COMPUTER REPRESENTATION OF BUILDING
CODES FOR AUTOMATED COMPLIANCE
CHECKING

A Thesis Submitted to
the Graduate School of Engineering and Sciences of
[zmir Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

in Architecture

by Sibel MACIT

November 2014
[zmir

We approve the thesis of Sibel MACIT

Examining Committee Members:

Prof. Dr. H. Murat GUNAYDIN
Department of Architecture, izmir Institute of Technology

Prof. Dr. Serdar KALE '
Department of Architecture, [zmir Institute of Technology

Assoc. Prof. Dr. Georg SUTER
Institute of Architectural Sciences, Vienna University of Technology

Prof. Dr. Tiirkan GOKSAL OZBALTA
Department of Civil Engineering, Ege University

Assoc. Prof. Dr. Koray KORKMAZ
Department of Architecture, [zmir Institute of Technology

19 November 2014
Prof. Dr. H. Murat GUNAYDIN
Supervisor, Department of Architecture,
[zmir Institute of Technology
Assoc. Prof. Dr. Seniz CIKIS Prof. Dr. R. Tugrul SENGER
Head of the Department of Dean of the Graduate School of

Architecture Engineering and Sciences

ABSTRACT

COMPUTER REPRESENTATION OF BUILDING CODES FOR
AUTOMATED COMPLIANCE CHECKING

This dissertation constitutes a study in the field of automated compliance
checking, with a concentration on building code representations. Development of
compliance checking systems has been an area of research that aims to provide
computational support for accurate compliance checking of building projects against
applicable building codes in a time and cost effective way. Systems for compliance
checking of building projects require appropriate representations for building codes.
Building codes are complex documents written in natural languages, and the
development of computable representations is challenging.

This dissertation proposes and demonstrates a new representation model and an
accompanying modeling methodology for representing building codes in computable
form that can be utilized in the development of automated compliance checking
systems. The model adopts the four level representation paradigm as a theoretical base
and uses the semantic modeling approach for developing the building code
representation. The model breaks down the representation into four levels which allows
separate modeling of domain concepts, individual rule statements, relationships
between rules, and the organization of the building code.

The dissertation shows that decomposing a building code into four levels and
modeling rules based on the semantic-oriented paradigm is an effective modeling
strategy for representing building codes in a computable form that is independent of
automated compliance checking systems. The applicability of the model has been
evaluated through a case study. The case study successfully illustrates the modeling of
building codes that constitute parts of Izmir Municipality Housing and Zoning Code, as
well as a prototype implementation of an automated checking system utilizing this

building code representation.

111

OZET

UYUMLULUK DENETIMI OTOMASYONU ICIN YAPI
YONETMELIKLERININ BILGISAYARDA MODELLENMESI

Yap1 projelerinin ilgili yonetmeliklere uyumluluk denetiminin otomasyonu
arastirma alaninda gelistirilen bu doktora tezinde, yapt yonetmeliklerinin bilgisayar
ortaminda modellenmesi ve otomatik denetleme sistemlerinde uygulanmasina
odaklanilmistir. Uyumluluk denetimi siirecinin otomasyonuna yonelik sistem gelistirme
calismalari, yap1 projelerinin ilgili yonetmeliklere gore yetkili kurumlarca, zaman ve
maliyet etkin olarak hatasiz bir sekilde denetlenmesini hedefleyen teorik ve uygulamali
arastirmalarin odaginda yer almaktadir. Otomatik denetleme sistemlerinin gelistirilmesi
icin Oncelikle yonetmeliklerin sayisal modellerine ihtiya¢ duyulmaktadir. Yapilasmaya
iliskin yonetmeliklerin birbiri ile iliskili karmasik kurallardan olusan, sadelik ve
diizenden uzak yapisindan dolay1 bu yonetmeliklerin bilgisayar ortaminda sayisal olarak
modellenmesi oldukga zorlu bir arastirma alani olarak goriilmektedir.

Bu tez calismasinda, uyumluluk denetimi otomasyonuna yonelik sayisal
yonetmelik modellerinin olusturulmasi i¢in yeni bir temsil modeli ve ona eslik eden bir
modelleme metodolojisi Onerilmektedir. Onerilen model, diiz yazi bicimindeki
yonetmeliklerin kurgusal yapisinin tanimlanmasina yonelik teorik ¢alismalarin sonucu
olarak ortaya ¢ikan ve literatiirde dort katmanli modelleme paradigmasi olarak yer alan
yaklagima dayanmaktadir. Bilgi modelleme yontemi olarak ise son zamanlarda ortaya
¢tkan semantik modelleme yaklasimi kullanilmaktadir. Onerilen model ile
yonetmelikleri olusturan terimlerin, kural climlelerinin, kurallar arasi iligkilerin ve
organizasyonel yapinin ayr1 katmanlarda modellenmesi saglanarak sayisal yonetmelik
modelleri i¢in sistematik bir yontem ortaya konmaktadir.

Bu tez caligmasi, bir yap1 yonetmeliginin dort katmanli olarak semantik tabanli
modellenmesinin uyumluluk denetimi otomasyonuna yonelik denetleme sistemleri i¢in
etkili bir modelleme stratejisi oldugunu gdstermektedir. Onerilen modelin yap1 tasarimi
alaninda uygulanabilirligi, Izmir ili Tip Imar Yénetmeligi 6rnekleminde gosterilmistir.
Yonetmeligin yap: tasarimi ile ilgili boliimlerinin 6nerilen model ¢ergevesinde sayisal
modeli olusturularak bu model ile calisan prototip bir otomatik denetleme sistem
uygulamasi gelistirilmistir. Gelistirilen sistem ¢esitli yap1 projesi 6rnekleri iizerinde test

edilmistir.

v

TABLE OF CONTENTS

LIST OF FIGURES ...ttt et viil
LIST OF TABLES ... oottt sttt ettt sttt e es X
CHAPTER 1. INTRODUCTIONociiiiiiiiiieieieeeeesie et st 1
1.1. Problem Statement.............coouieiiiiiiiniiiiieiiecec e 1

1.2 MIOtIVATION. ...ttt sttt et 2

| I @ 1} 15715 A USSP 4

1.4, MethOdOIOZY ...ccuvieieiieeiee et e 5

LT o0 o TSRS 7

1.6, OULLINE ...t e 8

CHAPTER 2. BACKGROUNDcouiiiiiiiitiieiiett ettt 9
2.1. BUilding Codesccccuiieriiieiiieeiieeiee ettt eve et e e ens 9

2.1.1. Types of Building Codesccccuveeviieeriieeieeeieeeiee e 10

2.1.2. Elements of Building Codes...........coocueeeriieenieeniieeeiieeeee e 10

2.2.Building Code MOdeIS........cccuveeriiieiiieeiieeieeceeeee et 13

2.2.1. Decision Tables and SASE Modelccooeiniiniiiniiniinninnene, 13

2.2.2. Rule-Based Models.........coceeriiiiiiiiiiiiiiiiiiccceeeeee 19

2.2.3. Logic-Based Models........cccoeouiieriiiiniieeiie e 21

2.2.4. Object-Oriented Modelsceeeviieeniieeiieeieecieeceee e 23

2.2.5. Hybrid MOdEISoeeeiiieeiiieeiieeciie ettt 27

2.2.6. Semantic MOdElScoccueiiiiiiiiiiiieeee e 32

2.2.7. Ontology-Based Models........ccceeruiieiiiieiiiieieecieeceeeee e 36

2.3. Automated Compliance Checking..........cccceeveevciiienciieeniieenieeeee e, 37

2.3.1. INtrodUCHION. ..c.eeiiiiiiieiiceieee e 37

2.3.2. Automated Compliance Checking Systems.........ccccecvveercrveenreenne. 39

2.3.2.1. Construction and Real Estate NETwork (CORENET).......... 40

2.3.2.2. DesignCheck SyStemccccuvieviuieeriiieiiiieeeiee et eeiee e 41

2.3.2.3. SMARTcodes Model Checking System (MCS).................... 42

2.3.2.4. Design Assessment Tool (DAT).....cccoeevciiiniiiiniieiiiieeien, 43

2.3.3. TechnOlOZIES......cccvieeiiieeiiieeeeecee e e 44

2.3.3.1. FORNAX ..ottt e 44
2.3.3.2. EXPRESS Data Manager (EDM)........cccccvvviiiinciiriniieeiens 45
2.3.3.3. Solibri Model Checker (SMC).......ccocovviviiieniiiiiniieeriee e 45

CHAPTER 3. BUILDING CODE REPRESENTATION AND MODELING

METHODOLOGY ...oouiiiiiiiiet ettt 47
3.1 INtrOUCTION. ... 47
3.2. Four Level Representation............cccveeeieeerieeeiiieeiieeeee e esiee e 47
3.3. Semantic Representation — RASE Model...........cccccveviiiiniiiiniiienene 48
3.4. Building Code Representation...........ceccveeeeveeeniieeeiieesiieesieeesieeenineeens 51

3.4.1. Domain Levelcoooiiiiiiiiieeeeee 53

3.4.2. Rule Level.....ooiiiiiiiiie e 54

3.4.3. Rule-set Level......cooiiiiiiiiiiiiiieeeeeeeeeee e 58

3.4.4. Management Levelccooeiiiiiiiiniiieeieeeeeeee e 59
3.5. Building Code Modeling Methodologyccceeeviiiriieiniiieeiiieeiee 62

3.5.1. ANalySis StAZE ...ccveeeiiiieiiieeiieeeeeee e e 64

3.5.1.1. Determination of the SCOPEc.eevvvrrrcirirciieriieeeee e 64
3.5.1.2. Decomposition of the Building Codec.ccccvvverrerennnennnne. 65
3.5.1.3. Classification of the Rule Statements............cccccevieniennne. 65
3.5.2. Representation Stagecc.eeeeuveeeeueeeriiieeniieeeieeeeieeesreeesveeeeneee e 66
3.5.2.1. Representation of Domain Conceptsc.cceervvrerreeenreennne. 67
3.5.2.2. Representation of Rule Statements..........ccccceeevevveercieeenneennne. 68
3.5.2.3. Representation of Relationships between Rules.................... 68
3.5.2.4. Representation of the Building Code Organization............... 69
3.5.3. Implementation Stageccccveeerieeriieeeiieeeie e 69
3.5.3.1. Implementation of the Building Code Model........................ 70
3.5.3.2. Testing and Validation...........cccccceeveieeriiiiniieenieeeee e 71
CHAPTER 4. IMPLEMENTATION AND EVALUATION........ccotiiiiieieieeieeeee 73
O BN S F21 S SRS 74
N I BN 1T oL USSP PRRPR 74
4.1.2. DECOMPOSIEION ...veeueriieiiieeriiieeriieeeireeeereeestreeesreessneessseeessseessseeens 75
4.1.3. Rule Classification...........coceeriieiiieniiiiieniceieeseeee e 78
T 2US) o) (ol 11 13 10) RO 82
4.2.1. Domain Objects and Concept Mapping Listccccceevverirerennennne 82

vi

4.2.2. RUIE ODJECLS...cuviieiiiieciieeeiie et etee et e eiee e aee e aee e saveeeenaeeens 86

4.2.3. RUIE-SEt ODJECLS..cccuviieriiieeiiieeiiieeite et et ee e ree e sveeeeavee e 89

4.2.4. Rule-set Group ObDJECtS.......uueervieeriieeiiieeiieeeiieeeieeeeieeesveeeeveeens 91

4.3, IMPlementationcceeecuieeriieeiiee et 93

N T B s (0110137 o1 TSRS 93

4.3.2. Building Information Modeling Requirementsccccceeunenne 98

4.4, Validationcc.eooiiiiiiiiiieiie e 99

44,1, TESE CASES .ottt ettt ettt sttt e 100

CHAPTER 5. CONCLUSION ...ttt ettt 113

5.1. Findings and DiSCUSSIONcevcviieriieeriiieeiieeeiieeeiee e sreeesvee e 113

S5.2.Future WOrkooviiiiiiiiieee e 118

REFERENCESottt ettt sttt et s enae e 120
APPENDICES

APPENDIX A. DECOMPOSITION AND CLASSIFICATION OF IMHZCODE..... 126

APPENDIX B. RULE AND RULE-SET REPRESENTATIONS OF IMHZCODE... 146

vil

LIST OF FIGURES

Figure Page
Figure 2.1. Sections of @ decision tableccooeeiiiiiiiiiiiiiiicceeceeeee 14
Figure 2.2. Clause 47.B from the IMHZCode...........ccoceiiiiiiiiiiiiiiiicicccicees 15
Figure 2.3. An example of using a decision table to represent building codes 15
Figure 2.4. The SASE moOdel......cc.cooiiiiiiiiiiiiie e 16
Figure 2.5. Information network for the provision for door width...........cc.cceoceniniiin, 18
Figure 2.6. Partial facets of two fieldsccccooiiiiiiiiiiie, 18
Figure 2.7. Two possible organizational outlines for the building code......................... 19
Figure 2.8. An example of using rule-based approach to represent building codes....... 20
Figure 2.9. An example of using logic-based approach to represent building codes 22
Figure 2.10. Object-oriented model of the building code............cccceeviiriiiniiniincnnnn, 24
Figure 2.11. Object-oriented model from analysis of Figure 2.2cccceviiiiiiniinneen, 25
Figure 2.12. An example of an object-oriented interpretation of Figure 2.2.................. 26
Figure 2.13. Overview of the object-logic model...........ccceooviieiiiiniiiiniiieieeeeeee 28
Figure 2.14. SMARTcodes system architeCtureccoceeveenieeiienieniienieeceniceens 32
Figure 2.15. Steps of the protocol for SMARTCOAESoevuieiiiiiiiiiiiiiiiiicceices 33
Figure 2.16. RASE constructs of a clause in the SMARTcodes Builder........................ 35
Figure 2.17. RASE constructs of a clause in the short form............ccocccoiveniiiiinnin, 35
Figure 2.18. The four classes of functionality a code compliance checking system..... 38
Figure 2.19. System architecture of CORENET projectccccceveenieiiiinienneeniennien, 40
Figure 2.20. Architecture of the DesignCheck systemc.cceccvevveiieniiieniieenieeiee 42
Figure 2.21. Framework of SMARTcodes model checking system............cccccecvveennennn. 43
Figure 3.1. Four level structure of the new model.............ccoocoiiiiiiiiii, 52
Figure 3.2. Basic structure of the rule object.........c.cooviiiiiiiiiii, 54
Figure 3.3. Structure of the rule object accommodating properties..........ccccceeerveeennnennn. 55
Figure 3.4. Detailed structure of the rule objectcccooiiiiiiiiiiiiii, 56
Figure 3.5. An example of rule representation in XML format...........ccocceviiiininncn, 57
Figure 3.6. Structure of the rule-set 0bJeCtcceviiiiiiiiiiiiiiees 59
Figure 3.7. Structure of the rule-set Zroup ObjJect........ccvvieeriiieiiiiieiiieeieeeee e 60
Figure 3.8. Overall structure of building code representation model...............c............ 61
Figure 3.9. Stages of the methodology for building code representation....................... 63

Figure 4.1. Domain objects of IMHZCode...........cooouiiiiiiiiiiiiiiiieiceeceeeees 83
Figure 4.2. The domain model of IMHZCode...........cccooviiiiiiiiiiiiiiiiiceeiees 84
Figure 4.3. Tree representation of the rule-set RS27.A . ..o, 90
Figure 4.4. Tree representation of rule-set RS27.B and RS27.C........cccooiiiiiiiininnen, 90
Figure 4.5. Conceptual framework for the compliance checking system....................... 94
Figure 4.6. Database structure for the IMHZCode model...........cccccoooieriiiniiiniinicnnnn, 95
Figure 4.7. Functional diagram of Checker..........cccooiiiiiiiiiiiiiicec, 97
Figure 4.8. Definition of properties for applying the IMHZCode.........ccccecvvverrvrennnnn. 99
Figure 4.9. Domain object table of the sample code modelcccccoeoeiiiininnenne. 101
Figure 4.10. Concept-mapping table of the sample code modelcccovvvvenneennen. 102
Figure 4.11. Rule table of the sample code model.............coceeviiiiiiininiiieee, 103
Figure 4.12. Classification of rules and rule-set table of sample code model............... 104
Figure 4.13. Rule-set group table of the sample code modelcccccuvvvvvvinnennnnnen. 104
Figure 4.14. Tree model of the sample code model...........cccceeviiniiiiniiniiniiiee. 105
Figure 4.15. Sample building model............coooiiiiiiiiieee, 106
Figure 4.16. Creation of missing information as a PSet extension of IFC schema....... 106
Figure 4.17. A screenshot of the testing application...........cccceeeeveerciieniieenieeeeiee e, 112

X

LIST OF TABLES

Table Page
Table 2.1. Overview of automated compliance checking systems............ccccceevveeennnennn. 39
Table 3.1. Examples of rules from IMHZcode modeled according to the RASE 50
Table 3.2. An example of rule representation in table form............ccccooevveviiinncieinnen. 56
Table 4.1. The Structure of IMHZCOAEcooiiiiiiiiiiiiiieee e 74
Table 4.2. The clauses of Part IIT of IMHZCode..........coceeiiiiiiiniiiiiniiieeeeee 76
Table 4.3. Decomposition of IMHZCode Clause-27.........ccccceeveuveenciieeniieeenieeesiee e 77
Table 4.4. Decomposition of IMHZCode Clause-47.........ccccvevvuieerciieeniieenieeesiee e 78
Table 4.5. Classification of the rule statements of Clause-27c..cccoceeviinieineennenne 80
Table 4.6. Classification of the rule statements of Clause-47cccccooeeviinieineennenne 81
Table 4.7. Results of the classification of IMHZCode rule statements on buildings 81
Table 4.8. Concept-mapping table for IMHZCode...........ccccvviviiiiiniiiiniieeieeee e, 85
Table 4.9. The structured rule objects of IMHZCode Clause-27ccccevcvveerveeennnenn. 87
Table 4.10. The structured rule objects of IMHZCode Clause-47c.cccecvvevveeennnenn. 88
Table 4.11. The rule-set objects of IMHZCode Clause-27........c.ccceeveercierencreeenieeenieenns 89
Table 4.12. The rule-set objects of IMHZCode Clause-47........c.cccecveevciviencieeenieeenieenne 90
Table 4.13. Classification of rule-sets related to setback, building, and door

COTICEPES tvivtieeeeiiieeeeeittee e ettt eeeesitteeeseettteeeesabeeeesansbaeessnsnaeeeesnsseeesannsaeeennns 92
Table 4.14. Design parameters for Case 1ccceeevieeeiieiniiienieecee e 108
Table 4.15. Checking result for case 1........ccccvvriiiiiiiiniiiinieee e 109
Table 4.16. Design parameters for Case 2cccveeeeieeriieeniieeniieeeiee e eevee e 110
Table 4.17. Checking result for Case 2........cccvveoiieeiiieniieeeieeee e 110
Table 4.18. Design parameters for Case 3ccceevvieeriieeniiieniieeeiee e eereeeevee e 111

Table 4.19. Checking result for case 3........cccveeviiieiiiiniiieeeeeeeeee e 111

CHAPTER 1

INTRODUCTION

1.1. Problem Statement

In the Architecture, Engineering, and Construction (AEC) industry, every
building project must be checked against numerous building codes for its compliance
and 1s allowed to be executed only when the compliance with all applicable rules of the
building code have been achieved. Compliance checking is a major task for both
architects and building certifiers often involving ambiguities and inconsistencies in
assessment, leading to delays in the overall construction process. Moreover, failure to
correctly assess projects for compliance can have negative effects on building
performance and allow errors that are expensive to fix.

Automated compliance checking has long been an area of research that aims to
provide computational support for accurate compliance checking of building projects
against applicable building codes in a time and cost effective way. Research into
developing automated compliance checking systems has focused mostly on
representation of building codes in computational format, definition of building model
views, compliance checking algorithms and reporting.

Automated compliance checking systems are expected to retrieve a set of
building codes from related authorities and conduct compliance checking on submitted
building projects. Compliance checking systems primarily require appropriate
computer-based models of both building codes and building designs. Advances in BIM
tools have finally established a standardized representation for building designs, even if
it is currently deemed unsatisfactory. However, a standard representation for building
codes is still not available. The lack of a standard representation for building codes has
inhibited the development and use of commercial automated compliance checking
systems.

The main objective of this dissertation is to develop a building code
representation, along with a formal methodology for modeling building codes based on

this representation. A detailed analysis of The Housing and Zoning Code of the city of

Izmir in Turkey is presented as a case study. A computer representation of this code is
built following the developed modeling methodology and is accompanied by a

rudimentary automated checking system as proof of concept.

1.2. Motivation

This dissertation is motivated by the need to develop representations for
building codes, based on which software tools could be developed. Having building

code representations in a computable format may have the following benefits:

* Providing a basis for the development of automated compliance checking
systems that can perform the checking of a building project more accurately,
consistently, and rapidly.

* Providing help to building code authors in developing and updating building
codes with a model that ensures a consistent set of rules without
redundancies and contradictions.

* Providing assistance to architects in locating and accessing relevant rules

among applicable building codes.

Because of these benefits, formally representing building codes in a computable
format has been a highly active research area. Initial work was undertaken by Fenves
(1966) on decision tables for representing building codes in a precise and unambiguous
form. A follow-up project by the same group of researchers investigated the
restructuring of the AISC (American Institute of Steel Construction) Specification
(Nyman et al., 1973). Alternatives for restructuring the specification were presented, but
the study concluded that appropriate restructuring, without changing the content, was
not guaranteed (Nyman & Fenves, 1975). Subsequent studies investigated the potential
of assisting building code authors in writing design standards (Fenves, 1976; Fenves &
Wright, 1977; Harris & Wright, 1980; Rasdorf & Fenves, 1980). Later works focused
on structuring building codes in a predicate logic structure (Jain et al., 1989; Rasdorf &
Lakmazaheri, 1990). These research activities culminated in a software system, called
SASE (Standard Analysis, Synthesis and Expression). This system aimed to provide
tools for creating and checking decision tables, information networks, classification

systems, and organizations within building code documents (Fenves et al., 1987).

Garrett and Hakim (1992) developed an object-oriented model of building codes, which
allows organizing a building code around building objects pertinent to the building
code. Waard (1992) offered another object-oriented approach to building code
processing. In this study, an object model for residential buildings and another object
model for building codes were developed, and the two models were linked for
compliance checking. Yabuki and Law (1993) combined first order predicate logic and
object-oriented modeling approaches to represent and process building codes. Kiliccote
and Garrett (1998) developed a context-oriented model for representing building codes.
This model uses the object-oriented modeling approach and organizes building code
around “contexts” which are a collection of sub-classes used to define conditional parts
of the provisions for which they are applicable. Given a predicate logic structure,
Kerrigan and Law (2003) developed the REGNET application to determine the
applicability of various codes under given building conditions, based on a question-and-
answer user interface. These early efforts focused on the logical structure of building
codes and how to represent them.

Exploration of building code compliance checking systems for building models
began following the development of the Industry Foundation Classes (IFC) in the
1990s. Han et al. (1998) and Vassileva (2000) laid out general opportunities and a
client-server approach. Han et al. (2002) later developed a simulation approach for
disabled access checking. These efforts set the research field for larger, more industrial-
based efforts (Eastman et al., 2009). The Singapore Construction and Real Estate
NETwork (CORENET) project is the earliest production of building code compliance
checking effort initiated in 1995 (Liebich et al., 2002). Initial work was based on
electronic 2D drawings, but later on IFC (buildingSMART, 2008a) was used. The
CORENET project developed the FORNAX platform to capture needed building code
information. A more recent effort is the DesignCheck system from Australia, initiated in
2006 (Ding et al., 2006). In this effort, the EXPRESS Data Manager (EDM) (Jotne,
1994) platform was used for encoding barrier-free accessibility rules. Another effort,
led by USA International Code Council (ICC), developed SmartCODES (Conover,
2007; Nisbet et al., 2009). It is a new platform providing methods of translation from
written, natural language rules to computer code. The platform targets energy
conservation rules. USA General Services Administration (GSA) have supported
development of a rule checking system for circulation and security validation of U.S.

Court houses (Eastman et al., 2008).

Although several researches have already proposed various building code
models, and software environments to operate on these models and check building
projects for compliance with building codes, for a variety of reasons, employing these
environments AEC industry practice and general acceptance of them has been limited.
A literature survey reveals that certain reasons for this failure are related to the building
code models used in these environments and not necessarily with the specific
implementations of these environments (Fenves et al., 1995). Previous building code
models have several limitations. One limitation is being too simplistic and not
comprehensive enough compared to the complex nature of building codes and thus
lacking the capability to represent all, or almost all, of the various types of information
in building codes. A second limitation is that some building codes are hard-coded into
the systems, thus lacking flexibility, maintainability, and user control (i.e. non-
programmer users cannot add/modify the rules embedded in the system and cannot
make professional judgments on the model). Furthermore, any change in the building
code necessitates changes in all such systems. A third limitation is that there is no direct
mapping between the building codes and building code models, making consistency
checking between actual building code and code model difficult. A fourth limitation is
only focusing on individual rule representation ignoring the overall building code and
thus lacking capability to prevent contradictions.

The motivation for this dissertation stems from these limitations of previous
building code models. In this regard, developing a more general (comprehensive,
flexible, maintainable, and consistent) representation for building codes is highly

desirable.

1.3. Objective

The goal of this dissertation is to develop a new computer representation for
building codes that can be used in the development of automated compliance checking
systems. The aim is to develop a formal model that supports the creation of digital
representations of build codes by following a corresponding methodology.

A new model for representing building codes is needed to improve on existing
models. After investigating previous models and identifying their limitations, the

following requirements were established for the new representation model:

Independence - Keeping the representation of building codes independent of
the compliance checking system and the design system. The model should not be hard
coded into the systems to avoid the modification of the whole system when the building
code is changed. The model should be portable between automated checking systems
and code authorities.

Conciseness - Avoiding redundancy in the representation of building codes. The
same object should not need to be defined more than once in the model.

Consistency - Preventing ambiguities as well as contradictions among rules.
Building codes are complex and complicated documents which include rules that are
open to interpretation, uncertain, sometimes even contradictory. The model should
ensure consistency.

Comprehensiveness - Representing all of the various types of information in
building codes (i.e. concepts, requirements, applicability conditions, etc.).

Maintainability - Allowing creation and addition of new rules and modification
of existing ones. Building codes change continuously and the model should be able to
accommodate addition of new rules and modification of existing ones. Non-
programmer code authors should be able to easily carry out such model updates.

The new representation model aims to meet the above requirements. It is
intended to be utilized as a basis for the development of automated compliance
checking systems. In addition, the model can also enhance and facilitate building code
authoring. To utilize the representation model and create digital versions of existing
building codes, a building code modeling methodology is proposed. The feasibility,
benefits and limitations of the developed representation model should be validated with

a realistic case study.

1.4. Methodology

There is a long history of interest in the study of building code representations.
It started with initial efforts to organize the logical structure of building codes in the late
1960’s. Efforts on the automated application of building codes to digital building
representations came in the 1990’s (Eastman et al., 2009). Research efforts so far, have

emphasized representation models and prototype implementations. The discussions on

methodological issues have centered on reasons for selecting particular information

modeling techniques, and not so much on the method of defining representation models.

The literature survey conducted as part of this dissertation (see sections 2.2 and

2.3) revealed that the research strategy that de facto has been followed in most research

efforts consisted of the stages listed below:

Selecting a particular information modeling methodology or language to be
used for constructing the representation models.

Analyzing the characteristics of building codes.

Definition of data structures for representation models.

Experiments with prototypes to test the representation models.

The methodology of this dissertation adopts these research stages used by the

majority of previous researchers. This dissertation has been conducted in the following

stages:

Exploring and evaluating previous modeling approaches.

Analyzing building codes to understand the various types of information
contained in them; identifying the components of rule statements as well as
the organization of the documents.

Developing a formal representation model for building codes.

Defining a building code modeling methodology for utilizing the
representation model to build digital versions of existing building codes.
Modeling of an actual building code as a case study to demonstrate the
feasibility, benefits, and limitations of the representation model.
Implementing a prototype system to demonstrate an application and to test

the validity of the new model.

As a conclusion, this research proposes a formal model for building code

representation based on the analysis of building codes and theories established in

literature. The theory embedded in this proposed model is evaluated through the

development of an actual building code and a prototype implementation. The study is

mostly concerned with the modeling process for building code representations even

though the impact of utilizing various information modeling techniques (such as object-

oriented modeling, ontologies, semantic modeling) have been considered.

1.5. Scope

The foreseen advantages of automated systems for compliance checking of
building projects against applicable building codes over the traditional, manual
compliance checking processes has been well established in literature (Fenves &
Wright, 1977; Han et al., 1997; Eastman et al., 2009; Hjelseth, 2009; Zhang & El-
Gohary, 2011). These advantages form the main motivation behind pursuing a working
solution for automated systems, yet it is clear that such a system is still elusive. The
main goal of this research was not to attempt the development of an automated
compliance checking system but to identify the next steps to be taken.

Following a careful investigation of literature, shortcomings in representing
building codes were identified. IMHZCode was chosen as a code document since it is
representative of complex building codes in effect. The analysis of IMHZCode led to
the classification of rules according to their formalizability and self-containedness. In
developing a new model that addresses the shortcomings identified in previous efforts,
in this study formalizable rules were considered. Non-formalizable and semi-
formalizable rules (which made up 20% of the rules) were left out of scope. The
dissertation focuses on developing a modeling methodology for formalizable rules as a
first step before attempting to automate reasoning with non-formalizable and semi-
formalizable rules that carry ambiguities.

The study was also restricted to analyzing and modeling the section of
IMHZCode containing rules that apply to all types of buildings. Rules related to
permits, the construction process and specialized buildings have not been included in
the case study. Furthermore, only the IMHZCode was modeled and automated checking
against multiple codes from different domains was not considered.

While developing an automated checking system was not within the scope of
the study, an experimental prototype was developed, successfully demonstrating the
feasibility of the new building code representation model. The demonstrative examples
cover testing of simple rules (e.g. doors) as well as rules with complex conditions (e.g.

buildings, setbacks).

1.6. Outline

The thesis is organized into five chapters. This chapter provides a brief
introduction of the thesis. It covers the problem statement, research motivation,
objectives, methodology, and scope of this dissertation.

CHAPTER 2 contains the background information for this research. It describes
analytical knowledge about the building codes and the related literature review. The
review covers previous and current works related to this dissertation. Several models
and approaches for building code representation and compliance checking systems are
examined, evaluated, and discussed. CHAPTER 2 also introduces current technologies
for implementation of building code models, and assesses their advantages and
limitations.

CHAPTER 3 describes in detail the developed representation model and
modeling methodology for creating digital building codes. CHAPTER 4 addresses the
evaluation of the developed model by a detailed discussion on the case study illustrating
a building code model and the prototype system implementation performed for the
developed model.

CHAPTER 5 concludes the dissertation by providing a summary, conclusions,

and possible future research directions.

CHAPTER 2

BACKGROUND

This thesis constitutes a study in the field of automated building code
compliance checking, with a concentration in the topic of building code modeling.
Development of automated building code compliance checking systems primarily
requires appropriate building code models. However, the process of modeling building
codes as computable rule sets is not straightforward due to the complex structure of
building codes. Building codes include rules that are open to interpretation, uncertain,
sometimes even contradictory and hence impossible for modeling. For all these reasons,
it is a challenge to propose a method for representing building codes in computable
format for automated compliance checking. Before proposing a method for developing
building code models, understanding the nature of building codes and reviewing
previous research on modeling building codes and implementing automated compliance
checking systems based on these models is important.

This chapter introduces the related background information for this thesis. It
starts with a general introduction to the study on building codes. Then, section 2.2
presents an overview of previous building code models and section 2.3 presents the
relevant automated code compliance checking implementations and gives a summary of
automated code compliance checking process and existing platforms supporting these

systems.

2.1. Building Codes

In this thesis, the term “building code” is used to refer to any formal document
for the evaluation of building projects. Formal documents include building codes,
regulations, standards, and specifications. A building code is generally considered as a
legal document that specifies the minimum conditions for a certain aspect of a building

construction. The main purpose of building codes is to protect public health, safety and

general welfare as they relate to the construction and occupancy of buildings and

structures.

2.1.1. Types of Building Codes

Building codes are determined by appropriate authorities in different domains
and may vary widely from country to country. The practice of developing, approving,
and enforcing building codes varies considerably among nations. Many countries have
national building codes, developed by government agencies and applied to all building
and construction work across the country. There are instances when some local
jurisdictions choose to develop their own building codes.

In Turkey, all legal arrangements concerning construction fall under the
responsibility of the Ministry of Public Works and Settlement. There are two laws in
force: Construction Law No0.3194 and the Law on Inspection of Construction No.4708.
In addition, there are various building codes prepared by the authority. The main ones

are:

* Housing and Zoning Code,

* Fire Code,

e Shelter Code,

* Parking Code,

* FElevator Code,

* Codes for specific building uses (e.g. private hospitals, public housing, high-

rise structures, construction in disaster areas)

In addition, individual municipalities have their own housing and zoning codes

that include the rules defined by the ministry documents and add further specifications.

2.1.2. Elements of Building Codes

Building codes are complex written documents. It is essential to have an
understanding of the various types of information contained in building codes as well as

the organization of the documents in order to develop a building code model. They are

10

composed of hierarchically organized parts, chapters, and clauses that contain a number

of statements. In general, building codes includes following three types of clauses:

* General provisions
* Definitions

* Prescriptions

General provisions include statements that describe the aim, scope and legal
basis of the building code. For example, the following expression quoted from

IMHZCode is a general provision that describes the scope of this code:

“Clause 2 — Scope:
This code, prepared in accordance with Construction Law No: 3194 and rule
8 of Code for the Implementation of Law No: 3030 on Management of the
Metropolitan Municipalities, is applied within the boundaries of and the
contiguous area of izmir Metropolitan Municipality.”

“Madde 2 — Kapsam:
3194 sayili Imar Kanunu ve Biiyiiksehir Belediyelerinin Yonetimi Hakkinda
3030 Sayili Kanunun Uygulanmas: ile ilgili Yénetmeligin 8.maddesi geregi
hazirlanan bu yonetmelik, iZMIR BUYUKSEHIR BELEDIYESI belediye ve
miicavir alan sinirlar1 iginde uygulanir.”

Definitions include statements that explain clearly the specific names used in the
building code and give detailed descriptions about terms. For example, the following

expression quoted from IMHZCode defines meaning of a name (High-rise building):

“Clause 18 — Definitions Related to Buildings:
d — High-rise building: A building, height of which is greater than 30.80
meters or has more than thirteen (13) storeys.”

“Madde 18 — Yapuya Iliskin Tanimlar:
d — Yiiksek Yap1: Son kat tavan doseme kotu 30.80 metreyi ve/veya bodrum

kat dahil olmak iizere toplam kat adedi 13 asan (13 kat hari¢) yapilar
Yiiksek Yapi olarak kabul edilir.”

Prescriptions include statements that define constraints about physical building
components, spaces and relations. For example, the following expression quoted from

IMHZCode defines a constraint about side setbacks:

11

“Clause 27 — Distance of Setbacks
B - Side Setbacks: Side setbacks (up to and including 4 storeys) shall be 3.00
meters. For buildings taller than this side setbacks are increased by 0.5 meters
for every additional storey. However, for timber-framed buildings side
setbacks must be at least 5.00 meters. “

“Madde 27 — Bahge Mesafeleri:
B- Yan Bahge Mesafeleri : Yan bah¢e mesafeleri (4 kata kadar 4 kat dahil)
3.00 m. olacaktir. Bundan yiiksek katli binalarda yan komsu mesafeleri 3
m.ye beher kat i¢in 0.50 m. ilave edilmek suretiyle tespit olunur. Ancak,
ahsap karkas yapilar i¢in en az 5 m. mesafe birakilmas sarttir.”

Prescriptions are the only types of clauses that are applied to submitted building
projects while conducting compliance checking. From this point, a clause denotes a
prescription. Clauses are composed of a number of statements. While some of these
statements relate to clarifications about calculation methods or applicability conditions,
others relate to rules indicating quality requirements that must be satisfied by a building
project. Automated compliance checking systems applies the rules to a proposed project
to evaluate the compliance.

Building codes are written text documents, to be interpreted by humans. They
are not necessarily structured in a strict and straightforward manner that can be
interpreted by machines. They have complex structures. While some simple rules can
easily be defined in a single statement, others require a series of statements making
exceptions, clarifications and modifications. In addition to a complex structure, building
codes contain rules that may be open to interpretation, ambiguous and sometimes even
contradictory and therefore impossible to model completely. Since automated
compliance checking requires a rule-based system, which applies rules to a proposed
project to evaluate the compliance with all applicable rules of the building code, it is
important to document how much of the building code and which rules can be modeled

reliably in automated compliance checking systems.

12

2.2. Building Code Models

There has been an extensive amount of research conducted internationally over
the last four decades in the area of representing building codes in computable format for
automated compliance checking. This section presents previous models for building
code representation and evaluation that have been developed, explores common themes
and different approaches used, and compares the strengths and limitations of the major

building code models. The models presented here are:

* Decision tables and SASE model
* Rule-based models
* Logic-based models
* Object-oriented models
* Hybrid models
o Object-logic model
o Context-oriented model
* Semantic models

* Ontology-based models

Each of these models is explained in the next six sections.

2.2.1. Decision Tables and SASE Model

The introduction of decision tables by Fenves (1966) is the initial effort on
building code modeling. In this effort, building code provisions are represented in a
precise and unambiguous decision table form. A decision table is a concise tabular
representation of the conditions applicable in a given situation and of the appropriate
actions to be taken as a result of the values of the conditions (Fenves et al., 1969).
Decision tables can explicitly represent individual provisions as a set of conditions on
data items. A data item is a precise identification of an information element occurring in
a building code (e.g. height of a building). A decision table is divided into four sections

as shown in Figure 2.1.

13

Condition Stub Condition Entry

Action Stub Action Entry

Figure 2.1. Sections of a decision table

The condition stub section in the upper left is a list of the conditions that have a
bearing on the outcome. The condition entry in the upper right-hand section of the table
lists the pertinent combinations of the conditions in columns. Each column specifies a
rule of a provision. The lower left section of the decision table is the action stub, listing
all the possible actions that may be taken. The lower right-hand section of the table is
the action entry, specifying the particular action or actions to be taken corresponding to
the specified rule. The elements of the condition entry can have only one of three
possible values, i.e., “Y” indicates the condition is true, “N” indicates the condition is
false, “I” indicates the condition is immaterial. The elements of the action entry may be
either “Y” means that the corresponding action is to be executed, or “blank” means that
the action is not to be executed (Fenves et al., 1969).

The provisions of building codes can be represented by means of decision
tables. How to use decision tables to model building code provisions can be illustrated
using the following example of a provision for computing the minimum width of a door
based on the IMHZCode, shown in Figure 2.2. A decision table for determining the
data item “minimum door width” in the provision is shown in Figure 2.3. In this
example, the upper section of the decision table (condition stub and condition entry)
represents conditions, i.e. various usage types of related space of the door, while the
lower section (action stub and action entry) represents the actions corresponding to
various conditions. For example, according to the last column in the decision table, if a
door’s related space in a given building project is a bathroom, the door width should not

be less than 0.80 meter.

14

“Clause 47 — Doors:

B — Door Width: [...] Clear width of entrance doors of
independent unit shall be at least 1.00 meters. Clear width of room and
kitchen doors shall be at least 0.90 meters. Clear width of bathroom,
WC, cellar doors shall be at least 0.80 meters. [...]”

