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ABSTRACT 
 

NUMERICAL DETERMINATION OF PERMEABILITY AND 
INTERFACIAL CONVECTIVE HEAT TRANSFER COEFFICIENT FOR 
NON-ISOTROPIC AND PERIODIC DUAL SCALE POROUS MEDIUM 

In this study, the fluid flow and heat transfer in a periodic, non-isotropic dual scale 

porous media consisting of permeable square rods in inline arrangement is analyzed to 

determine permeability and interfacial convective heat transfer coefficient, numerically. 

A periodical representative elementary volume (REV) with the dimensions of H×H is 

chosen as the computational domain. The flow in the REV is assumed fully developed 

and periodical. The permeable square particles are placed with in-line arrangement. There 

are two symmetrical intraparticle pores considered here which are in longitudinal flow 

direction. The continuity, Navier-Stokes and energy equations are solved to obtain the 

velocity, pressure and temperature distributions in the unit structures of the dual scale 

porous media. The obtained fields are upscaled by using volume average method to obtain 

the intrinsic inter and intraparticle permeabilities, bulk permeability tensor, interfacial 

convective heat transfer coefficients and the corresponding Nusselt numbers of the dual 

scale porous media for different values of inter and intraparticle porosities. The study is 

performed for interparticle porosities between 0.4 and 0.75 and for intraparticle porosities 

range of 0.2 to 0.8. A correlation based on Kozeny-Carman theory in terms of interparticle 

and intraparticle porosities and permeabilities is proposed to determine the bulk 

permeability tensor of the dual scale porous media. The intraparticle porosity value 

increase the flow rate passes through the porous media and the particle becomes more 

permeable. However; for high interparticle porosity values, the intraparticle porosity does 

not have importance effect on bulk permeability. Additionally,  the results predicts that 

the interfacial convective heat transfer coefficient increases with increase of Reynolds 

number and the ratio of intra to interparticle porosity, while the increase rate shows variation 

with the porosity ratio and Reynolds number values. 

 

Keywords and Phrases: Dual scale porous media, Numerical simulation, Permeability, 
Interfacial convective heat transfer coefficient, porosity, Kozeny-Carman Equation 
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ÖZET 
 

GEÇİRGENLİK VE ARAYÜZEY ISI TAŞINIM KATSAYISININ 
İZOTROPİK OLMAYAN, PERİYODİK VE ÇİFTE SEVİYE 

GÖZENEKLİ YAPI İÇİN SAYISAL OLARAK BELİRLENMESİ 

Bu çalışmada, çizgi düzleminde geçirgen kare çubuklardan oluşan periyodik ve 

izotropik olmayan çifte seviye gözenekli ortamda akışkan akışı ve ısı transferi analizi 

yapılmıştır. Geçirgenlik ve arayüzey taşınım ısı transfer katsayısı sayısal olarak 

belirlenmiştir. Bir periyodik öz temsili hacim (ÖTH) H×H boyutlarında hesaplama alanı 

olarak seçilmiştir. ÖTH’deki akış tam gelişmiş ve periyodik varsayılmıştır. Geçirgen kare 

parçacıklar çizgi düzleminde yerleştirilmiştir. Uzunlamasına ve akış yönünde düşünülen 

iki simetrik parçacık içi gözenekler vardır. Süreklilik, Navier-Stokes ve enerji 

denklemleri çifte seviye gözenekli yapıda hız, basınç ve sıcaklık dağılımlarını elde etmek 

için çözülmüştür. Elde edilen sonuçlar parçacık içi ve arası geçirgenliği, toplu geçirgenlik 

tensörü, arayüzey taşınım ısı transferi katsayılarına karşılık gelen Nusselt sayılarını elde 

etmek için farklı parçacık içi ve arası gözeneklilik değerleri için hacimsel ortalama 

yöntemi kullanılarak elde edilmiştir. Çalışma, 0.4 ve 0.75 arasında parçacık içi 

gözeneklilik ve 0.2 ile 0.8 aralığındaki parçacık arası gözeneklilik için 

gerçekleştirilmiştir. Parçacık içi ve arası gözeneklilik ve geçirgenliği açısından Kozeny-

Carman teorisine dayalı bir ilişki, çifte seviye gözenekli ortamın toplu geçirgenliği 

tensörünü belirlemek için önerilmiştir. Parçacık içi gözeneklilik değerinin yükselmesi, 

akışkanın debisini arttırmakla birlikte gözenekli yapının daha geçirgen olmasını 

sağlamaktadır. Bununla birlikte; yüksek parçacık arası gözeneklilik değerleri için, 

parçacık içi gözenekliliğin toplu geçirgenliğe önemli etkisi olmadığı gözlemlenmiştir. 

Ayrıca, elde edilen sonuçlara göre arayüzey ısı taşınım katsayısı, Reynold sayısının 

artması ve parçacık içi ve arası gözeneklilik oranı ile artar, artış oranı ise gözeneklilik 

oranı ve Reynold sayısı değerleri ile değişimini göstermektedir. 

 

Anahtar Kelimeler ve Deyimler: Çift seviye gözenekli yapı, Sayısal simülasyon, 
geçirgenlik, Arayüzey ısı taşınım katsayısı, Gözeneklilik, Kozeny-Carman denklemi
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CHAPTER 1 
 
 

INTRODUCTION 

A porous medium is a composite medium consists of solid and voids. The voids 

can be interconnected (open cell) or disconnected (closed cell). The fluid flow and heat 

transfer in porous media are significantly considered recently because of their wide 

applications in both nature and industrial area. The application of transport properties in 

porous media has encountered in many branches of engineering. Food and crop drying 

processes, chemical reactors, filters, membranes, gas separator adsorbent beds, nuclear 

reactors, and heat exchangers can be given as industrial examples in which transport in 

porous media shows up as fundamental point. In the nature, the flowing of water or 

petroleum through rocks and soil, air flowing in lung, blood flow in liver, biological 

tissues and veins or even flow of air in forests can be exhibited as cases for transport in 

porous media. 

In an open cell porous medium, fluid flows through the pores (or voids) between 

the particles. The behavior of the flow through the pores is complex and the flow is three 

dimensional. Consequently, pore level determinations of the velocity and the temperature 

fields are troublesome. Therefore, to analyze heat and fluid flow in porous media some 

approaches are obliged to overcome the difficulties. One of the most common methods is 

the macroscopic approach which is a simple and practical method for determination of 

velocity and pressure fields in a porous medium. However, this method requires the 

macroscopic transport properties of the porous medium such as permeability (and 

Forchheimer coefficient for flows with high inertia effect). The permeability is a tensor 

quantity and it depends on the geometrical parameters of the porous media. It can be 

obtained numerically and/or experimentally. Recently, improvements in computer and 

software technologies facilitate the prediction of permeability of a porous medium by 

using pore scale computational approach. Porous media with simple geometrical 

parameters can be easily modelled in a computer while methods such as tomography 

techniques can be employed to obtain digital representation of a heterogeneous porous 

medium with complex pore shapes. The study of Nakayama et al. (Nakayama et al., 2002) 

who obtained the permeability for a two dimensional periodic isotropic porous media 
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consisting of square rods, Ozgumus et al. (Ozgumus et al., 2014) who studied the effect 

of pore to throat size ratio on permeability and Kozeny constant, are two samples for 

determination of permeability by using pore level computational approach. 

1.1. Dual Scale Porous Medium 

A dual scale porous medium is a porous structure in which the solid region is also 

permeable since it involves pores in which fluid can flow. A schematic view of a dual 

scale porous media is shown in Figure 1.1. As can be seen, there are two kinds of pores 

in a dual scale porous medium. The first type of pores which can be called as interparticle 

pores is the main pores of the porous structure and they exist between the particles. The 

second type of pores called as intraparticle pores are within the particles since the particles 

are permeable. Furthermore, three types of porosities can be defined for a dual scale 

porous media as interparticle, intraparticle and bulk porosities. These porosities can be 

found by using following equalities: 

 

 ; ;vp vf vt
p f t

p t t

V V V
V V V

ε ε ε= = =   (1.1) 

 

where , andf p tε ε ε  are the interparticle, intraparticle and bulk porosities, respectively. 

The volumes of interparticle, intraparticle and total pores are shown by , andvf vp vtV V V , 

respectively. Furthermore, andp tV V  are the total volumes of solid phase and dual scale 

porous media. The size of interparticle pores is generally greater than the intraparticle 

pores and consequently the interparticle porosity is generally greater than the intraparticle 

porosity. The inter- and intraparticle pores are also called as macro and micro pores by 

some researchers (Yu and Cheng, 2002). The fluid flow in a dual scale porous medium 

can also be classified into two types as inter- and intraparticle flows. Hence three related 

permeabilities can also be defined for a dual scale porous medium as interparticle, 

intraparticle and bulk permeabilities relating to flow in particle, between particle and the 

entire dual scale porous medium. 
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Figure 1.1. Schematic view of dual scale porous media 

 

The application of dual scale porous media is widely faced in daily life, nature 

and industry. The flowing of a fluid through a fiber mat, woven fiber bundles, 

multifilament textile fibers, oil filters and fractured porous media are some examples for 

the application of the fluid flow through a dual scale porous media. 

1.2. The Aim of Study 

The aim of the present study is to investigate the effects of intraparticle porosity 

on the fluid flow and heat transfer in porous media containing inline array of square rods. 

The volume averaging method is used to determine the macroscopic transport parameters 

such as permeability and interfacial convective heat transfer coefficients. The Kozeny 

constant was determined by proposing a new correlation based on Kozeny-Carman 

permeability equation for the considered medium.  

It should be mentioned that, most of studies on dual scale porous media were 

performed on porous media consist of permeable particles containing large number of 

intraparticle pores. However, there are applications (such as cracked rocks) in which 

limited number of intraparticle pores exist. Hence, the application of Darcy or Darcy-

Brinkman equation for intraparticle flow is not correct. For those applications, fluid 

motion in the intraparticle pores should be solved by Stokes or Navier-Stokes equations. 

For the permeable particle with limited number of pore, the direction of the intraparticle 

pores takes important role in determination of permeability. In this study, a two 
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dimensional porous media consists of permeable square rods in inline arrangement is 

considered. Each particle in the porous media is splitted by two channels symmetrically 

and fluid can flow throughout these channels. The Navier-Stokes and Energy equations 

are solved for a representative elementary volume (REV) of the porous media and the 

velocity, pressure and temperature distributions for inter and intraparticle voids are found. 

Based on the obtained results, the intrinsic interparticle permeability (without considering 

intraparticle flow), intrinsic intraparticle permeability (without considering interparticle 

flow), bulk permeability and interfacial convective heat transfer coefficient are found. 

Two relations for determination of bulk permeability tensor in terms of intrinsic inter and 

intraparticle permeabilities are suggested. To the best of our knowledge, the results of the 

present study are new and motivate researchers to perform further pore level studies on 

porous media with cracked particles to develop relationships for determination of bulk 

permeability.  

In the next section a wide literature survey on the determination of macroscopic 

transport parameters, microscopic and macroscopic governing equations and boundary 

conditions and computation procedure are presented in details. 

1.3. Literature Review 

A literature review on the determination of the macroscopic transport properties 

of porous media is presented. By using numerical methods, macroscopic transport 

properties such as permeability and interfacial convective heat transfer coefficient can be 

found theoretically. In this section the studies on determination of the permeability, 

Kozeny constant and interfacial heat transfer are reviewed. For all researches evaluate in 

this chapter, the aim of studies and assumptions made in the studies are shortly 

introduced. The tables are constructed to show some parameters of the studies such as 

proposed correlations and schematic view of the considered domain. 
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1.3.1. Literature Review on Permeability for Dual Scale Porous Media 

In this section, the literature studies on determination of permeability in dual scale 

porous media are reviewed. Table 1.1 summarizes some pore level computational studies 

performed on fluid flow thorough a dual scale porous media. In the first column, the name 

of researcher and related reference number are given. In the second column, the governing 

equations solved to find velocity and pressure distributions for inter and intraparticle 

pores are written.  The suggested correlation for the bulk permeability is given in third 

column.  Finally, the schematic figure of the considered dual scale porous media is 

represented in the last column. 

As can be seen from Table 1.1, most of performed studies relates to the porous 

media with permeable particles containing large number of intraparticle pores. That’s 

why some researchers preferred to solve the Darcy or Brinkman equation to find velocity 

and pressure distribution for the permeable particle.  Some researchers used Stokes or 

Navier-Stokes equation to find velocity and pressure fields in the permeable particles. An 

overview on the Table 1.1 shows that Papathanasiou (Papathanasiou, 2001), Hwang et. 

al. (Hwang and Advani, 2010), Byon and Kim (Byon and Kim, 2013), Yu and Cheng (Yu 

and Cheng, 2002), Nield and Kuznetsov (Nield and Kuznetsov, 2011) suggested 

correlations for determination of the bulk permeabilities by using experimental or 

theoretical methods.  

