
	
  

 
 
 

COMPUTER REPRESENTATION OF BUILDING 
CODES FOR AUTOMATED COMPLIANCE 

CHECKING  
 
 
 
 
 
 
 

A Thesis Submitted to 
the Graduate School of Engineering and Sciences of 

İzmir Institute of Technology 
in Partial Fulfillment of the Requirements for the Degree of 

 
DOCTOR OF PHILOSOPHY 

 
in Architecture 

 
 
 
 

by Sibel MACİT 
 
 
 
 
 
 
 

November 2014 
İzmir 

  



 

We approve the thesis of Sibel MACİT 
 
Examining Committee Members: 

 

 
Prof. Dr. H. Murat GÜNAYDIN  
Department of Architecture, İzmir Institute of Technology 

 

 
Prof. Dr. Serdar KALE 
Department of Architecture, İzmir Institute of Technology 

 
 
Assoc. Prof. Dr. Georg SUTER 
Institute of Architectural Sciences, Vienna University of Technology 

 

 
Prof. Dr. Türkan GÖKSAL ÖZBALTA 
Department of Civil Engineering, Ege University 

 

 
Assoc. Prof. Dr. Koray KORKMAZ 
Department of Architecture, İzmir Institute of Technology 

 

19 November 2014 

 

Prof. Dr. H. Murat GÜNAYDIN 
Supervisor, Department of Architecture, 
İzmir Institute of Technology  

 

 
Assoc. Prof. Dr. Şeniz ÇIKIŞ               Prof. Dr. R. Tuğrul SENGER 
Head of the Department of          Dean of the Graduate School of 
Architecture               Engineering and Sciences 



	
  
iii 

ABSTRACT 

COMPUTER REPRESENTATION OF BUILDING CODES FOR 
AUTOMATED COMPLIANCE CHECKING  

This dissertation constitutes a study in the field of automated compliance 

checking, with a concentration on building code representations. Development of 

compliance checking systems has been an area of research that aims to provide 

computational support for accurate compliance checking of building projects against 

applicable building codes in a time and cost effective way. Systems for compliance 

checking of building projects require appropriate representations for building codes. 

Building codes are complex documents written in natural languages, and the 

development of computable representations is challenging. 

This dissertation proposes and demonstrates a new representation model and an 

accompanying modeling methodology for representing building codes in computable 

form that can be utilized in the development of automated compliance checking 

systems. The model adopts the four level representation paradigm as a theoretical base 

and uses the semantic modeling approach for developing the building code 

representation. The model breaks down the representation into four levels which allows 

separate modeling of domain concepts, individual rule statements, relationships 

between rules, and the organization of the building code.  

The dissertation shows that decomposing a building code into four levels and 

modeling rules based on the semantic-oriented paradigm is an effective modeling 

strategy for representing building codes in a computable form that is independent of 

automated compliance checking systems. The applicability of the model has been 

evaluated through a case study. The case study successfully illustrates the modeling of 

building codes that constitute parts of İzmir Municipality Housing and Zoning Code, as 

well as a prototype implementation of an automated checking system utilizing this 

building code representation. 

 

	
  
	
   	
  



	
  
iv 

ÖZET 

UYUMLULUK DENETİMİ OTOMASYONU İÇİN YAPI 
YÖNETMELİKLERİNİN BİLGİSAYARDA MODELLENMESİ 

Yapı projelerinin ilgili yönetmeliklere uyumluluk denetiminin otomasyonu 

araştırma alanında geliştirilen bu doktora tezinde, yapı yönetmeliklerinin bilgisayar 

ortamında modellenmesi ve otomatik denetleme sistemlerinde uygulanmasına 

odaklanılmıştır. Uyumluluk denetimi sürecinin otomasyonuna yönelik sistem geliştirme 

çalışmaları, yapı projelerinin ilgili yönetmeliklere göre yetkili kurumlarca, zaman ve 

maliyet etkin olarak hatasız bir şekilde denetlenmesini hedefleyen teorik ve uygulamalı 

araştırmaların odağında yer almaktadır.  Otomatik denetleme sistemlerinin geliştirilmesi 

için öncelikle yönetmeliklerin sayısal modellerine ihtiyaç duyulmaktadır. Yapılaşmaya 

ilişkin yönetmeliklerin birbiri ile ilişkili karmaşık kurallardan oluşan, sadelik ve 

düzenden uzak yapısından dolayı bu yönetmeliklerin bilgisayar ortamında sayısal olarak 

modellenmesi oldukça zorlu bir araştırma alanı olarak görülmektedir.  

Bu tez çalışmasında, uyumluluk denetimi otomasyonuna yönelik sayısal 

yönetmelik modellerinin oluşturulması için yeni bir temsil modeli ve ona eşlik eden bir 

modelleme metodolojisi önerilmektedir. Önerilen model, düz yazı biçimindeki 

yönetmeliklerin kurgusal yapısının tanımlanmasına yönelik teorik çalışmaların sonucu 

olarak ortaya çıkan ve literatürde dört katmanlı modelleme paradigması olarak yer alan 

yaklaşıma dayanmaktadır. Bilgi modelleme yöntemi olarak ise son zamanlarda ortaya 

çıkan semantik modelleme yaklaşımı kullanılmaktadır. Önerilen model ile 

yönetmelikleri oluşturan terimlerin, kural cümlelerinin, kurallar arası ilişkilerin ve 

organizasyonel yapının ayrı katmanlarda modellenmesi sağlanarak sayısal yönetmelik 

modelleri için  sistematik bir yöntem ortaya konmaktadır.  

Bu tez çalışması, bir yapı yönetmeliğinin dört katmanlı olarak semantik tabanlı 

modellenmesinin uyumluluk denetimi otomasyonuna yönelik denetleme sistemleri için 

etkili bir modelleme stratejisi olduğunu göstermektedir. Önerilen modelin yapı tasarımı 

alanında uygulanabilirliği, İzmir İli Tip İmar Yönetmeliği örnekleminde gösterilmiştir. 

Yönetmeliğin yapı tasarımı ile ilgili bölümlerinin önerilen model çerçevesinde sayısal 

modeli oluşturularak bu model ile çalışan prototip bir otomatik denetleme sistem 

uygulaması geliştirilmiştir. Geliştirilen sistem çeşitli yapı projesi örnekleri üzerinde test 

edilmiştir.  



	
  
v 

	
  

TABLE OF CONTENTS 

LIST OF FIGURES ....................................................................................................... viii	
  

LIST OF TABLES ............................................................................................................ x	
  

CHAPTER 1. INTRODUCTION ..................................................................................... 1	
  

1.1.	
  Problem Statement .................................................................................. 1	
  

1.2.	
  Motivation ............................................................................................... 2	
  

1.3.	
  Objective ................................................................................................. 4	
  

1.4.	
  Methodology ........................................................................................... 5	
  

1.5.	
  Scope ....................................................................................................... 7	
  

1.6.	
  Outline .................................................................................................... 8	
  

CHAPTER 2. BACKGROUND ....................................................................................... 9	
  

2.1.	
  Building Codes ....................................................................................... 9	
  

2.1.1.	
  Types of Building Codes ............................................................... 10	
  

2.1.2.	
  Elements of Building Codes .......................................................... 10	
  

2.2.	
  Building Code Models .......................................................................... 13	
  

2.2.1.	
  Decision Tables and SASE Model ................................................ 13	
  

2.2.2.	
  Rule-Based Models ........................................................................ 19	
  

2.2.3.	
  Logic-Based Models ...................................................................... 21	
  

2.2.4.	
  Object-Oriented Models ................................................................ 23	
  

2.2.5.	
  Hybrid Models ............................................................................... 27	
  

2.2.6.	
  Semantic Models ........................................................................... 32	
  

2.2.7.	
  Ontology-Based Models ................................................................ 36	
  

2.3.	
  Automated Compliance Checking ........................................................ 37	
  

2.3.1.	
   Introduction .................................................................................... 37	
  

2.3.2.	
  Automated Compliance Checking Systems ................................... 39	
  

2.3.2.1.	
   Construction and Real Estate NETwork (CORENET) .......... 40	
  

2.3.2.2.	
   DesignCheck System ............................................................. 41	
  

2.3.2.3.	
   SMARTcodes Model Checking System (MCS) .................... 42	
  

2.3.2.4.	
   Design Assessment Tool (DAT) ............................................ 43	
  

2.3.3.	
  Technologies .................................................................................. 44	
  



	
  
vi 

2.3.3.1.	
   FORNAX ............................................................................... 44	
  

2.3.3.2.	
   EXPRESS Data Manager (EDM) .......................................... 45	
  

2.3.3.3.	
   Solibri Model Checker (SMC) ............................................... 45	
  

CHAPTER 3. BUILDING CODE REPRESENTATION AND MODELING 

 METHODOLOGY .................................................................................. 47	
  

3.1.	
  Introduction ........................................................................................... 47	
  

3.2.	
  Four Level Representation .................................................................... 47	
  

3.3.	
  Semantic Representation – RASE Model ............................................. 48	
  

3.4.	
  Building Code Representation .............................................................. 51	
  

3.4.1.	
  Domain Level ................................................................................ 53	
  

3.4.2.	
  Rule Level ...................................................................................... 54	
  

3.4.3.	
  Rule-set Level ................................................................................ 58	
  

3.4.4.	
  Management Level ........................................................................ 59	
  

3.5.	
  Building Code Modeling Methodology ................................................ 62	
  

3.5.1.	
  Analysis Stage ............................................................................... 64	
  

3.5.1.1.	
   Determination of the Scope ................................................... 64	
  

3.5.1.2.	
   Decomposition of the Building Code .................................... 65	
  

3.5.1.3.	
   Classification of the Rule Statements .................................... 65	
  

3.5.2.	
  Representation Stage ..................................................................... 66	
  

3.5.2.1.	
   Representation of Domain Concepts ..................................... 67	
  

3.5.2.2.	
   Representation of Rule Statements ........................................ 68	
  

3.5.2.3.	
   Representation of Relationships between Rules .................... 68	
  

3.5.2.4.	
   Representation of the Building Code Organization ............... 69	
  

3.5.3.	
   Implementation Stage .................................................................... 69	
  

3.5.3.1.	
   Implementation of the Building Code Model ........................ 70	
  

3.5.3.2.	
   Testing and Validation ........................................................... 71	
  

CHAPTER 4. IMPLEMENTATION AND EVALUATION ......................................... 73	
  

4.1.	
  Analysis ................................................................................................ 74	
  

4.1.1.	
  Scope .............................................................................................. 74	
  

4.1.2.	
  Decomposition ............................................................................... 75	
  

4.1.3.	
  Rule Classification ......................................................................... 78	
  

4.2.	
  Representation ...................................................................................... 82	
  

4.2.1.	
  Domain Objects and Concept Mapping List ................................. 82	
  



	
  
vii 

4.2.2.	
  Rule Objects ................................................................................... 86	
  

4.2.3.	
  Rule-set Objects ............................................................................. 89	
  

4.2.4.	
  Rule-set Group Objects .................................................................. 91	
  

4.3.	
  Implementation ..................................................................................... 93	
  

4.3.1.	
  Prototype ........................................................................................ 93	
  

4.3.2.	
  Building Information Modeling Requirements ............................. 98	
  

4.4.	
  Validation ............................................................................................. 99	
  

4.4.1.	
  Test Cases .................................................................................... 100	
  

CHAPTER 5. CONCLUSION ..................................................................................... 113	
  

5.1.	
  Findings and Discussion ..................................................................... 113	
  

5.2.	
  Future Work ........................................................................................ 118	
  

REFERENCES ............................................................................................................. 120	
  

APPENDICES 

APPENDIX A. DECOMPOSITION AND CLASSIFICATION OF IMHZCODE ..... 126	
  

APPENDIX B. RULE AND RULE-SET REPRESENTATIONS OF IMHZCODE ... 146	
  

 

  



	
  
viii 

LIST OF FIGURES 

Figure     Page 

Figure 2.1. Sections of a decision table .......................................................................... 14	
  

Figure 2.2. Clause 47.B from the IMHZCode ................................................................ 15	
  

Figure 2.3. An example of using a decision table to represent building codes .............. 15	
  

Figure 2.4. The SASE model .......................................................................................... 16	
  

Figure 2.5. Information network for the provision for door width ................................. 18	
  

Figure 2.6. Partial facets of two fields  ........................................................................... 18	
  

Figure 2.7. Two possible organizational outlines for the building code ......................... 19	
  

Figure 2.8. An example of using rule-based approach to represent building codes ....... 20	
  

Figure 2.9. An example of using logic-based approach to represent building codes ..... 22	
  

Figure 2.10. Object-oriented model of the building code ............................................... 24	
  

Figure 2.11. Object-oriented model from analysis of  Figure 2.2 .................................. 25	
  

Figure 2.12. An example of an object-oriented interpretation of Figure 2.2 .................. 26	
  

Figure 2.13. Overview of the object-logic model ........................................................... 28	
  

Figure 2.14. SMARTcodes system architecture ............................................................. 32	
  

Figure 2.15. Steps of the protocol for SMARTcodes ..................................................... 33	
  

Figure 2.16. RASE constructs of a clause in the SMARTcodes Builder ........................ 35	
  

Figure 2.17. RASE constructs of a clause in the short form ........................................... 35	
  

Figure 2.18. The four classes of functionality a  code compliance checking system ..... 38	
  

Figure 2.19. System architecture of CORENET project ................................................ 40	
  

Figure 2.20. Architecture of the DesignCheck system ................................................... 42	
  

Figure 2.21. Framework of SMARTcodes model checking system ............................... 43	
  

Figure 3.1. Four level structure of the new model .......................................................... 52	
  

Figure 3.2. Basic structure of the rule object .................................................................. 54	
  

Figure 3.3. Structure of the rule object accommodating properties ................................ 55	
  

Figure 3.4. Detailed structure of the rule object ............................................................. 56	
  

Figure 3.5. An example of rule representation in XML format ...................................... 57	
  

Figure 3.6. Structure of the rule-set object ..................................................................... 59	
  

Figure 3.7. Structure of the rule-set group object ........................................................... 60	
  

Figure 3.8. Overall structure of  building code representation model ............................ 61	
  

Figure 3.9. Stages of the methodology for building code representation ....................... 63	
  



	
  
ix 

Figure 4.1. Domain objects of IMHZCode ..................................................................... 83	
  

Figure 4.2. The domain model of IMHZCode ................................................................ 84	
  

Figure 4.3. Tree representation of the rule-set RS27.A .................................................. 90	
  

Figure 4.4. Tree representation of rule-set RS27.B and RS27.C .................................... 90	
  

Figure 4.5. Conceptual framework for the compliance checking system ....................... 94	
  

Figure 4.6. Database structure for the IMHZCode model .............................................. 95	
  

Figure 4.7. Functional diagram of Checker .................................................................... 97	
  

Figure 4.8. Definition of properties for applying the IMHZCode .................................. 99	
  

Figure 4.9. Domain object table of the sample code model ......................................... 101	
  

Figure 4.10. Concept-mapping table of the sample code model .................................. 102	
  

Figure 4.11. Rule table of the sample code model ........................................................ 103	
  

Figure 4.12. Classification of rules and rule-set table of sample code model .............. 104	
  

Figure 4.13. Rule-set group table of the sample code model ....................................... 104	
  

Figure 4.14. Tree model of the sample code model ...................................................... 105	
  

Figure 4.15. Sample building model ............................................................................. 106	
  

Figure 4.16. Creation of missing information as a PSet extension of IFC schema ...... 106	
  

Figure 4.17. A screenshot of the testing application ..................................................... 112	
  

	
  
	
   	
  



	
  
x 

	
  

LIST OF TABLES 

Table     Page 

Table 2.1. Overview of automated compliance checking systems ................................. 39	
  

Table 3.1. Examples of rules from IMHZcode modeled according to the RASE .......... 50	
  

Table 3.2. An example of rule representation in table form ........................................... 56	
  

Table 4.1. The Structure of IMHZCode ......................................................................... 74	
  

Table 4.2. The clauses of Part III of IMHZCode ............................................................ 76	
  

Table 4.3. Decomposition of IMHZCode Clause-27 ...................................................... 77	
  

Table 4.4. Decomposition of IMHZCode Clause-47 ...................................................... 78	
  

Table 4.5. Classification of the rule statements of Clause-27 ........................................ 80	
  

Table 4.6. Classification of the rule statements of Clause-47 ........................................ 81	
  

Table 4.7. Results of the classification of IMHZCode rule statements on buildings ..... 81	
  

Table 4.8. Concept-mapping table for IMHZCode ......................................................... 85	
  

Table 4.9. The structured rule objects of IMHZCode Clause-27 ................................... 87	
  

Table 4.10. The structured rule objects of IMHZCode Clause-47 ................................. 88	
  

Table 4.11. The rule-set objects of IMHZCode Clause-27 ............................................. 89	
  

Table 4.12. The rule-set objects of IMHZCode Clause-47 ............................................. 90	
  

Table 4.13. Classification of rule-sets related to setback, building, and door  

 concepts ....................................................................................................... 92	
  

Table 4.14. Design parameters for Case 1 .................................................................... 108	
  

Table 4.15. Checking result for case 1 .......................................................................... 109	
  

Table 4.16. Design parameters for Case 2 .................................................................... 110	
  

Table 4.17. Checking result for case 2 .......................................................................... 110	
  

Table 4.18. Design parameters for Case 3 .................................................................... 111	
  

Table 4.19. Checking result for case 3 .......................................................................... 111	
  

	
  



	
  
1 

	
  

CHAPTER 1 
 
 

INTRODUCTION 

1.1. Problem Statement 

In the Architecture, Engineering, and Construction (AEC) industry, every 

building project must be checked against numerous building codes for its compliance 

and is allowed to be executed only when the compliance with all applicable rules of the 

building code have been achieved. Compliance checking is a major task for both 

architects and building certifiers often involving ambiguities and inconsistencies in 

assessment, leading to delays in the overall construction process. Moreover, failure to 

correctly assess projects for compliance can have negative effects on building 

performance and allow errors that are expensive to fix.  

Automated compliance checking has long been an area of research that aims to 

provide computational support for accurate compliance checking of building projects 

against applicable building codes in a time and cost effective way. Research into 

developing automated compliance checking systems has focused mostly on 

representation of building codes in computational format, definition of building model 

views, compliance checking algorithms and reporting.  

Automated compliance checking systems are expected to retrieve a set of 

building codes from related authorities and conduct compliance checking on submitted 

building projects. Compliance checking systems primarily require appropriate 

computer-based models of both building codes and building designs. Advances in BIM 

tools have finally established a standardized representation for building designs, even if 

it is currently deemed unsatisfactory. However, a standard representation for building 

codes is still not available. The lack of a standard representation for building codes has 

inhibited the development and use of commercial automated compliance checking 

systems. 

The main objective of this dissertation is to develop a building code 

representation, along with a formal methodology for modeling building codes based on 

this representation. A detailed analysis of The Housing and Zoning Code of the city of 



	
  
2 

	
  

Izmir in Turkey is presented as a case study. A computer representation of this code is 

built following the developed modeling methodology and is accompanied by a 

rudimentary automated checking system as proof of concept.  

1.2. Motivation 

This dissertation is motivated by the need to develop representations for 

building codes, based on which software tools could be developed. Having building 

code representations in a computable format may have the following benefits:  

• Providing a basis for the development of automated compliance checking 

systems that can perform the checking of a building project more accurately, 

consistently, and rapidly.  

• Providing help to building code authors in developing and updating building 

codes with a model that ensures a consistent set of rules without 

redundancies and contradictions.  

• Providing assistance to architects in locating and accessing relevant rules 

among applicable building codes.   

Because of these benefits, formally representing building codes in a computable 

format has been a highly active research area. Initial work was undertaken by Fenves 

(1966) on decision tables for representing building codes in a precise and unambiguous 

form. A follow-up project by the same group of researchers investigated the 

restructuring of the AISC (American Institute of Steel Construction) Specification 

(Nyman et al., 1973). Alternatives for restructuring the specification were presented, but 

the study concluded that appropriate restructuring, without changing the content, was 

not guaranteed (Nyman & Fenves, 1975). Subsequent studies investigated the potential 

of assisting building code authors in writing design standards (Fenves, 1976; Fenves & 

Wright, 1977; Harris & Wright, 1980; Rasdorf & Fenves, 1980). Later works focused 

on structuring building codes in a predicate logic structure (Jain et al., 1989; Rasdorf & 

Lakmazaheri, 1990). These research activities culminated in a software system, called 

SASE (Standard Analysis, Synthesis and Expression). This system aimed to provide 

tools for creating and checking decision tables, information networks, classification 

systems, and organizations within building code documents (Fenves et al., 1987). 



	
  
3 

	
  

Garrett and Hakim (1992) developed an object-oriented model of building codes, which 

allows organizing a building code around building objects pertinent to the building 

code. Waard (1992) offered another object-oriented approach to building code 

processing. In this study, an object model for residential buildings and another object 

model for building codes were developed, and the two models were linked for 

compliance checking.  Yabuki and Law (1993) combined first order predicate logic and 

object-oriented modeling approaches to represent and process building codes. Kiliccote 

and Garrett (1998) developed a context-oriented model for representing building codes. 

This model uses the object-oriented modeling approach and organizes building code 

around “contexts” which are a collection of sub-classes used to define conditional parts 

of the provisions for which they are applicable. Given a predicate logic structure, 

Kerrigan and Law (2003) developed the REGNET application to determine the 

applicability of various codes under given building conditions, based on a question-and-

answer user interface. These early efforts focused on the logical structure of building 

codes and how to represent them.  

Exploration of building code compliance checking systems for building models 

began following the development of the Industry Foundation Classes (IFC) in the 

1990s. Han et al. (1998) and Vassileva (2000) laid out general opportunities and a 

client-server approach.  Han et al. (2002) later developed a simulation approach for 

disabled access checking. These efforts set the research field for larger, more industrial-

based efforts (Eastman et al., 2009). The Singapore Construction and Real Estate 

NETwork (CORENET) project is the earliest production of building code compliance 

checking effort initiated in 1995 (Liebich et al., 2002). Initial work was based on 

electronic 2D drawings, but later on IFC (buildingSMART, 2008a) was used. The 

CORENET project developed the FORNAX platform to capture needed building code 

information. A more recent effort is the DesignCheck system from Australia, initiated in 

2006 (Ding et al., 2006). In this effort, the EXPRESS Data Manager (EDM) (Jotne, 

1994) platform was used for encoding barrier-free accessibility rules. Another effort, 

led by USA International Code Council (ICC), developed SmartCODES (Conover, 

2007; Nisbet et al., 2009). It is a new platform providing methods of translation from 

written, natural language rules to computer code. The platform targets energy 

conservation rules. USA General Services Administration (GSA) have supported 

development of a rule checking system for circulation and security validation of  U.S. 

Court houses (Eastman et al., 2008). 



	
  
4 

	
  

Although several researches have already proposed various building code 

models, and software environments to operate on these models and check building 

projects for compliance with building codes, for a variety of reasons, employing these 

environments AEC industry practice and general acceptance of them has been limited. 

A literature survey reveals that certain reasons for this failure are related to the building 

code models used in these environments and not necessarily with the specific 

implementations of these environments (Fenves et al., 1995). Previous building code 

models have several limitations. One limitation is being too simplistic and not 

comprehensive enough compared to the complex nature of building codes and thus 

lacking the capability to represent all, or almost all, of the various types of information 

in building codes. A second limitation is that some building codes are hard-coded into 

the systems, thus lacking flexibility, maintainability, and user control (i.e. non-

programmer users cannot add/modify the rules embedded in the system and cannot 

make professional judgments on the model). Furthermore, any change in the building 

code necessitates changes in all such systems. A third limitation is that there is no direct 

mapping between the building codes and building code models, making consistency 

checking between actual building code and code model difficult. A fourth limitation is 

only focusing on individual rule representation ignoring the overall building code and 

thus lacking capability to prevent contradictions.  

The motivation for this dissertation stems from these limitations of previous 

building code models. In this regard, developing a more general (comprehensive, 

flexible, maintainable, and consistent) representation for building codes is highly 

desirable. 

1.3. Objective 

The goal of this dissertation is to develop a new computer representation for 

building codes that can be used in the development of automated compliance checking 

systems. The aim is to develop a formal model that supports the creation of digital 

representations of build codes by following a corresponding methodology.  

A new model for representing building codes is needed to improve on existing 

models. After investigating previous models and identifying their limitations, the 

following requirements were established for the new representation model: 



	
  
5 

	
  

Independence - Keeping the representation of building codes independent of 

the compliance checking system and the design system. The model should not be hard 

coded into the systems to avoid the modification of the whole system when the building 

code is changed. The model should be portable between automated checking systems 

and code authorities. 

Conciseness - Avoiding redundancy in the representation of building codes. The 

same object should not need to be defined more than once in the model. 

Consistency - Preventing ambiguities as well as contradictions among rules. 

Building codes are complex and complicated documents which include rules that are 

open to interpretation, uncertain, sometimes even contradictory. The model should 

ensure consistency.  

Comprehensiveness - Representing all of the various types of information in 

building codes (i.e. concepts, requirements, applicability conditions, etc.). 

Maintainability - Allowing creation and addition of new rules and modification 

of existing ones. Building codes change continuously and the model should be able to 

accommodate addition of new rules and modification of existing ones. Non-

programmer code authors should be able to easily carry out such model updates.  

The new representation model aims to meet the above requirements. It is 

intended to be utilized as a basis for the development of automated compliance 

checking systems. In addition, the model can also enhance and facilitate building code 

authoring. To utilize the representation model and create digital versions of existing 

building codes, a building code modeling methodology is proposed. The feasibility, 

benefits and limitations of the developed representation model should be validated with 

a realistic case study.  

1.4. Methodology 

There is a long history of interest in the study of building code representations.  

It started with initial efforts to organize the logical structure of building codes in the late 

1960’s. Efforts on the automated application of building codes to digital building 

representations came in the 1990’s (Eastman et al., 2009). Research efforts so far, have 

emphasized representation models and prototype implementations. The discussions on 



	
  
6 

	
  

methodological issues have centered on reasons for selecting particular information 

modeling techniques, and not so much on the method of defining representation models. 

The literature survey conducted as part of this dissertation (see sections 2.2 and 

2.3) revealed that the research strategy that de facto has been followed in most research 

efforts consisted of the stages listed below: 

• Selecting a particular information modeling methodology or language to be 

used for constructing the representation models. 

• Analyzing the characteristics of building codes.  

• Definition of data structures for representation models. 

• Experiments with prototypes to test the representation models. 

The methodology of this dissertation adopts these research stages used by the 

majority of previous researchers. This dissertation has been conducted in the following 

stages:  

• Exploring and evaluating previous modeling approaches.  

• Analyzing building codes to understand the various types of information 

contained in them; identifying the components of rule statements as well as 

the organization of the documents. 

• Developing a formal representation model for building codes. 

• Defining a building code modeling methodology for utilizing the 

representation model to build digital versions of existing building codes.  

• Modeling of an actual building code as a case study to demonstrate the 

feasibility, benefits, and limitations of the representation model. 

• Implementing a prototype system to demonstrate an application and to test 

the validity of the new model.  

As a conclusion, this research proposes a formal model for building code 

representation based on the analysis of building codes and theories established in 

literature. The theory embedded in this proposed model is evaluated through the 

development of an actual building code and a prototype implementation. The study is 

mostly concerned with the modeling process for building code representations even 

though the impact of utilizing various information modeling techniques (such as object-

oriented modeling, ontologies, semantic modeling) have been considered.  



	
  
7 

	
  

1.5. Scope 

The foreseen advantages of automated systems for compliance checking of 

building projects against applicable building codes over the traditional, manual 

compliance checking processes has been well established in literature (Fenves & 

Wright, 1977; Han et al., 1997; Eastman et al., 2009; Hjelseth, 2009; Zhang & El-

Gohary, 2011). These advantages form the main motivation behind pursuing a working 

solution for automated systems, yet it is clear that such a system is still elusive. The 

main goal of this research was not to attempt the development of an automated 

compliance checking system but to identify the next steps to be taken.   

Following a careful investigation of literature, shortcomings in representing 

building codes were identified. IMHZCode was chosen as a code document since it is 

representative of complex building codes in effect. The analysis of IMHZCode led to 

the classification of rules according to their formalizability and self-containedness. In 

developing a new model that addresses the shortcomings identified in previous efforts, 

in this study formalizable rules were considered. Non-formalizable and semi-

formalizable rules (which made up 20% of the rules) were left out of scope. The 

dissertation focuses on developing a modeling methodology for formalizable rules as a 

first step before attempting to automate reasoning with non-formalizable and semi-

formalizable rules that carry ambiguities.  

The study was also restricted to analyzing and modeling the section of 

IMHZCode containing rules that apply to all types of buildings. Rules related to 

permits, the construction process and specialized buildings have not been included in 

the case study. Furthermore, only the IMHZCode was modeled and automated checking 

against multiple codes from different domains was not considered.  

While  developing an automated checking system was not within the scope of 

the study, an experimental prototype was developed, successfully demonstrating the 

feasibility of the new building code representation model. The demonstrative examples 

cover testing of simple rules (e.g. doors) as well as rules with complex conditions (e.g. 

buildings, setbacks).  



	
  
8 

	
  

1.6. Outline 

The thesis is organized into five chapters. This chapter provides a brief 

introduction of the thesis. It covers the problem statement, research motivation, 

objectives, methodology, and scope of this dissertation. 

CHAPTER 2 contains the background information for this research.  It describes 

analytical knowledge about the building codes and the related literature review. The 

review covers previous and current works related to this dissertation. Several models 

and approaches for building code representation and compliance checking systems are 

examined, evaluated, and discussed. CHAPTER 2 also introduces current technologies 

for implementation of building code models, and assesses their advantages and 

limitations. 

CHAPTER 3 describes in detail the developed representation model and 

modeling methodology for creating digital building codes. CHAPTER 4 addresses the 

evaluation of the developed model by a detailed discussion on the case study illustrating 

a building code model and the prototype system implementation performed for the 

developed model.  

CHAPTER 5 concludes the dissertation by providing a summary, conclusions, 

and possible future research directions.  

  



	
  
9 

	
  

CHAPTER 2 
 
 

BACKGROUND 

This thesis constitutes a study in the field of automated building code 

compliance checking, with a concentration in the topic of building code modeling. 

Development of automated building code compliance checking systems primarily 

requires appropriate building code models. However, the process of modeling building 

codes as computable rule sets is not straightforward due to the complex structure of 

building codes. Building codes include rules that are open to interpretation, uncertain, 

sometimes even contradictory and hence impossible for modeling. For all these reasons, 

it is a challenge to propose a method for representing building codes in computable 

format for automated compliance checking. Before proposing a method for developing 

building code models, understanding the nature of building codes and reviewing 

previous research on modeling building codes and implementing automated compliance 

checking systems based on these models is important.  

This chapter introduces the related background information for this thesis. It 

starts with a general introduction to the study on building codes. Then, section 2.2 

presents an overview of previous building code models and section 2.3 presents the 

relevant automated code compliance checking implementations and gives a summary of 

automated code compliance checking process and existing platforms supporting these 

systems. 

2.1. Building Codes 

In this thesis, the term “building code” is used to refer to any formal document 

for the evaluation of building projects. Formal documents include building codes, 

regulations, standards, and specifications. A building code is generally considered as a 

legal document that specifies the minimum conditions for a certain aspect of a building 

construction. The main purpose of building codes is to protect public health, safety and 



	
  
10 

general welfare as they relate to the construction and occupancy of buildings and 

structures.  

2.1.1. Types of Building Codes 

Building codes are determined by appropriate authorities in different domains 

and may vary widely from country to country. The practice of developing, approving, 

and enforcing building codes varies considerably among nations. Many countries have 

national building codes, developed by government agencies and applied to all building 

and construction work across the country. There are instances when some local 

jurisdictions choose to develop their own building codes.  

In Turkey, all legal arrangements concerning construction fall under the 

responsibility of the Ministry of Public Works and Settlement. There are two laws in 

force: Construction Law No.3194 and the Law on Inspection of Construction No.4708. 

In addition, there are various building codes prepared by the authority. The main ones 

are:  

• Housing and Zoning Code,  

• Fire Code,  

• Shelter Code,  

• Parking Code,  

• Elevator Code,  

• Codes for specific building uses (e.g. private hospitals, public housing, high-

rise structures, construction in disaster areas) 

In addition, individual municipalities have their own housing and zoning codes 

that include the rules defined by the ministry documents and add further specifications.  

2.1.2. Elements of Building Codes 

Building codes are complex written documents. It is essential to have an 

understanding of the various types of information contained in building codes as well as 

the organization of the documents in order to develop a building code model. They are 



	
  
11 

composed of hierarchically organized parts, chapters, and clauses that contain a number 

of statements. In general, building codes includes following three types of clauses: 

• General provisions 

• Definitions 

• Prescriptions 

General provisions include statements that describe the aim, scope and legal 

basis of the building code. For example, the following expression quoted from 

IMHZCode is a general provision that describes the scope of this code:  

“Clause 2 – Scope:  
 This code, prepared in accordance with Construction Law No: 3194 and rule 

8 of Code for the Implementation of Law No: 3030 on Management of the 
Metropolitan Municipalities, is applied within the boundaries of and the 
contiguous area of İzmir Metropolitan Municipality.” 

 
“Madde 2 – Kapsam:  
 3194 sayılı İmar Kanunu ve Büyükşehir Belediyelerinin Yönetimi Hakkında 

3030 Sayılı Kanunun Uygulanması İle İlgili Yönetmeliğin 8.maddesi gereği 
hazırlanan bu yönetmelik, İZMİR BÜYÜKŞEHİR BELEDİYESİ belediye ve 
mücavir alan sınırları içinde uygulanır.” 

Definitions include statements that explain clearly the specific names used in the 

building code and give detailed descriptions about terms. For example, the following 

expression quoted from IMHZCode defines meaning of a name (High-rise building): 

“Clause 18 – Definitions Related to Buildings:  
 d – High-rise building: A building, height of which is greater than 30.80 

meters or has more than thirteen (13) storeys.” 
 
“Madde 18 – Yapıya İlişkin Tanımlar:  
 d – Yüksek Yapı: Son kat tavan döşeme kotu 30.80 metreyi ve/veya bodrum 

kat dahil olmak üzere toplam kat adedi 13'ü aşan (13 kat hariç) yapılar 
Yüksek Yapı olarak kabul edilir.” 

Prescriptions include statements that define constraints about physical building 

components, spaces and relations. For example, the following expression quoted from 

IMHZCode defines a constraint about side setbacks: 

 

 



	
  
12 

“Clause 27 – Distance of Setbacks 
 B - Side Setbacks: Side setbacks (up to and including 4 storeys) shall be 3.00 

meters. For buildings taller than this side setbacks are increased by 0.5 meters 
for every additional storey. However, for timber-framed buildings side 
setbacks must be at least 5.00 meters. “ 

 
“Madde 27 – Bahçe Mesafeleri: 
 B- Yan Bahçe Mesafeleri : Yan bahçe mesafeleri (4 kata kadar 4 kat dahil) 

3.00 m. olacaktır. Bundan yüksek katlı binalarda yan komşu mesafeleri 3 
m.ye beher kat için 0.50 m. ilave edilmek suretiyle tespit olunur. Ancak, 
ahşap karkas yapılar için en az 5 m. mesafe bırakılması şarttır.” 

Prescriptions are the only types of clauses that are applied to submitted building 

projects while conducting compliance checking. From this point, a clause denotes a 

prescription. Clauses are composed of a number of statements. While some of these 

statements relate to clarifications about calculation methods or applicability conditions, 

others relate to rules indicating quality requirements that must be satisfied by a building 

project. Automated compliance checking systems applies the rules to a proposed project 

to evaluate the compliance.    

Building codes are written text documents, to be interpreted by humans. They 

are not necessarily structured in a strict and straightforward manner that can be 

interpreted by machines. They have complex structures. While some simple rules can 

easily be defined in a single statement, others require a series of statements making 

exceptions, clarifications and modifications. In addition to a complex structure, building 

codes contain rules that may be open to interpretation, ambiguous and sometimes even 

contradictory and therefore impossible to model completely. Since automated 

compliance checking requires a rule-based system, which applies rules to a proposed 

project to evaluate the compliance with all applicable rules of the building code, it is 

important to document how much of the building code and which rules can be modeled 

reliably in automated compliance checking systems.  

	
    



	
  
13 

2.2. Building Code Models 

There has been an extensive amount of research conducted internationally over 

the last four decades in the area of representing building codes in computable format for 

automated compliance checking. This section presents previous models for building 

code representation and evaluation that have been developed, explores common themes 

and different approaches used, and compares the strengths and limitations of the major 

building code models. The models presented here are: 

• Decision tables and SASE model 

• Rule-based models 

• Logic-based models 

• Object-oriented models 

• Hybrid models 

o Object-logic model  

o Context-oriented model  

• Semantic models 

• Ontology-based models 

Each of these models is explained in the next six sections. 

2.2.1. Decision Tables and SASE Model 

The introduction of decision tables by Fenves (1966) is the initial effort on 

building code modeling. In this effort, building code provisions are represented in a 

precise and unambiguous decision table form. A decision table is a concise tabular 

representation of the conditions applicable in a given situation and of the appropriate 

actions to be taken as a result of the values of the conditions (Fenves et al., 1969). 

Decision tables can explicitly represent individual provisions as a set of conditions on 

data items. A data item is a precise identification of an information element occurring in 

a building code (e.g. height of a building). A decision table is divided into four sections 

as shown in Figure 2.1. 

 



	
  
14 

 

Figure 2.1. Sections of a decision table 

The condition stub section in the upper left is a list of the conditions that have a 

bearing on the outcome. The condition entry in the upper right-hand section of the table 

lists the pertinent combinations of the conditions in columns. Each column specifies a 

rule of a provision. The lower left section of the decision table is the action stub, listing 

all the possible actions that may be taken. The lower right-hand section of the table is 

the action entry, specifying the particular action or actions to be taken corresponding to 

the specified rule. The elements of the condition entry can have only one of three 

possible values, i.e., “Y” indicates the condition is true, “N” indicates the condition is 

false, “I” indicates the condition is immaterial. The elements of the action entry may be 

either “Y” means that the corresponding action is to be executed, or “blank” means that 

the action is not to be executed (Fenves et al., 1969). 

The provisions of building codes can be represented by means of decision 

tables. How to use decision tables to model building code provisions can be illustrated 

using the following example of a provision for computing the minimum width of a door 

based on the IMHZCode, shown in Figure 2.2.  A decision table for determining the 

data item “minimum door width” in the provision is shown in Figure 2.3. In this 

example, the upper section of the decision table (condition stub and condition entry) 

represents conditions, i.e. various usage types of related space of the door, while the 

lower section (action stub and action entry) represents the actions corresponding to 

various conditions. For example, according to the last column in the decision table, if a 

door’s related space in a given building project is a bathroom, the door width should not 

be less than 0.80 meter.  

 

Condition Stub 

Action Stub 

Condition Entry 

Action Entry 



	
  
15 

 
“Clause 47 – Doors: 
 B – Door Width: [...] Clear width of entrance doors of 
independent unit shall be at least 1.00 meters. Clear width of room and 
kitchen doors shall be at least 0.90 meters. Clear width of bathroom, 
WC, cellar doors shall be at least 0.80 meters. […]” 
 
“Madde 47 – Kapılar: 
 B- Kapı Genişlikleri : [...] Bağımsız bölüm kapıları, kasa dahil 
(1.00) metreden, Oda ve mutfak kapıları kasa dahil (0.90) metreden, 
Yıkanma yeri, WC, odunluk, kömürlük, kiler kapıları kasa dahil (0.80) 
metreden az olamaz. [...]” 
 

