Probability density of the particle in Equation (3.26) for PISM.

0
2

4
6

8

−20

−10

0

10

20
0

0.01

0.02

0.03

0.04

0.05

tx

pr
ob

ab
ili

ty
 d

en
si

ty
 o

f S
tr

an
g

sp
lit

tin
g

(a) Numerical Solution of Equation (3.26)

0

1

2

3

4

5

6

7

8

−20−15−10−505101520

t

x

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

(b) Contour Plot

Figure 3.11. Probability density of the particle in Equation (3.26) for SMS.

For the exhibited figures, we suppose that the system is defined in the interval x ∈
[−20, 20], which is split into Nx = 100 parts. We integrate the system using PISM with time-

42

step size ∆t = 0.08 up to a final time t = 8. We observed that our method also preserves the

probability density of particle in (3.26).

Additionally, we check the conservation of the mass for the initial condition

∫ 20

−20
|ψ0|2dx = 0.4000

and, for t = 8, namely at the end point, we obtain

∫ 20

−20
|ψPIS M |2dx = 0.3788,

∫ 20

−20
|ψS MS |2dx = 0.3780,

for the numerical solutions of PISM and SMS method. We deduce that there is little difference

between the initial mass and the final mass for both PISM and SMS.

Although both PISM and SMS work well, Table 3.6 reveals that PISM is faster than

SMS in the sense of CPU runtimes.

Nt Nx ∆t ∆x PISM Strang Splitting
100 100 0.08 0.4 5.2188 6.1094
200 100 0.04 0.4 9.4844 13.0625
160 200 0.05 0.2 49.5938 75.1875
200 200 0.04 0.2 56.7813 100.2969

Table 3.6. Elapsed time for different Nt and Nx.

43

CHAPTER 4

AN ALTERNATIVE METHOD: THE PROPOSED

LINEARIZED METHOD

Now, we present an alternative method for solving oscillation problems. The essential

idea of the proposed method is Newton-Raphson iterative process combining with the Fréchet

derivative. It can be also considered as a linearization technique. Thus, the new method is

called the proposed linearized method.

A brief introduction is given in Appendix C for the Newton-Raphson method and for

the Fréchet derivative.

4.1. Derivation of the Method

We first consider the general nonlinear differential equation as follows:

L(U) = 0 (4.1)

where L is a differential operator. The solution of (4.1) is

Un+1 = Un + θn. (4.2)

Here n corresponds to the iteration number and θn corresponds to the refinement variable for

the correcting function Un. To solve for the refinement variable, we deal with the following

differential equation

θnL′(Un) + L(Un) = 0. (4.3)

44

Using the Fréchet derivative, the term θnL′(Un) is

θnL′(Un) =
∂

∂ε
L(Un + εθn)

∣∣∣
ε
= 0. (4.4)

Instead of the simple formulation, we employ a more general one. For any system of equa-

tions, the formulation becomes

L1(U,V) = 0,

L2(U,V) = 0. (4.5)

Solving Equation (4.5) using the Newton-Raphson method results in

Un+1 = Un + θ1
n,

Vn+1 = Vn + θ2
n. (4.6)

As mentioned before n is the iteration number and θ1
n and θ2

n are the refinements obtained

from the following differential equations.

θ1
nL1

′(Un,Vn) + θ2
nL1

′(Un,Vn) + L1(Un,Vn) = 0,

θ1
nL2

′(Un,Vn) + θ2
nL2

′(Un,Vn) + L2(Un,Vn) = 0. (4.7)

In order to get θi
nL j
′(Un,Vn), i, j = 1, 2 we use Fréchet derivatives. Then,

θ1
nLi
′(Un,Vn) =

∂

∂ε
Li
(
Un + εθ1

n,Vn)∣∣∣∣∣
ε=0
,

θ2
nLi
′(Un,Vn) =

∂

∂ε
Li
(
Un,Vn + εθ2

n)∣∣∣∣∣
ε=0
. (4.8)

45

The following figure outlines the proposed linearized method.

Figure 4.1. Diagram for the proposed linearized method.

Here ϑ is used to denote the temporary variable. The convergence criterion is con-

trolled by the Euclidean norm,

∥θ − ϑ∥2 ≤ 10−6. (4.9)

46

4.2. Application to the Three Oscillation Problems

This section applies the proposed linearized method to the nonlinear oscillation prob-

lems. In the following subsections we present the application of the proposed linearized

method on damped oscillator, Van-der Pol equation and cubic Schrödinger equation.

4.2.1. Damped oscillator

Consider the one dimensional damped oscillator

q′′ + q + α(q′)3 = 0. (4.10)

Redefine q(t) = q1(t) and q̇(t) = q2(t) leading to

q1
′ − q2 = 0, (4.11)

q2
′ + q1 + αq2

3 = 0. (4.12)

Thus, we have system of two equations

L1(q1, q2) = q1
′ − q2, (4.13)

L2(q1, q2) = q2
′ + q1 + αq2

3. (4.14)

For simplicity, we deal with the time interval [0, h].Using the methods given in Equation (4.7)

and Equation (4.8), we obtain

∂

∂ε

[
q1
′ + εθ1

′ − q2
]∣∣∣∣∣
ε=0
+

∂

∂ε

[
q1
′ − q2 − εθ2

]∣∣∣∣∣
ε=0
+ L1(q1, q2),

∂

∂ε

[
q2
′ + (q1 + εθ1) + α(q2)3]∣∣∣∣∣

ε=0
+

∂

∂ε

[
q2
′ + εθ2

′ + q1 + α(q2 + εθ2)3]∣∣∣∣∣
ε=0
+ L2(q1, q2).

47

Consequently,

θ1
′ − θ2 + q1

′ − q2 = 0, (4.15)

θ2
′ + θ1 + 3αq2

2θ2 + q2
′ + q1 + αq2

3 = 0. (4.16)

In matrix form

 1 0

0 1


 θ1

θ2


t

+

 0 −1

1 0


 θ1

θ2

 +
 0

3αq2
2θ2

 = −
 1 0

0 1


 q1

q2


t

−
 0 −1

1 0


 q1

q2


−
 0

αq2
3

 , (4.17)

or

I2Θt + AΘ + D(Θ,Q) = −I2Qt − AQ −C(Q), (4.18)

where Θ = (θ1, θ2)T and Q = (q1, q2)T . Here, A is a matrix, D(Θ,Q) and C(Q) are vectors

defined in Equation (4.17). I2 is the identity matrix. In what follows, we solve the above

system for Θ applying Crank-Nicolson scheme, leading to

I2
Θn+1 − Θn

∆t
+ A
Θn+1 + Θn

2
+ D(Θn+1

n ,Qn+1
n) = −I2

Qn+1 − Qn

∆t
− A

Qn+1 + Qn

2
−C(Qn+1

n).

(4.19)

After solving the system for Θ, we need to check the convergence condition given in Equation

(4.9) where θ = Θn and ϑ = Θn+1. If the condition holds, then

Qn+1 = Qn + Θn+1. (4.20)

The numerical results are given in Chapter 5.

48

4.2.2. Van-der Pol Equation

For our second application, we consider the second order autonomous Van-der Pol

equation which is one of the most generally studied systems in non-linear dynamics. That is,

ẍ + µ(x2 − 1)ẋ + x = 0, (4.21)

The parameter µ is a positive scalar denoting the non-linearity and the strength of the damping.

We rewrite the equation into a system form

ẋ1 = x2

ẋ2 = −µ(x1
2 − 1)x2 − x1

corresponding to

L1(x1, x2) = x1
′ − x2 (4.22)

L2(x1, x2) = x2
′ + µ(x1

2 − 1)x2 + x1. (4.23)

To establish the linearized system, we apply the method in Section 4.1. Following some

tedious calculations,

θ1
′ − θ2 = −x1

′ + x2 (4.24)

θ2
′ + θ1 + µθ2(x1

2 − 1) + 2µx1x2θ1 = −x2
′ − µ(x1

2 − 1)x2 − x1. (4.25)

That is,

 1 0

0 1


 θ1

θ2


t

+

 0 −1

1 0


 θ1

θ2

 +
 2µx1x2θ1

µ(x1
2 − 1)θ2

 = −
 1 0

0 1


 q1

q2


t

−
 0 −1

1 0


 q1

q2

 −
 0

µ(x1
2 − 1)x2

 . (4.26)

49

Equation (4.26) in a compact form is

I2Θt + AΘ + D(Θ, X) = −I2Xt − AX −C(X), (4.27)

where Θ = (θ1, θ2)T and X = (x1, x2)T . Here, A is a matrix, D(Θ, X) and C(X) are vectors

defined in Equation 4.26. I2 is identity matrix. We solve the above system for Θ applying

Crank-Nicolson scheme, leading to

I2
Θn+1 − Θn

∆t
+ A
Θn+1 + Θn

2
+ D(Θn+1

n , Xn+1
n) = −I2

Xn+1 − Xn

∆t
− A

Xn+1 + Xn

2
−C(Xn+1

n).(4.28)

After solving the system for Θ, we need to check the convergence condition given in Equation

(4.9) where θ = Θn and ϑ = Θn+1. If the condition holds, then

Qn+1 = Qn + Θn+1. (4.29)

The numerical results are given in Chapter 5.

4.2.3. Nonlinear Schrödinger Equation

Finally, to see the efficiency of the method on partial differential equations, we handle

the cubic nonlinear Schrödinger equation

i~ψt = Ĥψ(x, t) (4.30)

i~ψt + βψxx +
(
G(x) + α|ψ|2)ψ = 0 (4.31)

where ψ(x, t) denotes the probability amplitude of the particle to be found at position x at

time t, ~ is the Planck constant and G(x) is the external potential. We consider the Dirichlet

boundary conditions

ψ(xL, t) = ψ(xR, t) = 0, t ∈ [0, tend] (4.32)

50

with the initial condition

ψ(x, 0) = ψ0, x ∈ (xL, xR). (4.33)

We rewrite the equation into the system by applying change of variables, ψ = U + iV ,

we get the following two differential equation

Ut + βVxx + (G(x) + α(U2 + V2))V = 0, (4.34)

Vt − βUxx − (G(x) + α(U2 + V2))U = 0. (4.35)

Here L1(U,V) and L2(U,V) represent Equation (4.34) and Equation (4.35), respec-

tively. By repeating the procedure given in Section 4.1, we obtain

Θt + AΘ + BΘ +C(U,V)Θ = −Ψt − AΨ − BΨ − D(|Ψ|)Ψ, (4.36)

where Θ = (θ1, θ2)T and Ψ = (U,V)T . In addition,

A =

 0 β∂2
x

−β∂2
x 0

 , B =

 0 G(x)

−G(x) 0



C(U,V) =

 2αUV 3αV2 + αU2

−3αU2 − αV2 −2αUV

 , D(|Ψ|) =
 0 α(U2 + V2)

−α(U2 + V2) 0

 .

Here, the operator ∂2
x is also corresponding to a matrix due to the central difference approxi-

mation and 0 denotes the zero matrix. In order to solve the system given in Equation (4.36),

we apply Crank-Nicolson method as in Subsection 4.2.1. Then, we solve the system to find

Θ.

51

CHAPTER 5

NUMERICAL TESTS AND SIMULATIONS: THE

PROPOSED LINEARIZED METHOD

This Chapter presents numerical results for the method introduced in Chapter 4. As

it mentioned before, the focus is essentially on the oscillation problems. Since proposed

linearized method (PLM) is explicit, it is necessary to test not only its accuracy but also its

conservative structure. To that end in addition to damped oscillator, Van-der Pol equation

and nonlinear Schrödinger equation are studied. The application of PLM to the equations are

given in Section 4.2. The errors and the CPU runtimes are included to judge the efficiency of

the method. Accuracy of the results are computed by means of L1, L2 and L∞ norms given by

∥.∥L1 =

n=N∑
n=0

|u(nh) − U(nh)|,

∥.∥L2 =
(n=N∑

n=0

|u(nh) − U(nh)|2)1/2
∥.∥L∞ = max

0≤n≤N
|u(nh) − U(nh)|.

5.1. Damped Oscillator

To see the performance of the method, firstly we consider the damped oscillator. The

algorithm given in Figure 4.1 is applied to the linearized Equation (4.17)

We solve the problem given in Equation (4.10) with q(t) = 1 and q′(t) = 0. The

analytic solution of the method is

y(t) =
cos t√
1 + 3αt

4

, where α→ 0+, (5.1)

see (Bender and Orszag, 1999) for details.

52

In Table 5.1, the errors are presented in L1, L2 and L∞ norms. We compare the nu-

merical solution with the analytical one on [0, 1] for various α. Table 5.1 reveals that PLM is

more efficient than the second order Runge-Kutta method (RK2) Figure 5.1 illustrates that

Method α ∆t L∞ L2 L1

PLM 0.0001 2−3 0.0011 0.0017 0.0038
RK2 2−3 0.0020 0.0030 0.0065
PLM 0.0001 2−4 2.9783e-004 6.1720e-004 0.0020
RK2 2−4 5.1439e-004 0.0010 0.0030
PLM 0.0001 2−5 9.2573e-005 2.8095e-004 0.0013
RK2 2−5 1.1844e-004 2.9516e-004 0.0012

Table 5.1. Numerical errors for different ∆t. Estimated errors using L∞, L2 and L1

norm are obtained comparing with the analytical solution on [0, 1].

there is no difference between the numerical solutions and the analytical solutions for α = 0.1

and α = 0.001 on [0, 10].

0 5 10 15 20 25 30
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

time

q(
t)

Exact(−−) vs Proposed Method(*)

Exact
Numerical

(a) α = 0.01

0 5 10 15 20 25 30
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

time

q(
t)

Exact
Numerical

(b) α = 0.001

Figure 5.1. Exact solution and PLM for solving equation in 4.10.

To see the effects of nonlinearity on the method, we choose as α = 1. To the best

our knowledge there is no exact solution to Equation (4.10). We compare our result with the

ODE45 in MATLAB; ∆t = 1/8 on [0, 30].

53

0 5 10 15 20 25 30
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

time

q(
t)

ode45
Proposed method

Figure 5.2. PLM vs ODE45 where α = 1.

It can be seen from the Figure 5.2, the method introduced in Chapter 4 is in a perfect

agreement with the ODE45 in MATLAB.