The resistance that microstructure of fiber reinforcement creates on the fluid flow 

can be characterized by the permeability which is the ratio between the superficial 

velocity and pressure drop in the porous medium. As results of this condition, 

Ranganathan (Ranganathan, 1996) developed a predictive semi-analytical solution for 

flow across arrays of aligned cylinders with elliptical cross sections modeling the fiber 

mats. The out coming results of the permeability from the model were compared with 

numerical results obtained from finite element calculations over a range of volume 

fractions, cross-sectional shapes, and tow permeabilities. The flow through the porous 

region was solved by utilizing Brinkman’s equation and the flow in the open region using 

Stokes’ equation for fiber volume fractions of 0.70 and 0.80 the influence of the tow 

permeability on the overall permeability was investigated. The good agreement between 

the predicted and the numerical result were determined. It was found that the nominal 
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fiber volume fraction effect the overall tow permeability. The impact of the intra-tow flow 

increases as the nominal fiber volume fraction increases. 

Ngo and Tamma (Ngo and Tamma, 2001) developed the concept of using a three-

dimensional unit cell to predict permeability. The continuity equation and the creeping 

motion Stokes equation were solved to analyze the flow in the open or fluid region of the 

unit cell. In the intra-tow area where the tow consists of groups of fibers and can be treated 

as a porous medium, the flow is governed by the continuity equation and the Brinkman 

equation The applied boundary conditions are constant pressure gradient over two 

opposing surfaces to drive the flow and symmetric conditions of pressure and velocity on 

the remaining surfaces of the unit cell. In the intra-tow (i.e., fiber tow) region, the 

equations derived by Gebart were used to find the permeability of the porous medium. 

The encouraging results were found for their predicted models.    

Nedanov and Advani (Nedanov and Advani, 2002) predict the permeability of 

anisotropic fibrous porous media by using homogenization method to formulate 

governing equations and boundary conditions. In a periodic cell the permeability 

components were calculated by solving a boundary value problem. The application of the 

method was shown on a periodic cell modeling the geometry of woven fiber performs 

used in composites manufacturing. The resulting equations were solved using CFD 

package FIDAP. The effect of dual porosity and nesting of adjacent fabric layers on the 

macro permeability was investigated and the results were compared with experiments. 

For dual scale fibrous structure Tahir et al. (Tahir et al., 2014) used the 

computational fluid dynamics methods to investigate the impact of different parameters 

on the overall permeability. Two models were developed for calculation of permeability 

one was resolved and the other one was homogenized porosity model. These models were 

compared with each other and good agreement is observed between the results of two 

numerical models. It was demonstrated that the effect of intra-tow porosity greater than 

0.5 on the overall permeability is irrelevant, while the inter-tow porosity on the other hand 

has a very important effect on the overall permeability. 

Full 3-D geometry of an idealized multifilament woven fabric were studied in the 

work of Wang et al. (Wang et al., 2006). The filaments were packed in hexagonal 

arrangement to find permeability. The comparison with the homogeneous anisotropic 

lumped model of Gebart was proposed where a satisfying agreement was obtained. 

However their results show that Gebart’s model considered permeability of multifilament 

fabrics even at high yarn’s solid volume fractions as an unimportant parameter. 
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Papathanasiou (Papathanasiou, 2001) performed a computational study by 

utilizing boundary element method to investigate the effect of viscous flow across 

unidirectional arrays of fiber bundles. The flow through the unit cell was solved by using 

numerical methods to compute the hydraulic permeability (Kp) of the dual porosity 

fibrous medium. The Kp values were determined through a large number of simulations 

for a range of inter- and intra-tow porosities .In that study they proposed a semi-empirical 

correlation for hexagonal and square intra-tow fiber arrangements to predict the 

permeability of fiber bundles which depends on inter and intra-tow porosities (i.e. inter 

and intra particle porosities), the type of intra-tow packing and the size (or number) of the 

intra-tow filaments.  

Hwang et al. (Hwang and Advani, 2010) presented a new finite-element scheme 

to solve the Stokes–Brinkman equation for flow analyses in dual scale porous media. 

Based on numerical and analytic results they also proposed a simple relationship between 

the effective permeability and the permeability of fiber tow. Such a simple demonstrating 

indicated great adjustment with numerical results for an extensive range of the tow 

permeability on the condition that the tow permeability is small enough. In addition, they 

observed that geometrical arrangement of tows can dramatically influence the effective 

permeability in the unit cell. In addition 

Nobovati et al. (Nabovati et al., 2010) used the lattice Boltzmann method to 

investigate the dual-scale problem of fluid flow through three-dimensional multifilament 

woven fabrics. In their study the inter-yarn porosity (‘weave porosity’, wφ ) and the intra-

yarn porosity (‘yarn porosity’, yφ ) are changed in the range of 0.35 0.65wφ< <  and

0 0.8yφ< < , respectively. The weave and yarn permeabilities values (Kw and Ky) are 

dependent on these parameters. They discussed the effect of inter- and intra-yarn porosity 

on the effective permeability of the fabric, Kp, in terms of the fabric structure. They used 

the semi-empirical relationship between the fabric permeability and the weave and yarn 

permeabilities which was developed by Papathanassiou for two-dimensional structures. 

Their three dimensional simulations results provides an excellent fit with only minor 

adjustment fitting parameters. 

Tung et al. (Tung et al., 2002) studied the effects of woven structures on fluid 

flow through the basic weaves of multifilament woven filter cloths numerically by using 

the FLUENT software. The flow pattern and the resistance to flow in the interstices were 

obtained by using numerical methods. The Results show that the construction of the fabric 
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pores has an important effects on the flow pattern in the interstices and the downstream. 

Moreover, in the case of tightly woven filter cloths, the main flow passes through the 

yarns of the cloth; while the direction of flow is generally around the yarns of a loosely 

woven cloth. 

Nield and Kuznetsov (Nield and Kuznetsov, 2011) obtained analytical solution in 

a channel occupied by a bidisperse (dual scale) porous medium. The relations suggested 

by them contain three permeabilities as interparticle, intraparticle and bulk permeabilities. 

The interaction between inter- and intraparticle velocities which causes an extra pressure 

drop through the dual scale porous media is included by an extra term contains a 

coefficient (ζ) called as velocity coupling coefficient.  

Byon and Kim (Byon and Kim, 2013) analyzed the permeability of bidispersed 

(dual scale) and mono dispersed porous media both with experimental and analytical 

methods. The effect of particle size distribution and the packing structure of particle on 

the permeability was investigated separately. To construct the bi-dispersed porous media, 

the mono-dispersed porous medium is grinded into clusters, sieved into specific sizes and 

sintered again. In their studies inter and intraparticle sizes were chosen as 650 and 117 

µm respectively. A term involving mean particle diameter and mean cluster size was 

multiplied to Blake-Kozeny equation to satisfy the obtained numerical and experimental 

results. Their results predicted that the permeability of the bi-dispersed porous media 

quasi-linearly decreases as the range of cluster size increases, and almost independent of 

the particle size distribution. 

Yu and Cheng (Yu and Cheng, 2002) developed fractal permeability model for 

dual scale (bi-dispersed) porous media. Their model was based on fractal characteristics 

of pores in media and it was found that the model should be a function of the tortuosity 

fractal dimension, pore area fractal dimension, sizes of particles and clusters, micro-

porosity inside clusters, and the effective porosity of a medium. In their study the micro 

porosity value was in the range of 0.093 0.215iφ< < . They found a good agreement 

between the fractal model prediction of permeability and experimental data. 
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Table 1.1. The performed studies and suggested relations for determination of 
permeability in a dual scale porous media 
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Table 1.1. (cont.)
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Table 1.1. (cont.)
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1.3.2. Literature Review on Kozeny Constant 

To determine the permeability the Kozeny constant is used. Since these two 

parameters are related to each other, Kozeny constant can be found by using Kozeny-

Carman equation. In this section, the literature studies on determination of Kozeny 

constant are presented. The summery of the studies and suggested correlations are 

displayed in Table 1.2. 

Singh and Mohanty (Singh and Mohanty, 2000) studied the effects of porosity on 

the permeability of 3D porous media by using lattice-Boltzmann method. Carman-

Kozeny equation was employed to determine the permeability in which the Kozeny 

constant is declared as function of the correlation length. The modified-Kozeny constant 

was found to decrease with increasing correlation length for low correlation lengths; 

however, it was found to be nearly constant for higher correlation lengths. 

Xu and Yu (Xu and Yu, 2008) extract new analytical expression for the 

permeability and Kozeny constant in the homogeneous porous media based on the fractal 

geometry theory. The predicted Kozeny constant was employed as a function of the 

fractal dimensions and porosity. A correlation that relates permeability with porosity and 

the geometrical dimensions of fractal medium was proposed. It was found that the Kozeny 

constant model based on fractal theory is more effective in determining the permeability 

than the traditional methods and models. Furthermore, it was mentioned that the Kozeny 

constant is actually not a constant and depends strongly on porosity and the 

microstructures of pores and capillaries.  

Teruel and Rizwan-uddin (Teruel and Rizwan, 2009) studied a representative 

elementary volume of a porous medium containing square cylinders of staggered 

arrangement. Reynolds numbers between 10-3 and 105 were considered and porosities 
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between 0.05 and 0.95 were simulated for each Reynolds number. The change of 

permeability with porosity was investigated and the comparison with Carman- Kozeny 

equation was made. The numerical data obtained in the study were used to propose a new 

correlation for the permeability of the medium as a function of porosity.  They claimed 

that this correlation is valid over the entire range of considered porosity (5–95%) better 

than the Carmen–Kozeny equation 

In Ozgumus et al. (Ozgumus et al., 2014) study, the permeabilities of porous 

media that contains rectangular rods are solved, numerically. The relevance of Kozeny-

Carman equation for the periodic porous media is examined and the influence of porosity 

and pore to throat size ratio on Kozeny constant were studied. For a specific porous 

medium the suggestion of a fixed value for Kozeny constant makes the utilization of 

Kozeny-Carman permeability equation too limited. In their research, they claimed that 

the Kozeny constant cannot depend just on porosity and the effect of pore to throat size 

ratio (i.e. β) should be considered to enhance the applicability of Kozeny-Carman 

equation for wide scope of the geometrical parameters. Moreover, an equation for Kozeny 

constant in terms of porosity and pore to throat size ratio is suggested for the studied 

periodic structure. The proposed equation gives precise results for the determination of 

the permeability for porosity range from 0.2 to 0.9 and pore to throat size ratio values 

from 1.63 to 7.46. 

 

Table 1.2. Theoretical studies on the determination of Kozeny constant 
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Table 1.2. (cont.) 
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in the paper 

 

1.3.3. Literature Review on Interfacial Convective Heat Transfer 
Coefficient 

In this section, the literature survey of interfacial convective heat transfer 

coefficient are reviewed. The reviewed studies are summarized in Table 1.3. In this table 

the correlations found to determine the interfacial Nusselt number are shown. 

Square rods are studied by Kuwahara et al. (Kuwahara et al., 2000)  in staggered 

arrangement to determine the interfacial convective heat transfer coefficient. The rods are 

taken into an isothermal environment at a constant temperature, which was different than 
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the film temperature of the fluid. Periodicity of the problem cause to take a single 

structural unit into consideration. The Reynolds number was varied from 0.01 to 1000 

and the porosity from 0.36 to 0.96. Prandtl number is in between 0.01 to 100. For the 

wide range of porosities iterative computations are done to obtain proper correlations for 

interfacial Nusselt number. As a result, the predictions of correlations are consistent with 

the experimental data in the literature. 

Nakayama et al. (Nakayama et al., 2002) has examined numerical experiments on 

pore scale by the use of full set of Navier stokes and energy equations to simulate laminar 

fluid flow and heat transfer through an anisotropic porous medium. Temperature of the 

rods was chosen as to be constant and different than the temperature of the following 

fluid. Boundary conditions at the inlet and outlet were the periodic boundary conditions. 

ın the longitudinal flow it is observed that the interfacial Nusselt number does not change 

very much with Reynolds number. However, there is slight drop in Nusselt number near

Re 10= . A correlation was proposed for the Nusselt number with the correlation 

coefficients that depend on the degree of the anisotropy of the medium and the flow 

direction. It is observed that the coefficients decrease with increasing anisotropy degree. 

According to Saito and de Lemos (Saito and de Lemos, 2006), the experimental 

analysis was conducted on an infinite porous medium in which fully-developed flow 

condition occurs. Laminar flow conditions were considered for particle based Reynolds 

number range of 4 to 400 and porosity range of 0.44 to 0.9. In one of the surveys, square 

rods were in staggered arrangement and the rods were assumed isothermal. In addition 

they determined the interfacial convective heat transfer coefficient for the turbulent flow 

regime in the same porous medium. High and low Reynolds k-ϵ turbulence models were 

used in conjunction of a two-energy equation model. A correlation is proposed for the 

interfacial Nusselt number in terms of porosity, Reynolds and Prandtl numbers for the 

Reynolds numbers between 104 and 107. 