“Madde 47 — Kapilar:

B- Kapi1 Geniglikleri : [...] Bagimsiz boliim kapilari, kasa dahil
(1.00) metreden, Oda ve mutfak kapilar1 kasa dahil (0.90) metreden,
Yikanma yeri, WC, odunluk, kémiirliik, kiler kapilar1 kasa dahil (0.80)
metreden az olamaz. [...]”

Figure 2.2. Clause 47.B from the IMHZCode

Rules

Related space of a door: Entrance Y N N N N N
2 Related space of a door: Room N Y N N N N
;E Related space of a door: Kitchen N N Y N N N
E Related space of a door: Cellar N N N Y N N
> Related space of a door: WC N N N N Y N

Related space of a door: Bathroom N N N N N Y
2 | Minimum door width = 0.80 meters Y Y Y
£ | Minimum door width = 0.90 meters Y Y
< Minimum door width = 1.00 meters Y

Figure 2.3. An example of using a decision table to represent building codes

Decision tables can concisely represent all the possible combinations of
conditions and related actions of each provision. However, decision tables do not
address the overall organization (including relationships among provisions) of a
building code. Fenves et al. (1987) addressed this deficiency with the development of a
software system called SASE (Standards Analysis, Synthesis and Evaluation) to provide
tools for creating and checking more comprehensive building code models. This
software is based on a four-level representation methodology to represent individual
provisions, relationships among provisions, and the organization of the building code.

This methodology is derived on the basis of an abstract model of the logical structure of

15

building codes which is developed by Nyman et al. (1973) who investigated possible
methods of restructuring building codes. According to this methodology, the content of

the building code is examined in following four levels:

* The top level (organizational network) that represents outlines and
organization of the building code.

* The intermediate level (information network) that represents the dependency
relationship among provisions.

* The detailed level that represents the individual provisions in the form of
decision tables.

e The lowest level that consists of the basic data items referred to in the

provisions.
Classification
Facet A
Organizational /\ /\ /\
Network
Classification
Facet B
— Provisions
Inlg(;rtlvréztrllgn Derived
Data Items
Basic
Data Items

Figure 2.4. The SASE model
(Source: Fenves et al., 1987)

16

Figure 2.4 shows the skeletal architecture of the SASE model (Fenves et al.,
1987). In this model, each information element occurring in a building code is identified
by data items. Data items represent all the variables in the building code. A data item

may be one of following four types:

* A numeric quantity such as “H” (building height).
* A specific value of “valid”, “invalid”, or “not applicable”.
* A Boolean value of “Yes” or “No”.

* An enumerated value such as “attached”, “semi-detached”, or “detached”.

A data item is classified into two: a basic data item, and a derived data item.
While a basic data item has no ingredients from within the building code to determine
its value, a derived data item has both ingredients and dependents to derive its value.

In the SASE model, each individual provision within the building code is
represented by decision tables as a set of conditions on data items. Each decision table
is responsible for producing a value for only one data item. The decision tables used in
the SASE model are restricted to limited entry decision tables in which condition values
are restricted to Y, N, or 1.

In the SASE model, an information network is used to represent the precedence
relationships among the data items of the building code. The network is composed of
nodes and branches. Each node represents one data item in the building code. Each
branch represents a relationship between two nodes (data items). The data item on top
of a branch is commonly referred to as parent and the lower level one is referred to as a
child. A data item may have more than one child and more than one parent. If a data
item does not have a child, it is a basic data item. If a data item has at least one child, it
is a derived data item. For each information network, there should be exactly one
derived data item that has no parent which is called the terminal data item of the
network. In any case, all of the basic data items must be present before derived data
items can be evaluated. This is called the precedence relationship that must be observed
in an information network. As an example, an information network of the provision for
a door, as described in Figure 2.2, is shown in Figure 2.5. In this figure, the node
farthest to left, which does not have any successor nodes (parents), such as “Provision
for door width” is called a terminal data item or a provision. The intermediate node such

as “relSpaceUsage” represents derived data items. The nodes farthest to the right, which

17

do not have any predecessor nodes (childs), such as “bathroom, “room”, ‘or “kitchen”

are basic data items.

Provision for

door width

Required
door width

Design
door width

relSpace
Usage

Figure 2.5. Information network for the provision for door width

In the SASE model, at the top-level, the building code is organized in a
systematic manner such that individual provisions can be accessed easily. The
classification tree is used to classify top-level data items of the building code, i.e., the
provisions. Each provision is associated with one or more leaves of the classification
tree. The methodology for classification of provisions is based on the faceted
classification system consisting of several independent areas such as fields and facets. A
field is a subject area (e.g., as physical elements) and a facet is a way to classify within
a particular field (e.g., door, window). As an example, partial facets from two fields,
“physical elements” and “dimension constraints”, are shown in Figure 2.6 and two

examples of possible outlines for the code are shown in Figure 2.7.

Eield: Physical Elements Eield: Dimension Consfraints
Physical Dimension
Element Constraint
!—‘—\ !—‘—\
Door Window Width Height
I_I_I
Frame Opening

Figure 2.6. Partial facets of two fields
(Source: Adapted from Garrett & Fenves, 1987)

18

Possible Outline A: Possible Outline B:
Ch. Section Subsection Prov. Ch. Section Subsection Prov.
1. Door 1. Width
1.1. Width Pr.1:... 1.1. Door Pr.1:...
1.2. Height ----------------—-- 1.2. Window ------=--=--=---- Pr4:...
1.2.1. Frame ------ Pr.2:... 2. Height
1.2.2. Opening --- Pr.3:... 2.1 Frame
2. Window 2.1.1. Door ------- Pr.2:...
2.1. Width Pr4:... 2.1.2. Window --- Pr.5:...
2.2. Height ----------—---—--—- 2.2 Opening
1.2.1. Frame ------ Pr.5:... 2.1.1. Door ------- Pr.3:...
1.2.2. Opening --- Pr.6:... 2.1.2. Window --- Pr.6:...

Figure 2.7. Two possible organizational outlines for the building code

SASE Model’s main contribution has been to introduce a code model that was
independent of the conformance checking system. This has allowed non-programmers
to modify the code without updating the processing system. Decision tables are simple
tools to provide a code description to the system. Furthermore, the SASE Model also
provides dynamic reclassification of the code allowing different users to examine the
code according to their needs.

However, the main problem with the SASE Model is that it uses data items as
the primary element of building codes and that it lacks definition of building objects to
which the building codes apply. This leads to a high number of data item definitions and
complexity of the relationships among data items increase quickly as the number of
provisions increase. Moreover, decision tables require complicated data item
definitions. A data item needs to define both the reasoning methods and conditions

associated with the specific building object that the data item is describing.

2.2.2. Rule-Based Models

Several researchers (Rosenman & Gero, 1985; Dym et al., 1988; Rasdorf &
Wang, 1988; Kumar, 1995) have proposed methods based on a rule-based modeling

approach for representing building codes as rules/clauses in processing systems. In

19

these models, the clauses of the building code are represented as a set of rules in the
form of IF [condition] THEN [action] statements instead of decision tables. The IF
statements of the rules describe applicability conditions which need to be satisfied. The
THEN statements describe required actions to be taken. This approach is a more natural
way for building code representation than decision tables. Figure 2.8 shows the example
of using rule-based approach to represent a provision of IMHZCode for doors given in

Figure 2.2.

Rule 1:

IF Related space of a door is an entrance

THEN Check the width of the door is equal to 1.00 meters.
Rule 2:

IF Related space of a door is a room or kitchen

THEN Check the width of the door is equal to 0.90 meters.
Rule 3:

[F Related space of a door is a cellar, WC, or bathroom

THEN Check the width of the door is equal to 0.80 meters.

Figure 2.8. An example of using rule-based approach to represent building codes

Rule-based representations are more expressive than other representational
approaches. The main advantage of this approach representing building codes as rules
is ease of implementation in the building code processing systems (Rasdorf & Wang,
1988). Moreover, rule representations match the actual building code rules so that
checking the completeness of the model is trivial (Rosenman & Gero, 1985).

However, modeling a building code by using the rule-based approach is likely to
end up with a large number of rules that could be unmanageable in practice because one
provision needs to be represented by more than one rule. The main handicap in this
approach is that the rules (IF and THEN parts) have to be modeled in specific
programming or modeling languages into a building code processing system. This is a
severe disadvantage for the approach since its ability to accommodate changes becomes
limited (Rasdorf & Wang, 1988). The rules that represent the building code clauses are
“hard-coded” into the system which means that they are not separated from the
programming codes of the building code processing system. This hard-coding of the
rules into the system reduces the efficiency of system maintenance when the rules need

to be updated due to the changes in the building code (adding new clauses, and

20

changing or deleting existing clauses). Such revisions of the system may be difficult and
expensive, especially with programs of considerable size. Additionally, since the
systems are not understandable and accessible by users who do not have any
programming knowledge the system is the dependent on the system programmer for
downstream modifications.

While the limited ability to accommodate changes is one deficiency, there is
also the difficulty for code experts to ascertain the correctness of the program code. In
most cases, the programmer of the building code processing system is not the building
code author, thus there is a chance of misinterpretation. The building code processing
system is prone to misinterpretation errors in which case the system will not perform its

prescribed compliance checking function correctly.

2.2.3. Logic-Based Models

Some researchers have investigated the use of predicate logic to model building
codes. Jain et al. (1989) proposed a logic-based model, which is based on the SASE
model, using predicates to represent the building code provisions instead of decision
tables. This model provides validation and verification methods for checking
completeness and uniqueness (lack of redundancy and lack of contradiction) of a
building code model. In this project, limited-entry decision tables are converted into
predicate logic statements. Building code clauses are represented as groups of
statements of the form R;: Ci — A;, where C; represents the part to the left of the
implication (condition) while A; represents the part to the right of implication (action).
Each group represents rules for a single data item.

Rasdorf and Lakmazaheri (1990) also proposed a logic-based approach for
representing and processing a building code that extends the utility of the SASE
organizational model for conformance checking. In this work, the overall organization
of a building code is formally modeled using predicate logic. Predicate logic is used for
developing a formal language for representing the organizational model of the building
code. Using the formal language, a set of axioms (statements) is developed that
represents the relationships between the classifiers and the clauses of the building code
model. The formal language and axioms constitute the formal organizational model of

the building code. Processing the organization of the building code is accomplished

21

using the formal language to first formulate expressions called theorems and then to
prove the theorems via what is called “the resolution theorem-proving strategy”.
Theorems are used to prove the uniqueness -meaning that the code model generates one
and only one result when applied in any one situation- and completeness -meaning that
the code model can be applied to all possible situations within its scope- of the building
code (Rasdorf & Lakmazaheri, 1990).

Logic-based approaches adopt predicate logic to model the provisions of
building codes. Predicate logic provides a formal, well-known and systematic
knowledge representation language to express statements in well-formed formulas. In
logic-based models, IF-THEN logic is also used to represent the building code clauses.
The difference from the rule-based models is that the logic-based models use predicate
logic. As an example, the example of IF-THEN rule shown in Figure 2.8 can be
represented in predicate logic as shown in Figure 2.9. In this example, the applicability
conditions is determined on the left side of the arrow. The action statement is specified

on the right side of the arrow.

R;: Vx(Door(x) A (RelatedSpaceUsage(x)=Entrance)) —
A(x)(Width(x) > 1)

Ry: Vx(Door(x) A (RelatedSpaceUsage(x)=Room v Kitchen)) —
A(x)(Width(x) > 0.90)

Rs: Vx(Door(x) A (RelatedSpaceUsage(x)=Cellar v WC v bathroom))
— J(x)(Width(x) > 0.80)

Figure 2.9. An example of using logic-based approach to represent building codes

Hakim and Garrett (1993) claimed that logic-based approaches enable the
evaluation of the consistency, completeness, and clarity of building code models as well
as support the reasoning about incomplete knowledge. However, logic-based
approaches require building code modelers to have knowledge of logic to model
building codes and understand them. Moreover, logic models include user-defined

predicates and logical operators that prevent them from being widely implementable.

22

2.2.4. Object-Oriented Models

Hakim and Garrett (1992) pointed out one deficiency in previous building code
models, which use data items as the primary data structure, concerning a lack of a
formal model of the building objects within the scope of the building code. This leads to
many data item definitions. Moreover, the definition for each data item must not only
define the evaluation method, but also the conditions associated with the specific object
of which data item is an attribute. This leads to complicated data item definitions. In
both cases the models are hard to maintain and build. To address these issues, Garrett
and Hakim (1992) developed an object-oriented model of building codes, which allows
organizing a building code around building objects pertinent to the building code. This
object-oriented model is composed of following four main groups of objects (see Figure

2.10):

* The design object hierarchy that represents the subclass relationships
between objects of the building code. Objects define design-specific
attributes and hierarchies between these attributes such as shape, function,
material.

* The performance-limitation hierarchy that represents the limitation of the
building code objects.

* The data item hierarchy that represents the types of information that are
found in all building codes (e.g., a constant, a rule, or a table).

* The data item instance network which represents instances of the different

types of information present with a specific building code.

Garrett and Hakim’s incorporation of design objects within the analysis process

provides a logical extension to the SASE methodology.

23

|_I_|

o) . building code-independent
building code-specific structure and behavior

standard| |built-up

e N e)
Design Object Hierarchy Data Item Hierarchy
— T N r-T T T T EsEEsEEsEsEsEss
| | |] ! data item
I shape o function :
| | |
: | | : I—I—I
| |
: l I o : basic derived
| singly- doubly- non- : : beam column | data item data item
| [symetric| [symetric| [symetric| | [
| RS- - - |
|
|
| . J
box-
| -
| l-shape shape
|
|
|
|
|
|
\

behavior
________________ 7/
§ J
v
s 7 e)
Performance Limitation Hierarchy Data Item Instance
performance Network
limitation
I req. 1 req. 2
I]
strength serviceability [I]
g global . S
yielding buckling deflection vibration
. J & J

Figure 2.10. Object-oriented model of the building code
(Source: Hakim & Garrett, 1992)

The object-oriented modeling approach taken by Waard (1992) proposes the use
of information models. This approach requires an information model of residential
buildings, an information model of building codes, and a link between both information
models. In this work, first, the information model for residential buildings containing
architectural objects (e.g., rooms, walls, doors) is developed. Waard (1992) states that
the information model can be also used as a neutral model for information exchange
between participants in the building process, and between design teams and building
authorities. After the construction of the residential building information model, the
information model of building codes is developed. It is stated that the building code
model should reflect the idea that building codes not only consist of constraints, but also
of a model of a building according to those building regulations. To illustrate this point,

De Waard modeled several provisions extending and adjusting the relationships

24

developed in the residential building information model. At the last stage, the link
between the building code information model and residential building information
model is defined by describing the way in which building code views can be derived
from the residential building information model. The model of the objects that are
subject of the building codes form a building codes view on the residential building
model.

Object-oriented models utilize class hierarchies to represent building codes,
including their applicability conditions and requirements, so that the applicability of one
section of a building code can be passed down to its subsections. Object-oriented
models use classes and attributes to represent data items (concepts) of building codes,
such as representing the data item “door” as a class and the data item “door width” as
the class’s attribute. As an example of how such an object-oriented model can be
developed, consider the clause in Figure 2.2, taken from IMHZCode, which specifies
the minimum width of a door. Figure 2.11 shows the object oriented model constructed
from the classes and their attributes mentioned in the clause, together with their

relationships. Figure 2.12 shows the object-oriented interpretation for the clause.

Door
- width : double
WE 1..* | relatedSpace : Space

Space
- usage : String {enumlList}

—

Figure 2.11. Object-oriented model from analysis of Figure 2.2

25

CLAUSE 47 — Doors
B — Door Width:

Classes:
* Door ()
* Space ()
Class Attributes:

* Door () {width, type, relatedSpaces[] }
* Space () {usage}

Relationships between Classes:

* relatedSpace (Door, Space)

Methods:
* setDoorType (Door) {

IF Door.relatedSpace.usage equals to “entrance”
THEN this.type = entranceDoor;

IF Door.relatedSpace.usage equals to “room”
THEN this.type = roomDoor;

IF Door.relatedSpace.usage equals to “kitchen”
THEN this.type = kitchenDoor;

IF Door.relatedSpace.usage equals to “bathroom”
THEN this.type = bathroomDoor;

IF Door.relatedSpace.usage equals to “cellar”
THEN this.type = cellarDoor;

}
e checkDoorWidth (Door) {

IF Door.type equals to “entranceDoor” &
Door.width > 1.00
THEN return “this door is valid”;

IF Door.type equals to “roomDoor” || “kitchenDoor” &
Door.width > 0.90
THEN return “this door is valid”;

IF Door.type equals to “bathroomDoor” || “cellarDoor” &
Door.width > 0.80
THEN return “this door is valid”;

ELSE return “this door is not valid;

Figure 2.12. An example of an object-oriented interpretation of Figure 2.2

Although object-oriented models have some advantages (e.g. flexibility, and
extensibility) as compared with previous models, there are still some difficulties in
maintainability. The main difficulty is that these models are only editable by users who
have object-oriented programing knowledge. Moreover, object-oriented models are less

human readable and understandable.

2.2.5. Hybrid Models

Hybrid models combine some of the previous representation approaches. An
example is the Object-Logic model (Yabuki & Law, 1993) which combined first order
predicate logic and object-oriented modeling approaches to represent and process
building codes. They claimed that object oriented approach is suitable for representing
the organization and data items of the building code and the logic programming
approach is suitable for representing and processing building code provisions. The
model they proposed also allows the development of formal procedures to check
completeness and uniqueness of the building code and conflicts among the provisions.
The system framework for the object-logic model (Figure 2.13) consists of two
submodels: object-logic model, and hyper document model. These two models are
integrated by sharing methods objects representing the design provisions. The hyper
document model contains the provisions, background information of building codes,
external programs, and method objects. The hyper document model serves as a large
document storage system for building code provisions. The object-logic model consist

of the following 5 basic modules (Yabuki & Law, 1993):

* A standards base that consists of a class hierarchy representing the
organization and provisions of the building code. Provisions are modeled as
method objects which are a set of object-logic sentences.

* A CAD object database that holds member definitions and the object model
and facilitates retrieving member attributes from an engineering database.

* A conformance checking module that performs compliance checking of a
given member with applicable provisions.

* A component design module that generates component design of a given

member.

27

* A standards analysis module that checks completeness and uniqueness of
provisions. This module also performs simple analysis on the provisions by

checking whether the relationships among the method objects exist.

User
Interface

%ct-Lo gic Model HyperDoc Model
Conformance| | Component | [Conformance Navigation
Checking Design Checking System
Module Module Module
Standards Base Document Base
Member Method Provision
Class Obiccts Document
Hierarchy) Base
] Background
CAD Object Data Base Base
Object Model External
Programs

Design J
Member

Object
DB Engineering
Interface Databases

Figure 2.13. Overview of the object-logic model
(Source: Yabuki & Law, 1993)

Kiliccote et al. (1994) points out the object-logic model has similar complex
classification hierarchy issues as the object-oriented models has which make working
with building code cumbersome. In these models a class hierarchy is used as a method
to organize the building code and provisions are associated with the classes in this

hierarchy. These models require many classes and complex multi-parent subclasses

28

which are created in the lower parts of the class hierarchy to represent the specific
contexts to which the provisions in the building code apply (Kiliccote et al., 1994). As a
result, both object-oriented and object-logic models become insufficient to represent
applicability concepts in the building code provisions.

Kiliccote et al. (1994) addressed this issue with the development of a Context-
Oriented model. This model also uses the object-oriented approach but addresses the
problem of complexity of the object-oriented model’s class hierarchies by organizing
the building code around “contexts”. A context is a collection of sub-classes in the
classification hierarchies to which the provisions are associated. These contexts are used
to define conditional parts of the provisions for which they are applicable. Based on the
context-oriented modeling approach, (Kiliccote & Garrett, 1998) proposed a multi-
module distributed framework, which is called the Standards Processing Framework
(SPF), to represent and reason with building codes. The modules in the SPF are called
SPF Agents using different representation and reasoning methods to develop general
models. In the SPF, an agent is a self-contained entity that communicates with another
through messages expressed in a common language. As part of this work, the SPF
communication language (SPF-CL) is developed to allow interaction between various

SPF-Agents. SPF-CL is used to describe and ask for:

* Information about agents (e.g., to define that there is an agent that can
compute the maximum allowable height of a building).

* Building codes and individual provisions (e.g., to define requirements,
including their applicability conditions, and data needs).

* Design information (e.g., to specify the total gross area of a building).

To meet these functions, SPF-CL is composed of three languages: the Agent
Description Language (ADL), the Standards Modeling Language (SML), and the
Standards Usage Language (SUL). ADL is used to describe knowledge about agents.
SML is used to describe the content of a building code to an agent. SUL is used to
describe the design to an agent and request information about the result of the
evaluation of a building code provision against that design. SPF-CL uses the following

four major objects to model building codes:

29

1. Concepts which are used to represent real world concepts (e.g., structure,

building, room, door). In SPF-CL, concepts are defined using a define

Concept command as shown in the next example.

define Concept {

name = “Room”;
¥
define Concept {

name = “Door”;

¥

2. Classifications which 1s a collection of distinct concepts that differ from

each other by some set of properties. In SPF-CL, classifications are defined

using a define Classification command as shown in the next example.

define Classification {
name = “Space”;

55

define Concept {
name = “Entrance”;
is_a = Space;

}

define Concept {
name = “Room”;
is_a = Space;

}

define Concept {
name = “Kitchen”;
is_a = Space;

h

define Concept {
name = “Bathroom”;
is_a = Space;

3. Relations which define a relation between a concept and another concept. In
SPF-CL, relations are defined using a define Relation command. For
example, the following statement defines a relation between doors and the

Space classification.

define Relation {
name = “related_space”;
domain = Door;
range = Space;

30

4. Instances which represent entities that exist physically or conceptually in the
domain being modeled. In SPF-CL, concepts are similar to sets and instances
are similar to elements of a set. For example, the following statements

defines the instance “kitchenDoor” which is an element of the set of doors.

define Instance {
name = “kitchenDoor”;
instance _of = “Door”;
related space = “Kitchen”;

As an example, the simplified version of the Clause-47.B from IMHZCode

Figure 2.2 can be defined as shown in the next example.

define Limit {
name = “IMHZCode#47#B#2;
text = “Oda ve mutfak kapilar1 kasa dahil (0.90) metreden az olamaz.”
text_as modeled = “Clear width of room and kitchen doors shall be at
least 0.90 meters.”;
definition_type = Minimum;
domain = instance roomDoor | kitchenDoor
for relation = relation width;
range = 0.90 [meter]

The first field (name) in this definition is the section in which this clause is
defined. In this case, this is Section 47.B.2 from IMHZCode. The second field (text) is
the original text of the clause as defined in IMHZCode. The third field
(text_as_modeled) represents an English explanation of this SML statement. The fourth
field (definition_type) states that this provision defines a minimum limit. The fifth field
(domain) states that this clause applies to only room and kitchen doors. The sixth field
(for _relation) states that this provision limits the width of doors. The last field (range)
states that the limit is 0.90 meters.

Fenves et al. (1995) claimed that by associating contexts with provisions, the
need for large numbers of highly specialized subclasses from which to hang provisions
is eliminated. However, while this model benefits from advantages of the combined
approaches, it still inherits shortcomings from the object-oriented approach such as the

problem of maintainability.

31

2.2.6. Semantic Models

Previous building code representation research efforts mainly focused on the
hard-coding approach. The main disadvantage to this approach is that it requires a high-
level of expertise in computer programming to define, write and maintain building
codes. However, the ability to update and maintain the building code representation is
important because building codes change continuously. To overcome the deficiencies of
hard-coded representation approaches, recently, attention has been directed towards the
study of semantic modeling approach, which is a relatively new method for knowledge
representation.

The SMARTcodes project (AEC3, 2012) is a semantic approach which proposes
to mark-up building codes in such a way that rules are dynamically generated in a
computable format. SMARTcodes project provides a protocol and a software program
(SMARTcodes Builder) for creating smart versions (tagged representations) of actual
building code texts that reflects building codes with schema and tags used for
automated compliance checking applications. It is based on a process using a mark-up
language to mark the actual text of the building code according to SMARTcodes
protocol. This can be done by code authors. The mark-upped text is structured into an
XML version of the actual building code. The structured XML is then converted into
computer implementable rules. Figure 2.14 shows a block diagram of an illustrative

system for generating SMARTcodes (Conover, 2009).

Protocol for
creating
SMARTcodes

'

SMARTcodes
Builder

!

Dictionary

SMARTcodes
—» ("smart" version
of building codes)

Building Codes [—

Figure 2.14. SMARTcodes system architecture
(Source: Conover, 2009)

32

The system includes a SMARTcodes Builder, which is used along with a
protocol to create tagged representations (smart versions) of the building codes.
Building codes rely on dictionaries which are used by the SMARTcodes Builder
pursuant to the protocol to facilitate creating the tags corresponding to a schema for
SMARTcodes. The dictionaries may include term definitions, object model
descriptions, data types, permissible units and operators. The dictionaries may further
include schema information that correlates the SMARTcodes tags within the schema
with the elements, units, operators and other information. Building codes must be
converted into XML files before they are used in the SMARTcodes Builder. The
SMARTcodes Builder receives building codes as XML and following the defined
protocol, someone familiar with the building code creates SMARTcodes. A diagram of
the protocol defined for creating SMARTcodes using the SMARTcodes Builder is
given in Figure 2.15 (Conover, 2009).

Receive Input Building Codes

v

Identify Required "Check" within Building Codes

v

Identify "Applicable" Words and Phrases

v

Identify "Selection" Words and Phrases

v

Identify "Requirement" Words and Phrases

v

Identify "Exception" Words and Phrases

v

Create Smart Tagged SMARTcodes

v

Verify SMARTcodes

v

Store SMARTcodes

v

Publish/Print SMARTcodes

Figure 2.15. Steps of the protocol for SMARTcodes
(Source: Conover, 2009)

33

Referring to Figure 2.15, in the first step, the user inputs the XML of the
building code into the SMARTcodes Builder. In the second step, the user as guided by
the protocol identifies the provisions in a specific building code section that gives rise to
required checks using the SMARTcodes Builder interface. These checks correspond to
a building code section or subsection that contains a specific requirement or related
groups of requirements that must be applied to the building information model to
determine whether the building design complies with the requirements. In the third
step, the applicability words or phrases within the building code text associated with a
check are identified and tagged. The applicability words or phrases are terms that each
define a characteristic of the elements to which the check applies. In fourth and fifth
steps, the selection and the requirement words or phrases within a check are
respectively identified and tagged. In sixth step, the SMARTcodes Builder is used to
identify any exceptions to the check, which are conditions under which the check is not
applicable to the building model. In the seventh step, the tagged text is converted to xml
according to the dictionary and schema. In this regard, the checks and identified
applicability, selection, requirement, and exception atoms of the building code are
coded according to the schema. In eighth step, the syntax within the SMARTcodes are
checked to ensure functionality. In ninth step, the SMARTcodes are stored in a
database. In the last step, the building codes represented by the SMARTcodes may be
printed and published.

The SMARTcodes approach aims to enable non-programmers to define
computable rules using simple tools. It is based on the RASE (Requirement,
Applicability, Selection, Exception) methodology (Nisbet et al., 2009). The main goal
of the RASE methodology is to identify the common constructs for building code rules.
It states that building code rules can be broken down into four constructs: Requirement,
Applicability, Selection, and Exception. Each of these four constructs has attributes
such as a property, a comparator and a target value with a unit. Code authors are able to
markup these indicators that appear in the actual text of the code using SMARTcodes
Builder software which creates the XML formatted version of the code. An example of
RASE paradigm usage on a clause on moisture control from ICC IECC 2006 502.5 is
shown as seen in the SMARTcodes Builder software in Figure 2.16 and in a short form
in Figure 2.19. The moisture control rule applies to “framed” building elements. The

rule does not cover all framed building elements. It is only for selected ones (“walls,

34

floors, and ceilings™) except “not ventilated” ones. The rule also has other exception

conditions where this rule will not apply.

A sMARTcodes Builder (o] et
File Edit View Tools Help

H ¢« @8 0 0 Q v

Save View XML Select Applies Requirement Exception Check
IECC2006 | Dictionary |

Search:

‘ 502.5 - Moisture control. (Manda...

502.5 Moisture control. (Mandatory).

Title
CHAPTER 1 - ADMINISTRATION
CHAPTER 2 - DEFINITIONS
® CHAPTER 3 - CLIMATE ZONES
® CHAPTER 4 - RESIDENTIAL ENERGY EFFICIENCY
= CHAPTER 5 - COMMERCIAL ENERGY EFFICIENCY
501 - GENERAL
=502 - BUILDING ENVELOPE REQUIREMENTS
#502.1 - General
#502.2 - Specific insulation requirements (Pre...
#502.3 - Fenestration

All framed walls , floors and ceilings not ventilated to allow moisture to escape shall be provided with an approved vapor retarder having

a permeance rating of 1 perm (5.7 f#151: 10 “* kg/Pa - s - m %) or less, when tested in accordance with the dessicant method using
Procedure A of ASTM E 96 . The vapor retarder shall be installed on the warm-in-winter side of the insulation .

Exceptions:

v

ik

2. In construction where orits

3. Where other in unventilated framed wall, floor, roof and ceiling cavities are provided.

#5024 - Air leakage
502.5 - Moisture control
%503 - BUILDING MECHANICAL SYSTEMS
%504 - SERVICE WATER HEATING (Mandatory)
505 - ELECTRICAL POWER AND LIGHTING SYST...
%506 - TOTAL BUILDING PERFORMANCE

D Author Date
x J ICC_IECC_2006_502.5_c1 dconover@iccse{ 2008.01.17 |
Fdﬁj Set Topic Property Comparison Value Unit Reference Notes
M x n wall is ventilated E] = B false E Y “
D X n floor is ventilated E] = E false [z| 3 iﬂ
D x o ceiling is ventilated E] = B false B 3
D $7e E wall assembly type E] = [zl framed-wood E]
D X @ wall assembly type E] = E framed-metal E] T]
D ¢ E wall assembly type E] = B framed-other B | Z]
D ¢ m floor assembly type Iz] = B framed-wood E 7j 57

Figure 2.16. RASE constructs of a clause in the SMARTcodes Builder
(Source: AEC3, 2012)

ICC IECC 2006 502.5 Moisture control

All <applicability>framed</applicability> <selection>walls, floors</selection> and
<selection>ceilings</selection> <exception>not ventilated</exception> to allow moisture to
escape shall be provided with an <requirement>approved vapor retarder<requirement>
having <requirement>a permeance rating of 1 perm</requirement> (5.7 x 10 —11 kg/Pa s
m2) or less, when tested in accordance with the desiccant method using Procedure A of
ASTM E 96. The vapor retarder shall be <requirement>installed on the warm-in-winter
side</requirement> of the insulation. Exceptions: <exception>Buildings located in Climate
Zones 1 through 3</exception>as indicated in Figure 301.1 and Table 301.1. In construction
where <exception>moisture</exception>or its <exception>freezing</exception> will not
damage the materials. Where other approved means to avoid
<exception>condensation</exception>in unventilated framed wall, floor, roof and ceiling
cavities.

Figure 2.17. RASE constructs of a clause in the short form

SMARTcodes project provided an authoring tool to manage the amendments of

the building codes. SMARTcodes development stopped in 2010 but the underlying

35

mark-up concept and RASE methodology used by SMARTcodes has been further
developed by AEC3 Ltd. (Hjelseth, 2012).

2.2.7. Ontology-Based Models

Recently, the application of an ontology-based approach has been investigated
as a possible computable framework for building code representation. Yurchyshyna et
al. (2008) developed a formal ontology-based approach for the formalization and
semantic organization of building codes. The research on formalization of building code

texts is conducted through the following steps:

* Knowledge extraction from the texts of building codes into formal languages
(e.g. XML, RDF) by analyzing the hierarchical structure of the documents
and by adding new (meta)tags.

* Formalization of building codes by capitalizing the domain knowledge.

* Semantic mapping of building codes’ content to existing knowledge bases,
e.g. industry specific ontologies.

* Formalization of building codes in the context of the compliance checking

problem.

In this work, in order to illustrate the feasibility of ontology-based modeling
approach, a prototype is developed, which is called C3R (Conformity Checking in
Construction with the help of Reasoning), that implements the algorithms of reasoning
by expert rules according to organized conformity queries (Yurchyshyna & Zarli,
2009).

Ontology-based building code representation on the semantic web has also been
explored by researchers (Pauwels et al., 2011). The research based on semantic web
approach focuses on enhancing the IFC model by using description languages (e.g.
SPARQL, Semantic Web RuleML (SWRL), Rule Interchange Format (RIF)) based on a
logic theory (Pauwels et al., 2011). In their work, it is stated that IFC has several
limitations when considering code compliance checking environments specifically such
as limited expression range, difficulties in the partitioning of information and the
possibility to describe the same information in numerous different ways. These

limitations is mainly caused by the lack of a mathematically rigorous logic theory in the

36

language deployed to specify the IFC schema. Pauwels stated that IFC’s limitations can
be overcome when deploying semantic web languages as an enhancement to IFC. By
enhancing IFC onto a logical level, it could be possible to enable design and
implementation of significantly improved code compliance checking systems.

There have been also some projects using semantic modeling approach and the
application of industry specific taxonomies and ontologies in combination with
Artificial Intelligence (Al) and Natural Language Processing (NLP) techniques to allow
systems to interpret building code texts by automated or semi-automated data extraction
(Cheng et al., 2009; Salama & El-Gohary, 2011; Zhang & El-Gohary, 2011). However,
it would be quite challenging to come up with any automated method of information
extraction because building code texts are written for human interpretation. Any
building code representation should be in accordance with one set of the official

interpretation provided by the authority.

2.3. Automated Compliance Checking

2.3.1. Introduction

Compliance checking is a process of building design project evaluation against

all applicable rules of building code. It includes three sequential sub tasks:

* Gathering information about various aspects of the building design project.
* Comparing the design information with applicable rules of building codes.

* Documenting the results as evaluation reports.

Compliance checking is a complex, error prone and resource intensive process.
Today, although every building project is modeled in a digital environment, these
projects are checked manually for their compliance with building codes. Manual
compliance checking may cause inconsistencies in approvals and results in delays for
the overall construction process. Moreover, failure to correctly assess designs for
compliance can have negative effects on building performance and allows errors that

are expensive to fix. These potential problems are the main issues behind research on

37

developing models for compliance checking process and developing automated
compliance checking systems.

Automated compliance checking assesses a building design project on the basis
of the configuration of building objects, their relations or attributes. Implementing a
complete automated compliance checking system is a huge undertaking because these
systems should have numerous complex functional capabilities. From the early efforts
and the review of current work, Eastman et al. (2009) defined a necessary structure for
implementing a functionally automated compliance checking system. Figure 2.18
illustrates the four classes of functionality an automated compliance checking system

should support.

4 N\

Building Model
Preparation

Extracting and
deriving model
view for
compliance p N
checking.

Compliance
Check Reporting

@ —>| Reporting results

back to submitter
(or checking

agency).
Code Execution N J

Building Code
Interpretation

Representing
building codes in
computable format.

4 N\

\ J

Applying building
code rules to
building model and
checking building
model.

.______________@___(___________

Figure 2.18. The four classes of functionality a code compliance checking system

Automated compliance checking process is structured into four stages and it
starts with building code interpretation. Building codes are written documents in human
language formats which are only read and applied by people. For an automated
compliance checking implementation, first, building code documents need to be
represented in computable format. The second stage in this process is building model
preparation. Building models are prepared by architects and designers but entering all

required data for compliance checking cannot be expected from them. The preferred

38

solution is to automatically extract related data and derive a model view to be checked.
Initiatives such as those coordinated by buildingSMART (2008b) focus on this task. In
the third stage, building code rules are applied to the derived building model view to
check the level of compliance. Before rule execution, syntactic checking of the building
model is required to determine if the building model carries all the data needed for
checking. The last stage in compliance checking compiles the results and reports back
to applicants and checking agencies.

After the brief explanation about compliance checking systems, major

compliance checking projects is explained in the following section.

2.3.2. Automated Compliance Checking Systems

Research on the development of automated compliance checking systems for
building models began nearly three decades ago (Garrett & Fenves, 1987), but efforts to
produce working compliance checking systems came later. In this section, four major
implementation efforts on automated compliance checking systems are examined.
These efforts are CORENET, DesignCheck, SMARTcodes, and the effort by the
General Services Administration in USA. Each of the four systems is summarized in

Table 2.1.

Table 2.1. Overview of automated compliance checking systems

Development Project Year Domain Building Code BIM Checking
Agency Model Standard Platform
Singapore CORENET 1995 Zoning Object based IFC FORNAX
Accessibility logic model EDM
Fire safety
Environmental health
Public housing
Vehicle parking
Australia, DesignCheck 2006 Accessibility Object-oriented IFC EDM
CRC for CI model
USA, ICC SMARTcodes 2006 Energy conservation Semantic model IFC SMC
MCS
USA, GSA DAT 2008 Circulation Parametric table IFC SMC
Security

39

2.3.2.1. Construction and Real Estate NETwork (CORENET)

CORENET is considered as a milestone effort. It is the first automated code
compliance checking system for the AEC industry that has actually been used in
practice. It was developed by the Singapore Building and Construction Authority in
1995 to automate the process through which building permits are acquired. CORENET
is made up of 3 modules: e-Submission, e-PlanCheck, and e-Info. CORENET e-
Submission module facilitates the accepting of building projects in digital format for
automated checking and allows the tracking of the building permit acquisition process.
CORENET e-PlanCheck is the main module that carries out the task of checking the
building model against the building code. CORENET e-Info acts as a central repository
and supplies various regulatory authorities involved in the process with reference
materials in digital formats that can be regularly updated. Initially, the system was
designed to work with 2D drawings, but since 1998 it relies on project data suplied by
BIM systems in IFC format (Liebich et al., 2002). CORENET is able to check building
projects for compliance with rules related to zoning, accessibility, fire safety,

environmental health, public housing, and vehicle parking.

{ Built-in Common Rules]

Clause 2
Clause 3

Clause 1

FORNAX Checking Engine

- J

FORNAX Objects J

FORNAX Geometry Engine & Services

IFC Building Model Repository

Figure 2.19. System architecture of CORENET project
(Source: novaCITYNETS, 2000)

40

In the CORENET project, the rules are embedded into the system. They are
hard-coded by programmers. The system is built on top of the FORNAX platform that
was developed specifically for this project (see section 2.3.3.1) FORNAX objects
extend the IFC schema to add functionality for code checking. FORNAX objects extract
the data required for code-checking from the building project that is in IFC format and
the FORNAX checking engine applies the rules to these FORNAX objects and reports

the results.

2.3.2.2. DesignCheck System

The DesignCheck project was initiated in 2006 by The Cooperative Research

Centre for Construction Innovation based in Australia. The project was carried out in
two stages. In the first stage, existing software platforms were evaluated in order to
determine the technologies most suited to processing Australian standards. Two
important software platforms, Solibri Model Checker (SMC) and Express Data
Manager (EDM) were compared through tests that involved modeling actual code
(initial code was Australian Standard AS1428.1 “Design for access and mobility”). The
results of the testing stage indicated that EDM was comparatively more flexible in
editing and writing of new rules. In the second stage, the DesignCheck system was
developed (Ding et al., 2006).
The DesignCheck system is an automated code compliance checking system that
enables compliance assessment against building codes. The system holds design
information extended for code checking and encodes domain knowledge embedded in
building codes. It defines an internal model based on IFCs for modeling the extended
design information. This internal model allows for the definition of comprehensive
building design information that corresponds to definitions that exist in building codes.
In this system, the building code is interpreted using an object-based representation and
then encoded into the EDM rule bases. Code-compliance checking (validation) of the
internal model is carried out by EDM functions utilizing rule bases.

