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for her help, support, and also my family, my friends, and Tuğrul GÜNER for their love,
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ABSTRACT

SOLUTION OF DAM BREAK PROBLEM BY USING COMPLEX
ANALYSIS

In this thesis, we examine the liquid flow and the free surface shape by using some

methods of complex analysis during the early stage of dam breaking. In order to obtain the

leading-order uniform solution, we use the asymptotic expansions with respect to a small

parameter. The small parameter describe the initial duration of the stage. However, this

solution which calls outer solution is not valid in a small vicinity of the intersection point

between the vertical free surface and the horizontal rigid bottom.

A local analysis of the outer solution helps to estimate the dimension of this vicinity.

In the vicinity of the intersection point, local coordinates are stretched to solve the flow

singularity and with the aid of these coordinates the leading order inner solution is obtained

which describes the formation of the jet flow along the bottom.
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ÖZET

BARAJ YIKIMI PROBLEMİNİN KOMPLEKS ANALİZ
KULLANILARAK ÇÖZÜMÜ

Bu çalışmada, baraj yıkılmasının ilk anları esnasında sıvı akışı ve serbest su yüzeyi

şeklini bazı kompleks analiz methodları kullanılarak inceliyoruz. Birinci mertebeden çözüm

elde etmek için küçük bir parametreye göre asimptotik açılımları kullanıyoruz. Küçük parame-

tre aşamanın ilk anlarını tanımlar. Fakat bu dış çözüm olarak adlandırdığımız çözüm dikey

serbest yüzey ve yatay katı zeminin kesişim noktasının küçük bir komşuluğunda geçerli

değildir.

Dış çözümün lokal analizi bu komşuluğun boyutunun tahmin edilmesine yardım

ediyor. Kesim noktasının komşuluğunda, bölgesel koordinatlar genişletiliyor ve bu koor-

dinarların yardımıyla zemindeki püsküren akışın oluşumunu tanımlayan birinci mertebe iç

çözüm elde ediliyor.
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CHAPTER 1

INTRODUCTION

We deal with dam-break problem which is a type of unsteady gravity-driven flow.

The problem is started by removing a vertical dam in front of liquid region. At the beginning

the liquid is at rest and located in the region x′ > 0,−H < y′ < 0 (Figure 1.1). The upper

part of the liquid boundary ,x′ > 0, y′ = 0, is the initial position of the liquid free surface

and the vertical wall, x′ = 0,−H < y′ < 0, is a dam. The lower horizontal boundary,

y′ = −H, x′ > 0, represents the rigid bottom. The liquid is taken incompressible and

inviscid. Initially, pressure distribution in the liquid is hydrostatic , p′(x′, y′, 0) = −ρgy′ ,

where ρ is the liquid density and g is the gravity acceleration. At the initial time instant,

t′ = 0 , the dam is suddenly removed and the gravity-driven flow starts. Primed variables

represent dimensional ones.

Figure 1.1. Flow region at initial time instant t′ = 0

During the early stages of the process we will examine the liquid flow and the shape

of the free surface which change with time. At the end of the this process, we obtain that

flow is potential and two dimensional. We denote the upper part of the free surface as y′ =

Y ′(x′, t′), x′ > 0 and the other one is defined as x′ = X ′(y′, t′),−H < y′ < 0. Moreover ,the

aim of this study is to construct the leading-order uniform solution which is derived by using

matched asymptotic expansion.Near the intersection point, solutions should be considered

as "outer" solutions and these have to be corrected with "inner" solutions. For the solution
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which is valid in the whole flow domain, solutions have to be matched which is divided close

to the intersection point.

Pohle and Stoker studied dam-breaking problem which leads to gravity-driven flow

by using Lagrangian description (FV, 1950) ,(Stoker, 1992). Pohle wrote "Many hydro-

dynamic problems consider flows in which the region occupied by the fluid is a variable

function of time. Euler representation is difficult to apply to such problems. The Lagrangian

representation ,however, has the far-reaching advantage that the independent space variables

are the initial coordinates of the particles: the region occupied by the fluid is therefore a

fixed region." This assertions can be accepted if there are not intersection points between

rigid boundaries and free surfaces of the liquid. However, this is not the situation for many

important problems such as the water-entry problem, the dam-break problem and problems

of floating or free-surface piercing bodies. Near the intersection points, one must determine

before which fluid particles originally belonging to the free surface may be found later on

the rigid boundary and vice versa. That is to say, the flow region is fixed in the Lagrangian

variables but the subdivision of the region boundary into free surface and rigid boundary

is unknown and has to be obtained as a part of solution. Because of this, the analysis of

dam-break problem in the Lagrangian variables not so useful as it was excepted by Pohle

and Stoker.

Pohle use power series to expand the liquid displacement and the hydrodynamic pres-

sure with respect to time t′ but only leading-order terms were constructed and analyzed.

Pohle wrote that except in the neighborhood of the singular point, where intersection of

the free surface and rigid bottom,the calculated profile of the water surface for small times

can be assumed to be a reasonable approximation to the physical problem . Therefore, in

the Lagrangian variables the small time solution which behaves non-physical shape of water

surface is derived near the intersection point. A similar behaviour of the free surface can also

be calculated in Eulerian variables. One can get the outer solution in both situation. How-

ever, there were no approach to construct the inner solutions of dam break problem either in

Lagrangian or Eulerian variables.

For such an inner solution was successfully obtained in a similar problem about a

uniformly accelerating wavemaker by King and Needham (King and Needham, 1994). After

that Yilmaz and Korobkin solved the dam-break problem in a different way (Korobkin and

Yilmaz, 2009). Outer solution is obtained in both leading and second order. Inner solution

also calculated by reducing the problem to the well known Cauchy-Poisson problem. In this

study, we use some methodology and findings from King and Needham’s paper and Yilmaz

and Korobkin’s paper.

In Chapter 2, some basic concepts in fluid dynamics are given and they may use for

the formulations of the problem.
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In Chapter 3, we formulate the dam-breaking problem. Boundary and initial con-

ditions are determined then non-linear boundary value problem is constructed. After then,

with the appropriate parameters, problem takes the non-dimensional form.

In Chapter 4, we examine the early stage of the problem by using small parameter

and get the leading order boundary value problem. Then behaviour of the leading order outer

solution is obtained with the singular point near the intersection point with the help of the

some methods of complex analysis and decide outer matching conditions.

In Chapter 5, the dimensions of the inner region is indicated and constructed the

problem with in inner variables. Then we obtain the leading order inner solution.

3



CHAPTER 2

FUNDAMENTAL NOTIONS IN FLUID DYNAMICS

2.1. Equations of Motion

2.1.1. Euler’s Equation

Our aim is to define the motion of fluid in a region D in two or three dimensional

space (Chorin and Marsden, 2000). Let x′ = (x′,y′,z′), in standard Euclidean coordinates in

space, is a point in D and consider the particle of fluid moving through x′ at time t′ with the

velocity u′(x′,y′). Therefore , u′ is a vector field on D for each fixed time. u′ is called "the

velocity field of the fluid".

Suppose V is any subregion of D, then the mass of fluid in V at time t′ is given by

m(V, t′) =

∫
V

ρ(x′, t′)dV, (2.1)

where ρ(x′, t′) is well-defined mass density of the fluid, dV is the volume element in the

plane or in space. In order to apply the standard operations of calculus, we may assume that

the functions u′ and ρ are smooth enough and a continuum assumption is that ρ exists.

After that derivation of the equations is based on the following principles :

• Conservation of mass : mass is neither created nor destroyed,

• Balance of momentum (Newton’s second law) : the rate of change of momentum of a

portion of the fluid equals to the force,

• Conservation of energy : energy is neither created nor destroyed.