For low Reynolds number flows (0.05 < Re < 40), Gamrat et al. (Gamrat et al., 

2008) was studied the determination of interfacial Nusselt numbers of banks of square 

rods in inline and staggered arrangements. Both constant wall temperature and constant 

volumetric heat source were considered as thermal boundary conditions. Peclet numbers 

between 0.01 and 1000 and Prandtl numbers between 1 and 100 were assumed. After the 

survey, the results show that the heat transfer in the array of rods was insensitive to 

thermal boundary condition at the interface for the highest values of Reynolds and Prandtl 

numbers and porosity. It was examined that the Nusselt number was more influenced by 
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the enhanced convective effect for the staggered arrangement. Also it is observed that for 

small porosity values, the heat transfer performance was slightly higher for the staggered 

arrangement especially. Nusselt correlations were done both for the aligned and staggered 

arrangements by the suggestion of the article (Gamrat et al.). To conclude, the heat 

transfer between the solid and fluid phases in the thermal non-equilibrium condition was 

observed to be affected by the thermal boundary condition used for the solid phase. 

The effects of the representative elementary volume (REV) aspect ratio is 

investigated in Alshare et al. (Alshare et al., 2010) for macroscopic flow direction and 

Reynolds number on the interfacial convective heat transfer coefficient for the inline 

arrangement of square rods. In this study, temperature boundary condition is chosen as 

constant heat flux at the interfaces. For periodic array of square rods, variation of the 

interfacial Nusselt number with Reynolds number for different structural unit aspect 

ratios is observed. The interfacial convective heat transfer coefficient does not show too 

much change with Reynolds number for flow in the longitudinal direction. However, for 

flow in the direction with 45o angle, Reynolds number showed increase. In addition, the 

heat transfer coefficients were found to have minimal values, for the flow along the 

principal axes. 

Macroscopic transport parameters through the square rods for both inline and 

staggered arrangements for a fully developed flow were investigated by Lopez Penha et 

al. (Lopez Penha et al., 2012).A volumetric heat generation in the rods was considered to 

be constant for the various solid-to-fluid thermal conductivity ratios and Reynolds 

numbers. Periodic representative elementary volumes of the porous media were selected 

and a finite volume based algorithm was used to solve the governing equations. Their 

results indicated that for solid-to-fluid thermal conductivity ratios higher than 100 the 

interfacial Nusselt number is almost constant since it changes significantly for lower 

values. It was specified that as thermal conductivities reach the same order of magnitude, 

the temperature gradients across the interface decline and subsequently, Nu value reduce 

with decreasing solid-to-fluid thermal conductivity ratio. 

Ozgumus and Mobedi (Ozgumus and Mobedi, 2014) investigate the effects of 

pore to throat size ratio on the interfacial heat transfer coefficient for a periodic porous 

media containing inline array of rectangular rods numerically. The study is performed for 

pore to throat size ratios between 1.63 and 7.46, porosities from 0.7 to 0.9, and Reynolds 

numbers between 1 and 100. It is observed that in addition to porosity and Reynolds 

number, the parameter of pore to throat size ratio plays an important role on the heat 
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transfer in porous media. For the low values of pore to throat size ratios ( 1.63β = ), 

Nusselt number increases with porosity while for the high values of pore to throat size 

ratios ( 7.46β = ), the inverse conduct is observed. In the light of numerical results, a 

correlation for the determination of Nusselt number in terms of porosity, pore to throat 

size ratio, Reynolds and Prandtl numbers is proposed.  

 

Table 1.3. Theoretical studies on the determination of interfacial convective heat      
transfer coefficient 
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Table 1.3. (cont.) 
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1.4. The Outline of Thesis 

The thesis is divided into six chapters. The first chapter includes an introduction 

to the dual scale porous media, the aim of study and detail literature review on the 

determinations of permeability in dual scale porous media, Kozeny constant and 

interfacial convective heat transfer  

In Chapter 2, fundamental concepts of porous media and background of 

microscopic and macroscopic methods are given. Microscopic governing equations for 

fluid flow and heat transfer and macroscopic equations are presented. The derivation of 

the macroscopic fluid flow and heat transfer equations with mathematical definitions of 

permeability and interfacial convective heat transfer coefficient are exhibited. 

Chapter 3 comprises the considered domain with the geometrical properties of the 

studied porous media is presented. The governing equations solved to obtain the 

microscopic  velocity,  pressure  and  temperature  distributions  in  the  REVs  and  the 

corresponding  boundary  conditions   for  calculation of the macroscopic transport 

parameters are clarified in detail. 

In chapter 4 the numerical procedure employed in the determination of the 

permeability and interfacial convective heat transfer coefficient are demonstrated. 

Computational details and grid independency tests of the computations are given in this 

chapter as well. 

Chapter 5 contains the results for the present study. The detail explanations of 

graphics and figures in advanced. The proposed correlations for Kozeny constant and the 

discussions about interfacial convective heat transfer coefficient are also reported in this 

chapter. Finally, by taking into account of predicted results the concluded remarks 

submitted in Chapter 6.
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CHAPTER 2 
 
 

 FUNDAMENTALS OF MACROSCOPIC HEAT AND 
FLUID FLOW ANALYSIS IN POROUS MEDIA 

A porous medium is called as a composite medium consists of voids and solid 

particles inside. The behavior of the stream passing through these pores is complex where 

the three dimensional flow is observed. For this reason the pore level determination of 

velocity and temperature distributions is troublesome and difficult. To overcome these 

challenges more proper approaches are obliged in analyzing the heat and fluid flow in 

porous media. The most widely recognized techniques is the macroscopic approach 

which is clarified in this chapter. 

In this section, the microscopic and macroscopic methods for investigating 

fluid flow and heat transfer in the porous media are presented. Firstly, an introduction to 

the microscopic point of view and the microscopic concepts of porous media are 

exhibited. At that point, the microscopic fluid flow and heat transfer equations are 

introduced and explained. At last, the macroscopic equations are presented and the 

determination of general forms of macroscopic momentum and energy equations are 

clarified in point of interest. 

2.1. Microscopic and Macroscopic Views of Porous Media 

The fluid in a porous medium flows in the pores (or voids) between the particles. 

An open porous medium has interconnected voids and solid particles; subsequently the 

fluid flows in the voids. If there may be periodicity in the porous structure, those medium 

is called as ordered or structured. In the event that the structure is irregular or randomly 

oriented, it is named as disordered (unstructured) porous medium (see Figure 2.1). 

Disordered (randomly) packed beds are widely utilized in industrial processes, because 

of their low cost and facilitate of packing. But, pressure drops in these packed beds are 

conventionally much higher with respect to the ordered packed beds. The overall heat 

transfer performances of this type of porous media is also poor which made ordered 
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packed beds to be considered as a promising choices for the industrial applications (Yang 

et al., 2010). 

 

 

 

(a) (b) 

Figure 2.1. Schematic views of porous media (a) ordered, (b) disordered porous media 
 

Porosity is the fundamental property concept in a porous media. It is defined as the volume 

of the voids to the total volume of the porous media (see equation (2.1)). 

 

 fV
V

ε =   (2.1) 

 

where Vf is the volume of the pores in the porous medium and V is the total volume.  

As specified before, there are predominantly two approaches to deal with heat and 

fluid flow in porous media: microscopic and macroscopic approaches. Fluid kinetics and 

motions in pores between particles is studied as it is in the microscopic approach.  The 

continuity and Navier-Stokes equations are used in this kind of study however it is hard 

and difficult to dissect the heat and fluid flow for entire domain of a porous medium, 

microscopically. The microscopic approach is helpful when a periodic structure is 

considered.  

As another point of view, in the macroscopic approach, heat and fluid flow is 

analyzed for a continuum domain by upscaling the microscopic parameters. Heat and 

fluid flow equations are set up for a continuum space including the whole volume of 

porous medium in spite of discontinuity in the flow due to the solid phase and all 

properties of the domain are obtained as effective values. Volume integral of the 

continuity, momentum and energy equations yields the governing equations for the 

entire of porous medium. 

 
 

20 



Figure 2.2 reveals fluid flow in a channel occupied with a porous medium. At 

the point when fluid goes into the channel, fluid particles have 3D movements inside 

the pores. Anyhow macroscopically, flow through the porous column is unidirectional 

and the macroscopic velocity can be composed as the ratio of volume flow rate to the 

cross-sectional area. This macroscopic velocity is otherwise called apparent, superficial 

or Darcian velocity. This velocity should be constant through channel due to the 

conservation of mass (Nakayama, 1995). 

 

 

Figure 2.2. Macroscopic and microscopic flows through a porous channel. 
 

Permeability is a macroscopic transport property used to obtain macroscopic 

velocity. Permeability is a quantification of the allowance fluid flow through the solid 

structure. It is independent of fluid properties and just relies on upon properties of the 

solid structure of the considered porous medium (Nield and Bejan, 2006). 

Additionally the investigation of heat transfer in porous media is carried out by 

using macroscopic method. Interfacial convective heat transfer transport is an essential 

parameter that plays important role on analyzing heat transfer in porous media. 

Interfacial convective heat transfer coefficient represents the heat transfer 

between fluid and solid phases. It happens when there is no local thermal equilibrium 

between two phases. For study of the interfacial convective heat transfer coefficient two 

phases in the porous medium should be considered, independently. Two energy 

equations (one for solid and another for fluid phase) should be solved to determine 

temperature field for the entire domain. 

2.2. Microscopic Fluid Flow and Energy Equations 

For an incompressible flow of Newtonian fluid with constant thermo-physical 

properties, the continuity and momentum equations, given in equations (2.2) and (2.3), 
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are utilized to acquire the velocity and pressure distributions in the pores of the 

considered porous medium. 

 

 . 0u∇ =
  (2.2) 

 

 2( )f f f
u u u p u
t

ρ ρ µ∂
+ +∇ = −∇ + ∇

∂



    (2.3) 

 

Where 𝑢𝑢�⃗  is the velocity vector, 𝜌𝜌𝑓𝑓  and µ𝑓𝑓 are the density and dynamic viscosity of the 

fluid, respectively, and p is pressure.  In a porous medium to obtain the microscopic 

temperature distribution, solid phase as well as fluid phase should be considered 

discretely and two microscopic energy equations may be taken into account. The 

individual form of microscopic energy equations for fluid and solid phases is given in 

equations (2.4) and (2.5) respectively. If the negligible viscous dissipation is assumed  
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ρ ∂
= ∇

∂
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where T is temperature, cp and k are specific heat capacity and thermal conductivity, 

respectively. The subscripts f and s refer to the fluid and solid phases. By using above 

governing equations (equations (2.2)-(2.5)) with appropriate initial and boundary 

conditions, the velocity and pressure distributions in the pores and the temperature 

distributions in both solid and fluid phases can be obtained. However, for a porous 

medium comprising of large number of pores and complex structure, the microscopic (or 

pore level) examination by utilizing these equations may be troublesome and time 

consuming. That is the reason; the macroscopic method which is clarified in the 

accompanying segments can be utilized to analysis fluid flow and heat transfer in porous 

media.  
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2.3. Volume Averaging Method 

Analysis of heat and fluid flow in porous media is frequently performed by using 

volume averaging technique.  

 

 

Figure 2.3. Microscopic control volume in a porous structure (Nakayama, 1995) 
 

Volume averaging of a quantity over a control volume is computed as follows: 

 

 
1

V
dV

V
ϕ ϕ= ∫  (2.6) 

 

where V is  the  volume  of  chosen  control  volume.  By using equation (2.6), the 

macroscopic velocity is defined as below. 

 

 
1

V
u u dV

V
= ∫

   (2.7) 

 

In the event that an average value of a quantity for one of the phases is required, 

intrinsic averaging is used. For instance, the average velocity in the fluid phase can be 

calculated from equation (2.8). This velocity can likewise be called as pore or interstitial 

velocity and it is corresponding to the macroscopic velocity. 

 

 
1

f

f

V
f

u u dV
V

= ∫
   (2.8) 

 

where Vf is pore volume.  
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More points of interest on the basics and uses of volume averaging method can be found 

in the book of Whitaker (Whitaker, 1999). 

2.4. Darcy and Forchhiemer Motion Equations 

In 1856 Darcy found that (Darcy, 1856) the macroscopic (Darcian) velocity 

through a section of porous medium is relative to the pressure gradient and inversely 

proportional to the fluid viscosity. This relation is called as Darcy’s Law and its one-

dimensional form is demonstrated by equation (2.9). The proportionality constant K 

is known as permeability and it refers to the flow resistance inside the porous medium. 