Figure 2.2. Clause 47.B from the IMHZCode  

 

  Rules 

C
on

di
tio

ns
 

Related space of a door: Entrance Y N N N N N 
Related space of a door: Room N Y N N N N 

Related space of a door: Kitchen N N Y N N N 
Related space of a door: Cellar N N N Y N N 

Related space of a door: WC N N N N Y N 
Related space of a door: Bathroom N N N N N Y 

A
ct

io
ns

 Minimum door width = 0.80 meters    Y Y Y 

Minimum door width = 0.90 meters  Y Y    
Minimum door width = 1.00 meters Y      

Figure 2.3. An example of using a decision table to represent building codes 

Decision tables can concisely represent all the possible combinations of 

conditions and related actions of each provision. However, decision tables do not 

address the overall organization (including relationships among provisions) of a 

building code. Fenves et al. (1987) addressed this deficiency with the development of a 

software system called SASE (Standards Analysis, Synthesis and Evaluation) to provide 

tools for creating and checking more comprehensive building code models. This 

software is based on a four-level representation methodology to represent individual 

provisions, relationships among provisions, and the organization of the building code. 

This methodology is derived on the basis of an abstract model of the logical structure of 



	
  
16 

building codes which is developed by Nyman et al. (1973) who investigated possible 

methods of restructuring building codes. According to this methodology, the content of 

the building code is examined in following four levels:  

• The top level (organizational network) that represents outlines and 

organization of the building code.  

• The intermediate level (information network) that represents the dependency 

relationship among provisions. 

• The detailed level that represents the individual provisions in the form of 

decision tables. 

• The lowest level that consists of the basic data items referred to in the 

provisions.  

 

Figure 2.4. The SASE model  
(Source: Fenves et al., 1987)  

Classification
Facet A

Classification
Facet B

Provisions

Derived 
Data Items

Basic 
Data Items

Organizational 
Network

Information 
Network



	
  
17 

Figure 2.4 shows the skeletal architecture of the SASE model (Fenves et al., 

1987). In this model, each information element occurring in a building code is identified 

by data items. Data items represent all the variables in the building code. A data item 

may be one of following four types:  

• A numeric quantity such as “H” (building height). 

• A specific value of  “valid”, “invalid”, or “not applicable”. 

• A Boolean value of “Yes” or “No”.  

• An enumerated value such as “attached”, “semi-detached”, or “detached”.  

A data item is classified into two: a basic data item, and a derived data item. 

While a basic data item has no ingredients from within the building code to determine 

its value, a derived data item has both ingredients and dependents to derive its value.  

In the SASE model, each individual provision within the building code is 

represented by decision tables as a set of conditions on data items. Each decision table 

is responsible for producing a value for only one data item. The decision tables used in 

the SASE model are restricted to limited entry decision tables in which condition values 

are restricted to Y, N, or I.  

In the SASE model, an information network is used to represent the precedence 

relationships among the data items of the building code. The network is composed of 

nodes and branches. Each node represents one data item in the building code. Each 

branch represents a relationship between two nodes (data items). The data item on top 

of a branch is commonly referred to as parent and the lower level one is referred to as a 

child. A data item may have more than one child and more than one parent. If a data 

item does not have a child, it is a basic data item. If a data item has at least one child, it 

is a derived data item. For each information network, there should be exactly one 

derived data item that has no parent which is called the terminal data item of the 

network. In any case, all of the basic data items must be present before derived data 

items can be evaluated. This is called the precedence relationship that must be observed 

in an information network.  As an example, an information network of the provision for 

a door, as described in Figure 2.2, is shown in Figure 2.5. In this figure, the node 

farthest to left, which does not have any successor nodes (parents), such as “Provision 

for door width” is called a terminal data item or a provision. The intermediate node such 

as “relSpaceUsage” represents derived data items. The nodes farthest to the right, which 



	
  
18 

do not have any predecessor nodes (childs), such as “bathroom, “room”, ‘or “kitchen” 

are basic data items. 

 

 

Figure 2.5. Information network for the provision for door width 

In the SASE model, at the top-level, the building code is organized in a 

systematic manner such that individual provisions can be accessed easily. The 

classification tree is used to classify top-level data items of the building code, i.e., the 

provisions. Each provision is associated with one or more leaves of the classification 

tree. The methodology for classification of provisions is based on the faceted 

classification system consisting of several independent areas such as fields and facets. A 

field is a subject area (e.g., as physical elements) and a facet is a way to classify within 

a particular field (e.g., door, window). As an example, partial facets from two fields, 

“physical elements” and “dimension constraints”, are shown in Figure 2.6 and two 

examples of possible outlines for the code are shown in Figure 2.7. 

 

 

Figure 2.6. Partial facets of two fields  
(Source: Adapted from Garrett & Fenves, 1987) 

Provision for 
door width

Required 
door width

Design 
door width

relSpace
Usagewidth

bathroomroom kitchen cellarentrance

Physical 
Element

Door Window

Dimension 
Constraint

Width Height

Frame Opening

Field: Physical Elements Field: Dimension Constraints



	
  
19 

           
 Possible Outline A:  Possible Outline B:  
           
 Ch.  Section Subsection Prov.  Ch.  Section Subsection Prov.  

 1. Door    1. Width    
  1.1. Width -------------------- Pr.1:…   1.1. Door --------------------- Pr.1:…  
  1.2. Height -------------------    1.2. Window ----------------- Pr.4:…  
   1.2.1. Frame ------ Pr.2:…  2. Height    
   1.2.2. Opening --- Pr.3:…   2.1 Frame   
 2. Window      2.1.1. Door ------- Pr.2:…  
  2.1. Width -------------------- Pr.4:…    2.1.2. Window --- Pr.5:…  
  2.2. Height -------------------    2.2 Opening   
   1.2.1. Frame ------ Pr.5:…    2.1.1. Door ------- Pr.3:…  
   1.2.2. Opening --- Pr.6:…    2.1.2. Window --- Pr.6:…  
        

Figure 2.7. Two possible organizational outlines for the building code  

SASE Model’s main contribution has been to introduce a code model that was 

independent of the conformance checking system. This has allowed non-programmers 

to modify the code without updating the processing system. Decision tables are simple 

tools to provide a code description to the system. Furthermore, the SASE Model also 

provides dynamic reclassification of the code allowing different users to examine the 

code according to their needs.  

However, the main problem with the SASE Model is that it uses data items as 

the primary element of building codes and that it lacks definition of building objects to 

which the building codes apply. This leads to a high number of data item definitions and 

complexity of the relationships among data items increase quickly as the number of 

provisions increase. Moreover, decision tables require complicated data item 

definitions. A data item needs to define both the reasoning methods and conditions 

associated with the specific building object that the data item is describing.  

2.2.2. Rule-Based Models  

Several researchers (Rosenman & Gero, 1985; Dym et al., 1988; Rasdorf & 

Wang, 1988; Kumar, 1995) have proposed methods based on a rule-based modeling 

approach for representing building codes as rules/clauses in processing systems. In 



	
  
20 

these models, the clauses of the building code are represented as a set of rules in the 

form of IF [condition] THEN [action] statements instead of decision tables. The IF 

statements of the rules describe applicability conditions which need to be satisfied. The 

THEN statements describe required actions to be taken. This approach is a more natural 

way for building code representation than decision tables. Figure 2.8 shows the example 

of using rule-based approach to represent a provision of IMHZCode for doors given in 

Figure 2.2. 

 

 
Rule 1:  
 IF Related space of a door is an entrance  
 THEN Check the width of the door is equal to 1.00 meters. 
Rule 2: 
 IF Related space of a door is a room or kitchen 
 THEN Check the width of the door is equal to 0.90 meters. 
Rule 3: 
 IF Related space of a door is a cellar, WC, or bathroom  
 THEN Check the width of the door is equal to 0.80 meters. 
 

Figure 2.8. An example of using rule-based approach to represent building codes 

Rule-based representations are more expressive than other representational 

approaches.  The main advantage of this approach representing building codes as rules 

is ease of implementation in the building code processing systems (Rasdorf & Wang, 

1988). Moreover, rule representations match the actual building code rules so that 

checking the completeness of the model is trivial (Rosenman & Gero, 1985). 

However, modeling a building code by using the rule-based approach is likely to 

end up with a large number of rules that could be unmanageable in practice because one 

provision needs to be represented by more than one rule. The main handicap in this 

approach is that the rules (IF and THEN parts) have to be modeled in specific 

programming or modeling languages into a building code processing system. This is a 

severe disadvantage for the approach since its ability to accommodate changes becomes 

limited (Rasdorf & Wang, 1988). The rules that represent the building code clauses are 

“hard-coded” into the system which means that they are not separated from the 

programming codes of the building code processing system. This hard-coding of the 

rules into the system reduces the efficiency of system maintenance when the rules need 

to be updated due to the changes in the building code (adding new clauses, and 



	
  
21 

changing or deleting existing clauses). Such revisions of the system may be difficult and 

expensive, especially with programs of considerable size. Additionally, since the 

systems are not understandable and accessible by users who do not have any 

programming knowledge the system is the dependent  on the system programmer for 

downstream modifications.  

While the limited ability to accommodate changes is one deficiency, there is 

also the difficulty for code experts to ascertain the correctness of the program code. In 

most cases, the programmer of the building code processing system is not the building 

code author, thus there is a chance of misinterpretation. The building code processing 

system is prone to misinterpretation errors in which case the system will not perform its 

prescribed compliance checking function correctly.  

2.2.3. Logic-Based Models 

Some researchers have investigated the use of predicate logic to model building 

codes. Jain et al. (1989) proposed a logic-based model, which is based on the SASE 

model, using predicates to represent the building code provisions instead of decision 

tables. This model provides validation and verification methods for checking 

completeness and uniqueness (lack of redundancy and lack of contradiction) of a 

building code model. In this project, limited-entry decision tables are converted into 

predicate logic statements. Building code clauses are represented as groups of 

statements of the form Ri: Ci → Ai, where Ci represents the part to the left of the 

implication (condition) while Ai represents the part to the right of implication (action). 

Each group represents rules for a single data item.  

Rasdorf and Lakmazaheri (1990) also proposed a logic-based approach for 

representing and processing a building code that extends the utility of the SASE 

organizational model for conformance checking. In this work, the overall organization 

of a building code is formally modeled using predicate logic. Predicate logic is used for 

developing a formal language for representing the organizational model of the building 

code. Using the formal language, a set of axioms (statements) is developed that 

represents the relationships between the classifiers and the clauses of the building code 

model. The formal language and axioms constitute the formal organizational model of 

the building code. Processing the organization of the building code is accomplished 



	
  
22 

using the formal language to first formulate expressions called theorems and then to 

prove the theorems via what is called “the resolution theorem-proving strategy”. 

Theorems are used to prove the uniqueness -meaning that the code model generates one 

and only one result when applied in any one situation- and completeness -meaning that 

the code model can be applied to all possible situations within its scope- of the building 

code (Rasdorf & Lakmazaheri, 1990).  

Logic-based approaches adopt predicate logic to model the provisions of 

building codes. Predicate logic provides a formal, well-known and systematic 

knowledge representation language to express statements in well-formed formulas. In 

logic-based models, IF-THEN logic is also used to represent the building code clauses. 

The difference from the rule-based models is that the logic-based models use predicate 

logic. As an example, the example of IF-THEN rule shown in Figure 2.8 can be 

represented in predicate logic as shown in Figure 2.9. In this example, the applicability 

conditions is determined on the left side of the arrow. The action statement is specified 

on the right side of the arrow. 

 

 
R1: ∀x(Door(x) ∧ (RelatedSpaceUsage(x)=Entrance)) → 
 ∃(x)(Width(x) ≥ 1) 
  

R2: ∀x(Door(x) ∧ (RelatedSpaceUsage(x)=Room ∨ Kitchen)) → 

 ∃(x)(Width(x) ≥ 0.90) 
   

R3: ∀x(Door(x) ∧ (RelatedSpaceUsage(x)=Cellar ∨ WC ∨ bathroom ))  
 → ∃(x)(Width(x) ≥ 0.80) 
   

Figure 2.9. An example of using logic-based approach to represent building codes 

Hakim and Garrett (1993) claimed that logic-based approaches enable the 

evaluation of the consistency, completeness, and clarity of building code models as well 

as support the reasoning about incomplete knowledge. However, logic-based 

approaches require building code modelers to have knowledge of logic to model 

building codes and understand them. Moreover, logic models include user-defined 

predicates and logical operators that prevent them from being widely implementable.  



	
  
23 

2.2.4. Object-Oriented Models 

Hakim and Garrett (1992) pointed out one deficiency in previous building code 

models, which use data items as the primary data structure, concerning a lack of a 

formal model of the building objects within the scope of the building code. This leads to 

many data item definitions. Moreover, the definition for each data item must not only 

define the evaluation method, but also the conditions associated with the specific object 

of which data item is an attribute. This leads to complicated data item definitions. In 

both cases the models are hard to maintain and build. To address these issues, Garrett 

and Hakim (1992) developed an object-oriented model of building codes, which allows 

organizing a building code around building objects pertinent to the building code. This 

object-oriented model is composed of following four main groups of objects (see Figure 

2.10):  

• The design object hierarchy that represents the subclass relationships 

between objects of the building code. Objects define design-specific 

attributes and hierarchies between these attributes such as shape, function, 

material. 

• The performance-limitation hierarchy that represents the limitation of the 

building code objects.  

• The data item hierarchy that represents the types of information that are 

found in all building codes (e.g., a constant, a rule, or a table). 

• The data item instance network which represents instances of the different 

types of information present with a specific building code.  

Garrett and Hakim’s incorporation of design objects within the analysis process 

provides a logical extension to the SASE methodology.  

 



	
  
24 

 

Figure 2.10. Object-oriented model of the building code 
(Source: Hakim & Garrett, 1992) 

The object-oriented modeling approach taken by Waard (1992) proposes the use 

of information models. This approach requires an information model of residential 

buildings, an information model of building codes, and a link between both information 

models. In this work, first, the information model for residential buildings containing 

architectural objects (e.g., rooms, walls, doors) is developed. Waard (1992) states that 

the information model can be also used as a neutral model for information exchange 

between participants in the building process, and between design teams and building 

authorities. After the construction of the residential building information model, the 

information model of building codes is developed. It is stated that the building code 

model should reflect the idea that building codes not only consist of constraints, but also 

of a model of a building according to those building regulations. To illustrate this point, 

De Waard modeled several provisions extending and adjusting the relationships 

Design Object Hierarchy

shape

singly-
symetric

non-
symetric

doubly-
symetric

l-shape box-
shape

standard built-up

function

beam column

non-symetric 
box-shape beam

non-symetric l-shape 
built-up beam

doubly-
symetric beamnon-symetric 

beam

Data Item Hierarchy

data item

basic 
data item

derived 
data item

Data Item Instance 
Network

req. 1 req. 2

building code-independent 
structure and behaviorbuilding code-specific 

behavior

Performance Limitation Hierarchy
performance 

limitation

strength serviceability

yielding global 
buckling deflection vibration



	
  
25 

developed in the residential building information model. At the last stage, the link 

between the building code information model and residential building information 

model is defined by describing the way in which building code views can be derived 

from the residential building information model. The model of the objects that are 

subject of the building codes form a building codes view on the residential building 

model. 

Object-oriented models utilize class hierarchies to represent building codes, 

including their applicability conditions and requirements, so that the applicability of one 

section of a building code can be passed down to its subsections. Object-oriented 

models use classes and attributes to represent data items (concepts) of building codes, 

such as representing the data item “door” as a class and the data item “door width” as 

the class’s attribute. As an example of how such an object-oriented model can be 

developed, consider the clause in Figure 2.2,  taken from IMHZCode, which specifies 

the minimum width of a door. Figure 2.11 shows the object oriented model constructed 

from the classes and their attributes mentioned in the clause, together with their 

relationships. Figure 2.12 shows the object-oriented interpretation for the clause. 

 

 

Figure 2.11. Object-oriented model from analysis of  Figure 2.2 

	
   	
  

- usage : String {enumList}
- ......

Space - width : double
- relatedSpace : Space
- ........

Door

1..* 1..*



	
  
26 

	
  

CLAUSE  47 – Doors 
                   B –  Door Width: 

 Classes: 
• Door () 
• Space () 

 
Class Attributes: 

• Door ()  {width, type, relatedSpaces[] } 
• Space () {usage} 

 

 
Relationships between Classes: 

• relatedSpace (Door, Space)  

 Methods: 
• setDoorType (Door) { 

IF Door.relatedSpace.usage equals to “entrance”  
THEN this.type = entranceDoor; 
 
IF Door.relatedSpace.usage equals to “room”  
THEN this.type = roomDoor; 
 
 IF Door.relatedSpace.usage equals to “kitchen”  
THEN this.type = kitchenDoor; 
 
IF Door.relatedSpace.usage equals to “bathroom”  
THEN this.type = bathroomDoor; 
 
IF Door.relatedSpace.usage equals to “cellar”  
THEN this.type = cellarDoor; 

} 

• checkDoorWidth (Door) { 

IF Door.type equals to “entranceDoor” &  
Door.width ≥ 1.00 

THEN return “this door is valid”; 
 
IF Door.type equals to “roomDoor” || “kitchenDoor” & 

Door.width ≥ 0.90 
THEN return “this door is valid”; 
 
IF Door.type equals to “bathroomDoor” || “cellarDoor” & 

Door.width ≥ 0.80 
THEN return “this door is valid”; 
 
ELSE return “this door is not valid; 

} 
 

Figure 2.12. An example of an object-oriented interpretation of Figure 2.2 



	
  
27 

Although object-oriented models have some advantages (e.g. flexibility, and 

extensibility) as compared with previous models, there are still some difficulties in 

maintainability. The main difficulty is that these models are only editable by users who 

have object-oriented programing knowledge. Moreover, object-oriented models are less 

human readable and understandable.  

2.2.5. Hybrid Models 

Hybrid models combine some of the previous representation approaches. An 

example is the Object-Logic model (Yabuki & Law, 1993) which combined first order 

predicate logic and object-oriented modeling approaches to represent and process 

building codes. They claimed that object oriented approach is suitable for representing 

the organization and data items of the building code and the logic programming 

approach is suitable for representing and processing building code provisions. The 

model they proposed also allows the development of formal procedures to check 

completeness and uniqueness of the building code and conflicts among the provisions. 

The system framework  for the object-logic model (Figure 2.13) consists of two 

submodels: object-logic model, and hyper document model. These two models are 

integrated by sharing methods objects representing the design provisions.  The hyper 

document model contains the provisions, background information of building codes, 

external programs, and method objects.  The hyper document model serves as a large 

document storage system for building code provisions. The object-logic model consist 

of the following 5 basic modules (Yabuki & Law, 1993): 

• A standards base that consists of a class hierarchy representing the 

organization and provisions of the building code. Provisions are modeled as 

method objects which are a set of object-logic sentences.  

• A CAD object database that holds member definitions and the object model 

and facilitates retrieving member attributes from an engineering database. 

• A conformance checking module that performs compliance checking of a 

given member with applicable provisions. 

• A component design module that generates component design of a given 

member. 



	
  
28 

• A standards analysis module that checks completeness and uniqueness of 

provisions. This module also performs simple analysis on the provisions by 

checking whether the relationships among the method objects exist. 

 

 

Figure 2.13. Overview of the object-logic model 
(Source: Yabuki & Law, 1993) 

Kiliccote et al. (1994) points out the object-logic model has similar complex 

classification hierarchy issues as the object-oriented models has which make working 

with building code cumbersome. In these models a class hierarchy is used as a method 

to organize the building code and provisions are associated with the classes in this 

hierarchy. These models require many classes and complex multi-parent subclasses 

User

Provision 
Document 

Base

Background 
Base

External 
Programs

Object-Logic Model
Conformance 

Checking 
Module

Component 
Design 
Module

Conformance 
Checking 
Module

Standards Base

Method 
Objects

Member 
Class 

Hierarchy

CAD Object Data Base

Design 
Member 
Object

Object Model

DB 
Interface

Engineering 
Databases

Document Base

Navigation 
System

HyperDoc Model

User 
Interface



	
  
29 

which are created in the lower parts of the class hierarchy to represent the specific 

contexts to which the provisions in the building code apply (Kiliccote et al., 1994). As a 

result, both object-oriented and object-logic models become insufficient to represent 

applicability concepts in the building code provisions.   

Kiliccote et al. (1994) addressed this issue with the development of a Context-

Oriented model. This model also uses the object-oriented approach but addresses the 

problem of complexity of the object-oriented model’s class hierarchies by organizing 

the building code around “contexts”. A context is a collection of sub-classes in the 

classification hierarchies to which the provisions are associated. These contexts are used 

to define conditional parts of the provisions for which they are applicable. Based on the 

context-oriented modeling approach, (Kiliccote & Garrett, 1998) proposed a multi-

module distributed framework, which is called the Standards Processing Framework 

(SPF), to represent and reason with building codes. The modules in the SPF are called 

SPF Agents using different representation and reasoning methods to develop general 

models. In the SPF, an agent is a self-contained entity that communicates with another 

through messages expressed in a common language. As part of this work, the SPF 

communication language (SPF-CL) is developed to allow interaction between various 

SPF-Agents. SPF-CL is used to describe and ask for: 

• Information about agents (e.g., to define that there is an agent that can 

compute the maximum allowable height of a building). 

• Building codes and individual provisions (e.g., to define requirements, 

including their applicability conditions, and data needs). 

• Design information (e.g., to specify the total gross area of a building). 

To meet these functions, SPF-CL is composed of three languages: the Agent 

Description Language (ADL), the Standards Modeling Language (SML), and the 

Standards Usage Language (SUL). ADL is used to describe knowledge about agents. 

SML is used to describe the content of a building code to an agent. SUL is used to 

describe the design to an agent and request information about the result of the 

evaluation of a building code provision against that design. SPF-CL uses the following 

four major objects to model building codes:   



	
  
30 

1.  Concepts which are used to represent real world concepts (e.g., structure, 

building, room, door). In SPF-CL, concepts are defined using a define 

Concept command as shown in the next example. 

 define Concept { 
  name = “Room”; 
 }; 
 define Concept { 
  name = “Door”; 
 }; 

2. Classifications which is a collection of distinct concepts that differ from 

each other by some set of properties. In SPF-CL, classifications are defined 

using a define Classification command as shown in the next example. 

 define Classification { 
  name = “Space”; 
 }; 
 define Concept { 
  name = “Entrance”; 
  is_a = Space; 
 } 
 define Concept { 
  name = “Room”; 
  is_a = Space; 
 } 
 define Concept { 
  name = “Kitchen”; 
  is_a = Space; 
 } 
 define Concept { 
  name = “Bathroom”; 
  is_a = Space; 
 } 

3. Relations which define a relation between a concept and another concept. In 

SPF-CL, relations are defined using a define Relation command. For 

example, the following statement defines a relation between doors and the 

Space classification. 

 define Relation { 
  name = “related_space”; 
  domain = Door; 
  range = Space; 
 } 



	
  
31 

4. Instances which represent entities that exist physically or conceptually in the 

domain being modeled. In SPF-CL, concepts are similar to sets and instances 

are similar to elements of a set. For example, the following statements 

defines the instance “kitchenDoor” which is an element of the set of doors.  

 define Instance { 
  name = “kitchenDoor”; 
  instance_of = “Door”; 
  related_space = “Kitchen”; 
 } 

As an example, the simplified version of the Clause-47.B from IMHZCode 

Figure 2.2 can be defined as shown in the next example.  

 define Limit { 
  name = “IMHZCode#47#B#2; 
  text = “Oda ve mutfak kapıları kasa dahil (0.90) metreden az olamaz.” 
  text_as_modeled = “Clear width of room and kitchen doors shall be at 

 least 0.90 meters.”; 
  definition_type = Minimum; 
  domain = instance roomDoor | kitchenDoor 
  for_relation = relation width; 
  range = 0.90 [meter]  
 } 

The first field (name) in this definition is the section in which this clause is 

defined. In this case, this is Section 47.B.2 from IMHZCode. The second field (text) is 

the original text of the clause as defined in IMHZCode. The third field 

(text_as_modeled) represents an English explanation of this SML statement. The fourth 

field (definition_type) states that this provision defines a minimum limit. The fifth field 

(domain) states that this clause applies to only room and kitchen doors. The sixth field 

(for _relation) states that this provision limits the width of doors. The last field (range) 

states that the limit is 0.90 meters. 

Fenves et al. (1995) claimed that by associating contexts with provisions, the 

need for large numbers of highly specialized subclasses from which to hang provisions 

is eliminated. However, while this model benefits from advantages of the combined 

approaches, it still inherits shortcomings from the object-oriented approach such as the 

problem of maintainability. 



	
  
32 

2.2.6. Semantic Models 

Previous building code representation research efforts mainly focused on the 

hard-coding approach. The main disadvantage to this approach is that it requires a high-

level of expertise in computer programming to define, write and maintain building 

codes. However, the ability to update and maintain the building code representation is 

important because building codes change continuously. To overcome the deficiencies of 

hard-coded representation approaches, recently, attention has been directed towards the 

study of semantic modeling approach, which is a relatively new method for knowledge 

representation. 

The SMARTcodes project (AEC3, 2012) is a semantic approach which proposes 

to mark-up building codes in such a way that rules are dynamically generated in a 

computable format. SMARTcodes project provides a protocol and a software program 

(SMARTcodes Builder) for creating smart versions (tagged representations) of actual 

building code texts that reflects building codes with schema and tags used for 

automated compliance checking applications. It is based on a process using a mark-up 

language to mark the actual text of the building code according to SMARTcodes 

protocol. This can be done by code authors. The mark-upped text is structured into an 

XML version of the actual building code. The structured XML is then converted into 

computer implementable rules. Figure 2.14 shows a block diagram of an illustrative 

system for generating SMARTcodes (Conover, 2009). 

 

 

Figure 2.14. SMARTcodes system architecture 
(Source: Conover, 2009) 

Building Codes SMARTcodes 
Builder

Protocol for 
creating 

SMARTcodes

Dictionary

SMARTcodes 
("smart" version 

of building codes)



	
  
33 

The system includes a SMARTcodes Builder, which is used along with a 

protocol to create tagged representations (smart versions) of the building codes. 

Building codes rely on dictionaries which are used by the SMARTcodes Builder 

pursuant to the protocol to facilitate creating the tags corresponding to a schema for 

SMARTcodes. The dictionaries may include term definitions, object model 

descriptions, data types, permissible units and operators. The dictionaries may further 

include schema information that correlates the SMARTcodes tags within the schema 

with the elements, units, operators and other information. Building codes must be 

converted into XML files before they are used in the SMARTcodes Builder. The 

SMARTcodes Builder receives building codes as XML and following the defined 

protocol, someone familiar with the building code creates SMARTcodes. A diagram of 

the protocol defined for creating SMARTcodes using the SMARTcodes Builder is 

given in Figure 2.15 (Conover, 2009). 

 

 

Figure 2.15. Steps of the protocol for SMARTcodes 
(Source: Conover, 2009) 

Receive Input Building Codes

Identify Required "Check" within Building Codes

Identify "Applicable" Words and Phrases

Identify "Selection" Words and Phrases

Identify "Requirement" Words and Phrases

Identify "Exception" Words and Phrases

Create Smart Tagged SMARTcodes

Verify SMARTcodes

Store SMARTcodes

Publish/Print SMARTcodes



	
  
34 

Referring to Figure 2.15, in the first step, the user inputs the XML of the 

building code into the SMARTcodes Builder. In the second step, the user as guided by 

the protocol identifies the provisions in a specific building code section that gives rise to 

required checks using the SMARTcodes Builder interface. These checks correspond to 

a building code section or subsection that contains a specific requirement or related 

groups of requirements that must be applied to the building information model to 

determine whether  the building design complies with the requirements. In the third 

step, the applicability words or phrases within the building code text associated with a 

check are identified and tagged. The applicability words or phrases are terms that each 

define a characteristic of the elements to which the check applies. In fourth and fifth 

steps, the selection and the requirement words or phrases within a check  are 

respectively identified and tagged. In sixth step, the SMARTcodes Builder is used to 

identify any exceptions to the check, which are conditions under which the check is not 

applicable to the building model. In the seventh step, the tagged text is converted to xml 

according to the dictionary and schema. In this regard, the checks and identified 

applicability, selection, requirement, and exception atoms of the building code are 

coded according to the schema. In eighth step, the syntax within the SMARTcodes are 

checked to ensure functionality. In ninth step, the SMARTcodes are stored in a 

database. In the last step, the building codes represented by the SMARTcodes may be 

printed and published.  

The SMARTcodes approach aims to enable non-programmers to define 

computable rules using simple tools. It is based on the RASE (Requirement, 

Applicability, Selection, Exception) methodology (Nisbet et al., 2009). The main goal 

of the RASE methodology is to identify the common constructs for building code rules. 

It states that building code rules can be broken down into four constructs: Requirement, 

Applicability, Selection, and Exception. Each of these four constructs has attributes 

such as a property, a comparator and a target value with a unit. Code authors are able to 

markup these indicators that appear in the actual text of the code using SMARTcodes 

Builder software which creates the XML formatted version of the code.  An example of 

RASE paradigm usage on a clause on moisture control from ICC IECC 2006 502.5 is 

shown as seen in the SMARTcodes Builder software in Figure 2.16 and in a short form 

in  Figure 2.19. The moisture control rule applies to “framed” building elements. The 

rule does not cover all framed building elements. It is only for selected ones (“walls, 



	
  
35 

floors, and ceilings”) except “not ventilated” ones. The rule also has other exception 

conditions where this rule will not apply.  

 

 

Figure 2.16. RASE constructs of a clause in the SMARTcodes Builder 
(Source: AEC3, 2012) 

 

ICC IECC 2006 502.5 Moisture control 
All <applicability>framed</applicability> <selection>walls, floors</selection> and 
<selection>ceilings</selection> <exception>not ventilated</exception> to allow moisture to 
escape shall be provided with an <requirement>approved vapor retarder<requirement> 
having <requirement>a permeance rating of 1 perm</requirement> (5.7 × 10 –11 kg/Pa s 
m2) or less, when tested in accordance with the desiccant method using Procedure A of 
ASTM E 96. The vapor retarder shall be <requirement>installed on the warm-in-winter 
side</requirement> of the insulation. Exceptions: <exception>Buildings located in Climate 
Zones 1 through 3</exception>as indicated in Figure 301.1 and Table 301.1. In construction 
where <exception>moisture</exception>or its <exception>freezing</exception> will not 
damage the materials. Where other approved means to avoid 
<exception>condensation</exception>in unventilated framed wall, floor, roof and ceiling 
cavities. 

Figure 2.17. RASE constructs of a clause in the short form 

SMARTcodes project provided an authoring tool to manage the amendments of 

the building codes. SMARTcodes development stopped in 2010 but the underlying 



	
  
36 

mark-up concept and RASE methodology used by SMARTcodes has been further 

developed by AEC3 Ltd. (Hjelseth, 2012). 

2.2.7. Ontology-Based Models 

Recently, the application of an ontology-based approach has been investigated 

as a possible computable framework for building code representation. Yurchyshyna et 

al. (2008) developed a formal ontology-based approach for the formalization and 

semantic organization of building codes. The research on formalization of building code 

texts is conducted through the following steps:  

• Knowledge extraction from the texts of building codes into formal languages 

(e.g.XML, RDF) by analyzing the hierarchical structure of the documents 

and by adding new (meta)tags. 

• Formalization of building codes by capitalizing the domain knowledge. 

• Semantic mapping of building codes’ content to existing knowledge bases, 

e.g. industry specific ontologies. 

• Formalization of building codes in the context of the compliance checking 

problem. 

In this work, in order to illustrate the feasibility of ontology-based modeling 

approach, a prototype is developed, which is called C3R (Conformity Checking in 

Construction with the help of Reasoning), that implements the algorithms of reasoning 

by expert rules according to organized conformity queries (Yurchyshyna & Zarli, 

2009).  

Ontology-based building code representation on the semantic web has also been 

explored by researchers (Pauwels et al., 2011). The research based on semantic web 

approach focuses on enhancing the IFC model by using description languages (e.g. 

SPARQL, Semantic Web RuleML (SWRL), Rule Interchange Format (RIF)) based on a 

logic theory (Pauwels et al., 2011). In their work, it is stated that IFC has several 

limitations when considering code compliance checking environments specifically such 

as limited expression range, difficulties in the partitioning of information and the 

possibility to describe the same information in numerous different ways. These 

limitations is mainly caused by the lack of a mathematically rigorous logic theory in the 



	
  
37 

language deployed to specify the IFC schema. Pauwels stated that IFC’s limitations can 

be overcome when deploying semantic web languages as an enhancement to IFC. By 

enhancing IFC onto a logical level, it could be possible to enable design and 

implementation of significantly improved code compliance checking systems.  

There have been also some projects using semantic modeling approach and the 

application of industry specific taxonomies and ontologies in combination with 

Artificial Intelligence (AI) and Natural Language Processing (NLP) techniques to allow 

systems to interpret building code texts by automated or semi-automated data extraction 

(Cheng et al., 2009; Salama & El-Gohary, 2011; Zhang & El-Gohary, 2011). However, 

it would be quite challenging to come up with any automated method of information 

extraction because building code texts are written for human interpretation. Any 

building code representation should be in accordance with one set of the official 

interpretation provided by the authority.  

2.3. Automated Compliance Checking  

2.3.1. Introduction 

Compliance checking is a process of building design project evaluation against 

all applicable rules of building code. It includes three sequential sub tasks: 

• Gathering information about various aspects of the building design project. 

• Comparing the design information with applicable rules of building codes. 

• Documenting the results as evaluation reports. 

Compliance checking is a complex, error prone and resource intensive process. 

Today, although every building project is modeled in a digital environment, these 

projects are checked manually for their compliance with building codes. Manual 

compliance checking may cause inconsistencies in approvals and results in delays for 

the overall construction process. Moreover, failure to correctly assess designs for 

compliance can have negative effects on building performance and allows errors that 

are expensive to fix. These potential problems are the main issues behind research on 



	
  
38 

developing models for compliance checking process and developing automated 

compliance checking systems.  

Automated compliance checking assesses a building design project on the basis 

of the configuration of building objects, their relations or attributes. Implementing a 

complete automated compliance checking system is a huge undertaking because these 

systems should have numerous complex functional capabilities.  From the early efforts 

and the review of current work, Eastman et al. (2009) defined a necessary structure for 

implementing a functionally automated compliance checking system. Figure 2.18 

illustrates the four classes of functionality an automated compliance checking system 

should support.  

 

 

Figure 2.18. The four classes of functionality a  code compliance checking system 

Automated compliance checking process is structured into four stages and it 

starts with building code interpretation. Building codes are written documents in human 

language formats which are only read and applied by people. For an automated 

compliance checking implementation, first, building code documents need to be 

represented in computable format.  The second stage in this process is building model 

preparation. Building models are prepared by architects and designers but entering all 

required data for compliance checking cannot be expected from them. The preferred 

Building Code 
Interpretation

Representing 
building codes in 

computable format.

Building Model 
Preparation

Extracting and 
deriving model 

view for 
compliance 
checking.

Code Execution

Applying building 
code rules to 

building model and 
checking building 

model.

Compliance 
Check Reporting

Reporting results 
back to submitter 

(or checking 
agency).



	
  
39 

solution is to automatically extract related data and derive a model view to be checked. 

Initiatives such as those coordinated by buildingSMART (2008b) focus on this task.  In 

the third stage, building code rules are applied to the derived building model view to 

check the level of compliance. Before rule execution, syntactic checking of the building 

model is required to determine if the building model carries all the data needed for 

checking. The last stage in compliance checking compiles the results and reports back 

to applicants and checking agencies.  

After the brief explanation about compliance checking systems, major 

compliance checking projects is explained in the following section. 

2.3.2. Automated Compliance Checking Systems 

Research on the development of automated compliance checking systems for 

building models began nearly three decades ago (Garrett & Fenves, 1987), but efforts to 

produce working compliance checking systems came later. In this section, four major 

implementation efforts on automated compliance checking systems are examined. 

These efforts are CORENET, DesignCheck, SMARTcodes, and the effort by the 

General Services Administration in USA. Each of the four systems is summarized in 

Table 2.1. 

Table 2.1. Overview of automated compliance checking systems 

Development 
Agency 

Project Year Domain Building Code 
Model 

BIM 
Standard 

Checking 
Platform 

Singapore CORENET 1995 Zoning 
Accessibility 
Fire safety 
Environmental health 
Public housing 
Vehicle parking 

Object based 
logic model 

IFC FORNAX  
EDM 

Australia,  
CRC for CI 

DesignCheck 2006 Accessibility Object-oriented 
model 

IFC EDM 

USA, ICC 
 

SMARTcodes 
MCS 

2006 Energy conservation Semantic model IFC SMC 

USA, GSA DAT 2008 Circulation 
Security 

Parametric table IFC SMC 



	
  
40 

2.3.2.1.  Construction and Real Estate NETwork (CORENET)  

CORENET is considered as a milestone effort. It is the first automated code 

compliance checking system for the AEC industry that has actually been used in 

practice. It was developed by the Singapore Building and Construction Authority in 

1995 to automate the process through which building permits are acquired. CORENET 

is made up of 3 modules: e-Submission, e-PlanCheck, and e-Info. CORENET e-

Submission module facilitates the accepting of building projects in digital format for 

automated checking and allows the tracking of the building permit acquisition process.  

CORENET e-PlanCheck is the main module that carries out the task of checking the 

building model against the building code. CORENET e-Info acts as a central repository 

and supplies various regulatory authorities involved in the process with reference 

materials in digital formats that can be regularly updated. Initially, the system was 

designed to work with 2D drawings, but since 1998 it relies on project data suplied by 

BIM systems in IFC format (Liebich et al., 2002). CORENET is able to check building 

projects for compliance with rules related to zoning, accessibility, fire safety, 

environmental health, public housing, and vehicle parking. 

 

 

Figure 2.19. System architecture of CORENET project 
(Source: novaCITYNETS, 2000) 

IFC Building Model Repository

FORNAX Geometry Engine & Services

FORNAX Objects

FORNAX Checking Engine

Built-in Common Rules

C
la

us
e 

1

C
la

us
e 

2

C
la

us
e 

3



	
  
41 

In the CORENET project, the rules are embedded into the system. They are 

hard-coded by programmers. The system is built on top of the FORNAX platform that 

was developed specifically for this project (see section 2.3.3.1) FORNAX objects 

extend the IFC schema to add functionality for code checking. FORNAX objects extract 

the data required for code-checking from the building project that is in IFC format and 

the FORNAX checking engine applies the rules to these FORNAX objects and reports 

the results.   

2.3.2.2.  DesignCheck System  

The DesignCheck project was initiated in 2006 by The Cooperative Research 

Centre for Construction Innovation based in Australia.  The project was carried out in 

two stages. In the first stage, existing software platforms were evaluated in order to 

determine the technologies most suited to processing Australian standards.  Two 

important software platforms, Solibri Model Checker (SMC) and Express Data 

Manager (EDM) were compared through tests that involved modeling actual code 

(initial code was Australian Standard AS1428.1 “Design for access and mobility”). The 

results of the testing stage indicated that EDM was comparatively more flexible in 

editing and writing of new rules. In the second stage, the DesignCheck system was 

developed (Ding et al., 2006). 

The DesignCheck system is an automated code compliance checking system that 

enables compliance assessment against building codes. The system holds design 

information extended for code checking and encodes domain knowledge embedded in 

building codes. It defines an internal model based on IFCs for modeling the extended 

design information. This internal model allows for the definition of comprehensive 

building design information that corresponds to definitions that exist in building codes. 

In this system, the building code is interpreted using an object-based representation and 

then encoded into the EDM rule bases. Code-compliance checking (validation) of the 

internal model is carried out by EDM functions utilizing rule bases.   

The architecture of the DesignCheck system is illustrated in Figure 2.20. It 

consists of three components: main user interface, EDM database and the report system. 

The main user interface enables monitoring the checking of designs, viewing check 

results. The EDM database contains building models, rules bases and the check results. 