The architecture of the DesignCheck system is illustrated in Figure 2.20. It
consists of three components: main user interface, EDM database and the report system.
The main user interface enables monitoring the checking of designs, viewing check

results. The EDM database contains building models, rules bases and the check results.

41

The building model is imported to the EDM database in IFC2x2 format and then
mapped onto the DesignCheck internal model. The DesignCheck internal model is
validated against rules in the rule bases. The results model stores the check results. The
report system reads the check results from, and writes the comments to the results
model in the EDM database. The report system provides both an interactive report page
and a print friendly report page.

EDM Database Report System
T | Read resuits to ‘
report page :
IFC2x2——+ DesignCheck | Results POTE RIS Interactive
Model ternal Model Model Report Page
it I; sy = A Write specifications 2 o
/alidation Check|results | and c to } -
i —' results model] K
3 I
PrincFriendty || |
m data Report Page L
] 1
Import H i
IFC2x2 model i
] I
"""""""""" - Future 3D Viewer ¢ e m——
¥
i
{ Main User Interface }._

Y
! Convert CAD model to IFC2x2
CAD - —— - model and import to DesignCheck

Figure 2.20. Architecture of the DesignCheck system
(Source: Ding et al., 2006)

2.3.2.3. SMARTcodes Model Checking System (MCS)

The SMARTcodes project was initiated in 2006 by AEC3 and Digital Alchemy
with support from ICC. This U.S.A. based effort’s main goal was to simplify the
conversion of text based building codes into computable rule sets. SMARTcodes
focused on automating and simplifying code-compliance checking of building projects
(Conover, 2007). The system has initially implemented the International Energy
Conservation Code (IECC). It utilizes the IECC dictionary for defining objects and
properties for code checking. The computable rules are built using the SMARTcodes
builder interface that is a web based application designed to reduce errors in

interpreting the original code document. The IECC dictionary is used while building the

42

rules and also facilitates the mapping between the system and the IFC model. Figure

2.21 illustrates the framework of the model checking system based on SMARTcodes.

.....................................

Trusted Entity
. SMARTcodes |_manual request Browser
Retained Data Criteria : Interface
Y)
v A
Model Checking Software | revisions tq v | BIM Authoring
-« — Software

A A

(.

(|

[

(I

Y] Y
(.

|

|

Dictiona; T L1l
Ty -- Databases

Figure 2.21. Framework of SMARTcodes model checking system
(Source: Conover, 2009)

2.3.2.4. Design Assessment Tool (DAT)

Design Assessment Tool (DAT) has been funded by the General Service
Administration (GSA) and developed at the Georgia Institute of Technology in 2008
(Eastman et al., 2008). DAT is a rule checking system for circulation and security
validation of U.S. courthouses. In this system circulation and security rules of the USA
Courts Design Guide (CDG) have been modeled. The Solibri Model Checker platform
is used. The rule statements were grouped by conditions and modeled as a set of
parametric rules in SMC making use of a plug-in developed for this purpose. The
building project in IFC format is designed using BIM tools, following the GSA Series
Six BIM Guide for Circulation and Security Validation. The checking module utilizes a
topological graph for modeling the relationship between spaces and a metric graph for
representing movement paths and distances within spaces (Lee et al., 2010). Based on
these two graphs, the checking module is able to assess if circulation paths between

various spaces meet code requirements.

43

2.3.3. Technologies

Automated compliance checking systems are highly complex applications and
they require significant software libraries to provide the needed functionality. Although
efforts on developing automated compliance checking systems has been ongoing for
nearly 20 years, existing platforms that support these systems is limited. FORNAX,
EXPRESS Data Manager (EDM) and Solibri Model Checker (SMC) are three major
platforms currently available that have been developed to support implementation
aspects of compliance checking systems. These platforms provide object-based rule
engines applying building code model rules to building information model (BIM) data.
All of these platforms utilize the Industry Foundation Classes (IFC) as the neutral
building information model file format. In the next sections, these platforms for

compliance checking systems will be explained.

2.3.3.1.FORNAX

FORNAX is the first large effort in code compliance checking. It was developed
by novaCITYNETS Pte. Ltd, an e-Government solution provider in Singapore, on top
of EDM Model Checker (novaCITYNETS, 2000). FORNAX uses the basic building
model information, exchanged in IFC format, and adds to it the required missing
information associated with the building code compliance checking procedures.
FORNAX platform has a C++ object library that takes necessary BIM data from the
IFC file, derives the needed data for code compliance checking, and generates extended
views of IFC data. FORNAX objects carry rules for assessing themselves. FORNAX
objects are extendable to accommodate attributes and methods required to check the
building project for code compliance. FORNAX is essentially developed as a
development and deployment platform for the CORENET project. In this project,
building codes are modeled on top of the FORNAX platform. FORNAX has since been
considered by a number of other building code compliance checking efforts as a

possible platform (Khemlani, 2005).

44

2.3.3.2. EXPRESS Data Manager (EDM)

EXPRESS Data Manager (EDM) is a comprehensive suite of model-driven
database systems developed by Jotne EPM Technology, a Norwegian IT company
(Jotne, 1994). EDM has been built specifically to manage the extremely complex data
structures found in industrial applications that deal with what is generally known as
product data models. EDM implements the methodology of the open international
standard IS0 10303, commonly referred to as STEP (the STandard for the Exchange of
Product Model data). EDM started out as a collaboration tool supporting work
processes for data exchange, data sharing, data integration, and data archiving, but it has
continued as a comprehensive open development environment with functional software
tools using the EXPRESS language. The EDM package provides several additional
modules including EDMmodelServer and EDMmodelChecker. EDMmodelServer
module is an object-based database server providing textual reporting and server
services. It consists of an object-based database, and a standardized set of tools to
interact with the data (STEP or IFC) in the database. EDMmodelChecker is a model
checking tool supporting the open development of EXRESS-based rule checking. This
EDM module is open to user extensions. It allows users to build new computable rules
using EXPRESS-X and provides an environment to execute them. These EDM modules
are complex and require a high level of expertise in EXPRESS language to make use of
them (Eastman et al., 2009). Several code compliance checking efforts used the EDM as
part of their implementation, including the CORENET and DesignCheck projects.

2.3.3.3.Solibri Model Checker (SMC)

Solibri Model Checker (SMC) is an object-based stand-alone platform
application developed by Solibri, a Finnish software company (Solibri, 1999). SMC
provides a model checking tool that reads a BIM model, in IFC format, and maps it to
an internal structure facilitating access and processing. It is capable of directly
interfacing with BIM systems, visualizing building models, clash checking and code
compliance checking against rule sets. The checking is carried out using parametric

rules. Users can change the parameters of certain rules according to the building code.

45

SMC offers a set of built-in rules, and a rule configuration based on parameters. It also
has a built-in tool for developing of rule sets, called Constraint Set Manager (CSM).
New rules are added in java using the CSM. However, CSM is not publicly available,
restricting the rules to be checked to those supplied by Solibri. This means that users
are not capable of editing or modifying built-in rules. Nor are they able to add new rules

without editing the original code.

Industry Foundation Classes (IFC):

Industry Foundation Classes (IFC) is a standard building data model
specification developed in 1994 by the International Alliance for Interoperability (IAI)
that was later renamed as buildingSMART in 2005. IFC was developed specifically to
meet the needs of the AEC industry (buildingSMART, 2008a). The IFC specification is
a neutral data format for the representation of building information to enable
interoperability between different software systems within the AEC industry.

The IFC specification (ISO 16739) is derived from the STEP standard (ISO
10303) which is an open international standard for the representation and exchange of
product data in all industries. The IFC specification is written using the EXPRESS
language that is a data definition language specified in part 11 of the STEP standard
(ISO10303-11). The IFC exchange file format (.ifc) uses the “STEP physical file”
format defined as ISO10303-21. In addition to the IFC_EXRESS specification there is
an ifcXML specification to represent IFC building data model using XML schema
specifications. The ifcXML exchange file format (.ifcXML) is the XML document
structure. IFC also specifies techniques for extending the schema such as the IFC
Property Set (PSet) that is a mechanism for adding custom properties to the standard
IFC schema. Substantial efforts have been made to continuously develop the IFC
specification. The current version of IFC was released in 2013 as IFC4. IFC is widely
used and there are many reference sources on the IFC (ISO, 2002; Liebich, 2002; ISO,
2004; Khemlani, 2004; Eastman, 2006; buildingSMART, 2008a; ISO, 2013).

IFC is regarded as the dominant option for building information modeling in the
AEC industry. Major BIM authoring software tools such as Autodesk Revit, Graphisoft
Archicad, and Bentley MicroStation support IFC and have the capability of exporting
their own building model data in IFC format. Several automated code compliance
checking efforts utilized IFC as a neutral file format (Han et al., 1998; Sing & Zhong,
2001; Yang & Li, 2001; Ding et al., 2006; Wix & Conover, 2007; Eastman et al., 2008).

46

CHAPTER 3

BUILDING CODE REPRESENTATION AND MODELING
METHODOLOGY

3.1. Introduction

This thesis presents a new representation model and modeling methodology for
building codes to support the development of compliance checking systems. The new
representation model adopts the four level representation paradigm as a theoretical base
and uses the semantic modeling approach for developing the building code
representation. The new model organizes the representation in 4 levels. The tasks at
each of the levels are (bottom-up): 1) modeling domain concepts by defining domain
objects to represent concepts that exist in the building code text, 2) representing
individual rule statements by employing formal computable semantic rule objects, 3)
structuring dependency relations between the rule objects and thus defining rule-set
objects, and 4) representing the organization of building codes via the creation of

management objects that categorizes closely related rule-sets.

3.2. Four Level Representation

The new model is based on the four level representation paradigm (Fenves &
Wright, 1977) which is derived on an abstract model of the logical structure of building
codes identified by Nyman and Fenves (1975). According to this general structure, the
content of the building code is described in four levels: 1) The top level provides the
overall organization of the building code by grouping related statements into larger
units (sections), 2) the intermediate level, i.e. the level of the sections defined by the top
level, deals with a set of closely related statements and their dependency relationships
(clauses), 3) the detailed level, 1.e. the level of the clauses defined by the intermediate

level, concerns individual statements (rules), and 4) the lowest level corresponds to the

47

leaf nodes of the representation tree and describes the terms referred to in the statements
(concepts) and allows mapping to standardized building information models.

Identifying the nature of building codes and the hierarchy of information in them
is important for deciding on a modeling approach that can provide an effective method
for the development of building code models. Nyman’s research provides a solid
foundation for modeling building codes and defining the process of modeling building
codes. This general organizational structure was initially used for the SASE model as a
representation framework by Fenves et al. (1987) Subsequent studies on building code
modeling are also based on this approach (Jain et al., 1989; Rasdorf & Lakmazaheri,
1990). Although this approach was based on a solid theoretical foundation, its
application in the field was not practical and models based on this theory were not
widely adopted in AEC industry. Literature review reveals two important reasons for
this failure. First reason is the lack of domain models that identify domain specific
objects with their attributes and relationships. The lack of an industry standard in
building modeling led to a high number of idiosyncratic data item definitions and
increased the complexity of the building code models (Hakim & Garrett, 1992). Second
reason is related to the representation methods used in the modeling of building code
information. Decision tables and programming languages used for representation
quickly became hard to maintain and build. The complexities involved in actual
building codes proved too difficult for these methods of representation (Fenves et al.,
1995). In summary, the four level paradigm was not adopted in practice, mainly due to
the fact that information technologies for knowledge representation were not mature
enough at the time.

The new model developed for this dissertation adopts the four level paradigm as
a theoretical base for representing building codes but addresses the above issues on
knowledge representation methods by utilizing the relatively recent semantic modeling

method that will be discussed in the next section.

3.3. Semantic Representation — RASE Model

Building codes have been represented in a number of ways, e.g. as decision
tables, hard-coded rules, programming logic, domain-specific rule language etc. Ideally

the representation should be independent of compliance checking systems. It should

48

also be adaptable to continuing building code amendments. The key is to make it
possible for domain experts, who generally do not have any programming knowledge to
manage the representations themselves. Semantic modeling approach, which is a
relatively new method for knowledge representation, aims to meet the above
requirements. One recent project, SMARTcodes, can be referenced as a good example
of the use of this approach (Conover, 2009). SMARTcodes project aims to define
computable rules using simple tools that enable non-programmers to create
representations by tagging actual building code texts. It is based on the RASE
(Requirement, Applicability, Selection, Exception) methodology. RASE defines four
common constructs that make up a rule. These constructs are used to identify the
building code essence from the actual text of the code (Nisbet et al., 2009).

RASE paradigm states that building codes contain a number of ‘checks’, which
typically demarcate a distinct section of the building code, and each check is made up of
a number of requirement, applicability, selection, and exception parts. Every check
must have at least one requirement indicator. It is the condition that must be satisfied by
one or more aspects of a building. Similarly, every check must have at least one
applicability indicator that defines which aspects of the building the requirements apply
to. Applicability indicators can be seen as a definition of scope associated with the
check. Checks may have selection indicators if the rule is for specified cases among the
applicable elements. Checks may also contain exception indicators. Exception
information identifies the conditions under which the check is not applicable to the
building elements. RASE paradigm utilizes these four types of indicators as a basis of
the common constructs of checks. Each of these four constructs has the following
attributes: Topic, property, comparator, value and unit. Building code authors are able
to markup these indicators that appear in the actual text of the code using SMARTcodes
Builder software which creates an XML formatted version of the code (Conover, 2009).

RASE paradigm is a good starting point for modeling building codes. It provides
an easy to understand simple method for deconstructing rule sentences. It also
accommodates a scheme where code authors are able to build and maintain building
code representations. In order to evaluate the capability of the RASE method to model
real building codes, a pilot study was conducted for developing a representation for the
[zmir Municipality Housing and Zoning Code (IMHZCode) using RASE constructs
(Macit et al., 2013). IMHZCode rules have been modeled as requirement, applicability,

selection, and exception objects. Some examples of how rules are modeled are shown in

49

Table 3.1. The experiences gained in this study showed that RASE methodology offers
an ease of use for non-programmers and could be adapted to represent IMHZCode,
however, some modifications would be beneficial to overcome three shortcomings that

were 1dentified.

Table 3.1. Examples of rules from IMHZcode modeled according to the RASE

Id Rule text Applicabilities Selections Exceptions Requirements
Clear height of doors . B
1 shall be at least 2.10 m. door - - door.height>=2.10m
Clear width of entrance
doors of independent _ . _
2 unit shall be at least door type=entrance - door.width>=1.00m
1.00 m.
Buildings shall have at hasStair=true
3 ileast one non-wood fbuilding - - &
staircase. stair.material=!wood
The minimum width of flightWidth=1.20m
4 aflight and a landing [stair - - &
shall be 1.20 m. landingWidth=1.20m
Roofs in general must
remain within 33% building.type= . a0
> sloping height, except froof i duplexHouses P itch<=33%
duplex houses.

First shortcoming is the unnecessary repetitions that occur due to the
independent modeling of individual rule statements. Representations of the same
concepts, referenced by multiple rules, are repeated many times for each applicability or
selection construct they are a part of. While this approach allows rules to be
independently modeled, it is prone to inconsistencies and creates redundancies.
Inconsistencies may develop when the same concept is modeled differently in different
contexts (rules). Building codes, in general, have a number of rule statements that
indicate different requirements about the same concept. This is true especially for
IMHZCode. Hence, the pilot study results unveiled a high number of redundant
definitions especially for applicability constructs. The Domain Level that will be
discussed in the next section is introduced to address this issue by creating a lower level
library that can be used to define these repeating concepts once.

Second shortcoming is the lack of explicit relationships between individual rule
statements. RASE methodology delegates that responsibility to processing at a higher

level within automated compliance checking systems. In the SMARTcodes project, first

50

the original code text is marked-up, then this marked-up text is structured into an XML
representation, and in the last stage the XML file is used to create computable rules for
the automated checking system. It is in this final stage that the relationships are
represented in the form of an IFC constraint hierarchy. This totally independent
handling of rule statements simplifies deconstructing rules for especially non-
programmer code authors. However, with the relationship representation taking place
separately in the automated checking system, it becomes impossible to ensure
correctness and consistency for the overall code representation independent of
automated checking systems. Moreover, this split organization has a negative impact on
the maintainability of the representation as well. It is necessary to represent the
relationships independent of automated checking systems. The Management Level and
the Rule-set Level of the new model are introduced to address this shortcoming and they
will be discussed in the following section.

The third shortcoming is about the exception construct of RASE. The pilot study
revealed that it is unnecessary to represent separate selection and exception information
for individual rule statements. Exception information is the opposite of selection
information and it can be represented within the selection construct by including a
“excludes” comparator. In the new model, the exception constructs are eliminated.

In summary, while the RASE methodology was adopted, it was modified into a
four level representation that improves it by eliminating redundancies and adding
logical relationships. It is possible to ensure the conciseness and consistency of not just
individual rule statements but the overall code model. The new model is completely
independent of actual checking systems and thus should be easier to maintain. The new

model 1s discussed in detail in the next section.

3.4. Building Code Representation

The new building code representation model developed as part of this thesis
combines the semantic modeling method established by the SMARTcodes project (Wix,
2008) with the theoretical foundations set by Nyman and Fenves (1975), namely the

four level methodology. This new hybrid approach aims to;

51

establish a building code representation independent of checking systems,
preserve the high level of maintainability in RASE,

minimize redundancies by introducing a hierarchical structure across four
levels and improve on conciseness,

offer a level in which rule relationships are modeled and monitored so that

consistency of a building code model can be ensured.

The new building code representation model is proposed to provide a systematic

structure for representing building codes in computer implementable format. The

proposed model consists of four levels:

1.

The domain level which models the concepts, which are mentioned in the
original building code text, their attributes and relationships.

The rule level where individual rule statements of the building code are
represented in a structured format, utilizing the concepts modeled at the
domain level. The rules are modeled based on modified RASE constructs.
The rule-set level where relationships between rule objects are defined
forming the rule-sets.

The management level which reflects the overall organization of the building

code model by connecting and categorizing the rule-sets.

The four levels are discussed in the following sections starting with the lowest

level.

Management Level
Establishes the overall organization of a building code model

A

Rule-set Level
Groups closely related individual rules and setting their relations up

A

Rule Level
Represents individual rule statements in a computable form using
modified RASE constructs.

A

Domain Level
Identifies and models concepts, attributes, and their relationships

Figure 3.1. Four level structure of the new model

52

3.4.1. Domain Level

Building codes state requirements to be met, but also describe objects subject to
these constraints. Building codes should be modeled in a way that reflects this dual
purpose. Modeling rules and constraints are about “how” an entity materializes while
modeling entities is about “what” the entity is. The two naturally have differences in
representation.

Building codes refer to concepts specific to the domain which the codes are
meant for (e.g. fire safety, accessibility) as well as entities that correspond to various
aspects of the building project such as physical building components, spaces and
relations (e.g. building, independent unit, storey, etc.). Automated compliance checking
systems assess building projects after mapping these concepts and entities in the build
code representation to objects that constitute a building project. The mapping process
will benefit from modeling of these domain specific concepts and entities independent
of the rules with hierarchical relationships that are similar to the ones in the building
information model.

RASE methodology integrates the code requirements and the domain specific
concepts and entities in a single rule representation. While this simplifies conversion of
building code texts into a computable building code model, it requires defining the same
concepts and entities multiple times for every rule where they are referenced. This may
lead to inconsistencies especially when the concept or entity definitions require updates.

By first defining the domain specific concepts and entities, independent of the
rules, a domain model is created. The domain model acts as a library of objects that are
utilized during the modeling of individual rule statements. The library objects can be
used as building blocks during modeling and maintenance of the rules by code authors
with no programming background.

This domain model also helps expose how domain specific information can map
to building models in external systems. It is aimed at facilitating communication and
interoperability among building information models, building code models, and
automated compliance checking systems.

For the new model, creating domain objects that form the lowest level is
naturally the initial step. In this step, concepts and entities referenced in the building

code text are identified and modeled with their attributes and their relationships to each

53

other. The output of this level is a domain model that is a library of all required
concepts and entities with attributes and relationships. These building code domain
objects are used when modeling rules. The applicability constructs in RASE

methodology are filled by selecting from this library of domain objects.

3.4.2. Rule Level

Representing the individual rule statements in computable format is the second
step in the new model. Building codes include a set of rule statements that a building
project must satisfy. Building projects are checked against the requirements and/or
conditions, indicated by these rule statements. Automated compliance checking systems
are rule-based systems and they require that rule statements are represented in a
computable format. These modeled rules are later used to check compliance of projects
that are also in digital form.

In this rule level, individual rule statements are represented as rule objects in the
form of structured data based on the modified RASE constructs. Rule statement
semantics of the building code are captured in rule objects. Each rule object determines
a single requirement for a specific attribute of objects that meet specific criteria. Every
requirement is specified by a specific value and a method for comparison. All objects
reside in the domain model.

In general, rule statements only have requirement information that indicates a
quality requirement that must be satisfied by a domain concept. In some cases, rule
statements also have selection information, if the requirement is for specified cases
among applicable objects. Separate requirement and selection objects are modeled to
capture this. Every rule object must have a single requirement object and may have zero

or more selection objects. Basic structure of the rule object is given in Figure 3.2

| Rule |

has has

1 0..*
| Requirement | | Selection

Figure 3.2. Basic structure of the rule object

54

Selections define the circumstances under which a rule is applicable. The
modeling of selection criteria as part of a rule allows all rules to be applied during the
automated checking process and eliminates the possibility of unfired rules in rule based
systems. To check for conformance with a rule, its requirement is checked. If the
selection under which a rule is applicable is true, the requirement is checked for
conformance. If not, the rule is regarded as inapplicable and ignored.

Both requirement and selection objects have the general form: A “subject” and a

“predicate” (Figure 3.3).

| Rule |
has 1 1 has
1 0.”
| Requirement | | Selection
has has has
1] 1 1 K
| Subject | | Predicate |

Figure 3.3. Structure of the rule object accommodating properties

The subject has a simple structure consisting of two basic elements: a concept,
and a property (e.g., door - height). Concepts come from the domain level and may be a
physical building component such as wall, door, slab, or an abstract concept such as
space (living room), zone (independent unit). Properties are attributes of interest
belonging to the concept. The predicates define the particular quality required of the
subject (e.g., height of doors shall be at least 210 cm); each predicate has a comparator,
a value, and a unit. The comparator is one of the relational operators (e.g. greater than,
less than, equal to). The value is the specific value that is found in the code, whether
numeric, descriptive, or Boolean. The unit simply specifies the unit of measure for the

value. (Figure 3.4)

55

| Rule |
has 1 1 has
1 0.."
| Requirement | | Selection
1] 1 1J I
has has has
1] 1 1 |1
Subject Predicate
-concept -comparator
-property -value
-unit

Figure 3.4. Detailed structure of the rule object

In the modified RASE, rules appear to be made up of only requirement and
selection constructs. However, the applicability and exception information also exist.
Applicability information is embedded as the subject part of the requirement objects and
exceptions are handled within the selection objects.

When building a rule object, the concept and property will be drawn from the
library of concepts modeled in the lower domain level. The concept list would be
editable for adding new concepts when the building code is revised.

Building rule objects that form the rule level of the representation is the second
step of the overall modeling process. At the end of this step, all rule statements in the
code are modeled as separate objects that are ready to be linked at the higher level.

Table 3.2 and Figure 3.5 illustrate examples of the rule representation in both

table and XML formats.

Table 3.2. An example of rule representation in table form

Requirement Selection
concept property comparator value unit concept property comparator value unit
door height > 210 cm - - - - -
door width > 130 cm door relatedSpace equal mainEntrance -
door width > 100 cm door relatedSpace equal entrance -
door width > 90 cm door relatedSpace equal room -
door width > 90 cm door relatedSpace equal kitchen -
door width > 80 cm door relatedSpace equal bathroom -
door width > 80 cm door relatedSpace equal cellar -

56

<Rule 1>
<Requirement>
<Subject>
<concept> door </concept>
<property> height </property>
</Subject>
<Predicate>
<comparator> > </comparator>
<value> 210 </value>
<unit> cm </unit>

</Predicate>
</Requirement>
</Rule 1>
<Rule 2>
<Requirement>
<Subject>
<concept> door </concept>
<property> width </property>
</Subject>
<Predicate>
<comparator> > </comparator>
<value> 130 </value>
<unit> cm </unit>
</Predicate>
</Requirement>
<Selection>
<Subject>
<concept> door </concept>
<property> relatedSpace </property>
</Subject>
<Predicate>
<comparator> equal </comparator>
<value> mainEntrance </value>
</Predicate>
</Selection>
</Rule 2>
<Rule 3>
<Requirement>
<Subject>
<concept> door </concept>
<property> width </property>
</Subject>
<Predicate>
<comparator> > </comparator>
<value> 100 </value>
<unit> cm </unit>
</Predicate>
</Requirement>
<Selection>
<Subject>
<concept> door </concept>
<property> relatedSpace </property>
</Subject>
<Predicate>
<comparator> equal </comparator>
<value> entrance </value>
</Predicate>
</Selection>
</Rule 3>

Figure 3.5. An example of rule representation in XML format

3.4.3. Rule-set Level

Defining the relationships between rule objects representing individual rule
statements is the third step in the new model. In the rule level (second step) each rule
statement gets modeled with only one requirement for a specific property of a concept
or entity and with selection information that clarifies the conditions under which the
requirement applies to the concept or entity. However, in most cases an entity is subject
to multiple requirements that vary according to the conditions. Multiple rule statements
are used in order to specify and clarify conditions and requirements for a property of a
concept or entity. Rules need to be connected representing the logical relationships that
exist implicitly or explicitly within the semantics of a clause. Rules may be stand-alone,
stating a requirement that is unrelated to other rules. However, for the most part, rules
depend on each other. They either modify requirements or introduce additional
requirements depending on the conditions. Rules can be joined with an OR conjunction
when modifying the requirements and an AND conjunction when adding new
requirements.

It is important to identify how these rule objects combine. Rule objects are
related to one another through the property addressed. Rule objects are typically
cumulative. If there are several rule objects that indicate various requirements to be met
by a particular property of the same concept, it is expected that all of these rules be
satisfied. If rule objects make an exception or modification to the requirement of other
rules, then these rules are alternatives. Only one of these rules will be applicable.

In the new model related rule objects are collected together into computable
rule-sets by using logical conjunctions. AND conjunction is used for combining rule
objects that indicate different values to be satisfied by a particular property of a concept
simultaneously. OR conjunction is used for a relation between rules that indicate
alternative values to be satisfied by a particular property of a concept depending on
specified conditions. While all rule objects that are combined with an AND conjunction
must be satisfied by the related concept, only one of the rule objects that are combined
with an OR conjunction should be satisfied.

The output of this step is a collection of rule-set objects. This rule-set model is
the logical combination of distinct rule objects. Rule objects are grouped into rule-sets,

when they are all addressing the same subject (a property of a concept) that is being

58

constrained. Rules are connected by logical conjunctions and form a tree where the root
is the rule-set. The leaf nodes are the rules that have been modeled at the lower level.

Figure 3.6 shows the structure of the rule-set object.

Rule-Set 0.*
1 1 1
has —— has has
0-1 1.*
Conjunction Rule

Figure 3.6. Structure of the rule-set object

3.4.4. Management Level

Building codes are useful only if users (checkers or designers) can determine
which portions of the building code pertain to their problem. To facilitate this, building
codes are organized into chapters, sections, and paragraphs, with corresponding tables
of contents and indexes. The user of a building code model should also be able to
identify which rules of the building code apply for a given design situation. The
building code model, therefore, needs to be organized in a systematic manner such that
individual rules can be accessed easily. An organizational system can also be used to
develop an outline to arrange the rules and to define the scope for the building code. In
the new model, the fourth step addresses issues related to the organization of the rule-
sets modeled in the rule-set level (third step).

One natural method of organization is the one that reflects the original building
code text. Rule-sets can be grouped to reflect the clauses and clauses can be ordered
under sections following the order in the actual code document. However, it is
beneficial to allow for alternative organization schemes to exist simultaneously. One
such alternative organization is to group rule-sets according to the concepts they impose
requirements for. In the actual code document requirements on a single concept can

span across multiple clauses making it difficult to recognize inconsistencies. To

59

overcome this shortcoming a concept-based organization is preferable. The concept-
based organization is also helpful for automated compliance checking algorithms in
identifying all rules that need to be processed for a given concept. The management
level is included to allow alternative networks of linked rule-sets to co-exist. Moreover,
this top level of the new model allows various building codes (such as Fire Safety Code,
High rise code) to be aggregated exposing possible conflicting provisions on concepts.
These organizing networks are modeled using rule-set group objects that form a
tree. The root of the tree represents to overall code while the leaves are the rule-sets that
are defined at the third level. Any number of intermediary nodes can be defined and
they represent headings and sub-headings (sections and clauses in the actual document

organization). Figure 3.7 shows the structure of the rule-set group object.

Building Code
1

has

l..*
| Rule-Set Group |
1

has
1..*

| Rule-Set |

Figure 3.7. Structure of the rule-set group object

60

Blilding Codl l

Management l 1

Level
Establishing the
overall
organization of 1..*
building code
model

Rule-Set Group

Rule-set Level - 0%
Putting together Rule-Set -

closely related ﬁ 1 1
individual rules has
0-1 r

and setting their
relations up | Conjunction |

] L,
Rule Level 1|_ e = —\ 0.*

Representing the Requirement Selection
individual rule

statements in a 1| Ll IJ | 1
computable form has has ———— has has

using modified 1 1 1 B

RASE constructs. Subject

Predicate

-concept -comparator

_property -value
1.% -unit

Domain Level
Identifying and
modeling the
concepts,
attributes, and their
relationships

Domain Object

0..”

- properties

Figure 3.8. Overall structure of building code representation model

61

3.5. Building Code Modeling Methodology

The modeling process is crucial in order to develop building code
representations. Representing building codes in computer implementable format is not
only a technological issue, but also a process issue. Developing building code
representations by utilizing the proposed model requires a clear, transparent, and well
defined process.

A straightforward methodology, which comprises three process stages for
building code representations, is proposed in this thesis. Below are the recommended
process stages to develop building code representations based on the proposed model.
Each stage identifies what should be done, what should be delivered from this stage,
and who the main actors in this step should be.

Stage 1: Analysis of the building code to define what should be represented
explicitly for the purposes of automated compliance checking and to document how
much of the building code can be modeled reliably.

Stage 2: Representation of the building code by utilizing the developed
representation model.

Stage 3: Implementation of the building code model within a compliance
checking application.

Next section explains these stages in detail. Figure 3.9 illustrates the stages of

the building code representation methodology.

62

Building Code Modeling

—> Determination of the scope —>|List of Selected Clauses
[——

|

|

|

|

|

|

|

|

|

|

I | Building Code . o .
: —» Decomposition of the Building Code |—®{List of Statement Types
|

|

|

|

|

|

|

|

Domain Expert L

; ; List of Classified Rul
Software A___—_g Classification of the Rule Statements 3 " sooments
Engineer | Statements |
S ettt ettt et tentind i ———————
List of

Formalizable Rules

Stage 2: Representation

Software . . -
Engineer Representation of Domain Concepts |—p»{ Pomain Model

v

—» Representation of Rule Statements — —9 Rule Model

] 1
| |
| |
| |
' :
’ |
| |
I I
| |
| |
' :
i | Building Code v |
I | Domain Expert :
] |
| |
' :
’ |
: |
| |
| |
I I
I I

J

Representation of Relationships Rule-Set Model
—>
between Rules

v

Representation of the Building Code
Organization

p-| Rule-Set Group Model

Building Code
Model

| Stage 3: Implementation

|
Software Implementation of the Building Code A Code Compliance
Engineer Model Checking System

v

Testing of the Building Code Model

for Correctness | Report |

Building Code Compliance Checking

Domain Expert

Test Results —
A =

Figure 3.9. Stages of the methodology for building code representation

3.5.1. Analysis Stage

The process of representing building codes in computer implementable format is
not trivial due to the complex nature of building codes. It is essential to document the
various types of information contained in building codes as well as the organization of
the codes in order to develop a building code representation. Thus, analysis of the
building code is the first stage in the proposed building code modeling methodology.

This stage covers the following steps:

1. Determination of scope
2. Decomposition of the building code

3. Classification of the rule statements

3.5.1.1.Determination of the Scope

The first step in the analysis stage is to determine the scope. It should be clearly
specified which building code, chapter, and clauses will be included in the
representation. The assumptions and the scope of the building code representation as
well as the goals for the work need to be defined leaving no ambiguities, gray areas or
imprecise notions.

Building codes are complex written documents and they include various types of
information. They are composed of different types of clauses. While some clauses
define constraints about buildings, land readjustment, or construction issues others
describe the general issues such as aim, scope and legal basis of the building code, or
explain specific names used in the building code and give detailed definitions for
various terms. Since the development of building code representations is aimed to be a
base for automated code compliance checking, the building code clauses pertinent to
buildings should be determined and documented. The output from this step will be a
human readable document listing the parts of the code to be modeled, defining the
scope of the representation. The actors of this step are the building code domain experts

appointed by the authority.

64

3.5.1.2.Decomposition of the Building Code

The second step of the analysis stage is the decomposition of the building code.
In this step, the clauses related to buildings are decomposed into a list of statements and
all statement types that exist are determined. As explained in detail in section 2.1.2
building code clauses compose of different types of statements. While some of these
statements are informative such as clarifications or applicability conditions, others
relate to rules which all building projects must satisfy. Automated code compliance
checking systems apply rules to a proposed project, therefore the statements defining
rules are of interest. Decomposition of the building code should identify the various
types of statements and extract the rule statements. The output of this step will be a
human readable document listing statements with determined types. The actors of this

step are the building code domain experts appointed by the authority.

3.5.1.3.Classification of the Rule Statements

In the last step of the analysis stage, rule statements are classified in order to
document how much of the code as well as which types of rules can be modeled.
Building codes may include rules that are open to interpretation, uncertain, sometimes
even contradictory and impossible for modeling. It is needed to document how much of
the code can benefit from automated code compliance checking. Classification of rules
according to their formalizability will help to assess potential coverage of building code
representations. In addition to the formalizability issue, building codes have a
complicated structure. They contain closely related rules that are making exceptions,
modifications, or clarifications to other rules as well as stand-alone rules that are
unrelated to other rules. It is important to understand the relationship between rules in
order to model them correctly. Classification of rules according to their self-
containedness will help to figure out relationships between them. The output of this step
is a list of rules that can be represented in computer implementable format. This step
needs interdisciplinary knowledge in determining which concepts can be represented in
computer implementable format. Cross-disciplinary collaboration should be provided

and the building code domain experts should work with software engineers.

65

Analyzing the complex structure of building codes and determining different
types of rules is the first stage in development of building code representations. During
the analysis stage, the building code, the chapters of the code, and the clauses of the
chapters to be represented are determined and all rules in selected clauses are classified.
Next stage in the proposed building code modeling methodology is to represent the

code by utilizing the developed representation model.

3.5.2. Representation Stage

Representation of the building code is the second stage in the proposed building
code modeling methodology. In this stage that focuses on modeling, one important
concern is about the structure of the building code representation. In the literature there
are two approaches about how the structure of the building code representation should
be. Han et al. (1998) suggests that the structure of the building code representation
should be similar to the structure of the building information model. On the other hand,
Nisbet et al. (2009) believes the structure of the building code representation should be
similar to the structure of the building code. While Han’s approach allows for fast rule
execution, Nisbet’s approach allows for easier code generation and enables higher level
of maintainability. In this research Nisbet’s approach has been adopted because the
main focus is to represent building code rules in a computable format independent of
compliance checking systems. If system performance proves to be a serious issue for
future compliance checking systems, such systems should be able to employ their own
representations of the code that can be derived from a digital representation which is
implementation neutral.

After the structure of the building code representation has been determined, the
building code is modeled based on the developed representation model. As explained in

section 3.4 the developed representation model consists of four levels:

1. Domain level
2. Rule level
3. Rule-set level
4

. Management level

The representation stages cover respectively these levels as modeling steps.

3.5.2.1.Representation of Domain Concepts

The first step in the representation stage is the modeling of the building code
domain concepts as object classes that form the domain level of the proposed
representation model. For creating domain object classes, concepts in the building code
document are identified and modeled with their attributes and their relationships to each
other. In this step, building code domain experts and programming experts work

together. This process is undertaken in three stages:

1. Extracting and listing the concepts and entities referenced in the building
code document.

2. ldentifying the required attributes of the objects and determining the
relationships between them.

3. Implementing the representation as a library of objects in a computer-based

form

The output of this step is a domain model, which will be utilized when modeling
rules in the second step. For creating a domain model, two possible modeling
approaches exist. The first involves modeling every concept of building code in a class
hierarchy. In this approach specialized concepts are represented as sub-classes of the
general concept classes. (e.g., a “kitchen door” can be modeled as a subclass of “door”.)
However, this approach tends to increase the complexity of the domain model. The
second involves, instead of modeling every concept as a class, the creation of a concept-
mapping table. This table lists all concepts of the building code and determines how
each concept is represented; either as a class or a filtered set of instances within a class.
(e.g., a “kitchen door” can map to all instances of “door” objects with the
“relatedSpace” attribute value of “kitchen”.) While the first approach can be useful
when modeling simpler code documents, for modeling building codes that include a
high number of concepts with complex relationships, the second approach should be

adopted since a high number of specialized sub-classes can be avoided.

67

3.5.2.2.Representation of Rule Statements

The second step in the representation stage involves modeling individual rule
statements of the building code as rule objects in the form of structured data. The rules
are modeled using the rule model schema developed as part of the proposed
representation model. In this step, rule statement semantics of the building code are
captured in rule objects. These rule objects form the rule level of the proposed
representation model. This process is carried out by building code domain experts and
involves breaking down of the building code rule statements into its constructs and
modeling rules by utilizing the concepts modeled in the lower domain level. The output
of this step is a rule model covering separate rule objects indicating a single requirement

of the building code rule statements.

3.5.2.3.Representation of Relationships between Rules

The third step in the representation stage of the building code modeling
methodology involves defining relationships among rule objects modeled in the second
step. In this step, related rule objects that are associated with the same subject are
collected together into computable rule-sets by using logical conjunctions. These rule-
sets form the rule-set level of the proposed representation model. This process is
handled by building code domain experts and involves using two logical conjunctions
“AND” and “OR” for connecting rule objects. AND conjunction is for connecting rule
objects indicating the different conditions that apply simultaneously for the same
subject. OR conjunction is for connecting rule objects that indicate alternative
requirements for the same subject depending on specified conditions. The output of this
step 1s the rule-set model covering a collection of rule-set objects. This rule-set model is

the logical combination of distinct rule objects.