The permeability is a tensor in which the diagonal terms show the permeability of 

the porous medium in principal directions. It relies on the micro-structure of the solid 

phase and free of the properties of the fluid (Nakayama, 1995).  Darcy’s Law is valid 

for low Reynolds number flows and can be accurately used to obtain average velocity 

in a porous medium for ( Re 1, Re /d d u d υ< = ) because it expresses a balance between 

viscous and pressure forces. 

 

 
f

f

d pKu
dxµ

 
=  

 
 

 (2.9) 

 

An extra quadratic term which includes the flow inertia effects was proposed by 

Dupuit (Dupuit, 1863) and Forchheimer (Forchheimer, 1901), (Nakayama, 1995) for 

higher Reynolds number. The subsequent equation is called as Forchheimer extended 

Darcy’s Law and its one dimensional form is provided by equation (2.10). The first 

term on the right hand side records for the frictional drag (Darcy term) and at the 

same time the second term (Forchheimer) refers to the drag. 

 

 ( )2

1/2

f
f

f

d p Cu u
dx K K

µ
ρ− = +  (2.10) 

 

where C is Forchheimer coefficient. In order to predict macroscopic velocity in a 

porous medium precisely as can be seen from equations (2.9) and (2.10), the 

permeability and Forchheimer coefficients values should be well known. The most 
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well-known mathematical expression for determination of permeability was derived 

according to Kozeny-Carman theory (Kozeny, 1927), (Carman, 1937). In the following 

passages the Kozeny-Carman theory and the derivation of Kozeny-Carman permeability 

equation are summarized. The average velocity for Hagen-Poiseuille flow in a channel 

with diameter of dt can be found as: 

 

 21
32

f
f

t

d p
u d

dxµ
= −  (2.11) 

 

By using Dupuit-Forchheimer relation and comparing Darcy’s Law with equation (2.11), 

the permeability value for Hagen-Poiseuille flow in a channel can be found as 
2 / 32tK d ε= .  

As indicated in Figure 2.4 Kozeny considered the medium as a bundle of capillary 

channels with the same radius. 

 

 

Figure 2.4. Flow through a bundle of capillary tubes 
 
By combining Hagen-Poiseuille velocity equation with Darcy’s Law and utilizing 

tortuosity idea, the accompanying equation for permeability was proposed by Kozeny: 

 

 
2

32
tdK ε
τ

=  (2.12) 

 

where τ is tortuosity. Tortuosity can be defined as the proportion of the actual length 

of flow path in the porous medium to the length of flow path in the absence of porous 

medium (i.e., in clear fluid). The impact of the microstructure of the porous medium 

(direction of the pores) on the macroscopic flow can be thought as tortuosity (Liu and 

Masliyah, 2005). Tortuosity used as a part of equation (2.12) may be defined as the 

correction to the pressure gradient which is characterized for clear fluid (Kaviany, 1995). 

The permeability equation of Kozeny was modified later by Carman and the so-called 

Flow
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Kozeny-Carman equation which predicts the permeability sensibly well for the packed 

bed of spheres is introduced as: 

 

 
2

16
h

K

dK
k
ε

=  (2.13) 

 

where  dh   is  the  pore  hydraulic  diameter  of  the  porous  medium.  The pore hydraulic 
diameter is defined as: 
 

 
0

4
(1 )hd

A
ε
ε

=
−

 (2.14) 

 

where A0 is the ratio of the fluid-solid interfacial area to the solid volume. The symbol 

of kK in equation (2.13) is Kozeny constant which includes the effects of flow path, 

particle shape and their connections (i.e., tortuosity and shape effects) and offer 

equivalent to a constant in Kozeny-Carman theory (kK = 5). For spherical particles, the 

Kozeny- Carman equation can be revised in the light of particle diameter as equation 

(2.15). 

 

 
3

2
2

1
36 (1 )K

K d
k

ε
ε

=
−

 (2.15) 

 

where d  is  the  diameter  of  the  spheres.  On the other side, for two or three dimensional 

cylinders equation (2.13) changes into equation (2.16). 

 

 
3

2
2

1
16 (1 )K

K d
k

ε
ε

=
−

 (2.16) 

 

where d is the diameter of the cylinders. 

The macroscopic fluid flow equations are shortly clarified in the past passages. 

The conventional equations were for the most part acquired intuitionally by using 

experimental observations. However by applying volume averaging method on the 

relating microscopic equations, general forms of macroscopic fluid flow and heat transfer 

equations can be obtained theoretically. The macroscopic equations and the derivation 

procedure are exhibited in the accompanying sections. 
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2.5. General Forms of Macroscopic Motion Equations 

By applying the volume averaging method on the continuity and Navier-Stokes 

equations general macroscopic flow equations can be acquired. To obtain   intrinsic 

average of any multiplication φ1φ2 the following relationship can be used (Nield and 

Bejan, 2006). 

 

 1 2 1 2 1 2

ff f fϕ ϕ ϕ ϕ ϕ ϕ′ ′= +  (2.17) 

 

Where the prime denotes the deviation of the intrinsic average value from the 

microscopic one, such that 

 

 fϕ ϕ ϕ′ = −  (2.18) 
 

Equation (2.17) can be reworked regarding of the total volume averaged variables with 
using Dupuit-Forchheimer relation as follows. 

 1 2 1 2 1 2
1ϕ ϕ ϕ ϕ ϕ ϕ
ε

′ ′= +  (2.19) 

 

Additionally, the following principles which are analogous to Leibnitz rule are used 

in the volume averaging procedure. 

 

 
1

sfA

dA
V

ϕ ϕ ϕ∇ = ∇ + ∫  (2.20) 

 

 
t t

ϕϕ ∂∂
=

∂ ∂
 (2.21) 

 

where Asf is the interfacial area between solid and fluid phases. By utilizing these 

equalities, macroscopic governing equations can be straightforwardly gotten from the 

microscopic equations. The macroscopic continuity equation can be obtained by 

applying volume averaging method to equation (2.2) which is the microscopic 

continuity equation. 
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1 . . 0

V

u u
V

∇ = ∇ =∫
 

 (2.22) 

 

The integration rule given by equation (2.20) is used on equation (2.20) to obtain equation 

(2.23). 

 

 
1. 0

sfA

u u dA
V

∇ + =∫
   (2.23) 

 

The second term vanishes since the flow cannot enter through the solid wall. Henceforth 

the macroscopic continuity equation is found as follows. 

 

 . 0u∇ =


 (2.24) 
 

The macroscopic momentum equation can also be found. With a similar procedure 

explained for obtaining macroscopic continuity equation, Volume averaging of 

microscopic momentum equation which is given by equation (2.3) yields: 

 

 2.f f f
u u u p u
t

ρ ρ µ∂
+ ∇ = − ∇ + ∇

∂



  

 (2.25) 

 

This equation can be rewritten in the following form by using equations (2.20) and (2.21): 

 

 
2

1 . .
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u
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t
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ε

µ
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 −∇ − + ∇ + ∇ +∇
  

∫ ∫ ∫



   

  

 (2.26) 

 

The last integration on the right hand side of equation (2.26) disappeared due to no 

stream entrance into solid. Since the pressure term in the momentum equations identified 

with fluid phase, the Dupuit-Forchheimer relation can be used to change the total volume 

averaged pressure into the intrinsic volume averaged value. 
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 (2.27) 

 

With rearranging terms and dividing the entire equation to porosity, the macroscopic 

momentum equation can be written as follows. 
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f f
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 (2.28) 

 

The last three terms on the RHS of equation (2.28) can be thought as an additional 

source terms since they do not exist in the microscopic momentum equations. The last 

term relates to the effects of inertia while other two terms (3rd and 4th on the RHS) 

together correspond to viscous effects. Vafai and Tien (Vafai and Tien, 1981) stated that 

the last three terms in equation (2.28) correspond to Forchheimer-extended Darcy’s 

Law in the following form. 

 

 2
2

1 1 . f f
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ρ
ε ε ε
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

    (2.29) 
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f

f
CS u u u

K K
µ

ρ= − −


    (2.30) 

 

Therefore the macroscopic momentum equation gets to be as 
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 (2.31) 

 

The left hand side (LHS) terms are macroscopic convective inertia terms. The last 

three terms on the right hand side (RHS) are called as Brinkman (boundary friction), 
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Darcy (porous viscous) and Forchheimer (porous inertia) terms, respectively 

(Nakayama, 1995). 

2.6. Macroscopic Energy Equations 

For a porous medium with two phases as a solid phase and an incompressible 

Newtonian fluid flowing through the pores without extensive impact of viscous 

dissipation, the microscopic energy equations for the fluid and solid phases are given in 

equations (2.4) and (2.5). Volume averaging method can be used to obtain the 

macroscopic energy equations for the fluid and solid phases of the porous media. 

By applying volume averaging method on the microscopic energy equations, 

following equations for fluid and solid phases can be found as: 

 

 2.f pf f
Tc uT k T
t

ρ  ∂ 
+ ∇ = ∇ ∂ 

  (2.32) 

 

 2
s ps s

Tc k T
t

ρ ∂
= ∇

∂
 (2.33) 

 

Utilizing the correspondences given by equations (2.20) and (2.21) on equations (2.32) 

and (2.33), the macroscopic energy equations can be rewritten as follows. 
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1 1.
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 (2.34) 

 

 
2 1 1.

sf sf

s ps s s s
A A

T
c k T k TdA k TdA

t V V
ρ

∂
= ∇ +∇ + ∇

∂ ∫ ∫  (2.35) 

 

The integration in the LHS of equation (2.34) vanishes in the light of the non-slip 

boundary condition at the solid-fluid interface. Since the temperature in both equations 

demonstrate the temperature of corresponding phases, the representation of intrinsic 

volume averaged might be better and that’s why Dupuit-Forchheimer relation is used 
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to change equations (2.34) and (2.35). Additionally, equation (2.19) is used to re-

compose the second term on the LHS of equation (2.34). 
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The second term on the LHS of equation (2.36) is rearranged with using macroscopic 
continuity equation and Dupuit-Forchheimer relation in the following way. 
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 (2.38) 

 

With rearranging the terms, the macroscopic equations in terms of intrinsic volume-

averaged temperature values can be written as: 
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ρ ε ε

 ∂
 − = − ∇ +∇ + ∇

∂   
∫ ∫  (2.40) 

 

Equation (2.39) and equation (2.40) represents macroscopic form of energy equation for 

fluid and solid phases respectively. The first terms on the right hand sides of these 

equations represent the diffusion heat transfer in the fluid and solid phases. The second 

terms relate to the thermal tortuosity. The last term on the RHS of macroscopic energy 
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equation of fluid phase (see equation (2.39)) indicates the thermal dispersion showing 

the additional diffusion heat transfer to the molecular diffusion. The third terms on 

the RHS of the macroscopic energy equations show the heat transfer between the solid 

surface and the fluid flowing in the voids and it can be calculated by using the 

interfacial convective heat transfer concept. Mathematically, the convective heat 

transfer between solid and fluid can be expressed by using the interfacial heat transfer 

coefficient. 

 

 ( ) 1 1. .
sf sf

s f
sf ss f s

A A

h A T T n k TdA n k TdA
V V

− = ∇ = ∇∫ ∫
   (2.41) 

 

where hsf is the interfacial convective heat transfer coefficient and Ass is the specific 

solid-fluid interfacial area (i.e., Ass = Asf /V). The interfacial convective heat transfer 

coefficient can be found by using equation (2.42) which directly originates from 

equation (2.41). At the point that thermal equilibrium breaks down the interfacial 

convective heat transfer coefficient should be considered for the investigation o f  

macroscopic heat transfer through porous medium. 

 

 

1

sf

f
A

sf s f

k TdA
V

h
T T

∇

=
−

∫
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The important point should be mentioned here is that the interfacial convective heat 

transfer coefficient is calculated based on the macroscopic temperatures of the solid and 

fluid phases. Hence it is a macroscopic parameter and it is totally different from the 

convective heat transfer coefficient usually used in the heat transfer problems with clear 

fluid flow. By using definition of interfacial convective heat transfer coefficient, 

equations (2.39) and (2.40) takes the following form: 
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In the porous medium, two energy equations which is given above should be 

solved in order to obtain the macroscopic temperature distribution for each phase if 

there is local thermal non-equilibrium.  There are some circumstances in which Local 

thermal equilibrium breaks down. The following cases are as an example of this 

situation. 

• Unsteady problems in which heat is transferred from one phase to another, 

• when a hot gas flows at a high speed at the entrance region of packed column, 

• Applications such that there is considerable difference heat capacities and thermal 

conductivities between solid and fluid phases  

• Applications in which the temperature at the solid-fluid interface changes 

significantly with respect to time. 
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CHAPTER 3 
 
 

CONSIDERED DOMAIN, GOVERNING EQUATIONS 
AND BOUNDARY CONDITIONS 

In this section, the considered porous media for the determination of the impacts 

of intraparticle porosity on the macroscopic transport parameters are exhibited. The 

numerical simulations is executed by using governing equations and assigning relevant 

boundary conditions that the detail explanations is given in this chapter. In the previous 

chapter the full forms of the governing equations for fluid flow and heat transfer are 

already introduced. In this part, the equations required to obtain microscopic velocity, 

pressure and temperature distributions as well as the boundary conditions needed for the 

solution of the microscopic equations are presented. 