5.2. Van-der Pol Equation

As our second example, we consider the Van-der Pol equation given in Equation

(4.21). In this section, we focus on the case of µ ≥ 1, i.e., the relaxation oscillations.

In Figure 5.3, we use ∆t = 0.01 on [0, 60] where µ = 5 and µ = 10, respectively.

We compare our solutions with the ODE23s code in MATLAB since the exact solution of the

problem for these parameters is unknown.

0 10 20 30 40 50 60
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

time

x(
t)

ODE23s
Proposed Method

(a) µ = 5

0 10 20 30 40 50 60
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

time

x(
t)

ODE23s
Proposed Method

(b) µ = 10

Figure 5.3. PLM vs. ODE23s obtained for various values of µ.

54

As a consequence of linearization, PLM is explicit. To the best our knowledge explicit

methods do not preserve various qualitative property. Thus, we also check the limit cycle of

the Van-der Pol equation for PLM. From the Figure 5.4, we deduce that PLM preserves the

limit cycle of the equation even though it is explicit. Here, ∆t = 0.01 on [0, 60] with µ = 10.

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−15

−10

−5

0

5

10

15

ODE23s
Proposed Method

Figure 5.4. Limit cycle obtained from the solutions from PLM and ODE23s.

For the parameters above, we also observe that the elapsed time by considering same

number of steps for PLM is 0.2031 whereas for the software of MATLAB, ODE23s, is 1.4063

Therefore, we deduce that PLM is faster than ODE23s in CPU runtime.

As mentioned in Chapter 3, Van-der Pol equation is a Hamiltonian system as given in

Equation (3.9). Figure 5.5 demonstrates the Hamiltonian of Equation (4.21) with PLM and

ODE23s.

0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

time

|H
(x

1,x
2)−

H
(x

10 ,x
20)|

Hamiltonian of Proposed Scheme

(a) PLM

0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

time

|H
(x

1,x
2)−

H
(x

10 ,x
20)|

Hamiltonian of ODE23s

(b) ODE23s in MATLAB

Figure 5.5. The Hamiltonian of Van-der Pol Equation (3.6) for µ = 1 on [0, 60].

55

For the exhibited figure, Figure 5.5, we study with µ = 1 and ∆t = 0.01 on [0, 60].

Therefore, we also deduce that there is no difference between PLM and ODE23s. We note

that ODE23s is an implicit method whereas PLM is explicit.

5.3. Nonlinear Schrödinger Equation

Our final objective is to apply the method constructed in Chapter 4 to Equation (4.31).

As in Chapter 3, we delve into the two cases:

• without external potential, namely G(x) = 0.

• with real-valued external potential.

5.3.1. Equation in the form: i∂tΨ + β∂
2
xΨ + α|Ψ|2Ψ = 0

Start with the case G(x) = 0, β = α = 1 and ~ = 1. That is,

iψt + ψxx + |ψ|2ψ = 0, (5.2)

ψ(xL, t) = ψ(xR, t) = 0,

We deal with two different initial conditions in our numerical implementations. In the first

case the initial condition is

ψ(x, 0) = 2eixsech(
√

2x). (5.3)

Here, the exact solution is

ψ(x, t) =

√
2ei(x+t)

cosh(
√

2x − 2
√

2t)
. (5.4)

For more details, we refer to the study of Polyanin & Zaitsev, (Polyanin and Zaitsev, 2003).

Figure 5.6 and Figure 5.7 are exhibited on the space interval [−15, 10] divided into

100 uniform grid points with ∆x = 0.25. We integrate the system using PLM with time step

56

size ∆t = 0.01 up to final time t = 1. The numerical solutions are in a perfect agreement with

the analytic one, see Figure 5.6.

−15
−10

−5
0

5
10

0

0.5

1
0

0.5

1

1.5

2

2.5

xt

P
ro

po
se

d
Li

ne
ar

iz
ed

 M
et

ho
d

(a) PLM of Equation (5.2) and (5.3)

−15
−10

−5
0

5
10

0

0.5

1
0

0.5

1

1.5

2

2.5

xt

E
xa

ct
 S

ol
ut

io
n

(b) Exact Solution

Figure 5.6. The numerical solutions are obtained for ∆x = 0.25 and ∆t = 0.01 where
Nx = Nt = 100.

Figure 5.7 illustrates the global energy error and the absolute error.

0 0.2 0.4 0.6 0.8 1
1.66

1.67

1.68

1.69

1.7

1.71

1.72

1.73

1.74

1.75

1.76

time

G
lo

ba
l E

ne
rg

y
E

rr
or

(a) Global Energy Error for equations (5.2)
and (5.3)

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

x 10
−10

time

A
bs

ol
ut

e
E

rr
or

(b) Absolute Error for equations (5.2) and
(5.3)

Figure 5.7. The numerical solutions are obtained for t ∈ [0, 1] and x ∈ [−15, 10] where
Nx = Nt = 100. The exhibited figures belong to global energy error on the
left and the absolute error on the right.

We investigate the energy and the mass conservation

M(t) :=
∫ xR

xL

|ψ|2dx := M(0), (5.5)

E(t) :=
∫ xR

xL

(− |ψx|2 +
|ψ|4
2
)
dx := E(0). (5.6)

57

Note that for conservation of the mass the absolute error is evaluated by

AE = ∆x
Nx∑

k=1

|Mn
k − M0

k |

in discrete space. Here, Mn
i = (Un

i)2 + (Vn
i)2, for Ψ = U+ iV and M0 denotes the initial mass.

The global energy in discrete space is

GE = ∆x
Nx∑

k=1

|En
k − E0

k |

where E0 denotes the initial energy.

Table 5.2 is presented to show the efficiency of the method. It can be seen from

Table 5.2 that the mass is preserved for all L∞, L2 and L1 norms. In our implementation

Nx = Nt = 100 grid points are taken.

tend ∆t L∞ L2 L1
0.3 0.003 1.2150e-012 6.2350e-012 5.2767e-011
0.5 0.005 6.2839e-012 2.6592e-011 2.0517e-010
0.8 0.008 5.4293e-011 1.8396e-010 1.2022e-009
1 0.01 2.7304e-010 6.2927e-010 3.6911e-009

Table 5.2. Estimated errors using L∞, L2 and L1 norm for conservation of the mass
with Nx = Nt = 100 where ∆x = 0.25.

The conserved density from the exact solution is

∫ 10

−15
|ψ|2dx = 5.6569,

∫ 10

−15

(− |ψx|2 +
|ψ|4
2
)
dx = 3.1884

while from the numerical solution at t = 1.0 we have

∫ 10

−15
|ψ|2dx = 5.6569,

∫ 10

−15

(− |ψx|2 +
|ψ|4
2
)
dx = 3.2694.

58

Secondly, we take the initial condition for Equation (5.2)

ψ(x, 0) =
√

2sech(x + 10)eix/4. (5.7)

The exact solution is given in (Polyanin and Zaitsev, 2003) as

ψ(x, t) =
√

2sech(x − t
2
+ 10)ei(x

4+
15
16 t). (5.8)

Figure 5.8 is pointed out that PLM works well for the soliton solution. Although it is

a linearization technique, it is in a perfect agreement with the exact solution for a long-time.

We set Nt = Nx = 100 on which x ∈ [−20, 5] for Equation (5.2) and (5.7).

One of the most important properties of solitary waves is that they can travel enormous

distances without changing their whole structure or energy. Figure 5.9 suggests that the PLM

does not cause any alteration in the structure of Equation (5.2). The exact and the numerical

solutions of Equation (5.2) are exhibited for t = 5, t = 10, t = 15 and t = 20, respectively.

Here, Nt = Nx = 100 on x ∈ [−20, 5] and t ∈ [0, 20].

Due the definition of the solitary wave, the objective of this section is followed up by

checking mass and energy conservation of the method. It is necessary for testing the validity

of the given method. Thus,

∫ 5

−20
|ψ|2dx = 4.0000,

∫ 5

−20

(− |ψx|2 +
|ψ|4
2
)
dx = 1.1749

while we have from the numerical solution at t = 3

∫ 5

−20
|ψ|2dx = 4.0000,

∫ 5

−20

(− |ψx|2 +
|ψ|4
2
)
dx = 1.2162.

Moreover, we have the following results numerical results at t = 20

∫ 5

−20
|ψ|2dx = 3.9998,

∫ 5

−20

(− |ψx|2 +
|ψ|4
2
)
dx = 1.1850,

which guarantee that PLM has the long-time behavior for the conservative quantities.

To comment on the efficacy of PLM, the mass conservation is investigated. In Table

59

5.3 the absolute error is indicated in different norm for different Nt and Nx.

Nt Nx L∞ L2 L1
100 100 2.8572e-006 8.6262e-006 4.4454e-005
100 150 7.6629e-007 2.4568e-006 1.3471e-005
150 100 2.1974e-006 8.1635e-006 5.1972e-005
150 200 2.3080e-007 9.4481e-007 6.8182e-006

Table 5.3. Estimated errors using L∞, L2 and L1 norm for conservation of the mass
where t ∈ [0, 3] and x ∈ [−20, 5].

Table 5.4 emphasizes that PLM also preserves the mass on t ∈ [0, 20].

Nt Nx L∞ L2 L1
100 100 2.4327e-004 4.9666e-004 0.0028
150 100 2.8689e-004 8.3550e-004 0.0069
100 150 1.0418e-004 1.8285e-004 6.5519e-004
150 200 6.8457e-005 1.4257e-004 5.8034e-004

Table 5.4. Estimated errors using L∞, L2 and L1 norm for conservation of the mass
where t ∈ [0, 20] and x ∈ [−20, 5].

At last, we test the CPU runtime of PLM for various ∆x and ∆t in Table 5.5.

∆x ∆t Elapsed Time
100 100 5.7344
100 150 8.2031
150 150 19.7969

Table 5.5. The elapsed time is measured in seconds where t ∈ [0, 3] and x ∈ [−20, 5].

5.3.2. Equation in the form: i∂tΨ + β∂
2
xΨ + (G(x) + α|Ψ|2)Ψ = 0

We now turn our attention to the cubic Nonlinear Schrödinger equation with the exter-

nal potential. As in Section 3.3.2 G(x) = − 1
1+sin2(x)

where ~ = 1, β = 1
2 and α = −30. Thus, we

have

iψt +

(1
2
∂2

∂x2 − (
1

1 + sin2 x
+ 30 ∗ |ψ|2)

)
ψ = 0. (5.9)

60

Here the boundary conditions are given as ψ(xL, t) = ψ(xR, t) = 0 and the initial condition is

taken as ψ0(x) = γ exp(sin 2x).

The probability density of any particle in Equation (5.9) is defined as

∫ xR

xL

∥ψ∥dx ≤ 1.

To verify the solutions obtained from PLM, we need to set γ as 1
∥ψ0∥ due to

∫ xR

xL

∥ψ0∥dx = 1.

For both Figure 5.10(a) and Figure 5.10(b) we assume that the system is defined on the interval

x ∈ [−20, 20], which is split into Nx = 100 parts. We integrate the system with the time-step

size ∆t = 0.08 up to final time t = 8. Figure 5.10 demonstrates that our method preserves the

probability density of particle in (5.9) for the given potential.

Figure 5.2 reveals that PLM preserves the probability of the particle in Equation (5.9).

To compare PLM with the second order Runge-Kutta(RK2) method, we also study

for x ∈ [−20, 20] where Nx = Nt = 100. The system is integrated to the final time t = 4.

Figure 5.11 illustrates that the numerical solutions from PLM and RK2, respectively. In Figure

5.11, the numerical solutions are similar to each other. However, when tend = 5 the RK2 does

not preserve the probability density. The Figure 5.12 shows that the RK2 method does not

preserve the probability density of the particle in Equation (4.31) whereas PLM does, see

Figure 5.10.

61

−20
−15

−10
−5

0
5

0
1

2
3

4
5
0

0.5

1

1.5

x

Exact Solution

t

|ψ
|

(a) Exact Solution for tend = 5

−20
−15

−10
−5

0
5

0
1

2
3

4
5
0

0.5

1

1.5

t

Proposed Method

x

|ψ
|

(b) PLM for tend = 5

−20
−15

−10
−5

0
5

0

5

10
0

0.5

1

1.5

x

Exact Solution

t

|ψ
|

(c) Exact Solution for tend = 10

−20
−15

−10
−5

0
5

0

5

10
0

0.5

1

1.5

t

Proposed Method

x

|ψ
|

(d) PLM for tend = 10

−20
−15

−10
−5

0
5

0

5

10

15

20
0

0.5

1

1.5

x

Exact Solution

t

|ψ
|

(e) Exact Solution for tend = 20

−20
−15

−10
−5

0
5

0

5

10

15

20
0

0.5

1

1.5

t

Proposed Method

x

|ψ
|

(f) PLM for tend = 20

Figure 5.8. Comparison of the numerical solution and the exact solution of the Equa-
tion (5.2) with the initial condition given in (5.7) for various values of tend.

62

−20 −15 −10 −5 0 5
0

0.5

1

1.5

x

|ψ
|

t=5

−20 −15 −10 −5 0 5
0

0.5

1

1.5

x

|ψ
|

t=10

−20 −15 −10 −5 0 5
0

0.5

1

1.5

x

|ψ
|

t=15

−20 −15 −10 −5 0 5
0

0.5

1

1.5

x

|ψ
|

t=20

Figure 5.9. Exact and the numerical solutions of Equation (5.2) at certain time.

0
2

4
6

8

−20

−10

0

10

20
0

0.01

0.02

0.03

0.04

tx

pr
ob

ab
ili

ty
 d

en
si

ty
 o

f P
ro

po
se

d
M

et
ho

d

(a) Numerical Solution

0

1

2

3

4

5

6

7

8

−20−15−10−505101520

t
 x 0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

(b) Contour Plot

Figure 5.10. Probability density of the particle in Equation (5.9) for PLM.

63

0
1

2
3

4

−20

−10

0

10

20
0

0.01

0.02

0.03

0.04

0.05

tx

pr
ob

ab
ili

ty
 d

en
si

ty
 o

f R
K

2

(a) The RK2

0
1

2
3

4

−20

−10

0

10

20
0

0.01

0.02

0.03

0.04

0.05

tx

pr
ob

ab
ili

ty
 d

en
si

ty
 o

f F
re

ch
et

 D
er

iv
at

iv
es

(b) PLM

Figure 5.11. Probability density of the particle in Equation (5.9). PLM is given on the
right whereas the RK2 method on the left.