68

3.5.2.4.Representation of the Building Code Organization

The fourth step in the representation stage of the building code modeling
methodology is the modeling of alternative organizations of the overall building code
representation by categorizing rule-set objects modeled in the third step. For
categorizing rule-set objects, which reflect overall organization of the code
representation, there are multiple methods. One natural method of categorizing rule-set
objects is the one reflecting the structure of the original building code document. In this
method, rule-set objects are grouped to reflect the clauses of the actual building code
document. However, this method makes it difficult to recognize inconsistencies because
of the scattered structure of building code documents. One alternative method that is
appropriate for use by automated code compliance checking systems is grouping of
rule-sets according to the concept they are related to. This allows automated checking to
easily access all rules that apply to a given object. There may be many other
possibilities in grouping rule-sets appropriate to the goal of the system being developed.
It is possible to have multiple classifications exist independently at this level. The
output of this step is the rule-set classification objects, which will be employed by
compliance checking algorithms to identify all needed rules to be processed for a given

project. Building code domain experts carries out this step.

3.5.3. Implementation Stage

During the second stage, which is named as the representation stage in the
proposed building code modeling methodology, the building code is modeled based on
the new method of building code representation developed as part of this thesis.
Implementation of the building code model within a compliance checking application is
the third stage in the proposed building code modeling methodology for development of
building code representations. This stage consist of two steps: 1) Implementation of the

building code model and 2) testing and validation.

69

3.5.3.1.Implementation of the Building Code Model

It i1s important to actually implement the building code representation in
compliance checking applications as part of the development process. Through the
implementation process, several ambiguities, unclear points, missing definitions
(concept, rule, relationship), and insufficient scope definitions can be revealed.
Answers to questions such as, “Is all the required information for calculating a window
opening area available in the building information model?” can only be validated
through implementation. Moreover implementation is necessary for the purpose of
demonstration and evaluation of the developed model for the representation of building
codes. The developed representation model is intended to be utilized as a basis for
compliance checking systems. Thus it should be demonstrated through an actual
implementation.

One important issue during the implementation of the building code
representation in a compliance checking application is related to the identification of
building information modeling requirements for the building code domain. Building
information models represent a building in digital format, hold all necessary
information about the design, and are checked against the code for compliance.
However, building information models created by a typical BIM platform such as
REVIT or ARCHICAD, to date, do not include the level of detail needed for most
building codes. For this reason, modeling requirements for building code domains
should be identified. This information must then be used to extend the BIM standard
(IFC) and built into the design software to allow proper data exchange. The domain
model which is developed as the first level of the representation, in fact, embodies the
modeling requirements for building code domains. How much of the required data can
be obtained from the building information models should be analyzed in the
implementation stage. This information can be used to inform efforts towards
establishing BIM standards.

This stage is carried out by software developers and involves identifying
modeling requirements by utilizing the domain objects modeled in the first step of the
representation stage, and methods of mapping the domain model to the building

information model. The output of this step is a running system that is able to execute

70

compliance checking of building projects modeled in BIM environments against the

building code representation.

3.5.3.2. Testing and Validation

The second step in the implementation stage is testing and validation of the
building code model. The Building code model should be evaluated in terms of the
three requisite properties found in literature (completeness, uniqueness, and
correctness). These requisites are used to evaluate whether building code models are
appropriately represented in computational format by most of the research on
representation of building codes. These requisite properties are defined as follows

(Gero, 1984; Fenves et al., 1987):

* Completeness, meaning that the code model can be applied to all possible
situations (conditions) within its scope;

* Uniqueness, meaning that the model has no redundant rules and has no
contradicting rules and generates the same unique result every time, when
applied under a given set of conditions;

* Correctness (clarity), meaning that the result of applying the model must be

consistent with the objective of the building code.

Fenves states that completeness and uniqueness are syntactic properties that are
related to the organization of the code, while correctness is a semantic property that is
more related to the meaning. The new building code representation is based on the
RASE constructs and each rule statement is modeled individually. This makes
guaranteeing completeness simple and is a major strength of the approach. By ensuring
that all statements identified (to be within scope) in the analysis stage are modeled
completeness can be guaranteed.

Uniqueness ensures that only one rule is applicable for any given situation.
Uniqueness can also be defined as the lack of redundancy and lack of contradiction. A
rule object is said to be redundant if its applicability conditions are guaranteed to be
superseded by other rules. A set of rules is said to be in contradiction when they are all
applicable for a given situation (condition). The four level structure of the new

representation follows Nyman’s proposed structure for building code representations.

71

The third level which is the rule-set level of the new building code representation is
designed to expose the relationships between the rules. Each rule-set deals with a single
property of a single domain object and all rules related to the property are collected
under a single tree based on the applicability conditions of each rule. Only one rule
from the tree is selected as applicable and thus contradictions are not possible. The
explicit modeling of conditions in the rule-set tree makes it simple to ensure that there
exists a set of conditions for selecting each rule and thus redundancies are avoided.
These features of the new representation ensures uniqueness.

Correctness ensures that rule objects represent the meaning, intentions, and
implications of the corresponding rule sentences correctly. Completeness and
uniqueness are syntactic properties and the representation can guarantee them, but
correctness is semantic. The developed building code model should be tested for
correctness. The results need to checked and validated by building code domain experts
preferably by ones outside the core committee developing the building code
representation. Validation should be done using the running compliance checking
system built in the first step. The testing of the building code model should be carried
out using specially prepared test cases. The test cases should include both valid and
invalid building design instances for each and every rule in the code. The output of this
step in the building code modeling process is a human readable document validating the
building code representation. If the results of the testing identify erroneous or
incomplete modeling, this information is used as input to start another iteration of the
representation stage in order to resolve the issues. If there are no errors, the modeling

process ends.

72

CHAPTER 4

IMPLEMENTATION AND EVALUATION

In order to provide a proof-of-concept implementation for the newly developed
representation model, a case study has been conducted. The case study focused on
modeling an actual building code and illustrating the use of this model within future
compliance checking applications. For the case study, Izmir Municipality Housing and
Zoning Code (IMHZCode) has been chosen. IMHZCode is representative of codes that
are in effect throughout Turkey. From IMHZCode, the subset of all clauses pertinent to
buildings has been modeled. This implementation illustrates the process for
representing an existing building code.

The case study has been carried out in 3 stages following the proposed building
code representation methodology in section 3.5. Next sections explain these steps in
detail and show the results.

Stage 1: Analysis

Scope
Decomposition
Classification
Stage 2: Representation
Domain objects
Rule objects
Rule-set objects
Rule-set group objects
Stage 3: Implementation
Prototype
Testing and Validation

73

4.1. Analysis

4.1.1. Scope

In order for the new model to be applicable to as wide a range of code
documents as possible, the case study needed to focus on a complex building code with
a large set of rules. To determine which building code will be modeled in the case
study, current building codes in Turkish Architecture, Engineering and Construction
(AEC) industry have been examined. In Turkey, every building project is checked
against primarily the housing and zoning code of municipality where the building will
be built. The municipalities’ housing and zoning codes include rules defined by the
ministry documents and add further specifications. Being based on the ministry
documents, all housing and zoning codes contain similar rules with few exceptions.
Building codes get tested primarily in municipalities of large cities where unforeseen
cases and situations come up and force clarifications of code. Izmir is the third most
populous city in Turkey and its housing and zoning code is representative of codes that
are in effect throughout Turkey. In this respect, Izmir Municipality Housing and Zoning
Code (IMHZCode) has been chosen for the case study.

IMHZCode is the legal document that specifies minimum conditions that need
to be satisfied by settlements and construction operations within the izmir Metropolitan
Municipality and its environs. Its main structure is divided into six parts as illustrated in

Table 4.1.

Table 4.1. The Structure of IMHZCode

Part Part Clauses
Id Heading

| General Rules 1-10
I1 Definitions 11-23
Il Rules Related to Buildings and Land Readjustment 24-66
IV Rules Related to Construction Permit and Building Occupancy Permit 67-76
\Y Buildings, Building Parts and Facilities Subject to Special Rules 77-86
VI Rules Rescinded, Interim Provisions and Entry in to Force 87-89

74

The rules related to buildings are covered by the clauses that are included in part
III whereas the rest of the building code is either informative or unrelated to buildings.
Part III also includes clauses related to other subjects. Table 4.2 shows all clauses of
Part III and the issues of their relevance. Each of the clauses pertinent to buildings
consists of several rules defining constraints relating to specific concepts such as roofs,
windows, doors, staircases etc. For the case study, IMHZCode’s clauses that include
rules pertinent to buildings are modeled based on the developed representation model.

In the next stages of the case study IMHZCode is analyzed in detail. First, the
clauses related to buildings are decomposed into a list of statements. Then all statement
types that exist are determined. After that, rule statements are classified according to
their self-containedness and formalizability in order to document how much of the code

as well as which types of rules can be modeled.

4.1.2. Decomposition

In this stage, IMHZCode’s clauses that include rules pertinent to buildings are
extracted. 27 clauses are found on buildings and these clauses are decomposed into a
list of statements. As a result of the decomposition study, the statement list containing
all 297 individual statements that form the clauses related to buildings is obtained.
Afterwards, the type of each statement is determined as being one of “clarification”,
“applicability condition”, or “rule”. As explained in section 2.1.2, clauses include three
types of statements: Clarifications, applicability conditions, and rules. Since only rule
statements will be represented in computer implementable format, they are identified
and extracted. 258 rule statements are found. The decomposition of all 27 clauses is
given in Appendix A. The decomposition of Clause-27 and Clause-47 are given below

in Table 4.3 and Table 4.4 as an example.

75

Table 4.2. The clauses of Part 111 of IMHZCode

Clause Clause Pertinent to

Id Heading

24 Width of Parcels Land Readjustment
25 Layout of parcels Land Readjustment
26 Arrangement of parcels Land Readjustment
27 Distance of Setbacks Building and Land Readjustment
28 Depth of Buildings Building

29 Facade of Buildings Building

30 Height of Buildings Building

31 Temporary Constructions Construction Permit issue
32 Closed Roads and Streets Land Readjustment
33 Flood Areas Land Readjustment
34 Non-resettlement Areas Land Readjustment
35 Construction Permits in Cadastral Parcels Construction Permit Issue
36 Multiple Construction Permits in a Parcel Construction Permit issue
37 Issuance of Ground Level Land Readjustment
38 Slab Levels of Ground Floor Building

39 Requirements in Some Buildings Building

40 Eaves and Sun-shadings Building

41 Roofs Building

42 Cantilevers Building

43 Light-shafts and Air-shafts Building

44 Spaces and Dimensions Building

45 Interior Heights Building

46 Windows Building

47 Doors Building

48 Lifts Building

49 Stairs Building

50 Fire Escapes Building

51 Balustrades Building

52 Chimneys Building

53 Fire Precautions Building

54 Water Tank And Sanitary facilities Installation Issue
55 Provisions Pertinent to Basement Building

56 Porter Suite Building

57 Auxiliary Buildings Building

58 Lightning Rods, Central TV Antennas, AC Installation Issue
59 Walls Building

60 Fences Building

61 Buildings of Construction Site Construction Issue
61 Cesspools Installation Issue
63 Arcades Landscape Issue
64 Garden Arrangements & Building Aesthetics Landscape Issue

65 Shelter Building

66 Provisions for Disabilities Building

76

Table 4.3. Decomposition of IMHZCode Clause-27

Textual Expressions of Statement
A Clause Type
Clause 27— Setback Distances ld&heading

1 In cases where setback distances are not determined by the zoning plan in Applicability
effect, setback distances have to be determined according to the Condition
conditions below.

A- Front Setbacks: subheading

2 Setbacks where there is a front yard and setbacks from roads, green areas Rule
and parking lots are at least 5.00 m.

3 However, on blocks that have existing buildings (except detached order Applicability
blocks) setbacks will be determined according to the following conditions Condition
taking into account existing buildings on the same block facade.

4 a) In Semi-Detached Building Blocks, If there is an existing building in Rule
one of the two lots then setbacks will be determined based on the existing
building.

5 b) In Planned Unit Developments, If any of the lots have an existing Rule
building then only for this block, setbacks for the lots are based on
setbacks of the existing building.

6 ¢) In Attached Building Blocks, If more than 50% of the block facade has Rule
been developed within the height limits of the zoning plan then setbacks
are determined based on the existing buildings with the same height.

B-Side Setbacks: subheading

7 Side setbacks (up to and including 4 storeys) shall be 3.00 meters. Rule

8 For buildings taller than this side setbacks are increased by 0.5 meters for Rule
every additional storey.

9 However, for timber-framed buildings side setbacks must be at least 5.00 Rule
meters.

C- Rear Setbacks: subheading
10 Rear setbacks are H/2. Rule

11 H is the height of building and is determined according to clause 30 of Clarification

this code.

12 Rear setbacks also apply to lots with single road frontage, 2 road
frontages (corner lots) and corner lots with 3 road frontages.

Clarification

13 On blocks that have existing buildings setbacks will be determined
according to the following conditions taking into account existing
buildings on the same block facade with the condition that rear setbacks
will never be less than 3.00 m.

Rule &
Applicability
Condition

14 a) In Semi-Detached Building Blocks, If there is an existing building in
one of the two lots then rear setbacks will be determined based on the
existing building.

Rule

15 b) In Planned Unit Developments, If any of the lots have an existing
building then only for this block, rear setbacks for the lots are based on
setbacks of the existing building.

Rule

16 c) In Attached Building Blocks, If more than 50% of the block facade has
been developed within the height limits of the zoning plan then setbacks
are determined based on the existing buildings with the same height.

Rule

77

Table 4.4. Decomposition of IMHZCode Clause-47

Textual Expressions of Statement
A Clause Type
Clause 47— Doors ld&heading
1 Clear height of doors shall be at least 2.10 m Rule
Width of Doors: subheading

2 Clear width of main entrance doors of buildings, which has multiple Rule
independent unit, shall be at least 1.30 meters.
3 Clear width of entrance doors of independent unit shall be at least 1.00 Rule

meters
4 Clear width of room and kitchen doors shall be at least 0.90 meters. Rule
5 Clear width of bathroom, WC, cellar doors shall be at least 0.80 meters. Rule
6 Clear width of store doors shall be at least 1.00 meters. Rule
7 Dimensions of garage, elevator, and similar technical spaces doors shall Rule

be determined in the manner required by the service.
8 The bathroom doors must allow air transfer from the bottom part. Rule

4.1.3. Rule Classification

IMHZCode is a written text document and it has a complex structure.
Classification of rules based on the code structure is needed for understanding higher-
order relationships between rule statements. The analysis of IMHZCode structure has

revealed two types of rules:

¢ Self-contained rules

* Linked explanatory rules

Self-contained rules indicate how something will be, must be, should be, or can
be. The rules related to the width of the stairs, the setback distances, and the height of

entrance doors are examples of this type:

“The minimum width for flights and landings of stairs shall be 1.20 meters.”
“Side setbacks (up to and including 4 storeys) shall be 3.00 meters.”

“Clear height of doors shall be at least 2.10 m”

Linked-explanatory rules are clarifications, exceptions, exemptions, or
modifications of other rules. For example, consider the following two rules from
IMHZCode, one modification and one exception example, for the above rule on the

minimum width for stairs:

78

“These dimensions can be reduced to 0.90 m. for single-family house, basement,
and service stairs.”

“ These dimension restrictions may be ignored for stairs leading to attics that are not
occupied.”

Another example from IMHZCode modifies the rule on the minimum distance

for side setbacks.

“For buildings taller than this (4-storeys) side setbacks are increased by 0.5 meters
for every additional storey.”

In addition to a complex structure, IMHZCode contain rules that may be open to
interpretation, ambiguous and sometimes even contradictory and therefore impossible to
model completely. Classification of rules according to their formalizability is necessary
to assess the potential coverage of the IMHZCode representation. Three additional

types of rules have been identified:

* Formalizable rules,
¢ Semi-formalizable rules, and

¢ Non-formalizable rules.

Formalizable rules are straightforward and can be clearly represented in a
computer implementable format. They can be modeled in a single step by the selected
representation method. These types of rules allow for automated compliance checking

without any ambiguities. The followings are examples from IMHZCode:

“Clear width of room and kitchen doors shall be at least 0.90 meters.”

“ Roof slope cannot exceed 33%.”

Semi-formalizable rules contain ambiguous or fuzzy concepts that require
human interpretation (e.g. enough, easily, nearly, appropriate, and approximately).
These rules require clarification of the concepts involved either during modeling of the
rule or later during compliance checking. The required clarifications of concepts are
possible by employing objective metrics such as minimum or maximum distances.

Example:

“Spaces left as shelter must be able to dispose of garbage easily.”

79

Non-formalizable rules rely on qualitative evaluations such as ones based on
aesthetics or characteristics as well as evaluations where local authority is allowed to
use initiative. These rules are impossible to represent in computable format and

necessitate manual compliance checking under all conditions. Example:

“Roofs must be compatible with the building and in harmony with the character of
the streetscape.”

IMHZCode rule statements on buildings are classified based on the types of
rules that have been identified through this analysis. The two classifications have been
presented in this section. One classification has been based on the structure of the
document. Rules are either self-contained or linked to other rules providing further
explanations. The second classification is based on the rules’ formalizability. Some rule
statements can be represented in computational form, some require human
interpretation but can be computationally supported if appropriate objective measures
are employed during checking while others clearly cannot be subject to automated
reasoning. The classification of the rule statements of Clause-27 and Clause-47 are
given in Table 4.5 and Table 4.6 as an example. The classification of all 258 rule

statements is provided in Appendix A.

Table 4.5. Classification of the rule statements of Clause-27

Clause Statement Rule Rule Type

Id Id Id Self-containedness Formalizability

C27 ST27.2 R27.1 Self-contained Formalizable
ST27.4 R27.2 Linked-explanatory Formalizable
ST27.5 R27.3 Linked-explanatory Formalizable
ST27.6 R27.4 Linked-explanatory Formalizable
ST27.7 R27.5 Self-contained Formalizable
ST27.8 R27.6 Linked-explanatory Formalizable
ST27.9 R27.7 Linked-explanatory Formalizable
ST27.10 R27.8 Self-contained Formalizable
ST27.13 R27.9 Linked-explanatory Formalizable
ST27.14 R27.10 Linked-explanatory Formalizable
ST27.15 R27.11 Linked-explanatory Formalizable
ST27.16 R27.12 Linked-explanatory Formalizable

80

Table 4.6. Classification of the rule statements of Clause-47

Clause Statement Rule Rule Type

Id Id Id Self-containedness Formalizability

Cc27 ST1 R47.1 Self-contained Formalizable
ST2 R47.2 Linked-explanatory Formalizable
ST3 R47.3 Linked-explanatory Formalizable
ST4 R47.4 Linked-explanatory Formalizable
STS R47.5 Linked-explanatory Formalizable
STé6 R47.6 Linked-explanatory Formalizable
ST7 R47.7 Linked-explanatory Non-formalizable
ST8 R47.8 Self-contained Formalizable

The classification study revealed that 58% of the 258 rules that are found are
self-contained and formalizable and 21% are explicative and formalizable. As indicated
in Table 4.7, 79% of IMHZcode rules on residential buildings can be represented in

computer implementable format.

Table 4.7. Results of the classification of IMHZCode rule statements on buildings

Formalizable Semi-formalizable Non-formalizable
Self-contained 58% (149) 7% (17) 4% (12)
Linked-explanatory 21% (55) 6% (14) 4% (11)
Total 79% (204) 13% (31) 8% (23)

In this case study, all formalizable rules of IMHZCode are studied for the
representation in a computer implementable format by using the developed
representation model. The semi-formalizable rules, which are based on fuzzy concepts
that introduce ambiguities though they can be clarified, have been left out of the case
study after a brief investigation into this class of rules. Handling these rules require the
input of code authors as well as authorities in charge of code compliance checking.
Options in objectifying various criteria need to be explored, however it is not possible
to identify options without a proof-of-concept system. Studying the strategies into how
best to deal with semi-formalizable rules can only be conducted after a robust
methodology for representing formalizable rules have been established. The existence
of non-formalizable rules in building codes is a separate research topic and is not within

the scope of this research.

81

4.2. Representation

During the analysis stage, the building code, the chapter of the code, and the
clauses of the chapter to be represented are determined and all rules in selected clauses
are classified. Afterwards, the modeling of IMHZCode’s formalizable rules on
buildings was carried out. IMHZCode’s all formalizable rule statements on buildings
have been modeled based on the new method of rule representation developed as part of

this thesis. Next sections explain the modeling steps in detail.

4.2.1. Domain Objects and Concept Mapping List

As explained in section 3.4.1 a computer representation for building codes needs
to build upon domain objects that reside in the lowest level of the four level
representation. For creating the IMHZCode domain objects, first, the IMHZCode was
scanned manually, statement by statement, concepts and entities in the text are
identified (e.g. building, story, space, door, etc.), and all related terms were extracted
from it. For example, “construction technique” is a term that is mentioned in
IMHZCode and it is an attribute of the “building” concept. There are also terms like
height, width, etc. which are mostly used to define requirements. After all terms are
extracted, domain objects that represent the identified concepts and entities were
determined and modeled as classes with required attributes and relationships to other
classes. These classes, which are for utilization by multiple rule objects in the level
above, along with the relationships between them form the domain model. When
modeling rules, domain classes are used for building applicability and selection
constructs. The UML diagrams for the resulting IMHZCode domain model is given in

Figure 4.1 and Figure 4.2.

82

Block

1

has
0.*
Lot
1
Setback
has
* . .
Building

1

Stair

0-1

* .
—Lift

Roof

Eave

Storey

1; has

Zone

0-1

Canopy

Cantilever

Space

has

0-1

" Shading

Shaft

has

I (L.*

“Wall

Window

—Door

—Ceiling

— Chimney

Figure 4.1. Domain objects of IMHZCode

&3

Block Lot Cantilever 0..* Shading
- isDeveloped isOnCorner - width - width
- is50%Developed 1 - #facingRoad - length
- constructionOrder - clearDepth - type
- sideWalkWidth - area - distanceToProjectZero X
- isFacedToGreenArea 1..*| - buildableArea - distanceToLotSide Stair
- zoningType - roadWidth - distanceToLotRear - material
- refFrontSetbackDist 1 1 0-1 - usage
- refSideSetbackDist - holeWidth
- refBuildingDepth 1% - hasAccessTo
- refCantileverDist —— 1..*]- landingWidth
Building - flightWidth
- #storey . - riserHeight
1 - height - threadLength
- constructionTech - type
S.etBack - depth - thread_LengthMin
- frontDistance 1]_ facade 1 - hasRailBothSide
- sideD_istance - type - #thread
- rearDistance - usage
- isOccupied
- numberOfLift
- numberOfUnit Canopy
Eave - numberOfStair 0..*|- width
1 1 - i;Console
- homeStorey - distanceToLotBorder
- width - level
1.% 0..* 0..* 0..*
Storey Roof Lift Shaft
- level - pitch - startUpStorey - width
- height - run - endingStorey - area
- isOccupied - calculatedRun - hasAccessTo - hasInstallation
- area - form - complyWith - type
1
R 0.*
Space 1% Window
1.* 1- usage - area
Zone - width - width
1 1% |- area 1* - relatedSpace
- boundary “_]-isOccupied -
- area - height
- occupation - relatedSpaces
- hasOpeningTo
- type
- #window L.* Wall
1.* - type
Door 1% - thickness
- height - isExternal
- width 1.* 0..* - isAdjacent
- relatedSpace Ceilin Chimn - constructionTech
- isAllowAirTransfer ering 'mney - hasBondBeam
- openingDirection - isSloped - width - exceedingLimit
- complyWith - homeStorey - relatedSpace
- level CI

Figure 4.2. The domain model of IMHZCode

While concepts generally correspond to a class in the domain model, some
concepts correspond to a subset of objects that belong to a class. All objects in the

subset are required to hold a specified value for a certain property. For example, a

“door” concept is directly represented as a Door object with attributes such as height,
width, relatedSpace, allowAirTransfer. A “bathroom door”, on the other hand is a Door
with “bathroom” as its relatedSpace. These specialized concepts can naturally be
modeled through inheritance following the normal object oriented paradigm. However,
extending the class hierarchy only for selecting specific subsets may quickly and
needlessly increase the complexity of the domain model. All possible variations of
doors (“bathroom door”, “kitchen door”, “entrance door”, etc.) should not need to force
the modeling of individual classes.

The proposed model includes a mapping list for such concepts that are required
for the selection of subsets. Instead of modeling every concept as a class, a concept-
mapping table is created that defines how a concept maps to a filtered set of objects.
The concept mapping table for IMHZCode is shown in Table 4.8. By associating
concepts with a set of selection criteria, the need for a high number of specialized sub-

classes derived from the main domain classes was eliminated.

Table 4.8. Concept-mapping table for IMHZCode

SELECTION FILTER
Concept Class Property Comparator Value
"attic" Zone occupation equal attic
"independentUnit" Zone occupation equal independent unit
"liftShaft" Shaft type equal lift shaft
"airShaft" Shaft type equal air shaft
"coalCellar" Space usage equal coal cellar
"roofTerrace" Zone occupation equal roof terrace
"stairwell" Shaft type equal stair shaft
"gableWall" Wall type equal gable
“mainEntranceDoor Door relatedSpace equal mainEntrance
“bathroomDoor” Door relatedSpace equal bathroom
“kitchenDoor” Door relatedSpace equal kitchen
“entranceDoor” Door relatedSpace equal entrance
“roomDoor” Door relatedSpace equal room
“cellarDoor” Door relatedSpace equal cellar
“livingRoom” Space usage equal livingRoom
“kitchen” Space usage equal livingRoom
“bedroom” Space usage equal livingRoom
“bathroom” Space usage equal livingRoom
“basement” Storey level equal basement
“dwelling” Zone occupation equal dwellingUnit

85

The concept-mapping table makes concepts available as an optional list for
specifying the selection construct of a rule object in the level above. This mapping table
acts as a library of a pre-determined selection constructs for rule objects with concepts
as key (or reference). When modeling rules in the level above, a separate selection
construct need not be modeled in each rule that refers to the same concept. All rules can
refer to the concept and the selection construct can be picked up from the mapping
table. This ensures consistency in the model and prevents unnecessary repetitions.
When a selection construct related with a concept needs to change, only the mapping

table needs to be updated for that concept.

4.2.2. Rule Objects

Individual rule statements in 27 clauses of the IMHZCode have been structured
using the developed rule model schema as a “semantic rule object”. Each rule object has
a “requirement” construct that describes the required specification in a concept. Some
rule objects also have “selection” constructs describing the specific cases where the
requirement is applicable. Both of these constructs have identical structures. They both
have the following attributes: A concept, a property, a comparator, a value, and a unit.

As explained in the section 3.4.2 the concept is a description of the subject to
which the rule applies and the property is an attribute of the concept. The concepts and
their properties are defined in the domain model. The requirement constructs must refer
to concepts modeled as classes in the domain model. The selection constructs on the
other hand may additionally make use of the specialized concepts in the concept
mapping table.

The comparator is a numeric comparison operator such as “>”, “<”, “="_if the
value is numeric. If the value is Boolean, then only the “boolean” comparator is used. If
the value is descriptive, then the “equal” or “!equal” comparators are used. If the value
represents a set of concepts, then the comparator is any of the set comparison operators
such as “includes”, excludes”.

The value is the specific value that is found in the code, whether numeric,
descriptive, or Boolean. There are two different kinds of values: Explicit (literal value)
and derived (an expression). While explicit value is a constant, derived value is either a

reference to another concept’s property or the result of a mathematical expression.

86

Curly brackets “{}” are used for specifying references to concepts, and parentheses “()”
are used to specify expressions.

The unit specifies the unit of measure for numeric values. If the value is not
numeric the unit is blank.

The rule models of Clause-27 and Clause-47 are given in Table 4.9 and Table
4.10 as an example for illustrating how rule statements are modeled. The rule model of

all 27 clauses is provided in Appendix B.

Table 4.9. The structured rule objects of IMHZCode Clause-27

Rule REQUIREMENT SELECTION
Id Concept PropertyC. Value U. Concept Property Comp. Value
R27.1 Setback oM > 5 m
Distance
front {Block_referencedFront Block constructionOrder equal semiDetached
R27.2 Setback .. = . 5T ettt ettt
Distance SetbackDistance} Block hasExistingBuilding boolean true
Block constructionOrder equal lannedUnit
R273 Setback MM _ {Block referencedFront - Block _constructionOrder | equal __ plannedUnit
Distance SetbackDistance} Block hasExistingBuilding equal true
Block constructionOrder equal attached
R27.4 Setback fr(_)nt _ {Blockire.ferencedFront m el e qual attached
Distance ~ SetbackDistance} Block is50%Developed equal true
R27.5 Setback $19¢ — 3 m
Distance
side _ (3+((:{Building_ o -
R27.6 iSetback Distance numberofStorey} :-4)/2)) m Building numberofStorey > 4
R27.7 Setback]S)l(ilsiance > 5 m Building constTechnique equal timberFramed
R27.8 Setback ' = (:{Building height}:/2) m
) Distance) g_heights:
R27.9 Setback g’fsrtame > 3 m Block hasExistingBuilding boolean true
Block constructionOrder equal semiDetached
R27.10 Setback re?r — {BIOCk,re.ferencedRear M F--mmmmmmemesseesseoeosoooos C_l ______________________
Distance SetbackDistance} Block hasExistingBuilding boolean true
rear {Block_referencedRear Block constructionOrder equal plannedUnit
R27.11 Setback .. = . 5T e ettt
Distance SetbackDistance} Block hasExistingBuilding boolean true
rear _ {Block referencedRear BlockconstructlonOrderequalatta ¢ hed _______
R27.12 Setback Di = SetbackDist m
1stance etbackDistance} Block is50%Developed boolean true

87

Table 4.10. The structured rule objects of IMHZCode Clause-47

Rule REQUIREMENT SELECTION
Id Concept Property Comp. Value U. Concept Property Comparator Value
R47.1 Door height > 210 m

R47.2 Door width > 1.30 m mainEntranceDoor

R47.3 Door width > 1.00 m entranceDoor

R47.4.1 Door width > 0.90 m roomDoor

R47.4.2 Door width > 0.90 m kitchenDoor

R47.5.1 Door width > 0.80 m bathroomDoor

R47.5.2 Door width > 0.80 m wcDoor

R47.5.3 Door width > 0.80 m cellarDoor

R47.6 Door width > 1.00 m storeDoor

R47.8 Door allowAirTransfer boolean true bathroomDoor

In the code document, individual rule statements generally indicate a single
requirement, which has a single subject and a single predicate, associated with a
concept. However, some individual rule statements of IMHZCode indicate multiple
requirements of a concept or a requirement related to multiple concepts. For example,
the following individual rule statement indicates a requirement about two concepts,

room and kitchen doors:

“Clause 47 — Doors:
... Clear width of room and kitchen doors shall be at least 0.90 meters.... :

2

“Madde 47 — Kapilar:
... Oda ve mutfak kapilar1 kasa dahil (0.90) metreden az olamaz...:”

For another example, the following individual rule statement indicates two
requirements about a single concept, one qualifies the width and the other qualifies the

area of light shafts:

“Clause 43 — Light and air shafts:
... The width of light shafts shall not be less than 1.00 m and the area of them
shall not be less than 3.00 m2 in one or two-storey buildings ... :”

“Madde 43 — Isikliklar ve hava bacalari:
... Isikliklar, 1 ve 2 katli binalarda; dar kenar1 1.00 metreden, alam1 3.00
m2'den az olamaz ...:”

88

When modeling, these types of rule statements need to be separated into
multiple statements, each targeting a single requirement related to the same concept.
Each rule object thus indicates a single requirement and is associated with a single
property of a single concept defined in the domain model. The relationships among

these individual rule statements are modeled in the levels above.

4.2.3. Rule-set Objects

IMHZCode is composed of various clauses that include closely related
individual rule statements as well as the implicit or explicit information on the
relationship among the statements. The rule-set model defines the relationships among
individual rule statements as explained in section 3.4.3. Related rule objects that are
associated with the same property of the same concept are collected together and
modeled as nested rule-sets using two logical conjunctions: AND, OR. Each top-level
rule-set object is given an id, and defines the related concept and property associated
with all rules in the set. A rule-set is defined for each concept property that is subject to
a requirement in the code document even if there is a single rule object in the set. The
rule-set objects of Clause-27 and Clause-47 are given in Table 4.11 and Table 4.12 as

an example. The collection of rule-set objects of IMHZCode is provided in appendix X

Table 4.11. The rule-set objects of IMHZCode Clause-27

Id Subject Set
___ Conmcept ___ Property
L]
RS27.A Setback frontDistance (|: R27.1,R27.2,R27.3, R27.4)
RS27.B Setback sideDistance (&: (||: R27.5, R27.6), R27.7)
RS27.C Setback rearDistance (]: R27.8, (&: R27.9, (||: R27.10, R27.11, R27.12)))

89

Table 4.12. The rule-set objects of IMHZCode Clause-47

Id Subject Set
Concept Property
|}
RS47.A Door height R47.1
(|: R47.2,R47.3,R47.4.1,R47.4.2,R47.5.1,R47.5.2,
RS47.B Door width R47.5.3, R47.6)
RS47.C Door allowAirTransfer R47.8

Some rule sets have a simple, one level relation between rule objects. The rule-
set RS27.A is the collection of rules specifying constraints for the frontDistance

property of the Setback concept and is an example for this type of rule-sets. (Figure 4.3)

RS27.A

Figure 4.3. Tree representation of the rule-set RS27.A

Some rule sets have multilevel relations between rule objects. The nested sets of
rules form a hierarchical tree-structure. Rule-sets RS27.B, and RS27.C are collections
of rules specifying sideDistance, and rearDistance properties of the Setback concept,

and are examples for this type of complex rule-sets. (Figure 4.4)

RS27.B RS27.C

““1. ‘ L
D Lo

Figure 4.4. Tree representation of rule-set RS27.B and RS27.C

90

4.2.4. Rule-set Group Objects

The final fourth level (management level) of the new model, allows for grouping
of rule-sets. While a building project must simply be compliant with all rule-sets
defined in the third level (rule-set level) regardless of how they are grouped, this level
allows for modeling the structure of the code document itself as well as the relationships
among rule-sets based on any aspect. There may be multiple methods of grouping rule-
sets each representing a different sorting scheme. One obvious grouping method is the
structure of the code document itself. Rule-sets can be grouped representing the heading
and sub-heading based structure of the document. Many other types of relationships and
similarities also exist among rules and rule-sets that can be used as criteria for grouping
them. Alternative methods of grouping rule-sets are allowed to exist. The case study on
the IMHZCode has shown that grouping rule-sets based on the concept (corresponds to
a class in the domain model) they are related to is preferred by compliance checking
algorithm employed by the prototype implementation. In the IMHZCode there are
instances where more than one clause is related with the same concept. For example,
rules related with the building concept are distributed into three clauses. When checking
the building objects for compliance it is more efficient to process all applicable rules
before moving on to other classes of objects. The prototype implementation is described
in the next section. Table 4.13 illustrates classification of rule-sets of setback, building,

and door concepts as an example.

91

Table 4.13. Classification of rule-sets related to setback, building, and door concepts

Part Concept Property - Rule-set Rule

IIT - Rules Related to Buildings and Land Readjustment

Setback

frontDistance — [RS27.A = (]|: R27.1, R27.2, R27.3, R27.4)]

R27.1
R27.2
R27.3
R27.4

sideDistance — [RS27.B = (&: (||: R27.5, R27.6), R27.7)]

R27.5
R27.6
R27.7

rearDistance — [RS27.C = (||: R27.8, (&: R27.9, (]|: R27.10, R27.11, R27.12)))]

R27.8
R27.9
R27.10
R27.11
R27.12

Building

depth — [RS28=(||:R28.1,(&:R28.2,(]:R28.3,R28.4,R28.5)),R28.6, R28.7)]

R28.1
R28.2
R28.3
R28.4
R28.5
R28.6
R28.8

facade — [RS29 = (R29.1)]

R29.1

height — [RS30 = (||: R30.1, R30.2, R30.3, R30.4, R30.5, R30.6, R30.7, R30.8,
R30.9, R30.10)]

R30.1
R30.2
R30.3
R30.4
R30.5
R30.6
R30.7
R30.8
R30.9
R30.10

Door

height — [RS47.A=(R47.1)]

R47.1

width— [RS47.B = (||: R47.2, R47.3, R47.4.1, R47.4.2, R47.5.1, R47.5.2,
R47.5.3, R47.6)]

R47.2
R47.3
R47.4.1
R47.4.2
R47.5.1
R47.5.2
R47.53
R47.6

allowAirTransfer — [RS47.C = (R47.8)]
R47.8

92

4.3. Implementation

During the modeling stage, IMHZCode’s all formalizable rule statements on
buildings have been modeled based on the new method of rule representation developed
as part of this thesis. Afterwards, the implementation of IMHZCode model and its
utilization within a compliance checking application was carried out. Currently, two
commonly used compliance-checking systems are Express Data Manager (EDM), and
Solibri Model Checker (SMC). EDM has a module for writing new rules in EXPRESS,
but it 1s complex and requires a high level of expertise. SMC rules are hard coded into
the system and SMC does not support adding new rules. As a result, neither of these
systems was found suitable as a test bed for the IMHZCode model. For this reason a
new code compliance checking system has been implemented as a prototype for testing
even though the scope of this research does not cover developing automated compliance
checking systems. This proof-of-concept prototype demonstrates the feasibility of the

proposed model.

4.3.1. Prototype

The prototype has been developed solely for the purpose of demonstration and
evaluation of the proposed model for the representation of building codes. The
prototype system has been implemented using the Java language and consists of three
main components: Building Code Reader, Model View Builder, and Compliance
Checker. Building Code Reader reads the building code model from the database and
instantiates rule objects for checking, Model View Builder extracts objects and
properties of interest from BIM data, populates the domain model objects and thus
derives a model view to be checked. Compliance Checker ensures that the building
project meets all requirements by applying all rules to related domain concepts and
compiles a report. Figure 4.5 illustrates the conceptual framework for the compliance

checking system.

93

Building BIM
«
Code H Code Model

Specialist Architect
re---- | . 2
K 2 !

ey 1. . |
: Building Code Model View |
| Reader Builder !
. |
I |
: v v :
| Buildin% Model) |
| Code View !
I Objects Objects :
|
|
: 3 |
! Compliance |_ :
: Checker :
|
! |
e R i
Report

Figure 4.5. Conceptual framework for the compliance checking system

Future code checking systems can develop user-friendly interfaces for
describing actual building codes in computational format which is developed through
this research. In this prototype, the building code model is stored in a database. A
relational database application with a graphical user interface (FileMaker Pro) is used as
a tool to create and store the code model in computational format. Figure 4.6 illustrates
tables and relations in the IMHZCode model database. Acceptance of building code
models by the AEC industry is not possible without tools directly usable by the building
code authors who have no programming background. Building code authors, without
assistance, should be able to create new rules and update existing ones. Exchange of the
building code can happen through various methods. Code checking systems may
establish live connections and retrieve latest codes from the appropriate authority. The
code can be in a number of formats that can represent object oriented data, such as

XML.

94

»Requirement 8 : »RuleSet =]
id s sid
s concept s nodelist
id id
concept = conjunction
property nodeList
comparator aRule aIndex =]
»DomainObject 8B value L(id s RuleSet
Lt
: »Node_List 8 ! domain object
class id snode '
property text
E=:| requirement ! list
selection ! node
= aSelection =]
aConceptMapping & id n W
concept = concept
concept . id
class . concept
property Z property
value . comparator
' value
unit
Domain Level ‘Rule Level -Rule-set Level Management Level

Figure 4.6. Database structure for the IMHZCode model

In the prototype, the Building Code Reader component connects to the database
where the building code models are stored, reads from it and instantiates the necessary
objects (rules, rule-sets, rule-set groups, etc.). Connection of the Building Code Reader
to the IMHZCode database takes place via a JDBC-ODBC bridge that enables Java
applications to query relational databases.