1) Conservation of Mass : V is a fixed subregion of D (V does not depend on time), then

the rate of change of mass in V is that,

d

dt′
m(V, t′) =

d

dt′

∫
V

ρ(x′, t′)dV =

∫
V

∂ρ

∂t′
(x′, t′)dV. (2.2)
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Let S denote the boundary of the region V which is assumed to be smooth and n′ denote the

unit normal vector in the outside direction at points of S. u′ = (u′,v′) and ds denote the area

element on S. The volume rate across S per unit area is u′ · n′ and the mass of flow rate per

unit area is ρ u′ · n′. The basic conception of the conservation of mass is that the rate of

increase of mass in V equals the rate of mass of flow crossing out of S. "The integral form of

the law of conservation of mass" is denoted by

d

dt′

∫
V

ρdV = −
∫
S

ρu′ · n′dS. (2.3)

From the divergence theorem, it is described equivalently,

∫
V

[
dρ

dt
+ div(ρu′)

]
dV = 0. (2.4)

This is satisfied for all V, then it is equivalent to

dρ

dt′
+ div(ρu′) = 0. (2.5)

This last equation is the "differential form of the law of conservation of mass", in other words

,"the continuity equation".

2) Balance of Momentum : If V is a region in the fluid at a particular instant time t′, the

force Fp felt by the fluid inside V as a stress on its boundary is

Fp = force on V = −
∫
S

p′n′ds (2.6)

where p′ is the pressure, and from divergence theorem,

Fp = −
∫
V

∇′p′dV. (2.7)

In addition, let the given body force per unit mass is denoted by b′(x′,t′), and hence, the total

body force FB is

FB =

∫
V

ρbdV. (2.8)
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As a result of these forces that are acted on any piece of fluid material, Newton’s second law,

F = ma, is written as

F = Fp + FB = −
∫
V

∇′p′dV +

∫
V

ρbdV. (2.9)

and by rearranging as per unit volume, above expression becomes

ρ
Du′

Dt
= −∇p′ + ρb. (2.10)

which is the differential form of the law of "balance of momentum".

3) Conservation of Energy : As we know from the physics that, kinetic energy is KE=
1
2
mV 2 where m is mass and V is velocity of the particle. For fluid contained in a domain σ,

and with having a velocity field u′, kinetic energy takes the form of

Ek =
1

2

∫
σ

ρ||u′||2dV (2.11)

where ||u′|| is length of the u′. To find total energy that represents this fluid in a domain σ, we

also have to add potential energy such as intermolecular potentials, and any other remaining

kinetic or potential energy contributions such as internal molecular vibrations. We call all of

these remaining energies as internal energy Ei, and therefore, we write total energy as

ET = Ek + Ei (2.12)

If this fluid does work, or if we pump energy into the fluid, then we will change total energy

ET of the fluid. In order to understand how this total energy changes, we will analyse the

rate of change of kinetic energy of fluid which leads to

1

2

D

Dt
||u′||2 = u′ · ∂u′

∂t
+ u′ · (u′ · ∇′)u′. (2.13)
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2.1.2. Incompressibility

Let S is a fixed closed surface drawn in the fluid and take unit normal u′ in the outward

direction (Acheson, 1990). Fluid will be entering and leaving the enclosed region V at some

places on S.

If the velocity component along the outward normal is u′ · n′, then the volume of fluid leaving

through ∂S in unit time is u′ · n′∂S, so the net volume rate is

∫
S

u′ · n′dS (2.14)

and with the help of divergence theorem and by taking into consideration of incompressibility

of fluid, conclude that

∫
V

∇′ · u′dV = 0. (2.15)

It is true for all regions V, then the "incompressibility condition" is obtained in the following

form:

∇′ · u′ = 0 (2.16)

in the whole fluid.

2.1.3. Euler’s Equations for Incompressible Flows

Euler’s equation for an incompressible fluid is defined with the following equations;

Du′

Dt
= −1

ρ
∇p′ + g, (2.17)

∇′ · u′ = 0. (2.18)

g is the gravitational force which is conservative and it can be defined as the gradient of a

potential such that g = - ∇′χ. With the definition of substantial derivative, from (2.17) we

7



have

∂u′

∂t′
+ (u′ · ∇′)u′ = −∇′(

p′

ρ
+ χ), (2.19)

where ρ is constant. Moreover, by using the vector identity

(u′ · ∇′)u′ = (∇′ ∧ u′) ∧ u′ +∇′(
1

2
|u′|2) (2.20)

the momentum equation is obtained in the form

∂u′

∂t′
+ (∇′ ∧ u′) = −∇′(

p′

ρ
+

1

2
|u′|2 + χ). (2.21)

2.2. Irrotational Flow

2.2.1. Vorticity

The vorticity is represented by ω and defined as

ω = ∇′ ∧ u′. (2.22)

For irrotational flow the vorticity is zero by definition and in two-dimensions, velocity is

defined by u′ = [u′(x′, y′, t′), v(x′, y′, t′), 0], therefore vorticity ω = (0, 0, ω) takes the form

ω =
∂v′

∂x′
− ∂u′

∂y′
. (2.23)

2.2.2. Potential Flow

Velocity Potential

The velocity potential φ′ exists only if the flow is irrotational, i.e, ∇′ ∧ u′ = 0.It is defined at

8



any point P by

φ′ =

∫ P

O

u′ · dx′ (2.24)

where O is some arbitrary fixed point. In a simply connected fluid region φ′ is independent

of the path between O and P, thus a single-valued function of position. Partial differentiation

of the equation (2.24) gives

u′ = ∇′φ′ (2.25)

and the vector identity ∇′ ∧∇′φ′ = 0 confirms that this flow is irrotational, as desired. Such

an inviscid, irrotational flow is called a "potential flow".

2.2.3. Bernoulli’s Equation for Unsteady Irrotational Flow

Since the flow is irrotational, the velocity can be defined by u′ = ∇′φ′. By keeping in

view Euler’s equation (2.21) and condition of irrotational flow, we have

d

dt′
∇′φ′ = −∇′(

p′

ρ
+

1

2
|u′|2 + χ). (2.26)

Integration of this equation gives,

∂φ′

dt′
+
p′

ρ
+

1

2
|u′|2 + χ = G(t) (2.27)

where G(t) is an arbitrary function of time alone. Equation (2.27) is called "Bernoulli’s

equation for unsteady irrotational flow".
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CHAPTER 3

DAM BREAK PROBLEM

3.1. Definition of the Non-Linear Problem

3.1.1. Equation of Motion

To formulate the dam break problem (Korobkin and Yilmaz, 2009), first we use the

incompressibility condition in two dimensions. Taking into consideration u′ = ∇′φ′ and

incompressibility condition, we get

∇′2φ′ = 0 in σ′(t′). (3.1)

where σ′(t′) is a region between x′ > 0 and −H < y′ < 0 (Figure 1.1). So, in the region,

the velocity potential satisfies Laplace equation. From Bernoulli’s equation for unsteady

irrotational flow,(2.27),(G(t) = 0) we obtain pressure distribution in the region as,

−p′ = ρφ′
t′ +

ρ

2
|∇′φ|2 + ρgy′ in σ′(t′). (3.2)

3.1.2. Boundary Conditions

We have dynamic and kinematic boundary conditions at the free surfaces, the kine-

matic condition suggest that the fluid particles on the free surface must remain on the sur-

face, hence if we define surface functions F (x′, y′, t′) = y′ − Y ′(x′, t′) and G(x′, y′, t′) =

x′−X ′(y′, t′) then we may conclude that F (x′, y′, t′) and G(x′, y′, t′) remain constant (zero)

for any particular fluid particle on the free surface. Therefore, it is expressed as DF
Dt′

= 0 on

y′ = Y ′(x′, t′) and DG
Dt′

= 0 on x′ = X ′(y′, t′), i.e.