	
  
42 

The building model is imported to the EDM database in IFC2x2 format and then 

mapped onto the DesignCheck internal model. The DesignCheck internal model is 

validated against rules in the rule bases. The results model stores the check results. The 

report system reads the check results from, and writes the comments to the results 

model in the EDM database. The report system provides both an interactive report page 

and a print friendly report page.  

 

 

Figure 2.20. Architecture of the DesignCheck system 
(Source: Ding et al., 2006) 

2.3.2.3.  SMARTcodes Model Checking System (MCS) 

The SMARTcodes project was initiated in 2006 by AEC3 and Digital Alchemy 

with support from ICC. This U.S.A. based effort’s main goal was to simplify the 

conversion of text based building codes into computable rule sets. SMARTcodes 

focused on automating and simplifying code-compliance checking of building projects 

(Conover, 2007). The system has initially implemented the International Energy 

Conservation Code (IECC). It utilizes the IECC dictionary for defining objects and 

properties for code checking. The computable rules are built using the SMARTcodes 

builder interface that is a web based application designed to reduce errors in 

interpreting the original code document. The IECC dictionary is used while building the 



	
  
43 

rules and also facilitates the mapping between the system and the IFC model. Figure 

2.21 illustrates the framework of the model checking system based on SMARTcodes.  

 

 

Figure 2.21. Framework of SMARTcodes model checking system 
(Source: Conover, 2009) 

2.3.2.4.  Design Assessment Tool (DAT) 

Design Assessment Tool (DAT) has been funded by the General Service 

Administration (GSA) and developed at the Georgia Institute of Technology in 2008 

(Eastman et al., 2008). DAT is a rule checking system for circulation and security 

validation  of U.S. courthouses. In this system circulation and security rules of the USA 

Courts Design Guide (CDG) have been modeled. The Solibri Model Checker platform 

is used. The rule statements were grouped by conditions and modeled as a set of 

parametric rules in SMC making use of a plug-in developed for this purpose. The 

building project in IFC format is designed using BIM tools, following the GSA Series 

Six BIM Guide for Circulation and Security Validation. The checking module utilizes a 

topological graph for modeling the relationship between spaces and a metric graph for 

representing movement paths and distances within spaces (Lee et al., 2010). Based on 

these two graphs, the checking module is able to assess if circulation paths between 

various spaces meet code requirements. 

Trusted Entity

BIM 
DatabasesDictionary

Retained Data SMARTcodes 
Criteria

Model Checking Software BIM Authoring 
Software

Browser 
Interface

revisions to BIM

manual request



	
  
44 

2.3.3. Technologies 

Automated compliance checking systems are highly complex applications and 

they require significant software libraries to provide the needed functionality. Although 

efforts on developing automated compliance checking systems has been ongoing for 

nearly 20 years, existing platforms that support these systems is limited. FORNAX, 

EXPRESS Data Manager (EDM) and Solibri Model Checker (SMC) are three major 

platforms currently available that have been developed to support implementation 

aspects of compliance checking systems. These platforms provide object-based rule 

engines applying building code model rules to building information model (BIM) data. 

All of these platforms utilize the Industry Foundation Classes (IFC) as the neutral 

building information model file format. In the next sections, these platforms for 

compliance checking systems will be explained.  

2.3.3.1. FORNAX  

FORNAX is the first large effort in code compliance checking. It was developed 

by novaCITYNETS Pte. Ltd, an e-Government solution provider in Singapore, on top  

of EDM Model Checker (novaCITYNETS, 2000). FORNAX uses the basic building 

model information, exchanged in IFC format, and adds to it the required missing 

information associated with the building code compliance checking procedures. 

FORNAX platform has a C++ object library that takes necessary BIM data from the 

IFC file, derives the needed data for code compliance checking, and generates extended 

views of IFC data. FORNAX objects carry rules for assessing themselves. FORNAX 

objects are extendable to accommodate attributes and methods required to check the 

building project for code compliance. FORNAX is essentially developed as a 

development and deployment platform for the CORENET project. In this project, 

building codes are modeled on top of the FORNAX platform.  FORNAX has since been 

considered by a number of other building code compliance checking efforts as a 

possible platform (Khemlani, 2005). 



	
  
45 

2.3.3.2. EXPRESS Data Manager (EDM) 

EXPRESS Data Manager (EDM) is a comprehensive suite of model-driven 

database systems developed by Jotne EPM Technology, a Norwegian IT company 

(Jotne, 1994). EDM has been built specifically to manage the extremely complex data 

structures found in industrial applications that deal with what is generally known as 

product data models. EDM implements the methodology of the open international 

standard IS0 10303, commonly referred to as STEP (the STandard for the Exchange of 

Product Model data). EDM started out as a collaboration tool supporting work 

processes for data exchange, data sharing, data integration, and data archiving, but it has 

continued as a comprehensive open development environment with functional software 

tools using the EXPRESS language. The EDM package provides several additional 

modules including EDMmodelServer and EDMmodelChecker. EDMmodelServer 

module is an object-based database server providing textual reporting and server 

services. It consists of an object-based database, and a standardized set of tools to 

interact with the data (STEP or IFC) in the database. EDMmodelChecker is a model 

checking tool supporting the open development of EXRESS-based rule checking. This 

EDM module is open to user extensions. It allows users to build new computable rules 

using EXPRESS-X and provides an environment to execute them. These EDM modules 

are complex and require a high level of expertise in EXPRESS language to make use of 

them (Eastman et al., 2009). Several code compliance checking efforts used the EDM as 

part of their implementation, including the CORENET and DesignCheck projects. 

2.3.3.3. Solibri Model Checker (SMC) 

Solibri Model Checker (SMC) is an object-based stand-alone platform 

application developed by Solibri, a Finnish software company (Solibri, 1999). SMC 

provides a model checking tool that reads a BIM model, in IFC format, and maps it to 

an internal structure facilitating access and processing. It is capable of directly 

interfacing with BIM systems, visualizing building models, clash checking and code 

compliance checking against rule sets. The checking is carried out using parametric 

rules. Users can change the parameters of certain rules according to the building code. 



	
  
46 

SMC offers a set of built-in rules, and a rule configuration based on parameters. It also 

has a built-in tool for developing of rule sets, called Constraint Set Manager (CSM). 

New rules are added in java using the CSM. However, CSM is not publicly available, 

restricting the rules to be checked to those supplied by Solibri.  This means that users 

are not capable of editing or modifying built-in rules. Nor are they able to add new rules 

without editing the original code. 

Industry Foundation Classes (IFC): 

Industry Foundation Classes (IFC) is a standard building data model 

specification developed in 1994 by the International Alliance for Interoperability (IAI) 

that was later renamed as buildingSMART in 2005. IFC was developed specifically to 

meet the needs of the AEC industry (buildingSMART, 2008a). The IFC specification is 

a neutral data format for the representation of building information to enable 

interoperability between different software systems within the AEC industry.  

The IFC specification (ISO 16739) is derived from the STEP standard (ISO 

10303) which is an open international standard for the representation and exchange of 

product data in all industries. The IFC specification is written using the EXPRESS 

language that is a data definition language specified in part 11 of the STEP standard 

(ISO10303-11). The IFC exchange file format (.ifc) uses the “STEP physical file” 

format defined as ISO10303-21. In addition to the IFC_EXRESS specification there is 

an ifcXML specification to represent IFC building data model using XML schema 

specifications. The ifcXML exchange file format (.ifcXML) is the XML document 

structure. IFC also specifies techniques for extending the schema such as the IFC 

Property Set (PSet) that is a mechanism for adding custom properties to the standard 

IFC schema. Substantial efforts have been made to continuously develop the IFC 

specification. The current version of IFC was released in 2013 as IFC4. IFC is widely 

used and there are many reference sources on the IFC (ISO, 2002; Liebich, 2002; ISO, 

2004; Khemlani, 2004; Eastman, 2006; buildingSMART, 2008a; ISO, 2013). 

IFC is regarded as the dominant option for building information modeling in the 

AEC industry. Major BIM authoring software tools such as Autodesk Revit, Graphisoft 

Archicad, and Bentley MicroStation support IFC and have the capability of exporting 

their own building model data in IFC format.  Several automated code compliance 

checking efforts utilized IFC as a neutral file format (Han et al., 1998; Sing & Zhong, 

2001; Yang & Li, 2001; Ding et al., 2006; Wix & Conover, 2007; Eastman et al., 2008).  



	
  
47 

CHAPTER 3 
 
 

BUILDING CODE REPRESENTATION AND MODELING 
METHODOLOGY 

3.1. Introduction 

This thesis presents a new representation model and modeling methodology for 

building codes to support the development of compliance checking systems. The new 

representation model adopts the four level representation paradigm as a theoretical base 

and uses the semantic modeling approach for developing the building code 

representation. The new model organizes the representation in 4 levels. The tasks at 

each of the levels are (bottom-up): 1) modeling domain concepts by defining domain 

objects to represent concepts that exist in the building code text, 2) representing 

individual rule statements by employing formal computable semantic rule objects, 3) 

structuring dependency relations between the rule objects and thus defining rule-set 

objects, and 4) representing the organization of building codes via the creation of 

management objects that categorizes closely related rule-sets.  

3.2. Four Level Representation 

The new model is based on the four level representation paradigm (Fenves & 

Wright, 1977) which is derived on an abstract model of the logical structure of building 

codes identified by Nyman and Fenves (1975). According to this general structure, the 

content of the building code is described in four levels: 1) The top level provides the 

overall organization of the building code by grouping related statements into larger 

units (sections), 2) the intermediate level, i.e. the level of the sections defined by the top 

level, deals with a set of closely related statements and their dependency relationships 

(clauses), 3) the detailed level, i.e. the level of the clauses defined by the intermediate 

level, concerns individual statements (rules), and 4) the lowest level corresponds to the 



	
  
48 

leaf nodes of the representation tree and describes the terms referred to in the statements 

(concepts) and allows mapping to standardized building information models.   

Identifying the nature of building codes and the hierarchy of information in them 

is important for deciding on a modeling approach that can provide an effective method 

for the development of building code models. Nyman’s research provides a solid 

foundation for modeling building codes and defining the process of modeling building 

codes. This general organizational structure was initially used for the SASE model as a 

representation framework by Fenves et al. (1987) Subsequent studies on building code 

modeling are also based on this approach (Jain et al., 1989; Rasdorf & Lakmazaheri, 

1990). Although this approach was based on a solid theoretical foundation, its 

application in the field was not practical and models based on this theory were not 

widely adopted in AEC industry. Literature review reveals two important reasons for 

this failure. First reason is the lack of domain models that identify domain specific 

objects with their attributes and relationships. The lack of an industry standard in 

building modeling led to a high number of idiosyncratic data item definitions and 

increased the complexity of the building code models (Hakim & Garrett, 1992). Second 

reason is related to the representation methods used in the modeling of building code 

information. Decision tables and programming languages used for representation 

quickly became hard to maintain and build.  The complexities involved in actual 

building codes proved too difficult for these methods of representation (Fenves et al., 

1995). In summary, the four level paradigm was not adopted in practice, mainly due to 

the fact that information technologies for knowledge representation were not mature 

enough at the time. 

The new model developed for this dissertation adopts the four level paradigm as 

a theoretical base for representing building codes but addresses the above issues on 

knowledge representation methods by utilizing the relatively recent semantic modeling 

method that will be discussed in the next section.  

3.3. Semantic Representation – RASE Model 

Building codes have been represented in a number of ways, e.g. as decision 

tables, hard-coded rules, programming logic, domain-specific rule language etc. Ideally 

the representation should be independent of compliance checking systems. It should 



	
  
49 

also be adaptable to continuing building code amendments. The key is to make it 

possible for domain experts, who generally do not have any programming knowledge to 

manage the representations themselves. Semantic modeling approach, which is a 

relatively new method for knowledge representation, aims to meet the above 

requirements. One recent project, SMARTcodes, can be referenced as a good example 

of the use of this approach (Conover, 2009). SMARTcodes project aims to define 

computable rules using simple tools that enable non-programmers to create 

representations by tagging actual building code texts. It is based on the RASE 

(Requirement, Applicability, Selection, Exception) methodology. RASE defines four 

common constructs that make up a rule. These constructs are used to identify the 

building code essence from the actual text of the code (Nisbet et al., 2009).  

RASE paradigm states that building codes contain a number of ‘checks’, which 

typically demarcate a distinct section of the building code, and each check is made up of 

a number of requirement, applicability, selection, and exception parts. Every check 

must have at least one requirement indicator. It is the condition that must be satisfied by 

one or more aspects of a building. Similarly, every check must have at least one 

applicability indicator that defines which aspects of the building the requirements apply 

to. Applicability indicators can be seen as a definition of scope associated with the 

check. Checks may have selection indicators if the rule is for specified cases among the 

applicable elements. Checks may also contain exception indicators. Exception 

information identifies the conditions under which the check is not applicable to the 

building elements. RASE paradigm utilizes these four types of indicators as a basis of 

the common constructs of checks. Each of these four constructs has the following 

attributes: Topic, property, comparator, value and unit. Building code authors are able 

to markup these indicators that appear in the actual text of the code using SMARTcodes 

Builder software which creates an XML formatted version of the code (Conover, 2009).  

RASE paradigm is a good starting point for modeling building codes. It provides 

an easy to understand simple method for deconstructing rule sentences. It also 

accommodates a scheme where code authors are able to build and maintain building 

code representations. In order to evaluate the capability of the RASE method to model 

real building codes, a pilot study was conducted for developing a representation for the 

Izmir Municipality Housing and Zoning Code (IMHZCode) using RASE constructs 

(Macit et al., 2013). IMHZCode rules have been modeled as requirement, applicability, 

selection, and exception objects. Some examples of how rules are modeled are shown in 



	
  
50 

Table 3.1. The experiences gained in this study showed that RASE methodology offers 

an ease of use for non-programmers and could be adapted to represent IMHZCode, 

however, some modifications would be beneficial to overcome three shortcomings that 

were identified.  

Table 3.1. Examples of rules from IMHZcode modeled according to the RASE  

Id Rule text Applicabilities Selections Exceptions Requirements 

1 Clear height of doors 
shall be at least 2.10 m. door  - - door.height>= 2.10m 

2 

Clear width of entrance 
doors of independent 
unit shall be at least 
1.00 m. 

door type=entrance - door.width>=1.00m 

3 
Buildings shall have at 
least one non-wood 
staircase. 

building - - 
hasStair=true 
& 
stair.material=!wood 

4 
The minimum width of 
a flight  and a landing  
shall be 1.20 m. 

stair - - 
flightWidth=1.20m 
& 
landingWidth=1.20m 

5 

Roofs in general must 
remain within 33% 
sloping height, except 
duplex houses. 

roof - building.type= 
duplexHouses pitch<=33% 

 

First shortcoming is the unnecessary repetitions that occur due to the 

independent modeling of individual rule statements. Representations of the same 

concepts, referenced by multiple rules, are repeated many times for each applicability or 

selection construct they are a part of. While this approach allows rules to be 

independently modeled, it is prone to inconsistencies and creates redundancies. 

Inconsistencies may develop when the same concept is modeled differently in different 

contexts (rules).  Building codes, in general, have a number of rule statements that 

indicate different requirements about the same concept. This is true especially for 

IMHZCode. Hence, the pilot study results unveiled a high number of redundant 

definitions especially for applicability constructs. The Domain Level that will be 

discussed in the next section is introduced to address this issue by creating a lower level 

library that can be used to define these repeating concepts once.  

Second shortcoming is the lack of explicit relationships between individual rule 

statements. RASE methodology delegates that responsibility to processing at a higher 

level within automated compliance checking systems. In the SMARTcodes project, first 



	
  
51 

the original code text is marked-up, then this marked-up text is structured into an XML 

representation, and in the last stage the XML file is used to create computable rules for 

the automated checking system. It is in this final stage that the relationships are 

represented in the form of an IFC constraint hierarchy. This totally independent 

handling of rule statements simplifies deconstructing rules for especially non-

programmer code authors. However, with the relationship representation taking place 

separately in the automated checking system, it becomes impossible to ensure 

correctness and consistency for the overall code representation independent of 

automated checking systems. Moreover, this split organization has a negative impact on 

the maintainability of the representation as well. It is necessary to represent the 

relationships independent of automated checking systems. The Management Level and 

the Rule-set Level of the new model are introduced to address this shortcoming and they 

will be discussed in the following section. 

The third shortcoming is about the exception construct of RASE. The pilot study 

revealed that it is unnecessary to represent separate selection and exception information 

for individual rule statements. Exception information is the opposite of selection 

information and it can be represented within the selection construct by including a 

“excludes” comparator. In the new model, the exception constructs are eliminated. 

In summary, while the RASE methodology was adopted, it was modified into a 

four level representation that improves it by eliminating redundancies and adding 

logical relationships. It is possible to ensure the conciseness and consistency of not just 

individual rule statements but the overall code model. The new model is completely 

independent of actual checking systems and thus should be easier to maintain. The new 

model is discussed in detail in the next section. 

3.4. Building Code Representation 

The new building code representation model developed as part of this thesis 

combines the semantic modeling method established by the SMARTcodes project (Wix, 

2008) with the theoretical foundations set by Nyman and Fenves (1975), namely the 

four level methodology. This new hybrid approach aims to; 

 



	
  
52 

1. establish a building code representation independent of checking systems,  

2. preserve the high level of maintainability in RASE,  

3. minimize redundancies by introducing a hierarchical structure across four 

levels and improve on conciseness, 

4. offer a level in which rule relationships are modeled and monitored so that 

consistency of a building code model can be ensured. 

The new building code representation model is proposed to provide a systematic 

structure for representing building codes in computer implementable format. The 

proposed model consists of four levels:  

1. The domain level which models the concepts, which are mentioned in the 

original building code text, their attributes and relationships. 

2. The rule level where individual rule statements of the building code are 

represented in a structured format, utilizing the concepts modeled at the 

domain level. The rules are modeled based on modified RASE constructs. 

3. The rule-set level where relationships between rule objects are defined 

forming the rule-sets.  

4. The management level which reflects the overall organization of the building 

code model by connecting and categorizing the rule-sets. 

The four levels are discussed in the following sections starting with the lowest 

level. 
 

 

Figure 3.1. Four level structure of the new model 

Domain Level
Identifies and models concepts, attributes, and their relationships

Rule Level
Represents individual rule statements in a computable form using 

modified RASE constructs.

Rule-set Level
Groups closely related individual rules and setting their relations up 

Management Level
Establishes the overall organization of a building code model



	
  
53 

3.4.1. Domain Level 

Building codes state requirements to be met, but also describe objects subject to 

these constraints. Building codes should be modeled in a way that reflects this dual 

purpose. Modeling rules and constraints are about “how” an entity materializes while 

modeling entities is about “what” the entity is. The two naturally have differences in 

representation.   

Building codes refer to concepts specific to the domain which the codes are 

meant for (e.g. fire safety, accessibility) as well as entities that correspond to various 

aspects of the building project such as physical building components, spaces and 

relations (e.g. building, independent unit, storey, etc.). Automated compliance checking 

systems assess building projects after mapping these concepts and entities in the build 

code representation to objects that constitute a building project. The mapping process 

will benefit from modeling of these domain specific concepts and entities independent 

of the rules with hierarchical relationships that are similar to the ones in the building 

information model.   

RASE methodology integrates the code requirements and the domain specific 

concepts and entities in a single rule representation. While this simplifies conversion of 

building code texts into a computable building code model, it requires defining the same 

concepts and entities multiple times for every rule where they are referenced. This may 

lead to inconsistencies especially when the concept or entity definitions require updates. 

By first defining the domain specific concepts and entities, independent of the 

rules, a domain model is created. The domain model acts as a library of objects that are 

utilized during the modeling of individual rule statements. The library objects can be 

used as building blocks during modeling and maintenance of the rules by code authors 

with no programming background.  

This domain model also helps expose how domain specific information can map 

to building models in external systems. It is aimed at facilitating communication and 

interoperability among building information models, building code models, and 

automated compliance checking systems.  

For the new model, creating domain objects that form the lowest level is 

naturally the initial step. In this step, concepts and entities referenced in the building 

code text are identified and modeled with their attributes and their relationships to each 



	
  
54 

other. The output of this level is a domain model that is a library of all required 

concepts and entities with attributes and relationships. These building code domain 

objects are used when modeling rules. The applicability constructs in RASE 

methodology are filled by selecting from this library of domain objects.  

3.4.2. Rule Level  

Representing the individual rule statements in computable format is the second 

step in the new model. Building codes include a set of rule statements that a building 

project must satisfy. Building projects are checked against the requirements and/or 

conditions, indicated by these rule statements. Automated compliance checking systems 

are rule-based systems and they require that rule statements are represented in a 

computable format. These modeled rules are later used to check compliance of projects 

that are also in digital form. 

In this rule level, individual rule statements are represented as rule objects in the 

form of structured data based on the modified RASE constructs. Rule statement 

semantics of the building code are captured in rule objects. Each rule object determines 

a single requirement for a specific attribute of objects that meet specific criteria. Every 

requirement is specified by a specific value and a method for comparison. All objects 

reside in the domain model. 

In general, rule statements only have requirement information that indicates a 

quality requirement that must be satisfied by a domain concept. In some cases, rule 

statements also have selection information, if the requirement is for specified cases 

among applicable objects. Separate requirement and selection objects are modeled to 

capture this. Every rule object must have a single requirement object and may have zero 

or more selection objects. Basic structure of the rule object is given in Figure 3.2 
 

 

Figure 3.2. Basic structure of the rule object 

Rule

Requirement Selection

1

0..*

1

1
has has



	
  
55 

Selections define the circumstances under which a rule is applicable. The 

modeling of selection criteria as part of a rule allows all rules to be applied during the 

automated checking process and eliminates the possibility of unfired rules in rule based 

systems.  To check for conformance with a rule, its requirement is checked. If the 

selection under which a rule is applicable is true, the requirement is checked for 

conformance. If not, the rule is regarded as inapplicable and ignored. 

Both requirement and selection objects have the general form: A “subject” and a 

“predicate” (Figure 3.3).  

 

 

Figure 3.3. Structure of the rule object accommodating properties 

The subject has a simple structure consisting of two basic elements: a concept, 

and a property (e.g., door - height). Concepts come from the domain level and may be a 

physical building component such as wall, door, slab, or an abstract concept such as 

space (living room), zone (independent unit). Properties are attributes of interest 

belonging to the concept. The predicates define the particular quality required of the 

subject (e.g., height of doors shall be at least 210 cm); each predicate has a comparator, 

a value, and a unit. The comparator is one of the relational operators (e.g. greater than, 

less than, equal to). The value is the specific value that is found in the code, whether 

numeric, descriptive, or Boolean. The unit simply specifies the unit of measure for the 

value. (Figure 3.4) 

Rule

Requirement Selection

Subject Predicate

1

0..*

1

1
has has

has
has has

1 1

1

1

1

1

1
has
1



	
  
56 

 

Figure 3.4. Detailed structure of the rule object 

In the modified RASE, rules appear to be made up of only requirement and 

selection constructs. However, the applicability and exception information also exist. 

Applicability information is embedded as the subject part of the requirement objects and 

exceptions are handled within the selection objects.  

When building a rule object, the concept and property will be drawn from the 

library of concepts modeled in the lower domain level. The concept list would be 

editable for adding new concepts when the building code is revised.  

Building rule objects that form the rule level of the representation is the second 

step of the overall modeling process. At the end of this step, all rule statements in the 

code are modeled as separate objects that are ready to be linked at the higher level. 

Table 3.2 and Figure 3.5 illustrate examples of the rule representation in both 

table and XML formats. 

Table 3.2. An example of rule representation in table form 

Requirement Selection 
concept property comparator value unit concept property comparator value unit 

door height ≥ 210 cm - - - - - 
door width ≥ 130 cm door relatedSpace equal mainEntrance - 
door width ≥ 100 cm door relatedSpace equal entrance - 
door width ≥ 90 cm door relatedSpace equal room - 
door width ≥ 90 cm door relatedSpace equal kitchen - 
door width ≥ 80 cm door relatedSpace equal bathroom - 
door width ≥ 80 cm door relatedSpace equal cellar - 

Rule

Requirement Selection

-concept
-property

Subject
-comparator
-value
-unit

Predicate

1

0..*

1

1
has has

has
has has

1

1

1

1

1

1

1

1
has



	
  
57 

 
<Rule 1>  
 <Requirement>  
 <Subject> 
 <concept> door </concept> 
 <property> height </property> 
 </Subject> 
 <Predicate> 
  <comparator> ≥ </comparator> 
  <value> 210 </value> 
  <unit> cm </unit> 
 </Predicate> 
 </Requirement> 
</Rule 1> 
<Rule 2> 
 <Requirement>  
 <Subject> 
 <concept> door </concept> 
 <property> width </property> 
 </Subject> 
 <Predicate> 
  <comparator> ≥ </comparator> 
  <value> 130 </value> 
  <unit> cm </unit> 
 </Predicate> 
 </Requirement> 
 <Selection>  
 <Subject> 
 <concept> door </concept> 
 <property> relatedSpace </property> 
 </Subject> 
 <Predicate> 
  <comparator> equal </comparator> 
  <value> mainEntrance </value> 
 </Predicate> 
 </Selection> 
</Rule 2> 
<Rule 3> 
 <Requirement>  
 <Subject> 
 <concept> door </concept> 
 <property> width </property> 
 </Subject> 
 <Predicate> 
  <comparator> ≥ </comparator> 
  <value> 100 </value> 
  <unit> cm </unit> 
 </Predicate> 
 </Requirement> 
 <Selection>  
 <Subject> 
 <concept> door </concept> 
 <property> relatedSpace </property> 
 </Subject> 
 <Predicate> 
  <comparator> equal </comparator> 
  <value> entrance </value> 
 </Predicate> 
 </Selection> 
</Rule 3> 
 

Figure 3.5. An example of rule representation in XML format 



	
  
58 

3.4.3. Rule-set Level  

Defining the relationships between rule objects representing individual rule 

statements is the third step in the new model. In the rule level (second step) each rule 

statement gets modeled with only one requirement for a specific property of a concept 

or entity and with selection information that clarifies the conditions under which the 

requirement applies to the concept or entity. However, in most cases an entity is subject 

to multiple requirements that vary according to the conditions. Multiple rule statements 

are used in order to specify and clarify conditions and requirements for a property of a 

concept or entity. Rules need to be connected representing the logical relationships that 

exist implicitly or explicitly within the semantics of a clause. Rules may be stand-alone, 

stating a requirement that is unrelated to other rules. However, for the most part, rules 

depend on each other. They either modify requirements or introduce additional 

requirements depending on the conditions. Rules can be joined with an OR conjunction 

when modifying the requirements and an AND conjunction when adding new 

requirements.   

It is important to identify how these rule objects combine. Rule objects are 

related to one another through the property addressed. Rule objects are typically 

cumulative. If there are several rule objects that indicate various requirements to be met 

by a particular property of the same concept, it is expected that all of these rules be 

satisfied. If rule objects make an exception or modification to the requirement of other 

rules, then these rules are alternatives. Only one of these rules will be applicable.  

In the new model related rule objects are collected together into computable 

rule-sets by using logical conjunctions. AND conjunction is used for combining rule 

objects that indicate different values to be satisfied by a particular property of a concept 

simultaneously. OR conjunction is used for a relation between rules that indicate 

alternative values to be satisfied by a particular property of a concept depending on 

specified conditions. While all rule objects that are combined with an AND conjunction 

must be satisfied by the related concept, only one of the rule objects that are combined 

with an OR conjunction should be satisfied.  

The output of this step is a collection of rule-set objects. This rule-set model is 

the logical combination of distinct rule objects. Rule objects are grouped into rule-sets, 

when they are all addressing the same subject (a property of a concept) that is being 



	
  
59 

constrained. Rules are connected by logical conjunctions and form a tree where the root 

is the rule-set. The leaf nodes are the rules that have been modeled at the lower level. 

Figure 3.6 shows the structure of the rule-set object.  

 

 

Figure 3.6. Structure of the rule-set object 

3.4.4. Management Level 

Building codes are useful only if users (checkers or designers) can determine 

which portions of the building code pertain to their problem. To facilitate this, building 

codes are organized into chapters, sections, and paragraphs, with corresponding tables 

of contents and indexes. The user of a building code model should also be able to 

identify which rules of the building code apply for a given design situation. The 

building code model, therefore, needs to be organized in a systematic manner such that 

individual rules can be accessed easily. An organizational system can also be used to 

develop an outline to arrange the rules and to define the scope for the building code. In 

the new model, the fourth step addresses issues related to the organization of the rule-

sets modeled in the rule-set level (third step).  

One natural method of organization is the one that reflects the original building 

code text. Rule-sets can be grouped to reflect the clauses and clauses can be ordered 

under sections following the order in the actual code document. However, it is 

beneficial to allow for alternative organization schemes to exist simultaneously. One 

such alternative organization is to group rule-sets according to the concepts they impose 

requirements for. In the actual code document requirements on a single concept can 

span across multiple clauses making it difficult to recognize inconsistencies. To 

Rule-Set

Conjunction Rule

1

1..*

1

0-1

has has

1

0..*

has



	
  
60 

overcome this shortcoming a concept-based organization is preferable. The concept-

based organization is also helpful for automated compliance checking algorithms in 

identifying all rules that need to be processed for a given concept. The management 

level is included to allow alternative networks of linked rule-sets to co-exist. Moreover, 

this top level of the new model allows various building codes (such as Fire Safety Code, 

High rise code) to be aggregated exposing possible conflicting provisions on concepts. 

These organizing networks are modeled using rule-set group objects that form a 

tree. The root of the tree represents to overall code while the leaves are the rule-sets that 

are defined at the third level. Any number of intermediary nodes can be defined and 

they represent headings and sub-headings (sections and clauses in the actual document 

organization). Figure 3.7 shows the structure of the rule-set group object. 

 

 

Figure 3.7. Structure of the rule-set group object 

Rule-Set Group

Building Code
1

1..*
has

1

1..*

Rule-Set

has



	
  
61 

 

Figure 3.8. Overall structure of  building code representation model 

Rule Level
Representing the 
individual rule 
statements in a 

computable form 
using modified 

RASE constructs.

Domain Level
Identifying and 
modeling the 

concepts, 
attributes, and their 

relationships

Rule-set Level
Putting together 
closely related 
individual rules 
and setting their 

relations up 

Management 
Level

Establishing the 
overall 

organization of 
building code 

model

1

1

1

Requirement Selection

-concept
-property

Subject
-comparator
-value
-unit

Predicate

1

0..*
1

has has

has hashas has
1

1

1

1

1

1

1..*

Conjunction

11

0-1

1

0..*

has

1..*

has

1..*

1

1..*

has
1

0..*
1

1

Rule-Set Group

- properties

Domain Object

Rule-Set

Rule

Building Code



	
  
62 

3.5. Building Code Modeling Methodology 

The modeling process is crucial in order to develop building code 

representations. Representing building codes in computer implementable format is not 

only a technological issue, but also a process issue. Developing building code 

representations by utilizing the proposed model requires a clear, transparent, and well 

defined process.  

A straightforward methodology, which comprises three process stages for 

building code representations, is proposed in this thesis. Below are the recommended 

process stages to develop building code representations based on the proposed model. 

Each stage identifies what should be done, what should be delivered from this stage, 

and who the main actors in this step should be.  

Stage 1: Analysis of the building code to define what should be represented 

explicitly for the purposes of automated compliance checking and to document how 

much of the building code can be modeled reliably. 

Stage 2: Representation of the building code by utilizing the developed 

representation model. 

Stage 3: Implementation of the building code model within a compliance 

checking application. 

Next section explains these stages in detail. Figure 3.9 illustrates the stages of 

the building code representation methodology.  

 



	
  
63 

 

Figure 3.9. Stages of the methodology for building code representation 

Building Code Modeling

Test Results

List of 
Formalizable Rules

Building Code 
Model

Stage 1: Analysis

Determination of  the scope

Decomposition of  the Building Code

Classification of the Rule Statements

List of Selected Clauses

List of Statement Types

List of Classified Rule 
Statements

Building Code 
Domain Expert 

Software 
Engineer

Stage 2: Representation

Representation of Domain Concepts 

Representation of Rule Statements 

Representation of Relationships 
between Rules

Representation of the Building Code 
Organization

Rule Model

Domain Model

Rule-Set Model

Rule-Set Group Model

Building Code 
Domain Expert 

Software 
Engineer

Stage 3: Implementation

Implementation of the Building Code 
Model 

A Code Compliance 
Checking System

Software 
Engineer

Testing of the Building Code Model 
for Correctness

Compliance Checking 
Report

Building Code 
Domain Expert



	
  
64 

3.5.1. Analysis Stage 

The process of representing building codes in computer implementable format is 

not trivial due to the complex nature of building codes. It is essential to document the 

various types of information contained in building codes as well as the organization of 

the codes in order to develop a building code representation. Thus, analysis of the 

building code is the first stage in the proposed building code modeling methodology. 

This stage covers the following steps:  

1. Determination of scope 

2. Decomposition of the building code 

3. Classification of the rule statements 

3.5.1.1. Determination of the Scope 

The first step in the analysis stage is to determine the scope. It should be clearly 

specified which building code, chapter, and clauses will be included in the 

representation. The assumptions and the scope of the building code representation as 

well as the goals for the work need to be defined leaving no ambiguities, gray areas or 

imprecise notions.  

Building codes are complex written documents and they include various types of 

information. They are composed of different types of clauses. While some clauses 

define constraints about buildings, land readjustment, or construction issues others 

describe the general issues such as aim, scope and legal basis of the building code, or 

explain specific names used in the building code and give detailed definitions for 

various terms. Since the development of building code representations is aimed to be a 

base for automated code compliance checking, the building code clauses pertinent to 

buildings should be determined and documented.  The output from this step will be a 

human readable document listing the parts of the code to be modeled, defining the 

scope of the representation. The actors of this step are the building code domain experts 

appointed by the authority. 



	
  
65 

3.5.1.2. Decomposition of the Building Code 

The second step of the analysis stage is the decomposition of the building code. 

In this step, the clauses related to buildings are decomposed into a list of statements and 

all statement types that exist are determined. As explained in detail in section 2.1.2 

building code clauses compose of different types of statements. While some of these 

statements are informative such as clarifications or applicability conditions, others 

relate to rules which all building projects must satisfy. Automated code compliance 

checking systems apply rules to a proposed project, therefore the statements defining 

rules are of interest. Decomposition of the building code should identify the various 

types of statements and extract the rule statements. The output of this step will be a 

human readable document listing statements with determined types. The actors of this 

step are the building code domain experts appointed by the authority. 

3.5.1.3. Classification of the Rule Statements 

In the last step of the analysis stage, rule statements are classified in order to 

document how much of the code as well as which types of rules can be modeled. 

Building codes may include rules that are open to interpretation, uncertain, sometimes 

even contradictory and impossible for modeling. It is needed to document how much of 

the code can benefit from automated code compliance checking. Classification of rules 

according to their formalizability will help to assess potential coverage of building code 

representations. In addition to the formalizability issue, building codes have a 

complicated structure. They contain closely related rules that are making exceptions, 

modifications, or clarifications to other rules as well as stand-alone rules that are 

unrelated to other rules. It is important to understand the relationship between rules in 

order to model them correctly. Classification of rules according to their self-

containedness will help to figure out relationships between them. The output of this step 

is a list of rules that can be represented in computer implementable format. This step 

needs interdisciplinary knowledge in determining which concepts can be represented in 

computer implementable format.  Cross-disciplinary collaboration should be provided 

and the building code domain experts should work with software engineers. 



	
  
66 

Analyzing the complex structure of building codes and determining different 

types of rules is the first stage in development of building code representations. During 

the analysis stage, the building code, the chapters of the code, and the clauses of the 

chapters to be represented are determined and all rules in selected clauses are classified. 

Next stage in the proposed building code modeling methodology is to represent the 

code by utilizing the developed representation model.  

3.5.2. Representation Stage 

Representation of the building code is the second stage in the proposed building 

code modeling methodology. In this stage that focuses on modeling, one important 

concern is about the structure of the building code representation. In the literature there 

are two approaches about how the structure of the building code representation should 

be.  Han et al. (1998) suggests that the structure of the building code representation 

should be similar to the structure of the building information model. On the other hand, 

Nisbet et al. (2009) believes the structure of the building code representation should be 

similar to the structure of the building code. While Han’s approach allows for fast rule 

execution, Nisbet’s approach allows for easier code generation and enables higher level 

of maintainability. In this research Nisbet’s approach has been adopted because the 

main focus is to represent building code rules in a computable format independent of 

compliance checking systems. If system performance proves to be a serious issue for 

future compliance checking systems, such systems should be able to employ their own 

representations of the code that can be derived from a digital representation which is 

implementation neutral. 

After the structure of the building code representation has been determined, the 

building code is modeled based on the developed representation model. As explained in 

section 3.4 the developed representation model consists of four levels:  

1. Domain level 

2. Rule level 

3. Rule-set level 

4. Management level  

The representation stages cover respectively these levels as modeling steps.   



	
  
67 

3.5.2.1. Representation of Domain Concepts 

The first step in the representation stage is the modeling of the building code 

domain concepts as object classes that form the domain level of the proposed 

representation model. For creating domain object classes, concepts in the building code 

document are identified and modeled with their attributes and their relationships to each 

other. In this step, building code domain experts and programming experts work 

together. This process is undertaken in three stages:  

1. Extracting and listing the concepts and entities referenced in the building 

code document. 

2. Identifying the required attributes of the objects and determining the 

relationships between them.  

3. Implementing the representation as a library of objects in a computer-based 

form 

The output of this step is a domain model, which will be utilized when modeling 

rules in the second step. For creating a domain model, two possible modeling 

approaches exist. The first involves modeling every concept of building code in a class 

hierarchy. In this approach specialized concepts  are represented as sub-classes of the 

general concept classes. (e.g., a “kitchen door” can be modeled as a subclass of “door”.) 

However, this approach tends to increase the complexity of the domain model.  The 

second involves, instead of modeling every concept as a class, the creation of a concept-

mapping table. This table lists all concepts of the building code and determines how 

each concept is represented; either as a class or a filtered set of instances within a class. 

(e.g., a “kitchen door” can map to all instances of “door” objects with the 

“relatedSpace” attribute value of “kitchen”.) While the first approach can be useful 

when modeling simpler code documents, for modeling building codes that include a 

high number of concepts with complex relationships, the second approach should be 

adopted since a high number of specialized sub-classes can be avoided. 



	
  
68 

3.5.2.2. Representation of Rule Statements 

The second step in the representation stage involves modeling individual rule 

statements of the building code as rule objects in the form of structured data. The rules 

are modeled using the rule model schema developed as part of the proposed 

representation model. In this step, rule statement semantics of the building code are 

captured in rule objects. These rule objects form the rule level of the proposed 

representation model. This process is carried out by building code domain experts and 

involves breaking down of the building code rule statements into its constructs and 

modeling rules by utilizing the concepts modeled in the lower domain level. The output 

of this step is a rule model covering separate rule objects indicating a single requirement 

of the building code rule statements. 

3.5.2.3. Representation of Relationships between Rules  

The third step in the representation stage of the building code modeling 

methodology involves defining relationships among rule objects modeled in the second 

step. In this step, related rule objects that are associated with the same subject are 

collected together into computable rule-sets by using logical conjunctions. These rule-

sets form the rule-set level of the proposed representation model. This process is 

handled by building code domain experts and involves using two logical conjunctions 

“AND” and “OR” for connecting rule objects. AND conjunction is for connecting rule 

objects indicating the different conditions that apply simultaneously for the same 

subject. OR conjunction is for connecting rule objects that indicate alternative 

requirements for the same subject depending on specified conditions.  The output of this 

step is the rule-set model covering a collection of rule-set objects. This rule-set model is 

the logical combination of distinct rule objects. 