While rules are stored in a database, the project data to be checked for its
compliance with the code is in the form of a building information model (BIM) file. In
this prototype, the BIM model is required to be an Industry Foundation Classes
(IFC2x3) file. The IFC format is utilized by most major research efforts in compliance
checking. IFC is currently considered to be the most suitable schema for improving
information exchange and interoperability in the construction industry.

Model View Builder component of the prototype accesses and extracts the BIM
data that is required during compliance checking. The prototype makes use of JSDAI
(Java Standard Data Access Interface) application programming interface for parsing
STEP (Standard for the Exchange of Product Model Data — ISO 10303) files. [FC2x3
files exported from the BIM application are parsed using the JSDAI library and IFC
objects are created. The IFC objects and their properties of interest are mapped to
domain objects and information is copied over to the domain objects and thus the

required model view is derived for the Compliance Checker.

95

The prototype’s the third major component is the Compliance Checker. It
applies rules to the derived model view and returns a report. Compliance Checker
makes use of the classification of rule-sets by concept that was discussed in section
3.4.4 and section 4.2.4. Compliance Checker takes the list of “rule-set group objects”
that group rule-sets according to the concept they constrain. For each group it applies all
rule-sets to all instances of the concept found in the model view. An instance of a
concept passes a check either if it is as required for every applicable rule in AND rule-
sets or if it is as required for any applicable rule in the OR rule-sets. Finally, the
Compliance Checker reports compliant and non-compliant instances of concepts and

related rules. The functional diagram of this component is illustrated in Figure 4.7.

96

¥€

Building Code Reader

Model View Builder

Building Code
Object List

i]

!

Domain
Object List

___________________ [oo-

Get an "entity" from
DomainObject list

!

Find related "rule-set group "

from Rule-set list

!

Get a "rule-set" from the group

!

Y

Get a "node" from the rule-set |«

fiode is last membe
of rule-set

no

conjunction of

rule-set is "OR" yes

yes

7/ Report as valid

"node" is a rule

yes

"rule" has any
selection criteria

"entity" meets the
requirement

no

conjunction of
rule-set is "OR"

no

v

Get a "node"
from the
subRule-set

1O »|

no

"entity" meets the

es .
Yy selection

+«———— yes

node is last membe

yes of rule-set

Report as
invalid

y

2 yes

Figure 4.7. Functional diagram of Checker

4.3.2. Building Information Modeling Requirements

One important prerequisite for the development of working automated
compliance checking systems is building information models that hold all necessary
information about a building and its site for all codes which compliance will be tested.
Automated compliance checking of a building project against a given building code,
requires additional information from BIM concerning the specialized domain to which
the code belongs to. Since the building information models created by BIM systems do
not include the level of detail needed for IMHZCode, as explained in section 3.5.3,
modeling requirements of the code should be identified.

The modeling requirements for the IMHZCode domain have been identified in
order to develop the prototype system. Domain model for IMHZCode was developed as
the first level of the new representation model. The IMHZCode domain model
established the required objects and level of detail for building models. How much of
the required data can be obtained from the BIM model was analyzed and methods of
mapping the domain model to the BIM model are identified.

The analysis of the domain model to the BIM mapping process reveals that four
types of mappings exist. The first type of mapping takes place between domain objects
and their properties that can match directly to already existing BIM objects. As an
example door object of the domain model and its properties such as width and height
are available as ifcdoor objects. However, some required properties are missing in BIM
objects. The second mapping type takes place when these missing properties can be
derived from ifc relationship definitions between entities if it is possible. As an example
relatedSpace property of door object can be derived examining the relationship between
ifcdoor and ifcspace entities. The third mapping type takes place when deriving the
required data via relationships in ifc is not possible. In these instances, missing
properties are defined as additional IFC property sets for compliance checking.
buildingSMART provides a methodology for defining additional properties
(buildingSMART, 2008b). IFC allows extending the schema and adding custom
properties by defining property sets (PSET). The PSETs and properties for applying the
IMHZCode are shown in Figure 4.8. The fourth type of mapping takes place when
domain concepts have no corresponding objects in the BIM model. These missing

entities require updating the IFC schema in its upcoming versions. The concept of

98

setbacks is one example. In current BIM representations there are no setback objects.
Therefore, only for the prototype system, setback information has been defined as an

extended property sets of ifcSite and the required data for setback is derived from that.

-Illblock.isDeveloped |
» I block.constructionOrder I
| IfcProject I :I, I block.refFrontSetbackDistance Block
~: I block.refRearSetbackDistance] |

»{lot.onCorner Lot
O
:II [lot.numberOfFacingRoad
g | T [—-a
-’| IfcSite ! =':i setback.rearDistance It
#{setback.frontDistance Setback
|
»|setback.sideDistance TN
::Idepth I
| IfcBuilding | -:Ifacade Building
[TrBudmgSorey] r{constructionTechnique ™,
|~>| IfcWallStandardCase |
L| IfcDoor |——+L’:1110_Néi£T£allsf;er_ ______ | Door

Pset IMHZCode

Figure 4.8. Definition of properties for applying the IMHZCode

4.4. Validation

The validation of the new representation model is carried out in three steps:

1. Representing an actual building code based on the developed model.
2. Implementing the code model in a compliance checking system.

3. Evaluating the code model in terms of correctness.

For the validation of the new representation model explained in the CHAPTER
3, a case study has been conducted. For the case study, izmir Municipality Housing and
Zoning Code (IMHZCode), which is representative of codes that are in effect
throughout Turkey, has been chosen. IMHZCode is a complex building code that

consists of various types of rule statements with dependencies. The 27 clauses related to

99

buildings have been analyzed and modeled using the newly developed representation.
The case study demonstrates that the developed representation model is capable of
representing building codes in a computer implementable format.

The implementation of the IMHZCode model in a new compliance checking
system developed as a prototype has been explained in section 4.3.1. The
implementation has been tested on a range of different building projects exported by a
BIM tool.

Correctness ensures that rule objects represent the meaning, intentions, and
implications of the corresponding rule sentences correctly. The correctness of the
IMHZCode model has been evaluated by using the prototype to carry out testing and
validation. Simple building models have been prepared in order to test the results of
compliance checking (section 4.4.1.). All results indicate correct modeling of the

building code.

4.4.1. Test Cases

The usage and testing of the compliance checking prototype is illustrated in this
section by a set of checking scenarios. Clause 27 (distance of setbacks), 28 (depth of
buildings), 29 (facade of buildings), 30 (height of buildings), and 47 (doors) of
IMHZCode are used as demonstrative examples to show how building projects can be
checked for their compliance with building codes. These clauses are given in appendix
A. However, other clauses and building models can be similarly handled by the
prototype for different compliance checking scenarios.

A relational database application, FileMaker Pro, is used to create and store the
sample code model. The code model database is directly and easily usable by the
building code authors who have no programming background for modification of the
content. Whenever needed, the user can access the database to revise or extend the code
model by adding new rules and relationships. The creation of the sample code model

includes the following steps based on the new proposed model:

* Create domain object and concept mapping tables (Figure 4.9 and Figure
4.10)
* Create rule table (Figure 4.11)

100

* C(Classify rule instances that are associated with the same property of the same
concept and create rule-set table (Figure 4.12).
* C(Classify rule-set instances based on the concept they are related to and create

rule-set group table (Figure 4.13).

The DomainObject table shown in Figure 4.9 holds information on domain
objects and their properties that represent identified entities (terms) in the sample
building code text. Block, Lot, Setback, Building, and Door objects have the specified
properties for the sample building code model domain. These domain object and
property pairs (each record in the DomainObject table) are required when building rule
objects. They are used by multiple records in the Rule table as the subject part (concept-

property) of the requirement construct when creating rules.

-
class property
Block constructionOrder
Block hasExistingBuilding
Block refFrontSetbackDist
Block refRearSetbakDist
Block refBuildingDepth
Building height
Building numberofStorey
Building constructionTechnique
Building depth
Building facade
Door width
Door height
Door relatedSpace
Lot isOnCorner
Lot numberofFacingRoad
Lot clearDepth
Setback frontDistance
Setback sideDistance
»|Setback rearDistance
4

Figure 4.9. Domain object table of the sample code model

In addition to the DomainObject table, ConceptMapping table shown in Figure
4.10 also holds information required for defining rules. The ConceptMapping table lists
all concepts referred to in the building code text. Each concept is either a domain object

or a filtered (a specified property is checked against specified criteria) set of domain

101

objects. When creating rules, the selection construct of each rule is a concept from the
ConceptMapping table that can be further filtered. The DomainObject and
ConceptMapping tables together form the lowest level of the developed representation

model which is described in section 3.4.1.

—
concept domainObject property compa... value

door Door
mainEntranceDoor Door relatedSpace equal |mainEntrance
entranceDoor Door relatedSpace equal |entrance
roomDoor Door relatedSpace equal |room
[kitchenDoor Door relatedSpace equal |kitchen
building Building
bathroomDoor Door relatedSpace equal |bathroom
wcDoor Door relatedSpace equal |wc
IstorecyBuilding |Building numberofStorey |= 1
2storeyBuilding |Building numberofStorey |= 2
[setback Setback
6storcyBuilding |Building numberofStorey |= 6
block Block
lot Lot
4storcyBuilding |Building numberofStorey |[= 4
SstorecyBuilding |Building numberofStorey |= 5
7storeyBuilding |Building numberofStorey |= 7
8storcyBuilding |Building numberofStorey |= 8
OstorcyBuilding |Building numberofStorey |= 9
3storeyBuilding [Building numberofStorey |= 3

» |corridorDoor Door relatedSpace equal |corridor

W

Figure 4.10. Concept-mapping table of the sample code model

The Rule table shown in Figure 4.11 holds information on individual rule
objects of the sample code model. 37 rule records are entered for the clauses selected
for the test cases. For each rule record, the subject part (concept and property) of the
requirement construct comes from the DomainObject table while the subject part of the

selection construct comes from the ConceptMapping table.

102

id text |r_concept| r_property |r... r_value ... s_concept s_property S co. s_value
|R.27.01 |On cephe |Setback |frontDistanc > |5 m
IR.27.02 ikiz yap1 |Setback |frontDistanc |= |{Block refFrontSetbackDist} m |block constructionOrder |equal |semiDetached
IR.27.03 Blok yap:|Setback |frontDistanc |= | {Block refFrontSetbackDist} m |block constructionOrder |equal |pl dUnit
IR.27.04 Bitisik |Setback |frontDistanc |= |{Block refFrontSetbackDist} m |block constructionOrder |equal |attached
|R.27.05 [Yan Setback |[sideDistance|> |3 m |buildin numberofStorey |< 4
IR.27.06 Bundan |Setback [sideDistance|> |(((:{Building numberofStorey}:-4)/2) |m |building numberofStorey |= 4
IR.27.07 Ancak, |Setback |sideDistance|= |5 m |building constructionTechni|equal |timberFramed
IR.27.08 Arka Setback |[rearDistance|= |(:{Building height}:/2) m
IR.27.09 Higbir |Setback [rearDistance|= |3 m |block hasExistingBuildin boolean |true
IR.27.10 a) Ikiz |Setback |rearDistance |= |{Block refRearSetbackDist} m |block constructionOrder |equal |semiDetached
IR.27.ll Blok Setback |rearDistance |= |{Block refRearSetbackDist} m |block constructionOrder |equal |plannedUnit
DIR.27.12 Bitigik |Setback |rearDistance |[= |{Block refRearSetbackDist} m |block constructionOrder |equal |attached
IR.ZS.OI Bina Building |depth < |22 m
|R.28.02 |Mevcut |Building |depth < [22 m
IR.28.03 a) Ikiz |Building |depth = |{Block_refBuildingDepth} m |block constructionOrder |equal |semiDetached
IR.28.04 b) Blok |Building |depth {Block_refBuildingDepth} m |block constructionOrder |equal |plannedUnit
|R.28.05 c) Bitigik |Building |depth = |{Block refBuildingDepth} m |block constructionOrder |equal |attached
IR.28.06 a) Bitigik |Building |depth = |{Block_refBuildingDepth} m |lot isOnCorner boolean |true
IR.28.08 b) Kése |Building |depth < |{Lot_clearDepth} m |lot numberofFacingRo|= 2
IR.29.0| Aynk Building |facade < |30 m |block constructionOrder |equal |detached
|R.30.0l 1 kath |Building |height < [3.80 m |lIstoreyBuildin,
IR.30.02 2kath |Building |height < |6.80 m |2storeyBuilding
IR.30.03 3 kath |Building |height < [9.80 m |3storeyBuilding
IR.30.04 4 kath |Building |height < |12.80 m |4storeyBuilding
[R.30.05 5kath |Building |height < |[15.80 m |SstoreyBuilding
|R.30.06 6 kath |Building |height < |18.80 m |6storeyBuildin,
IR.30.07 7kath |Building |height < |21.80 m |7storeyBuildin
IR.30.08 8 kath |Building |height < [24.80 m |8storeyBuilding
IR.30.09 9kath |Building |height < [27.80 m |9storeyBuilding
|R47.01 |Kap |Door |height > [2.10 m
|R47.02 [Birden [Door |width > [130 m |mainEntranceDo
IR.47.03 Bagimsiz [Door width = |[1.00 m_|entranceDoor
|IR.47.04 [Oda Door |width > [0.90 m |roomDoor
IR.47.05 Mutfak |Door width = [0.90 m_[kitchenDoor
IR.47.06 Banyo |Door width = |0.80 m |bathroomDoor
[R47.07 |wC Door |width > |0.80 m |wcDoor
ER.47.08 Koridora (Door width = |0.90 m |corridorDoor
H

Figure 4.11. Rule table of the sample code model

The Node List and RuleSet tables shown in Figure 4.12 together hold the

information on the rule-set trees. Each rule-set tree brings all rule records associated

with the same property of the same concept. Lastly, the RuleSet Group table (Figure

4.13) holds information on various organizations of rule-sets. For the test cases there is

only a single organization. Rule-sets are grouped based on the domain object they are

related to.

103

N v
nodeList node id)i nodeList

»27.4 [R27.01 S27.A OR 27.A

R7.A [R.27.02 |RS.27.B.1 OR 27.B.1

27.4 |R.27.03 |RS.27.B AND 278

27.4 [R.27.04 IRs27.c.1.1 [oR 27.C.1.1

27.8.1 [R.27.05 |Rs.27.C.1 AND 27.C.1

27.8.1 [R27.06 |Rs.27.C OR 27.C

27.8 |Rs.27.B.1 |Rs.28.1.1 OR 28.1.1

27.8 [R.27.07 |Rs.28.1 AND 28.1

27.C.1.1 [R.27.10 |Rs.28 OR 28

27.C.1.1 [R27.11 |Rs.29 NULL 29

27.C.1.1 [R27.12 |rs.30 OR 30

27.C.1 [Rs.27.c.1.1 |RS.47.A NULL 47.A

27.C.1 [R27.09 »|Rs.47.B OR 47.B

27.C |Rs.27.C.1

R7.C |R.27.08

28.1.1 |R.28.03

28.1.1 |R.28.04

28.1.1 |R.28.05

28.1 |Rs.28.1.1

28.1 |R.28.02

28 |Rs.28.1

28 |R.28.01

28 |R.28.06

28 |R.28.08

29 |R.29.01

30 [R.30.01

30 |R.30.02

30 |R.30.03

30 |R.30.04

30 |R.30.05

30 |R.30.06

30 [R.30.07

30 |R.30.08

30 |R.30.09

47.4 [R.47.01

47.8 [R47.02

47.B |R.47.03

47.B |R.47.04

47.B |R.47.05

47.B |R.47.06

47.B |R.47.07

47.8 |R.47.08

Figure 4.12. Classification of rules and rule-set table of sample code model

domainObject ruleSet
[Building RS.28
» Building RS.29
[Building RS.30
oor RS.47.A
[Door RS.47.B
Setback RS.27.A
Setback RS.27.B
Setback RS.27.C
H

Figure 4.13. Rule-set group table of the sample code model

104

The tree model of the sample code model is illustrated in Figure 4.14. As can be
seen from this figure, the sample code model for Clause 27, 28, 29, 30, and 47 of
IMHZCode consist of rule-sets related to Door, Setback, and Building objects. 37 rules
are organized in 8 rule-sets and 3 rule-set groups. During code compliance checking,
each setback, building, and door object in the given building project will be checked
against applicable rules under related rule-sets. For the test cases, the prototype
implementation makes 2 rule-set checks for each door, 3 rule-set checks for the building

and 3 rule-set checks its setback.

Building Code Model

=

(R§ 47 A) | | |Rs 47 B) |
UR
‘ @
COICDICDICD,
Setback Building
« ntDistan sideDistan | | arDis | | depth | | fagade *
(RS. 27 A) (RS 7 B) (RS. 27 C) (RS.28) (RS 9) (RS 30

AN D] 5 UR ; U‘R
B> & & |

Y :éi

Figure 4.14. Tree model of the sample code model

As a test case for the compliance checking prototype, a residential building
project is used. The plan of the 3 storey apartment building is shown in Figure 4.15.
This sample building is modeled using a BIM system, Graphisoft Archicad, and
exported as an IFC file. As explained in section 3.5.3 and section 4.3.2, the building
information models created in a BIM environment do not include all needed
information for code compliance checking. Therefore, for the test case, required
information which cannot be obtained from the raw Archicad BIM model is added to
the model as property-set (PSet) extensions of the IFC schema (Figure 4.16). The
domain object table (Figure 4.9) of the sample code model gives required BIM

information for the code.

105

Livingroom
A 28025 m?

| [0
Bedroom Bedroom Bathroom |[~] j'|: j
AR A 9,000 ¢ asssom |CZ T L
g i - a =
N x i -
= - 1
/~ Comidor \ E%& |
(A 3.300 m? 7 v]

Lot Road
Figure 4.15. Sample building model
IFC Scheme Setup
Filter Scheme Elements: All 4| Scheme Properties:
® IfcMechanicalFastener [Name Unit Type
& IfcEquipmentElement ¥ X Pset_IMHZCode
B IfcFurnishingElement % Lot.clearDepth IfcReal
Il ifcTransportElement X Lot.isOnCorner IfcBoolean
@IchroxY X Lot.numberofFacingRoad IfcReal
v @ (IfcSpatialStructureElement) i
B IfcBuilding X Setback.frontDistance IfcReal
[IfcBuildingStorey X Setback.rearDistance IfcReal
SifcSite X Setback.sideDistance IfcReal
Y fE:;zz:ce | Create IFC Property |
¥ SitfcActor Property Set name: | per |MHZCode |

&a1fcOccupant
v & (IfcControl)
QplfcTimeSeriesSchedule
v E (IfcTypeObject)
v & (IfcTypeProduct)
H IfcWindowStyle
H IfcDoorStyle
> & (IfcElementType)

Property name: “]
Property type: | Single Value =
Value type: | IfcLabel ail

[cancel | [oK]

[Get Current Project Settings

| Gremmpmp)| Cear Al

[Merge... |{ Export...

| | Cancel

[Apply |

Figure 4.16. Creation of missing information as a PSet extension of [FC schema

The compliance checking prototype has been tested through various checking
scenarios. Three demonstrative test cases are presented here. For all scenarios the IFC
file of the sample building project is imported to the prototype for compliance checking
against the sample IMHZCode model. The three cases being presented conduct
compliance checks of the 3-storey residential building design with rules related to the
building, its setback, and doors. For demonstration doors have been selected since rules
on doors are representative of the majority of the clauses in IMHZCode. Setbacks have
been selected because Clause-27 that defines the rules on setback distances is the most
complex clause in IMHZCode. Buildings have been selected because rules on buildings
are not contained in a single clause but are distributed among three different clauses
(Clause-28, Clause-29, Clause-30).

Case 1 is the base case. In this case, the construction order of the city block
where the site is located is defined as detached and the construction technique of the
building is set to concrete. Case 2 is the same design but the construction order of the
block is changed to semi-detached. The setback rule that applies to case 2 is therefore
different than the base case. Case 3 introduces a second change and the construction
technique is defined as timber framed. The setback rule that applies to case 3 is different
than both previous cases. The prototype is able to correctly handle these cases.

In case 1 (related design parameters are given in Table 4.14), the rearDistance
property of the setback object (SO01) is not valid according to Rule-set RS.27.C. Rule-
set RS.27.C includes five rules that indicate minimum rear distance of setbacks. Which
rule is applicable depends on the construction order of the block where the building is to
be built. For case 1, the applicable rule for blocks with detached order, states that rear
setbacks need to be at least half of the total building height (Rule R.27.08). Since the
design does not meet this requirement, case 1 fails the check. During processing, the
system first finds the applicable rule from the related rule-set then applies this rule to
the object (setback object). For case 1, the door object D006 is also not valid. It does not
pass the check on rule-set RS.47.B (related to door widths) because of rule R.47.06.
There are seven rules restricting minimum door width. Because the D006 is a bathroom
door, the system applies R.47.06, which is the correct rule for bathroom doors. The

checking result for case 1 is given in Table 4.15

107

Table 4.14. Design parameters for Case 1

Project: Case 1

Block

id constrOrder hasExistingBuilding refFrontSetbackDis refRearSetbackDis refBuildingDepth
BLOI detached true 5.00 3.00 14.00
Lot

id isOnCorner clearDepth numberofFacingRoad

L001 false 1 20.00

Setback

id frontDistance sideDistance rearDistance

S001 5.00 3.00 3.00

Building

id depth facade height constructionTech numberofStorey
B00O1 11.50 9.50 9.30 concrete 3
Door

id relatedSpace height width

D001 mainEntrance 2.30 1.50

D002 entrance 2.30 1.30

D003 room 2.10 1.20

D004 kitchen 2.10 0.90

D005 corridor 2.10 0.90

D006 bathroom 2.10 0.70

D007 room 2.10 0.90

D008 room 2.10 0.90

DOxx

108

Table 4.15. Checking result for case 1

Checking Result: Case 1

Setback Building Door
frontDistance sideDistance rearDistance — depth facade — height = height — width

(RS.27.4) (RS.27.B) (RS.27.C) (RS.28) (RS.29) (RS.30) (RS.47.4) (RS.47.B)
S001 (R.2\7/.01) (R.2\7/.05) (R.2)§.08))))
B001 - (R.2\é.01) (R.2\9/.01) (R.S\é.OS) i i
D001 - - (R.4\7/.01) (R.4\7/.O2)
D002 - . (R.47.01) (R.47.03)
D003 - - (R.4\7/.01) (R.4\7/.O4)
D004 - - (R.47.01) (R.47.05)
D005 - - (R.47.01) (R.47.08)
D006] - - (R.4\7/.01) (R.4)§.O6)
D007 - - (R47.01) (R.47.04)
D00S] - - (R47.01) (R.47.04)
DO0xx

For case 2 with semi-detached ordered block (Table 4.16) the same setback
object S001 is valid according to Rule-set RS.27.C based on rules R.27.09 and R.27.10.
In Clause-27 of IMHZCode, it is stated that “in Semi-Detached Building Blocks, if

there is an existing building in one of the two lots then rear setbacks will be determined

based on the existing building with the condition that rear setbacks will never be less

than 3.00 meters”. In the code model, this rule statement is represented as two separate

rule objects (R.27.09 and R.27.10) that are connected to each other with an “AND”

conjunction and put into a rule-set (RS.27.C). Again, the system applied the correct

rules to the object and returned the correct result (Table 4.17).

109

Table 4.16. Design parameters for Case 2

Project: Case 2

Block

id constrOrder hasExistingBuilding refFrontSetbackDis refRearSetbackDis refBuildingDepth
BLOI |semiDetached |true 5.00 3.00 14.00

Lot

id isOnCorner clearDepth numberofFacingRoad

L001 false 20.00 1

Setback

id frontDistance sideDistance rearDistance

S001 5.00 3.00 3.00

Building

id depth facade height constructionTech numberofStorey
B001 11.50 9.50 9.30 concrete 3

Table 4.17. Checking result for case 2

Checking Result: Case 2

Setback Building
frontDistance sideDistance rearDistance depth fagade height ...
(RS.27.4) (RS.27.B) (RS.27.C) (RS.28) (RS.29) (RS.30)
7 N N
S001 (R.27.01) (R.27.05) | (R.27.09 & R.27.10) i) i
y v y
B001))) (R.28.01) (R.29.01) (R.30.03)

For case 3 which is a timber frame construction on a semi-detached ordered
block (Table 4.18) the same setback object is again not valid. While case 1 it fails the
checks due to the rear setback distance, case 3 fails due to side setback distance. The
same setback object that passed the checks against rule-set RS.27.B in the first two
cases, fails after the construction technique of the building is specified as being timber
framed. Part B of Clause-27 in IMHZCode states that “Side setbacks (up to and
including 4 storeys) shall be 3.00 meters. For buildings taller than this side setbacks are
increased by 0.5 meters for every additional storey. However, for timber-framed
buildings side setbacks must be at least 5.00 meters.” In the code model, these three rule

statements are represented as three rule objects (R.27.5, R.27.6, and R.27.7). Rules

110

R.27.5 and R.27.6 are connected to each other with an “OR” conjunction and nested as
a sub-set of rule-set RS.27.B. This subset is connected to Rule R.27.7 with an “AND”
conjunction and form rule-set RS.27.B. The system checks setback SO01 against the
first rule (R.27.5) of the rule-set RS.27.B and obtains a pass result. The system skips the
check for R.27.6 since the “OR” conjunction that joins these two rules does not
necessitate further checking. After the system concludes that the setback object passes
this “OR” sub-set, it continues the checking process with R.27.7 because RS.27.B is an
“AND?” rule-set requiring a pass result from all conditions it joins. The setback object
fails its check against R.27.7 due to its shorter than rule-specified distance and thus fails

the overall check. The checking result of the case 3 is given Table 4.19.

Table 4.18. Design parameters for Case 3

Project: Case 3

Block

id constrOrder hasExistingBuilding refFrontSetbackDis refRearSetbackDis refBuildingDepth
BLO1 semiDetached true 5.00 3.00 14.00

Lot

id isOnCorner clearDepth numberofFacingRoad

L001 false 20.00 1

Setback

id frontDistance sideDistance rearDistance

S001 5.00 3.00 3.00

Building

id depth facade height constructionTech numberofStorey
B001 11.50 9.50 9.30 ltimberFramed |3

Table 4.19. Checking result for case 3

Checking Result: Case 3

Setback Building
frontDistance sideDistance rearDistance depth fagade height ...
(RS.27.4) (RS.27.B) (RS.27.C) (RS.28) (RS.29) (RS.30)
v X J
S001 (R.27.01) (R.27.07) | (R.27.09 & R.27.10) i) i
y v y
B001))) (R.28.01) (R.29.01) (R.30.03)

111

Figure 4.17 is a screenshot where compliance checking of the sample building

against IMHZCode clauses related to setback, door and building concepts takes place.

Case 1 is active in the screenshot.

8 O O
File Code Checker Help
~Building Code Model rRule Info PASS RS.47.8B
[IMHZCode Original Text DOO - 008
» [building The width of bathroom doors shall be PASS RS.47.A
atleast 0.80 meters. PASS RS.47.8
v i door DOO - 003
» [RS.47.A - height (NULL Set) PASS RS.47.A
¥ [RS.47.B - width (OR Set) PASS RS.47.8B
Y R.47.02 Requirement DOO - 005
L R.47.03 *||door.width=0.80m PASS RS.47.A
= PASS RS.47.B
] R.47.04 DOO - 007
1 R.47.05 PASS RS.47.A
O Selection PASS RS.47.8
Y R.47.07 bathroomDoor DOO - 006
T PASS RS.47.A
R.47.08
» [setback DFOAO|L_ 002 RS
. PASS RS.47.A
~Domain Model [Object Info PASS RS.47.B
(2 Demo-001 Object S s mmmssmsemeoeoooees
¥ & Door height 2.1 Building
% DOO - 003 width 0.7 Building
= relatedSpace : bathroom PASS RS.28
" DOO - 005 PASS RS.29
1 D00 - 007 ; PASS RS.30
O T
T etbac|
R oo
- PASS RS.27.A
L] DOO - 001 PASS RS.27.8
" DOO - 004 FAIL RS.27.C
Finish

| Check |

Figure 4.17. A screenshot of the testing application

112

CHAPTER 5

CONCLUSION

In this dissertation a new representation model for building codes has been
developed and an accompanying modeling methodology has been proposed. The new
representation model and methodology describing a formal modeling process, allows
representing domain concepts, individual rule statements, relationships between rules,
and alternative methods of structuring (organizing) the overall building code document
in a computable format to be used by future automated compliance checking systems.
This chapter provides a brief summary and discusses contributions of this dissertation

along with directions for future work.

5.1. Findings and Discussion

This dissertation proposed and demonstrated a new representation model
establishing a methodology for representation of building codes as presented in detail in
section 3.4. This new model divides the representation into four levels to provide a

systematic structure for building codes in computational form. These levels are;

1. Domain level for representing concepts that appear in the building code.

2. Rule level for representing individual rule statements of the building code.
3. Rule-set level for representing inter-relations between the rule statements.
4

Management level for representing the organization of the building code.

For creating digital versions of building codes, based on the new representation
model, a building code modeling methodology is defined. The methodology is
comprised of three stages: analysis, representation, implementation.

For more than two decades, the research community has been investigating
automated code compliance checking and proposed several methods of representation
for modeling building codes. Several researchers have suggested various models and
automated building code checking environments based on these models (Fenves, 1966;
Fenves et al., 1987; Jain et al., 1989; Rasdorf & Lakmazaheri, 1990; Garrett & Hakim,

113

1992; Yabuki & Law, 1993; Kiliccote et al., 1994; Wix, 2008; Eastman, 2009;
Yurchyshyna & Zarli, 2009; Pauwels et al., 2011). However, there has been limited
success in transferring these environments into practice (Hakim & Garrett, 1992;
Fenves et al., 1995). A literature survey reveals that the reasons for this failure are
related with the building code models used in these environments and not with the
specific implementations of these environments (Fenves et al., 1995). Building codes
have been modeled using various methods such as decision tables, hard-coded rules,
programming logic, domain-specific rule language, semantic modeling. Each of these
methods has its own inherent limitations. Ideally, the building code model should be
independent of compliance checking systems and be adaptable to continuous
amendments to the building code. It should be consistent (preventing ambiguities as
well as contradictions among rules) and comprehensive. Moreover, there should not be
representational redundancies in the building code model. The new representation
model developed in this dissertation aims to meet the above requirements.

The main contribution of this dissertation is a new model establishing a
methodology for representing building codes structured in four levels, as explained in
CHAPTER 3 in detail. The new representation model is theoretically grounded in
Nyman and Fenves (1975)’s work on an abstract model of the logical structure of
building codes and combines it with an adapted version of SMARTcodes’ semantic-
oriented representation of building codes (Conover, 2009) for modeling rule statements.

Although Fenves and Nyman’s work provides a solid theoretical foundation for
representation of building codes, previous building code models based on this theory
were not widely adopted in AEC industry mainly due to the immature information
technologies for knowledge representation at the time. Representation methods in the
modeling of building code information were inefficient and not easy understandable by
non-programmer users, therefore code models quickly became hard to maintain and
build. The four-level structure they introduced is still applicable and has proven to be a
robust method for decomposing building codes.

SMARTcodes’ semantic-oriented representation approach, which is a relatively
new method for knowledge representation, provides an easy to understand, elegant
method for modeling rule statements. It utilizes a simple scheme (RASE constructs) that
is applicable for all types of rule statements, and with it, non-programmer users are able
to build and maintain building code models. A pilot study carried out in the early phase

of the research showed that it can be utilized for representing building codes, however,

114

several shortcomings were identified. First, it is prone to inconsistencies and creates
redundancies arising from modeling the same concepts multiple times for each
applicability and selection construct when the concepts are referenced by multiple rules.
This shortcoming was addressed by the first level of the new representation model
creating domain objects of interest and concept mapping table that are used to define
repeating concepts once. Second shortcoming is the lack of explicit relationships
between individual rule statements. In SMARTcodes’ approach, relationship
representation (hierarchy within rules) is handled separately in the automated
compliance checking system. This makes it difficult to ensure correctness and
consistency for the overall code representation, independent of automated checking
systems. The third level of the new model addresses this shortcoming by allowing to
build the logical hierarchy relationships between rules. As a result, while
SMARTcode’s approach was adopted, it was modified into a four level representation
that improves it by eliminating redundancies and adding logical relationships.

The dissertation shows that decomposing a building code into four levels and
modeling rules based on the semantic-oriented paradigm is an effective modeling
strategy for representing building codes in a computable format independent of
automated compliance checking systems. The four levels are: The domain level, the rule
level, the rule-set level and the management level.

The domain level defines concepts in code checking (e.g. setback, eave,
cantilever, etc.) as well as specialized object definitions (e.g. bathroom door, air shaft,
developed lot, etc.) and holds a view of the building project appropriate for code
checking when the checking system processes the BIM input. Objects at the domain
level are used at the rule level where requirements are defined for them. With this
separation all rules use the same definition for a concept and consistency in modeling is
ensured.

After the building code is decomposed into independent rule statements, they are
modeled as rule objects in the form of structured data based on modified RASE
constructs. The use of domain level objects in building the constructs eliminates
redundancies and ensures conciseness. The dependencies between rule statements are
not modeled at this level. Since these rule objects at this level are simple and
independent, completeness of the representation can be guaranteed by comparing them

to the list of rule statements identified during the analysis of the building code.

115

The dependencies between rule objects are modeled at the rule-set level. When
different requirements (rule statements) are stated for the same object depending on
different conditions, the logical relationship hierarchy between rules is modeled at this
level. This clear demarcation simplifies modeling of individual rule statements and at
the same time allows analyzing complex conditional statements independent of the
requirement data. Since at this level, only logical relations are modeled, it is easier to
detect contradictions and redundancies within the conditions set forth in the building
code. Ensuring uniqueness and correctness of the model can be managed through the
rule-set definitions at this level.

While a simple aggregation of rule-sets is enough to represent all of the
requirements contained in the building-code, it is also necessary to model the various
methods of organizing the code. One method is the original section — heading — sub-
heading organization that is used by the code document itself. The management level
provides the tools to model such alternative organization methods to persist along with
the rest of the code. Automated compliance checking systems will need to handle
multiple building codes published by different authorities. When rules from multiple
building codes apply to the same objects, the scope and priority of rule-sets will need to
be modeled. In order to support these operations across multiple building codes, the
rule-set classification objects are provided at the management level.

When compared with the RASE methodology, maintainability is preserved and
even improved. Since concepts, individual rule statements, relations between the rule
statements and organization of the building code are separately represented, required
changes to the code model due to future revisions of the building code can be localized
and handled without affecting the automated checking system.

The second contribution of this dissertation is a building code modeling
methodology defining the process steps in developing building code representations by
utilizing the proposed representation model, as explained in section 3.5 in detail. The

proposed building code modeling methodology is comprised of three process stages:

1. Analysis of the building code for defining what should be represented
explicitly for the purposes of automated compliance checking and
documenting how much of the building code can be modeled reliably.

2. Representation of the building code by utilizing the developed representation

model.

116

3. Implementation of the building code model within a compliance checking

application.

The third contribution of this dissertation comes with a thorough analysis of the
building codes as explained in detail in section 2.1. It is essential to understand the
characteristics of building code documents and the various types of information
contained in them in order to develop an appropriate building code model. The analysis
led to a framework for classification of different rule types that are commonly found in
building code documents. Classification according to formalizability is necessary for
figuring out how much of the code can benefit from automated compliance checking.
More importantly classification according to self-containedness is needed for
understanding higher-order relationships between rule statements. This classification
study 1s an essential first step for creating a digital representation of any building code
document. Previous models and approaches for representation of building codes, several
compliance checking systems and current technologies for implementation of building
code models are also examined in section 2.2 and 2.3 to assess their advantages and
limitations.

The proposed representation model is validated for use in the building design
domain through a conducted case study and a prototype implementation. The validation
study focused on modeling IMHZCode (Izmir Municipality Housing and Zoning Code)
and illustrating the use of the new representation within future compliance checking
applications. The prototype implementation was completed and code compliance
checking of demonstrative examples, testing the capabilities of the model was
successfully carried out.

In summary, through the research reported on in this dissertation:

* A new representation model, based on a four level structure stemming from
Fenves and Nyman’s work and utilizing an adapted version of
SMARTCodes’ semantic oriented representation of rule statements, has been
developed establishing a methodology for representation of building codes.

* A building code modeling methodology is defined for utilizing the new
representation model.

* The Izmir Municipality Housing and Zoning Code has been analyzed in

detail and a framework for classification of rules has been developed.

117

* The Izmir Municipality Housing and Zoning Code has been modeled
following the developed methodology as a demonstrative case.

* A prototype representing the functionality of future automated compliance
checking systems has been implemented. Demonstrative examples of

building projects have successfully been checked for compliance with

IMHZCode.

To conclude, the main contribution of this dissertation is the new representation
model for building codes that would be utilized in the development of automated
compliance checking systems. The new model is the outcome of modifying and
extending the recently developed semantic-oriented representation approach based on
the theoretical view of the logical structure of building codes established by earlier
efforts. This dissertation has demonstrated the importance of separating and making
explicit, the representations for domain concepts, individual rule statements,

relationships between rule statements and organization of the building code.

5.2. Future Work

The prototype that has been implemented has been successful in checking
compliance with IMHZCode for the building projects that have been chosen as test
cases. However, there are limitations to this proof of concept. First, only IMHZCode
has been modeled and the prototype has been tested with only this model. Yet, it should
be noted that the building code that was chosen was Izmir Municipality Housing and
Zoning Code. IMHZCode, as a code that is actually in effect and belonging to a
metropolis, is comprehensive and includes rule statements that have a high level of
complexity. Thus it is representative of codes that are hardest to represent in
computational format.

A second important limitation is the fact the new model is designed with the
intent to provide a solution for representing only formalizable rules. Semi-formalizable
and non-formalizable rules have not been included in the scope of this research. As
future efforts develop solutions for these types of rules, the methodology might need to

be adapted.

118

The research presented in this dissertation is a step forward towards providing
automation support for compliance checking of building projects. Many directions for

future research can be identified.

* A user interface for code authors is required for adding or modifying
rules/concepts.

* Building a domain model is manual work. It should be investigated if
domain models can be automatically derived from original texts of building
codes by applying advanced artificial intelligence and natural language
processing techniques.

* How building information models should be extended to hold information
requirements of various code domains in order to support automated
reasoning about code compliance is another issue that will need to be

resolved.

119

REFERENCES

AEC3. (2012). International Code Council Retrieved February, 23, 2013, from
http://www.aec3.com/en/5/5_013_ICC.htm

buildingSMART. (2008a). Industry Foundation Classes (Ifc) Data Model Retrieved 14
May, 2014, from http://www.buildingsmart.org/standards/ifc

buildingSMART. (2008b). Model View Definitions Retrieved 3 June, 2014, from
http://www.buildingsmart.org/standards/mvd

Cheng, C. P, Lau, G. T., Law, K. H., Pan, J., & Jones, A. (2009). Improving Access to
and Understanding of Regulations through Taxonomies. Government
Information Quarterly, 26(2), 238-245. doi: 10.1016/5.g1q.2008.12.008

Conover, D. (2007). Development and Implementation of Automated Code Compliance
Checking in the U.S. International Code Council.