∂F

∂t′
+ (u′.∇′)F = 0, on y′ = Y ′(x′, t′)
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φ′
y′ =

∂Y ′

∂t′
+ φ′

x′
∂Y ′

∂x′
on y′ = Y ′(x′, t′) (3.3)

and

∂G

∂t′
+ (u′.∇′)G = 0, on x′ = X ′(y′, t′)

φ′
x′ =

∂X ′

∂t′
+ φ′

y′
∂X ′

∂y′
on x′ = X ′(y′, t′). (3.4)

For the dynamic condition, the pressure on the free surfaces is atmospheric ,

p′(x′, y′, t′) = 0 on y′ = Y (x′, t′) , x′ = X ′(y′, t′). (3.5)

Moreover, there is a slip boundary condition on y′ = −H which means

φ′
y′(x

′,−H, t′) = 0. (3.6)

3.1.3. Initial Conditions

Before the dam breaks, the liquid is at rest so the free surfaces which are horizontal

and vertical and the velocity potentials are zero and also pressure distribution is hydrostatic

at the initial time (t′ = 0). Thus, we can define the initial conditions as follows,

φ(x′, y′, 0) = 0 , X ′(y′, t′) = Y ′(x′, t′) = 0 , p′(x′, y′, 0) = −ρgy′ (3.7)

Finally, we construct the mathematical modelling of the non-linear problem in two dimen-

sions as

∇′2φ′ = 0 (in σ′(t′))

−p′ = ρφ′
t′ +

ρ

2
|∇′φ|2 + ρgy′ (in σ′(t′))
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φ′
y′ = Y ′

t′ + φ′
x′Y ′

x′ (on y′ = Y ′(x′, t′))

φ′
x′ = X ′

t′ + φ′
y′X

′
y′ (on x′ = X ′(y′, t′)) (3.8)

p′(x′, y′, t′) = 0 (on x′ = X ′(y′, t′) and y′ = Y ′(x′, t′))

φ′
y′(x

′,−H, t′) = 0

φ′(x′, y′, 0) = X ′(y′, 0) = Y ′(x′, 0) = 0

φ′ → 0 and p′ → −ρgy′ as x′ → ∞.

3.2. Equations in Non-dimensional Form

For simplicity, we use non-dimensional variables in asymptotic analysis. So, in order

to formulate non-dimensional dam-break problem, following transformations are used;

x′ = Hx , y′ = Hy

X ′ = SX , Y ′ = SY , p′ = ρgHp

φ′ = gHTφ , t′ = Tt.

 (3.9)

Substituting these transformations into Laplace equation we obtain,

∂φ′

∂x′
=
∂(gHTφ)

∂(xH)
,

∂φ′

∂y′
=
∂(gHTφ)

∂(yH)

∇2φ = 0, (in σ(t)). (3.10)
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Pressure distribution in the region;

(
gHT

T

)
∂φ

∂t
+

1

2

[(
gHT

T

∂φ

∂x

)2

+

(
gHT

T

∂φ

∂y

)2]
+ gHy. = −ρgHp

Dividing by gH and choosing δ = gT 2

H
, we get,

−p = φt +
δ

2
|∇φ|2 + y, (in σ(t)). (3.11)

For the dynamic boundary condition;

p = 0, (on y = δY (x, t) , x = δX(y, t)) (3.12)

Kinematic boundary condition on the horizontal free surface is

(
gHT

H

)
∂φ

∂y
=

(
S

H

)
∂Y

∂x

(
gHT

H

)
∂φ

∂x
+

(
S

T

)
∂Y

∂t
,

Dividing the above equation by gT ;

φy = δYxφx + Yt (on y = δY (x, t, δ), x > 0) (3.13)

and similarly for the vertical free surface, we get

φx = δφyXy +Xt (on x = δX(y, t, δ),−1 < y < δY (0, t, δ)). (3.14)

Slip boundary condition takes the form ,

φy = 0 (on y = −1). (3.15)
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Initial conditions at t = 0 are

φ(x, y, 0, δ) = 0 , Y (x, 0, δ) = 0 , X(y, 0, δ) = 0. (3.16)

Finally, the radiation condition is

φ→ 0 (x→ ∞). (3.17)
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CHAPTER 4

LEADING ORDER VELOCITY POTENTIAL

4.1. Behaviour For The Small Parameter (δ → 0)

Solution to the boundary value problem (3.10)-(3.17) is sought in the following form,

as δ → 0;

φ(x, y, t, δ) = φ0(x, y, t) + δφ1(x, y, t) +O(δ2),

X(y, t, δ) = X0(y, t) + δX1(y, t) +O(δ2),

Y (x, t, δ) = Y0(x, t) + δY1(x, t) +O(δ2),

p(x, y, t, δ) = p0(x, y, t) + δp1(x, y, t) +O(δ2).

(4.1)

We substitute these asymptotic expansions in non-dimensional boundary value problem (3.10)-

(3.17) and let δ → 0. From Laplace equation we have

∆(φ0(x, y, t) + δφ1(x, y, t) + ...) = 0

which gives,

∇2φ0(x, y, t) = 0 (order 1), (in σ(t)), (4.2)

∇2φ1(x, y, t) = 0 (order δ), (in σ(t)). (4.3)

From the dynamic boundary condition on the free surfaces, p = 0,

0 = (φ0 + δφ1 + ...)t +
δ

2
[(φ0 + δφ1 + ...)2x + (φ0 + δφ1 + ...)2y] + y

15



we have

φ0,t +y = 0 (of order 1) (4.4)

which gives on the horizontal free surface ,

φ0 = 0 (on y = 0, x > 0)

and on vertical free surface,

φ0 = −yt (on − 1 < y < 0, x = 0).

The second order dynamic condition on the free surfaces is

φ1,t +|∇φ0|2 = 0 (order δ). (4.5)

From the kinematic boundary condition on the horizontal free surface, we have

(φ0 + δφ1 + ...)y = (Y0 + δY1 + ...)t + δ[(φ0 + δφ1 + ...)y][(Y0 + δY1 + ...)x],

which gives,

φ0,y = Y0,t (order 1), (on x > 0, y = 0, ) (4.6)

φ1,y = Y1,t +φ0,x Y0,x (order δ), (on x > 0, y = 0). (4.7)

and on the vertical free surface, we have

(φ0 + δφ1 + ...)x = (X0 + δX1 + ...)t + δ[(φ0 + δφ1 + ...)x][(X0 + δX1 + ...)y],

16



which gives,

φ0,x = X0,t (order 1), (on x = 0,−1 < y < 0), (4.8)

φ1,y = X1,t +φ0,yX0,y (order δ), (on x = 0,−1 < y < 0). (4.9)

From slip boundary condition on y = - 1, φy = 0, we have

φ0,y = 0 (order 1), (on y = −1), (4.10)

φ1,y = 0 (order δ), (on y = −1). (4.11)

Initial conditions at t = 0 are

φ(x, y, 0) = 0 (4.12)

Y (x, 0) = 0

X(y, 0) = 0,

and we have,

φ0(x, y, 0) = 0

Y0(x, 0) = 0

X0(y, 0) = 0

 (order 1), (on σ(t)), (4.13)

φ1(x, y, 0) = 0

Y1(x, 0) = 0

X1(y, 0) = 0

 (order δ), (on σ(t)). (4.14)
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Then, we obtain the following leading order boundary value problem,

∇2φ0 = 0 (in region),

φ0 = 0 , φ0,y = Y0,t (on y = 0, x > 0),

φ0 = −yt , φ0,x= X0,t (on x = 0, −1 < y < 0), (4.15)

φ0,y = 0 (on y = −1, x > 0),

φ0 → 0 as x→ ∞.

