
TWO NUMERICAL APPROACHES FOR
SOLVING NONLINEAR STIFF DIFFERENTIAL

EQUATIONS

A Thesis Submitted to
the Graduate School of Engineering and Sciences of

İzmir Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

in Mathematics

by
Neslişah İMAMOĞLU

December 2014
İZMİR

We approve the thesis of Neslişah İMAMOĞLU

Examining Committee Members:

Prof. Dr. Gamze TANOĞLU
Department of Mathematics, İzmir Institute of Technology

Prof. Dr. Emine MISIRLI
Department of Mathematics, Ege University

Assist. Prof. Dr. Olha IVANYSHYN YAMAN
Department of Mathematics, İzmir Institute of Technology

12 December 2014

Prof. Dr. Gamze TANOĞLU
Supervisor, Department of Mathematics
İzmir Institute of Technology

Prof. Dr. Oğuz YILMAZ Prof. Dr. Bilge KARAÇALI
Head of the Department of Dean of the Graduate School of
Mathematics Engineering and Sciences

ACKNOWLEDGMENTS

This thesis appears in its current form due to the assistance and guidance of several

people. I would like to offer my thanks to all of them.

I want to express my deep thanks to my advisor,Prof. Dr. Gamze Tanoğlu, for her

guidance, caring and patience during my research to prepare my thesis.

I would like to thank Melek Sofyalıoğlu for her advices and helps. Many thanks to

Yeşim Çiçek, Sıla Övgü Korkut, Gizem Kafkas and Damla Isıdıcı for providing a good at-

mosphere in our department and for useful discussions.

I owe the same amount of thanks to Ömer Karabaş for being constantly proud of me

without any reason.

I warmly thank and appreciate my parents. They kept encouraging me when I en-

countered difficulty during the writing process of this thesis. Without their constant support,

this accomplishment wouldn’t have been made possible.

ABSTRACT

TWO NUMERICAL APPROACHES FOR SOLVING NONLINEAR
STIFF DIFFERENTIAL EQUATIONS

This thesis presents two different numerical methods to solve non-linear stiff differ-

ential equations. The first method is exponential integrator, its error bounds are derived for

the specific differential equations. Error analysis of exponential integrators is studied based

on the Frèchet differentiation and Sobolev space. We obtain the error bounds in H s(R) norms

under the certain assumptions. The second method is a new iterative linearizaton technique.

For the second one, we first time applied to general Frèchet derivative as a linearization

technique for the numerical solution of nonlinear partial differential equations. In computa-

tional part, in order to denote the effectiveness of the new proposed method, we compare our

proposed method with the well-known techniques with respect to the errors.

iv

ÖZET

DOĞRUSAL OLMAYAN SERT DİFERANSİYEL DENKLEMLERİ
ÇÖZMEK İÇİN İKİ SAYISAL YAKLAŞIM

Bu tezde doğrusal olmayan sert diferansiyel denklemleri çözmek için iki farklı

sayısal yöntem sunulmaktadır. İlk yöntem üstel integratördür, bu yöntemin hata sınırları özel

diferansiyel denklemler için elde edilmiştir. Üstel integratörlerin hata analizi, Frèchet türeve

ve Sobolev uzaylarına dayanmaktadır. Hata sınırlarını, gerekli kabuller altında Hs(R) nor-

munda elde ettik. İkinci yöntem yeni tekrarlı doğrusallaştırma tekniğidir. İkinci yöntemde,

genel Frèchet türevini ilk kez doğrusal olmayan kısmi türevli diferansiyel denklemlerin

sayısal çözümleri için doğrusallaştırma tekniği olarak uyguladık. Hesaba dayalı bölümde,

yeni tasarlanan yöntemin etkililiğini göstermek için, kendi sunduğumuz yöntemi, iyi bilinen

tekniklerle hatalarına göre kıyasladık.

v

TABLE OF CONTENTS

LIST OF FIGURES . viii

LIST OF TABLES . ix

CHAPTER 1. INTRODUCTION . 1

CHAPTER 2. BASIC CONCEPTS . 4

2.1. Stiff Differential Equations . 4

2.2. Differentiation in Banach Space . 9

2.2.1. Fréchet Derivative . 9

2.2.2. Gateaux Derivative . 10

2.2.3. Higher Derivative . 11

2.2.4. Taylor’s Formula . 12

2.3. Sobolev Spaces . 13

2.3.1. Standard Sobolev Spaces . 13

CHAPTER 3. EXPONENTIAL INTEGRATORS . 16

3.1. Derivation of the Method . 16

3.1.1. Derivation of the φ Functions . 18

3.1.2. Exponential Euler Method . 19

3.1.3. Exponential Rosenbrock Euler Method . 19

3.2. Convergence Analysis . 20

3.2.1. Convergence Analysis of Allen-Cahn Equation . 24

3.2.2. Local Error . 24

3.2.3. Global Error . 27

3.2.4. Convergence Analysis of Burgers’ Equation . 29

3.2.5. Local Error . 30

3.2.6. Global Error . 32

CHAPTER 4. ITERATIVE LINEARIZATION TECHNIQUE . 35

4.1. Linearization Processes . 35

4.2. Localized Differential Equation . 36

4.3. Linearization of the Allen-Cahn Equation . 38

4.4. Linearization of the Burgers’ Equation . 39

vi

CHAPTER 5. NUMERICAL EXPERIMENTATION . 41

5.1. Numerical Results for Exponential Euler Method . 42

5.1.1. Numerical Results for Allen-Cahn Equation . 42

5.1.2. Numerical Results for Burgers’ Equation . 45

5.2. Numerical Results for New Linearization Technique 52

5.2.1. Numerical Results for Allen-Cahn Equation . 52

5.2.2. Numerical Results for Burgers’ Equation . 54

CHAPTER 6. CONCLUSION . 61

REFERENCES . 62

APPENDIX A. MATLAB CODES FOR NUMERICAL EXPERIMENTS 65

vii

LIST OF FIGURES

Figure Page

Figure 4.1. Diagram for the iterative solution procedure. 38

Figure 5.1. Order of exponential Euler method for Allen-Cahn equation. 44

Figure 5.2. Exponential Euler solution of Allen-Cahn equation when hx = 0.04, ht =