3.1. Considered Domain 

The geometry of the considered porous media and representative elementary 

volume (REV) are indicated in Figure 3.1 and Figure 3.2.  

 
Figure 3.1. The studied dual scale porous medium 

 
A periodical REV with the dimensions of H×H (20×20 mm2) is picked as the 

computational domain. The geometry is two dimensional in which the square rods are 

assumed as long in z-direction. 
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(b) 
Figure 3.2. Computational domains a) half of REV for determination of permeability in 

x direction b) half of REV for determination of permeability in y direction 
 

The flow in the REV is assumed fully developed and periodical. The permeable 

square particles are placed with in-line arrangement. There are two symmetrical 

intraparticle pores considered here which are in longitudinal flow direction for the entire 

present study. The height of the intraparticle pore is shown by “d” and changes from 0.2D 

to 0.8D, where D is the size of square particle. The interparticle porosity is changed 

between 0.4 and 0.75 while the intraparticle porosity varies between 0.2 and 0.8. The 

fluid flowing through the medium is assumed to be Newtonian and incompressible with 
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constant thermophysical properties. The flow is laminar and in Darcian region ( Re 1≤  ). 

The study is performed for air with density of 1.225 kg/m3 and viscosity of 17.894.10-6 

kg/ms. 

Some example of REVs displaying the change of intraparticle porosity for the constant 

value of interparticle porosity are shown in Figure 3.3. 

 

   

   

 

 

 

Figure 3.3. REV with different intraparticle size of 0, 0.2, 0.4, 0.6 and 0.8 for 0.75fε =  

3.2. Governing Equations and Boundary Conditions for Determination 
of Permeability  

Bu analyzing microscopic governing equations, permeability of fluid passing 

through the REV is determined. The fluid flow in inter- and intraparticle pores is assumed 

incompressible and steady. The continuity and momentum equations are solved in order 

to determine the velocity and pressure distributions in the pores. These equations in 

Cartesian coordinate can be written as: 
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 (3.3) 

 

where u and v are the velocity components in x and y directions and p is the pressure, ρ 

and ν are density and kinematic viscosity of fluid, respectively.  

In order to solve equations (3.1), (3.2) and (3.3) knowing the boundary conditions for 

velocities at the boundaries of REVs and at the fluid-solid interfaces are necessary 

3.2.1. Determination of Intrinsic Intraparticle Permeability 

The intrinsic intraparticle permeability is valid only for x direction and calculated 

for a single permeable particle without considering the effect of interparticle flow. The 

intraparticle permeability is calculated based on velocity field obtained from continuity 

and momentum equations with the following boundary conditions: 

 

On solid walls: 0u v= =  (3.4) 
 

For inlet an outlet 
boundaries: 

(0, ) ( / 2, )(0, ) ( ), 0u y v D yu y f y
x x

∂ ∂
= = =
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 (3.5) 

 

As it is well known, the permeability depends on the micro-structure of the solid phase in 

the porous media and it is independent of the properties of the fluid. Permeability is a 

tensor quantity and for a two dimensional flow in Cartesian coordinate and it can be 

defined as: 
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 (3.6) 

 

where , , ,xy yx xy xyK K K K  are components of the permeability.  
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The Darcy velocity and pressure gradient for flow through the quarter of intraparticle pore 

is calculated by following relations: 
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For the intrinsic intraparticle permeability the permeability tensor takes the following 

form: 

 

 , 01
0 0

p p xx

p

p
u K x

pv
y

µ

∂ 
     ∂   =   ∂       ∂ 

 (3.9) 

 

where ,p xxK  is the permeability  component in longitudinal direction. The value of ,p xyK
and ,p yxK are equal, and the value of  ,p yyK  component is vanished since there is no flow 
in transverse direction (vertical direction). 

3.2.2. Determination of Intrinsic Interparticle Permeability 

The intrinsic interparticle permeability (without considering of the intraparticle 

pores) is found by using the continuity and momentum equations with following 

boundary conditions for flow in x direction: 

 

On solid walls: 0u v= =  (3.10) 
 

For inlet 
and outlet 
boundaries: 

 ( , ) ( , )(0, ) ( ), (0, y) 0 and 0u H y v H yu y f y v
x x

∂ ∂
= = = =

∂ ∂
 (3.11) 
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The Darcy velocity and pressure gradient in x direction for flow through the half of REV 

is calculated by following relation: 

 

 
/2

2 0 0

2 H H

fu u dx dy
H

= ∫ ∫  (3.12) 

 

 
( )/2 ( )/2

0
/2 /2

2
( )

f H D H D

x x H
D D

d p
p dy p dy

dx H H D

− −

= =

 
− = − −  

∫ ∫  (3.13) 

 

For the intrinsic interparticle permeability, the permeability tensor takes the following 
form: 
 

 
,

,

01
0

f f xx

f yyf

p
u K x

pKv
y

µ

∂ 
     ∂   =    ∂       ∂ 

 (3.14) 

 

For the studied case the values of ,f xxK and ,f yyK are equal to each other due to 

symmetrical geometry of REV. 

3.2.3. Determination of Bulk Permeability 

The bulk permeability in x and y directions are different, that’s why they should 

be calculated for both sides. The bulk permeability is determined by solution of the 

governing equations and boundary conditions. 

 

 For the determination of the permeability in the horizontal direction: 
 

On solid walls: 0u v= =  (3.15) 
 

For top and bottom 
boundaries: 

0u v
y y
∂ ∂

= =
∂ ∂

 (3.16) 

 

For inlet 
and outlet 
boundaries: 

( , ) ( , )(0, ) ( ), (0, y) 0 and 0u H y v H yu y f y v
x x

∂ ∂
= = = =

∂ ∂
 (3.17) 
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For determination of the permeability in the vertical direction: 
 

On solid walls: 0u v= =  (3.18) 
 

 

For left and right 
boundaries:  0u v

x x
∂ ∂

= =
∂ ∂

 (3.19) 

 
 

For inlet  
and outlet 
boundaries: 

( , ) ( , )( ,0) ( ), ( ,0) 0 and 0u x H v x Hv x f x u x
y y

∂ ∂
= = = =

∂ ∂
 (3.20) 

 

The functions of f(x) and f (y) is the velocity profile for the inlet boundary of the REV 

After obtaining periodic velocity field in the structural units, the macroscopic velocities 

(Darcian velocities) are calculated by using following equations: 

 

 
/2

2 0 0

2 H H

bu u dx dy
H

= ∫ ∫  (3.21) 

 

 
/2

2 0 0

2 H H

bv v dy dx
H

= ∫ ∫  (3.22) 

 

For determination of permeability in x and y direction, the pressure drop throughout the 

REV is found by following relations:  

 

 

/2 /2

0 0
/2 /21

( ) / 2 ( ) / 2

L d H L d H

f x x x H x H
L D L D
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 

∫ ∫ ∫ ∫
 (3.23) 
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f H D H D

y y H
D D

d p
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dy H H D

− −
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− = − −  

∫ ∫  (3.24) 

 

The first term of the right hand side of equation (3.24) is the integral of pressure in inlet 

while the second term gives the integral of pressure drop in the outlet of REV. 

Permeability is a tensor quantity and for bulk permeability it can be given as follows:  
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b xxb

b yyb

p
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pKv
y

µ

∂ 
     ∂ =      ∂     ∂ 

 (3.25) 

 

Since the structure of REV in x and y directions are different, hence xx yyK K≠ . 

3.3. Governing Equations and Boundary Conditions for Determination 
of Interfacial Convective Heat Transfer Coefficient 

Microscopic form of energy equation of fluid is utilized besides of the motion 

equations for the determination of the interfacial convective heat transfer coefficient. The 

governing equations are solved under the assumptions of local thermal non-equilibrium 

between solid and fluid phases, a uniform and constant temperature distribution in the 

solid phase and steady state condition. The calculations are done for 10 ≤ Re ≤ 600. 

Moreover, the energy equation for the solid phase is not considered. 

 

 
2 2

2 2f pf f
T T T Tc u v k
x y x y

ρ
  ∂ ∂ ∂ ∂

+ = +  ∂ ∂ ∂ ∂   
 (3.26) 

 

For the solution of equation (3.26), temperature boundary conditions at the 

boundaries of REVs and at the interfaces of solid and fluid phases are required. As can 

be seen from Figure 3.2 (a), the boundary conditions for the microscopic energy equation 

for fluid phase are chosen as symmetry for the top and the bottom of the REV. The 

temperature gradient at the fluid outlet boundary is zero, therefore no diffusion transport 

exists. Finally, periodic temperature profiles are generated for the inlet and outlet 

boundaries. The employed boundary conditions in a mathematical statement can be 

written as follows: 

 

In the solid phase: ConstantsT =  (3.27) 
 

On the fluid-solid interfaces: sT T=  (3.28) 
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For the top and the bottom boundaries: 0T
y

∂
=

∂
   (3.29) 

 

For the inlet boundary: ( )T g y=  (3.30) 
 

For the outlet boundary: 0T
x

∂
=

∂
 (3.31) 

 

The temperature profile and thermal periodicity of the REV is given by g(y) function. 

The microscopic temperature distribution in the fluid phase is obtained by applying the 

boundary conditions and solving the microscopic energy equation for the REV with 

periodic boundaries. At that point, to compute the value of the interfacial convective heat 

transfer coefficient equation (2.42) can be used. 

The equation (2.42) indicates that, macroscopic temperatures of both phases are 

compulsory to figure the interfacial convective heat transfer coefficient. There is equality 

between macroscopic temperature of the solid phase and selected reference temperature 

value. However, the macroscopic temperature of the fluid phase can be ascertained by 

utilizing intrinsic volume averaging on the microscopic temperature. 

 

 s
refT T=  (3.32) 

 

 
1

f

f

f V

T TdV
V

= ∫  (3.33) 

 

The interfacial Nusselt number can be defined as follows: 

 

 sf

f

h H
Nu

k
=  (3.34) 

 

As can be seen from equation (3.34) in this study the dimension of the REV is selected 

as characteristic length to define Nusselt number. The same manner is also observed in 

numerous reported studies. ((Ozgumus and Mobedi, 2014), (Nakayama et al., 2002), 

(Alshare et al., 2010), (Lopez Penha et al., 2012)). 
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CHAPTER 4 
 
 

 SOLUTION TECHNIQUE AND COMPUTATIONAL 
DETAILS 

In this chapter, the numerical solution technique used to solve the governing 

equations is explained in detail. The details of iterative procedures employed to obtain 

the hydraulically and thermally periodical boundary conditions, computational method 

and employed parameters for the considered REVs are introduced in this chapter. The 

performed grid independency validation for the numerical computation of the 

macroscopic transport parameters is also checked. 

4.1. Numerical Procedure 

In this section the iterative procedures used to reach periodical heat and fluid flow 

are explained in details. Different iterative procedures are applied to determine 

hydraulically and thermally fully developed flow. The corresponding velocity, pressure 

and temperature distributions are obtained and illustrate in the following parts. 

4.1.1. Iterative Procedure for Obtaining Periodical Fluid Flow 
Boundaries 

In Section 3.2 the periodical boundary conditions which can be found by using an 

iterative procedure was given. As mentioned before, the function f (y) provides hydraulic 

periodicity for the inlet and outlet boundaries of the considered REV. This iterative 

procedure is displayed in Figure 4.1 and explained in the following way. 

The Figure 4.1 shows the inlet and outlet velocity profiles obtained for 

determination of the bulk permeability. Firstly, a uniform velocity profile is assumed as 

seen from Figure 4.1. After solving the governing equations and obtaining the velocity 

field, the outlet velocity profile of first run is used as the inlet boundary condition for 

second run and the problem is solved again. This iteration continues until the same 
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velocity profiles at the inlet and outlet boundaries achieved. By this way, the periodicity 

of the velocity field is attained. The same method is applied for obtaining flow periodicity 

in y direction.   

 

 
Figure 4.1. The change of velocity profile to obtain fully developed condition  

 

Moreover, the periodicity of the flow boundaries is assumed to be valid when the relative 

difference between the results of the permeability values obtained in the successive 

iterations become negligible.  

4.1.2. Iterative Procedure for Obtaining Periodical Thermal 
Boundaries for Determination of Interfacial Convective Heat 
Transfer Coefficient 

To compute the interfacial convective heat transfer coefficient, periodical 

temperature boundaries should be subsist at the inlet and outlet boundaries of the REV 

because of infinite periodical structure of porous medium. Therefore, the boundary 

conditions given in Section 3.3 are the periodical boundary conditions and the 

temperature profile function g (y), which is established at the inlet fluid boundary 
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provides thermal periodicity of the inlet and outlet boundaries of the REV. This function 

is found by the accompanying technique; 

• Toward the start of this iterative procedure, a uniform temperature, different from 

the solid temperature is defined for the fluid inlet boundary (as can be seen from 

Figure 4.2) 

• The temperature field for the whole fluid space is acquired by solving the energy 

equation for fluid. 