Conover, D. (2009). Method and Apparatus for Automatically Determining Compliance
with Building Regulations, Washington, DC, US Patent No. US 2009/0125283
Al.

Ding, L., Drogemuller, R., Rosenman, M., Marchant, D., & Gero, J. (2006). Automating
Code Checking for Building Designs — Designcheck. Paper presented at the
Clients Driving Innovation: Moving Ideas into Practice, Gold Coast,
Queensland, Australia.

Dym, C. L., Henchey, R. P., Delis, E. A., & Gonick, S. (1988). A Knowledge-Based
System for Automated Architectural Code Checking. Computer-Aided Design,
20(3), 137-145. doi: http://dx.doi.org/10.1016/0010-4485(88)90021-8

Eastman, C. (2006). Ifc Overview. Chuck Eastman.

Eastman, C. (2009). Automated Assessment of Early Concept Designs. Architectural
Design, 79(2), 52-57. doi: 10.1002/ad.851

Eastman, C. M., Lee, J.-m., Jeong, Y.-s., & Lee, J.-k. (2008). Implementation of
Automatic Circulation Checking Module: Georgia Tech. .

Eastman, C. M., Lee, J.-m., Jeong, Y.-s., & Lee, J.-k. (2009). Automatic Rule-Based
Checking of Building Designs. Automation in Construction, 18(8), 1011-1033.
doi: 10.1016/j.autcon.2009.07.002

Fenves, S. J. (1966). Tabular Decision Logic for Structural Design. Journal of
Structural Division ASCE, 92, 473-490.

120

Fenves, S. J. (1976). The Structure of Building Specifications. In ERIC (Ed.), NBS
Building Science Series 90 (pp. 92). Washington, DC.: National Bureau of
Standards.

Fenves, S. J., Garrett, J. H., Kiliccote, H., Law, K. H., & Reed, K. A. (1995). Computer
Representations of Design Standards and Building Codes: U.S. Perspective. The
International Journal of Construction Information Technology, 3(1), 13-34.

Fenves, S. J., Gaylord, E. H., & Goel, S. K. (1969). Decision Table Formulation of the
1969 Aisc Specification Civil Engineering Studies SRS-347.

Fenves, S. J., & Wright, R. N. (1977). The Representation and Use of Design
Specifications NBS technical note 940. Washington, DC.: National Bureau of
Standards.

Fenves, S. J., Wright, R. N., Stahl, F. 1., & Reed, K. A. (1987). Introduction to Sase:
Standards Analysis, Synthesis and Expression. In NBSIR (Ed.). Washington,
D.C.: National Bureau of Standards.

Garrett, J. H., & Fenves, S. J. (1987). A Knowledge-Based Standards Processor for
Structural Component Design. Engineering with Computers, 2(4), 219-238. doi:
10.1007/BF01276414

Garrett, J. H. J., & Hakim, M. M. (1992). Object-Oriented Model of Engineering
Design Standards. Journal of Computing in Civil Engineering, 6(3), 323-347.

Gero, J. S. (1984). Amubc System. Final Report. University of Sydney.

Hakim, M. M., & Garrett, J. H. (1992). Issues in Modelling and Processing Design
Standards. Paper presented at the The joint CIB Workshops on Computers and
Information in Construction.

Hakim, M. M., & Garrett, J. H. (1993). A Description Logic Approach for Representing
Engineering Design Standards. Engineering with Computers, 9(2), 108-124. doi:
10.1007/bf01199049

Han, C., Kungz, J., & Law, K. H. (1997). Making Automated Building Code Checking a
Reality. Facility Management Journal, 22-28.

Han, C., Kunz, J. C., & Law, K. H. (2002). Compliance Analysis for Disabled Access.
In J. a. A. K. E. William J. Mclver (Ed.), Advances in Digital Government
Technology, Human Factors, and Policy (pp. 149-163). Kluwer, Boston, MA.

Han, C. S., Kunz, J. C., & Law, K. H. (1998). Client/Server Framework for on-Line
Building Code Checking. Journal of Computing in Civil Engineering, 12(4),
181.

121

Harris, J. R., & Wright, R. N. (1980). Organization of Building Standards: Systematic
Techniques for Scope and Arrangement NBS, Building Science Series 136 (pp.
267). Washington, D.C.: National Bureau of Standards.

Hjelseth, E. (2009). Foundation for Development of Computable Rules. Paper presented
at the CIB W078 26TH INTERNATIONAL CONFERENCE.

Hjelseth, E. (2012). Converting Performance Based Regulations into Computable Rules
in Bim Based Model Checking Software Ework and Ebusiness in Architecture,
Engineering and Construction (pp. 461-469): CRC Press.

ISO. (2002). Iso 10303-21:2002 Industrial Automation Systems and Integration --
Product Data Representation and Exchange -- Part 21: Implementation Methods:
Clear Text Encoding of the Exchange Structure.

ISO. (2004). Iso 10303-11:2004 Industrial Automation Systems and Integration --
Product Data Representation and Exchange -- Part 11: Description Methods:
The Express Language Reference Manual.

ISO. (2013). Iso 16739:2013 Industry Foundation Classes (Ifc) for Data Sharing in the
Construction and Facility Management Industries.

Jain, D., Law, K. H., & Krawinkler, H. (1989). On Processing Standards with Predicate
Calculus. Paper presented at the Sixth Conference on Computing in Civil
Engineering, Atlanta, Georgia.

Jotne. (1994). Express Data Manager Retrieved 14 May, 2014, from
http://www.epmtech.jotne.com

Kerrigan, S., & Law, K. H. (2003). Logic-Based Regulation Compliance-Assistance.
Paper presented at the 9th International Conference on Artificial Intelligence and
Law Scotland, United Kingdom.

Khemlani, L. (2004). The Ifc Building Model: A Look under the Hood. AECbytes
Feature, 1-10.

Khemlani, L. (2005). Corenet E-Plancheck: Singapore's Automated Code Checking
System. AECbhytes.

Kiliccote, H., & Garrett, J. H. (1998). Standards Modeling Language. Journal of
Computing in Civil Engineering, 12(3), 129-135.

Kiliccote, H., James H. Garrett, J., Chmielenski, T. J., & Reed, K. A. (1994). The
Context-Oriented Model: An Improved Modeling Approach for Representing
and Processing Design Standards. Paper presented at the First ASCE Congress
on Computing in Civil Engineering, Washington, D.C, June 1994.

122

Kumar, B. (1995). Knowledge Processing for Structural Design. Southampton, UK ;:
Computational Mechanics Publications.

Lee, J. K., Eastman, C. M., Lee, J., Kannala, M., & Jeong, Y. S. (2010). Computing
Walking Distances within Buildings Using the Universal Circulation Network.
ENVIRONMENT AND PLANNING B-PLANNING & DESIGN, 37(4), 628-645.
doi: 10.1068/b35124

Liebich, T. (2002). Ifc Overview: Status of Standardization. Implementation, and Use of
Model-Based Work Together with IFC, 5, 1-16.

Liebich, T., Wix, J., Forester, J., & Qi, Z. (2002). Speeding-up the Building Plan
Approval - the Singapore E-Plan Checking Project Offers Automatic Plan
Checking Based on Ifc. Paper presented at the European Conferences on Product
and Process Modelling (ECPPM) 2002 - eWork and eBusiness in Architecture,
Engineering and Construction, Portoroz, Slovenia.

Macit, S., Ilal, M. E., Giinaydin, H. M., & Suter, G. (2013). [zmi Municipality Housing
and Zoning Code Analysis and Representation for Compliance Checking. Paper
presented at the 20th Workshop of the European Group for Intelligent
Computing in Engineering, Vienna, Austria, 1-3 July.

Nisbet, N., Wix, J., & Conover, D. (2009). The Future of Virtual Construction and
Regulation Checking Virtual Futures for Design, Construction & Procurement
(pp. 241-250): Blackwell Publishing Ltd.

novaCITYNETS. (2000). About Fornax™ - Plancheck Expert Retrieved 14 May, 2014,
from http://www.novacitynets.com/fornax/about.htm

Nyman, D. J, & Fenves, S. J. (1975). An Organization Model for Design
Specifications. Journal of structural Division ASCE, 101(4), 697-716.

Nyman, D. J., Fenves, S. J., & Wright, R. N. (1973). Restructuring Study of the Aisc
Specification Civil Engineering Studies SRS-393 (Vol. 1). Urbana-Champaign:
Department of Civil Engineering, University of Illinois Engineering Experiment
Station.

Pauwels, P., Deursen, D. V., Verstraeten, R., Roo, J. D., Meyer, R. D., Walle, R. V. d.,
& Campenhout, J. V. (2011). A Semantic Rule Checking Environment for
Building Performance Checking. Automation in Construction, 20(5), 506-518.
doi: 10.1016/j.autcon.2010.11.017

Rasdorf, W., & Fenves, S. (1980). Design Specification Representation and Analysis.
Paper presented at the 2nd ASCE Conference on Computing in Civil
Engineering, Baltimore, Maryland, United States, June 9-13.

123

Rasdorf, W., & Wang, T. (1988). Generic Design Standards Processing in an Expert
System Environment. Journal of Computing in Civil Engineering, 2(1), 68-87.
doi: 10.1061/(ASCE)0887-3801(1988)2:1(68)

Rasdorf, W. J., & Lakmazaheri, S. (1990). Logic-Based Approach for Modeling
Organization of Design Standards. Journal of Computing in Civil Engineering,
4(2), 102-123. doi: 10.1061/(ASCE)0887-3801(1990)4:2(102)

Rosenman, M. A., & Gero, J. S. (1985). Design Codes as Expert Systems. Computer-
Aided Design, 17(9), 399-409. doi: http://dx.doi.org/10.1016/0010-
4485(85)90287-8

Salama, D. M., & EIl-Gohary, N. M. (2011). Semantic Modeling for Automated
Compliance Checking Computing in Civil Engineering (2011) (pp. 641-648).

Sing, T. F., & Zhong, Q. (2001). Construction and Real Estate Network (Corenet).
Facilities, 19(11/12), 419-428.

Solibri. (1999). Solibri Model Checker Retrieved 14 May, 2014, from
http://www.solibri.com/products/solibri-model-checker/

Vassileva, S. (2000). An Approach of Constructing Integrated Client/Server Framework
for Operative Checking of Building Code. Paper presented at the Construction
Information Technology 2000: Taking the construction industry into the 21st
century, Reykjavik, Iceland, June 28-30.

Waard, M. d. (1992). Computer Aided Conformance Checking. Paper presented at the
Computers and Building Standards Workshop, Montreal, Canada, May 1992.

Wix, J. (2008). Bim Automated Code Checking Based on Smartcodes. Paper presented
at the BuildingSmart Forum.

Wix, J., & Conover, D. (2007). Capturing and Using Knowledge with Building
Informatin Modeling (Keynote) Information and Knowledge Management -
Helping the Practitioner in Planning and Building. Proceedings of the Cib
W102 3rd International Conference 2007 (pp. p.35-48). Stuttgart (Germany):
Fraunhofer IRB Verlag.

Yabuki, N., & Law, K. H. (1993). An Object-Logic Model for the Representation and
Processing of Design Standards. Engineering with Computers, 9(3), 133-159.
doi: 10.1007/b£f01206345

Yang, Q. Z., & Li, X. (2001). Representation and Execution of Building Codes for
Automated Code Checking. Paper presented at the 9th International Conference
on Computer Aided Architectural Design Futures 2001, Eindhoven,
Netherlands, Jul 08-11.

124

Yurchyshyna, A., Faron-Zucker, C., Thanh, N. L., & Zarli, A. (2008). Towards an
Ontology-Enabled Approach for Modeling the Process of Conformity Checking

in Construction. Paper presented at the CAiSE Forum, Montpellier, France, June
18-20.

Yurchyshyna, A., & Zarli, A. (2009). An Ontology-Based Approach for Formalisation
and Semantic Organisation of Conformance Requirements in Construction. [doi:
DOI: 10.1016/j.autcon.2009.07.008]. Automation in Construction, 18(8), 1084-
1098.

Zhang, J., & El-Gohary, N. M. (2011). Automated Information Extraction from
Construction-Related Regulatory Documents for Automated Compliance
Checking. Paper presented at the CIM W78-W102 Conference, Sophia
Antipolis, France.

125

APPENDIX A

DECOMPOSITION AND CLASSIFICATION OF
IMHZCODE

This appendix shows the decomposition of Izmir Municipality Housing and
Zoning Code (IMHZCode) clauses that include rule statements pertinent to buildings

and the classification of these rule statements.

Textual Expressions of Statement
Clause 27 Type
Madde 27-Bahge Mesafeleri ld&heading
1 Yirtrlikteki imar plani kararlarinda bahge mesafelerine iligkin Olgiiler belirtilmedigi Applicability
takdirde, bahce mesafelerinin asagidaki kosullara gore belirlenmesi zorunludur. con.
A- On Bahce Mesafeleri: subheading
2 On cephe ve yol kenarlarina, yesil sahaya ve otoparka rastlayan bah¢e mesafeleri en az Rule
5.00 m.dir.

3 Ancak, yapilasmanin basladig1 adalarda (ayrik yap1 nizami verilen adalar hari¢) asagidaki Applicability
kosullara gore, ayni ada yiiziindeki mevcut yapilar dikkate alinarak bahg¢e mesafeleri tayin con.

edilecektir.

4 a) Ikiz yap1 nizami verilen adalarda; parsellerden birinde mevcut bina var ise, ikizine Rule
verilecek bah¢e mesafesinin tayininde mevcut yapi esas alinir.

5 b) Blok yapi1 nizami verilen adalarda; ayn1 blok i¢indeki parsellerden herhangi birinde Rule

mevcut bina var ise, sadece bu bloktaki parsellerin bahge mesafesinin tayininde mevcut
binanin bahgesi esas alinir.

6 c) Bitisik yap1 nizami verilen adalarda; ada yiiziiniin %50’den fazlasinin (say1 ve/veya Rule
taban alani itibariyla) yiirtirliikteki imar planina gore gabarisinde ruhsatli olarak tesekkiil
etmis olmasi halinde, bahce mesafesinin tayininde ayn1 ada yiiziindeki ve gabarideki en
yakin mevcut binalar esas alinir.

B-Yan Bahge Mesafeleri subheading

7 Yan bah¢e mesafeleri (4 kata kadar 4 kat dahil) 3.00 m. olacaktir. Rule

8 Bundan yiiksek katli binalarda yan komsu mesafeleri 3 m.ye her bir kat i¢in 0.50 m. ilave Rule
edilmek suretiyle tespit olunur.

9 Ancak, ahsap karkas yapilar i¢in en az 5 m. mesafe birakilmasi sarttir. Rule
B-Arka Bahge Mesafeleri subheading
10 Arka bahce mesafeleri H/2 dir. Rule
11 Bina yiiksekligi olan H’nin tespiti bu yonetmeligin 30. maddesine gore yapilir. Clarification

12 Arka bahge mesafeleri bir yola cephesi olan, iki yola cephesi olan (kdsebasi parselleri) ve Clarification
3 yola cephesi olan kdsebasi parsellerinde de uygulanir.
13 Higbir yerde 3.00 m.den az olmamak kosulu ile, yapilasmanin bagladigi adalarda (ayrik ~ Rule &

yap1 nizami verilen adalar harig) asagidaki kogullara gore, ayn1 ada yliziindeki mevcut Applicability
yapilar dikkate alinarak arka bahce mesafesi tayin edilecektir. con.

14 a) Ikiz yap1 nizam verilen adalarda; parsellerden birinde mevcut bina var ise, ikizine Rule
verilecek arka bah¢e mesafesinin tayininde mevcut yapi esas alinir.

15 b) Blok yap1 nizamu verilen adalarda; ayn1 blok igindeki parsellerden herhangi birinde Rule

mevcut bina var ise, sadece bu bloktaki parsellerin arka bahge mesafesinin tayininde
mevcut binanin arka bahgesi esas alinir.
16 c¢) Bitisik yap1 nizami verilen adalarda; ada yiiziiniin %50°den fazlasinin (say1 ve/veya Rule
taban alani itibariyla) yiirtirliikteki imar planina gore gabarisinde ruhsatli olarak tesekkiil
etmis olmasi halinde, arka bahgelerin tayininde ayni ada yiiziindeki ve gabarideki en

yakin mevcut binalar esas alinir.
L___]

126

Clause Id Statement Id Rule Id Rule Type
Self-containedness Formalizability

C27 ST2 R27.1 Self-contained Formalizable
ST4 R27.2 Linked-explanatory Formalizable
STS R27.3 Linked-explanatory Formalizable
ST6 R27.4 Linked-explanatory Formalizable
ST7 R27.5 Self-contained Formalizable
ST8 R27.6 Linked-explanatory Formalizable
ST9 R27.7 Linked-explanatory Formalizable
ST10 R27.8 Self-contained Formalizable
ST13 R27.9 Linked-explanatory Formalizable
ST14 R27.10 Linked-explanatory Formalizable
ST15 R27.11 Linked-explanatory Formalizable
ST16 R27.12 Linked-explanatory Formalizable

Textual Expressions of Statement
Clause 28 Type
Madde 28— Bina Derinlikleri ld&heading

1 Bina derinlikleri; hi¢bir yerde 22.00 m.yi gegmemek ve arka bah¢e mesafesi H/2 nin altina Rule
diismemek kaydiyla, imar plani kosullar1 da dikkate alinarak hesaplanir.

2 Mevcut yapilagmanin basladig1 adalarda higbir yerde arka komsu sinirina 3.00 m.den fazla Rule
yaklagsmamak ve max. 22.00 m.yi gegmemek sart1 ile agagidaki kosullara gére ayni ada
yiiziindeki mevcut yapilasma dikkate alinarak hesaplanir.

3 a) Ikiz yap1 nizamu verilen adalarda; parsellerden birinde mevcut bina var ise, ikizine Rule
verilecek bina derinliginin tayininde mevcut yap1 esas alinir.

4 b) Blok yap1 nizam1 verilen adalarda; ayni1 blok igindeki parsellerden herhangi birinde mevcut Rule
bina var ise, sadece bu bloktaki parsellerin bina derinliklerinin tayininde mevcut binanin bina
derinligi esas alinir.

5 c¢) Bitisik yap1 nizami verilen adalarda; adanin %50'den fazlasinin (say1 ve/veya taban alan1 ~ Rule
itibariyla) yirtrliikteki imar planina gore gabarisinde ruhsatli olarak tesekkiil etmis olmasi
halinde, bina derinliklerinin tayininde ayni gabarideki mevcut binalar esas alinir.

6 a) Bitisik yap1 nizami verilen adalarda; kdse basina rastlayan parsellerde yap1 derinligi Rule
parselin yiiz aldig1 yollar {izerindeki komsu parsellere verilecek derinliklere gore belirlenir.

7 Yap1 adasinda bu yollara verilen derinliklerin ada kdsesindeki parsellerin ada i¢i boslugu ile Rule
irtibatini kesecek dl¢iide olmamasi halinde, bina derinligi 30 m. yi asmamak kaydiyla bu
parsellere nizami aydinlikla parsel tamamina yap1 izni verilebilir.

8 b) Kdse basindan bagka iki yola cephesi bulunan ve varsa 6n, arka bah¢e mesafeleri ¢iktiktan Rule
sonraki ortalama derinligi 30.00 m.den az olan parsellerde bu derinlige kadar yap1 yapilabilir.

9 Toplam kitle derinligi 30. m. yi agmamak komsu binalarla uyum saglamak, arka bahgeleri Rule
biitiinlestirecek sekilde parselde iki kitle diizenlemeye belediyesi yetkilidir.

10 c¢) Her tiirlii bolgede derinligi az olan parsellerde 3.00 m. arka bahge mesafesi birakildiginda Rule
bina derinliginin 10.00 m. altina diismesi halinde arka bahg¢e mesafesini 1.00 m. ye kadar
azaltmaya belediyesi yetkilidir.

11 d) Ayrik nizamda ve yap1 emsali verilmemis adalarda; bah¢e mesafesi i¢inde kalmak kosulu ~ Rule

ile yap1 boyutlar1 22.00 x 30.00 m.yi asamaz.

Clause Id Statement Id Rule Id

Rule Type

Self-containedness

Formalizability

C28

ST1 R28.1 Self-contained Formalizable
ST2 R28.2 Linked-explanatory Formalizable
ST3 R28.3 Linked-explanatory Formalizable
ST4 R28.4 Linked-explanatory Formalizable
STS R28.5 Linked-explanatory Formalizable
ST6 R28.6 Linked-explanatory Formalizable
ST7 R28.7 Linked-explanatory Semi-formalizable
ST8 R28.8 Linked-explanatory Formalizable
ST9 R28.9 Linked-explanatory Non-formalizable
ST10 R28.10 Linked-explanatory Non-formalizable
ST11 R28.11 Self-contained Formalizable

127

Textual Expressions of Statement

Clause 29 Type
Madde 29— Bina Cepheleri ld&heading
1 Ayrik yap1 nizamina tabi olan yerlerde yapilacak yapilarin max. bina cephesi (30.00) Rule
m.dir.
2 Ayrnik ve ikiz yap1 nizamina tabi olan yerlerde, daha uygun ¢dziim yollar1 bulmak Rule

maksadi ile birkag dar parseli birlikte miitalaa ederek o yer i¢in tespit edilen yap1
karakterine uyacak bir tertipten uzaklasmamak kaydiyla, bina cepheleri toplami (30.00)
m.yi gegmeyen ikili veya {iglii bloklar teskil etmeye belediyesi yetkilidir.

Clause Id Statement Id Rule Id Rule Type
Self-containedness Formalizability
C29 ST1 R29.1 Self-contained Formalizable
ST2 R29.2 Self-contained Non-formalizable
Textual Expressions of Statement
Clause 30 Type
Madde 30— Bina Yiikseklikleri ld&heading
1 Imar planlarinda gésterilen bina yiiksekliklerinin veya kat adetlerinin birbirlerine Clarification
tahvilleri asagidaki sekilde tespit edilir.
2 1 katl binalarin yiiksekligi maks. 3.80 m. Rule
3 2 katli binalarin yiiksekligi maks. 6.80 m. Rule
4 3 kath binalarin yiiksekligi maks. 9.80 m. Rule
5 4 kath binalarin yiiksekligi maks. 12.80 m. Rule
6 5 kathi binalarin yiiksekligi maks. 15.80 m. Rule
7 6 kathi binalarin yiiksekligi maks. 18.80 m. Rule
8 7 kathi binalarin yiiksekligi maks. 21.80 m. Rule
9 8 katli binalarin yiiksekligi maks. 24.80 m. Rule
10 9 katl1 binalarin yiiksekligi maks.27.80 m. Rule
11 10 katli binalarin yiiksekligi maks.30.80 m. Rule
12 Yeni yapilacak binalarda; tayin edilmis ise imar planlarindaki sartlara aksi halde bu Applicability
Yonetmelikte gosterilen yiikseklige veya kat adedine uyulmasi mecburidir. con.
13 Belirlenen gabari i¢inde kalmak sartiyla i¢ yiikseklikleri arttirarak daha az adette kat Rule
yapilabilir.
14 Ayrica; yap1 emsali verilmemis adalarda, Imar Kanunu, imar plani ve bu Yénetmelige Rule

gore ¢ok katli yap1 yapilmas1 miimkiin olan parsellerde, sahibinin talebi halinde,
enciimence uygun goriilecek muvakkat bir zaman igin yiksekligi 6.80 m.yi ve 2 kati
gecmeyen yapi ve tesislere tespit edilen kitle nizamina uygun olmak kosulu ile
enciimence izin verilebilir.

Clause Id Statement Id Rule Id Rule Type
Self-containedness Formalizability

C30 ST2 R30.1 Self-contained Formalizable
ST3 R30.2 Linked-explanatory Formalizable
ST4 R30.3 Linked-explanatory Formalizable
STS R30.4 Linked-explanatory Formalizable
ST6 R30.5 Linked-explanatory Formalizable
ST7 R30.6 Linked-explanatory Formalizable
ST8 R30.7 Linked-explanatory Formalizable
ST9 R30.8 Linked-explanatory Formalizable
ST10 R30.9 Linked-explanatory Formalizable
ST11 R30.10 Linked-explanatory Formalizable
ST13 R30.11 Self-contained Semi-formalizable
ST14 R30.12 Self-contained Non-formalizable

p—

28

Textual Expressions of Statement
Clause 38 Type
Madde 38— Zemin Kat Dégeme Seviyeleri ld&heading

1 Zemin kat doseme seviyeleri, binalarin kot aldig1 yol cephesince bu kota esas olan Rule
tretuvar st seviyesinden itibaren + 0.50m. ile +1.00 m. arasinda diizenlenir.

2 Binalarin zemin katlariin isyeri veya otopark olarak kullanilmasi halinde, +0.50 m. Rule
kosulu aranmaz, bu durumda, zemin kat dogseme seviyeleri tretuvar iist seviyesinden agagi
indirilemez.

3 Ayrica, fazla meyilli sokaklar iizerinde yapilacak diikkan, otopark ve benzeri girislerin Clarification
tretuvar kotlarina uydurulmasi amaciyla yapilacak doseme kademeleri yukaridaki
sinirlamalar disindadir.

4 Arazi dogal zemin kotlarina uymak amaciyla veya mimari gereksinmeler nedeniyle, bir Rule
bina blogunun, bir binanin veya miistakil bir bagimsiz boliimiin tespit edilen bina
yiiksekligini asamamak, belirli piyesler i¢in tayin olunan asgari kat yiiksekliklerine ve bu
Yonetmeligin diger hiikiimlerine aykir1 olmamak sart1 ile ¢esitli kotlardan ve farkli taban
veya tavan seviyelerinden miitesekkil olarak tertiplenmesi miimkiindiir.

5 Ancak, bu durumda zemin katin en yiiksek doseme kotu, kot alma noktasindan itibaren Rule
+1.50 m. yi gecemez.

6 Bu kademelendirme kitle hattindan itibaren yol cephesinden 3.00 m. geriden baslayarak Clarification
biitiin bina derinligince ve diger cepleri boyunca da yapilabilir.

7 Ancak yol cephelerinde imar planinda belirtilen kat adedi asilamayacagindan sadece tek Clarifiaction
yola cepheli parsellerde uygulanir.

8 Fazla meyilli yollarda kdse basi olmayan parsellerde, yol cephesinde yolun meylinden Rule
dolay1 zemin kat taban kotunun tretuvardan en fazla 3.00 m. yiikseldigi noktalarda binada
kademe yaptirilir.

9 Yol cephesinde en diigiik son kademe, cephe boyunca 6.00 m.den asag1 olamaz. Rule

10 6.00m.den az olmasi durumunda bir dnceki kademe seviyesine uyulur. Rule
Clause Id Statement Id Rule Id Rule Type
Self-containedness Formalizability
C38 ST1 Self-contained Formalizable
ST2 Linked-explanatory Fromalizable
ST4 Self-contained Non-formalizable
STS Linked-explanatory Formalizable
ST8 Self-contained Semi-formalizable
ST9 Self-contained Formalizable
ST10 Linked-explanatory Formalizable
Textual Expressions of Statement
Clause 39 Type
Madde 39— Bazi Yapilarda Aranan Sartlar ld&heading
1 Ahsap ve yar1 ahsap binalar bitisik yapilamazlar. Rule

2 Ayrnk nizamda ise komsu sinirlarina birakilacak min. bahge mesafesi 5.00 m.den az Rule

olamaz.

w

Yiiksekligi max 6.80 m.yi asamaz.

Rule

4 Ahsap ve yar1 kagir binalarin komsu hududuna zeminden itibaren ¢atinin her yerinde 0.60 Rule
m.lik yiikseklige kadar ve en az bir tugla kalinliginda yangin duvari yapilmasi kosuluyla

bitigik olarak insa edilebilir.

Clause Id Statement Id Rule Id Rule Type

Self-containedness

Formalizability

39 ST1 Self-contained Formalizable
ST2 Self-contained Formalizable
ST3 Self-contained Formalizable
ST4 Self-contained Formalizable

p—

29

Textual Expressions of Statement
Clause 40 Type
Madde 40— Sacak ve Giines Kesiciler ld&heading
1 Binalarda son kat tavan dogemelerinde binanin ¢ikma hattindan itibaren 0.50m. yi Rule
gecmemek iizere tiim bina cepheleri boyunca sagak yapilabilir.
2 On bahgesiz nizama tabi parsellerde bina cephesinden itibaren genisligi 1.50 m.yi Rule
gecmemek, konsol olmak ve komsu parsellere 2.00m. den fazla yaklagsmamak kosulu ile
bina girig ve ditkkan onii sacaklar1 diizenlenebilir.
3 Ancak bu sacaklarin en algak noktasi tretuvar iist seviyesinden en az 3.00 m. yiikseklikte Rule
olabilir ve genisligi tretuvar genisligini asamaz.
4 On bahgeli nizama tabi parsellerde ise, tretuvara tasmamak, civara ve binanin karakterine Rule
uygun olmak, ve konsol olmak kosulu ile girig sagaklar1 diizenlenebilir.
5 Bina cephelerinde alan olarak yararlanmamak kosulu ile 1.00 m.yi gegmeyen giines Rule

kesiciler yapilabilir.

Clause Id Statement Id Rule Id Rule Type
Self-containedness Formalizability
C40 ST1 R40.1 Self-contained Formalizable
ST2 R40.2 Linked-explanatory Formalizable
ST3 R40.3 Linked-explanatory Formalizable
ST4 R40.4 Linked-explanatory Formalizable**
ST5S R40.5 Self-contained Formalizable**

Textual Expressions of
Clause 41

Statement
Type

Madde 41— Catilar ld&heading

1

Catilar binanin cephe aldig1 yolun yapi karakterine ve yapiya uygun nitelikte olmalidir.

Rule

2

Genel olarak c¢atilarin %33 meyilli gabari dahilinde kalmasi sarttir.

Rule

3

Ancak, ayrik yap1 nizamina tabi 2 kat1 gegmeyen dubleks konut yapilarinda, imar durumunda
belirtilen gabariye gore %33 meyil hesaplanarak bulunan mahya kotu asilmamak kaydiyla,
cat1 egimi ve cat1 bicimi serbesttir.

Rule

Mahya kotu, mahya izdiisiimii bina kitlesinin 2 sinden fazla olmamak kaydiyla besik catiya
gore hesaplanir.

Clarification

Cat1 egimi , sacak genisligi dikkate alinmadan binanin cephesinden hesaplanir.

Clarification

Ancak, kapali ¢ikma bulunan ve bu ¢ikma bina yiiksekligince devam eden binalarda cati
egimi ¢itkma ucundan hesaplanir.

Clarification

Dubleks konut yapilar1 diginda kalan yapilarda, ¢at1 yapilmasi halinde, mahya yiiksekligi 3.00
m. yi agmamak kaydiyla her cepheye akintili ¢at1 yapilacaktir.

Rule

Cat1 aralarina bagimsiz boliim yapilamaz.

Rule

Bu kisimlarda ancak, asansor kulesi, merkezi klima tesisati, baca ve 6.80 m. ve daha az
yiikseklikteki dubleks konut binalarinda iceriden irtibatlandirilmak, ait oldugu bagimsiz
boliim smirlarin1 agmamak ve bu bagimsiz boliimiin son kattaki alaninin %30'unu gegmemek
kaydiyla piyesler yapilabilir.

Rule

10

Bu piyeslerden iskan edilenlerinde yiikseklik en diisiik yerde 1.80 m.den az olamaz.

Rule

Cat1 arasinin yukaridaki sekilde diizenlenmesi halinde piyes Onleri teras olarak tertiplenemez.

Rule

12

Cat1 arasinin son kat bagimsiz boliimii ile birlikte kullanilmasi amaciyla son kat tavan betonu
kismen veya tamamen yapilmayabilir.

Rule

13

Son kat tavan dosemesi en yiliksek mahya kotunu asmayacak ve en fazla ¢ati egimi i¢inde
kalacak sekilde egimli olarak tertip edilebilir.

Rule

14

Isikliklar, alin ve kalkan duvarlari, giines enerjisi panelleri ve depolari ¢ati sathini 0.60
m.den fazla gecemez.

Rule

Duman ve hava bacalari hari¢ cati lizerine higbir ¢cikma ve ¢ikint1 yapilamaz.

Rule

16

Ancak, 2.10 m. i¢ yiiksekligi asmamak kaydiyla diizenlenen merdiven evleri ve Tiirk
Standartlar: sartlarinin gerektirdigi hallerde asansor kulelerinin gat1 Ortiisiinii agmasina izin

Rule

17

Teras catilarda asansor kulesi, merkezi anten, 2.10 m. i¢ yiiksekligi asmamak kaydiyla
diizenlenen merdiven evi ve 1.10 m. parapet yiiksekligini agmamak kaydiyla gilines enerjisi,
su deposu, merkezi klima gibi tesisler yapilabilir.

Rule

18

p—

Teras ¢atilarda en ¢ok 1.10 m. yiikseklikte yapilacak kagir korkuluk bina yiiksekligine dahil
edilmez.

Clarification

30

Clause Id Statement Id Rule Id Rule Type
Self-containedness Formalizability
C41 ST1 R41.1 Self-contained Non-formalizable
ST2 R41.2 Self-contained Formalizable
ST3 R41.3 Linked-explanatory Formalizable
ST7 R41.4 Self-contained Formalizable
ST8 R41.5 Self-contained Formalizable
ST9 R41.6 Linked-explanatory Formalizable
ST10 R41.7 Linked-explanatory Formalizable
ST11 R41.8 Linked-explanatory Formalizable
ST12 R41.9 Linked-explanatory Semi-formalizable
ST13 R41.10 Linked-explanatory Formalizable
ST14 R41.11 Self-contained Formalizable
ST15 R41.12 Self-contained Formalizable
ST16 R41.13 Linked-explanatory Formalizable**
ST17 R41.14 Self-contained Formalizable
Textual Expressions of Statement
Clause 42 Type
Madde 42— Cikmalar ld&heading
1 Binalarda taban alani (azami bina sahasi) disinda kendi bah¢e hudutlar1 disina tagmamak Rule
ve genigligi 1.50 m.yi agmamak, tabii veya tesviye edilmis (37/c maddesine gore)
zeminden ¢ikma altina kadar en yakin sakuli mesafe 2.40m.nin altina diismemek
kaydiyla;
2 Parselin yan ve arka komgu hududuna 3.00 m.den fazla yaklagmamak sarti ile acik ve
kapali ¢ikma yapilabilir ve bu ¢ikma cephe uzunlugunca devam edebilir.
3 Yan bahge mesafesi 3.00m. ile 4.00m. arasinda olan parsellerde, yan komsu hududuna Rule
2.00m. den fazla yaklagsmamak kaydiyla 1.00 m. ye kadar ac¢ik ¢ikma yapilabilir, ancak bu
¢ikma binanin ¢ikma yapilan cephe uzunlugunun 1/3’inden fazla olamaz.
4 Bitisik yap1 nizamina tabi binalarin 6n ve arka cephelerinde yapilacak ¢ikmalar yan Rule
komsu hududuna 2.00 m.ye kadar yaklastirilabilir.
5 Ayrica, bitisik nizama tabi yerlerde, iki taraftaki ilgililerin muvafakati halinde ve ilgili Rule
belediyece mahzur goriilmedigi takdirde, ¢ikmalarin yan komsu hududuna
yaklastirilmalarina da izin verilebilecegi gibi, komsu parselde imar planina gére aynen
muhafazasi gereken ve arka cephe hatti ¢cikma yapilacak binaninkinden ileride olan bir
bina bulunmasi halinde ¢ikmanin bu hattt asmamak iizere bu tarafta komsu hududuna
kadar devam ettirilmesi de miimkiindiir.
6 Bitisiginde ¢ikmas1 komsu parsel hudutlarina kadar dayanmis ruhsatli ve gabarisinde Rule
tesekkiil etmis mevceut bir bina var ise, muvafakat aranmaksizin ¢ikmanin komsu hududa
kadar yanagmasina miisaade edilir.
7 Yol genisligi (6.00) m.den biiyiik 6n bahgesiz parsellerde; (yol genigligi - 6.00 m.) / 2 Rule
formiiliiyle hesaplanarak acik ve kapali ¢ikma yapilmasina izin verilir.
8 Ancak, ¢ikma genigligi her durumda 1.00 m. den fazla olamaz ve yol projesine gore tespit Rule
edilen tretuvar iist kotundan ¢ikma altina kadar olan gsakuli mesafe (3.00) m.den az
olamaz.
9 Iki yaninda imar planina, mevzuata ruhsat ve eklerine uygun olarak tesekkiil etmis ve Rule
formiile gore bulunacak degerden daha genis ¢gikmali binalar olmasi halinde yeni
yapilacak binaya da bitisik binalarla uyum saglayacak gekilde ¢gikma izni verilir.
10 Zemin katta kendi parsel hududu digina tasmayan, hangi katta yapilirsa yapilsin (0.20) Rule
m.yi gecmeyen motif ¢ikmalar yapilabilir.
11 Parselin bulundugu ada yiiziiniin tamaminin yesil sahaya veya acik otoparka bakmasi Rule
halinde, yol genisligine bakilmaksizin max. (1.00) m. ye kadar agik ve kapali ¢ikma izni
verilir.
12 Parselin bulundugu ada yiiziiniin kars1 hattinin kismen yesil saha kismen imar adas1 Clarification
olmasi halinde, yol genigligi dikkate alinarak yukaridaki formiile gére ¢ikma izni verilir.
13 Yol genisliginin tayininde yollardaki arizi (devamlilik arz etmeyen) genisleme ve Clarification
daralmalar dikkate alinmaz.
14 Uygulama, ada boyutunda muhtelif noktalardan alinacak yol genisgliklerinin ortalama Clarification

degerine gore yapilir.

131

Clause Id Statement Id Rule Id Rule Type
Self-containedness Formalizability

C42

ST1 R42.1 Self-contained Formalizable

ST2 R42.2 Linked-explanatory Formalizable

ST3 R42.3 Linked-explanatory Formalizable

ST4 R42.4 Linked-explanatory Formalizable

STS R42.5 Linked-explanatory Non-formalizable

ST6 R42.6 Linked-explanatory Formalizable

ST7 R42.7 Linked-explanatory Formalizable

ST8 R42.8 Linked-explanatory Formalizable

ST9 R42.9 Linked-explanatory Non-formalizable

ST10 R42.10 Self-contained Formalizable

ST11 R42.11 Linked-explanatory Formalizable

Textual Expressions of
Clause 43

Statement
Type

Madde 43—Isikliklar ve Hava Bacalari ld&heading

A- Konut Yapuarinda: subheading

1

Her miistakil ev veya dairede, en az 1 oturma odasi ile yatak odalarinin dogrudan dogruya
harigten 151k ve hava almalari gereklidir.

Rule

2

Bu sekilde 151k ve hava almalarina lizum olmayan diger odalarla mutfaklarin 1sikliktan,
yikanma yeri ve helalarin 151klik veya hava bacasindan faydalanmalari da miimkiindiir.

Rule

Isikliklar 1 ve 2 katli binalarda; dar kenar1 1.00 m.den, alani 3.00 m2'den az olamaz.

Rule

Isikliklar 3, 4 ve 5 katli binalarda; dar kenar1 1.50 m.den, alan1 4.50 m2'den az olamaz.

Rule

Isikliklar 6,7,8,9 katli binalarda, dar kenar1 2.00 m.den, alan1 6.00 m2'den az olamaz.