Figure 4.1. Region of the problem for the leading order velocity potential
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4.1.1. Mapping Of The Region Onto Half Plane

We prefer to solve the problem on the upper half plane instead of the region x >

0,−1 < y < 0. First we use the translation

x = x̃ , y = ỹ − 1 (4.16)

and we shift the region (Figure 4.1). Then by using theorems on transformation of harmonic

functions and transformation of boundary conditions (See Appendix A),we rewrite the lead-

ing order boundary value problem in the new coordinate system ,

Since the complex potential w0 which is defined as w̃0 = φ̃0 + iψ̃0 is analytic in the region,

from Cauchy-Riemann equations we have,

φ̃0,x̃ = ψ̃0,ỹ , φ̃0,ỹ = −ψ̃0,x̃ . (4.17)

We extend the region to −1 < ỹ < 0, x̃ > 0 (Figure 4.2) by using the reflection principle (or

symmetry principle ) (see Appendix B), then we map the region onto upper half plane easily.
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Figure 4.2. Application of the reflection principle on the region

By using transformation ζ̃ = i sinh(πz̃
2
) where ζ̃ = ũ+ iṽ and z̃ = x̃+ iỹ,

ũ = − sin(
πỹ

2
) cosh(

πx̃

2
)

ṽ = sinh(
πx̃

2
) cos(

πỹ

2
)

(4.18)

we carry the region onto the upper half plane (Figure 4.3). By using theorems on transfor-

mation of harmonic functions and boundary conditions (See Appendix A), we get

∇2Φ0 = 0 (in the region), (4.19)

Φ0 = 0 (on ũ > 1 , ũ < −1, ṽ = 0) (4.20)

and on the vertical boundary, −1 < ỹ < 1, x̃ = 0 , velocity potential is transformed as

Φ0 = (1− 2

π
| arcsin(ũ)|)t (on − 1 < ũ < 1, ṽ = 0). (4.21)
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Figure 4.3. Flow region on the upper half plane

4.1.2. The Leading Order Solution and Singularity

To obtain the velocities, we take derivative of velocity potential with respect to ũ on

ṽ = 0 and we find horizontal velocity component Φ0,ũ (Figure 4.4).

Figure 4.4. Derivative of the velocity potential on the real axis

For vertical velocity component, Φ0,ṽ, we use Hilbert inversion formula (See Appendix C)
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then we have,

Φ0,ṽ =
2t

π2
√
1− ũ2

ln

∣∣∣∣1−√
1− ũ2

1 +
√
1− ũ2

∣∣∣∣ , −1 < ũ < 1, ṽ = 0 (4.22)

Φ0,ṽ =
4t

π2
√
ũ2 − 1

arctan

(
1√

ũ2 − 1

)
, ũ < −1, ũ > 1, ṽ = 0. (4.23)

At the point ζ̃ = 0 , by using Poisson’s integral formula (See Appendix D),(Figure 4.3)

Φ0(ũ, ṽ) =
ṽt

π

∫ 1

−1

1− 2
π
| arcsin ξ|

(ũ− ξ)2 + ṽ2
dξ.

We take derivative of Φ0 with respect to ṽ for vertical velocity component at point (0, 0),

then we have

Φ0,ṽ =
t

π

∫ 1

−1

1− 2
π
| arcsin ξ|

(ũ− ξ)2 + ṽ2
dξ +

ṽt

π

∫ 1

−1

−2ṽ[1− 2
π
| arcsin ξ|]

[(ũ− ξ)2 + ṽ2]2
dξ,

Φ0,ṽ (0, 0) =
t

π

∫ 1

−1

1− 2
π
| arcsin ξ|
ξ2

dξ (4.24)

By taking this integral we find,

Φ0,ṽ (0, 0) = − 4t

π2

[
1 +

1

2
ln

∣∣∣∣1 + u

1− u

∣∣∣∣] ∣∣∣∣1
0

= ∞. (4.25)

Therefore, there is a logarithmic singularity at point (0, 0) .

We go back to the original region and write velocity components. We know that

Φ0(ũ, ṽ) = φ̃0(x̃(ũ, ṽ), ỹ(ũ, ṽ))
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thus we write velocities at x̃ = 0, 0 < ỹ < 1 corresponding to the line segment −1 < ũ <

1, ṽ = 0

φ̃0,x̃ = Φ0,ũ ũx̃ + Φ0,ṽ ṽx̃ (4.26)

from (4.17) we have,

ũ = − sin(
πỹ

2
) , ṽ = 0 , ũx̃ = 0 , ṽx̃ =

π

2
cos(

πỹ

2
)

then if we substitute these equations with (4.18) into (4.22) we obtain

φ̃0,x̃ =
2t

π2

√
1− sin2(πỹ

2
)
ln

∣∣∣∣1−
√

1− sin2(πỹ
2
)

1 +
√
1− sin2(πỹ

2
)

∣∣∣∣[π2 cos(
πỹ

2
)

]
,

φ̃0,x̃ =
t

π cos(πỹ
2
)
ln

∣∣∣∣1− cos(πỹ
2
)

1 + cos(πỹ
2
)

∣∣∣∣[ cos(πỹ2 )

]
.

By using the half angle formula of cosine, cos(πỹ
2
) = cos2(πỹ

4
)− sin(πỹ

4
),

φ̃0,x̃ =
t

π
ln

∣∣∣∣1− cos2(πỹ
4
) + sin(πỹ

4
)

1 + cos2(πỹ
4
)− sin(πỹ

4
)

∣∣∣∣,
φ̃0,x̃ =

2t

π
ln[tan(

πỹ

4
)].

From transformation x̃ = x, ỹ = y + 1 , horizontal velocity component is obtained in the

form,

φ̃0,x (0, y, t) =
2t

π
ln[tan

(
π(y + 1)

4

)
]. (4.27)

At ũ > 1 , ũ < −1 corresponding to the line segment ỹ = 1 , x̃ > 0

φ̃0,ỹ = Φ0,ũ ũỹ + Φ0,ṽ ṽỹ (4.28)
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similarly to the above derivation we have

ũ = − cosh(
πx̃

2
) , ṽ = 0 , ũỹ = 0 , ṽỹ = −π

2
sinh(

πx̃

2
).

By substituting these equations and (4.18) into (4.23) we obtain,

φ̃0,ỹ =
4t

π2

√
cosh2(πx̃

2
)− 1

arctan

(
1√

cosh2(πx̃
2
)− 1

)[
− π

2
sinh(

πx̃

2
)

]
,

φ̃0,ỹ = −2t

π
arctan

(
1

sinh(πx̃
2
)

)
.

From the property of the arctangent function , arctan(x) = 2 arctan( x
1+

√
1+x2 ) and by using

x = 1
sinh(πx̃

2
)

we obtain

φ̃0,ỹ = −4t

π
arctan

(
1

sinh(πx̃
2
) + cosh πx̃

2
)

)
.