0.01, T=10 . 45

Figure 5.3. Order of exponential Euler method for Burgers’ equation 47

Figure 5.4. Numerical solution of Burgers’ equation via exponential Euler method . . . 47

Figure 5.5. Order of Exponential Euler solution of example 2 when κ = 0.1. 49

Figure 5.6. Exponential Euler solution of example 2 at different times when hx =

0.05, ht = 0.00625 and κ = 0.1. 49

Figure 5.7. Exponential Euler solutions of example 2 when hx = 0.05, ht = 0.01 and

κ = 0.1. 50

Figure 5.8. Order of Exponential Euler solution of example 2 when κ = 0.01. 51

Figure 5.9. Exponential Euler solutions of example 2 when hx = 0.025, ht = 0.00625

and κ = 0.01. 52

Figure 5.10.Numerical solution of Allen-Cahn equation via iterative linearization tech-

nique when hx=0.04, ht=0.01, T=10. 54

Figure 5.11. Numerical solution of Burgers’ equation via iterative linearization tech-

nique . 55

Figure 5.12. Numerical solution of Burgers’ equation via iterative linearization tech-

nique at different time . 56

Figure 5.13. Iterative linearization solution of example 2 at different times when hx =

0.05, ht = 0.01 and κ = 0.1. 57

Figure 5.14. Iterative linearization solution of example 2 when hx = 0.05, ht = 0.01

and κ = 0.1. 58

Figure 5.15. Iterative linearization solutions of example 2 when hx = 0.025, ht = 0.01

and κ = 0.01. 59

Figure 5.16. Numerical solutions at the end time T = 3 with different κ values. 60

viii

LIST OF TABLES

Table Page

Table 5.1. Error table of Allen-Cahn equation via exponential Euler method. 44

Table 5.2. Error table of Burgers’ equation via exponential Euler method. 46

Table 5.3. Exponential Euler solution and exact solution of example 2 when hx =

0.05, ht = 0.00625 and κ = 0.1. 48

Table 5.4. Exponential Euler solution and exact solution of example 2 when hx =

0.025, ht = 0.00625 and κ = 0.01. 51

Table 5.5. Numerical solution of Allen-Cahn equation via iterative linearization tech-

nique at different times and different ∆t values. 53

Table 5.6. Numerical and exact solutions of example 2 when hx = 0.05, ht = 0.0001

and κ = 0.1. 57

Table 5.7. Numerical and exact solution of example 2 when hx = 0.05, ht = 0.0001

and κ = 0.01. 59

ix

CHAPTER 1

INTRODUCTION

The aim of this thesis is to obtain approximated solutions of nonlinear stiff differ-

ential equations numerically. Stiff problems can be defined as: problems which can not be

solved by the classical methods. These types of problems arise in various fields of science

and engineering such as fluid mechanics, physics, chemical reactor theory, convection diffu-

sion processes and other branches of applied mathematics.

We will deal with firstly the history of stiff differential equations. The earliest detec-

tion of stiffness in differential equations presented by two chemists Curtiss and Hirschfelder

in 1952. They named the term of stiffness. They also gave the definiton of the stiffness as:”

Stiff equations are equations where certain implicit methods perform better, usually tremen-

dous better, than explicit ones.” (Curtis & Hirschfelder, 1950).

The second development was defined by Dahlquist in 1963. He dealed with the prob-

lems in stability. He said in Aiken (1985) that ”... around 1960 , thing became completely

different and everyone became aware that the world was full of stiff problems.” (Hairer &

Wanner, 2000). Dahlquist is also said that the problem is stiff if ”Systems containing very

fast components as well as very small component. ” (Dahlquist, 1963).

In 1968, Gear became one of the most important names in this area. Gear and

Shampine presented an article in 1979. The aim of this article was to aid people who needs

to solve stiff ordinary differential equations. They identified the problem area and described

the characteristics shared by methods for the numerical solution of stiff problems (Shampine

& Gear, 1976).

In 1970, Liniger designed efficient algorithms for solving stiff systems of ordinary

differential equations (Liniger & Willoughby , 1970). In 1973, Lambert examined critically

various qualitative statements including the notion of stiffness. One of them is ’A linear

constant coefficient system is stiff if all of its eigenvalues have negative real part and the

stiffness ratio is large.’ This statement is adopted as a definition of stiffness. He selected the

most satisfactory of these statements as a ’definition’ of stiffness. This is: ’If a numerical

method with a finite region of absolute stability , applied to a system with any initial con-

dition, is forced to use in a certain interval of integration a step lentgh which is excessively

small in relation to the smoothness of the exact solution in that interval, then the system is

said to be stiff in that interval’ (Lambert, 2000). Lambert thought that the rate of stiffness in

real life problems would become more important year by year.

1

Brugnano and Trigiante in 1996 gave a definition of stiffness based on conditioning

(Burgnano& Trigiante, 1996). In 1996, Spijker reviewed various aspects of stiffness in the

numerical solution of initial value problems for systems of ordinary differential equation

(Spijker, 1995).

The excellent text which is Solving Ordinary Differential Equations II of Hairer &

Wanner has helped put this theory on a firm basis. They also gave a definition of stiffness as

follows: ”Stiff equations are problems for which explicit methods don’t work.” (Hairer &

Wanner, 2000).

Numerical solutions of this type of equations are an important area in recent years.

Various techniques are developed over the years. Implicit schemes have an advantage to

solve the stiff differential equations. Because of the freedom of choice of the time step.

When trying to solve nonlinear equations with an implicit methods, most of the methods

have difficulties. To avoid these difficulties, generally combination of the explicit and im-

plicit methods is used. The strategy of this combination is that, nonlinear part of the problem

is solved by the explicit multi-step methods and linear part of the problem is solved by the

implicit methods. The name of this strategy is Implicit-Explicit (IMEX) schemes. These

schemes were presented to solve stiff PDEs in the late 1970’s (Varah).

Another important scheme is to solve the stiff PDEs the method of lines. In this

methods, first the spatial derivatives of a PDE are discretized with approximation method.