	
  
69 

3.5.2.4. Representation of the Building Code Organization  

The fourth step in the representation stage of the building code modeling 

methodology is the modeling of alternative organizations of the overall building code 

representation by categorizing rule-set objects modeled in the third step. For 

categorizing rule-set objects, which reflect overall organization of the code 

representation, there are multiple methods. One natural method of categorizing rule-set 

objects is the one reflecting the structure of the original building code document. In this 

method, rule-set objects are grouped to reflect the clauses of the actual building code 

document. However, this method makes it difficult to recognize inconsistencies because 

of the scattered structure of building code documents. One alternative method that is 

appropriate for use by automated code compliance checking systems is grouping of 

rule-sets according to the concept they are related to. This allows automated checking to 

easily access all rules that apply to a given object. There may be many other 

possibilities in grouping rule-sets appropriate to the goal of the system being developed. 

It is possible to have multiple classifications exist independently at this level. The 

output of this step is the rule-set classification objects, which will be employed by 

compliance checking algorithms to identify all needed rules to be processed for a given 

project. Building code domain experts carries out this step.  

3.5.3. Implementation Stage 

During the second stage, which is named as the representation stage in the 

proposed building code modeling methodology, the building code is modeled based on 

the new method of building code representation developed as part of this thesis. 

Implementation of the building code model within a compliance checking application is 

the third stage in the proposed building code modeling methodology for development of 

building code representations. This stage consist of two steps: 1) Implementation of the 

building code model and 2) testing and validation. 



	
  
70 

3.5.3.1. Implementation of the Building Code Model 

It is important to actually implement the building code representation in 

compliance checking applications as part of the development process. Through the 

implementation process, several ambiguities, unclear points, missing definitions 

(concept, rule, relationship), and insufficient scope definitions can be revealed.  

Answers to questions such as, “Is all the required information for calculating a window 

opening area available in the building information model?” can only be validated 

through implementation. Moreover implementation is necessary for the purpose of 

demonstration and evaluation of the developed model for the representation of building 

codes. The developed representation model is intended to be utilized as a basis for 

compliance checking systems. Thus it should be demonstrated through an actual 

implementation. 

One important issue during the implementation of the building code 

representation in a compliance checking application is related to the identification of 

building information modeling requirements for the building code domain. Building 

information models represent a building in digital format, hold all necessary 

information about the design, and are checked against the code for compliance. 

However, building information models created by a typical BIM platform such as 

REVIT or ARCHICAD, to date, do not include the level of detail needed for most 

building codes. For this reason, modeling requirements for building code domains 

should be identified. This information must then be used to extend the BIM standard 

(IFC) and built into the design software to allow proper data exchange. The domain 

model which is developed as the first level of the representation, in fact, embodies the 

modeling requirements for building code domains. How much of the required data can 

be obtained from the building information models should be analyzed in the 

implementation stage. This information can be used to inform efforts towards 

establishing BIM standards.  

This stage is carried out by software developers and involves identifying 

modeling requirements by utilizing the domain objects modeled in the first step of the 

representation stage, and methods of mapping the domain model to the building 

information model. The output of this step is a running system that is able to execute 



	
  
71 

compliance checking of building projects modeled in BIM environments against the 

building code representation.  

3.5.3.2.  Testing and Validation 

The second step in the implementation stage is testing and validation of the 

building code model. The Building code model should be evaluated in terms of the 

three requisite properties found in literature (completeness, uniqueness, and 

correctness). These requisites are used to evaluate whether building code models are 

appropriately represented in computational format by most of the research on 

representation of building codes. These requisite properties are defined as follows 

(Gero, 1984; Fenves et al., 1987): 

• Completeness, meaning that the code model can be applied to all possible 

situations (conditions) within its scope;  

• Uniqueness, meaning that the model has no redundant rules and has no 

contradicting rules and generates the same unique result every time, when 

applied under a given set of conditions; 

• Correctness (clarity), meaning that the result of applying the model must be 

consistent with the objective of the building code.  

Fenves states that completeness and uniqueness are syntactic properties that are 

related to the organization of the code, while correctness is a semantic property that is 

more related to the meaning. The new building code representation is based on the 

RASE constructs and each rule statement is modeled individually. This makes 

guaranteeing completeness simple and is a major strength of the approach. By ensuring 

that all statements identified (to be within scope) in the analysis stage are modeled 

completeness can be guaranteed. 

Uniqueness ensures that only one rule is applicable for any given situation. 

Uniqueness can also be defined as the lack of redundancy and lack of contradiction. A 

rule object is said to be redundant if its applicability conditions are guaranteed to be 

superseded by other rules. A set of rules is said to be in contradiction when they are all 

applicable for a given situation (condition). The four level structure of the new 

representation follows Nyman’s proposed structure for building code representations. 



	
  
72 

The third level which is the rule-set level of the new building code representation is 

designed to expose the relationships between the rules.  Each rule-set deals with a single  

property of a single domain object and all rules related to the property are collected 

under a single tree based on the applicability conditions of each rule. Only one rule 

from the tree is selected as applicable and thus contradictions are not possible. The 

explicit modeling of conditions in the rule-set tree makes it simple to ensure that there 

exists a set of conditions for selecting each rule and thus redundancies are avoided. 

These features of the new representation ensures uniqueness.  

Correctness ensures that rule objects represent the meaning, intentions, and 

implications of the corresponding rule sentences correctly. Completeness and 

uniqueness are syntactic properties and the representation can guarantee them, but 

correctness is semantic. The developed building code model should be tested for 

correctness. The results need to checked and validated by building code domain experts 

preferably by ones outside the core committee developing the building code 

representation. Validation should be done using the running compliance checking 

system built in the first step.  The testing of the building code model should be carried 

out using specially prepared test cases. The test cases should include both valid and 

invalid building design instances for each and every rule in the code. The output of this 

step in the building code modeling process is a human readable document validating the 

building code representation. If the results of the testing identify erroneous or 

incomplete modeling, this information is used as input to start another iteration of the 

representation stage in order to resolve the issues. If there are no errors, the modeling 

process ends. 

  



	
  
73 

CHAPTER 4 
 
 

IMPLEMENTATION AND EVALUATION  

In order to provide a proof-of-concept implementation for the newly developed 

representation model, a case study has been conducted. The case study focused on 

modeling an actual building code and illustrating the use of this model within future 

compliance checking applications. For the case study, İzmir Municipality Housing and 

Zoning Code (IMHZCode) has been chosen. IMHZCode is representative of codes that 

are in effect throughout Turkey. From IMHZCode, the subset of all clauses pertinent to 

buildings has been modeled. This implementation illustrates the process for 

representing an existing building code. 

The case study has been carried out in 3 stages following the proposed building 

code representation methodology in section 3.5. Next sections explain these steps in 

detail and show the results.  

Stage 1: Analysis 

  Scope 

  Decomposition 

  Classification 

Stage 2: Representation 

  Domain objects 

  Rule objects 

  Rule-set objects 

  Rule-set group objects 

Stage 3: Implementation 

  Prototype 

  Testing and Validation 



	
  
74 

4.1. Analysis 

4.1.1. Scope 

In order for the new model to be applicable to as wide a range of code 

documents as possible, the case study needed to focus on a complex building code with 

a large set of rules. To determine which building code will be modeled in the case 

study, current building codes in Turkish Architecture, Engineering and Construction 

(AEC) industry have been examined. In Turkey, every building project is checked 

against primarily the housing and zoning code of municipality where the building will 

be built. The municipalities’ housing and zoning codes include rules defined by the 

ministry documents and add further specifications. Being based on the ministry 

documents, all housing and zoning codes contain similar rules with few exceptions. 

Building codes get tested primarily in municipalities of large cities where unforeseen 

cases and situations come up and force clarifications of code. İzmir is the third most 

populous city in Turkey and its housing and zoning code is representative of codes that 

are in effect throughout Turkey. In this respect, İzmir Municipality Housing and Zoning 

Code (IMHZCode) has been chosen for the case study.  

IMHZCode is the legal document that specifies minimum conditions that need 

to be satisfied by settlements and construction operations within the İzmir Metropolitan 

Municipality and its environs. Its main structure is divided into six parts as illustrated in 

Table 4.1. 

Table 4.1. The Structure of IMHZCode 

Part 
Id 

Part  
Heading 

Clauses 

I General Rules 1 - 10 
II Definitions 11 - 23 
III Rules Related to Buildings and Land Readjustment 24-66 
IV Rules Related to Construction Permit and Building Occupancy Permit 67-76 
V Buildings, Building Parts and Facilities Subject to Special Rules 77-86 
VI Rules Rescinded, Interim Provisions and Entry in to Force  87-89 

 



	
  
75 

The rules related to buildings are covered by the clauses that are included in part 

III whereas the rest of the building code is either informative or unrelated to buildings. 

Part III also includes clauses related to other subjects. Table 4.2 shows all clauses of 

Part III and the issues of their relevance. Each of the clauses pertinent to buildings 

consists of several rules defining constraints relating to specific concepts such as roofs, 

windows, doors, staircases etc. For the case study, IMHZCode’s clauses that include 

rules pertinent to buildings are modeled based on the developed representation model. 

In the next stages of the case study IMHZCode is analyzed in detail. First, the 

clauses related to buildings are decomposed into a list of statements. Then all statement 

types that exist are determined. After that, rule statements are classified according to 

their self-containedness and formalizability in order to document how much of the code 

as well as which types of rules can be modeled.  

4.1.2. Decomposition 

In this stage, IMHZCode’s clauses that include rules pertinent to buildings are 

extracted. 27 clauses are found on buildings and these clauses are decomposed into a 

list of statements. As a result of the decomposition study, the statement list containing 

all 297 individual statements that form the clauses related to buildings is obtained. 

Afterwards, the type of each statement is determined as being one of “clarification”, 

“applicability condition”, or “rule”. As explained in section 2.1.2, clauses include three 

types of statements: Clarifications, applicability conditions, and rules. Since only rule 

statements will be represented in computer implementable format, they are identified 

and extracted. 258 rule statements are found. The decomposition of all 27 clauses is 

given in Appendix A. The decomposition of Clause-27 and Clause-47 are given below 

in Table 4.3 and Table 4.4 as an example.  

 

	
    



	
  
76 

Table 4.2. The clauses of Part III of IMHZCode 

Clause 
Id 

Clause  
Heading 

Pertinent to  
…. 

24 Width of Parcels  Land Readjustment 
25 Layout of parcels Land Readjustment 
26 Arrangement of parcels Land Readjustment 
27 Distance of Setbacks Building and Land Readjustment  
28 Depth of Buildings Building 
29 Façade of Buildings Building 
30 Height of Buildings Building 
31 Temporary Constructions Construction Permit issue 
32 Closed Roads and Streets Land Readjustment 
33 Flood Areas Land Readjustment 
34 Non-resettlement Areas Land Readjustment 
35 Construction Permits in Cadastral Parcels Construction Permit Issue 
36 Multiple Construction Permits in a Parcel Construction Permit issue 
37 Issuance of Ground Level  Land Readjustment 
38 Slab Levels of Ground Floor Building 
39 Requirements in Some Buildings Building 
40 Eaves and Sun-shadings Building 
41 Roofs Building 
42 Cantilevers Building 
43 Light-shafts and Air-shafts Building 
44 Spaces and Dimensions Building 
45 Interior Heights Building 
46 Windows Building 
47 Doors Building 
48 Lifts Building 
49 Stairs Building 
50 Fire Escapes Building 
51 Balustrades Building 
52 Chimneys Building 
53 Fire Precautions Building 
54 Water Tank And Sanitary facilities Installation Issue 
55 Provisions Pertinent to Basement Building 
56 Porter Suite Building 
57 Auxiliary Buildings Building 
58 Lightning Rods, Central TV Antennas, AC Installation Issue 
59 Walls Building 
60 Fences Building 
61 Buildings of Construction Site Construction Issue 
61 Cesspools Installation Issue 
63 Arcades Landscape Issue 
64 Garden Arrangements & Building Aesthetics Landscape Issue 
65 Shelter Building 
66 Provisions for Disabilities Building 

 

	
    



	
  
77 

Table 4.3. Decomposition of IMHZCode Clause-27 

Textual Expressions of  
A Clause 

Statement  
Type 

Clause 27– Setback Distances Id&heading  
 1 In cases where setback distances are not determined by the zoning plan in 

effect, setback distances have to be determined according to the 
conditions below. 

Applicability 
Condition 

 A- Front Setbacks: subheading  
 2 Setbacks where there is a front yard and setbacks from roads, green areas 

and parking lots are at least 5.00 m. 
Rule 

 3 However, on blocks that have existing buildings (except detached order 
blocks) setbacks will be determined according to the following conditions 
taking into account existing buildings on the same block facade. 

Applicability 
Condition 

 4 a) In Semi-Detached Building Blocks, If there is an existing building in 
one of the two lots then setbacks will be determined based on the existing 
building. 

Rule 

 5 b) In Planned Unit Developments, If any of the lots have an existing 
building then only for this block, setbacks for the lots are based on 
setbacks of the existing building. 

Rule 

 6 c) In Attached Building Blocks, If more than 50% of the block façade has 
been developed within the height limits of the zoning plan then setbacks 
are determined based on the existing buildings with the same height. 

Rule 

 B-Side Setbacks: subheading  
 7 Side setbacks (up to and including 4 storeys) shall be 3.00 meters. Rule 
 8 For buildings taller than this side setbacks are increased by 0.5 meters for 

every additional storey. 
Rule 

 9 However, for timber-framed buildings side setbacks must be at least 5.00 
meters.  

Rule 

 C- Rear Setbacks: subheading  
 10 Rear setbacks are H/2. Rule 
 11 H is the height of building and is determined according to clause 30 of 

this code. 
Clarification 

 12 Rear setbacks also apply to lots with single road frontage, 2 road 
frontages (corner lots) and corner lots with 3 road frontages. 

Clarification 

 13 On blocks that have existing buildings setbacks will be determined 
according to the following conditions taking into account existing 
buildings on the same block facade with the condition that rear setbacks 
will never be less than 3.00 m. 

Rule & 
Applicability 
Condition 

 14 a) In Semi-Detached Building Blocks, If there is an existing building in 
one of the two lots then rear setbacks will be determined based on the 
existing building. 

Rule 

 15 b) In Planned Unit Developments, If any of the lots have an existing 
building then only for this block, rear setbacks for the lots are based on 
setbacks of the existing building.  

Rule 

 16 c) In Attached Building Blocks, If more than 50% of the block façade has 
been developed within the height limits of the zoning plan then setbacks 
are determined based on the existing buildings with the same height. 

Rule 

 



	
  
78 

Table 4.4. Decomposition of IMHZCode Clause-47 

Textual Expressions of  
A Clause 

Statement  
Type 

Clause 47– Doors Id&heading  
 1 Clear height of doors shall be at least 2.10 m Rule 
 Width of Doors: subheading  
 2 Clear width of main entrance doors of buildings, which has multiple 

independent unit, shall be at least 1.30 meters. 
Rule 

 3 Clear width of entrance doors of independent unit shall be at least 1.00 
meters 

Rule 

 4 Clear width of room and kitchen doors shall be at least 0.90 meters. Rule 
 5 Clear width of bathroom, WC, cellar doors shall be at least 0.80 meters. Rule 
 6 Clear width of store doors shall be at least 1.00 meters. Rule 
 7 Dimensions of garage, elevator, and similar technical spaces doors shall 

be determined in the manner required by the service.  
Rule 

 8 The bathroom doors must allow air transfer from the bottom part. Rule 

4.1.3. Rule Classification  

IMHZCode is a written text document and it has a complex structure. 

Classification of rules based on the code structure is needed for understanding higher-

order relationships between rule statements. The analysis of IMHZCode structure has 

revealed two types of rules: 

• Self-contained rules  

• Linked explanatory rules 

Self-contained rules indicate how something will be, must be, should be, or can 

be. The rules related to the width of the stairs, the setback distances, and the height of 

entrance doors are examples of this type:  

“The minimum width for flights and landings of stairs shall be 1.20 meters.” 
 “Side setbacks (up to and including 4 storeys) shall be 3.00 meters.” 
 
 “Clear height of doors shall be at least 2.10 m” 

Linked-explanatory rules are clarifications, exceptions, exemptions, or 

modifications of other rules. For example, consider the following two rules from 

IMHZCode, one modification and one exception example, for the above rule on the 

minimum width for stairs:  



	
  
79 

“These dimensions can be reduced to 0.90 m. for single-family house, basement, 
and service stairs.” 
 
“ These dimension restrictions may be ignored for stairs leading to attics that are not 
occupied.” 

Another example from IMHZCode modifies the rule on the minimum distance 

for side setbacks.  

“For buildings taller than this (4-storeys) side setbacks are increased by 0.5 meters 
for every additional storey.” 

In addition to a complex structure, IMHZCode contain rules that may be open to 

interpretation, ambiguous and sometimes even contradictory and therefore impossible to 

model completely. Classification of rules according to their formalizability is necessary 

to assess the potential coverage of  the IMHZCode representation. Three additional 

types of rules have been identified: 

• Formalizable rules,   

• Semi-formalizable rules, and  

• Non-formalizable  rules.  

Formalizable rules are straightforward and can be clearly represented in a 

computer implementable format. They can be modeled in a single step by the selected 

representation method. These types of rules allow for automated compliance checking 

without any ambiguities. The followings are examples from IMHZCode: 

“Clear width of room and kitchen doors shall be at least 0.90 meters.” 
 
“ Roof slope cannot exceed 33%.” 

Semi-formalizable rules contain ambiguous or fuzzy concepts that require 

human interpretation (e.g. enough, easily, nearly, appropriate, and approximately). 

These rules require clarification of the concepts involved either during modeling of the 

rule or later during compliance checking. The required clarifications of concepts are 

possible by employing objective metrics such as minimum or maximum distances. 

Example: 

“Spaces left as shelter must be able to dispose of garbage easily.” 



	
  
80 

Non-formalizable rules rely on qualitative evaluations such as ones based on 

aesthetics or characteristics as well as evaluations where local authority is allowed to 

use initiative. These rules are impossible to represent in computable format and 

necessitate manual compliance checking under all conditions. Example: 

“Roofs must be compatible with the building and in harmony with the character of 
the streetscape.” 

IMHZCode rule statements on buildings are classified based on the types of 

rules that have been identified through this analysis. The two classifications have been 

presented in this section. One classification has been based on the structure of the 

document. Rules are either self-contained or linked to other rules providing further 

explanations. The second classification is based on the rules’ formalizability. Some rule 

statements can be represented in computational form, some require human 

interpretation but can be computationally supported if appropriate objective measures 

are employed during checking while others clearly cannot be subject to automated 

reasoning. The classification of the rule statements of Clause-27 and Clause-47 are 

given in Table 4.5 and Table 4.6 as an example.  The classification of all 258 rule 

statements is provided in Appendix A. 

Table 4.5. Classification of the rule statements of Clause-27 

Clause 
Id 

Statement  
Id 

Rule 
 Id 

Rule Type 
Self-containedness Formalizability 

C27 ST27.2 R27.1 Self-contained Formalizable 
ST27.4 R27.2 Linked-explanatory Formalizable 
ST27.5 R27.3 Linked-explanatory Formalizable 
ST27.6 R27.4 Linked-explanatory Formalizable 
ST27.7 R27.5 Self-contained Formalizable 
ST27.8 R27.6 Linked-explanatory Formalizable 
ST27.9 R27.7 Linked-explanatory Formalizable 
ST27.10 R27.8 Self-contained Formalizable 
ST27.13 R27.9 Linked-explanatory Formalizable 
ST27.14 R27.10 Linked-explanatory Formalizable 
ST27.15 R27.11 Linked-explanatory Formalizable 
ST27.16 R27.12 Linked-explanatory Formalizable 

 



	
  
81 

Table 4.6. Classification of the rule statements of Clause-47 

Clause 
Id 

Statement  
Id 

Rule 
 Id 

Rule Type 
Self-containedness Formalizability 

C27 ST1 R47.1 Self-contained Formalizable 
ST2 R47.2 Linked-explanatory Formalizable 
ST3 R47.3 Linked-explanatory Formalizable 
ST4 R47.4 Linked-explanatory Formalizable 
ST5 R47.5 Linked-explanatory Formalizable 
ST6 R47.6 Linked-explanatory Formalizable 
ST7 R47.7 Linked-explanatory Non-formalizable 
ST8 R47.8 Self-contained Formalizable 

 

The classification study revealed that 58% of the 258 rules that are found are 

self-contained and formalizable and 21% are explicative and formalizable. As indicated 

in Table 4.7, 79% of IMHZcode rules on residential buildings can be represented in 

computer implementable format.   

Table 4.7. Results of the classification of IMHZCode rule statements on buildings 

 Formalizable Semi-formalizable Non-formalizable 

Self-contained  58% (149) 7% (17) 4% (12) 

Linked-explanatory  21% (55) 6% (14) 4% (11) 

Total 79% (204) 13% (31) 8% (23) 

 

In this case study, all formalizable rules of IMHZCode are studied for the 

representation in a computer implementable format by using the developed 

representation model. The semi-formalizable rules, which are based  on fuzzy concepts 

that introduce ambiguities though they can be clarified, have been left out of the case 

study after a brief investigation into this class of rules. Handling these rules require the 

input of code authors as well as authorities in charge of code compliance checking. 

Options in objectifying various criteria need to be explored, however it is not possible 

to identify options without a proof-of-concept system. Studying the strategies into how 

best to deal with semi-formalizable rules can only be conducted after a robust 

methodology for representing formalizable rules have been established. The existence 

of non-formalizable rules in building codes is a separate research topic and is not within 

the scope of this research. 



	
  
82 

4.2. Representation 

During the analysis stage, the building code, the chapter of the code, and the 

clauses of the chapter to be represented are determined and all rules in selected clauses 

are classified. Afterwards, the modeling of IMHZCode’s formalizable rules on 

buildings was carried out. IMHZCode’s all formalizable rule statements on buildings 

have been modeled based on the new method of rule representation developed as part of 

this thesis. Next sections explain the modeling steps in detail.  

4.2.1. Domain Objects and Concept Mapping List 

As explained in section 3.4.1 a computer representation for building codes needs 

to build upon domain objects that reside in the lowest level of the four level 

representation. For creating the IMHZCode domain objects, first, the IMHZCode was 

scanned manually, statement by statement, concepts and entities in the text are 

identified (e.g. building, story, space, door, etc.), and all related terms were extracted 

from it. For example, “construction technique” is a term that is mentioned in 

IMHZCode and it is an attribute of the “building” concept. There are also terms like 

height, width, etc. which are mostly used to define requirements. After all terms are 

extracted, domain objects that represent the identified concepts and entities were 

determined and modeled as classes with required attributes and relationships to other 

classes.  These classes, which are for utilization by multiple rule objects in the level 

above, along with the relationships between them form the domain model. When 

modeling rules, domain classes are used for building applicability and selection 

constructs. The UML diagrams for the resulting IMHZCode domain model is given in 

Figure 4.1 and Figure 4.2. 

 



	
  
83 

 

Figure 4.1. Domain objects of IMHZCode 

Lot

Block

Building

Setback

Roof

Canopy

Shading

Cantilever

Zone

Stair

Lift

Space

Chimney

Wall

Door

Window

Eave

Storey

Shaft

Ceiling

0..*

0..*1..*

1..*

0..*

0-1

0..*

0..*

0-1

0..*

0-1

1..*

1..*

1

0..*

1..*

1..*

1..*

1

1

0..*

has

has

has

1 has

1

0..*

1

1..*

1

1

has

has



	
  
84 

 

Figure 4.2. The domain model of IMHZCode 

While concepts generally correspond to a class in the domain model, some 

concepts correspond to a subset of objects that belong to a class. All objects in the 

subset are required to hold a specified value for a certain property. For example, a 

 isOnCorner
- #facingRoad
- clearDepth
- area
- buildableArea
- roadWidth

Lot
- isDeveloped
- is50%Developed
- constructionOrder
- sideWalkWidth
- isFacedToGreenArea
- zoningType
- refFrontSetbackDist
- refSideSetbackDist
- refBuildingDepth
- refCantileverDist

Block

1

- #storey
- height
- constructionTech
- depth
- facade
- type
- usage
- isOccupied
- numberOfLift
- numberOfUnit
- numberOfStair

Building

- frontDistance
- sideDistance
- rearDistance

SetBack

- material
- usage
- holeWidth
- hasAccessTo
- landingWidth
- flightWidth
- riserHeight
- threadLength
- type
- threadLengthMin
- hasRailBothSide
- #thread

Stair

- width
- area
- hasInstallation
- type

Shaft
- pitch
- run
- calculatedRun
- form

Roof
- startUpStorey
- endingStorey
- hasAccessTo
- complyWith

Lift

- width
- isConsole
- distanceToLotBorder
- level

Canopy

- homeStorey
- width

Eave

- width

Shading
- width
- length
- type 
- distanceToProjectZero
- distanceToLotSide
- distanceToLotRear

Cantilever

- level
- height
- isOccupied
- area

Storey

- boundary
- area
- occupation

Zone
- usage
- width
- area
- isOccupied
- height
- relatedSpaces
- hasOpeningTo
- type
- #window

Space

- isSloped
- homeStorey
- level

Ceiling

- type
- thickness
- isExternal
- isAdjacent
- constructionTech
- hasBondBeam
- exceedingLimit

Wall

- area
- width
- relatedSpace

Window

- height
- width
- relatedSpace
- isAllowAirTransfer
- openingDirection
- complyWith

Door

- width
- relatedSpace
- .......

Chimney

1..*

1

1

1..*

1

1

1

1

1

1..*

0..*

0..*

0..*0..*0..*1..*

1..*

1..*1 1..*

1..*

0..*1..*

1..*

1

0..*

1..*

1..*

1

1..*

0-1

1



	
  
85 

“door” concept is directly represented as a Door object with attributes such as height, 

width, relatedSpace, allowAirTransfer. A “bathroom door”, on the other hand is a Door 

with “bathroom” as its relatedSpace. These specialized concepts can naturally be 

modeled through inheritance following the normal object oriented paradigm. However, 

extending the class hierarchy only for selecting specific subsets may quickly and 

needlessly increase the complexity of the domain model. All possible variations of 

doors (“bathroom door”, “kitchen door”, “entrance door”, etc.) should not need to force 

the modeling of individual classes.  

The proposed model includes a mapping list for such concepts that are required 

for the selection of subsets. Instead of modeling every concept as a class, a concept-

mapping table is created that defines how a concept maps to a filtered set of objects. 

The concept mapping table for IMHZCode is shown in Table 4.8. By associating 

concepts with a set of selection criteria, the need for a high number of specialized sub-

classes derived from the main domain classes was eliminated. 

Table 4.8. Concept-mapping table for IMHZCode 

Concept 

SELECTION FILTER 

Class Property Comparator Value 

"attic" Zone occupation equal attic 
"independentUnit" Zone occupation equal independent unit 
"liftShaft" Shaft type equal lift shaft 
"airShaft" Shaft type equal air shaft 
"coalCellar" Space usage equal coal cellar 
"roofTerrace" Zone occupation equal roof terrace 
"stairwell" Shaft type equal stair shaft 
"gableWall" Wall type equal gable 
“mainEntranceDoor Door relatedSpace equal mainEntrance 
“bathroomDoor” Door relatedSpace equal bathroom 
“kitchenDoor” Door relatedSpace equal kitchen 
“entranceDoor” Door relatedSpace equal entrance 
“roomDoor” Door relatedSpace equal room 
“cellarDoor” Door relatedSpace equal cellar 
“livingRoom” Space usage equal livingRoom 
“kitchen” Space usage equal livingRoom 
“bedroom” Space usage equal livingRoom 
“bathroom” Space usage equal livingRoom 
“basement” Storey level equal basement 
“dwelling” Zone occupation equal dwellingUnit 



	
  
86 

The concept-mapping table makes concepts available as an optional list for 

specifying the selection construct of a rule object in the level above. This mapping table 

acts as a library of a pre-determined selection constructs for rule objects with concepts 

as key (or reference).  When modeling rules in the level above, a separate selection 

construct need not be modeled in each rule that refers to the same concept. All rules can 

refer to the concept and the selection construct can be picked up from the mapping 

table. This ensures consistency in the model and prevents unnecessary repetitions. 

When a selection construct related with a concept needs to change, only the mapping 

table needs to be updated for that concept.  

4.2.2. Rule Objects 

Individual rule statements in 27 clauses of the IMHZCode have been structured 

using the developed rule model schema as a “semantic rule object”. Each rule object has 

a “requirement” construct that describes the required specification in a concept. Some 

rule objects also have “selection” constructs describing the specific cases where the 

requirement is applicable. Both of these constructs have identical structures. They both 

have the following attributes: A concept, a property, a comparator, a value, and a unit.  

As explained in the section 3.4.2 the concept is a description of the subject to 

which the rule applies and the property is an attribute of the concept.  The concepts and 

their properties are defined in the domain model. The requirement constructs must refer 

to concepts modeled as classes in the domain model. The selection constructs on the 

other hand may additionally make use of the specialized concepts in the concept 

mapping table. 

The comparator is a numeric comparison operator such as “≥”, “≤”, “=”, if the 

value is numeric. If the value is Boolean, then only the “boolean” comparator is used. If 

the value is descriptive, then the “equal” or “!equal” comparators are used. If the value 

represents a set of concepts, then the comparator is any of the set comparison operators 

such as “includes”, excludes”.  

The value is the specific value that is found in the code, whether numeric, 

descriptive, or Boolean. There are two different kinds of values: Explicit (literal value) 

and derived (an expression). While explicit value is a constant, derived value is either a 

reference to another concept’s property or the result of a mathematical expression. 



	
  
87 

Curly brackets “{}” are used for specifying references to concepts, and parentheses “()” 

are used to specify expressions. 

The unit specifies the unit of measure for numeric values. If the value is not 

numeric the unit is blank.  

The rule models of Clause-27 and Clause-47 are given in Table 4.9 and Table 

4.10 as an example for illustrating how rule statements are modeled.  The rule model of 

all 27 clauses is provided in Appendix B. 

Table 4.9. The structured rule objects of IMHZCode Clause-27 

Rule  REQUIREMENT SELECTION 
Id Concept Property C. Value U. Concept Property Comp. Value 

 
R27.1 Setback front 

Distance ≥ 5 m           

R27.2 Setback front 
Distance = {Block_referencedFront 

SetbackDistance} m 
Block constructionOrder equal semiDetached   

Block hasExistingBuilding boolean true   

R27.3 Setback front 
Distance = {Block_referencedFront 

SetbackDistance} m 
Block constructionOrder equal plannedUnit   

Block hasExistingBuilding equal true   

R27.4 Setback front 
Distance = {Block_referencedFront 

SetbackDistance} m 
Block constructionOrder equal attached    

Block is50%Developed equal true   

R27.5 Setback side 
Distance = 3 m           

R27.6 Setback side 
Distance = (3+((:{Building_ 

numberofStorey}:-4)/2))  m Building numberofStorey ≥ 4   

R27.7 Setback side 
Distance ≥ 5 m Building constTechnique equal timberFramed   

R27.8 Setback rear 
Distance = (:{Building_height}:/2) m           

R27.9 Setback rear 
Distance ≥ 3 m Block  hasExistingBuilding boolean true   

R27.10 Setback rear 
Distance = {Block_referencedRear 

SetbackDistance} m 
Block constructionOrder equal semiDetached   

Block hasExistingBuilding boolean true   

R27.11 Setback rear 
Distance = {Block_referencedRear 

SetbackDistance} m 
Block constructionOrder equal plannedUnit   

Block hasExistingBuilding boolean true   

R27.12 Setback rear 
Distance = {Block_referencedRear 

SetbackDistance} m 
Block constructionOrder equal attached   

Block is50%Developed boolean true   

 

	
    



	
  
88 

Table 4.10. The structured rule objects of IMHZCode Clause-47 

Rule  REQUIREMENT SELECTION 

Id Concept Property Comp. Value U. Concept Property Comparator Value 
 

R47.1 Door height ≥ 2.10 m       

R47.2 Door width ≥ 1.30 m mainEntranceDoor      

R47.3 Door width ≥ 1.00 m entranceDoor      

R47.4.1 Door width ≥ 0.90 m roomDoor     

R47.4.2 Door width ≥ 0.90 m kitchenDoor     

R47.5.1 Door width ≥ 0.80 m bathroomDoor     

R47.5.2 Door width ≥ 0.80 m wcDoor     

R47.5.3 Door width ≥ 0.80 m cellarDoor      

R47.6 Door width ≥ 1.00 m storeDoor      

R47.8 Door allowAirTransfer boolean true  bathroomDoor      

 

In the code document, individual rule statements generally indicate a single 

requirement, which has a single subject and a single predicate, associated with a 

concept. However, some individual rule statements of IMHZCode indicate multiple 

requirements of a concept or a requirement related to multiple concepts. For example, 

the following individual rule statement indicates a requirement about two concepts, 

room and kitchen doors: 

“Clause 47 – Doors: 
 … Clear width of room and kitchen doors shall be at least 0.90 meters.… :” 
 
“Madde 47 – Kapılar: 
 … Oda ve mutfak kapıları kasa dahil (0.90) metreden az olamaz…:” 

For another example, the following individual rule statement indicates two 

requirements about a single concept, one qualifies the width and the other qualifies the 

area of  light shafts: 

“Clause 43 – Light and air shafts: 
 … The width of light shafts shall not be less than 1.00 m  and the area of them 

shall not be less than 3.00 m2 in one or two-storey buildings … :” 
 
“Madde 43 – Işıklıklar ve hava bacaları: 
 … Işıklıklar, 1 ve 2 katlı binalarda; dar kenarı 1.00 metreden, alanı 3.00 

m2'den az olamaz …:” 



	
  
89 

When modeling, these types of rule statements need to be separated into 

multiple statements, each targeting a single requirement related to the same concept. 

Each rule object thus indicates a single requirement and is associated with a single 

property of a single concept defined in the domain model. The relationships among 

these individual rule statements are modeled in the levels above.  

4.2.3. Rule-set Objects 

IMHZCode is composed of various clauses that include closely related 

individual rule statements as well as the implicit or explicit information on the 

relationship among the statements. The rule-set model defines the relationships among 

individual rule statements as explained in section 3.4.3. Related rule objects that are 

associated with the same property of the same concept are collected together and 

modeled as nested rule-sets using two logical conjunctions: AND, OR. Each top-level 

rule-set object is given an id, and defines the related concept and property associated 

with all rules in the set. A rule-set is defined for each concept property that is subject to 

a requirement in the code document even if there is a single rule object in the set. The 

rule-set objects of Clause-27 and Clause-47 are given in Table 4.11 and Table 4.12 as 

an example. The collection of rule-set objects of IMHZCode is provided in appendix X 

Table 4.11. The rule-set objects of IMHZCode Clause-27 

Id Subject Set 

Concept Property 

RS27.A Setback frontDistance (||: R27.1, R27.2, R27.3, R27.4) 

RS27.B Setback sideDistance (&: (||: R27.5, R27.6), R27.7) 

RS27.C Setback rearDistance (||: R27.8, (&: R27.9, (||: R27.10, R27.11, R27.12))) 

 

 

 

 



	
  
90 

Table 4.12. The rule-set objects of IMHZCode Clause-47 

Id Subject Set 

Concept Property 

RS47.A Door height R47.1 

RS47.B Door width 
(||: R47.2, R47.3, R47.4.1, R47.4.2, R47.5.1, R47.5.2, 
R47.5.3, R47.6) 

RS47.C Door allowAirTransfer R47.8 

 

Some rule sets have a simple, one level relation between rule objects. The rule-

set RS27.A is the collection of rules specifying constraints for the frontDistance 

property of the Setback concept and is an example for this type of rule-sets. (Figure 4.3)  

 

 

Figure 4.3. Tree representation of the rule-set RS27.A 

Some rule sets have multilevel relations between rule objects. The nested sets of 

rules form a hierarchical tree-structure. Rule-sets RS27.B, and RS27.C are collections 

of rules specifying sideDistance, and rearDistance properties of the Setback concept, 

and are examples for this type of complex rule-sets. ( Figure 4.4)  

 

	
  

Figure 4.4. Tree representation of rule-set RS27.B and RS27.C 

RS27.A

R27.1 R27.2 R27.3 R27.4

OR

RS27.B

R27.5 R27.6

R27.7

AND

RS27.C

R27.8

R27.9

R27.10 R27.11 R27.12

OR

AND
OR



	
  
91 

4.2.4. Rule-set Group Objects 

The final fourth level (management level) of the new model, allows for grouping 

of rule-sets. While a building project must simply be compliant with all rule-sets 

defined in the third level (rule-set level) regardless of how they are grouped, this level 

allows for modeling the structure of the code document itself as well as the relationships 

among rule-sets based on any aspect. There may be multiple methods of grouping rule-

sets each representing a different sorting scheme. One obvious grouping method is the 

structure of the code document itself. Rule-sets can be grouped representing the heading 

and sub-heading based structure of the document. Many other types of relationships and 

similarities also exist among rules and rule-sets that can be used as criteria for grouping 

them. Alternative methods of grouping rule-sets are allowed to exist. The case study on 

the IMHZCode has shown that grouping rule-sets based on the concept (corresponds to 

a class in the domain model) they are related to is preferred by compliance checking 

algorithm employed by the prototype implementation. In the IMHZCode there are 

instances where more than one clause is related with the same concept. For example, 

rules related with the building concept are distributed into three clauses. When checking 

the building objects for compliance it is more efficient to process all applicable rules 

before moving on to other classes of objects. The prototype implementation is described 

in the next section. Table 4.13 illustrates classification of rule-sets of setback, building, 

and door concepts as an example.  

	
    



	
  
92 

Table 4.13. Classification of rule-sets related to setback, building, and door concepts 

Part Concept Property - Rule-set Rule 

III - Rules Related to Buildings and Land Readjustment 
 Setback 
  frontDistance –  [RS27.A = (||: R27.1, R27.2, R27.3, R27.4)] 
   R27.1 
   R27.2 
   R27.3 
   R27.4 
  sideDistance –  [RS27.B = (&: (||: R27.5, R27.6), R27.7)] 
   R27.5 
   R27.6 
   R27.7 
  rearDistance –  [RS27.C = (||: R27.8, (&: R27.9, (||: R27.10, R27.11, R27.12)))] 
   R27.8 
   R27.9 
   R27.10 
   R27.11 
   R27.12 
 Building 
  depth –  [RS28=(||:R28.1,(&:R28.2,(||:R28.3,R28.4,R28.5)),R28.6, R28.7)] 
   R28.1 
   R28.2 
   R28.3 
   R28.4 
   R28.5 
   R28.6 
   R28.8 
  façade –  [RS29 = (R29.1)] 
   R29.1 
  height –  [RS30 = (||: R30.1, R30.2, R30.3, R30.4, R30.5, R30.6, R30.7, R30.8, 

R30.9, R30.10)] 
   R30.1 
   R30.2 
   R30.3 
   R30.4 
   R30.5 
   R30.6 
   R30.7 
   R30.8 
   R30.9 
   R30.10 
 Door 
  height –  [RS47.A=(R47.1)] 
   R47.1 
  width –  [RS47.B = (||: R47.2, R47.3, R47.4.1, R47.4.2, R47.5.1, R47.5.2, 

R47.5.3, R47.6)] 
   R47.2 
   R47.3 
   R47.4.1 
   R47.4.2 
   R47.5.1 
   R47.5.2 
   R47.5.3 
   R47.6 
  allowAirTransfer –  [RS47.C = (R47.8)] 
   R47.8 

 



	
  
93 

4.3. Implementation 

During the modeling stage, IMHZCode’s all formalizable rule statements on 

buildings have been modeled based on the new method of rule representation developed 

as part of this thesis. Afterwards, the implementation of IMHZCode model and its 

utilization within a compliance checking application was carried out. Currently, two 

commonly used compliance-checking systems are Express Data Manager (EDM), and 

Solibri Model Checker (SMC). EDM has a module for writing new rules in EXPRESS, 

but it is complex and requires a high level of expertise. SMC rules are hard coded into 

the system and SMC does not support adding new rules. As a result, neither of these 

systems was found suitable as a test bed for the IMHZCode model. For this reason a 

new code compliance checking system has been implemented as a prototype for testing 

even though the scope of this research does not cover developing automated compliance 

checking systems. This proof-of-concept prototype demonstrates the feasibility of the 

proposed model. 