0
1

2
3

4
5

−20

−10

0

10

20
0

0.02

0.04

0.06

0.08

0.1

tx

pr
ob

ab
ili

ty
 d

en
si

ty
 o

f R
K

2

Figure 5.12. The numerical solutions obtained from the RK2 method for t ∈ [0, 5].

64

CHAPTER 6

CONCLUSION

Nonlinear oscillations related with the vibrating systems have important role in en-

gineering. Thus, the solving nonlinear oscillation problems is crucial. The main purpose of

this thesis is to propose two alternative numerical methods for solving nonlinear oscillation

equations.

First of all, we construct a method which is based on the Magnus expansion and the

iterative splitting procedure. Afterwards, the consistency and stability properties are analyzed

bounded and unbounded operators. For that purpose, we utilize from the Taylor expansion

and C0 semigroup approaches combined with the exponential integrator, respectively. We get

the convergence of the proposed method using "Lady windermere’s fan" argument.

Since the proposed method is a kind of operator splitting method, we compare it with

the traditional splitting methods. We test the proposed method on the Duffing equation in

order to see the efficiency. From Table 3.1, we deduce that the proposed method achieves

second order accuracy. The well-known second order splitting methods, namely Strang split-

ting and symmetrically weighted splitting, have reduction of order. Since Strang splitting and

symmetrically weighted splitting have similar behavior and order, we compare the proposed

method with only Strang splitting method. Strang splitting involves three subequations, while

the proposed method involves two. Thus, from a computational point of view, the proposed

method is more efficient than Strang splitting. The method is also applied to Van-der Pol os-

cillator in nonlinear dynamics. Although the proposed method is explicit Figure 3.4 and 3.3

demonstrate that it is in a perfect agreement with the ODE23s code in MATLAB which is an

implicit method. Then, the cubic nonlinear Schrödinger equation(NLSE) in nonlinear optics

is considered for two cases: without and with external force. In the first case, we present

the numerical solutions of the proposed method for the exact soliton solution. Additionally,

some of the conserved densities, namely mass and energy, are given for the correctness of

the solutions. Finally, the probability density of the particle for NLSE with the external force

is illustrated in Figure 3.10 and Figure 3.11 for the proposed method and Strang splitting,

respectively.

Due to the stability problem of the proposed iterative splitting method, in the second

part of this thesis, we propose an alternative method based on the "Newton-Raphson" and the

"Fréchet derivatives." To the best our knowledge this is the first application of the Fréchet

derivatives combining with the central difference approximation. In the procedure of the

65

proposed linearized method, we use the Crank-Nicolson method. We do not analyze of the

proposed linearized method (PLM) in this thesis. Thus, this part of the dissertation is mainly

devoted to application and implementation of PLM.

We solve damped oscillator, Van-der Pol equation and the cubic nonlinear Schrödinger

equation using PLM. We test the proposed linearized method on the damped oscillator. Since

the analytical solution is given for α → 0+, to see the efficiency of the method, we present

the errors for α = 0.0001 comparing then with 2nd order Runge-Kutta method in different

norms, namely L∞, L2 and L1. We also compare PLM with ODE23s from MATLAB. This

code is known as an implicit solver. Figure 5.3 and Figure 5.5 reveals that PLM is also in a

perfect agreement with the ODE23s. Moreover, we see that PLM preserves the limit cycle

of the Van-der Pol equation, cf. Figure (5.4). As a result of the unconditionally stability for

the nonlinear Schrödinger equation (NLSE) without external force, we see from the Figure

5.8 that the proposed linearized method and the exact solution have similar behavior for a

long time. Furthermore, PLM preserves the probability density of NLSE for a long time, see

Figure 5.10, whereas the second order Runge-Kutta method does not, see Figure 5.12.

Overall, we suggested two different methods for numerical solution of nonlinear oscil-

lation problems. As it can be deduced from the results and simulations, both PISM and PLM

are in a perfect agreement with the exact solution and the well-known solvers in MATLAB.

Although the examples considered are a small sample of nonlinear oscillation equations, they

suggest that the methods are easily adaptable to solve similar problems.

66

REFERENCES

Aydın A. and Karasözen B., 2011: Lobatto IIIA-IIIB discretization of the strongly coupled
nonlinear Schrödinger equation. Journal of Computational and Applied Mathematics,
235, 4770-4779.

Bagrinovskii K. A. and Gudunov S. K., 1957: Difference schemes for multidimensional
problems. Dokl. Akad. Nauk SSSR(NS), 115, 431-433.

Bátkai A., Csomós P and Nickel G., 2009: Operators and spatial approximations for
evolution equations. J. Evol. Equ.9, 613-636.

Bender C.M. and Orszag S.A., 1999: Advanced Mathematical Methods for Scientists and
Engineers. Springer-Verlag, New York.

Bert C. W. and Malik M., 1996: Differential quadrature method in computational me-
chanics: A review, Applied Mechanics Review, 49, 1-27.

Bülbül B. and Sezer M., 2013: Numerical Solution of Duffing Equation by
Using an Improved Taylor Matrix Method, Journal of Applied Mathematics,
http://dx.doi.org/10.1155/2013/691614.

Casas F. and Iserles A., 2006: Explicit Magnus expansions for nonlinear equations. J.
Phys. A: Math. Gen. 39, 5445-5461.

Certaine J., 1960: The solution of ordinary differential equations with large time constants.
In Mathematical methods for digital computers Wiley, New York, 128û132.

Cox S. M. and Matthews P. C., 2001: Exponential time differencing for stiff systems. J.
Comput. Phys., 176(2), 430-455.

Crandall M.G. and Majda A., 1980: The method of fractional steps for conservation laws.
Math. Comp., 34, 285-314.

Dehghan M. and Taleei A., 2010: A compact split-step finite difference method for solving
the nonlinear Schrödinger equations with constant and variable coefficients, Computer
Physics Communications, 181(1), 43-51.

Descombes S. and Thalhammer M., 2013: The Lie Trotter splitting method for nonlinear
evolutionary problems involving critical parameters. An exact local error representation
and application to nonlinear Schrödinger equations in the semi-classical regime. IMA
Journal of Numerical Analysis, Oxford University Press (OUP): Policy A - Oxford Open
Option A, 33, 2, 722-745.

Dimarogonas A. D. and Haddad S., 1992: Vibration for Engineers, Prentice-Hall, Engle-
wood Cliffs, New Jersey.

67

Einkemmer L. and Ostermann A., 2013: Convergence Analysis of Strang Splitting for
Vlasov-type Equations.

Engel K.J. and Nagel R., 2006: A short course on operator semigroups. Universitext.
Springer, New York.

Faragó I. and Geiser J., 2007: Iterative operator splitting methods for linear problems.
International Journal of Computational Science and Engineering, 3(4), 255-263.

Fazel M. R., Moghaddam M. M. and Poshtan J. 2013: Application of GDQ method in
nonlinear manipulator undergoing large deformation, J. Mech. Eng. Science, 227(12),
2671-2685.

Fidlin A., 2006: Nonlinear Oscillations in Mechanical Engineering, Springer-Verlag,
Berlin Heidelberg.

Ganji D.D., Karimpour S. and Ganji S.S., 2008: Approximate Analytical Solu-
tions to Nonlinear Oscillations of Non-natural Systems Using He’s Energy Balance
Method.Progress In Electromagnetics Research M, 5, 43-54.

Geiser J., 2008: Iterative Operator-Splitting Methods with higher order Time- Integra-
tion Methods and Applications for Parabolic Partial Differential Equations.Journal of
Computational and Applied Mathematics, Elsevier, 217, 227-242.

Geiser J., 2008: Decomposition methods for differential equations : Theory and applica-
tion. CRC Press, Taylor and Francis Group.

Geiser J., Noack L., 2011: Iterative operator-splitting methods for nonlinear differen-
tial equations and applications of deposition processes. Numerical Methods for Partial
Differential Equations, 27(5), 1026-1054.

Groves F. R., 1983: Numerical solution of nonlinear differential equation using computer
algebra, International Journal of Computer Mathematics, 13, 301-309.

Hardin R.H. and Tappert F.D., 1973: Applications of the split-step Fourier method to
the numerical solution of the nonlinear and variable coefficient wave equations. SIAM
Review 15, 423.

He J.H., 1999: Homotopy perturbation technique, Computer Methods in Applied Mechan-
ics and Engineering, 178, 257û262.

Hochbruck M. and Ostermann A., 2010: Exponential Integrator, Acta Numerica, Cam-
bridge University Press, 209û286.

Holden H., Karlsen K. H., Lie K-A. and Risebro N. H., 2010 : Splitting Methods for
Partial Differential Equations with Rough Solutions. Analysis and Matlab programs.
European Mathematical Society.

68

Jahnke T. and Altıntan D., 2004: Efficient Simulation of discrete stochastic reaction
system with a splitting method. BIT Numerical Mathematics, 50, Number 4, 797-822.

Iserles A. and Nørsett S.P., 1999: On the solution of linear differential equations in Lie
groups. Philos. Trans. Royal Soc. A, 357, 983-1019.

Kanney J., Miller C. and Kelley C, 2003: Convergence of iterative-split operator ap-
proaches for approximating nonlinear reactive transport problems. Advances in Water
Resources, 26, 247-261.

Kelly C., 1995: Iterative Methods for linear and nonlinear Equations. Frontiers in Applied
Math.,SIAM.

Koch O., Neuhauser C., Thalhammer M., 2013: Error analysis of high-order splitting
methods for nonlinear evolutionary Schrödinger equations and application to the MCT-
DHF equations in electron dynamics. ESAIM: Mathematical Modelling and Numerical
Analysis, 47, 5, 1265-1286

Krogstad S., 2005: Generalized integrating factor methods for stiff PDEs. J. of Comp.
Phys., 203, 1, 72û88.

Liao S.J. and Cheung A.T., 1998: Application of homotopy analysis method in nonlinear
oscillations, ASME Journal of Applied Mechanics, 65, 914û922.

Liu G.R. and Wu T.Y., 2000: Numerical solution for Differential Equations of Duffing-
Type non-linearity using the Generalized differential Quadrature Rule, Journal of
Sound and Vibration, 237(5), 805-817.

Liu G. R. and Wu T. Y., 2001: An application of the generalized differential quadrature
rule in Blasius and Onsager equations International Journal for Numerical Methods in
Engineering, 52(9), 1013û1027.

Lubich C., 2008 On splitting methods for Schrödinger-Poisson and cubic nonlinear
Schrödinger equations, Math. Comp., 77, 2141û2153.

Magnus W., 1954: On the exponential solution of differential equations for a linear opera-
tor. Commun. Pure Appl. Math., 7, 649-673.

Marchuk G.I., 1968: Some application of splitting-up methods to the solution of mathe-
matical physics problems. Aplik. Mat. , 13, No. 2, 103-132.

Mathews J.H. and Fink K.D. 2004: Numerical Methods usin MATLAB. Pearson; 4 edi-
tion , ISBN-13:978-0130652485

McLachlan R.I. and Quispel G.R.W., 2002: Splitting Methods. Cambridge University
Press, 341-434.

69

Mickens R.E.,2001: Mathematical and numerical study of the Duffing-harmonic oscillator,
Journal of Sound and Vibration, 244, 563û567.

Munkres J., 1997: Analysis on Manifolds, Westview Press.

Nayfeh A. H. and Mook D. T.,1995: Nonlinear Oscillations, John Wiley and Sons,
Newyork-Chichester-Brisbane-Toronto-Singapore.

Pechukas P. and Light J. C., 1966: On the exponential form of time-displacement opera-
tors in quantum mechanics. J. Chem. Phys., 3897-3912.

Polyanin A. D. and Zaitsev V. F., 2003: Handbook of Nonlinear Partial Differential Equa-
tions. Chapman and Hall/CRC.

Robinson D.W., 1963: Multiple Coulomb excitations of deformed nuclei. Helv. Phys. Acta,
36, 54-140.

Rudin W., 1976: Principles of Mathematical Analysis, McGraw-Hill Sci-
ence/Engineering/Math; 3rd edition.

Smith D.R., 1998: Variational Methods in Optimization, Dover.

Spivak M., 1971: Calculus on Manifolds, Westview Press.

Strang G., 1968: On the construction and comparison of difference schemes. SIAM J.
Numer. Anal., 5, No. 3, 506-517.

Tabatabaei K. and Günerhan E., 2014: Numerical Solution of Duffing Equation by the
Differential Transform Method, Appl. Math. Inf. Sci. Lett. 2, No. 1, 1-6.

Tanoğlu G. and Korkut S., 2012: The convergence of a new symmetric iterative splitting
method for non-autonomous systems, International Journal of Computer Mathematics,
89, 1837-1846, DOI:10.1080/00207160.2012.687447.

Trefethen L. N., 2000: Spectral Methods in MATLAB, SIAM, Philadelphia.

70

APPENDIX A

MAGNUS EXPANSION

Magnus integrators are an interesting class of numerical methods for Hamiltonian

problems. The problem which Magnus expansion (ME) solves has a history dating back

at least to the studies by Peano, at the end of 19th century, and Baker at the beginning of

the 20th. They combine the theory of differential equations with the algebraic formulation.

The so called Baker-Campbell-Hausdorff formula is related to these results. (Magnus, 1954)

is considered the father of the Magnus expansion. The convergence of the problem than the

ambiguous considerations in Magnus paper were studied in (Pechukas and Light, 2008). The

study of Robinson, (Robinson, 1963), is the first application of the Magnus expansion to a

physical problem. Between 1971 and 1990, Magnus expansion was successfully applied to

a wide class of problems in Physics and Chemistry. In the last decade of the 20th century

Magnus expansion has been adapted for specific types of equations such as stochastic differ-

ential equations. In numerical analysis using Magnus expansion as a geometric integrator was

pioneered by Iserles and Nørsett, (Iserles and Nørsett, 1999). For a comprehensive overview

for the nonlinear Magnus expansion, see (Casas and Iserles, 2006) and the references therein.

In this appendix, we briefly recall the Magnus expansion for a nonlinear equation.