Then any well-known numerical method is applied to obtain the numerical solution of the

problem. These techniques include Finite Difference Formulas and Spectral Methods (Tre-

fethen).

Beylkin constructed implicit and explicit schemes of arbitrary order, which they

called Exact Linear Part (ELP) method in (Beylkin & Keiser & Vozovoi). Later, Cox and

Matthews give a open derivation of the ELP schemes, which they called Exponential Time

Differencing (ETD) methods (Cox& Matthews , 2002). Then, Hochbruck and Ostermann

developed the Exponential Integrators (Hochbruck & Ostermann, 2010).

This thesis consists of two part. In the first part, we deal with the exponential integra-

tors. To understand the idea of the exponential integrators, we give an historical background.

The first idea of this methods was in the study of Hersch in 1958. He realized that numerical

solutions of differential equations can’t give the solution exactly, even if the equation can be

solved with analytical methods. Thus he introduced a new exact approach for constant co-

efficient linear problems. The multistep exponential time difference methods was developed

by Certaine in 1960. To obtain this methods, he used the variation of constants formula and

algebraic approximation of the nonlinearity. The beginning of the exponential integrators

started with this. In 1963, Pope offered that the nonlinear part of the problem is linearized

in every time step. This is the main idea of the Rosenbrock methods (Pope, 1963). In

2

1967, Lawson formulated the exponential Runge-Kutta methods firstly. In this methods, ex-

ponential functions was used as Runge-Kutta coefficients. (Lawson, 1967). In 1978, Fredli

proposed the higher order methods. In these methods, linear part is solved exactly but ap-

proximation of the nonlinear part is solved by explicit methods.

In 1998 Exponential integrators was introduced by Hochbruck,Lubich and Selhofer. There-

fore this work was the first efficient implementation of an exponential integrator (Hochbruck

& Lubich & Selhofer , 1998). Higher order exponential Runge-Kutta methods was developed

by Hochbruck and Ostermann in 2005. (Hochbruck & Ostermann & Schweitzer, 2008).

In the second part, we develop a new linearization technique to solve non-linear par-

tial differential equations which is based on Frèchet derivative and Newton-Raphson method.

The idea of this technique is used in the study of Liu (Liu & Wu, 2000) to solve ordinary

differential equations of Duffing-type non-linearity. Then this technique is appeared in the

study of (Fazel & Moghadam & Poshtan, 2013). In this study, they applied the technique

to solve non-linear ordinary differential equations of motion. In this thesis, we first time

applied this linearization technique to find the numerical solutions of nonlinear partial differ-

ential equations. We give the procedure thoroughly to convert nonlinear partial differential

equations into a set of linear algebraic equations using the Frèchet derivative in Newton-

Raphson iteration.

For numerical implementation we choose Allen-Cahn and Burgers’ equations. We

applied both exponential integrators and a new iterative linearization technique to these prob-

lems.

The outline of the thesis as follows: Chapter 2 gives the definitions that we use the

other chapters. These definitions are about stiff differential equations, Frèchet derivative

and Sobolev space and norms. Chapter 3 focuses on exponential integrators.In this chapter

derivation of the method is shown and error bounds for Allen-Cahn and Burgers’ equation

are obtained. Chapter 4 concentrates on the iterative linearization technique that we first

develop to solve nonlinear partial differential equations. Linearizing the operators by using

Frèchet derivative and combining this with the Newton-Rapson method are introduced in this

chapter. In Chapter 5, various numerical examples are illustrated to show that the methods

are worked. We summarize and give brief conclusion in Chapter 6.

3

CHAPTER 2

BASIC CONCEPTS

In this chapter, basic concepts that are used in the next chapters are introduced.

Firstly, the idea of stiffness is given. Then, Frèchet differentiability is defined to use in

the error analysis of exponential integrators and to use as a tool in the iterative linearization

technique. Finally, Sobolev space and norms are defined for Chapter 3.

2.1. Stiff Differential Equations

Differential equations divide into stiff and non-stiff differential equations. We will

deal with the stiff differential equations. The definition of stiffness can be formalized as

follows:

Definition 2.1 A linear differential system

u′(t) = Au(t) + f (t) , u(0) = u0

where A ∈ Rn×n and u, f , u0 ∈ Rn.

This system is said to be stiff if and only if

i) For all i , R(λi) < 0,

ii) max|R(λi)|
min|R(λi)| ≫ 1 , where λi are eigenvalues of A for i = 1, 2, ..., n.

We called max|R(λi)|
min|R(λi)| as stiffness ration. We will check the stiffness of given any equation the

aid of this definition.

Now, we focus our attention on two examples to clarify the stiff differential equation. We

first consider the linear ODE system:

u′1 = −u1 + sin t, u1(0) = 1, (2.1)

u′2 = 2u1 − 100u2, u2(0) = 0,

4

where t ∈ [0, 0.3]. We can rewrite equation (2.1) following matrix form,

u′(t) =

−1 0

2 −100

u1

u2

 +
sin t

0

 , u0 =

10
 . (2.2)

This system is equivalent to following form

u′(t) = Au(t) + f (t), u(0) = u0, (2.3)

where A ∈ R2×2 and u, f , u0 ∈ R2. Then, we can check the stiffness according to Definition

(2.2). We have to find eigenvalues of the coefficient matrix. The eigenvalues of the given

matrix A are λ1 = −100 and λ2 = −1. Both of the eigenvalues are negative and stiffness

ratio= |λ2 |
|λ1 | = 100 ≫ 1. So, linear equation system (2.1) is said to be stiff.

Our next example is the detection of stiffness in PDE. Let us consider the heat equation:

∂u(x, t)
∂t

=
∂2u(x, t)
∂x2 ,

with the initial condition and the boundary conditions

u(x, 0) = f (x), (2.4)

u(0, t) = u(1, t) = 0, (2.5)

where x ∈ (0, 1], t ∈ (0,T].