4.3.1. Prototype 

The prototype has been developed solely for the purpose of demonstration and 

evaluation of the proposed model for the representation of building codes. The 

prototype system has been implemented using the Java language and consists of three 

main components: Building Code Reader, Model View Builder, and Compliance 

Checker. Building Code Reader reads the building code model from the database and 

instantiates rule objects for checking, Model View Builder extracts objects and 

properties of interest from BIM data, populates the domain model objects and thus 

derives a model view to be checked. Compliance Checker ensures that the building 

project meets all requirements by applying all rules to related domain concepts and 

compiles a report. Figure 4.5 illustrates the conceptual framework for the compliance 

checking system.  



	
  
94 

 

Figure 4.5. Conceptual framework for the compliance checking system 

Future code checking systems can develop user-friendly interfaces for 

describing actual building codes in computational format which is developed through 

this research. In this prototype, the building code model is stored in a database. A 

relational database application with a graphical user interface (FileMaker Pro) is used as 

a tool to create and store the code model in computational format. Figure 4.6 illustrates 

tables and relations in the IMHZCode model database. Acceptance of building code 

models by the AEC industry is not possible without tools directly usable by the building 

code authors who have no programming background. Building code authors, without 

assistance, should be able to create new rules and update existing ones. Exchange of the 

building code can happen through various methods. Code checking systems may 

establish live connections and retrieve latest codes from the appropriate authority. The 

code can be in a number of formats that can represent object oriented data, such as 

XML. 

Building 
Code BIM

Building Code 
Reader

Building 
Code Model

Model View 
Builder

ArchitectSpecialist

Compliance 
Checker

Model 
View

Objects

Building 
Code

Objects

Report

1 2

3



	
  
95 

 

Figure 4.6. Database structure for the IMHZCode model  

In the prototype, the Building Code Reader component connects to the database 

where the building code models are stored, reads from it and instantiates the necessary 

objects (rules, rule-sets, rule-set groups, etc.). Connection of the Building Code Reader 

to the IMHZCode database takes place via a JDBC-ODBC bridge that enables Java 

applications to query relational databases.  

While rules are stored in a database, the project data to be checked for its 

compliance with the code is in the form of a building information model (BIM) file. In 

this prototype, the BIM model is required to be an Industry Foundation Classes 

(IFC2x3) file. The IFC format is utilized by most major research efforts in compliance 

checking. IFC is currently considered to be the most suitable schema for improving 

information exchange and interoperability in the construction industry.  

Model View Builder component of the prototype accesses and extracts the BIM 

data that is required during compliance checking. The prototype makes use of JSDAI 

(Java Standard Data Access Interface) application programming interface for parsing 

STEP (Standard for the Exchange of Product Model Data – ISO 10303) files. IFC2x3 

files exported from the BIM application are parsed using the JSDAI library and IFC 

objects are created. The IFC objects and their properties of interest are mapped to 

domain objects and information is copied over to the domain objects and thus the 

required model view is derived for the Compliance Checker.  

Domain Level Rule Level Rule-set Level Management Level



	
  
96 

The prototype’s the third major component is the Compliance Checker. It 

applies rules to the derived model view and returns a report. Compliance Checker 

makes use of the classification of rule-sets by concept that was discussed in section 

3.4.4 and section 4.2.4. Compliance Checker takes the list of  “rule-set group objects” 

that group rule-sets according to the concept they constrain. For each group it applies all 

rule-sets to all instances of the concept found in the model view. An instance of a 

concept passes a check either if it is as required for every applicable rule in AND rule-

sets or if it is as required for any applicable rule in the OR rule-sets. Finally, the 

Compliance Checker reports compliant and non-compliant instances of concepts and 

related rules. The functional diagram of this component is illustrated in Figure 4.7. 



	
  
97 

 

Figure 4.7. Functional diagram of Checker 

Start

Get an "entity" from 
DomainObject list

Find  related "rule-set group " 
from Rule-set list

Building Code Reader Model View Builder

Building Code 
Object List  

Domain 
Object List

Get a "rule-set" from the group

conjunction of 
rule-set is "OR"

"entity" meets the 
requirement

Report as valid

"node" is a rule

Get a "node" from the rule-set

Get a "node" 
from the 

subRule-set

"rule" has any 
selection criteria 

"entity" meets the 
selection

Report as 
invalid

conjunction of 
rule-set is "OR"

yes

no

yes

Finish

yes

yes

yes

no

no

no

node is last member 
of rule-set

no

yes

node is last member 
of rule-set

no

yes

yes

no

no



	
  
98 

4.3.2. Building Information Modeling Requirements 

One important prerequisite for the development of working automated 

compliance checking systems is building information models that hold all necessary 

information about a building and its site for all codes which compliance will be tested. 

Automated compliance checking of a building project against a given building code, 

requires additional information from BIM concerning the specialized domain to which 

the code belongs to. Since the building information models created by BIM systems do 

not include the level of detail needed for IMHZCode, as explained in section 3.5.3, 

modeling requirements of the code should be identified.  

The modeling requirements for the IMHZCode domain have been identified in 

order to develop the prototype system. Domain model for IMHZCode was developed as 

the first level of the new representation model. The IMHZCode domain model 

established the required objects and level of detail for building models. How much of 

the required data can be obtained from the BIM model was analyzed and methods of 

mapping the domain model to the BIM model are identified.  

The analysis of the domain model to the BIM mapping process reveals that four 

types of mappings exist. The first type of mapping takes place between domain objects 

and their properties that can match directly to already existing BIM objects. As an 

example door object of the domain model and its properties such as width and height 

are available as ifcdoor objects. However, some required properties are missing in BIM 

objects. The second mapping type takes place when these missing properties can be 

derived from ifc relationship definitions between entities if it is possible. As an example 

relatedSpace property of door object can be derived examining the relationship between 

ifcdoor and ifcspace entities. The third mapping type takes place when deriving the 

required data via relationships in ifc is not possible. In these instances, missing 

properties are defined as additional IFC property sets for compliance checking. 

buildingSMART provides a methodology for defining additional properties 

(buildingSMART, 2008b). IFC allows extending the schema and adding custom 

properties by defining property sets (PSET). The PSETs and properties for applying the 

IMHZCode are shown in Figure 4.8. The fourth type of mapping takes place when 

domain concepts have no corresponding objects in the BIM model.  These missing 

entities require updating the IFC schema in its upcoming versions. The concept of 



	
  
99 

setbacks is one example. In current BIM representations there are no setback objects. 

Therefore, only for the prototype system, setback information has been defined as an 

extended property sets of ifcSite and the required data for setback is derived from that.  

 

 

Figure 4.8. Definition of properties for applying the IMHZCode 

4.4. Validation 

The validation of the new representation model is carried out in three steps: 

1. Representing an actual building code based on the developed model. 

2. Implementing the code model in a compliance checking system. 

3. Evaluating the code model in terms of correctness.  

For the validation of the new representation model explained in the CHAPTER 

3, a case study has been conducted. For the case study, İzmir Municipality Housing and 

Zoning Code (IMHZCode), which is representative of codes that are in effect 

throughout Turkey, has been chosen. IMHZCode is a complex building code that 

consists of various types of rule statements with dependencies. The 27 clauses related to 

Pset_IMHZCode

IfcSite

IfcProject

IfcBuilding

IfcWallStandardCase

IfcDoor

IfcBuildingStorey

block.constructionOrder
block.refFrontSetbackDistance
block.refRearSetbackDistance
block.refBuildingDepth

block.isDeveloped

setback.frontDistance
setback.sideDistance

setback.rearDistance

lot.onCorner
lot.numberOfFacingRoad

depth
facade
constructionTechnique

allowAirTransfer

Block

Lot

Setback

Building

Door



	
  
100 

buildings have been analyzed and modeled using the newly developed representation.  

The case study demonstrates that the developed representation model is capable of 

representing building codes in a computer implementable format.     

The implementation of the IMHZCode model in a new compliance checking 

system developed as a prototype has been explained in section 4.3.1. The 

implementation has been tested on a range of different building projects exported by a 

BIM tool.  

Correctness ensures that rule objects represent the meaning, intentions, and 

implications of the corresponding rule sentences correctly. The correctness of the 

IMHZCode model has been evaluated by using  the prototype to carry out testing and 

validation. Simple building models have been prepared in order to test the results of 

compliance checking (section 4.4.1.). All results indicate correct modeling of the 

building code.   

4.4.1. Test Cases 

The usage and testing of the compliance checking prototype is illustrated in this 

section by a set of checking scenarios. Clause 27 (distance of setbacks), 28 (depth of 

buildings), 29 (façade of buildings), 30 (height of buildings), and 47 (doors) of 

IMHZCode are used as demonstrative examples to show how building projects can be 

checked for their compliance with building codes. These clauses are given in appendix 

A. However, other clauses and building models can be similarly handled by the 

prototype for different compliance checking scenarios.  

A relational database application, FileMaker Pro, is used to create and store the 

sample code model. The code model database is directly and easily usable by the 

building code authors who have no programming background for modification of the 

content. Whenever needed, the user can access the database to revise or extend the code 

model by adding new rules and relationships. The creation of the sample code model 

includes the following steps based on the new proposed model:  

• Create domain object and concept mapping tables (Figure 4.9 and Figure 

4.10) 

• Create rule table (Figure 4.11) 



	
  
101 

• Classify rule instances that are associated with the same property of the same 

concept and create rule-set table (Figure 4.12). 

• Classify rule-set instances based on the concept they are related to and create 

rule-set group table (Figure 4.13).  

The DomainObject table shown in Figure 4.9 holds information on domain 

objects and their properties that represent identified entities (terms) in the sample 

building code text. Block, Lot, Setback, Building, and Door objects have the specified 

properties for the sample building code model domain. These domain object and 

property pairs (each record in the DomainObject table) are required when building rule 

objects. They are used by multiple records in the Rule table as the subject part (concept-

property) of the requirement construct when creating rules.  

 

 

Figure 4.9. Domain object table of the sample code model 

In addition to the DomainObject table, ConceptMapping table shown in Figure 

4.10 also holds information required for defining rules. The ConceptMapping table lists 

all concepts referred to in the building code text. Each concept is either a domain object 

or a filtered (a specified property is checked against specified criteria) set of domain 



	
  
102 

objects. When creating rules, the selection construct of each rule is a concept from the 

ConceptMapping table that can be further filtered. The DomainObject and 

ConceptMapping tables together form the lowest level of the developed representation 

model which is described in section 3.4.1.  

 

 

Figure 4.10. Concept-mapping table of the sample code model 

The Rule table shown in Figure 4.11 holds information on individual rule 

objects of the sample code model. 37 rule records are entered for the clauses selected 

for the test cases. For each rule record, the subject part (concept and property) of the 

requirement construct comes from the DomainObject table while the subject part of the 

selection construct comes from the ConceptMapping table.  



	
  
103 

	
  

Figure 4.11. Rule table of the sample code model 

The Node_List and RuleSet tables shown in Figure 4.12 together hold the 

information on the rule-set trees. Each rule-set tree brings all rule records associated 

with the same property of the same concept. Lastly, the RuleSet_Group table (Figure 

4.13) holds information on various organizations of rule-sets. For the test cases there is 

only a single organization. Rule-sets are grouped based on the domain object they are 

related to.  

 



	
  
104 

 

.…   

 

Figure 4.12. Classification of rules and rule-set table of sample code model 

 

	
  

Figure 4.13. Rule-set group table of the sample code model 



	
  
105 

The tree model of the sample code model is illustrated in Figure 4.14. As can be 

seen from this figure,  the sample code model for Clause 27, 28, 29, 30, and 47 of 

IMHZCode consist of rule-sets related to Door, Setback, and Building objects. 37 rules 

are organized in 8 rule-sets and 3 rule-set groups. During code compliance checking, 

each setback, building, and door object in the given building project will be checked 

against applicable rules under related rule-sets. For the test cases, the prototype 

implementation makes 2 rule-set checks for each door, 3 rule-set checks for the building 

and 3 rule-set checks its setback.   

 

 

Figure 4.14. Tree model of the sample code model 

As a test case for the compliance checking prototype, a residential building 

project is used. The plan of the 3 storey apartment building is shown in Figure 4.15.  

This sample building is modeled using a BIM system, Graphisoft Archicad, and 

exported as an IFC file. As explained in section 3.5.3 and section 4.3.2, the building 

information models created in a BIM environment do not include all needed 

information for code compliance checking. Therefore, for the test case, required 

information which cannot be obtained from the raw Archicad BIM model is added to 

the model as property-set (PSet) extensions of the IFC schema (Figure 4.16). The 

domain object table (Figure 4.9) of the sample code model gives required BIM 

information for the code.  

frontDistance
(RS.27.A)

R.27.1

R.27.2 R.27.3

R.27.4

rearDistance
(RS.27.C)

R.27.8

R.27.9

R.27.10 R.27.11 R.27.12

OR

AND

OR

Setback

sideDistance
(RS.27.B)

R27.5 R27.6

R27.7

AND

OR

façade
(RS.29)

Building

depth
(RS.28)

R.28.1

R.28.2 R.28.6 R28.8

R.28.3 R.28.4 R.28.5

R.29.1

height
(RS.47.A)

R.47.1

Door

width
(RS.47.B)

R.47.2 R.47.3 R.47.4

R.47.5 R.47.6 R.47.7 R.47.8

OR

height
(RS.30)

R.30.2 R.30.3 R.30.4R.30.1

R.30.5 R.30.6 R.30.7 R.30.8 R.30.9

OR

Building Code Model

OR

AND

OR

OR



	
  
106 

 

Figure 4.15. Sample building model 

 

	
  

Figure 4.16. Creation of missing information as a PSet extension of IFC schema 



	
  
107 

The compliance checking prototype has been tested through various checking 

scenarios. Three demonstrative test cases are presented here. For all scenarios the IFC 

file of the sample building project is imported to the prototype for  compliance checking 

against the sample IMHZCode model. The three cases being presented conduct 

compliance checks of the 3-storey residential building design with rules related to the 

building, its setback, and doors. For demonstration doors have been selected since rules 

on doors are representative of the majority of the clauses in IMHZCode. Setbacks have 

been selected because Clause-27 that defines the rules on setback distances is the most 

complex clause in IMHZCode. Buildings have been selected because rules on buildings 

are not contained in a single clause but are distributed among three different clauses 

(Clause-28, Clause-29, Clause-30).  

Case 1 is the base case. In this case, the construction order of the city block 

where the site is located is defined as detached and the construction technique of the 

building is set to concrete. Case 2 is the same design but the construction order of the 

block is changed to semi-detached. The setback rule that applies to case 2 is therefore 

different than the base case. Case 3 introduces a second change and the construction 

technique is defined as timber framed. The setback rule that applies to case 3 is different 

than both previous cases. The prototype is able to correctly handle these cases. 

In case 1 (related design parameters are given in Table 4.14), the rearDistance 

property of the setback object (S001) is not valid according to Rule-set RS.27.C. Rule-

set RS.27.C includes five rules that indicate minimum rear distance of setbacks. Which 

rule is applicable depends on the construction order of the block where the building is to 

be built. For case 1, the applicable rule for blocks with detached order, states that rear 

setbacks need to be at least half of the total building height (Rule R.27.08). Since the 

design does not meet this requirement, case 1 fails the check. During processing, the 

system first finds the applicable rule from the related rule-set then applies this rule to 

the object (setback object). For case 1, the door object D006 is also not valid. It does not 

pass the check on rule-set RS.47.B (related to door widths) because of rule R.47.06. 

There are seven rules restricting minimum door width. Because the D006 is a bathroom 

door, the system applies R.47.06, which is the correct rule for bathroom doors. The 

checking result for case 1 is given in Table 4.15 



	
  
108 

Table 4.14. Design parameters for Case 1 

Project: Case 1 
Block  
id constrOrder hasExistingBuilding refFrontSetbackDis refRearSetbackDis refBuildingDepth 
BL01 detached true 5.00 3.00 14.00 

Lot 
id isOnCorner clearDepth numberofFacingRoad   
L001 false 1 20.00   

Setback 
id frontDistance sideDistance rearDistance   
S001 5.00 3.00 3.00   

Building 
id depth façade height constructionTech numberofStorey 
B001 11.50 9.50 9.30 concrete 3 

Door 
id relatedSpace height width   
D001 mainEntrance 2.30 1.50   
D002 entrance 2.30 1.30   
D003 room 2.10 1.20   
D004 kitchen 2.10 0.90   
D005 corridor 2.10 0.90   
D006 bathroom 2.10 0.70   
D007 room 2.10 0.90   
D008 room 2.10 0.90   
D0xx ……… …… ……   

 

	
    



	
  
109 

Table 4.15. Checking result for case 1 

Checking Result: Case 1 
 Setback Building Door 

frontDistance 
(RS.27.A) 

sideDistance 
(RS.27.B) 

rearDistance 
(RS.27.C) 

depth 
(RS.28) 

façade 
(RS.29) 

height 
(RS.30) 

height 
(RS.47.A) 

width 
(RS.47.B) 

S001 √ 
(R.27.01) 

√ 
(R.27.05) 

X 
(R.27.08) - - - - - 

B001 - - - √ 
(R.28.01) 

√ 
(R.29.01) 

√ 
(R.30.03) - - 

D001 - - - - - - √ 
(R.47.01) 

√ 
(R.47.02) 

D002 - - - - - - √ 
(R.47.01) 

√ 
(R.47.03) 

D003 - - - - - - √ 
(R.47.01) 

√ 
(R.47.04) 

D004 - - - - - - √ 
(R.47.01) 

√ 
(R.47.05) 

D005 - - - - - - √ 
(R.47.01) 

√ 
(R.47.08) 

D006 - - - - - - √ 
(R.47.01) 

X 
(R.47.06) 

D007 - - - - - - √ 
(R.47.01) 

√ 
(R.47.04) 

D008 - - - - - - √ 
(R.47.01) 

√ 
(R.47.04) 

D0xx …. …. …. …. …. …. … … 
 

 

For case 2 with semi-detached ordered block (Table 4.16) the same setback 

object S001 is valid according to Rule-set RS.27.C based on rules R.27.09 and R.27.10. 

In Clause-27 of IMHZCode, it is stated that “in Semi-Detached Building Blocks, if 

there is an existing building in one of the two lots then rear setbacks will be determined 

based on the existing building with the condition that rear setbacks will never be less 

than 3.00 meters”. In the code model, this rule statement is represented as two separate 

rule objects (R.27.09 and R.27.10) that are connected to each other with an “AND” 

conjunction and put into a rule-set (RS.27.C). Again, the system applied the correct 

rules to the object and returned the correct result (Table 4.17). 

 

 



	
  
110 

Table 4.16. Design parameters for Case 2 

Project: Case 2 
Block  
id constrOrder hasExistingBuilding refFrontSetbackDis refRearSetbackDis refBuildingDepth 
BL01 semiDetached true 5.00 3.00 14.00 

Lot 
id isOnCorner clearDepth numberofFacingRoad   
L001 false 20.00 1   

Setback 
id frontDistance sideDistance rearDistance   
S001 5.00 3.00 3.00   

Building 
id depth façade height constructionTech numberofStorey 
B001 11.50 9.50 9.30 concrete 3 
…. …. ….. …. …. …. 

 

Table 4.17. Checking result for case 2 

Checking Result: Case 2 
 Setback Building …. 

frontDistance 
(RS.27.A) 

sideDistance 
(RS.27.B) 

rearDistance 
(RS.27.C) 

depth 
(RS.28) 

façade 
(RS.29) 

height 
(RS.30) 

….. 

S001 √ 
(R.27.01) 

√ 
(R.27.05) 

√ 
(R.27.09 & R.27.10 ) - - - ….. 

B001 - - - √ 
(R.28.01) 

√ 
(R.29.01) 

√ 
(R.30.03) …. 

…… …. …. …. ….. …. …. …. … 
 

 

For case 3 which is a timber frame construction on a semi-detached ordered 

block (Table 4.18) the same setback object is again not valid. While case 1 it fails the 

checks due to the rear setback distance, case 3 fails due to side setback distance. The 

same setback object that passed the checks against rule-set RS.27.B in the first two 

cases, fails after the construction technique of the building is specified as being timber 

framed. Part B of Clause-27 in IMHZCode states that “Side setbacks (up to and 

including 4 storeys) shall be 3.00 meters. For buildings taller than this side setbacks are 

increased by 0.5 meters for every additional storey. However, for timber-framed 

buildings side setbacks must be at least 5.00 meters.” In the code model, these three rule 

statements are represented as three rule objects (R.27.5, R.27.6, and R.27.7). Rules 



	
  
111 

R.27.5 and R.27.6 are connected to each other with an “OR” conjunction and nested as 

a sub-set of rule-set RS.27.B. This subset is connected to Rule R.27.7 with an “AND” 

conjunction and form rule-set RS.27.B. The system checks setback S001 against the 

first rule (R.27.5) of the rule-set RS.27.B and obtains a pass result. The system skips the 

check for R.27.6 since the “OR” conjunction that joins these two rules does not 

necessitate further checking. After the system concludes that the setback object passes 

this “OR” sub-set, it continues the checking process with R.27.7 because RS.27.B is an 

“AND” rule-set requiring a pass result from all conditions it joins. The setback object 

fails its check against R.27.7 due to its shorter than rule-specified distance and thus fails 

the overall check. The checking result of the case 3 is given Table 4.19.  

Table 4.18. Design parameters for Case 3 

Project: Case 3 
Block  
id constrOrder hasExistingBuilding refFrontSetbackDis refRearSetbackDis refBuildingDepth 
BL01 semiDetached true 5.00 3.00 14.00 

Lot 
id isOnCorner clearDepth numberofFacingRoad   
L001 false 20.00 1   

Setback 
id frontDistance sideDistance rearDistance   
S001 5.00 3.00 3.00   

Building 
id depth façade height constructionTech numberofStorey 
B001 11.50 9.50 9.30 timberFramed 3 
…. …. ….. …. …. …. 

 

Table 4.19. Checking result for case 3 

Checking Result: Case 3 
 Setback Building …. 

frontDistance 
(RS.27.A) 

sideDistance 
(RS.27.B) 

rearDistance 
(RS.27.C) 

depth 
(RS.28) 

façade 
(RS.29) 

height 
(RS.30) 

….. 

S001 √ 
(R.27.01) 

X 
 (R.27.07) 

√ 
(R.27.09 & R.27.10 ) - - - ….. 

B001 - - - √ 
(R.28.01) 

√ 
(R.29.01) 

√ 
(R.30.03) …. 

…… …. …. …. ….. …. …. …. … 
 



	
  
112 

Figure 4.17 is a screenshot where compliance checking of the sample building 

against IMHZCode clauses related to setback, door and building concepts takes place. 

Case 1 is active in the screenshot. 

 

 

Figure 4.17. A screenshot of the testing application 

 



	
  
113 

CHAPTER 5 
 
 

CONCLUSION 

In this dissertation a new representation model for building codes has been 

developed and an accompanying modeling methodology has been proposed. The new 

representation model and methodology describing a formal modeling process, allows 

representing domain concepts, individual rule statements, relationships between rules, 

and alternative methods of structuring (organizing) the overall building code document 

in a computable format to be used by future automated compliance checking systems. 

This chapter provides a brief summary and discusses contributions of this dissertation 

along with directions for future work.  

5.1. Findings and Discussion 

This dissertation proposed and demonstrated a new representation model 

establishing a methodology for representation of building codes as presented in detail in 

section 3.4. This new model divides the representation into four levels to provide a 

systematic structure for building codes in computational form. These levels are;  

1. Domain level for representing concepts that appear in the building code. 

2. Rule level for representing individual rule statements of the building code. 

3. Rule-set level for representing inter-relations between the rule statements. 

4. Management level for representing the organization of the building code.  

For creating digital versions of building codes, based on the new representation 

model, a building code modeling methodology is defined. The methodology is 

comprised of three stages: analysis, representation, implementation. 

For more than two decades, the research community has been investigating 

automated code compliance checking and proposed several methods of representation 

for modeling building codes.  Several researchers have suggested various models and 

automated building code checking environments based on these models (Fenves, 1966; 

Fenves et al., 1987; Jain et al., 1989; Rasdorf & Lakmazaheri, 1990; Garrett & Hakim, 



	
  
114 

1992; Yabuki & Law, 1993; Kiliccote et al., 1994; Wix, 2008; Eastman, 2009; 

Yurchyshyna & Zarli, 2009; Pauwels et al., 2011). However, there has been limited 

success in transferring these environments into practice (Hakim & Garrett, 1992; 

Fenves et al., 1995). A literature survey reveals that the reasons for this failure are 

related with the building code models used in these environments and not with the 

specific implementations of these environments (Fenves et al., 1995). Building codes 

have been modeled using various methods such as decision tables, hard-coded rules, 

programming logic, domain-specific rule language, semantic modeling.  Each of these 

methods has its own inherent limitations. Ideally, the building code model should be 

independent of compliance checking systems and be adaptable to continuous 

amendments to the building code. It should be consistent (preventing ambiguities as 

well as contradictions among rules) and comprehensive. Moreover, there should not be 

representational redundancies in the building code model. The new representation 

model developed in this dissertation aims to meet the above requirements.  

The main contribution of this dissertation is a new model establishing a 

methodology for representing building codes structured in four levels, as explained in 

CHAPTER 3 in detail. The new representation model is theoretically grounded in 

Nyman and Fenves (1975)’s work on an abstract model of the logical structure of 

building codes and combines it with an adapted version of SMARTcodes’ semantic-

oriented representation of building codes (Conover, 2009) for modeling rule statements.   

Although Fenves and Nyman’s work provides a solid theoretical foundation for 

representation of building codes, previous building code models based on this theory 

were not widely adopted  in AEC industry mainly due to the immature information 

technologies for knowledge representation at the time. Representation methods in the 

modeling of building code information were inefficient and not easy understandable by 

non-programmer users, therefore code models quickly became hard to maintain and 

build. The four-level structure they introduced is still applicable and has proven to be a 

robust method for decomposing building codes.  

SMARTcodes’ semantic-oriented representation approach, which is a relatively 

new method for knowledge representation, provides an easy to understand, elegant 

method for modeling rule statements. It utilizes a simple scheme (RASE constructs) that 

is applicable for all types of rule statements, and with it, non-programmer users are able 

to build and maintain building code models. A pilot study carried out in the early phase 

of the research showed that it can be utilized for representing building codes, however, 



	
  
115 

several shortcomings were identified. First, it is prone to inconsistencies and creates 

redundancies arising from modeling the same concepts multiple times for each 

applicability and selection construct when the concepts are referenced by multiple rules. 

This shortcoming was addressed by the first level of the new representation model 

creating domain objects of interest and concept mapping table that are used to define 

repeating concepts once. Second shortcoming is the lack of explicit relationships 

between individual rule statements. In SMARTcodes’ approach, relationship 

representation (hierarchy within rules) is handled separately in the automated 

compliance checking system. This makes it difficult to ensure correctness and 

consistency for the overall code representation, independent of automated checking 

systems.  The third level of the new model addresses this shortcoming by allowing to 

build the logical hierarchy relationships between rules. As a result, while 

SMARTcode’s approach was adopted, it was modified into a four level representation 

that improves it by eliminating redundancies and adding logical relationships.  

The dissertation shows that decomposing a building code into four levels and 

modeling rules based on the semantic-oriented paradigm is an effective modeling 

strategy for representing building codes in a computable format independent of 

automated compliance checking systems. The four levels are: The domain level, the rule 

level, the rule-set level and the management level.  

The domain level defines concepts in code checking (e.g. setback, eave, 

cantilever, etc.) as well as specialized object definitions (e.g. bathroom door, air shaft, 

developed lot, etc.) and holds a view of the building project appropriate for code 

checking when the checking system processes the BIM input. Objects at the domain 

level are used at the rule level where requirements are defined for them. With this 

separation all rules use the same definition for a concept and consistency in modeling is 

ensured.  

After the building code is decomposed into independent rule statements, they are 

modeled as rule objects in the form of structured data based on modified RASE 

constructs. The use of domain level objects in building the constructs eliminates 

redundancies and ensures conciseness. The dependencies between rule statements are 

not modeled at this level. Since these rule objects at this level are simple and 

independent, completeness of the representation can be guaranteed by comparing them 

to the list of rule statements identified during the analysis of the building code. 



	
  
116 

The dependencies between rule objects are modeled at the rule-set level. When 

different requirements (rule statements) are stated for the same object depending on 

different conditions, the logical relationship hierarchy between rules is modeled at this 

level. This clear demarcation simplifies modeling of individual rule statements and at 

the same time allows analyzing complex conditional statements independent of the 

requirement data. Since at this level, only logical relations are modeled, it is easier to 

detect contradictions and redundancies within the conditions set forth in the building 

code. Ensuring uniqueness and correctness of the model can be managed through the 

rule-set definitions at this level.  

While a simple aggregation of rule-sets is enough to represent all of the 

requirements contained in the building-code, it is also necessary to model the various 

methods of organizing the code. One method is the original section – heading – sub-

heading organization that is used by the code document itself. The management level 

provides the tools to model such alternative organization methods to persist along with 

the rest of the code. Automated compliance checking systems will need to handle 

multiple building codes published by different authorities. When rules from multiple 

building codes apply to the same objects, the scope and priority of rule-sets will need to 

be modeled. In order to support these operations across multiple building codes, the 

rule-set classification objects are provided at the management level.  

 When compared with the RASE methodology, maintainability is preserved and 

even improved. Since concepts, individual rule statements, relations between the rule 

statements and organization of the building code are separately represented, required 

changes to the code model due to future revisions of the building code can be localized 

and handled without affecting the automated checking system.  

The second contribution of this dissertation is a building code modeling 

methodology defining the process steps in developing building code representations by 

utilizing the proposed representation model, as explained in section 3.5 in detail. The 

proposed building code modeling methodology is comprised of three process stages:  

1. Analysis of the building code for defining what should be represented 

explicitly for the purposes of automated compliance checking and 

documenting how much of the building code can be modeled reliably. 

2. Representation of the building code by utilizing the developed representation 

model.  



	
  
117 

3. Implementation of the building code model within a compliance checking 

application. 

The third contribution of this dissertation comes with a thorough analysis of the 

building codes as explained in detail in section 2.1. It is essential to understand the 

characteristics of building code documents and the various types of information 

contained in them in order to develop an appropriate building code model. The analysis 

led to a framework for classification of different rule types that are commonly found in 

building code documents. Classification according to formalizability is necessary for 

figuring out how much of the code can benefit from automated compliance checking. 

More importantly classification according to self-containedness is needed for 

understanding higher-order relationships between rule statements. This classification 

study is an essential first step for creating a digital representation of any building code 

document. Previous models and approaches for representation of building codes, several 

compliance checking systems and current technologies for implementation of building 

code models are also examined in section 2.2 and 2.3 to assess their advantages and 

limitations. 

The proposed representation model is validated for use in the building design 

domain through a conducted case study and a prototype implementation.  The validation 

study focused on modeling IMHZCode (Izmir Municipality Housing and Zoning Code) 

and illustrating the use of the new representation within future compliance checking 

applications. The prototype implementation was completed and code compliance 

checking of demonstrative examples, testing the capabilities of the model was 

successfully carried out.  

In summary, through the research reported on in this dissertation: 

• A new representation model, based on a four level structure stemming from 

Fenves and Nyman’s work and utilizing an adapted version of 

SMARTCodes’ semantic oriented representation of rule statements, has been 

developed establishing a methodology for representation of building codes.  

• A building code modeling methodology is defined for utilizing the new 

representation model.  

• The Izmir Municipality Housing and Zoning Code has been analyzed in 

detail and a framework for classification of rules has been developed.  



	
  
118 

• The Izmir Municipality Housing and Zoning Code has been modeled 

following the developed methodology as a demonstrative case.  

• A prototype representing the functionality of future automated compliance 

checking systems has been implemented. Demonstrative examples of 

building projects have successfully been checked for compliance with 

IMHZCode. 

To conclude, the main contribution of this dissertation is the new representation 

model for building codes that would be utilized in the development of automated 

compliance checking systems. The new model is the outcome of modifying and 

extending the recently developed semantic-oriented representation approach based on 

the theoretical view of the logical structure of building codes established by earlier 

efforts. This dissertation has demonstrated the importance of separating and making 

explicit, the representations for domain concepts, individual rule statements, 

relationships between rule statements and organization of the building code.  

5.2. Future Work 

The prototype that has been implemented has been successful in checking 

compliance with IMHZCode for the building projects that have been chosen as test 

cases. However, there are limitations to this proof of concept. First, only IMHZCode 

has been modeled and the prototype has been tested with only this model. Yet, it should 

be noted that the building code that was chosen was Izmir Municipality Housing and 

Zoning Code. IMHZCode, as a code that is actually in effect and belonging to a 

metropolis, is comprehensive and includes rule statements that have a high level of 

complexity. Thus it is representative of codes that are hardest to represent in 

computational format.  

A second important limitation is the fact the new model is designed with the 

intent to provide a solution for representing only formalizable rules. Semi-formalizable 

and non-formalizable rules have not been included in the scope of this research. As 

future efforts develop solutions for these types of rules, the methodology might need to 

be adapted.   



	
  
119 

The research presented in this dissertation is a step forward towards providing 

automation support for compliance checking of building projects. Many directions for 

future research can be identified. 

• A user interface for code authors is required for adding or modifying 

rules/concepts.  

• Building a domain model is manual work. It should be investigated if 

domain models can be automatically derived from original texts of building 

codes by applying advanced artificial intelligence and natural language 

processing techniques. 

• How building information models should be extended to hold information 

requirements of various code domains in order to support automated 

reasoning about code compliance is another issue that will need to be 

resolved.   

  



	
  
120 

REFERENCES 

AEC3. (2012). International Code Council  Retrieved February, 23, 2013, from 
http://www.aec3.com/en/5/5_013_ICC.htm 

buildingSMART. (2008a). Industry Foundation Classes (Ifc) Data Model  Retrieved 14 
May, 2014, from http://www.buildingsmart.org/standards/ifc 

buildingSMART. (2008b). Model View Definitions  Retrieved 3 June, 2014, from 
http://www.buildingsmart.org/standards/mvd 

Cheng, C. P., Lau, G. T., Law, K. H., Pan, J., & Jones, A. (2009). Improving Access to 
and Understanding of Regulations through Taxonomies. Government 
Information Quarterly, 26(2), 238-245. doi: 10.1016/j.giq.2008.12.008 

Conover, D. (2007). Development and Implementation of Automated Code Compliance 
Checking in the U.S. International Code Council.   

Conover, D. (2009). Method and Apparatus for Automatically Determining Compliance 
with Building Regulations, Washington, DC, US Patent No. US 2009/0125283 
A1. 

Ding, L., Drogemuller, R., Rosenman, M., Marchant, D., & Gero, J. (2006). Automating 
Code Checking for Building Designs – Designcheck. Paper presented at the 
Clients Driving Innovation: Moving Ideas into Practice, Gold Coast, 
Queensland, Australia.  

Dym, C. L., Henchey, R. P., Delis, E. A., & Gonick, S. (1988). A Knowledge-Based 
System for Automated Architectural Code Checking. Computer-Aided Design, 
20(3), 137-145. doi: http://dx.doi.org/10.1016/0010-­‐4485(88)90021-­‐8 

Eastman, C. (2006). Ifc Overview. Chuck Eastman.  

Eastman, C. (2009). Automated Assessment of Early Concept Designs. Architectural 
Design, 79(2), 52-57. doi: 10.1002/ad.851 

Eastman, C. M., Lee, J.-m., Jeong, Y.-s., & Lee, J.-k. (2008). Implementation of 
Automatic Circulation Checking Module: Georgia Tech. . 

Eastman, C. M., Lee, J.-m., Jeong, Y.-s., & Lee, J.-k. (2009). Automatic Rule-Based 
Checking of Building Designs. Automation in Construction, 18(8), 1011-1033. 
doi: 10.1016/j.autcon.2009.07.002     

Fenves, S. J. (1966). Tabular Decision Logic for Structural Design. Journal of 
Structural Division ASCE, 92, 473-490.  



	
  
121 

Fenves, S. J. (1976). The Structure of Building Specifications. In ERIC (Ed.), NBS 
Building Science Series 90 (pp. 92). Washington, DC.: National Bureau of 
Standards. 

Fenves, S. J., Garrett, J. H., Kiliccote, H., Law, K. H., & Reed, K. A. (1995). Computer 
Representations of Design Standards and Building Codes: U.S. Perspective. The 
International Journal of Construction Information Technology, 3(1), 13-34.  

Fenves, S. J., Gaylord, E. H., & Goel, S. K. (1969). Decision Table Formulation of the 
1969 Aisc Specification Civil Engineering Studies SRS-347. 

Fenves, S. J., & Wright, R. N. (1977). The Representation and Use of Design 
Specifications NBS technical note 940. Washington, DC.: National Bureau of 
Standards. 

Fenves, S. J., Wright, R. N., Stahl, F. I., & Reed, K. A. (1987). Introduction to Sase: 
Standards Analysis, Synthesis and Expression. In NBSIR (Ed.). Washington, 
D.C.: National Bureau of Standards. 

Garrett, J. H., & Fenves, S. J. (1987). A Knowledge-Based Standards Processor for 
Structural Component Design. Engineering with Computers, 2(4), 219-238. doi: 
10.1007/BF01276414 

Garrett, J. H. J., & Hakim, M. M. (1992). Object-Oriented Model of Engineering 
Design Standards. Journal of Computing in Civil Engineering, 6(3), 323-347.  

Gero, J. S. (1984). Amubc System: Final Report: University of Sydney. 

Hakim, M. M., & Garrett, J. H. (1992). Issues in Modelling and Processing Design 
Standards. Paper presented at the The joint CIB Workshops on Computers and 
Information in Construction. 

Hakim, M. M., & Garrett, J. H. (1993). A Description Logic Approach for Representing 
Engineering Design Standards. Engineering with Computers, 9(2), 108-124. doi: 
10.1007/bf01199049 

Han, C., Kunz, J., & Law, K. H. (1997). Making Automated Building Code Checking a 
Reality. Facility Management Journal, 22-28.  

Han, C., Kunz, J. C., & Law, K. H. (2002). Compliance Analysis for Disabled Access. 
In J. a. A. K. E. William J. McIver (Ed.), Advances in Digital Government 
Technology, Human Factors, and Policy (pp. 149-163). Kluwer, Boston, MA. 

Han, C. S., Kunz, J. C., & Law, K. H. (1998). Client/Server Framework for on-Line 
Building Code Checking. Journal of Computing in Civil Engineering, 12(4), 
181.  



	
  
122 

Harris, J. R., & Wright, R. N. (1980). Organization of Building Standards: Systematic 
Techniques for Scope and Arrangement NBS, Building Science Series 136 (pp. 
267). Washington, D.C.: National Bureau of Standards. 

Hjelseth, E. (2009). Foundation for Development of Computable Rules. Paper presented 
at the CIB W078 26TH INTERNATIONAL CONFERENCE.  

Hjelseth, E. (2012). Converting Performance Based Regulations into Computable Rules 
in Bim Based Model Checking Software Ework and Ebusiness in Architecture, 
Engineering and Construction (pp. 461-469): CRC Press. 

ISO. (2002). Iso 10303-21:2002 Industrial Automation Systems and Integration -- 
Product Data Representation and Exchange -- Part 21: Implementation Methods: 
Clear Text Encoding of the Exchange Structure. 

ISO. (2004). Iso 10303-11:2004 Industrial Automation Systems and Integration -- 
Product Data Representation and Exchange -- Part 11: Description Methods: 
The Express Language Reference Manual. 

ISO. (2013). Iso 16739:2013 Industry Foundation Classes (Ifc) for Data Sharing in the 
Construction and Facility Management Industries. 