After applying the transformation x̃ = x, ỹ = y + 1 , we find vertical velocity component at

y = 0,

φ0,y (x, 0, t) = −4t

π
arctan

(
exp(−πx

2
)
)
. (4.29)

Correspondingly, from (4.29) and (4.27) , we obtain free surface equations in the form,

Y0(x, t) = −2t2

π
arctan

(
exp(−πx

2
)
)

(4.30)

and

X0(y, t) =
t2

π
ln[tan(

π(1 + y)

4
)]. (4.31)

We see that X0 has a logarithmic singularity at the intersection point , as y → −1.
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4.1.2.1. Outer Matching Conditions

Because of the singularity at the intersection point, the formal asymptotic expansions

(4.1) are not valid so they should be considered as outer expansions to this problem. To

determine the behaviour in the neighborhood of the point (0,−1) we need an inner region

which is defined by stretching coordinates x = aξ and y = aη−1, a is small positive constant

(a << 1) and ξ = O(1),η = O(1) and to constitute the form of the inner expansion we need

the local behaviour of the velocity potential in the new coordinate axis as (ξ2 + η2) → 0.

4.1.3. Behaviour Of The Leading Order Solution Near The Singular

Point

In the new coordinates, we have horizontal velocity component in the form,

φ0,x (0, η, t) =
2t

π
ln

[
tan

π

4
aη

]
.

Since we investigate the local behaviour of velocities, we expand tan(π
4
aη) into Taylor series

as a→ 0,

φ0,x (0, η, t) =
2t

π
ln[
π

4
aη +O(a2)]

φ0,x (0, η, t) =
2t

π
ln[
π

4
aη] +O(a2). (4.32)

We know that complex potential is defined as w0(z, t) = φ0(x, y, t) + iψ0(x, y, t) and con-

sider the leading order complex velocity of the flow,

dw0

dz
=
∂φ0

∂x
+ i

∂ψ0

∂x
.

With the help of the analicity of w0, Cauchy-Riemann equations are satisfied,

φ0,x = ψ0,y , φ0,y = −ψ0,x .
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Then, we can write

dw0

dz
=
∂φ0

∂x
− i

∂φ0

∂y
. (4.33)

At x = 0 , −1 < y < 0 which coincides with ξ = 0 , η > 0 , we have

φ0,y = −t and φ0,x =
2t

π
ln[
π

4
aη] +O(a2). (4.34)

Substituting these equations into (4.33) we get

w0,z =
2t

π
ln(

π

4
aη) + it+O(a2) (4.35)

w0,z =
2t

π

[
ln(

π

4
aη) + i

π

2

]
+O(a2)

By choosing the branch of logarithmic function as log1 = 0 ,we write log i instead of iπ
2
,

w0,z =
2t

π

[
ln(

π

4
iaη)

]
+O(a2)

For ζ = ξ + iη and on ξ = 0 , η > 0, we obtain complex velocity in the form,

w0,ζ =
2at

π

[
ln(

π

4
aζ)

]
+O(a3). (4.36)

The boundary conditions in (4.15) givew0(−i, t) = t at the intersection point and integration

of (4.36) give ,as a→ 0,

w0(z, t) = t+
2t

π
ζa log a+

2t

π
a[log ζ + log

π

4
− 1]ζ +O(a3). (4.37)
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The asymptotic behaviour of the leading-order velocity potential close to the intersection

point is obtained by the real part of the complex potential,thus we get

φ0(z, t) = t+
2t

π
ξa log a+

2t

π
a[log ρ+ log

π

4
− 1]ξ − 2t

π
aηθ +O(a3). (4.38)

where ξ = ρ cos θ , η = ρ sin θ. Moreover, on the vertical free surface, behaviour of the

leading-order surface shape is found from the condition φ0,x= X0,t, as a→ 0,

X0(η, t) =
t2

π
log

[
πaη

4

]
+O(a2), (on x = 0,−1 < y < 0). (4.39)
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CHAPTER 5

THE INNER VARIABLES

5.1. Inner Region Problem

For an inner solution of this problem when ξ = O(1), η = O(1) as a → 0, we

must check the order of retained terms and neglected terms in boundary conditions which

we investigated in chapter 4, as ρ = (ξ2 + η2)
1
2 → 0. In order to be consistent, their orders

must be matched. Therefore,in dynamic condition, the neglected term δ
2
|∇φ|2 = O(δlog2a)

is equal to order of retained term φt = O(a log a) if and only if δ = − a
log a

. With these

predictions, the relation between the free surface expressions in the inner and outer regions

is found in the following form,

ξ = − 1

log a
X. (5.1)

5.1.1. Equations of the Inner Region

The inner velocity potential φi(ξ, η, t, δ) and the free surface shape which are based

on the asymptotic formulas are sought as,

φi(ξ, η, t, δ) = t+ a log aφi0 + φi1 +O(
a

log a
) (5.2)

ξ = −t
2

π
− 1

log a
H(η, t) +O(

1

log2 a
) and so X =

t2

π
log a+H(η, t) +O(

1

log a
)(5.3)

where X(y,t,δ) describes the shape of the free surface. These inner region equations are

substituted in (3.10)-(3.12),(3.14),(3.15) then new conditions are found as follows:

Laplace equation is satisfied by both φi0 and φi1.

∇2φi0 = 0 and ∇2φi1 = 0 (in the region) (5.4)
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At the bottom, η = 0 , φi,η = 0 thus,

φi0,η = 0 and φi1,η = 0. (5.5)

Kinematic boundary condition is

φi,ξ = ξηφi,η −a log aξt at ξ = −t
2

π
− 1

log a
H(η, t) (5.6)

(a log aφi0,ξ +aφi1,ξ +O(
a

log a
) = [−t

2

π
− 1

log a
H(η, t) +O(

1

log2 a
)]η[t (5.7)

+a log aφi0 + φi1 +O(
a

log a
)]η − a log a[−t

2

π
− 1

log a
H(η, t) +O(

1

log2 a
)]t

a log aφi0,ξ +φi1,ξ = −aHηφi0,η −
a

log a
Hηφi1,η +a log a

2t

π
+ aHt. (5.8)

When Taylor expansion is applied around ξ = − t2

π
, one gets,

φi0,ξ =
2t

π
(order a log a), (at ξ = −t

2

π
) (5.9)

−φ0,ξξH + φi1,ξ = φi0,ηHη +Ht (order a), (at ξ = −t
2

π
) (5.10)

Dynamic boundary condition is

φi,t −
a

2 log a
|∇φi|2 + aη − 1 = 0 at ξ = −t

2

π
− 1

log a
H(η, t) (5.11)

(t+ a log aφi0 + aφi1 + ...)t −
a

2 log a

[
1

a2

(
t+ a log aφi0 + aφi1 + ...)

)2

ξ

(5.12)

+
1

a2

(
t+ a log aφi0 + aφi1 + ...)

)2

η

]
+ aη − 1 = 0
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From Taylor expansion around ξ = − t2

π
we get,

φi0,t −
1

2
|∇φi0|2 = 0 (order a log a), (at ξ = −t

2

π
) (5.13)

φi0,tξH + φi1,t −
2t

π
φi1,ξ +η = 0 (order a), (at ξ = −t

2

π
). (5.14)

Equations of order a log a of (5.6) and (5.10) leads to,

φi0 =
2t

π
ξ +

4t3

3π2
(5.15)

at ξ = − t2

π
. For the function φi1 of order a, on the free surfaces, kinematic boundary

condition gives

φi1,ξ = Ht, (at ξ = −t
2

π
), (5.16)

φi1,t −
2

π
H − 2t

π
φi1,ξ +η = 0, (at ξ = −t

2

π
). (5.17)

At η = 0 slip boundary condition becomes

φi1,η = 0. (5.18)

The boundary value problem for φi1 is depicted in Figure 5.1.