We will solve the diffusion problem using the finite difference method. The basic idea of the

method is to replace the spatial derivation in partial differential equation with algebraic ap-

proximation. We approximate the spatial partial derivative of uxx using the central difference

formula. The approximate solution of u(x, t) at x = xn is denoted by un(t)

∂un(t)
∂t

=
un+1(t) − 2un(t) + un−1(t)

(∆x)2 , (2.6)

u0(t) = uN(t) = 0 , t ∈ (0,T],

un(0) = f (xn) , n = 1, ...,N − 1,

5

where ∆x = 1
N and xn = n∆x, n = 1, ...,N − 1. Suppose that the step size ∆x = h. It is

convenient to write (2.4) in matrix form

u′1
u′2
...

u′N−1

=

1
h2

−2 1

1 −2 1

1 −2 1

1 . . .
. . .

. . .
. . . 1

−2 1

u1

u2
...

uN−1

.

This system can be written as

u′(t) = Au(t), u(0) = u0, (2.7)

where u0 = [f (x1), ..., f (xN−1)]T is the initial condition. Here we consider the periodic bound-

ary conditions. Boundary conditions are embedded into the matrix. To examine the stiffness

of the given diffusion problem, we need to find the eigenvalues of A. These eigenvalues are

real and can be given by the following equality

λ j = −
4
h2 sin2 jπ

2N
, 1 ≤ j ≤ N − 1.

The proof can be obtained by showing a relationship between the characteristic polynomial

for A and Chebyshev polynomials

λN−1 ≤ λ j ≤ λ1, (2.8)

with the following results for λN−1 and λ1

λN−1 = −
4
h2 sin2 (N − 1)π

2N
≈ − 4

h2 ,

λ1 = −
4
h2 sin2 π

2N
≈ −π2,

6

with the approximations available for larger N. Let r be an eigenvector with corresponding

eigenvalue λ for A.

For a vector r = (r1, r2, ..., rN−1) to be an eigenvector for A with corresponding eigenvalue λ

we must have

1
h2 (rn−1 − 2rn + rn+1) = λrn, n = 2, ...,N − 2, (2.9)

It is usually not easy to find eigenvalues and eigenvectors for such a matrix, but if we have a

prediction then it is very easy to check whether it fits or not. A good suggestion for r can be

to take

rn = sin(nθ), n = 1, ...,N − 1, (2.10)

we work out

rn−1 + rn+1 = sin(n − 1)θ + sin(n + 1)θ,

= 2sin(nθ)cos(θ),

= 2rncosθ. (2.11)

When we replace (2.11) in (2.9), this gives

λ =
1
h2 (−2 + 2cos(θ)),

=
−4
h2 sin2(θ/2).

In addition to the N − 3 equations we must also have the similar relations for n = 1 and

n = N − 1:

2r1 − r2 = λr1,

−rN−2 + 2rN−1 = λrN−1.

7

These are fulfilled automatically if we can manage to have r0 = rN = 0. For rN we must

require

rN = sin(Nθ) = 0. (2.12)

Note that the roots are

Nθ j = jπ, j = 1, 2, (2.13)

We therefore define

θ j =
jπ
N
, j = 1, 2, ...,N − 1, (2.14)

and with these N − 1 values of θ we have a set of N − 1 orthogonal eigenvectors and corre-

sponding eigenvalues for A:

λ j = −4sin2
(jπ
2N

)
. (2.15)

Directly examining this formula,

λN−1 ≤ λ j ≤ λ1. (2.16)

The least and the largest eigenvalues are can be obtained by using (2.15)

λN−1 =

(−4
h2

)
sin2

((N − 1)π
2N

)
=

(−4
h2

)
, (2.17)

λ1 =

(−4
h2

)
sin2

(
π

2N

)
= −π2. (2.18)

Finally, the proportion of equations is obtained

λN−1

λ1
≈ 4

(πh)2 , (2.19)

8

it can be seen that it is a stiff system if h is small. As a consequence, these two examples

show that the stiffness of the differential equations can be identified by the Definition (2.2).

2.2. Differentiation in Banach Space

In this section, we take the differentiability of general operators in Banach spaces into

consideration. We will give the definition of the Fréchet derivative and the Taylor’s formula.

2.2.1. Fréchet Derivative

Recall the definition of derivative for real valued functions:

f ′(x) := lim
h→0

f (x + h) − f (x)
h

,

if the limit exists. Writing

y =

f (x+h)− f (x)

h − f ′(x) h , 0

0 h = 0

we see that the definition of derivative implies that ψ(h) is a continuous function at 0, while

it is clearly a continuous function elsewhere (as the differentiable function f is continuous).

Moreover we have the equation

f (x + h) = f (x) + f ′(x)h + hψ(h) (2.20)

We can now generalize this idea to obtain a more general definition of derivative. Notice that

we need that domain and range of f are normed vector spaces, otherwise we can’t add (if we

don’t have a vector space) or talk about continuity (if we don’t have norms). The derivative

defined in this way, the usual definition on general vector spaces, is called Fréchet derivative.

9

Definition 2.2 Let X and Y be normed vector spaces, and U ⊂ X open, f : U → Y . We

say f is differentiable at x ∈ U if there exists a bounded linear map D f (x) ∈ L(X,Y)1 and a

continuous function ψ : V → Y, where V is an open neighbourhood of 0 ∈ X , with ψ(0) = 0,

such that

f (x + h) = f (x) + (D f (x))h + ∥h∥ψ(h)

for all h ∈ V.(note V must be chosen such that x + V = x + v|v ∈ V ⊂ U.)

2.2.2. Gateaux Derivative

The Gateaux differential generalizes the idea of a directional derivative. If f is Frèchet

differentiable, then it is also Gateaux differentiable. Gateaux derivative definition is given

with the following lemma.

Lemma 2.1 If f : U → Y differentiable at x, then for all h ∈ X we have

D f (x)h = lim
t→0

f (x + th) − f (x)
t

,

where t is chosen in R.