Magnus expansion establishes an common tool to find an approximate solutions of nonlinear

operators such as

du
dt
= A(t, u)u(t) , (A.1)

with solution

u(t) = exp(Ω(t))u(0). (A.2)

71

As in the linear case, Ω can be obtained by Picard’s iteration,

Ω[0] ≡ 0,

Ω[1] =

∫ t

0
V(s, v0)ds,

Ω[m] =

m−2∑
k=0

Bk

k!

∫ t

0
adk
Ω[m−1]V(s, eΩ

[m−1]
v0)ds. m ≥ 2 (A.3)

and taking the approximation Ω(t) ≈ Ω[m](t). Here {Bk}k∈Z+ denotes the Bernoulli numbers

and adk represents the iterated commutator.

ad0
ΩA = A, adk+1

Ω A = [Ω, adk
ΩA].

Using Euler method, we have the first order Magnus operator as

Ω[1] =

∫ t

0
V(s, v0)ds = hV(0, v0) + O(h2). (A.4)

With the aid of the trapezoidal rule, the second order one is

Ω[2] =

∫ h

0
V(s, eΩ

[1]
v0)ds =

h
2

(
V(0, v0) + V(h, eΩ

[1]
v0)
)
+ O(h3). (A.5)

72

APPENDIX B

EXPONENTIAL INTEGRATORS

As their names emphasizes these integrators use the exponential function (and related

functions) of the Jacobian or to approximate to the exponential function. The first study on

Exponential integrators was published in 1960 by Certaine (Certaine, 1960). There are vari-

ous studies in the literature on this subject, see Cox and Matthews (2014), (Krogstad, 2005),

etc. Results presented here are available in the monograph of Hochbruck and Ostermann,

(Hochbruck and Ostermann, 2010).

Without loss of generality, consider

u′(t) = A(t, u) = Tu + g(t, u) (B.1)

u(0) = u0. (B.2)

By means of the variation-of constant formula, the exact solution of Equation (B.1) with the

initial value (B.2) can be expressed as

u(t) = eThu0 +

∫ t

0
eT (h−s)g(u(s))ds (B.3)

The main idea of the construction of exponential integrators is the linearization of a semi-

linear or a nonlinear evolution equation. Linearizing Equation (B.1), we have

u′(t) = A(t0, u0) +
∂A
∂u

(t0, u0)(u − u0) (B.4)

where ∂A
∂u is the Jacobian of A(t, u). Then the exact solution of the linearized equation (B.4) is

u(t) = u0 + hφ1(h
∂A
∂u

(t0, u0))A(u0),

u(t) = eThu0 + hφ1(hT)g(t0, u0).

73

Here the function φ1 is defined as

φ1(z) =
∫ 1

0
e(1−τ)z dτ =

ez − 1
z

.

More precisely,

φk(z) =
∫ 1

0
e(1−τ)z τk−1

(k − 1)!
dτ, k ≥ 1, (B.5)

where φ − f unctions satisfy φk(0) = 1/k! and the recurrence relation

φk+1(z) =
φk(z) − φk(0)

z
, φ0(z) = ez. (B.6)

For the exponential integrators within the framework of semigroups refer to (Engel and Nagel,

2006).

Assumption B.1 ((Hochbruck and Ostermann, 2010), Assumption 2.2) Let X be a Banach

space with norm ∥.∥. Assume that T is a linear operator on X and that T is the infinitesimal

generator of a strongly continuous semigroup etT on X. Then, there exist constants C and ω

such that

∥etT ∥X←X ≤ Ceωt.

If the assumption above is satisfied, then we deduce that φk(hT), k = 1, 2, 3, . . . are bounded.

74

APPENDIX C

ANALYTICAL FRAMEWORK

The purpose of this appendix is to collect the definitions that are used throughout this

report.

C.1. Newton-Raphson Method

Form a numerical point of view, the Newton-Raphson method is one of the most con-

venient and best known algorithms. The method was developed in the second half of 17th

century for finding root of real-valued functions.

Theorem C.1 Assume that f ∈ C2[a, b] and there exists a number p ∈ [a, b], where f (p) = 0.

If f ′(p) , 0, then there exists a δ > 0 such that the sequence {pk}∞k=0 define by the iteration

pk = pk−1 −
f (pk−1)
f ′(pk−1)

f or k = 1, 2, ...

will convergence to p for any initial approximation p0 ∈ [p − δ, p + δ].

For more details, we refer to (Mathews and Fink, 2004).

C.2. Derivatives in Banach Space

The main objective of this section is to describe the Gateaux and Fréchet derivatives.

In arbitrary vector space, a generalized directional derivative is called Gateaux differential and

a generalized gradient is called Fréchet derivative, see (Smith, 1998) for infinite- dimensional

vector spaces and (Spivak, 1971), (Munkres, 1997) or (Rudin, 1976) for finite-dimensional

case.

The idea of Gateaux derivative is based on the generalization of the directional deriva-

tive. The following definition states the Gateaux differential.

75

Definition C.1 (Gateaux differential)

Let f : V → U be a function and let h , 0 and x be vectors in V. The Gateaux

differential Dh f is defined

Dh f = lim
ϵ→0

f (x + ϵh) − f (x)
ϵ

The Fréchet derivative generalizes the idea of gradient.

Definition C.2 Fréchet derivative D f of f : V → U is defined implicitly by

f (x + k) = f (x) + (D f)k + o(∥k∥).

In order to see the association with the Gateaux differential, take k = ϵh, it leads to

f (x + ϵh) = f (x) + ϵ(D f)h + ho(ϵ).

Here, notice that

• there is not a single Gateaux differential at each point. In one dimension, there are

two Gateaux differential for x due to the forward and backward direction. In higher

dimensions, there are infinitely many Gateaux differentials at each point;

• the Fréchet derivative exists at x = a if Gateaux differentials are continuous functions

of x at x = a. If it exists for a function f at a point x, it is also unique, see (Munkres,

1997) or (Spivak, 1971);

• if f is Fréchet differentiable at x, then it is also Gateaux differentiable at x. The converse

is not true.

76

APPENDIX D

MAT-LAB CODES FOR NEW ITERATIVE SPLITTING

D.1. Codes for Duffing equation

THE SECOND ORDER SPLITTING METHODS

%%%Duffing Equation y’’+y+ep*y^3=0,y(0)=1,y’(0)=0%%%

clear all; close all; clc;

%% Problem definition

q10=1; q20=0; tson=10; U0=[q10;q20];

h=1/64; %%%%stepsize

t=0:h:tson; %%%interval

n=tson/h; %%%%%number of steps

P=U0; Q=U0;

EP=1e-4; %%%\varepsilon

EX=zeros(1,n+1);

%% exact solution from (Bender and Orszag 1999)

for i=1:n+1 EX(i)=cos(t(i))+EP*(cos(3*t(i))/32-...

...cos(t(i))/32-(3*t(i)*sin(t(i)))/8);

end

%%%%%%%%%% Numerical Solutions%%%%%%%%%%%%%%%%%

%%%%%%%%%% PROPOSED METHOD

%%% initialization

IT2=zeros(2,n+1); ITS=zeros(2,n+1); Tr2=zeros(1,n+1);

T=[0,1;-1,0]; %V(t,u) is given in function "nonlin"

IT2(:,1)=U0; Tr2(1)=q10; ITS(:,1)=U0;

for i=2:n+1

new=expm(h*nonlin(EP,IT2(1,i-1)))*IT2(:,i-1);

IT2(:,i)=(expm((h/2)*(nonlin(EP,IT2(1,i-1))+nonlin(EP,new(1,1))))*...

...(IT2(:,i-1)+((h/2)*T*U0)))+((h/2)*T*U0);

ITS(:,i)=(expm(h*T)*(ITS(:,i-1)+((h/2)*nonlin(EP,ITS(1,i-1))*...

...IT2(:,i-1))))+((h/2)*nonlin(EP,IT2(1,i))*IT2(:,i));

U0=ITS(:,i); IT2=ITS; Tr2(i)=ITS(1,i);

end

77

%%%%%%%HAMILTONIAN of PROPOSED SPLITTING

%%%H(q_1,q_2)=-\frac{q_2^2}{2}-\frac{q_1^2}{2}-\frac{epsilon q_1^4}{4}

%%% initialization

H=zeros(length(t),1); EH=zeros(length(t),1);

H(1)=-0.5-(EP*(1/4)); %%%% initial for Hamiltonian

for i=1:length(t)-1

H(i+1)=-(((IT2(2,i))^2)/2)-(((IT2(1,i))^2)/2)-...

...(EP*((((IT2(1,i))^4)/4))); EH(i+1)=abs(H(i+1)-H(1));

end

%%%%%%%%%%% STRANG SPLITTING

SM=zeros(2,n+1); Smss=zeros(1,n+1);

SM(:,1)=P; Smss(1)=q10; %%%%initialization

b=expm(T*h/2);

%Main Loop

for i=2:n+1

a1=b*SM(:,i-1);

a2=expm((h/2)*(nonlin(EP,SM(1,i-1))+nonlin(EP,a1(1,1))));

SM(:,i)=b*a2*a1;

Smss(i)=SM(1,i);

end

%%%%%%%HAMILTONIAN of STRANG SPLITTING

HS=zeros(length(t),1); EHS=zeros(length(t),1);

HS(1)=-0.5-(EP*(1/4)); for i=1:length(t)-1

HS(i+1)=-(((SM(2,i))^2)/2)-(((SM(1,i))^2)/2)-...

...(EP*((((SM(1,i))^4)/4))); EHS(i+1)=abs(HS(i+1)-HS(1));

end

%%%%%%%%%%% SYMMETRICALLY WEIGHTED SPLITTING

SWS=zeros(2,n+1); swsss=zeros(1,n+1);

SWS(:,1)=Q; swsss(1)=q10;

c=expm(T*h);

for i=2:n+1 b3=c*SWS(:,i-1);

ara=expm((h/2)*(nonlin(EP,SWS(1,i-1))+nonlin(EP,b3(1,1))));

symet1=ara*b3;

a3=expm(h*nonlin(EP,SWS(1,i-1)))*SWS(:,i-1);

symet2=c*a3;

78

SWS(:,i)=0.5*(symet1+symet2);

swsss(i)=SWS(1,i);

end

%%%%%%%HAMILTONIAN of STRANG SPLITTING

HSW=zeros(length(t),1); EHSW=zeros(length(t),1);

HSW(1)=-0.5-(EP*(1/4));

for i=1:length(t)-1

HSW(i+1)=-(((SWS(2,i))^2)/2)-(((SWS(1,i))^2)/2)-...

...(EP*((((SWS(1,i))^4)/4))); EHSW(i+1)=abs(HSW(i+1)-HSW(1));

end

%%%%%%% ERRORS Comparison with the Analtic Solution

%%%Here it must choosen as \varepsilon is small

%%% because of the analytic one.

%%%%for choosen h

ERIT=max(abs(Tr2-EX))

ERIT2=norm((Tr2-EX),2)

ERIT1=norm((Tr2-EX),1)

ERST=max(abs(Smss-EX))

ERST2=norm((Smss-EX),2)

ERST1=norm((Smss-EX),1)

ERSWS=max(abs(swsss-EX))

ERSWS2=norm((swsss-EX),2)

ERSWS1=norm((swsss-EX),1)

%%%%%%FIGURES

figure(1)

plot(t,EH)

legend(’Hamiltonian of Proposed Scheme’)

xlabel(’time’)

ylabel(’|H(q_1,q_2)-H(q_1^0,q_2^0)|’)

figure(2)

plot(t,EHS) legend(’Hamiltonian of Strang Splitting’)

xlabel(’time’) ylabel(’|H(q_1,q_2)-H(q_1^0,q_2^0)|’)

79

THE PROGRAMME WHICH IS USED IN SECOND ORDER METHODS

%%% nonlinear part of Duffing Equation

%%% for Proposed and Strang Splitting methods

function y=nonlin(EP,yi)

K=zeros(2);

K(2,1)=-EP*(yi^2);

y=K;

D.2. Codes for Van-der Pol Equation

THE SECOND ORDER PROPOSED METHOD vs. ODE23s

%%%%% Van-der Pol eq: To see conservation of limit cycle

%%%%% Equation:

close all; clear all; clc;

% nu=5:5:25; %%%% for sketching the solution with different nu(s)

% cc = jet(length(nu));

% for s=1:length(nu)

dt=0.01; tf=60; t0=0;

t=t0:dt:tf; nx=length(t); solution=zeros(2,nx); ce=zeros(2,1);

%initial conditions

coeff=10; %%%% uncomment nu, then write coeff=nu(s)

ce(1)=2; ce(2)=0; solution(:,1)=ce;

%%%% Initialization

U1=zeros(2,nx); U2=zeros(2,nx);

%%% Programme

A=[0,1;-1,0];

U1(:,1)=ce; U2(:,1)=ce;

for k=1:length(t)-1

U1(:,k+1)=expm(A*dt)*...

...(U1(:,k)+((dt/2)*nonlinear(coeff,U1(1,k),U1(:,k))))+...

...((dt/2)*nonlinear(coeff,U1(1,k),U1(:,k)));

newvar=nonlinear(coeff,U2(1,k),1)+nonlinear(coeff,U1(1,k+1),1);

80

U2(:,k+1)=expm(newvar*(dt/2))*(U2(:,k)+((dt/2)*A*U2(:,k)))+...

...((dt/2)*A*U1(:,k+1)); U1=U2; solution(:,k+1)=U2(:,k+1);

end

%%%%%%%% Hamiltonian

H=zeros(length(t),1); EH=zeros(length(t),1); H(1)=-2;

for i=1:length(t)-1

H(i+1)=-(((solution(2,i))^2)/2)-(((solution(1,i))^2)/2)-...

...(coeff*((((solution(1,i))^3)/3)-solution(1,i))*solution(2,i));

EH(i+1)=abs(H(i+1)-H(1));

end

%%%%%% Solution for ODE23s

[T,Y] = ode23s(@(t,y)ypvdpol(coeff,t,y),[t0 tf],[2 0]);

%%%%%Hamiltonian of ODE23s

H1(1)=-2; for i=1:length(T)-1

H1(i+1)=-(((Y(i,2))^2)/2)-(((Y(i,1))^2)/2)-...