• The temperature profile for the inlet of the next computation is determined from 

the dimensionless temperature profile at the outlet boundary of the last iteration. 

• The iterative process will be terminated when dimensionless temperature 

distribution between the inlet and outlet and no variety of the interfacial Nusselt 

number are seen. Since a thermally fully- developed convection heat transfer is 

valid, no change of the dimensionless temperature and interfacial convective heat 

transfer should be observed in the sequential REVs through the flow direction in 

the porous medium. 

 

 

Figure 4.2. The change of temperature profile to obtain thermally fully developed 
condition 
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The dimensionless temperature is defined by equation (4.1). 

 

 
( )( ) s

b s

T y Ty
T T

θ −
=

−
 (4.1) 

 

where Ts and Tb are the solid and bulk temperatures, respectively. Tb is defined as follows: 

 

 b

uTdy
T

udy
= ∫
∫

 (4.2) 

4.2. Computational Details 

The pore level flow equations are solved for the studied REVs. The number of 

grids is chosen as 400 400x  for the entire domain. A commercial code based on finite 

volume method is used to solve the governing equations, computationally 

(ANSYS/Fluent 15). The power law scheme is employed to treat the discretization of the 

convection terms in the momentum and energy equation SIMPLE method is used for 

handling the pressure-velocity coupling. The approximate errors (Residuals) are set to  
910−  for flow variables and 1210−  for temperature. 

4.3. Grid Independency Tests 

Grid independency study is done to select the best grid size for the exact 

computation of permeability and interfacial convective heat transfer coefficient. The 

change of dimensionless permeability with grid size is shown in Figure 4.3 for cases with

0.75 ( 0.2) and 0.4 ( 0.8) when Re 0.01f p f pε ε ε ε= = = = = . As can be seen from the 

figure, discretization with grid number of 160000 is sufficient to achieve acceptable 

results. In fact, for low Reynolds number flows, lower grid sizes are proper for capturing 

the accurate dimensionless permeability values. However, the computations of the 

interfacial convective heat transfer coefficients are made for high Reynolds numbers in 

addition to the lower ones. Consequently, 400×400 grid size is decided for using in all 

computations. 
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Figure 4.3. The change of dimensionless permeability with grid number for two dual 

scale porous media;  
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CHAPTER 5 
 
 

RESULTS AND DISCUSSION 

In this chapter the results for permeability, Kozeny constant, interfacial 

convective heat transfer have been presented and discussed. Firstly, the validation of 

numerical model out comes is compared with the results of reported studies in the 

literature. Afterwards, results of the fluid flow and heat transfer computations are 

presented in the next sections individually.  

5.1. Validation of Results 

Before starting to investigate the effects of intraparticle porosity on the 

permeability and interfacial convective heat transfer coefficient, some porous structures 

reported in the literature are selected. Hence to approve the validations of numerical 

computations, the obtained results are compared with the results of the reported studies.  

 

 
Figure 5.1. Comparison of dimensionless permeability obtained in this study with the 

results reported in literature 
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In Figure 5.1 the obtained dimensionless permeability for porous media with 

impermeable particle are compared with the values reported by Ozgumus et al. (Ozgumus 

et al., 2014), Saada et al. (Saada et al., 2005) and (Nakayama et al., 2007) for square rod 

porous media when  . As seen from the figure, the obtained values of the present study 

and the reported literature values are in good agreement. 

In the wake of accepting the numerical results of motion equations, the validation 

is also performed for the computation of the interfacial convective heat transfer 

coefficient by solving the microscopic energy equation of fluid phase and the Navier-

Stokes equations. For the examination, the porous media with square rods in inline 

arrangement and porosity of 0.75 is created. After solving the equations the interfacial 

Nusselt numbers found for this porous media are compared with the results of Ozgumus 

and Mobedi (Ozgumus and Mobedi, 2014), Nakayama et al. (Nakayama et al., 2002), 

Lopez Penha et al. (Lopez Penha et al., 2012) and Gamrat et al. (Gamrat et al., 2008) and 

the comparison is shown in Figure 5.2. As can be detected from Figure 5.2, there is 

similarity between the results of present study and the literature results for an extensive 

variety of Reynolds number.  

 

 
Figure 5.2. Comparison of the obtained results for the change of interfacial Nusselt 

number with the results of the reported studies 
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5.2. Results for Permeability and Kozeny Constant 

Figure 5.3 shows the change of dimensionless pressure drop with different 

Reynolds number (0.01 Re 1)< <  for two porous media as 0.75fε = , 0.2pε =  and

0.4fε = , 0.8.pε =  As well known, for small values of Reynolds number, the 

permeability does not change with flow and it should remain constant.  This figure shows 

that Darcy equation is valid and inertia effect is negligible for all results obtained in this 

study. 

 

 
Figure 5.3. Change of permeability with Reynolds number for two dual scale porous 

media;  
 

The intrinsic and bulk permeabilities both in x and y directions are found and presented 

in the following section, separately. 

5.2.1. Permeability in x Direction  

Figure 5.4 shows the streamlines and normalized pressure distributions in inter 

and intraparticle pores of dual scale porous media with different intraparticle porosities 

when 0.75fε = . In this figure, the pressure of each porous media is added with a constant 

value such that the inlet pressure values of all REVs become identical. Then, the 
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pressure value. Figure 5.4 (a) shows the streamlines and pressure distribution for a dual 

scale porous medium with 0.2pε = . As seen, inter and intraparticle flows provide the 

fluid transfer from one REV to another as a result of pressure gradient. The secondary 

flows occur in the top and bottom gaps between two rods. Figure 5.4 (b) shows the flow 

patterns in the REV of the same porous media however the intraparticle porosity is 

increased to 0.4. The same types of flows are also observed for this porous structure. The 

flow rate in intraparticle region increases, however, the size of the secondary flows in the 

top and bottom gaps decreases. In Figure 5.4 (c) and (d), the intraparticle porosity 

increases to 0.6pε =  and 0.8, respectively and the interparticle porosity remains constant. 

The secondary flows on the top and bottom of the REVs disappear and the flow rate of 

intraparticle becomes comparable with the rate of interparticle flow. 

 
Normalized Pressure 

 
 

  

(a) (b) 

  

(c) (d) 
Figure 5.4. The streamlines and pressure contours for flow in x direction in dual scale 

porous media with a) , b) , c) , d)  
 

0.75fε = 0.2pε = 0.4pε = 0.6pε = 0.8pε =
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In Figure 5.5, the streamlines and pressure distributions in the interparticle and 

intraparticle pores of dual scale porous media with different intraparticle porosities when 

fε  = 0.4 are shown. Figure 5.5 (a) shows the streamlines and pressure distribution for a 

dual scale porous medium with 0.2pε = . The interparticle flow is dominant in the 

horizontal direction. The secondary flows occur in the top and bottom gaps are 

compressed by the intraparticle flows. The main flow passes through the interparticle 

region while the rate of flow in the intraparticle pores are smaller. Figure 5.5 (b) indicates 

the flow patterns in REV with 0.4pε =  for the same interparticle porosity. The size of 

the secondary flow decreases and flow rate passes through the intraparticle region 

increases. Figure 5.5 (c) and (d) are plotted for extreme cases for which the intraparticle 

porosities are 0.6 and 0.8.  It is observed that the fluid flows through inter and intraparticle 

parts are comparable or even the intraparticle flow rate is greater than interparticle one.  

 
Normalized Pressure 

 
 

  

(a) (b) 

  

(c) (d) 
Figure 5.5. The streamlines and pressure contours for flow in x direction in dual scale 

porous media with  a) , b) , c) , d)  0.4fε = 0.2pε = 0.4pε = 0.6pε = 0.8pε =

 
 

52 



 
 

The variations of intrinsic interparticle, intraparticle and bulk permeabilities with 

intraparticle porosity are illustrated in Figure 5.6. In Figure 5.6 (a), the change of 

permeability values for 0.75fε =  is shown. As seen, the value of intrinsic interparticle 

permeability is constant while the value of intrinsic intraparticle permeability increases 

with the increase of pε . The values of interparticle and bulk permeabilities are higher 

than the intraparticle permeability even for pε = 0.8. When the fε  becomes 0.6 (Figure 

5.6 (b)), the value of intrinsic interparticle permeability becomes lower than the ones of 

0.75fε = . The values of intrinsic intraparticle and interparticle permeabilities become 

closer to each other for 0.8pε = . The change of permeability with pε  for the interparticle 

porosity of 0.5 is revealed in Figure 5.6 (c). The same trend of increasing pK  with pε

observed in Figure 5.6 (a) and (b), can also be seen. However, for 0.5pε = , the intrinsic 

inter- and intraparticle permeabilities become equal at a point around 0.6pε = . After this 

value of pε , the value of  pK  increases and it becomes greater than interparticle 

permeability.  For 0.8pε = , the values of pK  and bulk permeability becomes closer to 

each other.  Figure 5.6 (d) indicates the permeability variations with pε  for interparticle 

porosity of 0.4. For the intraparticle porosity greater than 0.4, the effect of intrinsic 

intraparticle permeability is greater than fK  since the fluid flows mainly through 

intraparticle pores. The domination of intraparticle respect to interparticle permeability 

for fε = 0.4 and pε  = 0.8 can be observed from streamlines in Figure 5.5 (d). 

Figure 5.7 shows the change of , ,/b xx f xxK K  with intraparticle porosity for 

different values of interparticle porosity. As can be seen, for high values of interparticle 

porosity the effect of intra pores is negligible and the value of bulk permeability remains 

almost constant. Hence, creating intraparticle channels or pores does not influence the 

bulk permeability. For a porous media with 0.75fε = , creating intraparticle pore with 

0.8pε =  can increase the bulk permeability only 23%. For the low values of interparticle 

porosity the effect of intraparticle pores becomes visible. For a porous media with

0.4,fε = creating pores with the porosity of 0.4pε =  can increase the bulk permeability 

with 464%. 
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(a) (b) 

  

(c) (d) 

Figure 5.6. The change of intrinsic interparticle, intraparticle and bulk permeabilities   
with intraparticle porosity a) , b) , c) , d)  

 

 
Figure 5.7. Change of  with intraparticle porosity for different values of 

interparticle porosity 
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In Figure 5.8, the variation of 2
, /b xxK D with 3 2/ (1 )f fε ε− for different 

intraparticle porosities is shown. For mono scale porous medium ( 0pε = ) the change of 

2
, /b xxK D with 3 2/ (1 )f fε ε−  seems linear as expected from Kozeny-Carman equation As 

the intraparticle porosity increases, the linear relationship between 2
, /b xxK D and 

3 2/ (1 )f fε ε−  disappears. As seen, the value of ,b xxK  increases with fε , however the rate 

of increase is different and it is function of pε . For the large values of 3 2/ (1 )f fε ε− , the 

change of bulk permeability with intraparticle porosity is very small since the size of 

particles is small in the REV. For small values of 3 2/ (1 )f fε ε− , the effect of pε  is 

considerable since the size of particles and consequently the volume of intraparticle pores 

in REV become larger.  

 

 
Figure 5.8. The change of with    

5.2.2. Permeability in y Direction 

Figure 5.9 shows the streamlines and pressure distributions in inter- and 

intraparticle pores of different dual scale porous media when fluid flows only in y 

direction. In the REVs shown in this figure, the intraparticle porosity is different while 

the interparticle porosity is constant as 0.75fε = .The main flow (interparticle flow) 
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occurs in the vertical direction and there are secondary flows in the right and left gaps 

between the particles. The main flow penetrates a little bit into the left and right gaps 

between the particles and distorts the secondary flows. As seen from the figures, the size 

of secondary flows in the left and right gaps between the particles is not affected by 

increasing the value of intraparticle porosity; however the size of vortices in the pores 

inside the particles changes with intraparticle porosity. One may found that the bulk 

permeability in y direction is almost identical for all dual scale porous media shown in 

Figure 5.9. 

 
Normalized Pressure 

 
 

  
(a) (b) 

  

(c) (d) 
Figure 5.9. The streamlines and pressure contours for flow in y direction in dual scale 

porous media with  a) , b) , c) , d)  
 

Figure 5.10 shows the streamlines and pressure distribution in inter and 

intraparticle pores of different dual scale porous media in y direction. In these figures, 

intraparticle porosity changes while the interparticle porosity remains constant 0.4.fε =

Although the increase of intraparticle permeability increases the area of the gap in 

0.75fε = 0.2pε = 0.4pε = 0.6pε = 0.8pε =
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transverse direction of flow, it seems that the increase of pε  does not have significant 

influence on the bulk permeability in y direction. 