Proof Let us assume t > 0 (for t < 0 the argument is the same). By definition of derivative

we have for t small enough (so th ∈ V)

f (x + th) = f (x) + (D f (x))(th) + ∥th∥ψ(th),

or by rearranging and using linearity

(D f (x))h =
f (x + th) − f (x)

t
− ∥h∥ψ(th)

1the space of linear continuous maps from X to Y

10

Now we can take the limit as t → 0 on both sides (as the left hand side is constant it has a

limit) to get the desired result (note limt→0 ∥h∥ψ(th) = ∥h∥ψ(0h) = 0 as ψ is continuous.) �

2.2.3. Higher Derivative

Let f ∈ C(U,Y) be differentiable in the open set U ⊂ X and consider f ′ : U →
L(X,Y)

Definition 2.3 Let u ∈ U: f is twice (Fréchet) differentiable at u. The second (Fréchet)

differential of f at u is defined as

d2 f (u) = d f ′(u). (2.21)

If f is twice differentiable at all points of U we say that f is twice differentiable in U

According to the above definition d2 f (u) is a linear continuous map from X to L(x,Y):

d2 f (u) ∈ L(X, L(X,Y)). (2.22)

It is convenient to see d2 f (u) as a bilinear map on X. For this, let L2(X,Y) denote the

space of continuous bilinear maps from X × X → Y . To any A ∈ L(X, L(X, Y)) we can

combine ΦA ∈ L2(X,Y) given by ΦA(u1, u2) = [A(u1)](u2). Conversely, given Φ ∈ L2(X,Y)

and h ∈ X,Φ(h, .) : k → Φ(h, k) is a continuous linear map from X to Y; hence to any

Φ ∈ L2(X, Y) is associated the linear application X → L(X,Y),

Φ : h→ Φ(h, .) ∈ L(X,Y) (2.23)

It is easy to see that in this way we define an isomorphism between L(X, L(X, Y)) and

L2(X,Y). Actually, such an isomorphism is an isometry because there results

∥Φ∥L(X,L(X,Y)) = sup
∥h∥≤1
∥Φ(h)∥L(X,Y) (2.24)

= sup
∥h∥≤1

sup
∥k∥≤1
∥Φ(h, k)∥ = ∥Φ(h, k)∥L2(X,Y) (2.25)

11

In the following we will use the same symbol d2 f (u) to denote the continuous bilinear map

obtained by the preceding isometry. The value of d2 f (u) at a pair (h, k) will be denoted by

d2 f (u)[h, k]. (2.26)

If f is twice differentiable in U, the second (Fréchet) derivative of f is the map f ′′ : U →
L2(X,Y),

f ′′ : u→ d2 f (u). (2.27)

If f ′′ is continuous from U to L2(X,Y) we say that f ∈ C2(U, Y). To define (n + 1)−th

derivatives (n ≥ 2) we can proceed by induction. Given f : U → Y , let f be n times

differentiable in U. The nth differential at a point x ∈ U will be identified with a continuous

n-linear map from X×X×X× ...×X (ntimes) to Y (recall that, as before, there is an isometry

between L(X, ..., L(X,Y) and Ln(X,Y)). Let f (n) : U → Ln(X,Y)

f (n) : u→ dn f (u).

The (n + 1)−th differential at u will be defined as the differential of f (n), namely

dn+1 f (u) = d f n(u) ∈ L(X, Ln(X,Y)) ≈ Ln(X, Y).

We will say that f ∈ Cn(U,Y) if f is n times (Fréchet) differentiable in U and the nth derivative

f n is continuous from U to Ln(X,Y). The value of dn f (u) at (h1, ..., hn) will be denoted by

dn f (u)[h1, ..., hn].

If h = h1 = ... = hn we will write for short dn f (u)[h]n.

12

2.2.4. Taylor’s Formula

Let f ∈ Cn(Q,Y) and let u, u + v ∈ Q be such that the interval [u, u + v] ⊂ Q.Then,

Taylor’s formula for Fréchet differentiable maps is that

f (u + v) = f (u) + d f (u)[v] + ... +
1

(n − 1)!

∫ 1

0
(1 − t)n−1d(n) f (u + tv) dt[v]n.

The last integral can be written as

1
(n − 1)!

∫ 1

0
(1 − t)n−1d(n) f (u + tv) dt[v]n =

1
n!

d(n) f (u)[v]n + ε(u, v)[v]n

where

ε(u, v) =
1

(n − 1)!

∫ 1

0
(1 − t)n−1[dn f (u + tv) − dn f (u)] dt → 0 as v→ 0.

2.3. Sobolev Spaces

We interested in the Sobolev spaces which forms a Hilbert space.These spaces are

denoted as H s(R) = W s,2(R), where s is integer. The inner product and norm are defined as

(u, v)Hs =

s∑
j=0

∫
R

∂ j
xu(x)∂ j

xv(x)dx and ∥u∥Hs =
√

(u, u)Hs . (2.28)

We see that H s(R) contains all functions which has weak derivatives up to order s in L2(R) ,

and we remark that L2(R) = H0(R).

2.3.1. Standard Sobolev Spaces

Consider H s(R) defined when s is a positive integer, with inner product and norm as

in (2.28). From the definition, we observe that Hr(R) is continously imbedded in H s(R) for

13

r > s, which results in that the respective norms are comparable in the following way

∥u∥Hs ≤ C∥u∥Hr , (2.29)

for u in Hr(R). We first show that H s(R) is imbedded in L∞(R) for s ≥ 1.

Lemma 2.2 The space H s(R) is a Banach algebra for s ≥ 1. In particular, if u, v are in

H s(R) for s ≥ 1, then

∥uv∥Hs ≤ Cs∥u∥Hs∥u∥Hs ,

where where Cs depends only on s.

Proof Since the Sobolev norm is a sum of (weak) derivatives of u and v, it is sufficient to

show that for all r ≤ s

∥∂r
x(uv)∥L2 ≤ Cs∥u∥Hs∥u∥Hs .

Consider ∂r
x(uv) and expand it using Leibniz rule

∂r
x(uv) =

r∑
j=0

(
r
j

)
∂ j

xu∂
r− j
x v.