...(coeff*((((Y(i,1))^3)/3)-Y(i,1))*Y(i,2));

EH1(i+1)=abs(H1(i+1)-H1(1));

end

%%%% Figures

figure(1) plot(t,EH)

legend(’Hamiltonian of Proposed Scheme’)

xlabel(’time’) ylabel(’|H(x_1,x_2)-H(x_1^0,x_2^0)|’)

figure(2) plot(solution(2,:),solution(1,:),’r’)

title(’Limit Cycle of Proposed Method’) xlabel(’x_2’) ylabel(’x_1’)

figure(3)

plot(T,EH1)

legend(’Hamiltonian of ode23s’)

xlabel(’time’)

ylabel(’|H(x_1,x_2)-H(x_1^0,x_2^0)|’)

81

figure(4) plot(Y(:,2),Y(:,1),’r’)

title(’Limit Cycle of ode23s’)

xlabel(’x_2’) ylabel(’x_1’)

figure(5) plot(t,solution(1,:),’b’,T,Y(:,1),’r’)

legend(’proposed’,’ode23s’)

THE PROGRAMME WHICH IS USED IN THE PROGRAMME ABOVE

%nonlinear part of van Der Pol

function y=nonlinear(coeff,a,b) K=zeros(2,2);

K(2,2)=-coeff*((a^2)-1); K=K*b; y=K;

%% full problem for van-der Pol---- ODE23s

function ypvdpol=ypvdpol(nu,t,y)

ypvdpol(1) = y(2);

ypvdpol(2)=nu*(1-y(1)^2)*y(2)-y(1);

ypvdpol=[ypvdpol(1) ypvdpol(2)]’;

D.3. Codes for Nonlinear Schrödinger Solutions

D.3.1. Equation in the form: i∂tΨ = β∂
2
xΨ + α|Ψ|2Ψ

MAIN PROGRAMME for CASE 1

%%%% Soliton Solution $iu_t+u_{xx}+|u|^2u=0$

%%%% with initial condition $u(x,0)=2sech(x)e^{ix}$

%%%%%%%%%%Problem definition

clear al1; close all; clc;

t0=0; tson=1; N=100; h=(tson-t0)/N; x0=-15.0; xson=10;

dx=(xson-x0)/N; cfl=h/dx

t=t0:h:tson ; x=x0:dx:xson;

%% Construction initial condition

82

C0=zeros(2*N+2,1);

for i=1:N+1

C0(i)=2*sech(x(i)*sqrt(2))*cos(x(i));

C0(N+1+i)=2*sech(x(i)*sqrt(2))*sin(x(i));

end

%%%%%%%%%%%%%%%%%%% Initial Condition %%%%%%%%%%%%%%%%%

yini=C0;

%%%%%%%%%% Boundary Conditions: Dirichlet %%%%%%%%%%%%%%

yini(1)=0; yini(end)=0; yini(N+1)=0; yini(N+2)=0;

yini1=yini; %Initial for Strang

yini2=yini;

%%%%%%% Exact solution from (Polyanin and Zaitsev, 2004)

exact=zeros(2*N+2,N+1);

for q=1:N+1 %%timecounter for exact

for r=1:N+1 %%xcounter for exact

exact(r,q)=2*cos(x(r)+t(q))*sech(sqrt(2)*x(r)-(2*sqrt(2)*t(q)));

exact(N+1+r,q)=2*sin(x(r)+t(q)).*sech(sqrt(2)*x(r)-...

...(2*sqrt(2)*t(q)));

end

end

%%%%%%%% Numerical Solutions

%%%%%% Linear operator

%%%%% central Difference

n=N; UU=toeplitz([-2 1 0 0 zeros(1,n-3)],[-2 1 0 0

zeros(1,n-3)]); US=(1/((dx)^2))*full(UU); BB=US;

T=[zeros(N+1) -BB;BB zeros(N+1)];

%%%%%%%%% PROPOSED METHOD

%%%% Construction of nonlinear matrix

KT=zeros(N+1,N+1); KT1=zeros(N+1,N+1);

GG=expm(T*h);

IT1(:,1)=yini1;

83

ITS(:,1)=yini1;

for j=2:N+1 %%time counter

for i=1:N+1 %%% x counter

KT(i,i)=nonl(yini(i),yini(N+1+i));

end

KTT=[zeros(N+1) KT;-KT zeros(N+1)];

IT1(:,j)=GG*(IT1(:,j-1)+((h/2)*KTT* IT1(:,j-1)))+...

... ((h/2)*KTT* IT1(:,j-1));

next=IT1(:,j);

for i=1:N+1

KT1(i,i)=nonl(next(i),next(N+1+i));

end

KT11=[zeros(N+1) KT1;-KT1 zeros(N+1)];

JJ=expm((h/2)*((KTT+KT11)));

ITS(:,j)=JJ*(ITS(:,j-1)+((h/2)*T*IT1(:,j-1)))+((h/2)*T*(IT1(:,j)));

%%%Boundary conditions

ITS(1,j)=0; ITS(N+1,j)=0; ITS(N+2,j)=0; ITS(end,j)=0;

%%%Boundary conditions

IT1=ITS;

yini=ITS(:,j); %%%%% ITS(x,t) form

end

%%%%% Global Energy for PROPOSED METHOD

%%%%% Inspired by (Aydin and Karsozen,2011)

for j=1:N+1 %%t counter

top=0;

for i=2:N %%x counter

der=((((ITS(i+1,j)-ITS(i-1,j))/(2*dx)).^2)+...

...(((ITS(N+1+i+1,j)-ITS(N+1+i-1,j))/(2*dx)).^2));

energy0=((((-1/4)*((2*sech(x(i)*sqrt(2))).^4)))+...

...((1/2)*(((2*sqrt(2)*tanh(sqrt(2)*x(i))*...

...sech(sqrt(2)*x(i))).^2)+(sech(sqrt(2)*x(i)).^2))));

ham=((-(1/4)*((((ITS(i,j).^2))+((ITS(N+1+i,j)).^2))).^2)+...

...(0.5*der)-energy0);

top=top+ham;

end

84

GE(j)=dx*top;

end

%%%%%%% Absolute Error conservation of the mass

M0=((ITS(1:N+1,1).^2)+(ITS(N+2:end,1).^2)); top2m0=0; for i=1:N+1

top2m0=top2m0+M0(i); end

for j=1:N+1 %%t counter

top1=0;

for i=1:N+1 %%x counter

pot=(ITS(i,j).^2)+(ITS(N+1+i,j).^2);

top1=top1+pot;

end

AET(j)=dx*top1;

AE(j)=abs(AET(j)-(dx*top2m0));

end

%%%%% ERROS OF ABSOLUTE ENERGY

aberr=norm(AE,inf)

aberr2=norm(AE,2)

aberr1=norm(AE,1)

%%%%%%%%%%%% Strang Splitting

MT=zeros(N+1,N+1); MT1=zeros(N+1,N+1);

GGG=expm(T*h/2);

ST(:,1)=yini2;

newini=yini2;

for j=2:N+1

for k=1:N+1

MT1(k,k)=nonl2(yini2(k),yini2(N+1+k));

end

MT11=[zeros(N+1) MT1;-MT1 zeros(N+1)];

newini=GGG*ST(:,j-1);

for i=1:N+1

MT(i,i)=nonl(newini(i),newini(N+1+i));

end

MTT=[zeros(N+1) MT;-MT zeros(N+1)];

ST(:,j)=GGG*expm((MTT+MT11)*(h/2))*GGG*ST(:,j-1);

85

ST(1,j)=0; ST(N+1,j)=0; ST(N+2,j)=0; ST(end,j)=0;

%%%Boundary conditions

newini=ST(:,j);

end

%%%%% GLOBAL ENERGY of STRANG SPLITTING

for j=1:N+1 %%t counter

top=0;

for i=2:N %%x counter

der=((((ST(i+1,j)-ST(i-1,j))/(2*dx)).^2)+...

...(((ST(N+1+i+1,j)-ST(N+1+i-1,j))/(2*dx)).^2));

energy0=((((-1/4)*((2*sech(x(i)*sqrt(2))).^4)))+...

...((1/2)*(((2*sqrt(2)*tanh(sqrt(2)*x(i))*sech(sqrt(2)*x(i))).^2)+

...(sech(sqrt(2)*x(i)).^2))));

ham=((-(1/4)*((((ST(i,j).^2))+((ST(N+1+i,j)).^2))).^2)+...

...(0.5*der)-energy0);

top=top+ham;

end

GEST(j)=dx*top;

end

for i=1:N+1 %%% ENEIT(t,x)

ENEIT(:,i)= sqrt(((ITS(i,:).^2 +ITS(N+1+i,:).^2)));

end

for i=1:N+1 ENEEXA(t,x)

ENEEXA(:,i)= sqrt(((exact(i,:).^2 +exact(N+1+i,:).^2)));

end

ENEEXA(:,1)=0; ENEEXA(:,N+1)=0; %%due to the Boundary condtions

for i=1:N+1

ENEST(:,i)= sqrt((ST(i,:).^2 +ST(N+1+i,:).^2));

end

%%%% ENERGY CONSERVATION

energybasit=dx*(norm(ENEIT(1,:),2)^2)

86

energysonit=dx*(norm(ENEIT(end,:),2)^2)

energysonst=dx*(norm(ENEST(end,:),2)^2)

energybasexa=dx*(norm(ENEEXA(1,:),2)^2)

energysonexa=dx*(norm(ENEEXA(end,:),2)^2)

figure(1)

[X,Y] = meshgrid(x0:dx:xson,t0:h:tson);

Z = ENEIT;

surf(X,Y,Z)

xlabel(’x’)

ylabel(’t’)

zlabel(’|\psi|’)

title(’Iterative Solution’)

axis([x0 xson t0 tson 0 2.5])

figure(2)

[X,Y] = meshgrid(x0:dx:xson,t0:h:tson);

Z = ENEEXA;

surf(X,Y,Z)

xlabel(’x’)

ylabel(’t’)

zlabel(’|\psi|’)

axis([x0 xson t0 tson 0 2.5])

title(’Exact Solution’)

figure(3)

[X,Y] = meshgrid(x0:dx:xson,t0:h:tson);

Z = ENEST;

surf(X,Y,Z)

xlabel(’x’)

ylabel(’t’)

zlabel(’|\psi|’)

axis([x0 xson t0 tson 0 2.5])

title(’Exact Solution’)

figure(4) plot(t,GE) title(’Global Energy Error’)

figure(5) plot(t,AE)

87

figure(6) plot(t,GEST)

THE PROGRAMME WHICH IS USED IN MAIN PROGRAMME for CASE 1

%nonlinear for 1soliton solution

function y=nonl(u,v)

K=-((u^2)+(v^2));

y=K;

MAIN PROGRAMME for CASE 2

%%%% Soliton Solution iu_t+u_{xx}+$|u|^2$u=0

%%%% with initial condition u(x,0)=sqrt(2)sech(x+10)e^{i0.25*x}

%%%% Corresponding to CASE 2

%%%%%%%%%%Problem definition

clear al1; close all; clc;

t0=0; tson=3; N=100; h=(tson-t0)/N;

x0=-15.0; xson=5;

dx=(xson-x0)/N;

t=t0:h:tson ; x=x0:dx:xson;

%% Construction initial condition for CASE 2

C0=zeros(2*N+2,1);

for i=1:N+1

C0(i)=sqrt(2)*sech(x(i)+10)*cos((0.25)*x(i));

C0(N+1+i)=sqrt(2)*sech(x(i)+10)*sin((0.25)*x(i));

end

%%%%%%%%%%%%%%%%%%%%%%%%%%Initial Condition%%%%%%%%%%%%%%%%%%%%%%%%%%

yini=C0;

%%%%%%%%%%%%%%%%%%%% Boundary Conditions%%%%%%%%%%%%%%%%%%%%%%%%%

yini(1)=0; yini(end)=0; yini(N+1)=0; yini(N+2)=0;

yini1=yini; %%%% using for Strang

%% Exact solution from (Polyanin and Zaitsev,2004)

exact2=zeros(2*N+2,N+1);

88

for q=1:N+1 %%timecounter for exact

for r=1:N+1 %%xcounter for exact

exact2(r,q)=sqrt(2)*cos((0.25*x(r))+((1-(1/16))*t(q)))*...

...sech(x(r)-(0.5*t(q))+10);

exact2(N+1+r,q)=sqrt(2)*sin((0.25*x(r))+((1-(1/16))*t(q)))*...

...sech(x(r)-(0.5*t(q))+10);

end

end

%% Constant part %%% different space discretization

%%%%% central difference

n=N; UU=toeplitz([-2 1 0 0 zeros(1,n-3)],[-2 1 0 0 zeros(1,n-3)]);

US=(1/((dx)^2))*full(UU);

BB=US;

T=[zeros(N+1) -BB;BB zeros(N+1)];

%%%%%%%%%%%%%%%%% PROPOSED METHOD %%%%%%%

KT=zeros(N+1,N+1);

KT1=zeros(N+1,N+1);

GG=expm(T*h);

IT1(:,1)=yini1;

ITS(:,1)=yini1;

for j=2:N+1

for i=1:N+1

KT(i,i)=nonl2(yini(i),yini(N+1+i));

end

KTT=[zeros(N+1) KT;-KT zeros(N+1)];

IT1(:,j)=GG*(IT1(:,j-1)+((h/2)*KTT* IT1(:,j-1))) +...

...((h/2)*KTT* IT1(:,j-1));

next=IT1(:,j);

%%%% construction for the second order proposed meth.

for i=1:N+1

KT1(i,i)=nonl2(next(i),next(N+1+i));

end

KT11=[zeros(N+1) KT1;-KT1 zeros(N+1)];

JJ=expm((h/2)*((KTT+KT11)));

ITS(:,j)=JJ*(ITS(:,j-1)+((h/2)*T*IT1(:,j-1)))+((h/2)*T*(IT1(:,j)));

%%%Boundary conditions

ITS(1,j)=0; ITS(N+1,j)=0; ITS(N+2,j)=0; ITS(end,j)=0;

89

IT1=ITS; yini=ITS(:,j);

end

%%%%%% Global Energy Error only Proposed Method

for j=1:N+1 %%t counter

top=0;

for i=2:N %%x counter

der=((((ITS(i+1,j)-ITS(i-1,j))/(2*dx)).^2)+...