Jain, D., Law, K. H., & Krawinkler, H. (1989). On Processing Standards with Predicate 
Calculus. Paper presented at the Sixth Conference on Computing in Civil 
Engineering, Atlanta, Georgia. 

Jotne. (1994). Express Data Manager  Retrieved 14 May, 2014, from 
http://www.epmtech.jotne.com 

Kerrigan, S., & Law, K. H. (2003). Logic-Based Regulation Compliance-Assistance. 
Paper presented at the 9th International Conference on Artificial Intelligence and 
Law Scotland, United Kingdom. 

Khemlani, L. (2004). The Ifc Building Model: A Look under the Hood. AECbytes 
Feature, 1-10.  

Khemlani, L. (2005). Corenet E-Plancheck: Singapore's Automated Code Checking 
System. AECbytes.  

Kiliccote, H., & Garrett, J. H. (1998). Standards Modeling Language. Journal of 
Computing in Civil Engineering, 12(3), 129-135.  

Kiliccote, H., James H. Garrett, J., Chmielenski, T. J., & Reed, K. A. (1994). The 
Context-Oriented Model: An Improved Modeling Approach for Representing 
and Processing Design Standards. Paper presented at the First ASCE Congress 
on Computing in Civil Engineering, Washington, D.C, June 1994. 



	
  
123 

Kumar, B. (1995). Knowledge Processing for Structural Design. Southampton, UK ;: 
Computational Mechanics Publications. 

Lee, J. K., Eastman, C. M., Lee, J., Kannala, M., & Jeong, Y. S. (2010). Computing 
Walking Distances within Buildings Using the Universal Circulation Network. 
ENVIRONMENT AND PLANNING B-PLANNING & DESIGN, 37(4), 628-645. 
doi: 10.1068/b35124 

Liebich, T. (2002). Ifc Overview: Status of Standardization. Implementation, and Use of 
Model-Based Work Together with IFC, 5, 1-16.  

Liebich, T., Wix, J., Forester, J., & Qi, Z. (2002). Speeding-up the Building Plan 
Approval - the Singapore E-Plan Checking Project Offers Automatic Plan 
Checking Based on Ifc. Paper presented at the European Conferences on Product 
and Process Modelling (ECPPM) 2002 - eWork and eBusiness in Architecture, 
Engineering and Construction, Portoroz, Slovenia. 

Macit, S., İlal, M. E., Günaydın, H. M., & Suter, G. (2013). İzmi Municipality Housing 
and Zoning Code Analysis and Representation for Compliance Checking. Paper 
presented at the 20th Workshop of the European Group for Intelligent 
Computing in Engineering, Vienna, Austria, 1-3 July. 

Nisbet, N., Wix, J., & Conover, D. (2009). The Future of Virtual Construction and 
Regulation Checking Virtual Futures for Design, Construction & Procurement 
(pp. 241-250): Blackwell Publishing Ltd. 

novaCITYNETS. (2000). About Fornax™ - Plancheck Expert  Retrieved 14 May, 2014, 
from http://www.novacitynets.com/fornax/about.htm 

Nyman, D. J., & Fenves, S. J. (1975). An Organization Model for Design 
Specifications. Journal of structural Division ASCE, 101(4), 697-716.  

Nyman, D. J., Fenves, S. J., & Wright, R. N. (1973). Restructuring Study of the Aisc 
Specification Civil Engineering Studies SRS-393 (Vol. 1). Urbana-Champaign: 
Department of Civil Engineering, University of Illinois Engineering Experiment 
Station. 

Pauwels, P., Deursen, D. V., Verstraeten, R., Roo, J. D., Meyer, R. D., Walle, R. V. d., 
& Campenhout, J. V. (2011). A Semantic Rule Checking Environment for 
Building Performance Checking. Automation in Construction, 20(5), 506-518. 
doi: 10.1016/j.autcon.2010.11.017 

Rasdorf, W., & Fenves, S. (1980). Design Specification Representation and Analysis. 
Paper presented at the 2nd ASCE Conference on Computing in Civil 
Engineering, Baltimore, Maryland, United States, June 9-13. 



	
  
124 

Rasdorf, W., & Wang, T. (1988). Generic Design Standards Processing in an Expert 
System Environment. Journal of Computing in Civil Engineering, 2(1), 68-87. 
doi: 10.1061/(ASCE)0887-3801(1988)2:1(68) 

Rasdorf, W. J., & Lakmazaheri, S. (1990). Logic-Based Approach for Modeling 
Organization of Design Standards. Journal of Computing in Civil Engineering, 
4(2), 102-123. doi: 10.1061/(ASCE)0887-3801(1990)4:2(102) 

Rosenman, M. A., & Gero, J. S. (1985). Design Codes as Expert Systems. Computer-
Aided Design, 17(9), 399-409. doi: http://dx.doi.org/10.1016/0010-­‐
4485(85)90287-­‐8 

Salama, D. M., & El-Gohary, N. M. (2011). Semantic Modeling for Automated 
Compliance Checking Computing in Civil Engineering (2011) (pp. 641-648). 

Sing, T. F., & Zhong, Q. (2001). Construction and Real Estate Network (Corenet). 
Facilities, 19(11/12), 419-428.  

Solibri. (1999). Solibri Model Checker  Retrieved 14 May, 2014, from 
http://www.solibri.com/products/solibri-­‐model-­‐checker/ 

Vassileva, S. (2000). An Approach of Constructing Integrated Client/Server Framework 
for Operative Checking of Building Code. Paper presented at the Construction 
Information Technology 2000: Taking the construction industry into the 21st 
century, Reykjavik, Iceland, June 28-30. 

Waard, M. d. (1992). Computer Aided Conformance Checking. Paper presented at the 
Computers and Building Standards Workshop, Montreal, Canada, May 1992. 

Wix, J. (2008). Bim Automated Code Checking Based on Smartcodes. Paper presented 
at the BuildingSmart Forum. 

Wix, J., & Conover, D. (2007). Capturing and Using Knowledge with Building 
Informatin Modeling (Keynote) Information and Knowledge Management - 
Helping the Practitioner in Planning and Building. Proceedings of the Cib 
W102 3rd International Conference 2007 (pp. p.35-48). Stuttgart (Germany): 
Fraunhofer IRB Verlag. 

Yabuki, N., & Law, K. H. (1993). An Object-Logic Model for the Representation and 
Processing of Design Standards. Engineering with Computers, 9(3), 133-159. 
doi: 10.1007/bf01206345 

Yang, Q. Z., & Li, X. (2001). Representation and Execution of Building Codes for 
Automated Code Checking. Paper presented at the 9th International Conference 
on Computer Aided Architectural Design Futures 2001, Eindhoven, 
Netherlands, Jul 08-11. 



	
  
125 

Yurchyshyna, A., Faron-Zucker, C., Thanh, N. L., & Zarli, A. (2008). Towards an 
Ontology-Enabled Approach for Modeling the Process of Conformity Checking 
in Construction. Paper presented at the CAiSE Forum, Montpellier, France, June 
18-20. 

Yurchyshyna, A., & Zarli, A. (2009). An Ontology-Based Approach for Formalisation 
and Semantic Organisation of Conformance Requirements in Construction. [doi: 
DOI: 10.1016/j.autcon.2009.07.008]. Automation in Construction, 18(8), 1084-
1098.  

Zhang, J., & El-Gohary, N. M. (2011). Automated Information Extraction from 
Construction-Related Regulatory Documents for Automated Compliance 
Checking. Paper presented at the CIM W78-W102 Conference, Sophia 
Antipolis, France. 

 

	
    



	
  
126 

APPENDIX A 
 
 

DECOMPOSITION AND CLASSIFICATION OF 
IMHZCODE 

This appendix shows the decomposition of Izmir Municipality Housing and 

Zoning Code (IMHZCode) clauses that include rule statements pertinent to buildings 

and the classification of these rule statements.   

 

Textual Expressions of  
Clause 27 

Statement  
Type 

Madde 27–Bahçe Mesafeleri Id&heading  
 1 Yürürlükteki imar planı kararlarında bahçe mesafelerine ilişkin ölçüler belirtilmediği 

takdirde, bahçe mesafelerinin aşağıdaki koşullara göre belirlenmesi zorunludur. 
Applicability 
con. 

 A- Ön Bahçe Mesafeleri: subheading  
 2 Ön cephe ve yol kenarlarına, yeşil sahaya ve otoparka rastlayan bahçe mesafeleri en az 

5.00 m.dir. 
Rule  

 3 Ancak, yapılaşmanın başladığı adalarda (ayrık yapı nizamı verilen adalar hariç) aşağıdaki 
koşullara göre, aynı ada yüzündeki mevcut yapılar dikkate alınarak bahçe mesafeleri tayin 
edilecektir. 

Applicability 
con. 

 4 a) İkiz yapı nizamı verilen adalarda; parsellerden birinde mevcut bina var ise, ikizine 
verilecek bahçe mesafesinin tayininde mevcut yapı esas alınır. 

Rule 

 5 b) Blok yapı nizamı verilen adalarda; aynı blok içindeki parsellerden herhangi birinde 
mevcut bina var ise, sadece bu bloktaki parsellerin bahçe mesafesinin tayininde mevcut 
binanın bahçesi esas alınır. 

Rule 

 6 c) Bitişik yapı nizamı verilen adalarda; ada yüzünün %50’den fazlasının (sayı ve/veya 
taban alanı itibarıyla) yürürlükteki imar planına göre gabarisinde ruhsatlı olarak teşekkül 
etmiş olması halinde, bahçe mesafesinin tayininde aynı ada yüzündeki ve gabarideki en 
yakın mevcut binalar esas alınır. 

Rule 

 B-Yan Bahçe Mesafeleri subheading  
 7 Yan bahçe mesafeleri (4 kata kadar 4 kat dahil) 3.00 m. olacaktır. Rule 
 8 Bundan yüksek katlı binalarda yan komşu mesafeleri 3 m.ye her bir kat için 0.50 m. ilave 

edilmek suretiyle tespit olunur. 
Rule 

 9 Ancak, ahşap karkas yapılar için en az 5 m. mesafe bırakılması şarttır. Rule 
 B-Arka Bahçe Mesafeleri subheading  
 10 Arka bahçe mesafeleri H/2’dir. Rule 
 11 Bina yüksekliği olan H’nin tespiti bu yönetmeliğin 30. maddesine göre yapılır. Clarification 
 12 Arka bahçe mesafeleri bir yola cephesi olan, iki yola cephesi olan (köşebaşı parselleri) ve 

3 yola cephesi olan köşebaşı parsellerinde de uygulanır. 
Clarification 

 13 Hiçbir yerde 3.00 m.den az olmamak koşulu ile, yapılaşmanın başladığı adalarda (ayrık 
yapı nizamı verilen adalar hariç) aşağıdaki koşullara göre, aynı ada yüzündeki mevcut 
yapılar dikkate alınarak arka bahçe mesafesi tayin edilecektir. 

Rule & 
Applicability 
con. 

 14 a) İkiz yapı nizamı verilen adalarda; parsellerden birinde mevcut bina var ise, ikizine 
verilecek arka bahçe mesafesinin tayininde mevcut yapı esas alınır. 

Rule 

 15 b) Blok yapı nizamı verilen adalarda; aynı blok içindeki parsellerden herhangi birinde 
mevcut bina var ise, sadece bu bloktaki parsellerin arka bahçe mesafesinin tayininde 
mevcut binanın arka bahçesi esas alınır. 

Rule 

 16 c) Bitişik yapı nizamı verilen adalarda; ada yüzünün %50’den fazlasının (sayı ve/veya 
taban alanı itibarıyla) yürürlükteki imar planına göre gabarisinde ruhsatlı olarak teşekkül 
etmiş olması halinde, arka bahçelerin tayininde aynı ada yüzündeki ve gabarideki en 
yakın mevcut binalar esas alınır. 

Rule 

 



	
  
127 

Clause Id Statement Id Rule Id Rule Type 
Self-containedness Formalizability 

C27 ST2 R27.1 Self-contained Formalizable 
ST4 R27.2 Linked-explanatory Formalizable 
ST5 R27.3 Linked-explanatory Formalizable 
ST6 R27.4 Linked-explanatory Formalizable 
ST7 R27.5 Self-contained Formalizable 
ST8 R27.6 Linked-explanatory Formalizable 
ST9 R27.7 Linked-explanatory Formalizable 
ST10 R27.8 Self-contained Formalizable 
ST13 R27.9 Linked-explanatory Formalizable 
ST14 R27.10 Linked-explanatory Formalizable 
ST15 R27.11 Linked-explanatory Formalizable 
ST16 R27.12 Linked-explanatory Formalizable 

 

 

Textual Expressions of  
Clause 28 

Statement  
Type 

Madde 28– Bina Derinlikleri Id&heading  
 1 Bina derinlikleri; hiçbir yerde 22.00 m.yi geçmemek ve arka bahçe mesafesi H/2 nin altına 

düşmemek kaydıyla, imar planı koşulları da dikkate alınarak hesaplanır. 
Rule  

 2 Mevcut yapılaşmanın başladığı adalarda hiçbir yerde arka komşu sınırına 3.00 m.den fazla 
yaklaşmamak ve max. 22.00 m.yi geçmemek şartı ile aşağıdaki koşullara göre aynı ada 
yüzündeki mevcut yapılaşma dikkate alınarak hesaplanır. 

Rule  

 3 a) İkiz yapı nizamı verilen adalarda; parsellerden birinde mevcut bina var ise, ikizine 
verilecek bina derinliğinin tayininde mevcut yapı esas alınır. 

Rule 

 4 b) Blok yapı nizamı verilen adalarda; aynı blok içindeki parsellerden herhangi birinde mevcut 
bina var ise, sadece bu bloktaki parsellerin bina derinliklerinin tayininde mevcut binanın bina 
derinliği esas alınır. 

Rule 

 5 c) Bitişik yapı nizamı verilen adalarda; adanın %50'den fazlasının (sayı ve/veya taban alanı 
itibarıyla) yürürlükteki imar planına göre gabarisinde ruhsatlı olarak teşekkül etmiş olması 
halinde, bina derinliklerinin tayininde aynı gabarideki mevcut binalar esas alınır. 

Rule 

 6 a) Bitişik yapı nizamı verilen adalarda; köşe başına rastlayan parsellerde yapı derinliği 
parselin yüz aldığı yollar üzerindeki komşu parsellere verilecek derinliklere göre belirlenir. 

Rule 

 7 Yapı adasında bu yollara verilen derinliklerin ada köşesindeki parsellerin ada içi boşluğu ile 
irtibatını kesecek ölçüde olmaması halinde, bina derinliği 30 m. yi aşmamak kaydıyla bu 
parsellere nizami aydınlıkla parsel tamamına yapı izni verilebilir. 

Rule 

 8 b) Köşe başından başka iki yola cephesi bulunan ve varsa ön, arka bahçe mesafeleri çıktıktan 
sonraki ortalama derinliği 30.00 m.den az olan parsellerde bu derinliğe kadar yapı yapılabilir. 

Rule 

 9 Toplam kitle derinliği 30. m. yi aşmamak komşu binalarla uyum sağlamak, arka bahçeleri 
bütünleştirecek şekilde parselde iki kitle düzenlemeye belediyesi yetkilidir. 

Rule 

 10 c) Her türlü bölgede derinliği az olan parsellerde 3.00 m. arka bahçe mesafesi bırakıldığında 
bina derinliğinin 10.00 m. altına düşmesi halinde arka bahçe mesafesini 1.00 m. ye kadar 
azaltmaya belediyesi yetkilidir. 

Rule 

 11 d) Ayrık nizamda ve yapı emsali verilmemiş adalarda; bahçe mesafesi içinde kalmak koşulu 
ile yapı boyutları 22.00 x 30.00 m.yi aşamaz. 

Rule 

 

Clause Id Statement Id Rule Id Rule Type 
Self-containedness Formalizability 

C28 ST1 R28.1 Self-contained Formalizable 
ST2 R28.2 Linked-explanatory Formalizable 
ST3 R28.3 Linked-explanatory Formalizable 
ST4 R28.4 Linked-explanatory Formalizable 
ST5 R28.5 Linked-explanatory Formalizable 
ST6 R28.6 Linked-explanatory Formalizable 
ST7 R28.7 Linked-explanatory Semi-formalizable 
ST8 R28.8 Linked-explanatory Formalizable 
ST9 R28.9 Linked-explanatory Non-formalizable 
ST10 R28.10 Linked-explanatory Non-formalizable 
ST11 R28.11 Self-contained Formalizable 



	
  
128 

Textual Expressions of  
Clause 29 

Statement  
Type 

Madde 29– Bina Cepheleri Id&heading  
 1 Ayrık yapı nizamına tabi olan yerlerde yapılacak yapıların max. bina cephesi (30.00) 

m.dir. 
Rule  

 2 Ayrık ve ikiz yapı nizamına tabi olan yerlerde, daha uygun çözüm yolları bulmak 
maksadı ile birkaç dar parseli birlikte mütalaa ederek o yer için tespit edilen yapı 
karakterine uyacak bir tertipten uzaklaşmamak kaydıyla, bina cepheleri toplamı (30.00) 
m.yi geçmeyen ikili veya üçlü bloklar teşkil etmeye belediyesi yetkilidir. 

Rule 

 

Clause Id Statement Id Rule Id Rule Type 
Self-containedness Formalizability 

C29 ST1 R29.1 Self-contained Formalizable 
ST2 R29.2 Self-contained Non-formalizable 

 

 

Textual Expressions of  
Clause 30 

Statement  
Type 

Madde 30– Bina Yükseklikleri  Id&heading  
 1 İmar planlarında gösterilen bina yüksekliklerinin veya kat adetlerinin birbirlerine 

tahvilleri aşağıdaki şekilde tespit edilir. 
Clarification 

 2 1 katlı binaların yüksekliği maks. 3.80 m. Rule 
 3 2 katlı binaların yüksekliği maks. 6.80 m. Rule 
 4 3 katlı binaların yüksekliği maks. 9.80 m. Rule 
 5 4 katlı binaların yüksekliği maks. 12.80 m. Rule 
 6 5 katlı binaların yüksekliği maks. 15.80 m. Rule 
 7 6 katlı binaların yüksekliği maks. 18.80 m. Rule 
 8 7 katlı binaların yüksekliği maks. 21.80 m. Rule 
 9 8 katlı binaların yüksekliği maks. 24.80 m. Rule 
 10 9 katlı binaların yüksekliği maks.27.80 m. Rule 
 11 10 katlı binaların yüksekliği maks.30.80 m. Rule 
 12 Yeni yapılacak binalarda; tayin edilmiş ise imar planlarındaki şartlara aksi halde bu 

Yönetmelikte gösterilen yüksekliğe veya kat adedine uyulması mecburidir. 
Applicability 
con. 

 13 Belirlenen gabari içinde kalmak şartıyla iç yükseklikleri arttırarak daha az adette kat 
yapılabilir. 

Rule 

 14 Ayrıca; yapı emsali verilmemiş adalarda, İmar Kanunu, imar planı ve bu Yönetmeliğe 
göre çok katlı yapı yapılması mümkün olan parsellerde, sahibinin talebi halinde, 
encümence uygun görülecek muvakkat bir zaman için yüksekliği 6.80 m.yi ve 2 katı 
geçmeyen yapı ve tesislere tespit edilen kitle nizamına uygun olmak koşulu ile 
encümence izin verilebilir. 

Rule 

 

Clause Id Statement Id Rule Id Rule Type 
Self-containedness Formalizability 

C30 ST2 R30.1 Self-contained Formalizable 
ST3 R30.2 Linked-explanatory Formalizable 
ST4 R30.3 Linked-explanatory Formalizable 
ST5 R30.4 Linked-explanatory Formalizable 
ST6 R30.5 Linked-explanatory Formalizable 
ST7 R30.6 Linked-explanatory Formalizable 
ST8 R30.7 Linked-explanatory Formalizable 
ST9 R30.8 Linked-explanatory Formalizable 
ST10 R30.9 Linked-explanatory Formalizable 
ST11 R30.10 Linked-explanatory Formalizable 
ST13 R30.11 Self-contained Semi-formalizable 
ST14 R30.12 Self-contained Non-formalizable 

 



	
  
129 

 

Textual Expressions of  
Clause 38 

Statement  
Type 

Madde 38– Zemin Kat Döşeme Seviyeleri  Id&heading  
 1 Zemin kat döşeme seviyeleri, binaların kot aldığı yol cephesince bu kota esas olan 

tretuvar üst seviyesinden itibaren + 0.50m. ile +1.00 m. arasında düzenlenir. 
Rule 

 2 Binaların zemin katlarının işyeri veya otopark olarak kullanılması halinde, +0.50 m. 
koşulu aranmaz, bu durumda, zemin kat döşeme seviyeleri tretuvar üst seviyesinden aşağı 
indirilemez. 

Rule 

 3 Ayrıca, fazla meyilli sokaklar üzerinde yapılacak dükkan, otopark ve benzeri girişlerin 
tretuvar kotlarına uydurulması amacıyla yapılacak döşeme kademeleri yukarıdaki 
sınırlamalar dışındadır. 

Clarification 

 4 Arazi doğal zemin kotlarına uymak amacıyla veya mimari gereksinmeler nedeniyle, bir 
bina bloğunun, bir binanın veya müstakil bir bağımsız bölümün tespit edilen bina 
yüksekliğini aşamamak, belirli piyesler için tayin olunan asgari kat yüksekliklerine ve bu 
Yönetmeliğin diğer hükümlerine aykırı olmamak şartı ile çeşitli kotlardan ve farklı taban 
veya tavan seviyelerinden müteşekkil olarak tertiplenmesi mümkündür. 

Rule 

 5 Ancak, bu durumda zemin katın en yüksek döşeme kotu, kot alma noktasından itibaren 
+1.50 m. yi geçemez. 

Rule 

 6 Bu kademelendirme kitle hattından itibaren yol cephesinden 3.00 m. geriden başlayarak 
bütün bina derinliğince ve diğer cepleri boyunca da yapılabilir. 

Clarification 

 7 Ancak yol cephelerinde imar planında belirtilen kat adedi aşılamayacağından sadece tek 
yola cepheli parsellerde uygulanır. 

Clarifiaction 

 8 Fazla meyilli yollarda köşe başı olmayan parsellerde, yol cephesinde yolun meylinden 
dolayı zemin kat taban kotunun tretuvardan en fazla 3.00 m. yükseldiği noktalarda binada 
kademe yaptırılır. 

Rule 

 9 Yol cephesinde en düşük son kademe, cephe boyunca 6.00 m.den aşağı olamaz. Rule 
 10 6.00m.den az olması durumunda bir önceki kademe seviyesine uyulur. Rule 

 

Clause Id Statement Id Rule Id Rule Type 
Self-containedness Formalizability 

C38 ST1  Self-contained Formalizable 
ST2  Linked-explanatory Fromalizable 
ST4  Self-contained Non-formalizable 
ST5  Linked-explanatory Formalizable 
ST8  Self-contained Semi-formalizable 
ST9  Self-contained Formalizable 
ST10  Linked-explanatory Formalizable 

 

 

Textual Expressions of  
Clause 39 

Statement  
Type 

Madde 39– Bazı Yapılarda Aranan Şartlar  Id&heading  
 1 Ahşap ve yarı ahşap binalar bitişik yapılamazlar. Rule 
 2 Ayrık nizamda ise komşu sınırlarına bırakılacak min. bahçe mesafesi 5.00 m.den az 

olamaz. 
Rule 

 3 Yüksekliği max 6.80 m.yi aşamaz. Rule 
 4 Ahşap ve yarı kagir binaların komşu hududuna zeminden itibaren çatının her yerinde 0.60 

m.lik yüksekliğe kadar ve en az bir tuğla kalınlığında yangın duvarı yapılması koşuluyla 
bitişik olarak inşa edilebilir. 

Rule 

 

Clause Id Statement Id Rule Id Rule Type 
Self-containedness Formalizability 

39 ST1  Self-contained Formalizable 
ST2  Self-contained Formalizable 
ST3  Self-contained Formalizable 
ST4  Self-contained Formalizable 



	
  
130 

Textual Expressions of  
Clause 40 

Statement  
Type 

Madde 40– Saçak ve Güneş Kesiciler Id&heading  
 1 Binalarda son kat tavan döşemelerinde binanın çıkma hattından itibaren 0.50m. yi 

geçmemek üzere tüm bina cepheleri boyunca saçak yapılabilir. 
Rule 

 2 Ön bahçesiz nizama tabi parsellerde bina cephesinden itibaren genişliği 1.50 m.yi 
geçmemek, konsol olmak ve komşu parsellere 2.00m. den fazla yaklaşmamak koşulu ile 
bina giriş ve dükkan önü saçakları düzenlenebilir. 

Rule 

 3 Ancak bu saçakların en alçak noktası tretuvar üst seviyesinden en az 3.00 m. yükseklikte 
olabilir ve genişliği tretuvar genişliğini aşamaz. 

Rule 

 4 Ön bahçeli nizama tabi parsellerde ise, tretuvara taşmamak, civara ve binanın karakterine 
uygun olmak, ve konsol olmak koşulu ile giriş saçakları düzenlenebilir. 

Rule 

 5 Bina cephelerinde alan olarak yararlanmamak koşulu ile 1.00 m.yi geçmeyen güneş 
kesiciler yapılabilir. 

Rule 

 

Clause Id Statement Id Rule Id Rule Type 
Self-containedness Formalizability 

C40 ST1 R40.1 Self-contained Formalizable 
ST2 R40.2 Linked-explanatory Formalizable 
ST3 R40.3 Linked-explanatory Formalizable 
ST4 R40.4 Linked-explanatory Formalizable** 
ST5 R40.5 Self-contained Formalizable** 

 

 

Textual Expressions of  
Clause 41 

Statement  
Type 

Madde 41– Çatılar Id&heading  
 1 Çatılar binanın cephe aldığı yolun yapı karakterine ve yapıya uygun nitelikte olmalıdır. Rule 
 2 Genel olarak çatıların %33 meyilli gabari dahilinde kalması şarttır. Rule 
 3 Ancak, ayrık yapı nizamına tabi 2 katı geçmeyen dubleks konut yapılarında, imar durumunda 

belirtilen gabariye göre %33 meyil hesaplanarak bulunan mahya kotu aşılmamak kaydıyla, 
çatı eğimi ve çatı biçimi serbesttir. 

Rule 

 4 Mahya kotu, mahya izdüşümü bina kitlesinin ½ sinden fazla olmamak kaydıyla beşik çatıya 
göre hesaplanır. 

Clarification 

 5 Çatı eğimi , saçak genişliği dikkate alınmadan binanın cephesinden hesaplanır. Clarification 
 6 Ancak, kapalı çıkma bulunan ve bu çıkma bina yüksekliğince devam eden binalarda çatı 

eğimi çıkma ucundan hesaplanır. 
Clarification 

 7 Dubleks konut yapıları dışında kalan yapılarda, çatı yapılması halinde, mahya yüksekliği 3.00 
m. yi aşmamak kaydıyla her cepheye akıntılı çatı yapılacaktır. 

Rule 

 8 Çatı aralarına bağımsız bölüm yapılamaz. Rule 
 9 Bu kısımlarda ancak, asansör kulesi, merkezi klima tesisatı, baca ve 6.80 m. ve daha az 

yükseklikteki dubleks konut binalarında içeriden irtibatlandırılmak, ait olduğu bağımsız 
bölüm sınırlarını aşmamak ve bu bağımsız bölümün son kattaki alanının %30'unu geçmemek 
kaydıyla piyesler yapılabilir. 

Rule 

 10 Bu piyeslerden iskan edilenlerinde yükseklik en düşük yerde 1.80 m.den az olamaz. Rule 
 11 Çatı arasının yukarıdaki şekilde düzenlenmesi halinde piyes önleri teras olarak tertiplenemez. Rule 
 12 Çatı arasının son kat bağımsız bölümü ile birlikte kullanılması amacıyla son kat tavan betonu 

kısmen veya tamamen yapılmayabilir. 
Rule 

 13 Son kat tavan döşemesi en yüksek mahya kotunu aşmayacak ve en fazla çatı eğimi içinde 
kalacak şekilde eğimli olarak tertip edilebilir. 

Rule 

 14 Işıklıklar, alın ve kalkan duvarları, güneş enerjisi panelleri ve depoları  çatı sathını 0.60 
m.den fazla geçemez. 

Rule 

 15 Duman ve hava bacaları hariç çatı üzerine hiçbir çıkma ve çıkıntı yapılamaz. Rule 
 16 Ancak, 2.10 m. iç yüksekliği aşmamak kaydıyla düzenlenen merdiven evleri ve Türk 

Standartları şartlarının gerektirdiği hallerde asansör kulelerinin çatı örtüsünü aşmasına izin  
Rule 

 17 Teras çatılarda asansör kulesi, merkezi anten, 2.10 m. iç yüksekliği aşmamak kaydıyla 
düzenlenen merdiven evi ve 1.10 m. parapet yüksekliğini aşmamak kaydıyla güneş enerjisi, 
su deposu, merkezi klima gibi tesisler yapılabilir. 

Rule 

 18 Teras çatılarda en çok 1.10 m. yükseklikte yapılacak kagir korkuluk bina yüksekliğine dahil 
edilmez. 

Clarification 



	
  
131 

Clause Id Statement Id Rule Id Rule Type 
Self-containedness Formalizability 

C41 ST1 R41.1 Self-contained Non-formalizable 
ST2 R41.2 Self-contained Formalizable 
ST3 R41.3 Linked-explanatory Formalizable 
ST7 R41.4 Self-contained Formalizable 
ST8 R41.5 Self-contained Formalizable 
ST9 R41.6 Linked-explanatory Formalizable 
ST10 R41.7 Linked-explanatory Formalizable 
ST11 R41.8 Linked-explanatory Formalizable 
ST12 R41.9 Linked-explanatory Semi-formalizable 
ST13 R41.10 Linked-explanatory Formalizable 
ST14 R41.11 Self-contained Formalizable 
ST15 R41.12 Self-contained Formalizable 
ST16 R41.13 Linked-explanatory Formalizable** 
ST17 R41.14 Self-contained Formalizable 

 

 

Textual Expressions of  
Clause 42 

Statement  
Type 

Madde 42– Çıkmalar Id&heading  
 1 Binalarda taban alanı (azami bina sahası) dışında kendi bahçe hudutları dışına taşmamak 

ve genişliği 1.50 m.yi aşmamak, tabii veya tesviye edilmiş (37/c maddesine göre) 
zeminden çıkma altına kadar en yakın şakuli mesafe 2.40m.nin altına düşmemek 
kaydıyla;  

Rule 

 2 Parselin yan ve arka komşu hududuna 3.00 m.den fazla yaklaşmamak şartı ile açık ve 
kapalı çıkma yapılabilir ve bu çıkma cephe uzunluğunca devam edebilir. 

 

 3 Yan bahçe mesafesi 3.00m. ile 4.00m. arasında olan parsellerde, yan komşu hududuna 
2.00m. den fazla yaklaşmamak kaydıyla 1.00 m. ye kadar açık çıkma yapılabilir, ancak bu 
çıkma binanın çıkma yapılan cephe uzunluğunun 1/3’inden fazla olamaz. 

Rule 

 4 Bitişik yapı nizamına tabi binaların ön ve arka cephelerinde yapılacak çıkmalar yan 
komşu hududuna 2.00 m.ye kadar yaklaştırılabilir. 

Rule 

 5 Ayrıca, bitişik nizama tabi yerlerde, iki taraftaki ilgililerin muvafakatı halinde ve ilgili 
belediyece mahzur görülmediği takdirde, çıkmaların yan komşu hududuna 
yaklaştırılmalarına da izin verilebileceği gibi, komşu parselde imar planına göre aynen 
muhafazası gereken ve arka cephe hattı çıkma yapılacak binanınkinden ileride olan bir 
bina bulunması halinde çıkmanın bu hattı aşmamak üzere bu tarafta komşu hududuna 
kadar devam ettirilmesi de mümkündür. 

Rule 

 6 Bitişiğinde çıkması komşu parsel hudutlarına kadar dayanmış ruhsatlı ve gabarisinde 
teşekkül etmiş mevcut bir bina var ise, muvafakat aranmaksızın çıkmanın komşu hududa 
kadar yanaşmasına müsaade edilir. 

Rule 

 7 Yol genişliği (6.00) m.den büyük ön bahçesiz parsellerde; (yol genişliği - 6.00 m.) / 2 
formülüyle hesaplanarak açık ve kapalı çıkma yapılmasına izin verilir. 

Rule 

 8 Ancak, çıkma genişliği her durumda 1.00 m. den fazla olamaz ve yol projesine göre tespit 
edilen tretuvar üst kotundan çıkma altına kadar olan şakuli mesafe (3.00) m.den az 
olamaz. 

Rule 

 9 İki yanında imar planına, mevzuata ruhsat ve eklerine uygun olarak teşekkül etmiş ve 
formüle göre bulunacak değerden daha geniş çıkmalı binalar olması halinde yeni 
yapılacak binaya da bitişik binalarla uyum sağlayacak şekilde çıkma izni verilir. 

Rule 

 10 Zemin katta kendi parsel hududu dışına taşmayan, hangi katta yapılırsa yapılsın (0.20) 
m.yi geçmeyen motif çıkmalar yapılabilir. 

Rule 

 11 Parselin bulunduğu ada yüzünün tamamının yeşil sahaya veya açık otoparka bakması 
halinde, yol genişliğine bakılmaksızın max. (1.00) m. ye kadar açık ve kapalı çıkma izni 
verilir. 

Rule 

 12 Parselin bulunduğu ada yüzünün karşı hattının kısmen yeşil saha kısmen imar adası 
olması halinde, yol genişliği dikkate alınarak yukarıdaki formüle göre çıkma izni verilir. 

Clarification 

 13 Yol genişliğinin tayininde yollardaki arızi (devamlılık arz etmeyen) genişleme ve 
daralmalar dikkate alınmaz. 

Clarification 

 14 Uygulama, ada boyutunda muhtelif noktalardan alınacak yol genişliklerinin ortalama 
değerine göre yapılır. 

Clarification 

 



	
  
132 

Clause Id Statement Id Rule Id Rule Type 
Self-containedness Formalizability 

C42 ST1 R42.1 Self-contained Formalizable 
ST2 R42.2 Linked-explanatory Formalizable 
ST3 R42.3 Linked-explanatory Formalizable 
ST4 R42.4 Linked-explanatory Formalizable 
ST5 R42.5 Linked-explanatory Non-formalizable 
ST6 R42.6 Linked-explanatory Formalizable 
ST7 R42.7 Linked-explanatory Formalizable 
ST8 R42.8 Linked-explanatory Formalizable 
ST9 R42.9 Linked-explanatory Non-formalizable 
ST10 R42.10 Self-contained Formalizable 
ST11 R42.11 Linked-explanatory Formalizable 

 

 

Textual Expressions of  
Clause 43 

Statement  
Type 

Madde 43–Işıklıklar ve Hava Bacaları Id&heading  
 A- Konut Yapılarında: subheading  
 1 Her müstakil ev veya dairede, en az 1 oturma odası ile yatak odalarının doğrudan doğruya 

hariçten ışık ve hava almaları gereklidir. 
Rule 

 2 Bu şekilde ışık ve hava almalarına lüzum olmayan diğer odalarla mutfakların ışıklıktan, 
yıkanma yeri ve helaların ışıklık veya hava bacasından faydalanmaları da mümkündür. 

Rule 

 3 Işıklıklar 1 ve 2 katlı binalarda; dar kenarı 1.00 m.den, alanı 3.00 m2'den az olamaz. Rule 
 4 Işıklıklar 3, 4 ve 5 katlı binalarda; dar kenarı 1.50 m.den, alanı 4.50 m2'den az olamaz. Rule 
 5 Işıklıklar 6,7,8,9 katlı binalarda, dar kenarı 2.00 m.den, alanı 6.00 m2'den az olamaz. Rule 
 6 Işıklıklar 10 ve daha fazla katlı binalarda; dar kenarı 2.00 m.den, alanı 9.00 m2'den az 

olamaz. 
Rule 

 B- Konut Dışı Yapılarda: subheading  
 7 Otel, pansiyon, iş hanı ve benzeri binalarda, odalar gereğinde ışıklığa açılabilir. Rule 
 8 Işıklıklar 1 ve 2 katlı binalarda; dar kenarı 1.50 m.den, alanı 4.50 m2'den az olamaz. Rule 
 9 Işıklıklar 3, 4,5, 6,7,8,9 katlı binalarda; dar kenarı 2.00 m.den, alanı 6.00 m2'den az 

olamaz. 
Rule 

 10 Işıklıklar 10 ve daha fazla katlı binalarda; dar kenarı 2.00 m.den, alanı 9.00 m2'den az 
olamaz. 

Rule 

 C- Genel Hükümler: subheading  
 11 Her türlü binada sadece havalandırma amacı ile kullanılan hava bacalarının asgari ölçüsü 

(0.60 x 0.60) m2. , içinden tesisat geçirilen hava bacalarının asgari ölçüsü ise (0.80 x 
0.80) m2. olup, bu alan herhangi bir yapı elemanı ile (baca, kiriş, vs.) daraltılamaz. 

Rule 

 12 Asgari ölçüdeki bir ışıklık veya hava bacasından her katta en çok 4 piyes faydalanabilir. Clarification 
 13 Bu piyeslerin adetlerinin artması halinde, 4’ten fazla her piyes için ışıklık veya hava 

bacası ölçüsü aynı nispette artırılır. 
Rule 

 14 Ancak, yukarıda belirtilen şekilde ışık ve hava alması gerekmeyen veya lüzumlu ışık ve 
havayı yönetmelikte tarif edilen şekilde esasen alması mümkün olan piyeslerden, herhangi 
bir ışıklık veya hava bacasına pencere açılması, bu ışıklık veya hava bacası ölçülerinin 
artırılmasını gerektirmez. 

Clarification 

 15 Her binanın lüzumlu ışıklık veya hava bacası, kendi parseli üzerinde bulunacaktır. Rule 
 16 Komşu bina ve parselin ışıklık veya hava bacasından faydalanmak suretiyle, bu 

elemanların yapılmamasına veya ölçülerinin azaltılmasına izin verilmez. 
Clarification 

 17 Işıklık veya hava bacaları bunlara ihtiyacı olan kattan itibaren başlatılabilir. Clarification 
 18 Ancak meyilden kat kazanılması halinde yapının toplam kat sayısına tekabül eden 

yüksekliğe ait, ışıklık ölçüleri uygulanacaktır. 
Clarification 

 19 Bu arada ışıklık veya hava bacalarının bunlara ihtiyacı olan kattan itibaren başlatılması 
halinde yapının ışıklığının başladığı kat sayısına tekabül eden yüksekliğe ait ışıklık 
ölçüleri uygulanır. 

Clarification 

 20 Ayrıca asansör, merdiven gibi kısımlar aydınlık alanına tecavüz edemez.  Rule 
 21 Işıklıkların içerisine açık renk boya ve badana yapılması mecburidir. Out of Scope 
 22 Bina altında 2.50 m.den geniş geçitlerde ışıklık olarak kullanılabilir. Clarification 
 23 Kafeterya, restoran, kahvehane, lokanta, atölye, imalathane, diskotek gibi insanların toplu 

olarak bulunduğu mekanlarda doğal havalandırma dışında, mekanik havalandırma 
yapılması zorunludur. 