By the triangle inequality it is sufficient to look at one term in the above sum. Moreover, we

need to be careful in the estimation of the term, since when we vary j and s we get different

orders of the derivatives on u and v, which is not necessarily bounded in H s(R). However,

we get for r < s and 0 ≤ j ≤ r

∥∂ j
xu∂

r− j
x v∥2L2 =

∫ ∞

−∞
(∂ j

xu)2(∂r− j
x v)2dx ≤ ∥∂ j

xu∥2L∞
∫ ∞

−∞
(∂r− j

x v)2dx

≤ Cs∥u∥2H j+1∥∂r− j
x v∥2L2 ≤ Cs∥u∥2Hs∥v∥2Hs

14

since j + 1 ≤ r + 1 ≤ s and r − j ≤ s. For r = s and 0 ≤ j < r we get, using same technique

as above

∥∂ j
xu∂

s− j
x v∥2L2 ≤ Cs∥u∥2Hs∥v∥2Hs . (2.30)

we are left with one case; when r = s = j,

∥∂s
xuv∥2L2 =

∫ ∞

−∞
(∂s

xu)2(v)2dx ≤ ∥v∥2L∞∥∂s
xu∥2L2 ≤ Cs∥u∥2Hs∥v∥2Hs .

By taking the square root of the above estimates, and summing up all the derivatives, we get

∥uv∥Hs ≤ Cs∥u∥Hs∥v∥Hs ,

and the lemma is proven. �

15

CHAPTER 3

EXPONENTIAL INTEGRATORS

In this chapter, we take a look a class of numerical integrators for time integration stiff

systems which called Exponential Integrators. A reason to use exponential integrators is to

overcome the problem of the stiffness in applications. Application of exponential integrators

can be seen in different areas. More common usage of exponential integrators is in applied

mathematics and physics. For example, reaction-diffusion equations, Schrödinger equations,

Maxwell equations can be solved by exponential integrators (Kandolf, 2011).

3.1. Derivation of the Method

In this section, we will give the brief survey about what an exponential integrator

look like. Consider the equation of the form,

u′(t) = F(t, u(t)), u(0) = u0. (3.1)

Linearizing the equation (3.1) at time t, gives the semilinear problem

u′(t) + Au(t) = B(t, u(t)) (3.2)

where A = −DF(t, u(t)) is the Jacobian of F and B(t, u(t)) = F(t, u(t))+Au(t) is the reminder.

The linear part of the equation (3.2),

u′(t) + Au(t) = 0, u(0) = u0 (3.3)

can be solved exactly by

u(t) = e−tAu0. (3.4)

16

To obtain the exact solution of (3.2), multiply the equation (3.2) by integrating factor etA.

This gives,

etAu′ + etAAu = etAB(t, u(t)),

(etAu)′ = etAB(t, u(t)). (3.5)

Integrating both sides of the equation (3.5) gives us following integral representation.

∫ t

0

d
dτ

(eτAu(τ))dτ =
∫ t

0
eτAB(τ, u(τ))dτ

etAu(t) − u(0) =
∫ t

0
eτAB(τ, u(τ))dτ

u(t) = e−tAu0 +

∫ t

0
e−tAeτAB(τ, u(τ))dτ (3.6)

The exact solution of the evaluation equation (3.6) is called variation of constants formula.

For time steps tn+1 = tn + h the variation of constants formula becomes

u(tn+1) = e−hAu(tn) +
∫ h

0
e−(h−τ)AB(tn + τ, u(tn + τ)). (3.7)

with step size h > 0. Equation (3.7) represents the recursive exact solution. To obtain

different numerical schemes, different quadrature formulas can be used for approximating

the integral. Let choose B(t) = c1 where c1 is a constant. Then the solution becomes

u(t) = e−tAu0 +

∫ t

0
e−(t−τ)Ac1dτ = e−tAu0 + e−tA 1

A
eτAc1

∣∣∣∣∣t
0
,

= e−tAu0 + e−tA etA − 1
A

c1 = e−tAu0 + t
e−tA − 1
−tA

c1. (3.8)

Then, take the B(t) = c1 + c2t as a first degree polynomial. Now the solution is

u(t) = e−tAu0 +

∫ t

0
e−(t−τ)A(c1 + c2τ)dτ,

= e−tAu0 + t
e−tA − 1
−tA

c1 + t2 e−tA + tA − 1
t2A2 c2. (3.9)

17

As a rule, if the B(t) is a n-th degree polynomial, the solution will be

u(t) = e−tAu0 +

∫ t

0
e−(t−τ)A

(
c1 + c2t + c3

t2

2!
+ ... + cn

tn−1

(n − 1)!

)
dτ

= e−tAu0 + t
e−tA − 1
−tA

c1 + t2 e−tA − 1 + tA
t2A2 c2 + t3 e−tA − 1 + tA − 1

2 tA2

−t3A3 c3

+ ... +

∫ t

0
e−(t−τ)Acn

tn−1

(n − 1)!
dτ. (3.10)

In the next section, we will introduce the φ functions in order to generalize the result found

in (3.10).

3.1.1. Derivation of the φ Functions

The integral representation of the φ function is

φ0(z) = ez, (3.11)

φk(z) =
∫ 1

0
e(1−θ)z θk−1

(k − 1)!
dθ.

The argument z can be a scalar or a matrix. The φi− functions are defined recursively by

φ0(z) = ez, (3.12)

φk+1(z) =
φk(z) − 1

k!

z
, k ≥ 0.

In recursive formula, φ0 is the matrix exponential. The first few φ-functions are

φ0(z) = ez = 1 + z +
1
2

z2 +
1
3!

z3 + . . . (3.13)

φ1(z) =
ez − 1

z
= 1 +

1
2

z +
1
3!

z2 +
1
4!

z3 + . . . (3.14)

φ2(z) =
ez − 1 − z

z2 =
1
2
+

1
3!

z +
1
4!

z2 +
1
5!

z3 + . . . (3.15)

φ3(z) =
ez − 1 − z − 1

2z2

z3 =
1
3!
+

1
4!

z +
1
5!

z2 +
1
6!

z3 + . . . (3.16)

18

We further obtain following results with aid of the (3.13)-(3.16).

u(t) = e−tAu0 + tφ1(−tA)c1 (3.17)

u(t) = e−tAu0 + tφ1(−tA)c1 + t2φ2(−tA)c2 (3.18)

u(t) = e−tAu0 + tφ1(−tA)c1 + t2φ2(−tA)c2 + t3φ3(−tA)c3 + ... + tnφn(−tA)cn (3.19)

As a result, the solution (3.10) can be written in the following form

u(t) = e−tAu0 +

n∑
i=1

tiφi(−tA)ci. (3.20)

3.1.2. Exponential Euler Method

In this section, we will use the representation (3.6) to obtain first order exponential

integrator which is exponential Euler method. We first use the Taylor series expansion of

B(tn+τ, u(tn+τ)) up to the order τ in equation (3.7). Just to be easy we take B(tn, u(tn)) = B(tn).