Rule

|| |w

Isikliklar 10 ve daha fazla katli binalarda; dar kenar1 2.00 m.den, alan1 9.00 m2'den az
olamaz.

Rule

B- Konut Dis1 Yapilarda: subheading

7

Otel, pansiyon, ig hani ve benzeri binalarda, odalar gereginde 151kliga acilabilir.

Rule

8

Isikliklar 1 ve 2 katli binalarda; dar kenar1 1.50 m.den, alani 4.50 m2'den az olamaz.

Rule

Isikliklar 3, 4,5, 6,7,8,9 katli binalarda; dar kenar1 2.00 m.den, alam1 6.00 m2'den az
olamaz.

Rule

10

Isikliklar 10 ve daha fazla katli binalarda; dar kenar1 2.00 m.den, alan1 9.00 m2'den az
olamaz.

Rule

C- Genel Hiikiimler: subheading

11

Her tiirlii binada sadece havalandirma amaci ile kullanilan hava bacalarinin asgari 6l¢iisii
(0.60 x 0.60) m2. , icinden tesisat gecirilen hava bacalarinin asgari dlgiisti ise (0.80 x
0.80) m2. olup, bu alan herhangi bir yap1 elemant ile (baca, kiris, vs.) daraltilamaz.

Rule

12

Asgari dlciideki bir 151klik veya hava bacasindan her katta en cok 4 piyes faydalanabilir.

Clarification

13

Bu piyeslerin adetlerinin artmasi halinde, 4’ten fazla her piyes i¢in 1s1klik veya hava
bacasi dl¢iisli ayni nispette artirilir.

Rule

14

Ancak, yukarida belirtilen sekilde 151k ve hava almas1 gerekmeyen veya lizumlu 151k ve
havay1 yonetmelikte tarif edilen sekilde esasen almasi miimkiin olan piyeslerden, herhangi
bir 151klik veya hava bacasina pencere agilmasi, bu 1siklik veya hava bacasi dlgiilerinin
artirtlmasini gerektirmez.

Clarification

15

Her binanin /liizumlu 151klik veya hava bacasi, kendi parseli tizerinde bulunacaktir.

Rule

16

Komgu bina ve parselin 1siklik veya hava bacasindan faydalanmak suretiyle, bu
elemanlarin yapilmamasina veya dl¢iilerinin azaltilmasina izin verilmez.

Clarification

17

Isiklik veya hava bacalar1 bunlara ihtiyaci olan kattan itibaren baglatilabilir.

Clarification

18

Ancak meyilden kat kazanilmasi halinde yapmin toplam kat sayisina tekabiil eden
yiikseklige ait, 151klik dlciileri uygulanacaktir.

Clarification

Bu arada 151klik veya hava bacalariin bunlara ihtiyaci olan kattan itibaren baslatilmasi
halinde yapinin 1gikliginin bagladigi kat sayisina tekabiil eden yiikseklige ait 1giklik
oOlciileri uygulanir.

Clarification

Ayrica asansor, merdiven gibi kisimlar aydinlik alanina tecaviiz edemez.

Rule

Isikliklarin icerisine acik renk boya ve badana yapilmasi mecburidir.

Out of Scope

Bina altinda 2.50 m.den genis gecitlerde 1s1klik olarak kullanilabilir.

Clarification

Kafeterya, restoran, kahvehane, lokanta, atdlye, imalathane, diskotek gibi insanlarin toplu
olarak bulundugu mekanlarda dogal havalandirma diginda, mekanik havalandirma
yapilmast zorunludur.

Out of Scope

132

Clause Id Statement Id Rule Id Rule Type
Self-containedness Formalizability
C43 ST1 R43.1 Self-contained Formalizable
ST2 R43.2 Linked-explanatory Formalizable
ST3 R43.3 Self-contained Formalizable
ST4 R43.4 Linked-explanatory Formalizable
STS R43.5 Linked-explanatory Formalizable
ST6 R43.6 Linked-explanatory Formalizable
ST7 R43.7 Self-contained Semi-formalizable
ST8 R43.8 Self-contained Formalizable
ST9 R43.9 Linked-explanatory Formalizable
ST10 R43.10 Linked-explanatory Formalizable
ST11 R43.11 Self-contained Formalizable
ST13 R43.12 Linked-explanatory Semi-formalizable
ST15 R43.13 Self-contained Semi-formalizable
ST20 R43.19 Self-contained Semi-formalizable
Textual Expressions of Statement
Clause 44 Type
Madde 44—Yapilarda Bulunmasi Gereken Piyesler ve Olgiiler ld&heading

1 Her bagimsiz konutta en az bir yasam mekani, bir yatak odas1 veya nisi, bir mutfak veya Rule

yemek pisirme nisi, bir banyo (WC ile birlikte) veya bir yikanma yeri ile bir WC
bulunmasi zorunludur.

2 Bu mekanlar agagida belirtilen dl¢iilerden kiiciik yapilamaz. Clarification
3 Yasam mekani; dar kenar1 3.00 m.den, alan1 12.00 m2, Rule
4 Yatak odasi; dar kenar1 2.60 m, alan1 7.28 m2, Rule
5 Yatak nisi; dar kenar1 1.50 m, alan1 3.00 m2, Rule
6 Mutfak; dar kenar1 1.50 m, alan1 3.60 m2, Rule
7 Yemek pisirme yeri; dar kenar1 0.70 m, alan1 1.40 m2, Rule
8 Banyo (WC ile birlikte); dar kenart 1.20 m.den, alani 3.48 m2, Rule
9 Yikanma yeri; dar kenar1 1.20 m, alan1 2.64 m2, Rule
10 WC; dar kenar1 0.90m, alan1 1.08 m2, Rule
11 antre, hol ve benzeri gecitler; dar kenar1 1.00 m, alan1 1.32 m2, Rule
12 Birden fazla daire ile ilgili genel gecitler; dar kenar1 1.10 m, alan1 1.32 m2, Rule
13 Tabloda belirtilen mekanlar diginda ayrilmak istenen ¢aligma odasi, hobi odasi gibi Rule
kullanimlara iligkin mekanlarin dar kenar1 2.10 m.den ve alan1 6.00 m2.den az olamaz.
14 Yatak nigleri dar kenari (3.00) m.den ve alani (12.00) m2 olan bir yasam mekani Rule
acilacaktir.
15 Yemek pisirme yerleri hava ve duman bacalari ile irtibatli olmak sart1 ile diizenlenebilir. Rule
16 Sobali 1sitma sistemi segilen yapilarda ayrica en az 2.50 m2 net alanli komiirlik (odunluk) Rule
ayrilacaktir.
17 Bu hacim binanin bodrum katinda veya miistemilat boliimiinde de yapilabilir, ancak daire Rule
icinde yapilmasi halinde max. (4.50) m2'yi gecemez.
18 Islak hacimlerde tefris yapilmasi zorunludur. Rule
19 Umumi binalarda koridor genislikleri; uzunlugu (20.00) m.ye kadar olan koridorlar Rule
(2.00)m.den, (20.00) m.yi gecen koridorlar (2.50) m.den dar olamaz.
20 Imar planlarinda aksine bir agiklama olmamas: halinde, her tiirlii isyerinin cephesi 2.00 m. Rule
den az olamaz.
21 Resmi kurumlarca yaptirilacak; egitim binalari, saglik binalari, spor tesisleri ve bu gibi Clarification
binalarin da ilgili bakanliklarca onaylanmis projeleri esas alinir.
22 Bu amagla yaptirilacak 6zel binalarda, bu Yonetmelikte belirtilen kosullar disinda ilgili Clarification

bakanliklarin yonetmelikleri dikkate alinacaktir.

133

Clause Id Statement Id Rule Id Rule Type
Self-containedness Formalizability

C44 ST1 R44.1 Self-contained Formalizable
ST3 R44.2 Self-contained Formalizable
ST4 R44.3 Self-contained Formalizable
STS R44.4 Self-contained Formalizable
ST6 R44.5 Self-contained Formalizable
ST7 R44.6 Self-contained Formalizable
STS8 R44.7 Self-contained Formalizable
ST9 R44.8 Self-contained Formalizable
ST10 R44.9 Self-contained Formalizable
ST11 R44.10 Self-contained Formalizable
ST12 R44.11 Self-contained Formalizable
ST13 R44.12 Self-contained Formalizable
ST14 R44.13 Self-contained Formalizable
ST15 R44.14 Self-contained Formalizable
ST16 R44.15 Self-contained Formalizable
ST17 R44.16 Linked-explanatory Formalizable
ST18 R44.17 Self-contained Formalizable
ST19 R44.18 Linked-explanatory Formalizable
ST20 R44.19 Self-contained Formalizable

Textual Expressions of Statement

Clause 45 Type

Madde 45-I¢ Yiikseklikler ld&heading

1 Genel olarak iskan edilen katlarin taban doseme kaplamasi ilizerinden tavan altina kadar Rule

olan net (doseme kaplamalar1 ve sivalar ikmal edildikten sonra) yiiksekligi 2.60m.den az
olamaz.

2 Projelerde doseme ve tavan kaplama detay1 gosterilmedigi takdirde bu yiikseklige siva ve Clarification
kaplama pay1 olarak (0.07) m. ilave edilir.

3 Yikanma yeri, banyo, dus, lavabo yeri, WC, kiler, ofis, antre, koridor, yatak holli, Rule
merdiven alti, her tiirlii i¢ ve dis gegitler, iskan edilemeyen bodrum katlari ile miistemilat
binalarinda, bu yiikseklik net (2.20) m.den asagiya diismemek lizere indirilebilir.

4 Garaj ve otoparklarin yiikseklikleri kirig alt1 net 2.00 m. den az olamaz. Rule

5 Otel, pansiyon, is hani, biiro ile benzeri igyerleri ve igerisinde insan oturan, yatan veya Rule
calisan diger binalarin i¢ yiikseklikleri doseme kaplamasi ve tavan sivast hari¢ (2.60)
m.den daha az olamaz.

6 Magaza ve diikkkanlar ile pastaneler, igkili ve igkisiz lokantalar vb yemek yerleri, Rule
kahvehanelerin taban dosemesi lizerinden tavan altina kadar net yiiksekligi (3.00) m.den
az olamaz.

7 Diigiin ve oyun salonlari, diskotek, birahaneler ve gazino mahallerinin taban ddsemesi Rule
iizerinden tavan altina kadar net yiiksekligi (3.50) m.den az olamaz.

8 Miistemilat ve servis kisimlarinda net yiikseklik (2.60) m.den az olamaz. Rule

9 Ve bu bdliimler toplam alanin %50'sini gegemez. Rule

10 Resmi binalarla ilgili bakanlikca onaylanmis projeler esas alinacaktir. Clarification

Clause Id Statement Id Rule Id

Bu amagla yaptirilacak 6zel binalarda bu Yonetmelikte belirtilen kosullar diginda, ilgili
bakanliklarin yonetmelikleri dikkate alinacaktir.

Rule Type

Clarification

Self-containedness

Formalizability

C45

p—

ST1 R45.1 Self-contained Formalizable
ST3 R45.2 Linked-explanatory Formalizable
ST4 R45.3 Linked-explanatory Formalizable
STS R45.4 Linked-explanatory Formalizable
ST6 R45.5 Linked-explanatory Formalizable
ST7 R45.6 Linked-explanatory Formalizable
ST8 R45.7 Linked-explanatory Formalizable
ST9 R45.8 Linked-explanatory Formalizable

34

Textual Expressions of Statement
Clause 46 Type
Madde 46—Pencereler ld&heading

1 Binalarin pencere bosluklari dar kenar1 (0.60) m.den az olmamak sart1 ile, toplam Rule

faydalanilacak piyes alaninin yagsam mekani, oda ve mutfaklarin da 1/8'inden ve her
durumda (1.25) m2'den az olamaz.

2 Caml balkon kapilarinda pencere boslugu sayilir. Clarification
3 Dubleks konut yapilarinda ¢at1 arasina yapilan mekanlarin pencere bosluklari (0.80)m2 Rule
den biiylik olmamak ve her mekana c¢ati lizerinde en c¢ok iki pencere acilmak ve
pencereler birbirine eklenerek bant haline getirilmemek sart1 ile yapilabilir.
4 Is1 yalitim yonetmeligi hiikiimleri saklidir. Clarification
5 Binalarm bitisik komsu tarafina; ilgili komsu parsel sahibinin muvafakati alinip tapuya Rule
tescil ettirilmedik¢e pencere ve kapi agilamaz.
6 Pencere veya kapi agilacak bu piyesin, ayrica, gerekli 151k ve havayr dogrudan alacak Rule
elemanlara haiz olmasi gerekir.
Clause Id Statement Id Rule Id Rule Type
Self-containedness Formalizability
C46 ST1 R46.1 Self-contained Formalizable
ST3 R46.2 Linked-explanatory Formalizable
ST5 R46.4 Self-contained Non-formalizable
ST6 R46.5 Linked-explanatory Non-formalizable
Textual Expressions of Statement
Clause 47 Type
Madde 47—Kapilar ld&heading
1 Kap1 Yiikseklikleri: Kasa dahil (2.10) m.den az olamaz. Rule
Kapi Genislikleri: subheading
2 Birden fazla bagimsiz bdliimii olan binalarin ana giris kapilari kasa dahil (1.30) m.den, Rule
3 Bagimsiz boliim kapilari, kasa dahil (1.00) m.den, Rule
4 Oda ve mutfak kapilari kasa dahil (0.90) m.den, Rule
5 Yikanma yeri, WC, odunluk, kdmiirliik, kiler kapilari kasa dahil (0.80) m.den Rule
6 Diikkan kapilari, kasa dahil (1.00) m.den, az olamaz. Rule
7 Asansor, garaj ve benzeri Ozellik arz eden yerlerin kapi boyutlar1 hizmetin gerektirdigi Rule
sekilde tespit edilir.
8 Banyo kapilarinda, alttan temiz hava girecek sekilde bir diizen bulunacaktir. Rule
9 Umumi binalarda, bina ana giris kapisina merdivenle ulagiliyorsa bedensel Oziirlillerin Out of Scope
kullanimi i¢in en fazla %6 egimli, en az (1.20) m. genislikte koruma bordiirlii ve
korkuluklu rampa yapilacaktir.
10 Ic kapilar tamamen esiksiz ve en az (0.95) m. genisliginde olacaktir. Out of Scope
11 Umumi binalarda, biitiin kapilar kag¢ig yoniine agilacaktir. Out of Scope
Clause Id Statement Id Rule Id Rule Type
Self-containedness Formalizability
C47 ST1 R47.1 Self-contained Formalizable
ST2 R47.2 Linked-explanatory Formalizable
ST3 R47.3 Linked-explanatory Formalizable
ST4 R47.4 Linked-explanatory Formalizable
STS R47.5 Linked-explanatory Formalizable
ST6 R47.6 Linked-explanatory Formalizable
ST7 R47.7 Linked-explanatory Non-formalizable
ST8 R47.8 Self-contained Formalizable

—_—

35

Textual Expressions of
Clause 48

Statement
Type

Madde 48—Asansérler

ld&heading

1

Bina giris katindan itibaren yiiksekligi 12.80 m.yi gegen ve 4’ten fazla kat1 bulunan konut
yapilari ile, yiiksekligi 6.80 m.yi gegen ve 2’den fazla kat1 bulunan konut dig1 yapilarda,
giris katindan itibaren (¢at1 kat1 hari¢) son kata kadar ve varsa iskan edilebilir bodrum
katlara da inmek koguluyla kullanilan tiim katlara hizmet verecek sekilde, yuriirlikteki
Tiirk Standartlar1 Enstitiisiiniin standartlar1 ve Asansér Yonetmeligine uygun asansor
tesisi zorunludur.

Rule

Bina giris kat kotundan son kat kotuna kadar olan yiikseklik veya bu yiikseklik i¢indeki
kat sayis1 bu maddenin uygulanmasinda asansdr yapilmasi mecburiyetine esas alinacaktir.

Applicability
con.

Yiiksekligi 12.80 m’yi gecen ve giristen itibaren daire adeti 20 den fazla olan
meskenlerde (her iki sartin bir arada gerceklesmesi halinde) ¢ift asansor yapilmasi
mecburidir.

Rule

Yiiksekligi 12.80 m’yi gecen ve kat alan1 250 m2 den fazla olan ticari amagli (biiro,
ishani, ¢arsi, benzeri) yapilarda, her iki sartin bir arada ger¢eklesmesi halinde, Elektrik ve
Makine Miihendisleri Odast Asansor Avan ve Uygulama Projeleri Hazirlama ve Teknik
Esaslarinda yer alan trafik hesabi yapilarak asansor sayisi tespit edilecektir.

Rule

Binanin kat ve daire adedinin fazlalig1 veya kullanma seklinin gerektirdigi liizuma gore,
asansOr ve yerinin Ol¢li veya adedini arttirmaya baslangic kati olarak zemin kat yerine
bodrum veya birinci kat1 kabul veya tayine belediye yetkilidir.

Rule

Imar plani ile kanun, tiiziikk ve yénetmelik hiikiimlerine gére muhafazast miimkiin olan
binalarda kat ilavesi halinde, ilave kat ile birlikte kat adedi besi ve bina yiiksekligi 15.80
m.yi gecmedigi taktirde, asansor aranmayabilir veya asansor yeri élgiileri mevcuda
uydurulabilir.

Rule

Binalarda usuliine gore asansér yapilmis olmasi nizami sekil ve oOlgiilerle merdiven
yapilmasi sartini ortadan kaldirmaz.

Clarification

AsansOr makine daireleri yiiriirlikteki Tiirk Standartlart Enstitiisii standartlarinin
gerektirdigi minimum ol¢iilerde diizenlenebilir.

Rule

Teknik kosullarin gerektirdigi durumlarda bu alan % 30 kadar arttirilabilir.

Rule

Asansoriin yapilmasi ve isletilmesi ile ilgili hususlarda yukaridaki hiikiimlerde dikkate
almarak yiiriirliikteki Asansor Yonetmeligi ve Tiirk Standartlar1 Enstitiisii standartlari
hiikkiimlerine uyulur.

Clarification

Clause Id Statement Id Rule Id

Rule Type

Self-containedness

Formalizability

C48

ST1 R47.1 Self-contained Formalizable

ST3 R47.2 Linked-explanatory Formalizable

ST4 R47.3 Linked-explanatory Non-formalizable
STS R47.4 Linked-explanatory Non-formalizable
ST6 R47.5 Linked-explanatory Non-formalizable
ST8 R47.6 Self-contained Non-formalizable
ST9 R47.7 Linked-explanatory Non-formalizable

136

Textual Expressions of Statement
Clause 49 Type
Madde 49—Merdivenler ld&heading
1 Bu ydnetmelikte sozii gecen umumi binalarla, otel, ishani, biiro, pasaj, carsi ve Rule
benzerlerinin, birden fazla kati olan ev ve apartmanlarin ahsap olmayan en az bir ana
merdiveni olacaktir.
A- Genel Hiikiimler: subheading
2 Merdivenlerin minimum kova 6l¢iisii 20 cm. olmalidir. Rule
3 Merdiven evlerinin bina cephesinden, ¢atidan veya isikliktan dogrudan 151k ve hava Rule
almasi gereklidir.
4 Merdivenlerin ¢ati, bodrum ve benzeri ortak alanlara ulastirilmasi zorunludur. Rule
5 Bu durumda merdiven kolu ve sahanlik genisligi 1.20 m.den az olamaz. Rule
6 Merdiven basamaklarinin dlgiileri; 2a + b = 60 ile 63 formiiliine gore hesaplanir. Rule
7 Formiildeki (a) basamak yiiksekligini, (b) basamak genisligini gosterir. Clarification
8 Merdiven tanziminde her 18 rihtan sonra ara sahanlik birakilacaktir. Rule
9 Biitiin binalarda kat ve ara sahanliklarin genisligi, merdiven kolu genisliginden az Rule
olamaz.

10 Diiz kollu veya doner merdivenlerde ¢ikis hattinda yapilan ara sahanliklar 1.00 m. Rule
olabilir.

11 Imar Kanunu ile imar plam ve bu Yénetmelik hiikiimlerine gore korunmast miimkiin olan Rule
binalarda kat ilavesi halinde, mevcut merdivenler bu madde hiikiimlerine uymadigi
takdirde, bu konuda yapilacak islemi saptamaya ilgili belediyesi yetkilidir

B-Konut Yapilarinda subheading

12 Merdiven kolu ve sahanlik genislikleri; 1.20 m.den az olamaz. Rule

13 Bu dlgiiler tek aileye mahsus evlerde ve bodrum katlariyla, servis merdivenlerinde (0.90) Rule
m.ye kadar indirilebilir.

14 Iskan edilmeyen cat1 aralarina ¢ikan merdivenlerde bu lgiiler aranmayabilir. Rule

15 Merdiven basamaklarinin yiiksekligi (0.175) m.den fazla, basamak genisligi ise ¢ikis Rule
hattinda (0.28) m.den, kovada (0.10) m.den az olamaz.

B-Konut Digi Yapilarda subheading

16 Merdiven kolu ve sahanlik genisligi; (1.60) m.den az olamaz. Rule

17 Merdivenlerin her iki yaninda korkuluk ve/veya kiipeste bulunmalidir. Rule

18 Merdiven Basamaklarinin Olgiileri; I¢ ve dis merdivenlerde riht yiiksekligi : (0.16) Rule
m.den fazla; i¢ ve dis merdivenlerde basamak genisligi: ¢ikis hattinda (0.30) m.den,
kovada (0.125) m.den az olamaz.

19 Bu yonetmelikte olusturulmasi zorunlu tutulan ana merdivenler disinda diizenlenen Rule

merdivenlerde, umumi bina tanimina girmeyen yapilarda diizenlenen bagimsiz boliim ici
merdivenlerde ve cephesi 8.00 m.den ve/veya kat alanit 150 m’.den kiigiik binalarda
diizenlenecek merdivenlerde; merdiven kolu ve sahanlik genigligi 1.20m.den az, basamak
yiiksekligi (0.175) m.den fazla, basamak genisligi ise, ¢ikis hattinda (0.28) m.den, kovada
(0.125) m.den az olamaz.

Clause Id Statement Id Rule Id Rule Type

Self-containedness Formalizability

C49 ST1 R49.1 Self-contained Formalizable

ST2 R49.2 Self-contained Formalizable

ST3 R49.3 Self-contained Formalizable

ST4 R49.4 Self-contained Formalizable

STS R49.5 Linked-explanatory Formalizable

ST6 R49.6 Linked-explanatory Formalizable

ST8 R49.7 Self-contained Formalizable

ST9 R49.8 Linked-explanatory Formalizable

ST10 R49.9 Linked-explanatory Formalizable
ST11 R49.10 Self-contained Non-formalizable

ST12 R49.11 Linked-explanatory Formalizable

ST13 R49.12 Linked-explanatory Formalizable

ST14 R49.13 Linked-explanatory Formalizable

ST15 R49.14 Linked-explanatory Formalizable

ST16 R49.15 Linked-explanatory Formalizable
ST17 R49.16 Self-contained Non-formalizable

ST18 R49.17 Linked-explanatory Formalizable

ST19 R49.18 Linked-explanatory Formalizable

137

Textual Expressions of
Clause 50

Statement
Type

Madde 50—Yangin Merdivenleri ld&heading

1

a) “ Binalarin Yangindan Korunmasi Hakkinda Yonetmelik” hiikiimlerine uyulacaktir.

Rule

2

Yangin merdiveni genisligi konut ve biiro yapilarinda min 90 cm. topluma acik diger
yapilarda min. 120 cm. olacaktir.

Rule

w

Irtifak hakki tesisi suretiyle komsu parsellere ortak yangin merdivenleri diizenlenebilir.

Clarification

Ticaret bolgelerinde; bodrum ve zemin katlar1 parselin tamaminda ingaata miisaadeli
binalarda, ana blok disinda, 5.50 m. kotundaki doseme flizerine inilmesi ve ¢ukis
giivenligini saglamasi, genel merdivene ulasan koridorun yangina dayanakli olmasi, genel
merdivenin ise yangin merdiveni 6zellikli olmasi kosulu ile yola irtibati binanin genel
hacimlerinden saglanan yangin koridoru ve yangin merdiveni diizenlenebilir.

Rule

Kullanim amaci nedeniyle birden fazla merdiven yapilmasi gereken yapilarda, genel
merdivenlerin ve yangin merdivenlerinin son kata kadar ulagmasi1 ve bu katta birbirlerine
kars1 giivenlikli olarak baglanmasi saglanmalidir.

Rule

Bu yonetmelikten Once yangin merdivensiz olarak yapilmis yapilarda; Binalarin
Yangindan Korunmasi1 Hakkinda Yonetmelik hiikiimleri sakli kalmak kaydiyla, ilave
edilecek yangin merdivenlerinde, kat miilkiyeti yasasina uyulmak kosuluyla yapilacak
yangin merdivenlerinin 6l¢ii ve bicimi Jtfaive Miidiirliigiiniin de goviisii alinarak binanin
durumuna gore belirlenir.

Rule

Clause Id Statement Id Rule Id Rule Type
Self-containedness Formalizability
C50 ST1 R50.1 Self-contained Formalizable
ST2 R50.2 Self-contained Formalizable
ST4 R50.3 Self-contained Semi-formalizable
STS R50.4 Self-contained Semi-formalizable
ST6 R50.5 Self-contained Non-formalizable

Textual Expressions of Statement
Clause 51 Type
Madde 5 1-Korkuluklar ld&heading

1 Her tiirlii binada balkon, kat ve cati teraslari etrafinda, 5 ten fazla basamagi bulunan Rule

merdivenlerde, kotu (1.00) m. den az olan pencere bosluklarinda, bina i¢ bosluklarinda,
doseme kotundan itibaren en az (1.00) m. yiikseklige kadar fenni gereklere uygun olarak
korkuluk yapilmasi zorunludur.

2 Korkuluk aralari, dikeyde, yatayda ve alt bosluklarinda 10 cm. den fazla olamaz.

Rule

3 Korkuluklar yatay olarak diizenlendigi taktirde merdiven etkisini onleyecek tedbirler Rule

alinacaktir.

Clause Id Statement Id Rule Id Rule Type
Self-containedness Formalizability
Cs1 ST1 R51.1 Self-contained Formalizable
ST2 R51.2 Self-contained Formalizable
ST3 R51.3 Self-contained Semi-formalizable

p—

38

Textual Expressions of

Statement

Clause 52 Type
Madde 52—Bacalar ld&heading
A- Duman Bacalari: subheading
1 Yapilarda yer almasi tasarlanan 1sitma sistemine gore, bacalarin sayisi ve niteligi Clarification
belirlenir.
2 Bacalarin proje tasarimlarinda Tirk standartlar1 Enstitiitiisii standartlari, 1s1 yalittm Rule
yonetmeligi ve dogal gaz ic tesisat yonetmeligindeki sartlar saglanacaktir.
3 Bacalarin i¢ genisligi en az (0.13 x 0.13) m. olacaktir. Rule
4 ki baca birbirine baglanmayacag1 gibi her ates kaynag1 ayri bir bacaya baglanacaktir. Rule
5 Duman bacalari ¢ati ortiisiinii en az 1.00 m, mahyay1 ise en az 0.80 m. asacaktir. Rule
6 Cat1 konstriiksiyonu ister ahsgap, ister ¢elik olsun bacalara 0.10 m. den fazla yaklagamaz. Rule
7 Banyolara duman bacasi yapilamaz. Rule
a) Sobali Isitma Sistemi Segilen Yapilarda; subheading
8 Yapilarin konut olarak kullanilan her dairesinde mutfak ve mutfak nisi ile bunlarin Rule
diginda kalan en az iki piyesinde baca yapilmasi zorunludur.
9 Bu bacalar gont baca olabilir, ancak, iki piyesten komiirlilk digindaki bir tanesinde Rule
yapilacak bacanin miistakil baca olmasi zorunludur.
10 Yapilarmm diikkan, magaza v.b. kullanilan boliimlerinde her bagimsiz boliim i¢in bir baca Rule
yapilmasi gereklidir.
b) Merkezi veya Kat Kaloriferi Isitma Sistemi Segilen Yapilarda, subheading
11 Her kalorifer kazani igin ayr1 olarak diizenlenmis miistakil bir duman bacasi yapilmast Rule
(sont olamaz) zorunludur.
12 Ayrica ; yapilarin konut olarak kullanilan her dairesinde mutfak ve mutfak nisi ile Rule

bunlarin diginda kalan en az bir piyeste en az bir baca yapilmasi, otel, is hani, pasaj v.b
umumi binalarin ise her katinda en az bir baca yapilmasi zorunludur.

13 Bu bacalar sont olabilir.

Clarification

14 Kat kaloriferi kazan1 balkona konulamaz, 6zel bir bolmeye konuldugunda bu mahallin en
az 6 m3 hacminde olmasi, bina dis cephesinden, 1sikliktan veya hava bacasindan
havalandirilmasi ve miistakil bir duman bacasinin bulunmasi zorunludur.

Rule

15 Kat kaloriferi kazani ile yakit tanki ayn1 mahale konulamaz. Rule
c)Swrlart llgili Idare Tarafindan Belirlenecek Dogal Gaz Uygulama subheading
Bélgeleri I¢inde Inga Edilecek Yapilarda ;
16 Iskan edilebilir bodrum katlar dahil 5 katli binalarin mutfaklarinda dogal gazla calisan her Rule
cihaz i¢in bir miistakil baca yapilacaktir.
17 5 kattan daha yiiksek yapilarda (yiliksek yapilar hari¢) mutfakta dogal gaz igin bir sont Rule
baca yapilmasi yeterlidir.
18 10 katin dstiindeki yapilarda; tistteki 10 kat sont bacaya baglanabilir, kalan diger alt Rule
katlarda hermatik (denge bacali) cihaz kullanilmalidir.
19 Ayrica; dogal gaz bacasi disinda, kaloriferli yapilarda kalorifer bacasi diginda Rule
diizenlenmesi 6n goriilen biitiin bacalar yapilacaktir.
B-Tesisat Bacalari subheading
20 Iginden tesisat gegen bacalarin en az (0.80x0.80) m. ebatlarinda olmas1 zorunludur. Rule
21 Sadece tesisat amaci ile kullanilmak ve her katta ortak mahalle acilmak kaydiyla Rule
(0.40x0.40)m. Slciilerinde yapilabilir.
22 Iginden tesisat gecirilmeyen sadece havalandirma amacia yonelik hava bacalari ise Rule

(0.60x0.60)m. dl¢iilerinde yapilabilir.

23 Bacalar kiris v.b herhangi bir yap1 elemani ile daraltilamaz.

Clarification

C-Cép Bacalart subheading

24 Tiim binalarda istenildiginde ¢Op bacalar1 yapilabilir.

Clarification

25 Zemin veya bodrum katlarinda ¢op toplama yerleri ve bagimsiz bolim baglantilarinin
bulunmasi, i¢ yiizeylerinin piiriizsiiz bir malzemeyle kaplanmasi ve kapak i¢ kisimlarinin,

Rule

hicbir maddenin s1zmasina olanak vermeyecek sekilde yapilmasi zorunludur.

139

Clause Id Statement Id Rule Id Rule Type
Self-containedness Formalizability
C52 ST2 Self-contained Formalizable
ST3 Self-contained Formalizable
ST4 Self-contained Formalizable
STS Self-contained Formalizable
ST6 Self-contained Formalizable
ST7 Self-contained Formalizable
STS8 Self-contained Formalizable
ST9 Self-contained Formalizable
ST10 Self-contained Formalizable
STI11 Self-contained Formalizable
ST12 Linked-explanatory Formalizable
ST14 Self-contained Formalizable
ST15 Linked-explanatory Formalizable
ST16 Self-contained Formalizable
ST17 Linked-explanatory Formalizable
ST18 Linked-explanatory Formalizable
ST19 Linked-explanatory Formalizable
ST20 Self-contained Formalizable
ST21 Linked-explanatory Formalizable
ST22 Linked-explanatory Formalizable
ST25 Self-contained Formalizable
Textual Expressions of Statement
Clause 53 Type
Madde 53—Yangin Onlemleri ld&heading

1 Bu yonetmelik esaslarina gore yapilacak tiim uygulamalarda, “ Binalarin Yangindan Rule
Korunmas1 Hakkindaki Y6netmelik” hiikiimlerine uyulacaktir.

Clause Id Statement Id Rule Id Rule Type
Self-containedness Formalizability

C53 ST1 R53.1 Self-contained Formalizable

p—

40

Textual Expressions of Statement
Clause 55 Type
Madde 55—-Bodrumlarla lgili Hiikiimler ld&heading

1

Binalarin bodrum kisimlari esas bloga tabi degildir.

Clarification

2

Tabii zeminin veya tesviye edilmis zeminin altinda kalmak ve yol cephelerinde kitle
hattina tecaviiz etmemek kosulu ile bah¢enin tamaminda bodrum yapilabilir.

Clarification

Komgsu parsellere uyum saglamak ve Imar Kanunun 35. maddesindeki hiikiimler sakl
kalmak kaydiyla, bu Yonetmeligin 37/C maddesine uygun olarak, parsel tesviye
edilebilir.

Clarification

Taban dosemesi iist seviyesi, tesviye edilmis zeminin altinda kaldigi takdirde mesken
olarak kullanilamaz.

Rule

Ancak imar planinda belirlenen bélgeleme kosullarina uyulmak ve bu Yonetmeligin 43.
maddesindeki sartlar1 saglamak kaydiyla igyerleri tesis edilir.

Rule

Konut boélgelerinde giinliik ihtiyaglar1 karsilamaya doniik olarak zemin katlarin ticaret
olarak planlanmasi halinde, bodrum katta ayn1 bagimsiz boliimle i¢ten baglantili piyesler
tesis edilebilir.

Rule

Bu piyeslerin ayr1 girigleri olamaz, binanin ortak alanlar1 ve mistemilatlariyla
irtibatlandirilamaz.

Rule

Bodrum kapisi tamamen tretuvar iizerinde kalan fazla meyilli yollar disinda yapilacak 6n
bahgesiz binalarda yol cephesinde bodrum girisi yapilamaz.

Rule

Topraga dayali tim bodrum katlar betonarme perde seklinde insa edilerek dis etkilere
kars1 1s1 ve su yalitim1 yapilmasi zorunludur.

Rule

10

Ayrica bu tiir binalarda yer alt1 suyuna kars1 gerekli drenaj yapilacak ve mimari proje ile
mekanik tesisat projelerinde belirtilecektir.

Rule

Clause Id Statement Id Rule Id Rule Type
Self-containedness Formalizability

C55 ST4 Self-contained Formalizable
STS Linked-explanatory Semi-formalizable
ST6 Self-contained Formalizable
ST7 Linked-explanatory Formalizable
STS8 Self-contained Formalizable
ST9 Self-contained Formalizable
ST10 Self-contained Formalizable

141

Textual Expressions of Statement
Clause 56 Type
Madde 56—Kapici Dairesi ld&heading

A- Kapici Dairesi Yapilacak Binalar: subheading

1 a) Konut, igyeri ve biiro olarak kullanilacak binalardan (resmi daireler harig);

Applicability Con.

2 1- Kaloriferli olanlarinda, konut binalarinin 12 daireden, fazla olanlarinda kapici

dairesi; isyeri ve biiro binalarmin 4000 m3 (briit) ten fazla olanlarinda bek¢i odasi
ayrilmasi zorunludur.

Rule

3 2- Kalorifersiz olanlarda, konut binalarinin 16 daireden fazla olmalarinda kapici dairesi, Rule
igyeri ve biiro binalarinin 5000 m3 (briit) ten fazla olanlarinda bek¢i odast ayrilmasi
zorunludur.

4 b) Kaloriferli konut binalarinin daire sayist (50) den igyeri ve biiro binalariin 15000 Rule
m3 (briit) ten fazla olanlarinda da kapici dairesinden veya bek¢i odasindan bagka,
kapici dairesi 6l¢ii ve niteliginde bir de kaloriferci dairesi ayrilacaktir.

5 ¢) Toplam daire sayis1 48’den fazla olan konut parsellerinde yukaridaki sartlarda ikinci Rule
bir kapic1 dairesi aranir.

B- Kapici Dairelerinin ve Bekci Odasimin Ol¢ii ve Nitelikleri: subheading

6 a) Kapici dairelerinin ve bekg¢i odalarinin taban dosemesi iist kotu, tabii zeminden veya Rule
tesviye edilmis bahce kotundan asagida olamaz.

7 b) Kapict daireleri dogrudan 151k ve hava alabilecek sekilde diizenlenecek ve briit alan1 Rule
45m2'den az olmayacaktir.

8 Minimum 12.00 m2 ve 7.00 m2'lik birer oda (odalardan biri 1sikliktan hava alabilir.) Rule
4.00 m2'lik mutfak veya mutfak nisi ile 3.00 m2'lik WC + dus (ikisi ayn1 boliimde
olabilir) ihtiva edecektir.

9 c) Bekgei odasi en az 7.00 m2 biiyiikligiinde ve dogrudan 151k ve hava alabilecek sekilde Rule
diizenlenecek ve en az 2.00 m2'lik bir WC + lavabo olacaktir.

Clause Id Statement Id Rule Id Rule Type
Self-containedness Formalizability
C56 ST2 Self-contained Formalizable
ST3 Linked-explanatory Formalizable
ST4 Self-contained Formalizable
STS Linked-explanatory Formalizable
ST6 Self-contained Formalizable
ST7 Self-contained Formalizable
ST8 Self-contained Formalizable
ST9 Self-contained Formalizable
Textual Expressions of Statement
Clause 57 Type
Madde 57-Miistemilatlar ld&heading

1 Binalarin miistemilat kisimlar1 miimkiin ise binanin bodrum katinda diizenlenir.

Clarification

2 Bahcede siginak disinda miistemilat tertip edilemez.

Rule

3 Ayrica , parsel i¢indeki yeri Imar Miidiirliiklerince belirlenmek kaydiyla, belediyelerin Out of Scope
ilgili teknik birimlerince hazirlanacak tip projeye gore her parsel i¢in ¢op toplama {initesi

yapilmasi zorunludur.

4 Sobal1 1sitma sistemi secilen yapilarda, her daire bagma net 2.50 m2 lik komiirliik veya Rule

odunluk gibi miigtemilatin tesisi zorunludur.

W

Bu hacim binanin bodrum katinda veya miistemilat boliimiinde de yapilabilir.

Clarification

6 Ancak, daire i¢cinde veya kat sahanliginda yapilmasi halinde, max. (4.50) m2'yi gegemez Rule

ve bu alanin hava bacasi veya 1sikliktan hava almasi saglanacaktir.

Clause Id Statement Id Rule Id Rule Type
Self-containedness Formalizability
C57 ST2 Self-contained Formalizable
ST4 Self-contained Formalizable
ST6 Self-contained Formalizable

Pk

42

Textual Expressions of Statement
Clause 59 Type
Madde 59-Duvarlar ld&heading
1 Tiim binalarda; dig cepheye bakan duvar kalinliklar1 (0.20)m.den kiiciik yapilamaz. Rule
2 Ancak, “Ist Yalitim Yonetmeligi” hiikiimleri sakli kalmak kosulu ile , hesaplar1 Rule
(coziimleri) yapilarak yeni malzemeler kullanildifinda bu boyutlar degisebilir.
3 Bitigik nizama tabi yapilarin bitisik duvarlarinda ise, duvar kalinlig1 (0.15)m. olabilir. Rule
4 Teras gatilarda veya gizli ¢atilarda yapilacak parapet duvarlarinin yiiksekligi 1.00m.den Rule
az ve 1.10 m. den fazla olamaz.
5 Catilarda kullanilan parapet duvarlar1 yigma olarak yapildig: taktirde, iizerlerine donatili Rule
min.(0.30)m. yiiksekliginde hatil dokiilecek ve bu hatil yer yer désemeye baglanacaktir.
6 Ayrica kalkan duvarlarda, 2.00m.de yatay hatil, 4.00m.de diisey hatil (takviye kolon) Rule

apilmasi zorunludur.