Out of Scope 



	
  
133 

Clause Id Statement Id Rule Id Rule Type 
Self-containedness Formalizability 

C43 ST1 R43.1 Self-contained Formalizable 
ST2 R43.2 Linked-explanatory Formalizable 
ST3 R43.3 Self-contained Formalizable 
ST4 R43.4 Linked-explanatory Formalizable 
ST5 R43.5 Linked-explanatory Formalizable 
ST6 R43.6 Linked-explanatory Formalizable 
ST7 R43.7 Self-contained Semi-formalizable 
ST8 R43.8 Self-contained Formalizable 
ST9 R43.9 Linked-explanatory Formalizable 
ST10 R43.10 Linked-explanatory Formalizable 
ST11 R43.11 Self-contained Formalizable 
ST13 R43.12 Linked-explanatory Semi-formalizable 
ST15 R43.13 Self-contained Semi-formalizable 
ST20 R43.19 Self-contained Semi-formalizable 

 

 

Textual Expressions of  
Clause 44 

Statement  
Type 

Madde 44–Yapılarda Bulunmasi Gereken Piyesler ve Ölçüler Id&heading  
 1 Her bağımsız konutta en az bir yaşam mekanı, bir yatak odası veya nişi, bir mutfak veya 

yemek pişirme nişi, bir banyo (WC ile birlikte) veya bir yıkanma yeri ile bir WC 
bulunması zorunludur. 

Rule 

 2 Bu mekanlar aşağıda belirtilen ölçülerden küçük yapılamaz. Clarification 
 3 Yaşam mekanı; dar kenarı 3.00 m.den, alanı 12.00 m2, Rule 
 4 Yatak odası; dar kenarı 2.60 m, alanı 7.28 m2, Rule 
 5 Yatak nişi; dar kenarı 1.50 m, alanı 3.00 m2, Rule 
 6 Mutfak; dar kenarı 1.50 m, alanı 3.60 m2, Rule 
 7 Yemek pişirme yeri; dar kenarı 0.70 m, alanı 1.40 m2, Rule 
 8 Banyo (WC ile birlikte); dar kenarı 1.20 m.den, alanı 3.48 m2, Rule 
 9 Yıkanma yeri; dar kenarı 1.20 m, alanı 2.64 m2, Rule 
 10 WC; dar kenarı 0.90m, alanı 1.08 m2, Rule 
 11 antre, hol ve benzeri geçitler; dar kenarı 1.00 m, alanı 1.32 m2, Rule 
 12 Birden fazla daire ile ilgili genel geçitler; dar kenarı 1.10 m, alanı 1.32 m2, Rule 
 13 Tabloda belirtilen mekanlar dışında ayrılmak istenen çalışma odası, hobi odası gibi 

kullanımlara ilişkin mekanların dar kenarı 2.10 m.den ve alanı 6.00 m2.den az olamaz. 
Rule 

 14 Yatak nişleri dar kenarı (3.00) m.den ve alanı (12.00) m2 olan bir yaşam mekanı 
açılacaktır. 

Rule 

 15 Yemek pişirme yerleri hava ve duman bacaları ile irtibatlı olmak şartı ile düzenlenebilir. Rule 
 16 Sobalı ısıtma sistemi seçilen yapılarda ayrıca en az 2.50 m2 net alanlı kömürlük (odunluk) 

ayrılacaktır. 
Rule 

 17 Bu hacim binanın bodrum katında veya müştemilat bölümünde de yapılabilir, ancak daire 
içinde yapılması halinde max. (4.50) m2'yi geçemez. 

Rule 

 18 Islak hacimlerde tefriş yapılması zorunludur. Rule 
 19 Umumi binalarda koridor genişlikleri; uzunluğu (20.00) m.ye kadar olan koridorlar 

(2.00)m.den, (20.00) m.yi geçen koridorlar (2.50) m.den dar olamaz. 
Rule 

 20 İmar planlarında aksine bir açıklama olmaması halinde, her türlü işyerinin cephesi 2.00 m. 
den az olamaz. 

Rule 

 21 Resmi kurumlarca yaptırılacak; eğitim binaları, sağlık binaları, spor tesisleri ve bu gibi 
binaların da ilgili bakanlıklarca onaylanmış projeleri esas alınır. 

Clarification 

 22 Bu amaçla yaptırılacak özel binalarda, bu Yönetmelikte belirtilen koşullar dışında ilgili 
bakanlıkların yönetmelikleri dikkate alınacaktır. 

Clarification 

 

 

 

 



	
  
134 

Clause Id Statement Id Rule Id Rule Type 
Self-containedness Formalizability 

C44 ST1 R44.1 Self-contained Formalizable 
ST3 R44.2 Self-contained Formalizable 
ST4 R44.3 Self-contained Formalizable 
ST5 R44.4 Self-contained Formalizable 
ST6 R44.5 Self-contained Formalizable 
ST7 R44.6 Self-contained Formalizable 
ST8 R44.7 Self-contained Formalizable 
ST9 R44.8 Self-contained Formalizable 
ST10 R44.9 Self-contained Formalizable 
ST11 R44.10 Self-contained Formalizable 
ST12 R44.11 Self-contained Formalizable 
ST13 R44.12 Self-contained Formalizable 
ST14 R44.13 Self-contained Formalizable 
ST15 R44.14 Self-contained Formalizable 
ST16 R44.15 Self-contained Formalizable 
ST17 R44.16 Linked-explanatory Formalizable 
ST18 R44.17 Self-contained Formalizable 
ST19 R44.18 Linked-explanatory Formalizable 
ST20 R44.19 Self-contained Formalizable 

 

 

Textual Expressions of  
Clause 45 

Statement  
Type 

Madde 45–İç Yükseklikler Id&heading  
 1 Genel olarak iskan edilen katların taban döşeme kaplaması üzerinden tavan altına kadar 

olan net (döşeme kaplamaları ve sıvalar ikmal edildikten sonra) yüksekliği 2.60m.den az 
olamaz. 

Rule 

 2 Projelerde döşeme ve tavan kaplama detayı gösterilmediği takdirde bu yüksekliğe sıva ve 
kaplama payı olarak (0.07) m. ilave edilir. 

Clarification 

 3 Yıkanma yeri, banyo, duş, lavabo yeri, WC, kiler, ofis, antre, koridor, yatak holü, 
merdiven altı, her türlü iç ve dış geçitler, iskan edilemeyen bodrum katları ile müştemilat 
binalarında, bu yükseklik net (2.20) m.den aşağıya düşmemek üzere indirilebilir. 

Rule 

 4 Garaj ve otoparkların yükseklikleri kiriş altı net 2.00 m. den az olamaz. Rule 
 5 Otel, pansiyon, iş hanı, büro ile benzeri işyerleri ve içerisinde insan oturan, yatan veya 

çalışan diğer binaların iç yükseklikleri döşeme kaplaması ve tavan sıvası hariç (2.60) 
m.den daha az olamaz. 

Rule 

 6 Mağaza ve dükkanlar ile pastaneler, içkili ve içkisiz lokantalar vb yemek yerleri, 
kahvehanelerin taban döşemesi üzerinden tavan altına kadar net yüksekliği (3.00) m.den 
az olamaz. 

Rule 

 7 Düğün ve oyun salonları, diskotek, birahaneler ve gazino mahallerinin taban döşemesi 
üzerinden tavan altına kadar net yüksekliği (3.50) m.den az olamaz. 

Rule 

 8 Müştemilat ve servis kısımlarında net yükseklik (2.60) m.den az olamaz. Rule 
 9 Ve bu bölümler toplam alanın %50'sini geçemez. Rule 
 10 Resmi binalarla ilgili bakanlıkça onaylanmış projeler esas alınacaktır.  Clarification 
 11 Bu amaçla yaptırılacak özel binalarda bu Yönetmelikte belirtilen koşullar dışında, ilgili 

bakanlıkların yönetmelikleri dikkate alınacaktır. 
Clarification 

 

Clause Id Statement Id Rule Id Rule Type 
Self-containedness Formalizability 

C45 ST1 R45.1 Self-contained Formalizable 
ST3 R45.2 Linked-explanatory Formalizable 
ST4 R45.3 Linked-explanatory Formalizable 
ST5 R45.4 Linked-explanatory Formalizable 
ST6 R45.5 Linked-explanatory Formalizable 
ST7 R45.6 Linked-explanatory Formalizable 
ST8 R45.7 Linked-explanatory Formalizable 
ST9 R45.8 Linked-explanatory Formalizable 



	
  
135 

Textual Expressions of  
Clause 46 

Statement  
Type 

Madde 46–Pencereler Id&heading  
 1 Binaların pencere boşlukları dar kenarı (0.60) m.den az olmamak şartı ile, toplam 

faydalanılacak piyes alanının yaşam mekanı, oda ve mutfakların da 1/8'inden ve her 
durumda (1.25) m2'den az olamaz. 

Rule 

 2 Camlı balkon kapılarında pencere boşluğu sayılır. Clarification 
 3 Dubleks konut yapılarında çatı arasına yapılan mekanların pencere boşlukları (0.80)m2 

den büyük olmamak ve her mekana çatı üzerinde en çok iki pencere açılmak ve 
pencereler birbirine eklenerek bant haline getirilmemek şartı ile yapılabilir. 

Rule 

 4 Isı yalıtım yönetmeliği hükümleri saklıdır. Clarification 
 5 Binaların bitişik komşu tarafına; ilgili komşu parsel sahibinin muvafakati alınıp tapuya 

tescil ettirilmedikçe pencere ve kapı açılamaz. 
Rule 

 6 Pencere veya kapı açılacak bu piyesin, ayrıca, gerekli ışık ve havayı doğrudan alacak 
elemanlara haiz olması gerekir. 

Rule 

 

Clause Id Statement Id Rule Id Rule Type 
Self-containedness Formalizability 

C46 ST1 R46.1 Self-contained Formalizable 
ST3 R46.2 Linked-explanatory Formalizable 
ST5 R46.4 Self-contained Non-formalizable 
ST6 R46.5 Linked-explanatory Non-formalizable 

 

 

Textual Expressions of  
Clause 47 

Statement  
Type 

Madde 47–Kapılar Id&heading  
 1 Kapı Yükseklikleri: Kasa dahil (2.10) m.den az olamaz. Rule 
 Kapı Genişlikleri: subheading  
 2 Birden fazla bağımsız bölümü olan binaların ana giriş kapıları kasa dahil (1.30) m.den,  Rule 
 3 Bağımsız bölüm kapıları, kasa dahil (1.00) m.den,  Rule 
 4 Oda ve mutfak kapıları kasa dahil (0.90) m.den,  Rule 
 5 Yıkanma yeri, WC, odunluk, kömürlük, kiler kapıları kasa dahil (0.80) m.den  Rule 
 6 Dükkan kapıları, kasa dahil (1.00) m.den, az olamaz.  Rule 
 7 Asansör, garaj ve benzeri özellik arz eden yerlerin kapı boyutları hizmetin gerektirdiği 

şekilde tespit edilir. 
Rule 

 8 Banyo kapılarında, alttan temiz hava girecek şekilde bir düzen bulunacaktır. Rule 
 9 Umumi binalarda, bina ana giriş kapısına merdivenle ulaşılıyorsa bedensel özürlülerin 

kullanımı için en fazla %6 eğimli, en az (1.20) m. genişlikte koruma bordürlü ve 
korkuluklu rampa yapılacaktır. 

Out of Scope 

 10 İç kapılar tamamen eşiksiz ve en az (0.95) m. genişliğinde olacaktır. Out of Scope 
 11 Umumi binalarda, bütün kapılar kaçış yönüne açılacaktır. Out of Scope 

 

Clause Id Statement Id Rule Id Rule Type 
Self-containedness Formalizability 

C47 ST1 R47.1 Self-contained Formalizable 
ST2 R47.2 Linked-explanatory Formalizable 
ST3 R47.3 Linked-explanatory Formalizable 
ST4 R47.4 Linked-explanatory Formalizable 
ST5 R47.5 Linked-explanatory Formalizable 
ST6 R47.6 Linked-explanatory Formalizable 
ST7 R47.7 Linked-explanatory Non-formalizable 
ST8 R47.8 Self-contained Formalizable 

 

 



	
  
136 

Textual Expressions of  
Clause 48 

Statement  
Type 

Madde 48–Asansörler Id&heading  
 1 Bina giriş katından itibaren yüksekliği 12.80 m.yi geçen ve 4’ten fazla katı bulunan konut 

yapıları ile, yüksekliği 6.80 m.yi geçen ve 2’den fazla katı bulunan konut dışı yapılarda, 
giriş katından itibaren (çatı katı hariç) son kata kadar ve varsa iskan edilebilir bodrum 
katlara da inmek koşuluyla kullanılan tüm katlara hizmet verecek şekilde, yürürlükteki 
Türk Standartları Enstitüsünün standartları ve Asansör Yönetmeliğine uygun asansör 
tesisi zorunludur. 

Rule 

 2 Bina giriş kat kotundan son kat kotuna kadar olan yükseklik veya bu yükseklik içindeki 
kat sayısı bu maddenin uygulanmasında asansör yapılması mecburiyetine esas alınacaktır. 

Applicability 
con. 

 3 Yüksekliği 12.80 m’yi geçen ve girişten itibaren daire adeti 20 den fazla olan 
meskenlerde (her iki şartın bir arada gerçekleşmesi halinde) çift asansör yapılması 
mecburidir. 

Rule 

 4 Yüksekliği 12.80 m’yi geçen ve kat alanı 250 m2 den fazla olan ticari amaçlı (büro, 
işhanı, çarşı, benzeri) yapılarda, her iki şartın bir arada gerçekleşmesi halinde, Elektrik ve 
Makine Mühendisleri Odası Asansör Avan ve Uygulama Projeleri Hazırlama ve Teknik 
Esaslarında yer alan trafik hesabı yapılarak asansör sayısı tespit edilecektir. 

Rule 

 5 Binanın kat ve daire adedinin fazlalığı veya kullanma şeklinin gerektirdiği lüzuma göre, 
asansör ve yerinin ölçü veya adedini arttırmaya başlangıç katı olarak zemin kat yerine 
bodrum veya birinci katı kabul veya tayine belediye yetkilidir. 

Rule 

 6 İmar planı ile kanun, tüzük ve yönetmelik hükümlerine göre muhafazası mümkün olan 
binalarda kat ilavesi halinde, ilave kat ile birlikte kat adedi beşi ve bina yüksekliği 15.80 
m.yi geçmediği taktirde, asansör aranmayabilir veya asansör yeri ölçüleri mevcuda 
uydurulabilir. 

Rule 

 7 Binalarda usulüne göre asansör yapılmış olması nizami şekil ve ölçülerle merdiven 
yapılması şartını ortadan kaldırmaz. 

Clarification 

 8 Asansör makine daireleri yürürlükteki Türk Standartları Enstitüsü standartlarının 
gerektirdiği minimum ölçülerde düzenlenebilir. 

Rule 

 9 Teknik koşulların gerektirdiği durumlarda bu alan % 30 kadar arttırılabilir. Rule 
 10 Asansörün yapılması ve işletilmesi ile ilgili hususlarda yukarıdaki hükümlerde dikkate 

alınarak yürürlükteki Asansör Yönetmeliği ve Türk Standartları Enstitüsü standartları 
hükümlerine uyulur. 

Clarification 

 

Clause Id Statement Id Rule Id Rule Type 
Self-containedness Formalizability 

C48 ST1 R47.1 Self-contained Formalizable 
ST3 R47.2 Linked-explanatory Formalizable 
ST4 R47.3 Linked-explanatory Non-formalizable 
ST5 R47.4 Linked-explanatory Non-formalizable 
ST6 R47.5 Linked-explanatory Non-formalizable 
ST8 R47.6 Self-contained Non-formalizable 
ST9 R47.7 Linked-explanatory Non-formalizable 

 

 

 

 

 

 

 

 

 

 



	
  
137 

Textual Expressions of  
Clause 49 

Statement  
Type 

Madde 49–Merdivenler Id&heading  
 1 Bu yönetmelikte sözü geçen umumi binalarla, otel, işhanı, büro, pasaj, çarşı ve 

benzerlerinin, birden fazla katı olan ev ve apartmanların ahşap olmayan en az bir ana 
merdiveni olacaktır.  

Rule 

 A- Genel Hükümler: subheading  
 2 Merdivenlerin minimum kova ölçüsü 20 cm. olmalıdır. Rule 
 3 Merdiven evlerinin bina cephesinden, çatıdan veya ışıklıktan doğrudan ışık ve hava  

alması gereklidir. 
Rule 

 4 Merdivenlerin çatı, bodrum ve benzeri ortak alanlara ulaştırılması zorunludur. Rule 
 5 Bu durumda merdiven kolu ve sahanlık genişliği 1.20 m.den az olamaz. Rule 
 6 Merdiven basamaklarının ölçüleri; 2a + b = 60 ile 63 formülüne göre hesaplanır. Rule 
 7 Formüldeki (a) basamak yüksekliğini, (b) basamak genişliğini gösterir. Clarification 
 8 Merdiven tanziminde her 18 rıhtan sonra ara sahanlık bırakılacaktır. Rule 
 9 Bütün binalarda kat ve ara sahanlıkların genişliği, merdiven kolu genişliğinden az         

olamaz. 
Rule 

 10 Düz kollu veya döner merdivenlerde çıkış hattında yapılan ara sahanlıklar 1.00 m. 
olabilir. 

Rule 

 11 İmar Kanunu ile imar planı ve bu Yönetmelik hükümlerine göre korunması mümkün olan 
binalarda kat ilavesi halinde, mevcut merdivenler bu madde hükümlerine uymadığı 
takdirde, bu konuda yapılacak işlemi saptamaya ilgili belediyesi yetkilidir 

Rule 

 B-Konut Yapılarında subheading  
 12 Merdiven kolu ve sahanlık genişlikleri; 1.20 m.den az olamaz. Rule 
 13 Bu ölçüler tek aileye mahsus evlerde ve bodrum katlarıyla, servis merdivenlerinde (0.90) 

m.ye kadar indirilebilir. 
Rule 

 14 İskan edilmeyen çatı aralarına çıkan merdivenlerde bu ölçüler aranmayabilir.  Rule 
 15 Merdiven basamaklarının yüksekliği (0.175) m.den fazla, basamak genişliği ise çıkış 

hattında (0.28) m.den, kovada (0.10) m.den az olamaz. 
Rule 

 B-Konut Dışı Yapılarda subheading  
 16 Merdiven kolu ve  sahanlık genişliği;  (1.60) m.den az olamaz. Rule 
 17 Merdivenlerin her iki yanında korkuluk ve/veya küpeşte bulunmalıdır.  Rule 
 18 Merdiven Basamaklarının Ölçüleri; İç ve dış merdivenlerde rıht yüksekliği :  (0.16) 

m.den fazla; İç ve dış merdivenlerde basamak genişliği: çıkış hattında (0.30) m.den, 
kovada  (0.125) m.den az olamaz. 

Rule 

 19 Bu yönetmelikte oluşturulması zorunlu tutulan ana merdivenler dışında düzenlenen 
merdivenlerde, umumi bina tanımına girmeyen yapılarda düzenlenen  bağımsız bölüm içi 
merdivenlerde ve cephesi 8.00 m.den ve/veya kat alanı 150 m2.den küçük binalarda 
düzenlenecek merdivenlerde; merdiven kolu ve sahanlık genişliği 1.20m.den az, basamak 
yüksekliği (0.175) m.den fazla, basamak genişliği ise, çıkış hattında (0.28) m.den, kovada 
(0.125) m.den az olamaz.   

Rule 

 

Clause Id Statement Id Rule Id Rule Type 
Self-containedness Formalizability 

C49 ST1 R49.1 Self-contained Formalizable 
ST2 R49.2 Self-contained Formalizable 
ST3 R49.3 Self-contained Formalizable 
ST4 R49.4 Self-contained Formalizable 
ST5 R49.5 Linked-explanatory Formalizable 
ST6 R49.6 Linked-explanatory Formalizable 
ST8 R49.7 Self-contained Formalizable 
ST9 R49.8 Linked-explanatory Formalizable 
ST10 R49.9 Linked-explanatory Formalizable 
ST11 R49.10 Self-contained Non-formalizable 
ST12 R49.11 Linked-explanatory Formalizable 
ST13 R49.12 Linked-explanatory Formalizable 
ST14 R49.13 Linked-explanatory Formalizable 
ST15 R49.14 Linked-explanatory Formalizable 
ST16 R49.15 Linked-explanatory Formalizable 
ST17 R49.16 Self-contained Non-formalizable 
ST18 R49.17 Linked-explanatory Formalizable 
ST19 R49.18 Linked-explanatory Formalizable 



	
  
138 

Textual Expressions of  
Clause 50 

Statement  
Type 

Madde 50–Yangın Merdivenleri Id&heading  
 1 a)  “ Binaların Yangından Korunması Hakkında Yönetmelik” hükümlerine uyulacaktır. Rule 
 2 Yangın merdiveni genişliği konut ve büro yapılarında min 90 cm. topluma açık  diğer 

yapılarda min. 120 cm. olacaktır. 
Rule 

 3 İrtifak hakkı tesisi suretiyle komşu parsellere ortak yangın merdivenleri düzenlenebilir. Clarification 
 4 Ticaret bölgelerinde; bodrum ve zemin katları parselin tamamında inşaata müsaadeli 

binalarda, ana blok dışında, 5.50 m. kotundaki döşeme üzerine inilmesi ve çıkış 
güvenliğini sağlaması, genel merdivene ulaşan koridorun yangına dayanaklı olması, genel 
merdivenin ise yangın merdiveni özellikli olması koşulu  ile yola irtibatı binanın genel 
hacimlerinden sağlanan yangın koridoru ve yangın merdiveni düzenlenebilir. 

Rule 

 5 Kullanım amacı nedeniyle birden fazla merdiven yapılması gereken yapılarda, genel 
merdivenlerin ve yangın merdivenlerinin son kata kadar ulaşması ve bu katta birbirlerine 
karşı güvenlikli olarak bağlanması sağlanmalıdır. 

Rule 

 6 Bu yönetmelikten önce yangın merdivensiz olarak yapılmış yapılarda; Binaların 
Yangından Korunması Hakkında Yönetmelik hükümleri saklı kalmak kaydıyla, ilave 
edilecek yangın merdivenlerinde, kat mülkiyeti yasasına uyulmak koşuluyla yapılacak 
yangın merdivenlerinin ölçü ve biçimi İtfaiye Müdürlüğünün de görüşü alınarak binanın 
durumuna göre belirlenir. 

Rule 

 

Clause Id Statement Id Rule Id Rule Type 
Self-containedness Formalizability 

C50 ST1 R50.1 Self-contained Formalizable 
ST2 R50.2 Self-contained Formalizable 
ST4 R50.3 Self-contained Semi-formalizable 
ST5 R50.4 Self-contained Semi-formalizable 
ST6 R50.5 Self-contained Non-formalizable 

 

 

Textual Expressions of  
Clause 51 

Statement  
Type 

Madde 51–Korkuluklar Id&heading  
 1 Her türlü binada balkon, kat ve çatı terasları etrafında, 5 ten fazla basamağı bulunan 

merdivenlerde, kotu (1.00) m. den az olan pencere boşluklarında, bina iç boşluklarında, 
döşeme kotundan itibaren en az ( 1.00) m. yüksekliğe kadar fenni gereklere uygun olarak 
korkuluk yapılması zorunludur. 

Rule 

 2 Korkuluk araları, dikeyde, yatayda ve alt boşluklarında 10 cm. den fazla olamaz. Rule 
 3 Korkuluklar yatay olarak düzenlendiği taktirde merdiven etkisini önleyecek tedbirler 

alınacaktır. 
Rule 

 

Clause Id Statement Id Rule Id Rule Type 
Self-containedness Formalizability 

C51 ST1 R51.1 Self-contained Formalizable 
ST2 R51.2 Self-contained Formalizable 
ST3 R51.3 Self-contained Semi-formalizable 

 

 

 

 

 

 



	
  
139 

Textual Expressions of  
Clause 52 

Statement  
Type 

Madde 52–Bacalar Id&heading  
 A- Duman Bacaları: subheading  
 1 Yapılarda yer alması tasarlanan ısıtma sistemine göre, bacaların sayısı ve niteliği 

belirlenir. 
Clarification 

 2 Bacaların proje tasarımlarında Türk standartları Enstitütüsü standartları, ısı yalıtım 
yönetmeliği ve doğal gaz iç tesisat yönetmeliğindeki şartlar sağlanacaktır. 

Rule 

 3 Bacaların iç genişliği en az (0.13 x 0.13) m. olacaktır. Rule 
 4 İki baca birbirine bağlanmayacağı gibi her ateş kaynağı ayrı bir bacaya bağlanacaktır. Rule 
 5 Duman bacaları çatı örtüsünü en az 1.00 m, mahyayı ise en az 0.80 m. aşacaktır. Rule 
 6 Çatı konstrüksiyonu ister ahşap, ister çelik olsun bacalara 0.10 m. den fazla yaklaşamaz. Rule 
 7 Banyolara duman bacası yapılamaz. Rule 
    a) Sobalı Isıtma Sistemi Seçilen Yapılarda; subheading  
 8 Yapıların konut olarak kullanılan her dairesinde mutfak ve mutfak nişi ile bunların 

dışında kalan en az iki piyesinde baca yapılması zorunludur. 
Rule 

 9 Bu bacalar şönt baca olabilir, ancak, iki piyesten kömürlük dışındaki bir tanesinde 
yapılacak bacanın müstakil baca olması zorunludur. 

Rule 

 10 Yapıların dükkan, mağaza v.b. kullanılan bölümlerinde her bağımsız bölüm için bir baca 
yapılması gereklidir. 

Rule 

    b) Merkezi veya Kat Kaloriferi Isıtma Sistemi Seçilen Yapılarda; subheading  
 11 Her kalorifer kazanı için ayrı olarak düzenlenmiş müstakil bir duman bacası yapılması 

(şönt olamaz) zorunludur. 
Rule 

 12 Ayrıca ; yapıların konut olarak kullanılan her dairesinde mutfak ve mutfak nişi ile 
bunların dışında kalan en az bir piyeste en az bir baca yapılması, otel, iş hanı, pasaj v.b 
umumi binaların ise her katında en az bir baca yapılması zorunludur. 

Rule 

 13 Bu bacalar şönt olabilir. Clarification 
 14 Kat kaloriferi kazanı balkona konulamaz, özel bir bölmeye konulduğunda bu mahallin en 

az 6 m3 hacminde olması, bina dış cephesinden, ışıklıktan veya hava bacasından 
havalandırılması ve müstakil bir duman bacasının bulunması zorunludur. 

Rule 

 15 Kat kaloriferi kazanı ile yakıt tankı aynı mahale konulamaz. Rule 
    c)Sınırları İlgili İdare Tarafından Belirlenecek Doğal Gaz Uygulama 

Bölgeleri İçinde İnşa Edilecek Yapılarda ; 
subheading  

 16 İskan edilebilir bodrum katlar dahil 5 katlı binaların mutfaklarında doğal gazla çalışan her 
cihaz için bir müstakil baca yapılacaktır. 

Rule 

 17 5 kattan daha yüksek yapılarda (yüksek yapılar hariç) mutfakta doğal gaz için bir şönt 
baca yapılması yeterlidir. 

Rule 

 18 10 katın üstündeki yapılarda; üstteki 10 kat şönt bacaya bağlanabilir, kalan diğer alt 
katlarda hermatik (denge bacalı) cihaz kullanılmalıdır. 

Rule 

 19 Ayrıca; doğal gaz bacası dışında, kaloriferli yapılarda kalorifer bacası dışında 
düzenlenmesi ön görülen bütün bacalar yapılacaktır. 

Rule 

 B-Tesisat Bacaları subheading  
 20 İçinden tesisat geçen bacaların en az ( 0.80x0.80) m. ebatlarında olması zorunludur. Rule 
 21 Sadece tesisat amacı ile kullanılmak ve her katta ortak mahalle açılmak kaydıyla 

(0.40x0.40)m. ölçülerinde yapılabilir. 
Rule 

 22 İçinden tesisat geçirilmeyen sadece havalandırma amacına yönelik hava bacaları ise 
(0.60x0.60)m. ölçülerinde yapılabilir. 

Rule 

 23 Bacalar kiriş v.b herhangi bir yapı elemanı ile daraltılamaz. Clarification 
 C-Çöp Bacaları subheading  
 24 Tüm binalarda istenildiğinde çöp bacaları yapılabilir. Clarification 
 25 Zemin veya bodrum katlarında çöp toplama yerleri ve bağımsız bölüm bağlantılarının 

bulunması, iç yüzeylerinin pürüzsüz bir malzemeyle kaplanması ve kapak iç kısımlarının, 
hiçbir maddenin sızmasına olanak vermeyecek şekilde yapılması zorunludur. 

Rule 

 

 

 

 

 

 



	
  
140 

Clause Id Statement Id Rule Id Rule Type 
Self-containedness Formalizability 

C52 ST2  Self-contained Formalizable 
ST3  Self-contained Formalizable 
ST4  Self-contained Formalizable 
ST5  Self-contained Formalizable 
ST6  Self-contained Formalizable 
ST7  Self-contained Formalizable 
ST8  Self-contained Formalizable 
ST9  Self-contained Formalizable 
ST10  Self-contained Formalizable 
ST11  Self-contained Formalizable 
ST12  Linked-explanatory Formalizable 
ST14  Self-contained Formalizable 
ST15  Linked-explanatory Formalizable 
ST16  Self-contained Formalizable 
ST17  Linked-explanatory Formalizable 
ST18  Linked-explanatory Formalizable 
ST19  Linked-explanatory Formalizable 
ST20  Self-contained Formalizable 
ST21  Linked-explanatory Formalizable 
ST22  Linked-explanatory Formalizable 
ST25  Self-contained Formalizable 

 

 

Textual Expressions of  
Clause 53 

Statement  
Type 

Madde 53–Yangın Önlemleri Id&heading  
 1 Bu yönetmelik esaslarına göre yapılacak tüm uygulamalarda, “ Binaların Yangından 

Korunması Hakkındaki Yönetmelik” hükümlerine uyulacaktır.  
Rule 

 

Clause Id Statement Id Rule Id Rule Type 
Self-containedness Formalizability 

C53 ST1 R53.1 Self-contained Formalizable 

 

	
    



	
  
141 

Textual Expressions of  
Clause 55 

Statement  
Type 

Madde 55–Bodrumlarla İlgili Hükümler Id&heading  
 1 Binaların bodrum kısımları esas bloğa tabi değildir. Clarification 
 2 Tabii zeminin veya tesviye edilmiş zeminin altında kalmak ve yol cephelerinde kitle 

hattına tecavüz etmemek koşulu ile bahçenin tamamında bodrum yapılabilir. 
Clarification 

 3 Komşu parsellere uyum sağlamak ve İmar Kanunun 35. maddesindeki hükümler saklı 
kalmak kaydıyla, bu Yönetmeliğin 37/C maddesine uygun olarak, parsel tesviye 
edilebilir. 

Clarification 

 4 Taban döşemesi üst seviyesi, tesviye edilmiş zeminin altında kaldığı takdirde mesken 
olarak kullanılamaz. 

Rule 

 5 Ancak imar planında belirlenen bölgeleme koşullarına uyulmak ve bu Yönetmeliğin 43. 
maddesindeki şartları sağlamak kaydıyla işyerleri tesis edilir. 

Rule 

 6 Konut bölgelerinde günlük ihtiyaçları karşılamaya dönük olarak zemin katların ticaret 
olarak planlanması halinde, bodrum katta aynı bağımsız bölümle içten bağlantılı piyesler 
tesis edilebilir. 

Rule 

 7 Bu piyeslerin ayrı girişleri olamaz, binanın ortak alanları ve müştemilatlarıyla 
irtibatlandırılamaz. 

Rule 

 8 Bodrum kapısı tamamen tretuvar üzerinde kalan fazla meyilli yollar dışında yapılacak ön 
bahçesiz binalarda yol cephesinde bodrum girişi yapılamaz. 

Rule 

 9 Toprağa dayalı tüm bodrum katlar betonarme perde şeklinde inşa edilerek dış etkilere 
karşı ısı ve su yalıtımı yapılması zorunludur. 

Rule 

 10 Ayrıca bu tür binalarda yer altı suyuna karşı gerekli drenaj yapılacak ve mimari proje ile 
mekanik tesisat projelerinde belirtilecektir. 

Rule 

 

Clause Id Statement Id Rule Id Rule Type 
Self-containedness Formalizability 

C55 ST4  Self-contained Formalizable 
ST5  Linked-explanatory Semi-formalizable 
ST6  Self-contained Formalizable 
ST7  Linked-explanatory Formalizable 
ST8  Self-contained Formalizable 
ST9  Self-contained Formalizable 
ST10  Self-contained Formalizable 

 

	
    



	
  
142 

Textual Expressions of  
Clause 56 

Statement  
Type 

Madde 56–Kapıcı Dairesi Id&heading  
 A- Kapıcı Dairesi Yapılacak Binalar: subheading  
 1 a) Konut, işyeri ve büro olarak kullanılacak binalardan (resmi daireler hariç); Applicability Con. 
 2 1- Kaloriferli olanlarında, konut binalarının 12 daireden, fazla olanlarında kapıcı 

dairesi; işyeri ve büro binalarının 4000 m3 (brüt) ten fazla olanlarında bekçi odası 
ayrılması zorunludur. 

Rule 

 3 2- Kalorifersiz olanlarda, konut binalarının 16 daireden fazla olmalarında kapıcı dairesi, 
işyeri ve büro binalarının 5000 m3 (brüt) ten fazla olanlarında bekçi odası ayrılması 
zorunludur. 

Rule 

 4 b) Kaloriferli konut binalarının daire sayısı (50) den işyeri ve büro binalarının 15000 
m3 (brüt) ten fazla olanlarında da kapıcı dairesinden veya bekçi odasından başka, 
kapıcı dairesi ölçü ve niteliğinde bir de kaloriferci dairesi ayrılacaktır. 

Rule 

 5 c) Toplam daire sayısı 48’den fazla olan konut parsellerinde yukarıdaki şartlarda ikinci 
bir kapıcı dairesi aranır. 

Rule 

 B- Kapıcı Dairelerinin ve Bekçi Odasının Ölçü ve Nitelikleri: subheading  
 6 a) Kapıcı dairelerinin ve bekçi odalarının taban döşemesi üst kotu, tabii zeminden veya 

tesviye edilmiş bahçe kotundan aşağıda olamaz. 
Rule 

 7 b) Kapıcı daireleri doğrudan ışık ve hava alabilecek şekilde düzenlenecek ve brüt alanı 
45m2'den az olmayacaktır. 

Rule 

 8 Minimum 12.00 m2 ve 7.00 m2'lik birer oda (odalardan biri ışıklıktan hava alabilir.) 
4.00 m2'lik mutfak veya mutfak nişi ile 3.00 m2'lik WC + duş (ikisi aynı bölümde 
olabilir) ihtiva edecektir. 

Rule 

 9 c) Bekçi odası en az 7.00 m2 büyüklüğünde ve doğrudan ışık ve hava alabilecek şekilde 
düzenlenecek ve en az 2.00 m2'lik bir WC + lavabo olacaktır. 

Rule 

 

Clause Id Statement Id Rule Id Rule Type 
Self-containedness Formalizability 

C56 ST2  Self-contained Formalizable 
ST3  Linked-explanatory Formalizable 
ST4  Self-contained Formalizable 
ST5  Linked-explanatory Formalizable 
ST6  Self-contained Formalizable 
ST7  Self-contained Formalizable 
ST8  Self-contained Formalizable 
ST9  Self-contained Formalizable 

 

 

Textual Expressions of  
Clause 57 

Statement  
Type 

Madde 57–Müştemilatlar Id&heading  
 1 Binaların müştemilat kısımları mümkün ise binanın bodrum katında düzenlenir. Clarification 
 2 Bahçede sığınak dışında müştemilat tertip edilemez. Rule 
 3 Ayrıca , parsel içindeki yeri İmar Müdürlüklerince belirlenmek kaydıyla, belediyelerin 

ilgili teknik birimlerince hazırlanacak tip projeye göre her parsel için çöp toplama ünitesi 
yapılması zorunludur. 

Out of Scope 

 4 Sobalı ısıtma sistemi seçilen yapılarda, her daire başına net 2.50 m2 lik kömürlük veya 
odunluk gibi müştemilatın tesisi zorunludur. 

Rule 

 5 Bu hacim binanın bodrum katında veya müştemilat bölümünde de yapılabilir. Clarification 
 6 Ancak, daire içinde veya kat sahanlığında yapılması halinde, max. (4.50) m2'yi geçemez 

ve bu alanın hava bacası veya ışıklıktan hava alması sağlanacaktır. 
Rule 

 

Clause Id Statement Id Rule Id Rule Type 
Self-containedness Formalizability 

C57 
 

ST2  Self-contained Formalizable 
ST4  Self-contained Formalizable 
ST6  Self-contained Formalizable 



	
  
143 

Textual Expressions of  
Clause 59 

Statement  
Type 

Madde 59–Duvarlar Id&heading  
 1 Tüm binalarda; dış cepheye bakan duvar kalınlıkları (0.20)m.den küçük yapılamaz. Rule 
 2 Ancak, “Isı Yalıtım Yönetmeliği” hükümleri saklı kalmak koşulu ile , hesapları 

(çözümleri) yapılarak yeni malzemeler kullanıldığında bu boyutlar değişebilir. 
Rule 

 3 Bitişik nizama tabi yapıların bitişik duvarlarında ise, duvar kalınlığı (0.15)m. olabilir. Rule 
 4 Teras çatılarda veya gizli çatılarda yapılacak parapet duvarlarının yüksekliği 1.00m.den 

az ve 1.10 m. den fazla olamaz. 
Rule 

 5 Çatılarda kullanılan parapet duvarları yığma olarak yapıldığı taktirde, üzerlerine donatılı 
min.(0.30)m. yüksekliğinde hatıl dökülecek ve bu hatıl yer yer döşemeye bağlanacaktır. 

Rule 

 6 Ayrıca kalkan duvarlarda, 2.00m.de yatay hatıl, 4.00m.de düşey hatıl ( takviye kolon) 
yapılması zorunludur. 

Rule 

 

Clause Id Statement Id Rule Id Rule Type 
Self-containedness Formalizability 

C59 ST1 R59.1 Self-contained Formalizable 
ST2 R59.2 Linked-explanatory Non-formalizable 
ST3 R59.3 Linked-explanatory Formalizable 
ST4 R59.4 Self-contained Formalizable 
ST5 R59.5 Self-contained Formalizable 
ST6 R59.6 Self-contained Formalizable 

 

 

Textual Expressions of  
Clause 60 

Statement  
Type 

Madde 60–Bahçe Duvarları Id&heading  
 1 Bahçe duvarlarının yüksekliği, binaların yol tarafındaki cephe hatlarının önünde (0.50) 

m.yi gerisinde ise ( 1.00) m.yi geçemez. 
Rule 

 2 Ayrıca üzerlerine yükseklikleri (1.00) m.yi aşmayan parmaklık yapılabilir. Clarification 
 3 Fazla meyilli yerlerde uygulanacak şekli takdire belediye yetkilidir. Rule 
 4 Okul, hastane, ceza evi, ibadet evi, elçilik, sefarethane, açık hava sineması ve benzerleri 

gibi özellik arz eden bina ve tesislerin bahçe duvarları ile sanayi bölgelerinde yapılacak 
bahçe ve çevre duvarları bu madde hükmüne tabi değildir. 

Rule 

 5 Zemin katlarda dükkan yapılmasına izin verilen yapılarda, yaya kaldırımı ile aynı 
seviyedeki ön bahçeler yayaya açık bulundurulacaktır. 