Taylor polynomial of B(tn + τ) at the point tn is

B(tn + τ) = B(tn) + O(τ). (3.21)

Inserting (3.21) into equation (3.7), and using the φ1− function, the numerical solution will

be

u(tn+1) = e−hAu(tn) + hφ1(−hA)B(tn). (3.22)

The equation (3.60) is called exponential Euler method.

19

3.1.3. Exponential Rosenbrock Euler Method

In this section, we will show the derivation of the exponential Rosenbrock Euler

method. Consider the time discretization of differential equations in autonomous form

u′(t) = F(u(t)), u(t0) = u0. (3.23)

The method is based on a continuous linearization of (3.23). For a given point un, this

linearization is

u′(t) = Jnu(t) + Bn(u(t)) (3.24)

where

Jn = DF(un) =
∂F
∂u

(un), Bn(u(t)) = F(u(t)) − Jn(u(t)). (3.25)

Applying the exponential Euler method to (3.24), we procure

un+1 = ehJnun + hφ1(hJn)Bn(un). (3.26)

When we regulate the equation, we obtain

un+1 = un + hφ1(hJn)F(un).

The numerical scheme (3.26) gives the exponential Rosenbrock-Euler method. Exponential

Rosenbrock-Euler method is explicit time stepping scheme. This method is computationally

attractive since it involves just one matrix function in each step. To implement exponential

Rosenbrock-Euler method it is important to approximate the application of matrix functions

to vectors efficiently.

20

3.2. Convergence Analysis

Convergence analysis of exponential integrators is done by using semi-group theory

in (Hochbruck & Ostermann, 2010) and (Hochbruck & Ostermann & Schweitzer, 2008). In

this section, convergence analysis of exponential Euler method will be worked on problem-

based in Sobolev space. We will use the same technique given in the strudy of (Holden &

Lubich & Risebro). We will work on Allen-Cahn equation and Burgers’ equation to find the

bounds.

General form of the problem that we focus on is in the following form

ut = P(∂x) + B(u), u(t0) = u0 (3.27)

with a polynomial P of degree l ≥ 2 satisfying

R(P(iξ)) ≤ 0 for all ξ ∈ R. (3.28)

To obtain error bounds for this type equation, some hypothesis and lemmas help us. We start

with the following hypothesis which is related to well-posedness of the solutions.

Hypothesis 3.1 (Local well-posedness). For a fixed time T, there exist R ≤ 0 such that for

all u0 in Hm(R) with ∥u0∥Hk ≤ R , there exist a unique strong solution u in C([0,T],Hk) of

(3.27). In addition, for the initial data u0 there exists a constant K(R,T) < ∞, such that

∥ũ(t) − u(t)∥Hk ≤ K(R, T)∥ũ0 − u0∥Hk (3.29)

for two arbitrary solutions u and ũ, corresponding to two different initial data u0 and ũ0.

Next hypothesis is concerned about the boundedness of the solutions.

Hypothesis 3.2 (Boundedness). The solution u(t) and the initial data u0 of (3.27) are both

in Hk(R), and are bounded as

∥u(t)∥Hk ≤ R < ρ and ∥u0∥Hk ≤ C < ∞

for 0 ≤ t ≤ T.

21

Last hypothesis is associated with the differentiability of the solutions.

Hypothesis 3.3 (Differentiable). Assume that sufficiently smooth solution u(t) with deriva-

tives in Hk(R) and B(u) is sufficiently often Fréchet-differentiable. All occuring derivatives

are assumed to be bounded.

In order to show the linear part of the problem is bounded, we need to following lemma.

Lemma 3.1 Let P be a linear polynomial of degree l ≥ 2 with constant coefficients, which

satisfies

R(P(iξ)) ≥ 0 f or all ξ ∈ R. (3.30)

In addition, let m be a integer such that m ≥ l, and assume v0 is in Hk+l(R) and the solution

v(t) = Φt
A(v0) = eAtv0 of linear part is in HkR and satisfies

∫
R

(∂ j+l/2
x v)2dx < ∞

for all j ≤ m and l even. Then Φt
A(v0) has a non-increasing norm in Hk(R), in particular

∥Φt
P(v0)∥Hk ≤ ∥v0∥Hk+l . (3.31)

Proof P is given as P(x) =
l∑

α=2

aαxα, where α is in R for all α. Let consider the following

equation for the linear part,

vt = P(∂x)v. (3.32)

Substituting polynomial into equation (3.32), (3.32) becomes

vt = al∂
l
xv + al−1∂

l−1
x v + ... + a2∂

2
xv.

The time evolution of Φt
A(v0) is given as

1
2
∥Φt

A(v0)∥2Hm = (v, vt)Hm =

m∑
j=0

∫
R

∂ j
xv(al∂

j+l
x + ... + a2∂

j+2
x)vdx. (3.33)

22

It is sufficient to estimate one general term in the above sum, say

m∑
j=0

∫
R

∂ j
xval∂

j+l
x v = al

m∑
j=0

∫
R

∂ j
xv∂

j+l
x v.