 
Normalized Pressure 

 
 

  

(a) (b) 

  

(c) (d) 
Figure 5.10. The streamlines and pressure contours for flow in y direction in dual scale 

porous media with  a) , b) , c) , d)  
 

Figure 5.11 indicates the variation between 2 3 2
, /  and / (1 )b yy f fK D ε ε−  for 

different intraparticle porosities. As seen, the permeability in y direction is not influenced 

with the change of the intraparticle porosity and there is almost a linear variation between 
2 3 2

, /  and / (1 )b yy f fK D ε ε−  that enables the use of Kozeny-Carmen equation with 

constant Kozeny coefficient for determination of ,b yyK . 

  

0.4fε = 0.2pε = 0.4pε = 0.6pε = 0.8pε =
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Figure 5.11. The change of with  

5.3. Suggested Correlations 

Based on the obtained results, Kozeny constant for x and y directions are 

calculated to find permeability value by using Kozeny-Carman equation. As it is well 

known, the Kozeny-Carman permeability relation was derived based on a porous medium 

consist of bundle of capillary channels with same radius. It can be defined as: 

 

 
2 3

216 (1 )
f

f

D
K

ε
κ ε

=
−

 (5.1) 

 

where κ is called as  Kozeny constant and it depends on porous media structure. In this 

study, based on obtained numerical results, Kozeny constant for x and y directions are 

found and presented in following part. 
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Kozeny constant for x direction:  

A general equation for Kozeny constant based on the ratio of intra and interparticle 

permeability and intraparticle porosity is obtained. A proper mathematical relationship 

for the change of Kozeny constant in terms of the permeability ratio for 

0.4 0.75 and 0.2 0.8f pε ε< < < <  can be suggested as: 

 

 ,

,

( )p xx B

f xx

K
A

K
κ =  (5.2) 

 

where A and B coefficients are constants and they are functions of intraparticle porosity 

and can be calculated from the following equation: 

 

 3 2
0 1 2 3p p pA C C C Cε ε ε= + + +  (5.3) 

 3 2
0 1 2 3p p pB D D D Dε ε ε= + + +  (5.4) 

 

Based on the obtained pore level permeability values, the constant coefficients of 

equations (5.3) and (5.4) are obtained and given in Table 5.1.  

 

Table 5.1. Empirical coefficients for determination of Kozeny constant
(0.4 0.75 and 0.2 0.8)f pε ε< < < <  

C0 4.246 D0 -0.112 

C1 3.686 D1 -0.216 

C2 3.115 D2 -0.393 

C3 3.106 D3 -0.545 
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  Figure 5.12 shows the comparison of the permeability values found by using the 

suggested Kozeny-Carman relation with the values obtained from the pore level 

simulation. A linear variation with the slope of 45o between 
2 3 2

, /  and / (1 )b xx f fK D ε κ ε−  should exist. As seen from the figure, the computed pore 

level permeability values with the suggested correlation have good agreement. The 

suggested relation for determination of Kozeny constant yields reasonable results for the 

calculation of permeability for ranges of interparticle porosity between 0.4 and 0.75 when 

the intraparticle porosity changes from 0.2 to 0.8. 

 

 
Figure 5.12. The comparison of suggested correlation in longitudinal direction with the 

obtained numerical permeability values 
 
Kozeny constant for y direction: 

 As can be seen from Figure 5.11, the change of dimensionless bulk permeability with 
3 2/ (1 )f fε ε−   is almost linear and is not influenced from intraparticle porosity. That’s 

why, the Kozeny constant is found as fixed value of 125. Figure 5.13 shows the 

comparison of the Kozeny relation (by using 125κ = ) and obtained numerical values. As 

can be seen, the suggested Kozeny constant value is appropriate to provide value for 

permeability of the studied dual scale in y direction. 
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Figure 5.13. The comparison of the suggested equation for permeability in transverse 

direction with obtained numerical results 

5.4. Results for Interfacial Convective Heat Transfer Coefficient 

This part of study represents the effects of intraparticle porosity on the interfacial 

heat transfer coefficient for a periodic dual scale porous media containing inline array of 

square solid particles, numerically. Moreover the variation of Reynolds number and the 

intraparticle porosity are exhibited as well. In the literature review section the studies on 

the determination of the interfacial heat transfer coefficient by considering the impact of 

porosity, Re, particle arrangement and flow direction were presented. However, the effect 

of intraparticle porosity on the interfacial heat transfer coefficient was not studied for dual 

scale porous media. The results for microscopic velocity and temperature distributions in 

the voids between the rods are obtained by solving the continuity, Navier–Stokes, and 

energy equations for the representative elementary volume (REV). Based on the obtained 

microscopic temperature distributions, the interfacial convective heat transfer coefficients 

and the corresponding interfacial Nusselt numbers are computed. The study is performed 

for three interparticle porosity values of 0.75, 0.6 and 04 while the intraparticle porosity 

has changed from 0.2 to 0.75. It should be also mentioned that for each interparticle 

porosity, four cases with different size of intraparticle porosity is established. The 
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minimum value of pε  is 0.2 for all interparticle porosity while the maximum value does 

not exceed the interparticle porosity values. In this study the Reynolds numbers are 

between 50 and 600. 

5.4.1. Effects of Intraparticle Porosity on the Interfacial Nusselt 
Number 

The streamlines and temperature contours for 0.75fε =  and 0.4 with different 

intraparticle porosities and different Reynolds numbers are displayed in Figure 5.14 and 

Figure 5.15. In order to compare different temperature fields, a dimensionless temperature 

definition is used as: 

 min

max min

f
f T T

T T
θ

−
=

−
 (5.5) 

 

where Tmin and Tmax are the minimum and maximum temperatures in the REV, 

respectively. 

The streamlines and temperature distribution contours for 0.75fε = , 

0.2 and 0.75pε =  are shown in Figure 5.14 for Re = 50 and 600 respectively. As can be 

seen from Figure 5.14 (a) and Figure 5.14 (c) three types of flow is observed in REV. The 

main flow passing through the interparticle region, the secondary flows occur in gaps 

between the solid particles and finally the fluid flow through intraparticle area. On the 

other hand the Figure 5.14 (b) and Figure 5.14 (d) illustrates that for 0.75pε =  the 

vortices has been disappeared due to the increasing size of intraparticle area. Hence, the 

stream through this region is more smooth and clear. The figures indicate that the 

temperature distribution considerably changes with Reynolds number. For the Re = 50 

with 0.2pε =  the fluid temperature at the inlet of intraparticle region increase 

immediately to the solid temperature. However for 0.75pε =  the intraparticle region 

enhanced the heat transfer through the REV. Additionally, the fluid flow in the 

interparticle field of both 2 first cases create a thermal boundary layers on the horizontal 

surface of the solid particles which prevents the heat transfer in the transverse direction 

of the flow. Consequently the considerable temperature difference is achieved between 

the center and solid surface. From Figure 5.14 (c) and Figure 5.14 (d) as the Reynold 
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number increase (Re = 600) the velocity of the fluid is also increase which means that the 

residence time of the fluid particle in the REV decrease. As a result, the convection heat 

transfer becomes stronger and uniform temperature is observed. For the Re = 600 and 

0.2pε =  the intraparticle porosity does not have the significant effect on the heat transfer 

but for 0.75pε =  the remarkable influence on the heat transfer can be seen as shown in 

Figure 5.14 (d). 

Dimensionless Temperature 

 

  

  

  

  
 

Figure 5.14. The streamlines (on the left) and temperature contours (on the right),  
 (a) 0.75, 0.2, Re 50f pε ε= = = , (b) 0.75, 0.75, Re 50f pε ε= = =  
 (c) 0.75, 0.2, Re 600f pε ε= = = , (d) 0.75, 0.75, Re 600f pε ε= = =    
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In Figure 5.15, for the values of Re = 50 and 600 the streamlines and temperature 

distribution contours for 0.4fε =  with pε  changes between 0.2 and 0.4 are shown 

respectively. As can be seen from above figures, three types of flow is observed in REV 

with the same manner which were explained for Figure 5.14.  

 
Dimensionless Temperature 

 
 

  

  

  

  
 

Figure 5.15. The streamlines (on the left) and temperature contours (on the right),  
 (a) 0.4, 0.2, Re 50f pε ε= = = , (b) 0.4, 0.4, Re 50f pε ε= = =   
 (c) 0.4, 0.2, Re 600f pε ε= = = , (d) 0.4, 0.4, Re 600f pε ε= = =  
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In Figure 5.15 (a) the effect of pε  is not observed on the heat transfer. However 

for 0.4pε =  this effect is ascertained at the inlet of the structure. Additionally, Figure 

5.15 (c) and (d) represent the velocity and temperature distribution for Re = 600. Besides 

the vortices at the very top and bottom of the REV, there are also vortices occur in the 

middle of structure between solid gaps. These vortices play an important role on the heat 

transfer and temperature distribution in the REV. Moreover, a strong strike of the fluid 

with the vertical edges of the outlet solid particles causes the penetration of the heat into 

the gaps. Therefore, the colder fluid enter into the gaps between the particles. Hence, the 

heat transfer on the vertical walls of the particles increases which is obvious for the 

intraparticle porosity of 0.4pε =  with Re = 600. Finally for Re = 600 due to the strong 

convective heat transport, the fluid temperature remains smaller than the solid 

temperature. 

The variation of the interfacial Nu with intraparticle porosity for different Re 

values are shown in Figure 5.16. The interfacial Nu values change roughly between 5 and 

23 for the studied interparticle porosity of 0.75. 

 

 

Figure 5.16. The variation of real Nu with pε for 0.75fε = and different Re values 
 

As can be seen from the figure the interfacial Nu number increases with pε  due 

to the increase of the void space. The slight increase of Nu is observed for Re = 50, 100, 

250 with 0.2 < pε  < 0.75. However for Re = 450 and 600 the changes is more dramatic 
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by changing the intraparticle porosity from 0.2 to 0.4. For intraparticle porosity of 0.6 and 

0.75 the interfacial Nu is almost constant and similar to each other. 

Figure 5.17 represents the interfacial Nu values for interparticle porosity 0.6 with 

pε changes between 0.2 and 0.6. For Re = 50, 100 and 250 the Nu values increase with 

respect to the change of intraparticle porosity. This increase is also observed for Re = 450 

and 600 up to 0.4pε =  but for 0.6pε =  the slight decrease in Nu value ascertained. 

 

 

Figure 5.17. The variation of real Nu with pε for 0.6fε = and different Re values 
 

 
Figure 5.18. The variation of real Nu with pε  for 0.4fε = and different Re values 
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In Figure 5.18 the interparticle porosity is 0.4 while the rate of intraparticle 

porosity is from 0.2 to 0.4. The considerable increase is observed for all Re number by 

increase of pε  from 0.2 to 0.3 except Re=600 which the value keeps constant. The small 

increment of Nu number is observed for Re = 50 and 100 with pε > 0.3. However, for 

Re 250,450,600= and 0.35pε =  and 0.4 the considerable decrease of Nu number is 

seen.  

The ratio of modified Nusselt number* to Nu number of mono-scale porosity for 

three different interparticle porosity is shown in Figure 5.19. The figures clearly illustrate 

how the intraparticle porosity has an influences on Nu number. Moreover, it is observed 

that the change of Nu number is highly dependent on inter and intraparticle porosity and 

Re. As can be seen from Figure 5.19 (a) for 0.75fε =  the Nu number is increased by 

variation of intraparticle porosity. However for 0.2pε =  the increase rate is not 

considerable with respect to mono scale porous media. For Re = 50, 100 and 250 the 

increase rate of Nu is continues up to 0.75pε =  but for Re = 450 and 600 the maximum 

value of Nu is reached at 0.6pε =  and after that point a slight decrease of Nu is detected. 

Figure 5.19 (b) is related to interparticle porosity value of 0.6fε = . In this figure for             

0.2pε =  and Re 250≥  the great impact of intraparticle porosity on Nu number and 

interfacial convective heat transfer is determined. Additionally, the maximum values of 

Nu number for Re = 50 and 100 are observed at 0.6pε = , however for Re 250≥ it occurs 

at 0.4pε = . Finally, Figure 5.19 (c) shows that for different value of Re number the 

increase rate of Nu number is noticeable. For instance, in dual scale porous media with  

0.4fε = ( 0.4pε = ) the Nu number value is 3 times greater than the mono scale porous 

medium which shows the important effect of intraparticle porosity on heat transfer. 
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(a) 

 
(b) 

 
(c) 

Figure 5.19. The ratio of modified Nusselt number* to Nu number of mono scale porosity 
porous of media with a) 0.75fε = , b) 0.6fε = , c) 0.4fε =
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CHAPTER 6 
 
 

CONCLUSION 

Fluid flow in a dual scale two dimensional porous media consisting of square rods 

are investigated, numerically. The continuity, Navier-stokes and energy equations both 

for intra and interparticle pores and entire REV of dual scale porous media are solved. 