Furthermore, the functions φi1(ξ, η, t) and H(η, t) must be matched with the outer solution.

At the leading order, matching conditions are, as ρ→ ∞,

φi1(ξ, η, t) = φ∞
i1 (ξ, η, t) + o(ρ) (5.19)

H(η, t) =
t2

π
log(

π

4
η) + o(1). (5.20)
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Figure 5.1. Second order inner velocity potential

The function φ∞
i1 (ξ, η, t) is given by (4.38)

φ∞
i1 (ξ, η, t) =

2t

π

[
ξ[log ρ+ log(

π

4
)− 1]− ηθ

]
(5.21)

and it is harmonic.

5.1.2. Solution of the Second Order Inner Region Problem

We carry the region to the first quarter plane by using the translation (King and Need-

ham, 1994)

ξ = x− t2

π
, η = y. (5.22)

Then, the boundary value problem takes the form in new variables with the new unknown

functions φ(x, y, t) = φi1(x− t2

π
, y, t) and H(η, t) = H̃(y, t);

∇2φ = 0 (in x > 0, y > 0)

φy = 0 (on y = 0)
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φx = H̃t (on x = 0) (5.23)

φt −
2

π
H̃ + y = 0 (on x = 0)

φ(0, y, 0) = 0 and
∂φ

∂t
(0, y, 0) = −y

Matching conditions follow from (5.20) and (5.21)

φ(x, y, t) ∼ 2t

π

[
x

[
log[x2 + y2]

1
2 + log

π

4
− 1

]
− y arctan

(
y

x

)]
+ o((x2 + y2)

1
2 ) (5.24)

H̃(y, t) ∼ t2

π
log(

πy

4
) + o(1) (5.25)

as (x2 + y2)
1
2 → ∞. In polar coordinates , x = r cos θ̄ and y = r sin θ̄,

φ(r, θ̄, t) ∼ 2t

π

[
r cos θ̄

[
log r + log

π

4
− 1

]
− θ̄r sin θ̄

]
+ o(r) , r → ∞ (5.26)

H̃(r, θ̄, t) ∼ t2

π
log(

πr

4
) + o(1) , r → ∞ (5.27)

To solve this linear problem , we may use integral transform but we see that φ is unbounded

as r → ∞ in these matching conditions. Thus, some operations are applied and we obtain

φ = φ̄+
2t

π

[
r cos θ̄

[
log r + log

π

4
− 1

]
− θ̄r sin θ̄

]
H̃ = H̄ +

t2

π
log(

πr

4
)

 (5.28)

Therefore, the boundary value problem in the new dependent variables φ̄ and H̄ become,

∇2φ̄ = 0 (in 0 < θ̄ <
π

2
, r > 0)

φ̄θ̄ = 0 on θ̄ = 0
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1

r
φ̄θ̄ = −H̄t on θ̄ =

π

2
(5.29)

φ̄t −
2

π
H̄ − 2t2

π2
log

πr

4
= 0 on θ̄ =

π

2
.

Initial conditions are

φ̄(r,
π

2
, 0) = 0 and φ̄t(r,

π

2
, 0) = 0.

Functions, H̄ and φ̄, have the properties H̄ = o(1), φ̄ = o(r) as r → ∞. However, φ̄ = o(r)

is not sufficient to apply an integral transform so we use a coordinate expansion by choosing

φ̄ = A(t) log r + B(t) + C(t) sin(θ̄)
r

+ D(t) cos(θ̄)
r

+ O( 1
r2
), r >> 1 and substituting these

expansion into the boundary value problem, we obtain as r → ∞,

φ̄ =
2t3

3π2
log r +

2t3

3π2
log

π

4
+O(

1

r
) and H̄ = O(

1

r2
).

We define the potential again because we have to get free surface and potential vanishing as

r → ∞

φ̄ = φ⋆ +
t3

3π2
log(1 + r2) +

2t3

3π2
log

π

4
, H̄ = H⋆. (5.30)

We choose log(1 + r2) instead of log r to avoid a singularity for r → 0. With φ⋆ = O(1
r
) as

r → ∞, we get the following boundary value problem :

∇2φ⋆ = − t3

3π2∇2 log(1 + r2) (5.31)

φ⋆
θ̄ = 0 (on θ̄ = 0) (5.32)

1

r
φ⋆
θ̄ = −H⋆

t (on θ̄ = π
2
) (5.33)

φ⋆
t = 2

π
H⋆ + 2t2

π2 log r − t2

π2 log(1 + r2) (on θ̄ = π
2
) (5.34)
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φ⋆(r,
π

2
, 0) = 0 , φ⋆

t (r,
π

2
, 0) = 0. (5.35)

With the help of the conditions, as r → 0

φ⋆ = O(1) and H⋆ = O(log r)

and as r → ∞

φ⋆ = O(
1

r
) and H⋆ = O(

1

r2
)

we can use the "Mellin transform" (See Appendix E) and find a solution for the problem.

Hence, the Mellin transform of the unknown functions is that

M[φ⋆(r, θ̄, t)] = φ̂(p, θ̄, t) =

∫ ∞

0

rp−1φ⋆(r, θ̄, t)dr, (5.36)

M[H⋆(r, t)] = Ĥ(p, t) =

∫ ∞

0

rp−1H⋆(r, t)dr. (5.37)

From the behaviour of the φ⋆ and H⋆ at 0 and ∞, we determine fundamental strip of the

functions where they exist and analytic. Then, for velocity potential fundamental strip is the

interval 0 < Re(p) < 1. For the free surface, it is defined as 0 < Re(p) < 2 in complex

p-plane.

Mellin transform is applied for the first equation , ∇2φ⋆ = − t3

3π2∇2 log(1 + r2), thus an

ordinary differential equation is obtained as follows (Gradshteyn and Ryzhik, 2000),

[
∂2

∂θ̄2
+ (p− 2)2

]
φ̂(p− 2, θ̄, t) =

t3

3π
(p− 2)

1

sin(πp
2
)

or equivalently it can be written as p→ p+ 2,

[
∂2

∂θ̄2
+ p2

]
φ̂(p, θ̄, t) = − t3

3π
p

1

sin(πp
2
)
, (in 0 < θ̄ <

π

2
). (5.38)
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This equation is solved by "variation of parameters" and general solution is found in the

form:

φ̂(p, θ̄, t) = c1(p, t) cos(pθ̄) + c2(p, t) sin(pθ̄)−
t3

3πp sin(πp
2
)

(5.39)

where c1(p, t) and c2(p, t) are to be determined from the boundary conditions.

Similarly, Mellin transform of the boundary conditions ;

φ̂θ̄(p, 0, t) = 0 (5.40)

φ̂θ̄(p− 1,
π

2
, t) = −Ĥt(p, t) (5.41)

φ̂t(p,
π

2
, t) =

2

π
Ĥ(p, t)− t2

πp sin(πp
2
)
. (5.42)

Initial conditions are

φ̂(p,
π

2
, 0) = 0 , φ̂t(p,

π

2
, 0) = 0 (5.43)

From (5.40), on θ̄ = 0 we find c2(p, t) = 0 and hence

φ̂(p, θ̄, t) = c1(p, t) cos(pθ̄)−
t3

3πp sin(πp
2
)
. (5.44)

If we combine kinematic and dynamic boundary condition, we get on θ̄ = π
2

φ̂tt(p) +
2

π
φ̂θ̄(p− 1) +

2t

πp sin(πp
2
)
= 0. (5.45)

Finally, by substituting (5.44) into this condition ,one gets

c1,tt (p, t) +
2

π
(p− 1)c1(p− 1, t) = 0 (5.46)
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with conditions

c1(p, 0) = 0 and c1,t (p, 0) = 0. (5.47)

In order to solve this difference-differential equation, Laplace transform is used :

L[c1(p, t)] = C1(p, ω) =

∫ ∞

0

e−ωtc1(p, t)dt

For the equation (5.46) if Laplace transform is applied, we get the following difference equa-

tion,

ω2C1(p, ω) +
2

π
(p− 1)C1(p− 1, ω) = 0 (5.48)

which can be written equivalently as p→ p+ 1,

ω2C1(p+ 1, ω) +
2

π
(p)C1(p, ω) = 0 (5.49)

The solution of this difference equation is obtained as (See )

C1(p, ω) = a(p)(−1)p
[

2

πω2

]p
Γ(p) (5.50)

where a(p) is a solution of a(p)
a(p−1)

= 1.