Rule 

 6 Bu bahçelerde yayaların can emniyetini tehlikeye düşürecek duvar ve manialar yapılamaz. Rule 

 

Clause Id Statement Id Rule Id Rule Type 
Self-containedness Formalizability 

C60 ST1  Self-contained Formalizable 
ST3  Linked-explanatory Non-formalizable 
ST4  Linked-explanatory Formalizable 
ST5  Linked-explanatory Semi-formalizable 
ST6  Linked-explanatory Semi-formalizable 

 

	
    



	
  
144 

Textual Expressions of  
Clause 65 

Statement  
Type 

Madde 65–Sığınak Id&heading  
  Bayındırlık ve İskan Bakanlığınca çıkarılan “3194 Sayılı İmar Kanunu’na Göre 

Düzenlenmiş Sığınaklarla İlgili Yönetmelik”e uyulacaktır. 
Rule 

 

Clause Id Statement Id Rule Id Rule Type 
Self-containedness Formalizability 

C65 ST1  Self-contained Fromalizable 

 

 

Clause Id Statement Id Rule Id Rule Type 
Self-containedness Formalizability 

C66 ST2  Self-contained Formalizable** 
ST3  Self-contained Formalizable** 
ST5  Self-contained Formalizable 
ST6  Self-contained Formalizable 
ST7  Self-contained Formalizable 
ST8  Self-contained Formalizable 
ST9  Self-contained Formalizable 
ST10  Self-contained Formalizable 
ST11  Self-contained Formalizable 
ST12  Self-contained Formalizable** 
ST13  Self-contained Formalizable 
ST14  Self-contained Formalizable 
ST17  Self-contained Formalizable 
ST18  Self-contained Formalizable 
ST19  Self-contained Formalizable 
ST20  Self-contained Formalizable 
ST21  Self-contained Formalizable 
ST22  Self-contained Formalizable 
ST23  Self-contained Formalizable 
ST24  Self-contained Formalizable 

 

	
    



	
  
145 

Textual Expressions of  
Clause 66 

Statement  
Type 

Madde 66–Engelliler ile İlgili Hükümler Id&heading  
 1 A- Katlı ve açık otoparklar, okullar, resmi binalar, havaalanı, gar, otogar, hastaneler, 

üniversiteler, sinema, tiyatro, kültürel yapılar, büyük marketler (hipermarketler) açık ve 
kapalı yüzme havuzları, stadyum termal tesisleri, kapalı spor salonları, açık spor 
salonları, yatak kapasitesi 100'den fazla olan oteller moteller ve yurt binaları, toplam 
inşaat alanı 1000 m2'den büyük sağlık tesisleri' nin projelendirme ve yapımı 
aşamasında aşağıdaki şartlara uyulacaktır. 

Applicability Con. 

 2 a) Açık ve katlı otopark yeri olarak ayrılan alanın en az %2'si (1'den az olmamak 
kaydıyla) engellilerin de kullanımını sağlayacak şekilde düzenlenecektir. 

Rule 

 3 Ayrıca bu oto yerleri 5 m. x 3.5 m. boyutunda olmalı, bina girişine yakın düzenlenmeli 
ve sarı renkle işaretlenmelidir. 

Rule 

 4 Ayrıca, engellilere ait olduğu trafik park levhası ile belirlenmelidir. Out of Scope 
 5 b) Bina girişlerinde; bedensel engellilerin kullanımı için, katlar arası düşey sirkülasyon 

sağlayan asansör veya merdivene ulaşan ve eğimi %6'yı aşmayan rampa yapılacaktır. 
Rule 

 6 Rampanın iki yanına 90 cm yüksekliğinde ve 4-5 cm çapında yuvarlak tutunma barları 
yapılacaktır. 

Rule 

 7 Rampa genişliği en az 90 cm olacak ve boşluk tarafına bordür konulacaktır. Rule 
 8 c) Katlar arasında düşey sirkülasyonu sağlayan ana giriş merdivenlerinde; basamaklar 

çıkıntılı yapılmayacak, genişliği 30 cm'den az ve rıht yüksekliği ise 15 cm'den fazla 
yapılmayacaktır. 

Rule 

 9 Duvar tarafına 90 cm yüksekliğinde tutunma barı yapılacaktır. Rule 
 10 Tutunma barları ve merdiven küpeşteleri, ilk basamağa en az 30 cm dışından 

başlanmalıdır. 
Rule 

 11 Döner merdiven yapılmalı ve en çok 10 basamakta bir dinlenme sahanlıkları 
tertiplenmelidir. 

Rule 

 12 d) Bu binalardan asansör yapılması zorunlu olanlarında yapılacak asansörlerden en az 
bir tanesi bedensel engellilerin de kullanımını sağlayacak şekilde düzenlenecektir. 

Rule 

 13 Bu asansörün önündeki sahanlık genişliği 150 cm'den az olamaz. Rule 
 14 Asansör kabininin genişliği 110 cm'den, derinliği 140 cm'den, kapı genişliği 80 cm'den 

az olamaz. 
Rule 

 15 Asansör düğmeleri 90-130 cm yükseklikte olmalı ve kabin içinde 90 cm yükseklikte 
tutunma barı düzenlenmelidir. 

Out of Scope 

 16 Ayrıca bu asansörlerde görme engelliler için sesli ikaz sistemi tesis edilmeli ve kontrol 
düğmeleri kabartmalı yapılmalıdır. 

Out of Scope 

 17 B- Okullar, üniversiteler, havaalanı, gar, otogar, stadyum, sinema, tiyatro toplam inşaat 
alanı 500 m2'yi aşan kültür yapıları, toplam inşaat alanı 1000 m2'yi aşan resmi yapılar, 
toplam inşaat alanı 1000 m2'yi aşan sağlık tesisleri ve dispanserlerde yapılacak 
WC'lerden en az birer adedi (bir kadın, bir erkek olmak üzere), bedensel engellilerin de 
kullanılabileceği şekilde düzenlenecektir. 

Rule 

 18 Açık ve kapalı yüzme havuzları, açık spor alanları, kapalı spor alanlarında yapılacak 
WC'lerden ve duş mahallerinden en az birer adedi (bir kadın, bir erkek olmak üzere), 
bedensel engellilerin de kullanılabileceği şekilde düzenlenecektir. 

Rule 

 19 Yatak kapasitesi 100'den fazla olan otel, motel, yurt binaları, hastanelerde; müşterek 
kullanılan WC'lerden en az birer adedi (bir kadın, bir erkek olmak üzere) ve içinde WC 
ve duş mahalli bulunan en az bir oda, bedensel engellilerin de kullanılabileceği şekilde 
düzenlenecektir. 

Rule 

 20 Düzenlenen bu mekanlarda kapılar dışa açılacak, tutunma ve destek barları ile elçekleri 
yapılacaktır.  

Rule 

 21 İç ölçüler WC'lerde 140 cm x 140 cm'den, WC + duş mekanlarında ise 160 cm x 220 
cm'den az olamaz. 

Rule 

 22 Duş mahalli en az 91,5 cm x 152,5 cm x 152,5 cm transfer oturaklı olarak 
düzenlenecektir. 

Rule 

 

 

	
    



	
  
146 

APPENDIX B 
 
 

RULE AND RULE-SET REPRESENTATIONS OF 
IMHZCODE 

This appendix shows the representation of Izmir Municipality Housing and 

Zoning Code (IMHZCode) rule statements and rule-sets. Rule statements have been 

represented as rule objects in the form of structured data based on the pre-defined 

constructs. Each rule object has a “requirement” construct that describes the required 

specification in a concept. Some rule objects also have “selection” constructs describing 

the specific cases where the requirement is applicable. Both of these constructs have 

identical attributes. Followings are the definition of each attribute, and tables present 

how rule statements are represented by using the constructs. A rule can be found by 

using rule id, which represent clause and statement number in Izmir Municipality 

Housing and Zoning Code (IMHZCode) 2013 version. 

 

 
 

Definition of Attributes  

 

Concept: 

 Name of the subject to which the rule applies. 

Property: 

 Name of the attribute of the concept. 

Comparator: 

 Name of the  comparison operator such as “≥”, “≤”, “=”, “equal”, “boolean”  

Value: 

 The specific value that is found in the code, whether numeric, descriptive, or 

 Boolean. 

Unit: 

 The unit of measure for numeric values. 



	
  

147	
  

 
  REQUIREMENT SELECTION 

St.Id Rule Id Concept Property C. Value U. Concept Property Comp. Value U. 
ST2 R27.1 Setback frontDistance ≥ 5 m           

ST4 R27.2 Setback frontDistance = {Block_referencedFrontSetbackDistance} m 
Block constructionOrder equal semiDetached   
Block hasExistingBuilding boolean true   

ST5 R27.3 Setback frontDistance = {Block_referencedFrontSetbackDistance} m 
Block constructionOrder equal plannedUnit   
Block hasExistingBuilding equal true   

ST6 R27.4 Setback frontDistance = {Block_referencedFrontSetbackDistance} m 
Block constructionOrder equal attached    
Block is50%Developed equal true   

ST7 R27.5 Setback sideDistance = 3 m           
ST8 R27.6 Setback sideDistance = (3+((:{building_numberofStorey}:-4)/2))  m Building numberofStorey ≥ 4   
ST9 R27.7 Setback sideDistance ≥ 5 m Building constructionTechnique equal timberFramed   
ST10 R27.8 Setback rearDistance = (:{building_height}:/2) m           
ST13 R27.9 Setback rearDistance ≥ 3 m Block  hasExistingBuilding boolean true   

ST14 R27.10 Setback rearDistance = {Block_referencedRearSetbackDistance} m 
Block constructionOrder equal semiDetached   
Block hasExistingBuilding boolean true   

ST15 R27.11 Setback rearDistance = {Block_referencedRearSetbackDistance} m 
Block constructionOrder equal plannedUnit   
Block hasExistingBuilding boolean true   

ST16 R27.12 Setback rearDistance = {Block_referencedRearSetbackDistance} m 

Block constructionOrder equal attached   

Block is50%Developed boolean true   

 

Rule-set Id Subject Set 

Concept Property 
RS27.A Setback frontDistance (||: R27.1, R27.2, R27.3, R27.4) 
RS27.B Setback sideDistance (&: (||: R27.5, R27.6), R27.7) 
RS27.C Setback rearDistance (||: R27.8, (&: R27.9, (||: R27.10, R27.11, R27.12))) 

 

 

 

 

 



	
  

148	
  

 
  REQUIREMENT SELECTION 

St.Id Rule Id Concept Property C. Value U. Concept Property Comp. Value U. 
ST1 R28.1 Building depth ≤ 22 m           
ST2 R28.2 Building depth ≤ 22 m Block  hasExistingBuilding equal true   
ST3 R28.3 Building depth = {Block_refBuildingdepth}  Block constructionOrder equal semiDetached   
ST4 R28.4 Building depth = {Block_refBuildingdepth}  Block constructionOrder equal plannedUnit   
ST5 R28.5 Building depth = {Block_refBuildingdepth}  Block constructionOrder equal attached   
ST6 R28.6 Building depth = {Block_refBuildingdepth}  Lot onCorner boolean true   
ST8 R28.8 Building depth ≤ {Lot_clearDepth}  Lot numberofFacingRoad = 2  

 

Rule-set Id Subject Set 

Concept Property 

RS28.A Building depth (||: R28.1, (&: R28.2, (||: R28.3, R28.4, R28.5)), R28.6, R28.8) 

 

 

 
  REQUIREMENT SELECTION 

St.Id Rule Id Concept Property C. Value U. Concept Property Comp. Value U. 
ST1 R29.1 Building facade ≤ 30 m Block constructionOrder equal detached   

 

Rule-set Id Subject Set 

Concept Property 

RS29.A Building facade R29.1 

 

 

 

 



	
  

149	
  

 
  REQUIREMENT SELECTION 

St.Id Id Concept Property C. Value U. Concept Property Comp. Value U. 
ST2 R30.1 Building height ≤ 3.80 m 1StroeyBuilding      
ST3 R30.2 Building height ≤ 6.80 m 2StroeyBuilding      
ST4 R30.3 Building height ≤ 9.80 m 3StroeyBuilding     
ST5 R30.4 Building height ≤ 12.80 m 4StroeyBuilding     
ST6 R30.5 Building height ≤ 15.80 m 5StroeyBuilding     
ST7 R30.6 Building height ≤ 18.80 m 6StroeyBuilding     
ST8 R30.7 Building height ≤ 21.80 m 7StroeyBuilding     
ST9 R30.8 Building height ≤ 24.80 m 8StroeyBuilding     
ST10 R30.9 Building height ≤ 77.80 m 9StroeyBuilding     
ST11 R30.10 Building height ≤ 30.80 m 10StroeyBuilding     

 

Id Subject Set 

Concept Property 
RS30.A Building height (||: R30.1, R30.2, R30.3, R30.4, R30.5, R30.6, R30.7, R30.8, R30.9, R30.10) 

 

 

 
  REQUIREMENT SELECTION 

St.Id Id Concept Property C. Value U. Concept Property Comp. Value U. 
ST1 R38.1.1 Storey distanceToProjectZero ≥ 0.50 m Basement     
ST1 R38.1.2 Storey distanceToProjectZero ≤ 1.00 m      

ST2 R38.2 Storey distanceToProjectZero ≥ 0.00 m 
Basement     
Zone usage equal store || parking  

 

Id Subject Set 

Concept Property 
RS38.A Storey distanceToProjectZero (&: (||: R38.1.1, R38.2), R38.1.2) 

 



	
  

150	
  

 
  REQUIREMENT SELECTION 

St.Id Id Concept Property C. Value U. Concept Property Comp. Value U. 
ST1 R39.1 Building constructionTechnique !equal timberFramed  Block constructionOrder equal detached  
ST2 R39.2 Building constructionTechnique !equal timberFramed  Setback sideDistance < 5 m 
ST3 R39.3 Building constructionTechnique !equal timberFramed  Building height > 6.80 m 

ST4 R39.4 Building constructionTechnique !equal timberFramed  
Block constructionOrder equal attached  
Building hasFireWall boolean false  

 

Id Subject Set 

Concept Property 
RS39.A Building constructionTechnique (&: (||: R39.1, R39.4), R39.2, R39.3) 

 

 

 
  REQUIREMENT SELECTION 

St.Id Id Concept Property C. Value U. Concept Property Comp. Value U. 
ST1 R40.1.1 Eave homeStorey equal last        
ST1 R40.1.2 Eave width ≤ 0.50 m      
ST2 R40.2.1 Canopy width ≤ 1.50 m Lot isWithFrontGarden boolean false  
ST2 R40.2.2 Canopy isConsole Boolean True  Lot isWithFrontGarden boolean false  
ST2 R40.2.3 Canopy distancetoLot ≤ 2.00 m Lot isWithFrontGarden boolean false  
ST3 R40.3.1 Canopy level ≥ 3.00 m Lot isWithFrontGarden boolean false  
ST3 R40.3.2 Canopy width ≤ {Block_sidewalkWidth} m Lot isWithFrontGarden boolean false  
ST4 R40.4.1 Canopy width ≤ {Setback_frontDistance} m Lot isWithFrontGarden boolean true  
ST4 R40.4.2 Canopy isConsole boolean true  Lot isWithFrontGarden boolean true  

 

Id Subject Set 

Concept Property 
RS40.A Eave homeStorey R40.1.1 
RS40.B Eave width R40.1.2 
RS40.C Canopy width (||: (&: R40.2.1, 40.3.2), R40.4.1) 
RS40.D Canopy isConsole (||: R40.2.2, R40.4.2) 
RS40.E Canopy distancetoLot R40.2.3 
RS40.F Canopy level R40.3.1 



	
  

151	
  

 
  REQUIREMENT SELECTION 

St.Id Id Concept Property C. Value U. Concept Property Comp. Value U. 
ST2 R41.2 Roof pitch = 33 %       

ST3 R41.3.1 Roof pitch = {Roof_pitch} % 

Block constructionOrder equal detached  
Building type equal dublexHouse  
Roof run ≤ {Roof_calculatedRun}  

ST3 R41.3.2 Roof form equal {Roof_form}  

Block constructionOrder equal detached  
Building type equal dublexHouse  
Roof run ≤ {Roof_calculatedRun} m 

ST7 R41.4 Roof form equal hip  
Building type !equal dublexHouse  
Roof run ≤ 3 m 

ST8 R41.5 Zone hasSpace equal false  attic     

ST9 R41.6.1 Zone hasSpace boolean true  
attic     
Zone {containingSpace_usage} equal liftShaft || flueShaft  

ST9 R41.6.2 Zone hasSpace boolean true  

attic     
Building type equal dublexHouse  
Building height ≤ 6.80 m 
Zone {containingSpace_hasConnectedtoIUnit boolean true  
Zone {containingSpace _boundary} ≤ {containingSpace_zone_boundary}  
Zone {containingSpace _area} ≤ (:{space_zone _area}:*30/100) m2 

ST10 R41.7.1 Zone hasSpace boolean true  Zone {containingSpace _isOccupied} boolean false  
ST10 R41.7.2 Zone hasSpace boolean true  Zone {containingSpace _height} ≥ 1.80 m 
ST11 R41.8 Zone hasSpace boolean true  Zone {containingSpace _relatedSpace} !equal terrace  

ST13 R41.10 Ceiling isSloped boolean false  
Ceiling homeStorey !equal lastFloor  
Ceiling level ≥ {Roof_run}  

ST14 R41.11 Wall exceedingLmtfromRoof ≤ 0.60 m Wall type equal gable  
ST15 R41.12.1 Roof hasExtension boolean false       
ST15 R41.12.2 Roof hasExtension boolean true  Roof {exceedingSpace_usage} equal flueShaft  
ST15 R41.12.3 Roof hasExtension boolean true  Roof {exceedingSpace_usage} equal airShaft  

ST16 R41.13 Roof hasExtension boolean true  
Roof {exceedingSpace_height} ≤ 2.10 m 
Roof {exceedingSpace_usage} equal stairShaft  

ST17 R41.14.1 Zone hasSpace boolean true  
terrace     
Zone {containingSpace_usage} equal liftShaft  

ST17 R41.14.2 Zone hasSpace boolean true  

terrace     
Zone {containingSpace _usage} equal stairShaft  
Zone {containingSpace _height} ≤ 2.10  

 



	
  

152	
  

 
  REQUIREMENT SELECTION 

St.Id Id Concept Property C. Value U. Concept Property Comp. Value U. 
ST1 R42.1.1 Building hasCantilever boolean false       

ST1 R42.1.2 Building hasCantilever boolean true  

Cantilever distancetoLotFrontBorder ≥ 0.00 m 
Cantilever width ≤ 1.50 m 
Cantilever distancetoProjectZero ≥ 2.40 m 
Cantilever distancetoLotSideBorder ≥ 3.00 m 

ST2 R42.2 Building hasCantilever boolean true  
Cantilever distancetoLotRearBorder ≥ 3.00 m 
Cantilever length ≤ {building_facade}  

ST3 R42.3 Building hasCantilever boolean true  

Lot {Setback_sideDistance} ≥ 3.00 m 
Lot {Setback_sideDistance} ≤ 4.00 m 
Cantilever distancetoLotSideBorder ≥ 2.00 m 
Cantilever width ≤ 1.00 m 
Cantilever type equal open  
Cantilever length ≤ (:{building_facade}:/3) m 

ST4 R42.4 Building hasCantilever boolean true  
Block constructionOrder equal attached  
Cantilever distancetoLotSideBorder ≥ 2.00 m 

ST6 R42.6 Building hasCantilever boolean true  

Block constructionOrder equal attached  
existingBuilding cantilerDistancetoBorder = 0.00 m 
Cantilever distancetoLotSideBorder = 0.00 m 

ST7 R42.7 Building hasCantilever boolean true  

Lot roadWidth ≥ 6.00 m 
Lot isWithFrontGarden boolean false  
Cantilever width = ((:{Lot_roadWidth}:-6)/2) m 

ST8 R42.8 Building hasCantilever boolean true  
Cantilever width ≤ 1.00 m 
Cantilever distancetoProjectZero ≥ 3.00 m 

ST10 R42.10 Building hasCantilever boolean true  Cantilever width ≤ 0.20 m 

ST11 R42.11 Building hasCantilever boolean true  
Block facedtoGreenArea boolean true  
Cantilever width ≤ 1.00 m 

 

 

Id Subject Set 

Concept Property 
RS42.A Building hasCantilever (||: R42.1.1, (&: R42.1.1, (||: R42.2, R42.3, R42.6)), (&: (||: R42.7, R42.11), R42.8), R42.10) 

 



	
  

153	
  

  
REQUIREMENT SELECTION 

St.Id Id Concept Property C. Value U. Concept Property Comp. Value U. 

ST1 R43.1 Space hasOpeningTo equal outside  
Building usage equal dwelling   
Space usage equal {livingRoom || bedroom}  

ST2 R43.2.1 Space hasOpeningTo equal outside  
Building usage equal dwelling  
Space usage equal {kitchen || room || bathroom || wc}  

ST2 R43.2.2 Space hasOpeningTo equal lightShaft  
Building usage equal dwelling  
Space usage equal {kitchen || room }  

ST2 R43.2.3 Space hasOpeningTo equal ventilationShaft  
Building usage equal dwelling  
Space usage equal {bathroom || wc }  

ST3 R43.3.1 lightShaft width ≥ 1.00 m 
Building usage equal dwelling  
Building numberofStorey ≤ 2  

ST3 R43.3.2 lightShaft area ≥ 3.00 m2 
Building usage equal dwelling  
Building numberofStorey ≤ 2  

ST4 R43.4.1 lightShaft width ≥ 1.50 m 
Building usage equal dwelling  
Building numberofStorey ≤ 5  

ST4 R43.4.2 lightShaft area ≥ 4.50 m2 
Building usage equal dwelling  
Building numberofStorey ≤ 5  

ST5 R43.5.1 lightShaft width ≥ 2.00 m 
Building usage equal dwelling  
Building numberofStorey ≤ 9  

ST5 R43.5.2 lightShaft area ≥ 6.00 m2 
Building usage equal dwelling  
Building numberofStorey ≤ 9  

ST6 R43.6.1 lightShaft width ≥ 2.00 m 
Building usage equal dwelling  
Building numberofStorey ≥ 10  

ST6 R43.6.2 lightShaft area ≥ 9.00 m2 
Building usage equal dwelling  
Building numberofStorey ≥ 10  

ST8 R43.8.1 lightShaft width ≥ 1.50 m Building numberofStorey ≤ 2  
ST8 R43.8.2 lightShaft area ≥ 4.50 m2 Building numberofStorey ≤ 2  
ST9 R43.9.1 lightShaft width ≥ 2.00 m Building numberofStorey ≤ 9  
ST9 R43.9.2 lightShaft area ≥ 6.00 m2 Building numberofStorey ≤ 9  
ST10 R43.10.1 lightShaft width ≥ 2.00 m Building numberofStorey ≥ 10  
ST10 R43.10.2 lightShaft area ≥ 9.00 m2 Building numberofStorey ≥ 10  
ST11 R43.11.1 ventilationShaft width ≥ 0.60 m      
ST11 R43.11.2 ventilationShaft area ≥ 0.36 m2      
ST11 R43.11.3 ventilationShaft width ≥ 0.80 m ventilationShaft hasInstallation boolean true  
ST11 R43.11.4 ventilationShaft area ≥ 0.64 m2 ventilationShaft hasInstallation boolean true  

 



	
  

154	
  

Id Subject Set 

Concept Property 

RS43.A Space hasOpeningTo (||: R43.1, R43.2.1, R43.2.2, R43.2.2) 
RS43.B lightShaft width (||: R43.3.1, R43.4.1, R43.5.1, R43.6.1, R43.8.1, R43.9.1, R43.10.1) 
RS43.C lightShaft area (||: R43.3.2, R43.4.2, R43.5.2, R43.6.2, R43.8.2, R43.9.2, R43.10.2) 
RS43.D ventilationShaft width (||: R43.11.1, R43.11.3) 
RS43.E ventailationShaft area (||: R43.11.2, R43.11.4) 

 

 

 
  REQUIREMENT SELECTION 

St.Id Id Concept Property C. Value U. Concept Property Comp. Value U. 
ST1 R44.1.1 Zone containingSpaceList include livingRoom  dwelling     
ST1 R44.1.2 Zone containingSpaceList include bedroom  dwelling     
ST1 R44.1.3 Zone containingSpaceList include bedNische  dwelling     
ST1 R44.1.4 Zone containingSpaceList include kitchen  dwelling     
ST1 R44.1.5 Zone containingSpaceList include cookNische  dwelling     
ST1 R44.1.6 Zone containingSpaceList include bathroom  dwelling     
ST1 R44.1.7 Zone containingSpaceList include bathNische  dwelling     
ST1 R44.1.8 Zone containingSpaceList equal wc  dwelling     
ST3 R44.2.1 Space width ≥ 3.00 m livingRoom     
ST4 R44.2.2 Space area ≥ 12.00 m2 livingRoom     
ST4 R44.3.1 Space width ≥ 2.60 m bedroom     
ST4 R44.3.2 Space area ≥ 7.28 m2 bedroom     
ST5 R44.4.1 Space width ≥ 1.50 m bedNiche     
ST5 R44.4.2 Space area ≥ 3.00 m2 bedNiche     
ST6 R44.5.1 Space width ≥ 1.50 m kitchen     
ST6 R44.5.2 Space area ≥ 3.60 m2 kitchen     
ST7 R44.6.1 Space width ≥ 0.70 m cookNische     
ST7 R44.6.2 Space area ≥ 1.40 m2 cookNische     
ST8 R44.7.1 Space width ≥ 1.20 m bathroom     
ST8 R44.7.2 Space area ≥ 3.48 m2 bathroom     
ST9 R44.8.1 Space width ≥ 1.20 m bathNische     
ST9 R44.8.2 Space area ≥ 2.64 m2 bathNische     
ST10 R44.9.1 Space width ≥ 0.90 m wc     
ST10 R44.9.2 Space area ≥ 1.08 m2 wc     



	
  

155	
  

ST11 R44.10.1 Space width ≥ 1.00 m entrance     
ST11 R44.10.2 Space area ≥ 1.32 m2 entrance     
ST12 R44.11.1 Space width ≥ 1.10 m corridor     
ST12 R44.11.2 Space area ≥ 1.32 m2 corridor     
ST13 R44.12.1 Space width ≥ 2.10 m room     
ST13 R44.12.2 Space area ≥ 6.00 m2 room     
ST14 R44.13 Space containedSpace equal livingRoom  bathNische     
ST15 R44.14.1 Space connectedTo equal chimney  cookNische     
ST15 R44.14.2 Space connectedTo equal ventilationShaft  cookNische     
ST16 R44.15.1 Zone containingSpaceList equal coalCellar  building typeofHeatingSystem equal stove  
ST16 R44.15.2 Space area ≥ 2.50 m2 coalCellar     

ST17 R44.16 Space area ≥ 4.50 m2 
coalCellar     
Space containedZone equal iUnit  

ST18 R44.17 Space isFurnished boolean true  wetSpace     

ST19 R44.18.1 Space width ≥ 2.00 m 

building type equal public  
corridor     
Space length ≤ 20.00 m 

ST19 R44.18.2 Space width ≥ 2.50 m 

building type equal public  
corridor     
Space length ≥ 20.00 m 

ST20 R44.19 Zone facade ≥ 2.00 m workingPlace     

 

Id Subject Set 

Concept Property 

RS44.A Zone containingSpaceList (&: R44.1.1, (||: R44.1.2, R44.1.3), (||: R44.1.4, R44.1.5), (||: R44.1.6, (&: R44.1.7, R44.1.8)), R44.15.1) 
RS44.B Space width (||: R44.2.1, R44.3.1, R44.4.1, R44.5.1, R44.6.1, R44.7.1, R44.8.1, R44.9.1, R44.10.1, R44.11.1, R44.12.1, R44.18.1, R44.18.2) 
RS44.C Space area (||: R44.2.2, R44.3.2, R44.4.2, R44.5.2, R44.6.2, R44.7.2, R44.8.2, R44.9.2, R44.10.2, R44.11.2, R44.12.2, R44.15.2, R44.16) 
RS44.D Space containedSpace R44.13 
RS44.E Space connectedTo (&: R44.14.1, R44.14.2) 
RS44.F Space isFurnished R44.17 
RS44.G Zone facade R44.19 

 

 

 



	
  

156	
  

 
  REQUIREMENT SELECTION 

St.Id Id Concept Property C. Value U. Concept Property Comp. Value U. 
ST1 R45.1 Storey height ≥ 2.60 m      

ST3 R45.2.1 Space height ≥ 2.20 

m 

Space usage equal 

{bathNische || bathroom || wc || cellar || 
office || entrance || corridor || 
innerCorridor || }  

ST3 R45.2.2 Storey height ≥ 2.20 
m Storey isOccupied boolean false  

Storey level equal underground  
ST3 R45.2.3 Storey height ≥ 2.20 m Building usage equal auxiliary  
ST4 R45.3 Space height ≥ 2.00 m Space usage equal garage  
ST5 R45.4 Storey height ≥ 2.60 m building isOccupied boolean true  
ST6 R45.5 Space height ≥ 3.00 m Space {containedZone_usage} equal {store || cafe || restaurant}  
ST7 R45.6 Space height ≥ 3.50 m Space {containedZone_usage} equal {wedding hall || casino || disco || pub}  

ST8 R45.7 Space height ≥ 2.60 
m Space {containedZone_usage} equal {wedding hall || casino || disco || pub}  

Space usage equal serviceArea  

ST9 R45.8 Space area ≤ ((:{containedZone_area)*0.5)) 
m Space {containedZone_usage} equal {wedding hall || casino || disco || pub}  

Space usage equal serviceArea  

 

Id Subject Set 
Concept Property 

RS45.A Storey height (||: R45.1, R45.2.2, R45.2.3, R45.4) 
RS45.B Space height (||: R45.2.1, R45.3, R45.5, R45.6, R45.7) 
RS45.C Space area R45.8 

 

	
    



	
  

157	
  

 
  REQUIREMENT SELECTION 

St.Id Id Concept Property C. Value U. Concept Property 
Com
p. Value U. 

ST1 R46.1.1 Window width ≥ 0.60 m      
ST1 R46.1.2 Window area ≥ (:{relatedSpace_area}:/8) m Window {relatedSpace_usage} equal {livingRoom || room || kitchen}  
ST1 R46.1.3 Window area ≥ 1.25 m2      

ST3 R46.2.1 Window area ≤ 0.80 
m2 building type equal dublexHouse  

Window {relatedSpace_containedZone} equal attic  

ST3 R46.2.2 Space numberOfWindow = 2 
 building type equal dublexHouse  

Space containedZone equal attic  

 

Id Subject Set 

Concept Property 
RS46.A Window width R46.1.1 
RS46.B Window area (&: R46.1.2, R46.1.3) 
RS46.C Space numberofWindow R46.2.2 

 

 

 
  REQUIREMENT SELECTION 

St.Id Id Concept Property C. Value U. Concept Property Comp. Value U. 
ST1 R47.1 Door height ≥ 2.10 m      
ST2 R47.2 Door width ≥ 1.30 m mainEntranceDoor     
ST3 R47.3 Door width ≥ 1.00 m entranceDoor     
ST4 R47.4.1 Door width ≥ 0.90 m roomDoor     
ST4 R47.4.2 Door width ≥ 0.90 m kitchenDoor     
ST5 R47.5.1 Door width ≥ 0.80 m bathroomDoor     
ST5 R47.5.2 Door width ≥ 0.80 m wcDoor     
ST5 R47.5.3 Door width ≥ 0.80 m cellarDoor     
ST6 R47.6 Door width ≥ 1.00 m storeDoor     
ST8 R47.8 Door allowAirTransfer boolean true  bathroomDoor     

 



	
  

158	
  

Id Subject Set 

Concept Property 
RS47.A Door height R47.1 
RS47.B Door width (||: R47.2, R47.3, R47.4.1, R47.4.2, R47.5.1, R47.5.2, R47.5.3, R47.6) 
RS47.C Door allowAirTransfer R47.8 

 

 

 
  REQUIREMENT SELECTION 

St.Id Id Concept Property C. Value U. Concept Property Comp. Value U. 

ST1 R48.1.1 Building numberofLift ≥ 1  

Building height ≥ 12.80  
Building numberofStorey ≥ 4  
Building usage equal dwelling  

ST1 R48.1.2 Building numberofLift ≥ 1  

Building height ≥ 12.80  
Building numberofStorey ≥ 2  
Building usage !equal dwelling  

ST1 R48.1.3 Lift startupStorey equal ground       
ST1 R48.1.4 Lift finishingStorey equal last       
ST1 R48.1.5 Lift hasAccessToEveryStorey boolean true       
ST1 R48.1.6 Lift complyWith equal “TSE & AY”       

ST3 R48.2 Building numberofLift ≥ 2  

Building height ≥ 12.80  
Building usage equal dwelling  
Building numberofIUnit ≥ 20  

 

Id Subject Set 

Concept Property 
RS48.A Building numberofLift (|| R48.1.1, R48.1.2, R48.2) 
RS48.B Lift startupStorey R48.1.3 
RS48.C Lift finishningStorey R48.1.4 
RS48.D Lift hasAccessToEveryStorey R48.1.5 
RS48.D Lift complyWith R48.1.6 

 



	
  

159	
  

 
  REQUIREMENT SELECTION 

St.Id Id Concept Property C. Value U. Concept Property Comp. Value U. 
ST1 R49.1.1 Building numberofStair ≥ 1       
ST1 R49.1.2 Stair material !equal wood  Stair usage equal main  
ST2 R49.2 Stair holeWidth ≥ 20 cm      
ST3 R49.3 Space hasOpeningTo equal outside  Space usage equal stairWell  
ST4 R49.4.1 Stair hasAccesToBasement boolean true  Stair usage equal main  
ST4 R49.4.2 Stair hasAccesToRoof boolean true  Stair usage equal main  
ST5 R49.5.1 Stair flightWidth ≥ 1.20 m      
ST5 R49.5.2 Stair landingWidth ≥ 1.20 m      
ST6 R49.6.1 Stair riserHeight = ((60-:{threadLength}:)/2)       
ST6 R49.6.2 Stair threadLegth = (60-(2*:{riserHeight}:))       
ST9 R49.8 Stair landingWidth ≥ flightWidth       
ST10 R49.9 Stair landingWidth ≥ 1.00 m Stair type equal {straight || spiral}  
ST12 R49.11.1 Stair flightWidth ≥ 1.20 m Building usage equal dwelling  
ST12 R49.11.2 Stair landingWidth ≥ 1.20 m Building usage equal dwelling  
ST13 R49.12.1 Stair 

flightWidth ≥ 0.90 m 
Building usage equal dwelling  
Stair homeStorey equal basement  

ST13 R49.12.2 Stair 
flightWidth ≥ 0.90 m 

Building usage equal dwelling  
Stair usage equal service  

ST13 R49.12.3 Stair 
landingWidth ≥ 0.90 m 

Building usage equal dwelling  
Stair homeStorey equal basement  

ST13 R49.12.4 Stair 
landingWidth ≥ 0.90 m 

Building usage equal dwelling  
Stair usage equal service  

ST15 R49.14.1 Stair riserHeight ≤ 0.175 m Building usage equal dwelling  
ST15 R49.14.2 Stair threadLegth ≥ 0.28 m Building usage equal dwelling  
ST15 R49.14.3 Stair threadLegth Min ≥ 0.10 m Building usage equal dwelling  
ST16 R49.15.1 Stair flightWidth ≥ 1.60 m Building usage !equal dwelling  
ST16 R49.15.2 Stair landingWidth ≥ 1.60 m Building usage !equal dwelling  
ST17 R49.16 Stair hasRailBothSide boolean true  Building usage !equal dwelling  
ST18 R49.17.1 Stair riserHeight ≤ 0.16 m Building usage !equal dwelling  
ST18 R49.17.2 Stair threadLegth ≥ 0.30 m Building usage !equal dwelling  
ST18 R49.17.3 Stair threadLegth Min ≥ 0.125 m Building usage !equal dwelling  
ST19 R49.18.1 Stair 

flightWidth ≥ 1.20 m 
Building usage !equal dwelling  
Stair usage !equal main  

ST19 R49.18.2 Stair 
landingWidth ≥ 1.20 m 

Building usage !equal dwelling  
Stair usage !equal main  

ST19 R49.18.3 Stair riserHeight ≤ 0.175 m Building usage !equal dwelling  



	
  

160	
  

Stair usage !equal main  
ST19 R49.18.4 Stair 

threadLegth ≥ 0.28 
m Building usage !equal dwelling  

Stair usage !equal main  
ST19 R49.18.5 Stair 

threadLegth Min ≥ 0.125 
m Building usage !equal dwelling  

Stair usage !equal main  

 

Id Subject Set 

Concept Property 

RS49.A Building numberofStair R49.1.1 
RS49.B Stair material R49.1.2 
RS49.C Stair holeWidth R49.2 
RS49.D Space hasOpeningTo R49.3 
RS49.E Stair hasAccesToBasement R49.4.1 
RS49.F Stair hasAccesToRoof R49.4.2 
RS49.G Stair flightWidth (||: R49.5.1, R49.11.1, R49.12.1, R49.12.2, R49.15.1, R49.18.1) 
RS49.H Stair landingWidth (||: R49.5.2, R49.8, R49.9, R49.11.1, R49.12.3, R49.12.4, R49.15.2, R49.18.2) 
RS49.I Stair riserHeight (&: R49.6.1, (||: R49.14.1, R49.17.1, R49.18.3)) 
RS49.J Stair threadLegth (&: R49.6.2, (||: R49.14.2, R49.17.2, R49.18.4)) 
RS49.K Stair threadLegth Min (||: R49.14.3, R49.17.3, R49.18.5) 
RS49.L Stair hasRailBothSide R49.16 

 

	
    



	
  

161	
  

 
  REQUIREMENT SELECTION 

St.Id Id Concept Property C. Value U. Concept Property Comp. Value U. 

ST1 R50.1 fireEscape complyWith equal 
“BinalarınYangındanKorunması
HakkındaYönetmelik”       

ST2 R50.2.1 fireEscape width ≥ 90 cm building usage equal {dwelling || office}  
ST2 R50.2.2 fireEscape width ≥ 120 cm building type equal public  

 

Id Subject Set 

Concept Property 
RS50.A fireescape complyWith R50.1 
RS50.B fireescape width (||: R50.2.1, R50.2.2) 

 

 

 
  REQUIREMENT SELECTION 

St.Id Id Concept Property C. Value U. Concept Property Comp. Value U. 
ST1 R51.1.1 terrace hasBalustrade boolean true  terrace type  {Roof || Storey}  
ST1 R51.1.2 balcony hasBalustrade boolean true       
ST1 R51.1.3 Stair hasBalustrade boolean true  Stair numberofThread ≥ 5  
ST1 R51.1.4 blustrade height ≥ 1.00 m      
ST2 R51.2 blustrade barDistance ≤ 10 cm      
ST2 R51.3 blustrade hasProtection Boolean true  blustrade type equal horizontal  

 

Id Subject Set 

Concept Property 
RS51.A terrace hasBalustrade R51.1.1 
RS51.B balcony hasBalustrade R51.1.2 
RS51.C Stair hasBalustrade R51.1.3 
RS51.D blustrade height R51.1.4 
RS51.E blustrade barDistance R51.2 
RS51.F blustrade hasProtection R51.3 

 



	
  

VITA 
 

 

PERSONAL  
Surname, Name  : MACİT Sibel 

Date and Place of Birth : 16.12.1975 – İzmir (Turkey) 

E-mail    : sibelmacit@gmail.com  

 
EDUCATION  
PhD., İzmir Institute of Technology, Graduate School of Engineering and Sciences, 

Department of Architecture (2008-2014) – Supported in part by the Scientific and 

Technological Research Council of Turkey (TUBITAK) via the 2214 -Abroad Research 

Grant Programme. 

 Thesis: “Computer Representation of Building Codes for Automated 
 Compliance Checking” 

M.Sc.,  Balıkesir University, Graduate School of Natural and Applied Sciences, 

Department of Architecture (2004-2007) 

 Thesis: “Interoperability between Computer Aided Architectural Design 
 Environments and a Room Acoustics Analysis Application using ifcXML” 

B.Arch., Balıkesir University, Faculty of Engineering and Architecture, Department of 

Architecture (1993-1998) 

 

ACADEMIC EXPERIENCES 
Research Assistant, Balıkesir University, Faculty of Engineering and Architecture, 

Department of Architecture (2001-2008) 

Research Assistant, İzmir Institute of Technology, Graduate School of Engineering 

and Sciences, Department of Architecture (2008-2014) 

Guest Researcher, Vienna University of Technology, Institute of Architectural 

Sciences, Department of Digital Architecture and Planning (2011-2012) 

 

 