...(((ITS(N+1+i+1,j)-ITS(N+1+i-1,j))/(2*dx)).^2));

energy0=((((-1/4)*(sqrt(2)*sech(x(i)+10)).^4)))+...

...((1/2)*(((sqrt(2)*tanh(x(i)+10)*sech(x(i)+10)).^2)+...

...(((sqrt(2)/4)*sech(x(i)+10)).^2)));

ham=((-(1/4)*((((ITS(i,j).^2))+((ITS(N+1+i,j)).^2))).^2)+...

...(0.5*der)-energy0);

top=top+ham;

end

GE(j)=dx*top;

end

%%%%%% Absolute Error conservation of the mass only for Proposed Method

M0=((ITS(1:N+1,1).^2)+(ITS(N+2:end,1).^2)); top2m0=0; for i=1:N+1

top2m0=top2m0+M0(i); end

for j=1:N+1 %%t counter

top1=0;

for i=1:N+1 %%x counter

pot=(ITS(i,j).^2)+(ITS(N+1+i,j).^2);

top1=top1+pot;

end

AET(j)=dx*top1;

AE(j)=abs(AET(j)-(dx*top2m0));

end

%%%%%%%STRANG SPLITTING

MT=zeros(N+1,N+1); MT1=zeros(N+1,N+1); GGG=expm(T*h/2);

ST(:,1)=yini1;

newini=yini1;

for j=2:N+1

for k=1:N+1

90

MT1(k,k)=nonl2(yini2(k),yini2(N+1+k));

end

MT11=[zeros(N+1) MT1;-MT1 zeros(N+1)];

newini=GG*ST(:,j-1);

for i=1:N+1

MT(i,i)=nonl2(newini(i),newini(N+1+i));

end

MTT=[zeros(N+1) MT;-MT zeros(N+1)];

ST(:,j)=GGG*expm(MTT*h)*GGG*ST(:,j-1);

ST(1,j)=0; ST(N+1,j)=0;

ST(N+2,j)=0; ST(end,j)=0; %%%Boundary conditions

newini=ST(:,j);

end

%%%%%%%% Solutions |u|

for i=1:N+1 %%%

ENEIT(:,i)= sqrt(((ITS(i,:).^2 +ITS(N+1+i,:).^2))); %%%%proposed

end

for i=1:N+1

ENEST(:,i)=sqrt((ST(i,:).^2 +ST(N+1+i,:).^2)); %%%%%strang

end

for i=1:N+1

ENEEXA(:,i)= sqrt(((exact2(i,:).^2 +exact2(N+1+i,:).^2))); %% exact

end

%%%% CONSERVATION of ENERGY

energybasit=dx*(norm(ENEIT(1,:),2)^2)

energysonit=dx*(norm(ENEIT(end,:),2)^2)

energysonst=dx*(norm(ENEST(end,:),2)^2)

energybasexa=dx*(norm(ENEEXA(1,:),2)^2)

energysonexa=dx*(norm(ENEEXA(end,:),2)^2)

%%%% ERRORS for Absolute Energy

91

errorAE=norm(AE,inf)

errorAE2=norm(AE,2)

errorAE1=norm(AE,1)

%%% FIGURES

figure(1)%% due to the soliton solution, we plot x,t

[X,Y] = meshgrid(x0:dx:xson,t0:h:tson);

Z=ENEIT; surf(X,Y,Z)

xlabel(’x’)

ylabel(’t’)

zlabel(’|\psi|’)

title(’Proposed Method’)

figure(2)

[X,Y] = meshgrid(x0:dx:xson,t0:h:tson);

Z = ENEEXA;

surf(X,Y,Z)

xlabel(’x’)

ylabel(’t’)

zlabel(’|\psi|’)

title(’Exact Solution’)

figure(3)

[X,Y] = meshgrid(x0:dx:xson,t0:h:tson);

Z = ENEST;

surf(X,Y,Z)

xlabel(’x’)

ylabel(’t’)

zlabel(’|\psi|’)

title(’Strang Splitting’)

figure(4) plot(t,AE)

title(’Absolute Energy’)

92

figure(5) plot(t,GE)

title(’Global Energy of Proposed Method’)

THE PROGRAMME WHICH IS USED IN MAIN PROGRAMME for CASE 2

%%%%%%nonlinear for 2soliton solution

function y=nonl2(u,v)

K=-((u^2)+(v^2));

y=K;

D.3.2. Equation in the form: i∂tΨ = β∂
2
xΨ + (V(x) + α|Ψ|2)Ψ

MAIN PROGRAMME

%%%%%Schrodinger equation with non-linear potential

%%%% iu_t=-0.5u_xx+(V(x)+\lambda |u|^2)u

%%Problem definition

clear al1; close all; clc;

t0=0; tson=1; N=100; h=(tson-t0)/N;

x0=-20; xson=20; dx=(xson-x0)/N;

t=t0:h:tson ; x=x0:dx:xson;

%% Construction initial condition

C0=zeros(N+1,1); for i=1:N+1

C0(i)=exp(sin(2*x(i)));

end

%%%%%%%%%%%%%%Initial Condition%%%%%%%%%%%%%

yini=[C0;zeros(N+1,1)];

yini=yini/(norm(yini,2)); %%%% normalization

%%% Boundary Conditions

yini(1)=0; yini(end)=0; yini(N+1)=0; yini(N+2)=0; yini1=yini;

%% Constant part

%%%%%%% Central Difference

n=N;

UU=toeplitz([-2 1 0 0 zeros(1,n-3)],[-2 1 0 0

93

zeros(1,n-3)]); US=(1/((dx)^2))*full(UU);

BB=US;

T=[zeros(N+1) -0.5*BB;0.5*BB zeros(N+1)];

%%%%% Proposed Method

KT=zeros(N+1,N+1); KT1=zeros(N+1,N+1);

GG=expm(T*h);

IT1(:,1)=yini1;

ITS(:,1)=yini1;

starttimeit=cputime;

for j=2:N+1

for i=1:N+1

KT(i,i)=nl(x(i),yini(i),yini(N+1+i));

end

KTT=[zeros(N+1) KT;-KT zeros(N+1)];

IT1(:,j)=GG*(IT1(:,j-1)+((h/2)*KTT* IT1(:,j-1))) +...

...((h/2)*KTT* IT1(:,j-1));

next=IT1(:,j);

for i=1:N+1

KT1(i,i)=nl(x(i),next(i),next(N+1+i));

end

KT11=[zeros(N+1) KT1;-KT1 zeros(N+1)];

JJ=expm((h/2)*((KTT+KT11)));

ITS(:,j)=JJ*(ITS(:,j-1)+((h/2)*T*IT1(:,j-1)))+((h/2)*T*(IT1(:,j)));

%%%Boundary conditions

ITS(1,j)=0; ITS(N+1,j)=0; ITS(N+2,j)=0; ITS(end,j)=0;

IT1=ITS;

yini=ITS(:,j);

end

ITS;

elapsedit=cputime-starttimeit

for i=1:N+1 %%%ENEIT(t,x)

ENEIT(:,i)= ((ITS(i,:).^2 +ITS(N+1+i,:).^2));

SOLIT(:,i)= sqrt((ITS(i,:).^2 +ITS(N+1+i,:).^2));

end

94

%% Strang Splitting

MT=zeros(N+1,N+1); MT1=zeros(N+1,N+1);

GGG=expm(T*h/2);

ST(:,1)=yini1;

newini=yini1;

starttimest=cputime; %%% for elapsed time of PISM

for j=2:N+1

for k=1:N+1

MT1(k,k)=nl(x(k),yini2(k),yini2(N+1+k));

end

MT11=[zeros(N+1) MT1;-MT1 zeros(N+1)];

newini=GG*ST(:,j-1);

for i=1:N+1

MT(i,i)=nl(x(i),newini(i),newini(N+1+i));

end

MTT=[zeros(N+1) MT;-MT zeros(N+1)];

ST(:,j)=GGG*expm((MTT+MT11)*(h/2))*GGG*ST(:,j-1);

ST(1,j)=0; ST(N+1,j)=0; ST(N+2,j)=0; ST(end,j)=0;

yini2=ST(:,j);

end

ST; elapsedstr=cputime-starttimest %%% to see the elapsed time

for i=1:N+1 %%ENEST(t,x)

ENEST(:,i)= ((ST(i,:).^2 +ST(N+1+i,:).^2));

STSOL(:,i)=sqrt((ST(i,:).^2 +ST(N+1+i,:).^2));

end

energybasit=(dx)*(norm(SOLIT(1,:),2)^2)

energysonit=(dx)*(norm(SOLIT(end,:),2)^2)

energybasst=(dx)*(norm(STSOL(1,:),2)^2)

energysonst=(dx)*(norm(STSOL(end,:),2)^2)

figure(1)

[X,Y] = meshgrid(t0:h:tson,x0:dx:xson);

Z = ENEIT;

surf(X,Y,Z)

95

xlabel(’t’)

ylabel(’x’)

zlabel(’probability density of the PISM’

figure(2)

[X,Y] = meshgrid(t0:h:tson,x0:dx:xson);

Z = ENEST;

surf(X,Y,Z)

xlabel(’t’)

ylabel(’x’)

zlabel(’probability density of Strang splitting’)

96

APPENDIX E

MAT-LAB CODES FOR FRÉCHET TECHNIQUE

E.1. Codes for Damped oscillator

MAIN PROGRAMME

%%%% Frechet Derivatives for Damped oscilatory

clear all; close all; clc;

dt=0.004; tson=0.4; t=0:dt:tson;

nx=length(t);

%%%% initialiing

EX=zeros(nx,1); temp=zeros(2,1); teta=zeros(2,1);

solution=zeros(2,nx); ce=zeros(2,1);

itermax=1000;

alpha=1e-4; %%%% for using analytical solution

% alpha=1; %%% for ode45

%Initial conditions

ce(1)=1; ce(2)=0; solution(:,1)=ce; cy=[1;0]; P=ce;

temp(1)=0;temp(2)=0; teta=ce;

%% Exact solution

exact=cos(t)./(sqrt(1+(3*alpha*t/4)));

EX=exact’;

%% 2nd order Runge-kutta

starttimerk=cputime;

rk(:,1)=P;

for i=1:nx-1

k1=nonlindampedrunge(alpha,rk(:,i));

k2=nonlindampedrunge(alpha,rk(:,i)+(0.5*dt*k1));

rk(:,i+1)=rk(:,i)+dt*k2; %%2nd order

end

97

rk; elapsedtimerk = cputime-starttimerk

%%%% Proposed Method

B=[0,-1;1,0];

starttimeit=cputime;

for k=1:length(t)-1

for iter=1:itermax

A=[0,0; 0, 3*alpha*((((ce(2)+cy(2))/2)^2))];

C=[0;alpha*(((cy(2)+ce(2))/2).^3)];

amat=((1/dt)*eye(size(B)))+(B/2)+(0.5*A);

bmat1=((-(1/dt)*eye(size(B)))-((0.5)*B))*cy;

bmat2=((1/dt)*eye(size(B))-((0.5)*B))*ce;

bmat=bmat1+bmat2-C;

teta=amat\bmat;

temp=cy+teta;

err=norm(temp-cy,2);

cy=temp;

if err<1e-6

break

end

end ce=cy; solution(:,k+1)=ce;

end

solution; elapsedtimeit = cputime-starttimeit

%%%%%% ERRORS

%%%%%%%%%Proposed Method

errFr=norm((exact-solution(1,:)),inf)

errFr22=norm((exact-solution(1,:)),2)

errFr21=norm((exact-solution(1,:)),1)

%%%%%% Runge Kutta

errRK=norm((exact-rk(1,:)),inf)

errRK22=norm((exact-rk(1,:)),2)

errRK21=norm((exact-rk(1,:)),1)

%%%%% For non-exact solution

98

[T,Y] = ode45(@(t,y)damped(alpha,t,y),[0 tson],[1 0]);

%%%%% FIGURES

figure(1)

plot(t,EX,’-’,t,solution(1,:),’-o’)

legend(’Exact’,’Numerical’)

% title(’Exact(--) vs Proposed Method(*)’)

xlabel(’time’)

ylabel(’displacement’)

figure(2)

plot(T,Y(:,1),’ro’,t,solution(1,:),’-*’,t,rk(1,:),’-o’)

legend(’ode45’,’Proposed method’,’runge kutta’)

THE PROGRAMME WHICH IS USED IN ALGORITHM ABOVE

function y=nonlindampedrunge(nu,v)

K=zeros(2);

K=[0, -1;1, nu*(v(2,1)^2)]*v;

y=K;

E.2. Codes for Van-der Pol Equation

MAIN PROGRAMME

close all

clear all;

clc;

% nu=5:5:25; %uncommet this line then change coeff=nu(s)

nu=5;

% cc = jet(length(nu));

% for s=1:length(nu) %%%% uncomment when nu=nu(s)

dt=0.01;

tf=60;

t=0:dt:tf;

nx=length(t); %%% time steps

%%%%%% Initialization

temp=zeros(2,1);

99

teta=zeros(2,1);

solution=zeros(2,nx); ce=zeros(2,1);

itermax=1000;

%%%%% Initial Condititons

coeff=nu; %nu(s)

ce(1)=2; ce(2)=0;

cy=[0;0];

solution(:,1)=ce; temp(1)=0;temp(2)=0;

teta(1)=ce(1); teta(2)=ce(2);

%%%%%%% PROPOSED METHOD

B=[0,-1;1,0];

starttimefre=cputime;

for k=1:length(t)-1

for iter=1:itermax

A=[0,0; ...

...2*coeff*((ce(1)+cy(1))/2)*((cy(2)+ce(2))/2),...