Then, by using inverse Laplace transform

c1(p, t) =
1

2πi

∫ γ+i∞

γ−i∞
eωtC1(p, ω)dω

we find the function c1(p, t) in the form by choosing 0 < Re(p) < 1
2
,

c1(p, t) = a(p)(−1)p sin(2πp)

[
2p

πp+1

]
Γ(1− 2p)Γ(p)t2p−1 (5.51)
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CHAPTER 6

CONCLUSION

In this thesis, we studied two dimensional dam-break problem. We considered asymp-

totic solution and solution was obtained in the leading order. We followed the same method-

ology (Korobkin and Yilmaz, 2009) for outer solution and (King and Needham, 1994) for

inner solution.

Firstly, the leading order dam-break problem is constructed and to solve the dam-break prob-

lem, some methods from complex analysis are used. A singularity is found at the intersection

point and it leads to an inner solution. Near the intersection point, the behaviour of the outer

solution is analysed as to constitute an inner region and an inner solution.

After that, we investigate the dimensions of the inner region appropriately. The leading

order inner velocity potential is obtained by using the corresponding asymptotic matching

conditions of the outer solution. To solve the second order inner region problem, Mellin

integral transform and Laplace transform methods are used. However, after taking the in-

verse Laplace transform, solution that we have found does not satisfy the initial conditions.

Therefore, we are not able to continue to find an exact solution for the inner region problem.

Consequently, we only solve the dam-break problem properly for the outer region near the

intersection point.
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APPENDIX A

TRANSFORMATIONS OF HARMONIC FUNCTIONS

AND BOUNDARY CONDITIONS

Theorem 1 Suppose that a domain Dz in the z-plane is mapped onto a domain Dw in the

w-plane with the help of an analytic function w = f(z) = u(x, y) + iv(x, y). On Dw, if

h(u,v) is a harmonic function , then (Brown and Churchill, 2009)

H(x, y) = h[u(x, y), v(x, y)] (A.1)

is harmonic in Dw

Proof

By using chain rule we can check whether H(x,y) is harmonic or not.From (A.1)

Hx = huux + hvvx

Hxx = huuu
2
x + huvvxux + huuxx + hvuuxvx + hvvv

2
x + hvvxx (A.2)

Hyy = huuu
2
y + huvvyuy + huuyy + hvuuyvy + hvvv

2
y + hvvyy (A.3)

Taking into consideration f is analytic, Cauchy-Riemann equations ux = vy, uy = −vx hold

and functions u,v satisfies Laplace equations so we get the equation

Hxx +Hyy = [huu + hvv]|f ′(z)|2 (A.4)

Then, we conclude that H(x,y) is harmonic in Dz when h(u,v) is harmonic in Dw.

Theorem 2 A smooth arc C is transformed onto arc γ by a transformation w = f(z) =

u(x, y) + iv(x, y) which is conformal. If a function h(u, v) satisfies one of the following
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conditions (Brown and Churchill, 2009),

h = h0 or
dh

dn
= 0 (A.5)

along γ,where h0 is real constant, dh
dn

derivatives normal to γ, thenH(x, y) = h[u(x, y), v(x, y)]

satisfies the corresponding condition

H = h0 or
dH

dN
= 0 (A.6)

along C, where dH
dN

denotes derivatives normal to C.

Proof

Firstly, since H(x, y) = h[u(x, y), v(x, y)] ,the value of H at any point (x,y) on C equals the

value of h at (u,v), image of (x,y), under transformation f(z). The image point (u,v) lies on

γ and h = h0 along that curve, thus H = h0 along C.

Assume that dh
dn

= 0 on γ and we know directional derivative is described by

dh

dn
= (gradh) · n (A.7)

where gradh denotes the gradient of h at point (u,v) on γ and n is a unit normal vector to γ

at again (u,v). We see from these informations gradh is orthogonal to n at (u,v).Therefore,

gradh is tangent to γ. At the same time , since gradient are orthogonal to the level curves,

γ is orthogonal to a level curve h(u, v) = c passing through (u,v). In addition, we can write

H(x, y) = c under transformation f(z). Since C is transformed to γ and it is orthogonal to

the level curve h(u, v) = c, from the conformality of transformation, C is orthogonal to the

level curve H(x, y) = c at (x,y) corresponding to (u,v). It follows that gradH is tangent to

C at (x,y) and if N is a unit normal vector to C at point (x,y), then gradH is orthogonal to N.

(gradH) · N =
dH

dN
= 0 (A.8)

While we are doing these calculations ,we assume that gradh ̸= 0, and gradh, gradH alwas

exists. The level curve H(x, y) = c is smooth when gradh ̸= 0 at (u,v).
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APPENDIX B

REFLECTION PRINCIPLE

Suppose f(z) = u(x, y) + iv(x, y) is analytic function in a region D which is sym-

metric with respect to a real axis. D+ is the part of D in the upper half plane and σ is the

part of real axis. Then (Ahlfors, 1979)

f(z̄) = f(z) (B.1)

for each point z in the domain if and only if f(x) is real for each point x on σ.
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APPENDIX C

HILBERT INVERSION FORMULA

Suppose that f(z) = u(x, y)+ iv(x, y) is an analytic function int he upper half plane.

If u(x) and v(x) denote the limiting values of its real and imaginary parts on the real axis,

then Hilbert inversion formulae are defined as (Gakhov, 1990)

v(x) = − 1

π

∫ ∞

−∞

u(ξ)

ξ − x
dξ + v∞ (C.1)

u(x) =
1

π

∫ ∞

−∞

v(ξ)

ξ − x
dξ + u∞, (C.2)

where u∞ and v∞ are the values of the real and imaginary parts at infinity.

Proof Let f be an analytic function of z throughout the upper half plane(Im(z)≥ 0).For a

fixed point z above the real axis, CR denote the upper half of a positively oriented circle with

radius R and oriented at the origin, where R > |z|.