Clause Id Statement Id Rule Id Rule Type
Self-containedness Formalizability
C59 ST1 R59.1 Self-contained Formalizable
ST2 R59.2 Linked-explanatory Non-formalizable
ST3 R59.3 Linked-explanatory Formalizable
ST4 R59.4 Self-contained Formalizable
STS R59.5 Self-contained Formalizable
ST6 R59.6 Self-contained Formalizable
Textual Expressions of Statement
Clause 60 Type
Madde 60—Bahge Duvarlari ld&heading

1

Bahcge duvarlarinin yiiksekligi, binalarin yol tarafindaki cephe hatlarinin 6niinde (0.50) Rule

m.yi gerisinde ise (1.00) m.yi gecemez.

2 Ayrica iizerlerine yiikseklikleri (1.00) m.yi agmayan parmaklik yapilabilir. Clarification
3 Fazla meyilli yerlerde uygulanacak sekli takdire belediye yetkilidir. Rule
4 Okul, hastane, ceza evi, ibadet evi, elgilik, sefarethane, agik hava sinemasi1 ve benzerleri Rule
gibi Ozellik arz eden bina ve tesislerin bahce duvarlar ile sanayi bolgelerinde yapilacak
bahge ve cevre duvarlar1 bu madde hitkkmiine tabi degildir.
5 Zemin katlarda diikkan yapilmasina izin verilen yapilarda, yaya kaldirimi ile ayni Rule
seviyedeki on bahceler yayaya agik bulundurulacaktir.
6 Bu bahcelerde yayalarin can emniyetini tehlikeye diistirecek duvar ve manialar yapilamaz. Rule

C60

Clause Id Statement Id Rule Id Rule Type
Self-containedness Formalizability
ST1 Self-contained Formalizable
ST3 Linked-explanatory Non-formalizable
ST4 Linked-explanatory Formalizable
STS Linked-explanatory Semi-formalizable
ST6 Linked-explanatory Semi-formalizable

p—

43

Textual Expressions of Statement

Clause 65 Type

Madde 65-Siginak ld&heading
Baymdirlik ve Iskan Bakanhgmnca cikarilan “3194 Sayili Imar Kanunu’na Goére Rule
Diizenlenmis Sigmaklarla Ilgili Yonetmelik”e uyulacaktir.

Clause Id Statement Id Rule Id Rule Type
Self-containedness Formalizability
C65 ST1 Self-contained Fromalizable

Clause Id Statement Id Rule Id Rule Type
Self-containedness Formalizability
C66 ST2 Self-contained Formalizable**
ST3 Self-contained Formalizable**
STS Self-contained Formalizable
ST6 Self-contained Formalizable
ST7 Self-contained Formalizable
STS8 Self-contained Formalizable
ST9 Self-contained Formalizable
ST10 Self-contained Formalizable
ST11 Self-contained Formalizable
ST12 Self-contained Formalizable**
ST13 Self-contained Formalizable
ST14 Self-contained Formalizable
ST17 Self-contained Formalizable
ST18 Self-contained Formalizable
ST19 Self-contained Formalizable
ST20 Self-contained Formalizable
ST21 Self-contained Formalizable
ST22 Self-contained Formalizable
ST23 Self-contained Formalizable
ST24 Self-contained Formalizable

p—

44

Textual Expressions of
Clause 66

Statement
Type

Madde 66—Engelliler ile Ilgili Hiikiimler ld&heading

1

A- Katli ve agik otoparklar, okullar, resmi binalar, havaalani, gar, otogar, hastaneler,
iniversiteler, sinema, tiyatro, kiiltlirel yapilar, bilylik marketler (hipermarketler) agik ve
kapali ylizme havuzlari, stadyum termal tesisleri, kapali spor salonlari, agik spor
salonlar1, yatak kapasitesi 100'den fazla olan oteller moteller ve yurt binalari, toplam
ingaat alan1 1000 m2'den biiylik saglik tesisleri' nin projelendirme ve yapimi
agsamasinda asagidaki sartlara uyulacaktir.

Applicability Con.

a) Acik ve katli otopark yeri olarak ayrilan alanin en az %2'si (1'den az olmamak
kaydiyla) engellilerin de kullanimini saglayacak sekilde diizenlenecektir.

Rule

Ayrica bu oto yerleri 5 m. x 3.5 m. boyutunda olmali, bina girisine yakin diizenlenmeli
ve sar1 renkle igaretlenmelidir.

Rule

Ayrica, engellilere ait oldugu trafik park levhasi ile belirlenmelidir.

Out of Scope

b) Bina girislerinde; bedensel engellilerin kullanimi i¢in, katlar aras1 diisey sirkiilasyon
saglayan asansor veya merdivene ulasan ve egimi %6'y1 asmayan rampa yapilacaktir.

Rule

Rampanin iki yanina 90 cm yiiksekliginde ve 4-5 cm ¢apinda yuvarlak tutunma barlari
yapilacaktir.

Rule

Rampa genisligi en az 90 cm olacak ve bosluk tarafina bordiir konulacaktir.

Rule

¢) Katlar arasinda diisey sirkiilasyonu saglayan ana giris merdivenlerinde; basamaklar
cikintili yapilmayacak, genisligi 30 cm'den az ve riht yiiksekligi ise 15 cm'den fazla
yapilmayacaktir.

Rule

Duvar tarafina 90 cm yiiksekliginde tutunma bari yapilacaktir.

Rule

Tutunma barlar1 ve merdiven kiipesteleri, ilk basamaga en az 30 cm disindan
baslanmalidir.

Rule

11

Doner merdiven yapilmali ve en ¢ok 10 basamakta bir dinlenme sahanliklari
tertiplenmelidir.

Rule

12

d) Bu binalardan asansor yapilmasi zorunlu olanlarinda yapilacak asansorlerden en az
bir tanesi bedensel engellilerin de kullanimini saglayacak sekilde diizenlenecektir.

Rule

13

Bu asansdriin dniindeki sahanlik genisgligi 150 cm'den az olamaz.

Rule

14

Asansor kabininin genisligi 110 cm'den, derinligi 140 cm'den, kap1 genisligi 80 cm'den
az olamaz.

Rule

15

Asansor diigmeleri 90-130 cm yiikseklikte olmali ve kabin i¢inde 90 cm yiikseklikte
tutunma bar1 diizenlenmelidir.

Out of Scope

16

Ayrica bu asansorlerde gorme engelliler igin sesli ikaz sistemi tesis edilmeli ve kontrol
diigmeleri kabartmali yapilmalidir.

Out of Scope

17

B- Okullar, iniversiteler, havaalani, gar, otogar, stadyum, sinema, tiyatro toplam ingaat
alan1 500 m2'yi agan kiiltiir yapilari, toplam ingaat alan1 1000 m2'yi asan resmi yapilar,
toplam ingaat alan1 1000 m2'yi asan saglik tesisleri ve dispanserlerde yapilacak
WC'lerden en az birer adedi (bir kadin, bir erkek olmak iizere), bedensel engellilerin de
kullanilabilecegi sekilde diizenlenecektir.

Rule

18

Acik ve kapali ylizme havuzlari, agik spor alanlari, kapalt spor alanlarinda yapilacak
WCl'lerden ve dus mahallerinden en az birer adedi (bir kadin, bir erkek olmak {izere),
bedensel engellilerin de kullanilabilecegi sekilde diizenlenecektir.

Rule

19

Yatak kapasitesi 100'den fazla olan otel, motel, yurt binalari, hastanelerde; miisterek
kullanilan WC'lerden en az birer adedi (bir kadin, bir erkek olmak iizere) ve icinde WC
ve dug mahalli bulunan en az bir oda, bedensel engellilerin de kullanilabilecegi sekilde
diizenlenecektir.

Rule

20

Diizenlenen bu mekanlarda kapilar diga agilacak, tutunma ve destek barlari ile elgekleri
yapilacaktir.

Rule

21

I¢ olgiiler WC'lerde 140 cm x 140 cm'den, WC + dus mekanlarinda ise 160 cm x 220
cm'den az olamaz.

Rule

22

Dus mahalli en az 91,5 cm x 152,5 cm x 152,5 cm transfer oturakli olarak
diizenlenecektir.

Rule

145

APPENDIX B

RULE AND RULE-SET REPRESENTATIONS OF
IMHZCODE

This appendix shows the representation of Izmir Municipality Housing and
Zoning Code (IMHZCode) rule statements and rule-sets. Rule statements have been
represented as rule objects in the form of structured data based on the pre-defined
constructs. Each rule object has a “requirement” construct that describes the required
specification in a concept. Some rule objects also have “selection” constructs describing
the specific cases where the requirement is applicable. Both of these constructs have
identical attributes. Followings are the definition of each attribute, and tables present
how rule statements are represented by using the constructs. A rule can be found by
using rule id, which represent clause and statement number in Izmir Municipality

Housing and Zoning Code (IMHZCode) 2013 version.

Definition of Attributes

Concept:

Name of the subject to which the rule applies.
Property:

Name of the attribute of the concept.
Comparator:

13

Name of the comparison operator such as “>”, “<”, “="_“equal”, “boolean”
Value:
The specific value that is found in the code, whether numeric, descriptive, or
Boolean.
Unit:

The unit of measure for numeric values.

146

LYT

REQUIREMENT SELECTION
St.Id Rule Id Concept Property C. Value U. Concept Property Comp. Value U.
ST2 R27.1 Setback frontDistance > 5 m
Block ... constructionOrder ____ __________equal ___ semiDetached
ST4 R27.2 :Setback frontDistance = {Block referencedFrontSetbackDistance} m : Block hasExistingBuilding boolean true
Block ... constructionOrder _____________equal ___ plannedUnit
ST5 R27.3 Setback frontDistance = {Block referencedFrontSetbackDistance} m : Block hasExistingBuilding equal true
Block ... constructionOrder _______ ______equal ___ attached
ST6 R27.4 Setback frontDistance = {Block_referencedFrontSetbackDistance} m : Block is50%Developed equal true
ST7 R27.5 Setback sideDistance = 3 m
ST8 R27.6 :Setback sideDistance = (3+((:{building_numberofStorey}:-4)/2)) m :Building numberofStorey > 4
ST9 R27.7 Setback sideDistance > 5 m : Building constructionTechnique equal timberFramed
ST10 R27.8 Setback rearDistance = (:{building_height}:/2) m
ST13 R27.9 Setback rearDistance > 3 m : Block hasExistingBuilding boolean true
Block constructionOrder _ ___equal semiDetached
ST14 R27.10 :Setback rearDistance = {Block referencedRearSetbackDistance} m : Block hasExistingBuilding boolean true
Block ... constructionOrder ____ __ _______equal ___ plannedUnit
ST15 R27.11 :Setback rearDistance = {Block referencedRearSetbackDistance} m : Block hasExistingBuilding boolean true
Block . constructionOrder _ _ _ ___ ___equal __ attached
ST16 R27.12 :Setback rearDistance = {Block referencedRearSetbackDistance} m : Block is50%Developed boolean true
Rule-set Id Subject Set
Concept Property
RS27.A Setback frontDistance (: R27.1,R27.2,R27.3,R27.4)
RS27.B Setback sideDistance (&: (|l: R27.5,R27.6), R27.7)
RS27.C Setback rearDistance (Jl: R27.8, (&: R27.9, (]: R27.10, R27.11, R27.12)))

8¥1

REQUIREMENT SELECTION
St.Id Rule Id Concept Property C. Value U. Concept Property Comp. Value U.
ST1 R28.1 Building depth < 22 m
ST2 R28.2 Building depth < 22 m_ iBlock hasExistingBuilding equal true
ST3 R28.3 Building depth = {Block refBuildingdepth} Block constructionOrder equal semiDetached
ST4 R28.4 Building depth = {Block refBuildingdepth} Block constructionOrder equal plannedUnit
STS R28.5 Building depth = {Block refBuildingdepth} Block constructionOrder equal attached
ST6 R28.6 :Building depth = {Block refBuildingdepth} Lot onCorner boolean true
ST8 R28.8 :Building depth < {Lot_clearDepth} Lot numberofFacingRoad = 2
Rule-set Id Subject Set
Concept Property
RS28.A Building depth (Jl: R28.1, (&: R28.2, (]]: R28.3, R28.4, R28.5)), R28.6, R28.8)
REQUIREMENT SELECTION
St.Id Rule Id : Concept Property C. Value U. Concept Property Comp. Value U.
STI R29.1 Building facade < 30 m_ Block constructionOrder equal detached
Rule-set Id Subject Set

Concept Propert
RS29.A Building facade R29.1

6¥1

REQUIREMENT SELECTION
Stdd Id Concept Property C. Value U. Concept Property Comp. Value U.
ST2 R30.1 :Building height < 3.80 m__ 1StroeyBuilding
ST3 R30.2 :Building height < 6.80 m__ 2StroeyBuilding
ST4 R30.3 :Building height < 9.80 m _ 3StroeyBuilding
STS R30.4 Building height < 12.80 m__ 4StroeyBuilding
ST6 R30.5 :Building height < 15.80 m__ 5StroeyBuilding
ST7 R30.6 :Building height < 18.80 m__ 6StroeyBuilding
ST8 R30.7 :Building height < 21.80 m__: 7StroeyBuilding
ST9 R30.8 (Building height < 24.80 m _ 8StroeyBuilding
ST10 R30.9 :Building height < 77.80 m__ 9StroeyBuilding
ST11 R30.10 :Building height < 30.80 m _ 10StroeyBuilding
Id Subject Set
Concept Property
RS30.A Building height (Jl: R30.1, R30.2, R30.3, R30.4, R30.5, R30.6, R30.7, R30.8, R30.9, R30.10)
REQUIREMENT SELECTION
St.dd Id Concept Property C. Value U. : Concept Property Comp. Value U.
ST1 R38.1.1 : Storey distanceToProjectZero > 0.50 m Basement
ST1 R38.1.2 : Storey distanceToProjectZero < 1.00 m
Basement
ST2 R38.2 : Storey distanceToProjectZero > 0.00 m Zone usage equal store || parking
Id Subject Set
Concept Property
RS38.A Storey distanceToProjectZero (&: (Jl: R38.1.1, R38.2), R38.1.2)

REQUIREMENT SELECTION
Stdd Id Concept Property C. Value U. Concept Property Comp. Value U.
STI R39.1 :Building constructionTechnique lequal timberFramed Block constructionOrder equal detached
ST2 R39.2 |Building constructionTechnique lequal timberFramed Setback sideDistance < 5 m
ST3 R39.3 Building constructionTechnique lequal timberFramed Building height > 6.80 m
Block constructionOrder equal attached

ST4 R39.4 | Building constructionTechnique lequal timberFramed Building hasFireWall boolean false

Id Subject Set

Concept Property
RS39.A Building constructionTechnique (&: (Jl: R39.1,R39.4), R39.2, R39.3)

0ST

REQUIREMENT SELECTION

St.dd Id Concept Property C. Value U. Concept Property Comp. Value U.
ST1 R40.1.1 :Eave homeStorey equal last
ST1 R40.1.2 :Eave width < 0.50 m
ST2 R40.2.1 : Canopy width < 1.50 m Lot isWithFrontGarden boolean false
ST2 R40.2.2 Canopy isConsole Boolean True Lot isWithFrontGarden boolean false
ST2 R40.2.3 : Canopy distancetoLot < 2.00 m Lot isWithFrontGarden boolean false
ST3 R40.3.1 : Canopy level > 3.00 m Lot isWithFrontGarden boolean false
ST3 R40.3.2 : Canopy width < {Block sidewalkWidth} m Lot isWithFrontGarden boolean false
ST4 R40.4.1 : Canopy width < {Setback frontDistance} m Lot isWithFrontGarden boolean true
ST4 R40.4.2 : Canopy isConsole boolean true Lot isWithFrontGarden boolean true
Id Subject Set

Concept Property
RS40.A Eave homeStorey R40.1.1
RS40.B Eave width R40.1.2
RS40.C Canopy width (|l: (&: R40.2.1, 40.3.2), R40.4.1)
RS40.D Canopy isConsole (|l: R40.2.2, R40.4.2)
RS40.E Canopy distancetoLot R40.2.3
RS40.F Canopy level R40.3.1

16T

REQUIREMENT SELECTION
St.dd Id Concept Property C. Value U. Concept Property Comp. Value U.
ST2 R412 Roof pitch = 33 %
Block constructionOrder equal detached
Building type equal dublexHouse
ST3 R41.3.1 Roof pitch = {Roof pitch} % Roof run < {Roof calculatedRun}
Block constructionOrder equal detached
Building type equal dublexHouse
ST3 R41.3.2 Roof form equal {Roof form} Roof run < {Roof calculatedRun} m
Building type lequal dublexHouse
ST7 R41.4 Roof form equal hip Roof run < 3 m
ST8 R41.5 Zone hasSpace equal false attic
attic
ST9 R41.6.1 Zone hasSpace boolean true Zone {containingSpace usage} equal liftShaft || flueShaft
attic
Building type equal dublexHouse
Building height = 6.80 m
Zone {containingSpace hasConnectedtolUnit boolean true
Zone {containingSpace boundary} < {containingSpace zone boundary}
ST9 R41.6.2 Zone hasSpace boolean true Zone {containingSpace area} < (:{space_zone area}:*30/100) m?2
ST10 R41.7.1 Zone hasSpace boolean true Zone {containingSpace isOccupied} boolean false
ST10 R41.7.2 Zone hasSpace boolean true Zone {containingSpace _height} > 1.80 m
ST11 R41.8 Zone hasSpace boolean true Zone {containingSpace _relatedSpace} lequal terrace
Ceiling homeStorey lequal lastFloor
ST13 R41.10 Ceiling isSloped boolean false Ceiling level > {Roof run}
ST14 R41.11 :Wall exceedingLmtfromRoof < 0.60 m Wall type equal gable
ST15 R41.12.1:Roof hasExtension boolean false
ST15 R41.12.2 :Roof hasExtension boolean true Roof {exceedingSpace usage} equal flueShaft
ST15 R41.12.3 :Roof hasExtension boolean true Roof {exceedingSpace usage} equal airShaft
Roof {exceedingSpace height} < 2.10 m
ST16 R41.13 Roof hasExtension boolean true Roof {exceedingSpace usage} equal stairShaft
terrace
ST17 R41.14.1 {Zone hasSpace boolean true Zone {containingSpace usage} equal liftShaft
terrace
Zone {containingSpace usage} equal stairShaft
ST17 R41.14.2 {Zone hasSpace boolean true Zone {containingSpace _height} < 2.10

¢St

REQUIREMENT SELECTION

Stdd Id Concept Property C. Value . Concept Property Comp. Value U.

ST1 R42.1.1 : Building hasCantilever boolean false
Cantilever distancetoLotFrontBorder > 0.00 m
Cantilever width < 1.50 m
Cantilever distancetoProjectZero > 2.40 m

ST1 R42.1.2 | Building hasCantilever boolean true Cantilever distancetoLotSideBorder > 3.00 m
Cantilever distancetoLotRearBorder > 3.00 m

ST2 R42.2 :Building hasCantilever boolean true Cantilever length < {building_facade}
Lot {Setback sideDistance} > 3.00 m
Lot {Setback sideDistance} < 4.00 m
Cantilever distancetoLotSideBorder > 2.00 m
Cantilever width < 1.00 m
Cantilever type equal open

ST3 R42.3 Building hasCantilever boolean true Cantilever length < (:{building_facade}:/3) m
Block constructionOrder equal attached

ST4 R42.4 Building hasCantilever boolean true Cantilever distancetoLotSideBorder > 2.00 m
Block constructionOrder equal attached
existingBuilding cantilerDistancetoBorder 0.00 m

ST6 R42.6 Building hasCantilever boolean true Cantilever distancetoLotSideBorder = 0.00 m
Lot roadWidth > 6.00 m
Lot isWithFrontGarden boolean false

ST7 R42.7 Building hasCantilever boolean true Cantilever width = ((:{Lot_roadWidth}:-6)/2) m
Cantilever width < 1.00 m

ST8 R42.8 : Building hasCantilever boolean true Cantilever distancetoProjectZero > 3.00 m

ST10 R42.10 :Building hasCantilever boolean true Cantilever width < 0.20 m
Block facedtoGreenArea boolean true

ST11 R42.11 :Building hasCantilever boolean true Cantilever width < 1.00 m

Id Subject Set

Concept Property
RS42.A Building hasCantilever (J: R42.1.1, (&: R42.1.1, (|: R42.2, R42.3, R42.6)), (&: (]|: R42.7, R42.11), R42.8), R42.10)

€st

REQUIREMENT SELECTION

St.dd Id Concept Property C. Value U. Concept Property Comp. Value
Building usage equal dwelling

ST1 R43.1 Space hasOpeningTo equal outside Space usage equal {livingRoom || bedroom}
Building usage equal dwelling

ST2 R43.2.1 Space hasOpeningTo equal outside Space usage equal {kitchen || room || bathroom || wc}
Building usage equal dwelling

ST2 R43.2.2 : Space hasOpeningTo equal lightShaft Space usage equal {kitchen || room }
Building usage equal dwelling

ST2 R43.2.3 Space hasOpeningTo equal ventilationShaft Space usage equal {bathroom || wc }
Building usage equal dwelling

ST3 R43.3.1 lightShaft width > 1.00 m__ Building numberofStorey < 2
Building usage equal dwelling

ST3 R43.3.2 !lightShaft area > 3.00 m2 : Building numberofStorey < 2
Building usage equal dwelling

ST4 R43.4.1 | lightShaft width > 1.50 m__ Building numberofStorey < 5
Building usage equal dwelling

ST4 R43.4.2 lightShaft area > 4.50 m2 Building numberofStorey < 5
Building usage equal dwelling

STS5 R43.5.1 lightShaft width > 2.00 m _ Building numberofStorey < 9
Building usage equal dwelling

STS5 R43.5.2 . lightShaft area > 6.00 m2 : Building numberofStorey < 9
Building usage equal dwelling

ST6 R43.6.1 !lightShaft width > 2.00 m__ Building numberofStorey > 10
Building usage equal dwelling

ST6 R43.6.2 lightShaft area > 9.00 m2 Building numberofStorey > 10

ST8 R43.8.1 !lightShaft width > 1.50 m__ Building numberofStorey < 2

ST8 R43.8.2 lightShaft area > 4.50 m2 Building numberofStorey < 2

ST9 R43.9.1 :lightShaft width > 2.00 m __ : Building numberofStorey < 9

ST9 R43.9.2 :lightShaft area > 6.00 m2 | Building numberofStorey < 9

ST10 R43.10.1 :lightShaft width > 2.00 m__ Building numberofStorey > 10

ST10 R43.10.2 :lightShaft area > 9.00 m2 : Building numberofStorey > 10

ST11 R43.11.1 :ventilationShaft width > 0.60 m

ST11 R43.11.2 iventilationShaft area > 0.36 m2

ST11 R43.11.3 ventilationShaft width > 0.80 m__ ventilationShaft hasInstallation boolean true

ST11 R43.11.4 iventilationShaft area > 0.64 m?2 :ventilationShaft hasInstallation boolean true

¥a1

Id Subject Set

Concept Property
RS43.A Space hasOpeningTo (|l: R43.1,R43.2.1,R43.2.2, R43.2.2)
RS43.B lightShaft width (Jl: R43.3.1, R43.4.1,R43.5.1, R43.6.1, R43.8.1, R43.9.1, R43.10.1)
RS43.C lightShaft area (|l: R43.3.2, R43.4.2, R43.5.2, R43.6.2, R43.8.2, R43.9.2, R43.10.2)
RS43.D ventilationShaft width (Jl: R43.11.1, R43.11.3)
RS43.E ventailationShaft area (Jl: R43.11.2,R43.11.4)
REQUIREMENT SELECTION
St.Id Id Concept Property C. Value U. :Concept Property Comp. Value U.
ST1 R44.1.1 Zone containingSpaceList include livingRoom dwelling
ST1 R44.12 Zone containingSpaceList include bedroom dwelling
ST1 R44.13 Zone containingSpaceList include bedNische dwelling
ST1 R44.14 Zone containingSpaceList include kitchen dwelling
ST1 R44.1.5 Zone containingSpaceList include cookNische dwelling
ST1 R44.1.6 Zone containingSpaceList include bathroom dwelling
ST1 R44.1.7 Zone containingSpaceList _ include bathNische dwelling
ST1 R44.1.8 Zone containingSpaceList equal wce dwelling
ST3 R44.2.1 Space width > 3.00 m __ livingRoom
ST4 R44.2.2 :Space area > 12.00 m2 :livingRoom
ST4 R44.3.1 iSpace width > 2.60 m__ bedroom
ST4 R44.3.2 Space area > 7.28 m2 :bedroom
ST5 R44.4.1 Space width > 1.50 m__ bedNiche
ST5 R44.4.2 Space area > 3.00 m2 :bedNiche
ST6 R44.5.1 Space width > 1.50 m__ kitchen
ST6 R44.5.2 : Space area > 3.60 m2 kitchen
ST7 R44.6.1 :Space width > 0.70 m i cookNische
ST7 R44.6.2 Space area > 1.40 m2 :cookNische
ST8 R44.7.1 Space width > 1.20 m__ bathroom
ST8 R44.7.2 :Space area > 3.48 m2 :bathroom
ST9 R44.8.1 :Space width > 1.20 m__ :bathNische
ST9 R44.8.2 Space area > 2.64 m?2 :bathNische
ST10 R44.9.1 Space width > 0.90 m iwc
ST10 R44.9.2 :Space area > 1.08 m2 iwc

SSaT1

ST11 R44.10.1 :Space width > 1.00 m entrance

ST11 R44.10.2 : Space area > 1.32 m2 :entrance

ST12 R44.11.1 : Space width > 1.10 m__ corridor

ST12 R44.11.2 Space area > 1.32 m2 : corridor

ST13 R44.12.1 : Space width > 2.10 m _ iroom

ST13 R44.12.2 : Space area > 6.00 m2 :room

ST14 R44.13 Space containedSpace equal livingRoom bathNische

ST15 R44.14.1 |Space connectedTo equal chimney cookNische

ST15 R44.14.2 : Space connectedTo equal ventilationShaft cookNische

ST16 R44.15.1 :Zone containingSpaceList equal coalCellar building typeofHeatingSystem equal stove

ST16 R44.15.2 : Space area > 2.50 m2 coalCellar
coalCellar

ST17 R44.16 Space area > 4.50 m2 : Space containedZone equal iUnit

ST18 R44.17 Space isFurnished boolean true wetSpace
building type equal public
corridor

ST19 R44.18.1 Space width > 2.00 m : Space length < 20.00 m
building type equal public
corridor

ST19 R44.18.2 : Space width > 2.50 m : Space length > 20.00 m

ST20 R44.19 Zone facade > 2.00 m workingPlace

Id Subject Set

Concept

Propert

RS44.A Zone containingSpaceList (&:R44.1.1, (]]: R44.1.2,R44.1.3), (||: R44.1.4, R44.1.5), (]|: R44.1.6, (&: R44.1.7, R44.1.8)), R44.15.1)

RS44.B Space width (l: R44.2.1, R44.3.1,R44.4.1, R44.5.1, R44.6.1, R44.7.1, R44.8.1, R44.9.1, R44.10.1, R44.11.1, R44.12.1, R44.18.1, R44.18.2)
RS44.C Space area (|l: R44.2.2, R44.3.2, R44.4.2, R44.5.2, R44.6.2, R44.7.2, R44.8.2, R44.9.2, R44.10.2, R44.11.2, R44.12.2, R44.15.2, R44.16)
RS44.D Space containedSpace R44.13

RS44.E Space connectedTo (&: R44.14.1,R44.14.2)

RS44.F Space isFurnished R44.17

RS44.G Zone facade R44.19

941

REQUIREMENT SELECTION
St.dd Id Concept Property C. Value U. :Concept Property Comp. Value
STI R45.1 Storey height > 2.60 m
m {bathNische || bathroom || wc || cellar ||
office || entrance || corridor ||
ST3 R45.2.1 Space height > 2.20 Space usage equal innerCorridor || }
m | Storey isOccupied boolean false
ST3 R45.2.2 Storey height > 2.20 Storey level equal underground
ST3 R45.2.3 Storey height > 2.20 m __ Building usage equal auxiliary
ST4 R45.3 Space height > 2.00 m : Space usage equal garage
ST5 R454 Storey height > 2.60 m_ building isOccupied boolean true
ST6 R45.5 Space height > 3.00 m : Space {containedZone usage} equal {store || cafe || restaurant}
ST7 R45.6 Space height > 3.50 m : Space {containedZone usage} equal {wedding hall || casino || disco || pub}
m Space {containedZone usage} equal {wedding hall || casino || disco || pub}
ST8 R45.7 Space height > 2.60 Space usage equal serviceArea
m Space {containedZone usage} equal {wedding hall || casino || disco || pub}
ST9 R45.8 Space area < ((:{containedZone_area)*0.5)) Space usage equal serviceArea
Id Subject Set
Concept Property
RS45.A Storey height (|l: R45.1, R45.2.2,R45.2.3, R45.4)
RS45.B Space height (|l: R45.2.1, R45.3, R45.5, R45.6, R45.7)
RS45.C Space area R45.8

LST

REQUIREMENT SELECTION
Com
Stid Id Concept Property C. Value U. Concept Property Pp- Value U.
ST1 R46.1.1 Window width > 0.60 m
STI R46.1.2 Window area > (:{relatedSpace area}:/8) m__ Window {relatedSpace usage} equal {livingRoom || room || kitchen}
ST1 R46.1.3 Window area > 1.25 m2
m2 building type equal dublexHouse
ST3 R46.2.1 Window area < 0.80 Window {relatedSpace containedZone} equal attic
building type equal dublexHouse
ST3 R46.2.2 : Space numberOfWindow = 2 Space containedZone equal attic
Id Subject Set
Concept Property
RS46.A Window width R46.1.1
RS46.B Window area (&: R46.1.2, R46.1.3)
RS46.C Space numberofWindow R46.2.2
REQUIREMENT SELECTION
Stid Id Concept Property C. Value U. Concept Property Comp. Value U.
ST1 R47.1 Door height > 2.10 m
ST2 R47.2 Door width > 1.30 m mainEntranceDoor
ST3 R47.3 Door width > 1.00 m entranceDoor
ST4 R47.4.1 Door width > 0.90 m roomDoor
ST4 R47.4.2 Door width > 0.90 m kitchenDoor
ST5 R47.5.1 Door width > 0.80 m bathroomDoor
ST5 R47.5.2 Door width > 0.80 m wcDoor
ST5 R47.53 Door width > 0.80 m cellarDoor
ST6 R47.6 Door width > 1.00 m storeDoor
ST8 R47.8 Door allowAirTransfer boolean true bathroomDoor

84T

Id Subject Set
Concept Property

RS47.A Door height R47.1

RS47.B Door width (l: R47.2,R47.3,R47.4.1, R47.4.2,R47.5.1, R47.5.2, R47.5.3, R47.6)

RS47.C Door allowAirTransfer R47.8

REQUIREMENT SELECTION

St.dd Id Concept Property C. Value U. Concept Property Comp. Value U.
Building height > 12.80
Building numberofStorey > 4

ST1 R48.1.1 :Building numberofLift > 1 Building usage equal dwelling
Building height > 12.80
Building numberofStorey > 2

STI R48.1.2 Building numberofLift > 1 Building usage lequal dwelling

ST1 R48.1.3 iLift startupStorey equal ground

ST1 R48.1.4 Lift finishingStorey equal last

ST1 R48.1.5 Lift hasAccessToEveryStorey boolean true

ST1 R48.1.6 iLift complyWith equal “TSE & AY”
Building height > 12.80
Building usage equal dwelling

ST3 R48.2 Building numberofLift > 2 Building numberoflUnit > 20

Id Subject Set

Concept Property

RS48.A Building numberofLift (|| R48.1.1, R48.1.2, R48.2)

RS48.B Lift startupStorey R48.1.3

RS48.C Lift finishningStorey R48.1.4

RS48.D Lift hasAccessToEveryStorey R48.1.5

RS48.D Lift complyWith R48.1.6

65T

REQUIREMENT SELECTION
St.dd Id Concept Property C. Value U. Concept Property Comp. Value
STI R49.1.1 Building numberofStair > 1
STI R49.1.2 : Stair material lequal wood Stair usage equal main
ST2 R49.2 Stair holeWidth > 20 cm
ST3 R49.3 Space hasOpeningTo equal outside Space usage equal stairWell
ST4 R49.4.1 : Stair hasAccesToBasement boolean true Stair usage equal main
ST4 R49.4.2 Stair hasAccesToRoof boolean true Stair usage equal main
STS R49.5.1 Stair flightWidth > 1.20 m
STS R49.52 Stair landingWidth > 1.20 m
ST6 R49.6.1 Stair riserHeight = ((60-:{threadLength}:)/2)
ST6 R49.6.2 Stair threadLegth = (60-(2*: {riserHeight}:))
ST9 R49.8 Stair landingWidth > flightWidth
ST10 R49.9 Stair landingWidth > 1.00 m Stair type equal {straight || spiral}
ST12 R49.11.1 : Stair flightWidth > 1.20 m Building usage equal dwelling
ST12 R49.11.2 : Stair landingWidth > 1.20 m Building usage equal dwelling
ST13 R49.12.1 : Stair Building usage equal dwelling
flightWidth > 0.90 m Stair homeStorey equal basement
ST13 R49.12.2 : Stair Building usage equal dwelling
flightWidth > 0.90 m Stair usage equal service
ST13 R49.12.3 : Stair Building usage equal dwelling
landingWidth > 0.90 m Stair homeStorey equal basement
ST13 R49.12.4 : Stair Building usage equal dwelling
landingWidth > 0.90 m Stair usage equal service
ST15 R49.14.1 : Stair riserHeight < 0.175 m Building usage equal dwelling
ST15 R49.14.2 : Stair threadLegth > 0.28 m Building usage equal dwelling
ST15 R49.14.3 : Stair threadLegth Min > 0.10 m Building usage equal dwelling
ST16 R49.15.1 : Stair flightWidth > 1.60 m Building usage lequal dwelling
ST16 R49.15.2 : Stair landingWidth > 1.60 m Building usage lequal dwelling
ST17 R49.16 Stair hasRailBothSide boolean true Building usage lequal dwelling
ST18 R49.17.1 : Stair riserHeight < 0.16 m Building usage lequal dwelling
ST18 R49.17.2 : Stair threadLegth > 0.30 m Building usage lequal dwelling
ST18 R49.17.3 : Stair threadLegth Min > 0.125 m Building usage lequal dwelling
ST19 R49.18.1 : Stair Building usage lequal dwelling
flightWidth > 1.20 m Stair usage lequal main
ST19 R49.18.2 : Stair Building usage lequal dwelling
landingWidth > 1.20 m Stair usage lequal main
ST19 R49.18.3 : Stair riserHeight < 0.175 m Building usage lequal dwelling

091

Stair usage lequal main

ST19 R49.18.4 : Stair m Building usage lequal dwelling
threadLegth > 0.28 Stair usage lequal main

ST19 R49.18.5 : Stair m Building usage lequal dwelling
threadLegth Min > 0.125 Stair usage lequal main

Id Subject Set

Concept Property

RS49.A Building numberofStair R49.1.1

RS49.B Stair material R49.1.2

RS49.C Stair holeWidth R49.2

RS49.D Space hasOpeningTo R49.3

RS49.E Stair hasAccesToBasement R49.4.1

RS49.F Stair hasAccesToRoof R49.4.2

RS49.G Stair flightWidth (Jl: R49.5.1, R49.11.1, R49.12.1, R49.12.2, R49.15.1, R49.18.1)

RS49.H Stair landingWidth (|l: R49.5.2, R49.8, R49.9, R49.11.1, R49.12.3, R49.12.4, R49.15.2, R49.18.2)

RS49.1 Stair riserHeight (&:R49.6.1, (||: R49.14.1, R49.17.1, R49.18.3))

RS49.J Stair threadLegth (&:R49.6.2, (||: R49.14.2, R49.17.2, R49.18.4))

RS49.K Stair threadLegth Min (|l: R49.14.3, R49.17.3, R49.18.5)

RS49.L Stair hasRailBothSide R49.16

191

REQUIREMENT SELECTION
St.Id Id Concept Property C. Value U. Concept Property Comp. Value U.
“BinalarinY angindanKorunmast
ST1 R50.1 fireEscape complyWith equal HakkindaY 6netmelik”
ST2 R50.2.1 fireEscape width > 90 cm_ building usage equal {dwelling || office}
ST2 R50.2.2 fireEscape width > 120 cm building type equal public
Id Subject Set
Concept Property
RS50.A fireescape complyWith R50.1
RS50.B fireescape width (|]: R50.2.1, R50.2.2)
REQUIREMENT SELECTION
St.dd Id Concept Property C. Value U. Concept Property Comp. Value U.
ST1 RS51.1.1 iterrace hasBalustrade boolean true terrace type {Roof || Storey}
STI R51.1.2 ibalcony hasBalustrade boolean true
ST1 R51.1.3 : Stair hasBalustrade boolean true Stair numberofThread > 5
ST1 R51.1.4 iblustrade height > 1.00 m
ST2 RS51.2 blustrade barDistance < 10 cm
ST2 RS51.3 blustrade hasProtection Boolean true blustrade type equal horizontal
Id Subject Set
Concept Property
RS51.A terrace hasBalustrade R51.1.1
RS51.B balcony hasBalustrade R51.1.2
RS51.C Stair hasBalustrade R51.1.3
RS51.D blustrade height R51.1.4
RS51.E blustrade barDistance R51.2
RS51.F blustrade hasProtection R51.3

VITA

PERSONAL

Surname, Name : MACIT Sibel

Date and Place of Birth : 16.12.1975 — izmir (Turkey)
E-mail : sibelmacit@gmail.com
EDUCATION

PhD., Izmir Institute of Technology, Graduate School of Engineering and Sciences,
Department of Architecture (2008-2014) — Supported in part by the Scientific and
Technological Research Council of Turkey (TUBITAK) via the 2214 -Abroad Research
Grant Programme.

Thesis: “Computer Representation of Building Codes for Automated
Compliance Checking”

M.Sc., Balikesir University, Graduate School of Natural and Applied Sciences,
Department of Architecture (2004-2007)

Thesis: “Interoperability between Computer Aided Architectural Design
Environments and a Room Acoustics Analysis Application using ifcXML”

B.Arch., Balikesir University, Faculty of Engineering and Architecture, Department of
Architecture (1993-1998)

ACADEMIC EXPERIENCES

Research Assistant, Balikesir University, Faculty of Engineering and Architecture,
Department of Architecture (2001-2008)

Research Assistant, Izmir Institute of Technology, Graduate School of Engineering
and Sciences, Department of Architecture (2008-2014)

Guest Researcher, Vienna University of Technology, Institute of Architectural

Sciences, Department of Digital Architecture and Planning (2011-2012)