...coeff*((((ce(1)+cy(1))/2)^2)-1)];

RS1=[0,0;0, coeff*((cy(1)^2)-1)]*cy;

RS2=[0,0;0, coeff*((ce(1)^2)-1)]*ce;

C=(RS1+RS2)/2;

amat=(((1/dt)*eye(size(B)))+((0.5)*B)+((0.5)*A));

bmat1=(((-1/dt)*eye(size(B)))-((0.5)*B))*cy;

bmat2=(((1/dt)*eye(size(B)))-((0.5)*B))*ce;

bmat=bmat1+bmat2-C;

teta=amat\bmat;

temp=cy+teta;

err=norm(temp-cy,2);

cy=temp;

if err<1e-6

break

end

end

ce=cy; solution(:,k+1)=ce;

100

end

%%%% elapsed time for proposed method

elapsedtimefre=cputime-starttimefre

starttime23=cputime;

[T,Y] = ode23s(@(t,y)ypvdpol(coeff,t,y),[0 tf],[2 0]);

%%%%% elapsed time for obtaining solution from the ODE23s

elapsedtime23=cputime-starttime23

%%%%%% FIGURES

figure(2)

plot(T,Y(:,1),’-o’,t,solution(1,:),’-*’)

legend(’ODE23s’,’Proposed Method’)

% figure(s)

% plot(t,solution(1,:),’color’,rand(1,3))

% legend(num2str(nu(s)))

xlabel(’time’)

ylabel(’x(t)’)

figure(3)

plot(Y(:,1),Y(:,2),’r’) hold on

plot(solution(1,:),solution(2,:),’-*’)

legend(’ODE23s’,’Proposed Method’)

E.3. Codes for Schrödinger Equation

E.3.1. Equation in the form: i∂tΨ + β∂
2
xΨ + α|Ψ|2Ψ = 0

MAIN PROGRAMME for CASE 1

%%%%%Schrodinger equation with non-linear potential for Case1

%%Problem definition

101

clear al1;

close all;

clc;

t0=0; tson=1; N=100; h=(tson-t0)/N; %t=0.1

x0=-15.0; xson=10; dx=(xson-x0)/N;

cfl=h/dx

t=t0:h:tson ;

x=x0:dx:xson;

%% Construction initial condition

C0=zeros(2*N+2,1);

for i=1:N+1

C0(i)=2*sech(x(i)*sqrt(2))*cos(x(i));

C0(N+1+i)=2*sech(x(i)*sqrt(2))*sin(x(i));

end

%%%%%%%%%%%%%%%%%%%Initial Condition%%%%%%%%%%%%%%%%

yini=C0;

%%%% boundary conditions

yini(1)=0; yini(end)=0; yini(N+1)=0; yini(N+2)=0;

yini1=yini;

yini2=yini;

%% Exact solution from polyanin

exact=zeros(2*N+2,N+1);

for q=1:N+1 %%timecounter for exact

for r=1:N+1 %%xcounter for exact

exact(r,q)=2*cos(x(r)+t(q))*sech(sqrt(2)*x(r)-(2*sqrt(2)*t(q)));

exact(N+1+r,q)=2*sin(x(r)+t(q)).*...

...sech(sqrt(2)*x(r)-(2*sqrt(2)*t(q)));

end

end

%% Constant part

n=N;

UU=toeplitz([-2 1 0 0 zeros(1,n-3)],[-2 1 0 0 zeros(1,n-3)]);

US=(1/((dx)^2))*full(UU);

BB=US;

T=[zeros(N+1) -BB;BB zeros(N+1)];

%%%% given boundary conditions

102

exact(1,:)=0; exact(M+1,:)=0; exact(M+2,:)=0; exact(end,:)=0;

%%%%%%%%% Numerical Solution

A=toeplitz([-2,1,0,0, zeros(1,M-3)],[-2,1,0,0, zeros(1,M-3)]);

b=(1/(dx^2))*full(A);

BA=[zeros(M+1,M+1), b; -b, zeros(M+1,M+1)];

%% Main loop

sol=zeros(2*M+2,N+1);

sol(:,1)=ce;

for j=1:N

ce(1)=0;ce(2*M+2)=0;

ce(M+1)=0; ce(M+2)=0;

cy(1)=0; cy(2*M+2)=0;

cy(M+1)=0; cy(M+2)=0;

for k=1:itermax

% left side

cvec11=2*(((ce(1:M+1)+cy(1:M+1))/2).*((ce(M+2:end)+...

...cy(M+2:end))/2)); %%2lambdau1u2

cvec12=((((ce(1:M+1)+cy(1:M+1))/2).^2)+(3*(((ce(M+2:end)+...

...cy(M+2:end))/2).^2))); %%lambda(u1^2+3*u2^2)

cvec21=((3*(((ce(1:M+1)+cy(1:M+1))/2).^2))+((((ce(M+2:end)+...

...cy(M+2:end))/2).^2))); %%lambda(3u1^2+u2^2)

ADM=[diag(cvec11), diag(cvec12); -diag(cvec21), -diag(cvec11)];

DMAT=(((1/dt)*eye(size(BA)))+(BA*0.5)+(ADM*0.5));

% rigth side

rvec1=((((0.5)*(ce(1:M+1)+cy(1:M+1))).^2)+(((0.5)*(ce(M+2:end)+...

...cy(M+2:end))).^2)).*((0.5)*(ce(M+2:end)+cy(M+2:end)));

rvec2=-((((0.5)*(ce(1:M+1)+cy(1:M+1))).^2)+(((0.5)*(ce(M+2:end)+...

...cy(M+2:end))).^2)).*((0.5)*(ce(1:M+1)+cy(1:M+1)));

DVEC=vertcat(rvec1,rvec2);

rmat1=((-(1/dt)*eye(size(BA)))-(BA*0.5))*cy;

rmat2=(((1/dt)*eye(size(BA)))-(BA*0.5))*ce;

RS=rmat1+rmat2-DVEC;

ters=inv(DMAT);

teta=ters*RS;

temp=cy+teta;

103

err=norm((temp-cy),2);

cy=temp;

if err<=tol

break

end

end

ce=cy; %%%sol(x,t)

sol(:,j+1)=ce;

sol(1,j+1)=0;

sol(M+1,j+1)=0;

sol(M+2,j+1)=0;

sol(end,j+1)=0;

end

%% Global energy

top66=0;

for p=1:M

part1= (((sol(p+1,2)-sol(p,2))^2) +...

...((sol(M+1+p+1,2)-sol(M+1+p,2))^2))/(dx^2);

part2= (((sol(p+1,1)-sol(p,1))^2) +...

...((sol(M+1+p+1,1)-sol(M+1+p,1))^2))/(dx^2);

part3= (sol(p,2)^2+sol(M+1+p,2)^2)*(sol(p,1)^2+...

...sol(M+1+p,1)^2);

bak=part1+part2-part3;

top66=top66+bak;

end

energysecond0=0.5*dx*top66;

for k=1:N%time counter

top5=0;

for s=1:M %xcounter

part1= (((sol(s+1,k+1)-sol(s,k+1))^2) +...

...((sol(M+1+s+1,k+1)-sol(M+1+s,k+1))^2))/(dx^2);

part2= (((sol(s+1,k)-sol(s,k))^2) +...

...((sol(M+1+s+1,k)-sol(M+1+s,k))^2))/(dx^2);

part3= (sol(s,k+1)^2+sol(M+1+s,k+1)^2)*(sol(s,k)^2+sol(M+1+s,k)^2);

total=part1+part2-part3;

top5=top5+total;

104

end

energysecond=(0.5*dx*top5)-energysecond0;

GEE(k)=energysecond;

end

%% Absolute Error conservation of the mass

M0=((sol(1:M+1,1).^2)+(sol(M+2:end,1).^2));

top2m0=0;

for i=1:M+1

top2m0=top2m0+M0(i);

end

for j=1:N+1 %%t counter

top1=0;

for i=1:M+1 %%x counter

pot=(sol(i,j).^2)+(sol(M+1+i,j).^2);

top1=top1+pot;

end

AET(j)=dx*top1;

AE(j)=abs(AET(j)-(dx*top2m0));

end

% ENEEXA=zeros(N+1,M+1)

for i=1:M+1

ENEEXA(:,i)= sqrt(((exact(i,:).^2 +exact(M+1+i,:).^2)));

end

% PROB=zeros(N+1,M+1);

for i=1:M+1 %%PROB(t,x)

PROB(:,i)=sqrt(((sol(i,:).^2)+(sol(M+1+i,:).^2)));

end

%% ERRORS

% TESTING INITIAL ENERGY AND THE LAST ENERGY

energybasfre=dx*(norm(PROB(1,:),2)^2)

energysonfre=dx*(norm(PROB(end,:),2)^2)

energybasexa=dx*(norm(ENEEXA(1,:),2)^2)

105

energysonexa=dx*(norm(ENEEXA(end,:),2)^2)

% Error for different norms

errorAE=norm(AE,inf)

errorAE2=norm(AE,2)

errorAE1=norm(AE,1)

%% FIGURES

figure(1) [X,Y] = meshgrid(x0:dx:xe,t0:dt:te);

Z = ENEEXA;

surf(X,Y,Z)

xlabel(’x’) ylabel(’t’) zlabel(’|\psi|’)

title(’Exact Solution’)

figure(2) [X,Y] = meshgrid(x0:dx:xe,t0:dt:te);

Z = PROB;

surf(X,Y,Z)

xlabel(’t’)

ylabel(’x’)

zlabel(’|\psi|’)

title(’Proposed Method’)

figure(3) plot(t,AE) xlabel(’time’) ylabel(’Absolute energy’)

figure(4) plot(t(1:end-1),GEE)

figure(5)

% plot(x,ENEEXA(26,:),’r-’,x,ENEEXA(51,:),’g-’,...

%...x,ENEEXA(76,:),’m-’,x,ENEEXA(end,:),’b-’)

% hold all

plot(x,PROB(26,:),’r-*’,x,PROB(51,:),’g-*’,...

...x,PROB(76,:),’m-*’,x,PROB(end,:),’b-*’)

legend(’t=5’,’t=10’,’t=15’,’t=20’) xlabel(’x’) ylabel(’|\psi|’)

% figure(6)

106

% subplot(2,2,1)

% plot(x,ENEEXA(26,:),’r--’,x,PROB(26,:),’r-*’)

% legend(’exact’,’proposed’)

% title(’t=5’)

% xlabel(’x’)

% ylabel(’|\psi|’)

% subplot(2,2,2)

% plot(x,ENEEXA(51,:),’g--’,x,PROB(51,:),’g-*’)

% legend(’exact’,’proposed’)

% title(’t=10’)

% xlabel(’x’)

% ylabel(’|\psi|’)

% subplot(2,2,3)

% plot(x,ENEEXA(76,:),’m--’,x,PROB(76,:),’m-*’)

% legend(’exact’,’proposed’)

% title(’t=15’)

% xlabel(’x’)

% ylabel(’|\psi|’)

% subplot(2,2,4)

% plot(x,ENEEXA(end,:),’r--’,x,PROB(end,:),’r-*’)

% legend(’exact’,’proposed’)

% title(’t=20’)

% xlabel(’x’)

% ylabel(’$|\psi|$’)

MAIN PROGRAMME for CASE 2

%%%% Soliton Solution iu_t+u_{xx}+|u|^2u=0

%%%% with initial condition u(x,0)=sqrt(2)sech(x+10)e^{i0.25*x}

%%%% Corresponding to CASE 2

%%%%%%%%%%Problem definition

clear all; close all; clc

% for space

x0=-15; xe=5; M=150; dx=(xe-x0)/M; x=x0:dx:xe;

% for time

N=100; t0=0; te=20; dt=(te-t0)/N; cfl=dt/dx; t=t0:dt:te;

itermax=100; tol=1e-6;

107

%%%%%%%%%%% initial condition & initial guess

C0=zeros(2*M+2,1);

for i=1:M+1 %xcounter

C0(i)=sqrt(2)*sech(x(i)+10)*cos((0.25)*x(i));

C0(M+1+i)=sqrt(2)*sech(x(i)+10)*sin((0.25)*x(i));

end

yini=C0; ce=yini; cy=zeros(2*M+2,1); temp=zeros(2*M+2,1);

teta=zeros(2*M+2,1);

%%%%%%%%%%%% Boundary Conditions %%%%%%%%%%%

ce(1)=0;ce(2*M+2)=0; ce(M+1)=0; ce(M+2)=0;

cy(1)=0;cy(2*M+2)=0; cy(M+1)=0; cy(M+2)=0;

%% Exact solution from polyanin

exact=zeros(2*M+2,N+1);

for q=1:N+1 %%timecounter for exact

for r=1:M+1 %%xcounter for exact

exact(r,q)=sqrt(2)*cos((0.25*x(r))+((1-(1/16))*t(q)))*...

...sech(x(r)-(0.5*t(q))+10);

exact(M+1+r,q)=sqrt(2)*sin((0.25*x(r))+((1-(1/16))*t(q)))*...

...sech(x(r)-(0.5*t(q))+10);

end

end

%%%% given boundary conditions

exact(1,:)=0; exact(M+1,:)=0; exact(M+2,:)=0; exact(end,:)=0;

%%%%%%%%% Numerical Solution

A=toeplitz([-2,1,0,0, zeros(1,M-3)],[-2,1,0,0, zeros(1,M-3)]);

b=(1/(dx^2))*full(A);

BA=[zeros(M+1,M+1), b; -b, zeros(M+1,M+1)];

%% Main loop

sol=zeros(2*M+2,N+1);

sol(:,1)=ce;

108

for j=1:N

ce(1)=0;ce(2*M+2)=0;

ce(M+1)=0; ce(M+2)=0;

cy(1)=0; cy(2*M+2)=0;

cy(M+1)=0; cy(M+2)=0;

for k=1:itermax

% left side

cvec11=2*(((ce(1:M+1)+cy(1:M+1))/2).*((ce(M+2:end)+...

...cy(M+2:end))/2)); %%2lambdau1u2

cvec12=((((ce(1:M+1)+cy(1:M+1))/2).^2)+(3*(((ce(M+2:end)+...

...cy(M+2:end))/2).^2))); %%lambda(u1^2+3*u2^2)

cvec21=((3*(((ce(1:M+1)+cy(1:M+1))/2).^2))+((((ce(M+2:end)+...

...cy(M+2:end))/2).^2))); %%lambda(3u1^2+u2^2)

ADM=[diag(cvec11), diag(cvec12); -diag(cvec21), -diag(cvec11)];

DMAT=(((1/dt)*eye(size(BA)))+(BA*0.5)+(ADM*0.5));

% rigth side

rvec1=((((0.5)*(ce(1:M+1)+cy(1:M+1))).^2)+(((0.5)*(ce(M+2:end)+...