Then, from Cauchy integral formula which we know from complex analysis,

f(z) =
1

2πi

∫
CR∪γ

f(τ)

τ − z
dτ =

1

2πi

∫
CR

f(τ)

τ − z
dτ +

1

2πi

∫ R

−R

f(ξ)

ξ − z
dξ (C.3)
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τ = ξ + iψ is a point on the upper part of the semi-circle. Then, we can write for the upper

half plane, as R tends to ∞

f(z) =
1

2πi

∫ ∞

−∞

f(ξ)

ξ − z
dξ +

1

2πi
lim
R→∞

∫
CR

f(τ)

τ − z
dτ (C.4)

=
1

2πi

∫ ∞

−∞

f(ξ)

ξ − z
dξ +

1

2πi
f(∞) lim

R→∞

∫
CR

1

τ − z
dτ

To take the integral over the line CR, we use polar coordinates τ = R exp(iθ) and obtain

f(z) =
1

2
f(∞) +

1

2πi

∫ ∞

−∞

f(ξ)

ξ − z
dξ (C.5)

For the integral

1

2πi

∫ ∞

−∞

f(ξ)

ξ − z
dξ,

if we use Sokhotski formula,as z → x ;

f+(x) =
1

2
f(∞) +

1

2
f(x) +

1

2πi

∫ ∞

−∞

f(ξ)

ξ − x
dξ (C.6)

u(x) + iv(x) = u(∞) + iv(∞)− i

π

∫ ∞

−∞

u(ξ) + iv(ξ)

ξ − x
dξ

the limiting values are derived as the following form :

u(x) =
1

π

∫ ∞

−∞

v(ξ)

ξ − x
dξ + u∞

v(x) = − 1

π

∫ ∞

−∞

u(ξ)

ξ − x
dξ + v∞


(C.7)
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APPENDIX D

POISSON INTEGRAL FORMULA FOR UPPER HALF

PLANE

Suppose that real valued function ϕ(ξ) is piecewise continuous and bounded for all

real ξ. Then the function (Ahlfors, 1979)

Φ(x, y) =
1

π

∫ ∞

−∞

y

(x− ξ)2 + y2
ϕ(ξ)dξ

is harmonic in the upper half plane with boundary values ϕ(ξ) at points of continuity.

Proof

Φ(z) is harmonic in the upper half plane. The linear transformation

z = S(ξ) =
āξ − a

ξ − 1
(D.1)

maps |ξ| ≤ 1 onto the upper half plane where a = µ+ iψ is any point in the upper half plane

and ā = µ − iψ is symmetric point of a with respect to real axis. The function Φ(S(ξ)) is

harmonic in |ξ| ≤ 1 and from the arithmetic mean of harmonic functions, we have

Φ(a) =
1

2π

∫
|ξ|=1

Φ(S(ξ))dargξ (D.2)
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From

ξ =
z − a

z − ā
(D.3)

we can compute

dargξ = −idξ
ξ

= −i
[
z − ā

z − a

](
a− ā

(z − ā)2

)
dz (D.4)

=
2ψ

(z − a)(z − ā)
dz (D.5)

and substituting this equation into (D.2), we get

Φ(a) =
1

π

∫ ∞

−∞

ψ

(x− η)2 + ψ2
ϕ(x)dx. (D.6)

We prove this formula for arbitrary point a in the upper plane so if we write for all point

in upper half plane, general case, we obtain the Poisson integral formula for the upper half

plane in the following form ;

Φ(x, y) =
1

π

∫ ∞

−∞

y

(x− ξ)2 + y2
ϕ(ξ)dξ. (D.7)
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APPENDIX E

MELLIN TRANSFORM

E.1. Derivation of Mellin Transform

A natural way of defining this transformation can be provided by using the complex

Fourier transform (Debnath and Bhatta, 2010). Let f : R → C be an integrable function and

its Fourier transform :

F [f(x)] = F (u) =
1√
2π

∫ ∞

−∞
e−ixuf(x)dx (E.1)

If we change the variables, r = ex and iu = α − p where α is constant and p is complex,

then we obtain

F (ip− iα) =
1√
2π

∫ ∞

0

rp−α−1f(log r)dr (E.2)

By choosing 1√
2π
r−αf(log r) ≡ f̃(r) and F (ip − iα) ≡ F̃ (p), we can define the Mellin

transform of f(p) as

M[f̃(r)] = F̃ (p) =

∫ ∞

0

rp−1f̃(r)dr. (E.3)

In a similar way, we can introduce inverse Mellin transform by using inverse Fourier trans-

form,

F−1[F (u)] = f(x) =
1√
2π

∫ ∞

−∞
eixuF (u)du (E.4)

With the same variables, r = ex and iu = α− p, we get

f(log r) =
1√
2π

∫ c+i∞

c−i∞
rα−pF (ip− iα)dp (E.5)
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thus, we find inverse Mellin transform in the following form,

M−1[F̃ (p)] = f̃(r) =
1

2π

∫ c+i∞

c−i∞
r−pF̃ (p)dp. (E.6)

E.2. Application of the Mellin Transform for the Equation :

∇2φ⋆ = − t3

3π2∇2 log(1 + r2)

For the left hand side, Laplace equation in polar form is defined by

∇2φ⋆(r, θ̄, t) =
∂2φ⋆

∂r2
+

1

r

∂φ⋆

∂r
+

1

r2
∂2φ⋆

∂θ̄2
(E.7)

and apply the Mellin transform, we get

M−1[∇2φ⋆] =

∫ ∞

0

rp−1∂
2φ⋆

∂r2
dr︸ ︷︷ ︸

I1

+

∫ ∞

0

rp−2∂φ
⋆

∂r
dr︸ ︷︷ ︸

I2

+

∫ ∞

0

rp−3∂
2φ⋆

∂θ̄2
dr︸ ︷︷ ︸

I3

. (E.8)

From the method of integration by part;

I1 =

∫ ∞

0

rp−1∂
2φ⋆

∂r2
dr

= lim
x→∞

(
rp−1φ⋆

r

)∣∣∣∣x
0

− (p− 1)

∫ ∞

0

φ⋆
rr

p−2dr

= (p− 1)(p− 2)

∫ ∞

0

φ⋆rp−3dr

= (p− 1)(p− 2)φ̂(p− 2, θ̄) (E.9)
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Similar way,

I2 =

∫ ∞

0

rp−2∂φ
⋆

∂r
dr

= lim
x→∞

(
rp−2φ⋆

r

)∣∣∣∣x
0

− (p− 2)

∫ ∞

0

φ⋆
rr

p−3dr

= −(p− 2)φ̂(p− 2, θ̄) (E.10)

and

I3 =

∫ ∞

0

rp−3∂
2φ⋆

∂θ̄2
dr

=
∂2

∂θ̄2

∫ ∞

0

rp−3φ⋆dr

=
∂2

∂θ̄2
φ̂(p− 2, θ̄) (E.11)

For the right hand side of the our main equation, −t3

3π2∇2 log(1 + r2) = −t3

3π2
4

(1+r2)2
, if we take

the transform, we have

M
[
−t3

3π2

4

(1 + r2)2

]
=

t3

3π
(p− 2)

1

sin(πp
2
)

(E.12)

for 0 < Re(p) < 4.

Finally ,we conclude that the Mellin transform of the equation ∇2φ⋆ = − t3

3π2∇2 log(1 + r2)

find as

[
∂2

∂θ2
+ (p− 2)2

]
φ̂(p− 2, θ̄) =

t3

3π

(p− 2)

sin(πp
2
)
. (E.13)
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APPENDIX F

DIFFERENCE EQUATIONS

The first order linear difference equation is defined as (Kelley and Peterson, 2001)

y(t+ 1)− p(t)y(t) = r(t) (F.1)

where p(t) and r(t) are given functions with p(t) ̸= 0 for all t.

Solution of the difference equations which are defined as the following type

y(t+ 1) = a
(t− r1). . . (t− rn)

(t− s1). . . (t− sm)
y(t) (F.2)

where a, r1, ..., rn, s1, ...sm are constants , can be found as follows:

y(t) = e
∑

log a+
∑

[log(t−r1)+...+log(t−rn)−log(t−s1)−...−log(t−sm)]C(t)

From the identity
∑

log(t) = log Γ(t) + C(t), we obtain the solution of the equation (F.2),

y(t) = C(t)at
Γ(t− r1). . .Γ(t− rn)

Γ(t− s1). . .Γ(t− sm)
(F.3)

where ∆C(t) = 0.
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