The intrinsic permeability values and a correlation for determination of bulk permeability 

tensor is suggested. Based on the obtained results following remarks can be concluded: 

 

• For flow in intraparticle pore direction (x direction), the increase of the 

intraparticle pore size removes gap between the particles and provides a fully 

straight flow. However, for flow in transverse direction (y direction), the increase 

of intraparticle pore size does not have important effect on flow patterns. 

• The direction of intraparticle pores has important influence on the bulk 

permeability. Hence, correlations for determination of bulk permeability in terms 

of intraparticle porosity may not be accurate for heterogeneous porous media. 

• The intraparticle porosity value increase the flow rate passes through the porous 

media and the particle becomes more permeable. However; for high interparticle 

porosity values such as 0.75, the intraparticle porosity does not have importance 

effect on bulk permeability. 

• It seems that the equation of Kozeny–Carman is an appropriate relation for 

adaption onto dual scale porous media; however the Kozeny constant should be 

defined in terms of intra, interparticle permeability and porosity. 

• The present study shows that the intraparticle porosity ( pε ) has an important 

effect on interfacial convective heat transfer coefficient. The increase of 

intraparticle porosity causes more fluid passes between and through the particles 

and consequently the interfacial Nusselt number increases. It seems that, the 

influence of low intraparticle porosity value (i.e., 0.2pε = ) for high interparticle 

porosity values in a dual scale porous media is not noticeable on the interfacial 

Nusselt number and the heat transfer in the porous media behaves similar to the 
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fully developed heat transfer in a straight channel. For high values of pε  the 

interfacial convective heat transfer coefficient increases for interparticle 

porosities of 0.75 and 0.6 however the opposite behavior is observed for the 

0.4fε = with pε > 0.3.The strike of the fluid to the vertical walls of the outlet 

solid particles and the entrance of fluid into the gaps between the particles may 

be the main reasons for this condition. 

• Further increase of intraparticle porosity reduces the value of interfacial Nu 

number. Hence, for each fε as the Re number changes there is an optimum value 

of pε  for maximization of heat transfer in dual scale porous media. 

• The results of the present study can be used for many types of porous media such 

as fractured porous media, slotted fins and heat sinks since the effects of 

intraparticle porosity is important for these kind of porous media as well. The 

present study provides important hints for prediction of permeability, interfacial 

convective heat transfer and coefficient. 

More investigations may be done on the different shapes and arrangements of dual 

scale porous media. Especially the analysis of heat and fluid flow in cylindrical types 

of dual scale porous medium with staggered arrangements would provide further 

understanding of the effect of intraparticle porosity on permeability and interfacial 

convective heat transfer coefficient. 

 

 

 
 

70 



 
 

REFERENCES 

ALSHARE, A. A., STRYKOWSKI, P. J. & SIMON, T. W. 2010. Modeling of unsteady 
and steady fluid flow, heat transfer and dispersion in porous media using unit 
cell scale. International Journal of Heat and Mass Transfer, 53, 2294-2310. 

 
BYON, C. & KIM, S. J. 2013. Permeability of Mono- and Bi-dispersed Porous Media. 

EPJ Web of Conferences, 45, 01018. 
 
CARMAN, P. C. 1937. Fluid flow through granular beds. Chemical Engineering 

Research & Design: Transactions of the Institution of Chemical Engineers, Part 
A, 415-421. 

 
DARCY, H. 1856. Les fontaines publiques de la ville de Dijon, Paris, Dalmont. 
 
DUPUIT, J. 1863. Etudes theoretiques et practiques sur le mouvement des eaux, Paris, 

Dunond. 
 
FORCHHEIMER, P. H. 1901. Wasserbewegung durch Boden. Z. Ver. Dtsch. Ing., 45, 

1782-1788. 
 
GAMRAT, G., FAVRE-MARINET, M. & LE PERSON, S. 2008. Numerical study of 

heat transfer over banks of rods in small Reynolds number cross-flow. 
International Journal of Heat and Mass Transfer, 51, 853-864. 

 
HWANG, W. R. & ADVANI, S. G. 2010. Numerical Simulations of Stokes–Brinkman 

Equations for Permeability Prediction of Dual Scale Fibrous Porous Media. 
Physics of Fluids, 22, 113101. 

 
KAVIANY, M. 1995. Principles of Heat Transfer in Porous Media, New York, 

Springer-Verlag. 
 
KOZENY, J. 1927. Ueber kapillare Leitung des Wassers im Boden. Sitzungsber Akad. 

Wiss., 136, 271-306. 
 
KUWAHARA, F., SHIROTA, M. & NAKAYAMA, A. 2000. A numerical study of 

interfacial convective heat transfer coefficient in two-energy equation model for 
convection in porous media. International Journal of Heat and Mass Transfer, 
44, 1153-1159. 

LIU, S. & MASLIYAH, J. H. 2005. Dispersion in Porous Media. Handbook of porous 
media, Boca Raton, Taylor&Francis. 

 
LOPEZ PENHA, D. J., STOLZ, S., KUERTEN, J. G. M., NORDLUND, M., KUCZAJ, 

A. K. & GEURTS, B. J. 2012. Fully-developed conjugate heat transfer in porous 
media with uniform heating. International Journal of Heat and Fluid Flow, 38, 
94-106. 

 
 

71 



 
 

NABOVATI, A., LLEWELLIN, E. W. & SOUSA, A. C. M. 2010. Through-thickness 
permeability prediction of three-dimensional multifilament woven fabrics. 
Composites Part A: Applied Science and Manufacturing, 41, 453-463. 

 
NAKAYAMA, A. 1995. PC-Aided numerical heat transfer and convective flow. CRC 

Press. 

NAKAYAMA, A., KUWAHARA, F. & SANO, Y. 2007. Concept of equivalent 
diameter for heat and fluid flow in porous media. AIChE Journal, 53, 732-736. 

 
NAKAYAMA, A., KUWAHARA, F., UMEMOTO, T. & HAYASHI, T. 2002. Heat 

and Fluid Flow Within an Anisotropic Porous Medium. Journal of Heat 
Transfer, 124, 746. 

 
NEDANOV, P. B. & ADVANI, S. G. 2002. Numerical Computation of the Fiber 

Preform Permeability Tensor by the Homogenization Method. Polymer 
Composites, 23, 758-770. 

 
NGO, N. D. & TAMMA, K. K. 2001. Microscale Permeability Predictions of Porous 

Fibrous Media. International Journal of Heat and Mass Transfer, 44, 3135-
3145. 

 
NIELD, D. A. & BEJAN, A. 2006. Convection in porous media, U.S., Springer. 
 
NIELD, D. A. & KUZNETSOV, A. V. 2011. Forced Convection in a Channel Partly 

Occupied by a Bidisperse Porous Medium: Symmetric Case. Journal of Heat 
Transfer, 133, 072601. 

 
OZGUMUS, T. & MOBEDI, M. 2014. Effect of Pore to Throat Size Ratio on 

Interfacial Heat Transfer Coefficient of Porous Media. Journal of Heat Transfer, 
137, 012602. 

 
OZGUMUS, T., MOBEDI, M. & OZKOL, U. 2014. Determination of Kozeny Constant 

Based On Porosity and Pore to Throat Size Ratio in Porous Medium with 
Rectangular Rods. Engineering Applications of Computational Fluid Mechanics, 
8, 308-318. 

 
PAPATHANASIOU, T. D. 2001. Flow Across Structured Fiber Bundles: A 

Dimensionless Correlation. International Journal of Multiphase Flow, 27, 1451-
1461. 

 
RANGANATHAN, S. 1996. A Generalized Model for the Transverse Fluid 

Permeability in Unidirectional Fibrous Media. Polymer Composites, 17, 222-
230. 

 
SAADA, M. A., CHIKH, S. & CAMPO, A. 2005. Analysis of hydrodynamic and 

thermal dispersion in porous media by means of a local approach. Heat and 
Mass Transfer, 42, 995-1006. 

 

 
 

72 



 
 

SAITO, M. B. & DE LEMOS, M. J. S. 2006. A Correlation for Interfacial Heat Transfer 
Coefficient for Turbulent Flow Over an Array of Square Rods. Journal of Heat 
Transfer, 128, 444. 

 
SINGH, M. & MOHANTY, K. K. 2000. Permeability of spatially correlated porous 

media. Chemical Engineering Science, 55, 5393-5403. 
 
TAHIR, M. W., HALLSTRÖM, S. & ÅKERMO, M. 2014. Effect of Dual Scale 

Porosity on the Overall Permeability of Fibrous Structures. Composites Science 
and Technology, 103, 56-62. 

 
TERUEL, F. E. & RIZWAN, U. 2009. Characterization of a porous medium employing 

numerical tools: Permeability and pressure-drop from Darcy to turbulence. 
International Journal of Heat and Mass Transfer, 52, 5878-5888. 

 
TUNG, K. L., SHIAU, J. S., CHUANG, C. J., LI, Y. L. & LU, W. M. 2002. CFD 

analysis on fluid flow through multifilament woven filter cloths. Separation 
Science and Technology, 37, 799-821. 

 
VAFAI, K. & TIEN, C. L. 1981. Boundary and inertia effects on flow and heat transfer 

in porous media. International Journal of Heat and Mass Transfer, 24, 195-203. 
 
WANG, Q., MAZÉ, B., VAHEDITAFRESHI, H. & POURDEYHIMI, B. 2006. A note 

on permeability simulation of multifilament woven fabrics. Chemical 
Engineering Science, 61, 8085-8088. 

 
WHITAKER, S. 1999. The Method of Volume Averaging, Dordrecht, The Netherlands, 

Kluwer Academic. 
 
XU, P. & YU, B. 2008. Developing a new form of permeability and Kozeny–Carman 

constant for homogeneous porous media by means of fractal geometry. 
Advances in Water Resources, 31, 74-81. 

 
YANG, J., WANG, Q., ZENG, M. & NAKAYAMA, A. 2010. Computational study of 

forced convective heat transfer in structured packed beds with spherical or 
ellipsoidal particles. Chemical Engineering Science, 65, 726-738. 

 
YU, B. & CHENG, P. 2002. A Fractal Permeability Model for Bi-dispersed Porous 

Media. International Journal of Heat and Mass Transfer, 45, 2983-2993. 

 
 

73 


	LIST OF FIGURES
	LIST OF TABLES
	LIST OF SYMBOLS
	CHAPTER 1    INTRODUCTION
	1.1.  Dual Scale Porous Medium
	1.2.  The Aim of Study
	1.3.  Literature Review
	1.3.1.  Literature Review on Permeability for Dual Scale Porous Media
	1.3.2.  Literature Review on Kozeny Constant
	1.3.3.  Literature Review on Interfacial Convective Heat Transfer Coefficient

	1.4.  The Outline of Thesis

	CHAPTER 2     FUNDAMENTALS OF MACROSCOPIC HEAT AND FLUID FLOW ANALYSIS IN POROUS MEDIA
	2.1.  Microscopic and Macroscopic Views of Porous Media
	2.2.  Microscopic Fluid Flow and Energy Equations
	2.3.  Volume Averaging Method
	2.4.  Darcy and Forchhiemer Motion Equations
	2.5.  General Forms of Macroscopic Motion Equations
	2.6.  Macroscopic Energy Equations

	CHAPTER 3    CONSIDERED DOMAIN, GOVERNING EQUATIONS AND BOUNDARY CONDITIONS
	3.1.  Considered Domain
	3.2.  Governing Equations and Boundary Conditions for Determination of Permeability
	3.2.1.  Determination of Intrinsic Intraparticle Permeability
	3.2.2.  Determination of Intrinsic Interparticle Permeability
	3.2.3.  Determination of Bulk Permeability

	3.3.  Governing Equations and Boundary Conditions for Determination of Interfacial Convective Heat Transfer Coefficient

	CHAPTER 4     SOLUTION TECHNIQUE AND COMPUTATIONAL DETAILS
	4.1.  Numerical Procedure
	4.1.1.  Iterative Procedure for Obtaining Periodical Fluid Flow Boundaries
	4.1.2.  Iterative Procedure for Obtaining Periodical Thermal Boundaries for Determination of Interfacial Convective Heat Transfer Coefficient

	4.2.  Computational Details
	4.3.  Grid Independency Tests

	CHAPTER 5    RESULTS AND DISCUSSION
	5.1.  Validation of Results
	5.2.  Results for Permeability and Kozeny Constant
	5.2.1.  Permeability in x Direction
	5.2.2.  Permeability in y Direction

	5.3.  Suggested Correlations
	5.4.  Results for Interfacial Convective Heat Transfer Coefficient
	5.4.1.  Effects of Intraparticle Porosity on the Interfacial Nusselt Number


	CHAPTER 6    CONCLUSION
	REFERENCES