...cy(M+2:end))).^2)).*((0.5)*(ce(M+2:end)+cy(M+2:end)));

rvec2=-((((0.5)*(ce(1:M+1)+cy(1:M+1))).^2)+(((0.5)*(ce(M+2:end)+...

...cy(M+2:end))).^2)).*((0.5)*(ce(1:M+1)+cy(1:M+1)));

DVEC=vertcat(rvec1,rvec2);

rmat1=((-(1/dt)*eye(size(BA)))-(BA*0.5))*cy;

rmat2=(((1/dt)*eye(size(BA)))-(BA*0.5))*ce;

RS=rmat1+rmat2-DVEC;

ters=inv(DMAT);

teta=ters*RS;

temp=cy+teta;

err=norm((temp-cy),2);

cy=temp;

if err<=tol

break

end

end

ce=cy; %%%sol(x,t)

sol(:,j+1)=ce;

sol(1,j+1)=0;

sol(M+1,j+1)=0;

109

sol(M+2,j+1)=0;

sol(end,j+1)=0;

end

%% Global energy

top66=0;

for p=1:M

part1= (((sol(p+1,2)-sol(p,2))^2) +...

...((sol(M+1+p+1,2)-sol(M+1+p,2))^2))/(dx^2);

part2= (((sol(p+1,1)-sol(p,1))^2) +...

...((sol(M+1+p+1,1)-sol(M+1+p,1))^2))/(dx^2);

part3= (sol(p,2)^2+sol(M+1+p,2)^2)*(sol(p,1)^2+sol(M+1+p,1)^2);

bak=part1+part2-part3;

top66=top66+bak;

end

energysecond0=0.5*dx*top66;

for k=1:N%time counter

top5=0;

for s=1:M %xcounter

part1= (((sol(s+1,k+1)-sol(s,k+1))^2) +...

...((sol(M+1+s+1,k+1)-sol(M+1+s,k+1))^2))/(dx^2);

part2= (((sol(s+1,k)-sol(s,k))^2) +...

...((sol(M+1+s+1,k)-sol(M+1+s,k))^2))/(dx^2);

part3= (sol(s,k+1)^2+sol(M+1+s,k+1)^2)*(sol(s,k)^2+...

...sol(M+1+s,k)^2);

total=part1+part2-part3;

top5=top5+total;

end

energysecond=(0.5*dx*top5)-energysecond0;

GEE(k)=energysecond;

end

%% Absolute Error conservation of the mass

M0=((sol(1:M+1,1).^2)+(sol(M+2:end,1).^2));

top2m0=0;

for i=1:M+1

110

top2m0=top2m0+M0(i);

end

for j=1:N+1 %%t counter

top1=0;

for i=1:M+1 %%x counter

pot=(sol(i,j).^2)+(sol(M+1+i,j).^2);

top1=top1+pot;

end

AET(j)=dx*top1;

AE(j)=abs(AET(j)-(dx*top2m0));

end

% ENEEXA=zeros(N+1,M+1)

for i=1:M+1

ENEEXA(:,i)= sqrt(((exact(i,:).^2 +exact(M+1+i,:).^2)));

end

% PROB=zeros(N+1,M+1);

for i=1:M+1 %%PROB(t,x)

PROB(:,i)=sqrt(((sol(i,:).^2)+(sol(M+1+i,:).^2)));

end

%% ERRORS

% TESTING INITIAL ENERGY AND THE LAST ENERGY

energybasfre=dx*(norm(PROB(1,:),2)^2)

energysonfre=dx*(norm(PROB(end,:),2)^2)

energybasexa=dx*(norm(ENEEXA(1,:),2)^2)

energysonexa=dx*(norm(ENEEXA(end,:),2)^2)

% Error for different norms

errorAE=norm(AE,inf)

errorAE2=norm(AE,2)

errorAE1=norm(AE,1)

%% FIGURES

figure(1) [X,Y] = meshgrid(x0:dx:xe,t0:dt:te);

Z = ENEEXA;

111

surf(X,Y,Z)

xlabel(’x’) ylabel(’t’) zlabel(’|\psi|’)

title(’Exact Solution’)

figure(2) [X,Y] = meshgrid(x0:dx:xe,t0:dt:te);

Z = PROB;

surf(X,Y,Z)

xlabel(’t’)

ylabel(’x’)

zlabel(’|\psi|’)

title(’Proposed Method’)

figure(3) plot(t,AE) xlabel(’time’) ylabel(’Absolute energy’)

figure(4) plot(t(1:end-1),GEE)

figure(5)

% plot(x,ENEEXA(26,:),’r-’,x,ENEEXA(51,:),’g-’,...

%...x,ENEEXA(76,:),’m-’,x,ENEEXA(end,:),’b-’)

% hold all

plot(x,PROB(26,:),’r-*’,x,PROB(51,:),’g-*’,...

...x,PROB(76,:),’m-*’,x,PROB(end,:),’b-*’)

legend(’t=5’,’t=10’,’t=15’,’t=20’) xlabel(’x’) ylabel(’|\psi|’)

% figure(6)

% subplot(2,2,1)

% plot(x,ENEEXA(26,:),’r--’,x,PROB(26,:),’r-*’)

% legend(’exact’,’proposed’)

% title(’t=5’)

% xlabel(’x’)

% ylabel(’|\psi|’)

% subplot(2,2,2)

% plot(x,ENEEXA(51,:),’g--’,x,PROB(51,:),’g-*’)

% legend(’exact’,’proposed’)

% title(’t=10’)

112

% xlabel(’x’)

% ylabel(’|\psi|’)

% subplot(2,2,3)

% plot(x,ENEEXA(76,:),’m--’,x,PROB(76,:),’m-*’)

% legend(’exact’,’proposed’)

% title(’t=15’)

% xlabel(’x’)

% ylabel(’|\psi|’)

% subplot(2,2,4)

% plot(x,ENEEXA(end,:),’r--’,x,PROB(end,:),’r-*’)

% legend(’exact’,’proposed’)

% title(’t=20’)

% xlabel(’x’)

% ylabel(’$|\psi|$’)

E.3.2. Equation in the form: i∂tΨ + β∂
2
xΨ + (G(x) + α|Ψ|2)Ψ = 0

MAIN PROGRAMME

%%%%%Schrodinger equation with non-linear potential

%%%% iu_t=-0.5u_xx+(V(x)+lambda $|u|^2$)u

clear all; close all; clc

%%%%%%%% problem definition

% for space

x0=-20; xe=20; N=100; dx=(xe-x0)/N; x=x0:dx:xe;

% for time

t0=0; te=8; dt=(te-t0)/N; cfl=dt/dx; t=t0:dt:te;

lambda=30; itermax=100; tol=1e-8;

%%%%%%%% initial condition & initial guess

U1=exp(sin(2*x)); U1=U1/(norm(U1,2)); U1=U1’; norm(U1,2)

U2=zeros(N+1,1);

ce=vertcat(U1,U2); % initial condition

cy=ones(2*N+2,1); % initial guess

113

temp=zeros(2*N+2,1); teta=zeros(2*N+2,1);

%%%%%% Boundary conditions

ce(1)=0;ce(2*N+2)=0; ce(N+1)=0; ce(N+2)=0;

cy(1)=0;cy(2*N+2)=0; temp(1)=0;

temp(2*N+2)=0; teta(1)=0; teta(2*N+2)=0;

%%%%%% PROPOSED METHOD

A=toeplitz([-2,1,0,0, zeros(1,N-3)],[-2,1,0,0, zeros(1,N-3)]);

b=(1/(dx^2))*full(A);

% [D,x]=chebab(N,x0,xe);

% D2=D^2;

% b=D2;

% [a,b]= LDQ10(N+1,dx);

for l=1:N+1 vector(l)=1/(1+((sin(x(l))^2))); end BA=[zeros(N+1,N+1),

(0.5)*b; -(0.5)*b, zeros(N+1,N+1)]; BB=[zeros(N+1,N+1),

-diag(vector); diag(vector), zeros(N+1,N+1)];

%%%%%%%% Main loop

for j=1:N %%time counter

ce(1)=0;ce(2*N+2)=0;

ce(N+1)=0; ce(N+2)=0;

cy(1)=0;cy(2*N+2)=0;

cy(N+1)=0; cy(N+2)=0;

for k=1:itermax

% left side

cvec11=2*lambda*(((ce(1:N+1)+cy(1:N+1))/2).*...

...((ce(N+2:end)+cy(N+2:end))/2)); %%2lambdau1u2

cvec12=lambda*((((ce(1:N+1)+cy(1:N+1))/2).^2)+...

...(3*(((ce(N+2:end)+cy(N+2:end))/2).^2))); %%lambda(u1^2+3*u2^2)

cvec21=lambda*((3*(((ce(1:N+1)+cy(1:N+1))/2).^2))+...

...((((ce(N+2:end)+cy(N+2:end))/2).^2))); %%lambda(3u1^2+u2^2)

ADM=[-diag(cvec11),- diag(cvec12); diag(cvec21), diag(cvec11)];

DMAT=(((1/dt)*eye(size(BA)))+(BA*0.5)+(BB*0.5)+(ADM*0.5));

% right side

rvec1=-lambda*((((0.5)*(ce(1:N+1)+cy(1:N+1))).^2)+...

114

...(((0.5)*(ce(N+2:end)+cy(N+2:end))).^2)).*((0.5)*...

...(ce(N+2:end)+cy(N+2:end)));

rvec2=lambda*((((0.5)*(ce(1:N+1)+cy(1:N+1))).^2)+...

...(((0.5)*(ce(N+2:end)+cy(N+2:end))).^2)).*((0.5)*...

...(ce(1:N+1)+cy(1:N+1)));

DVEC=vertcat(rvec1,rvec2);

rmat1=((-(1/dt)*eye(size(BA)))-(BA*0.5)-(BB*0.5))*cy;

rmat2=(((1/dt)*eye(size(BA)))-(BA*0.5)-(BB*0.5))*ce;

RS=rmat1+rmat2-DVEC;

ters=inv(DMAT);

teta=DMAT(2:2*N+1,2:2*N+1)\RS(2:2*N+1);

temp(2:2*N+1)=cy(2:2*N+1)+teta;

err=norm((temp-cy),2);

cy=temp;

if err<=tol

break

end

end

ce=cy;

sol(:,j+1)=ce;

sol(1,j+1)=0;

sol(N+1,j+1)=0;

sol(N+2,j+1)=0;

sol(end,j+1)=0;

end

% PROB=zeros(N+1,N+1);

for i=1:N+1 %%PROB(t,x)

PROB(:,i)=(sol(i,:).^2)+(sol(N+1+i,:).^2);

SOLIT(:,i)=sqrt((sol(i,:).^2)+(sol(N+1+i,:).^2));

end

%enerbasfre= dx*(norm(SOLIT(1,:),2)^2)

%enersonfre= dx*(norm(SOLIT(end,:),2)^2)

[X,Y] = meshgrid(t0:dt:te ,x0:dx:xe);

Z = PROB;

surf(X,Y,Z)

xlabel(’t’) ylabel(’x’)

zlabel(’probability density of Frechet Derivatives’)

115

VITA

Date and Place of Birth: 19.08.1985, Çorum-TURKEY

EDUCATION

2012 - 2015 Doctor of Philosophy in Mathematics

Graduate School of Engineering and Sciences, İzmir Institute of Technology,

İzmir -Turkey

Thesis Title: NEW APPROACHES FOR SOLVING NONLINEAR

OSCILLATION PROBLEMS

Supervisor: Prof. Dr. Gamze Tanoğlu

2010 - 2012 Master of Science in Mathematics

Graduate School of Engineering and Sciences, İzmir Institute of Technology

İzmir -Turkey

Thesis Title: OPERATOR SPLITTING METHODS FOR

NON-AUTONOMOUS DIFFERENTIAL EQUATIONS

Supervisor: Assoc. Prof. Dr. Gamze Tanoğlu

2008 - 2009 Master of Science in Educational Science(Non-thesis)

Department of Mathematics Education, Faculty of Education, Ege University

İzmir -Turkey

2003 - 2008 Bachelor of Mathematics

Department of Mathematics, Faculty of Science, Ege University

İzmir - Turkey

PROFESSIONAL EXPERIENCE

2009 - 2013 Research and Teaching Assistant

Department of Mathematics, İzmir Institute of Technology,

İzmir -Turkey

2013 - Present Instructor

Department of Engineering Science, Faculty of Engineering and Architecture

İzmir Kâtip Çelebi University, İzmir -Turkey

PUBLICATIONS

Korkut Uysal S. Ö.and Tanoğlu G., 2015: "A New Linearized Method for Solving

Nonlinear Schrödinger Equation." Proceedings of the 15th International Conference.

on Computational and Mathematical Methods in Science and Engineering,

CMMSE 2015, ISBN: 978-84-617-2230-3, Pp. 679-689

Tanoglu G. and Korkut S. O., 2014: "A New Operator Splitting Method

for Non-Linear Systems and Its Abstract Analysis." Abstract Book of ICRAPAM 2014,

International Conference on Recent Advances in Pure and

Applied Mathematics, ISBN: 978-975-00211-1-4, Pp. 226

Tanoglu G. and Korkut S. O., 2012: " The convergence of a new symmetric iterative

splitting method for non-autonomous systems.", International Journal of

Computer Mathematics Volume 89, Issue 13-14, 2012 , Pp. 1837-1846.

DOI: http://www.tandfonline.com/doi/abs/10.1080/00207160.2012.687447

Tanoglu G. and Korkut S., 2011: "Symmetric Iterative Splitting Method for

Non-Autonomous Systems." Proceedings of the 11th International Conference on

Computational and Mathematical Methods in Science and Engineering,

CMMSE 2011, Volume III ISBN: 978-84-614-6167-7, Pp. 1104-1112.

Tanoglu G. and Korkut S., 2011: "Iterative Splitting Method for Schrödinger Equation

with time dependent potential." Proceedings of the 2nd International Symposium on

Computing in Science and Engineering, ISCSE 2011, (700/58) Pp: 1219-1224.

Tanoglu G., Korkut S. and Gucuyenen N., 2011: "Error Analysis of Splitting Methods

for Non-Autonomous Systems." Proceeding Book of International Conference on

Applied Analysis and Algebra - Abstracts, ICAAA2011, Pp.127.