By partial integration the above equation turns into

al

m∑
j=0

∫
R

∂ j
xv∂

j+l
x vdx = al

m∑
j=0

(
[∂ j

xv∂
j+l−1
x v]∞−∞ −

∫
R

∂ j+1
x v∂ j+l−1

x vdx
)

= −al

m∑
j=0

∫
R

∂ j+1
x v∂ j+l−1

x vdx
)
,

where we have used that the derivatives on v of order up to m decay to zero when x →
±∞. Performing partial integration together with the decay property for the derivatives of v

subsequently, we get if l even

al

m∑
j=0

∫
R

∂ j
xv∂

j+l
x vdx = al

m∑
j=0

(−1)l−1
∫
R

∂x(∂ j+l/2
x v)2dx = −al

m∑
j=0

∫
R

(∂ j+l/2
x v)2dx

By the property given in (3.30), the coefficient al is such that the right-hand-side of the above

equation is negative, that is al > 0. We write this for simplicity as

al

m∑
j=0

∫
R

∂ j
xv∂

j+l
x vdx = −al

m∑
j=0

∫
R

(∂ j+l/2
x v)2dx = −al∥∂l/2

x v∥Hm . (3.34)

If l is odd, we obtain by partial integration

al

m∑
j=0

∫
R

∂ j
xv∂

j+l
x vdx = al

m∑
j=0

(−1)l
∫
R

∂x(∂ j+(l−1)/2
x v)2dx

= −al

m∑
j=0

[(∂ j+(l−1)/2
x v)2]∞−∞ = 0. (3.35)

By using the estimates in (3.34) and (3.35), we get for (3.33),

1
2
∥Φt

A(v0)∥2Hm = −C∥∂l/2
x v∥Hm ≤ 0,

23

where C is a constant. Solving the differential equation gives

∥Φt
A(v0)∥Hm ≤ ∥v0∥Hm+l . (3.36)

(Nilsen, 2011) �

3.2.1. Convergence Analysis of Allen-Cahn Equation

Our focus in this section is Allen-Cahn equation which is

ut − u + u3 = γuxx , u(t0) = u0 (3.37)

If we separate the equation (3.37) as in the general form (3.27), this gives us

P(∂x)u = uxx (3.38)

and

B(u) = u − u3 (3.39)

where (3.38) is linear operator and (3.39) is the non-linear operator. Applying the exponential

Euler method, we obtain the approximate solution as in the following form.

un+1 = ehAun + hφ1(hA)B(un) (3.40)

where φ1 is given in equation (3.14). To obtain error bounds, hypothesis (3.1), hypothesis

(3.2), hypothesis (3.3) and lemma (3.1) are used.

3.2.2. Local Error

In this section, we estimate the local error for exponential Euler method under the

certain assumptions which are presented in previous section. We summarize the result with

24

the following lemma.

Lemma 3.2 Let s ≥ 1 be an integer and assume Hypothesis (3.2) and Hypothesis (3.3) hold

for k = s + l for the solution u(t) = Φt(u0) of (3.37). If the initial data u0 is in H s+l(R), then

the local error of the exponential Euler method is bounded in H s by

∥Ψh(u0) − Φh(u0)∥Hs ≤ c1h2, (3.41)

where c1 depends on ∥u0∥Hs+l and where h is small time step.

Proof Let Φt
A(v) = etAv where A is the linear flow. We start from the variation-of-constant

formula for Φh(u0)

u(t) = etAu0 +

∫ t

0
e(t−s)AB(u(s)) ds. (3.42)

Taylor expansion of B(u(s)) is

B(u(s)) = B(u(0)) +
∫ s

0
dB(u(σ))[B(u(σ))] dσ. (3.43)

Take t = h and insert (3.43) into (3.42),

u(h) = ehAu0 +

∫ h

0
e(h−s)AB(u0) ds + δ, (3.44)

where

δ =

∫ h

0

∫ s

0
e(h−s)AdB(u(σ))[B(u(σ))] dσds. (3.45)

One step exponential-Euler (3.60) is as follows

u1 = ehAu0 + hφ1(hA)B(u0). (3.46)

25

The error between the exact and the exponential-Euler solution is,

u1 − u(h) = hφ1(hA)B(u0) − (− I − ehA

A
B(u0)) + δ,

= δ. (3.47)

We continue with the error bound for δ in (3.47). We use the Banach algebra propety of

H s(R) at each step to obtain the estimation.

∥δ∥Hs ≤
∫ h

0

∫ s

0
∥e(h−s)AdB(u(σ))[B(u(σ))]∥Hsdσds

≤
∫ h

0

∫ s

0
∥dB(u(σ))[B(u(σ))]∥Hsdσds

≤
∫ h

0

∫ s

0
∥((u(σ))(B(u(σ))))x∥Hsdσds

≤
∫ h

0

∫ s

0
∥(u(σ))(B(u(σ)))∥Hs+1dσds

≤ C
∫ h

0

∫ s

0
∥(u(σ)∥Hs+1∥B(u(σ))∥Hs+1dσds.

Using the definition of B

∥δ∥Hs ≤ C
∫ h

0

∫ s

0
∥(u(σ)∥Hs+1∥(u(σ)(1 − u2(σ))∥Hs+1dσds

≤ C
∫ h

0

∫ s

0
∥(u(σ)∥Hs+1(∥(u(σ)∥Hs+1 + ∥u3(σ)∥Hs+1dσds

≤ C
∫ h

0

∫ s

0
∥(u(σ)∥Hs+1(∥u3(σ)∥Hs+1dσds.

Using the Hypothesis 2 for H s+l(R), which gives that

∥u(σ)∥Hs+1 ≤ ∥u(σ)∥Hs+l ≤ R,

when l ≥ 2 which results in

∥δ∥ ≤ C
∫ h

0

∫ s

0
R4dσds = CR4

∫ h

0
sds = CR3h2 = c1h2. (3.48)

26

This completes the proof. �

3.2.3. Global Error

To estimate the global error in H s(R) and obtain the convergence rate for exponential

Euler method, we use the local error estimate in Lemma (3.2). We need to show that expo-

nential Euler solution is bounded at each time step, so that local error estimate is valid. The

global error estimation is given with the following theorem.

Theorem 3.1 Assume there exists a solution of (3.37) and let s ≥ 1 be an integer. If Hypoth-

esis (3.1) and Hypothesis (3.3) hold for k = s and Hypothesis (3.2) holds for k = s + l for

l ≥ 2, then there exists h > 0 such that for all h ≤ h and tn = nh ≤ T,

∥un − u(tn)∥Hs ≤ Ch,

where un is the exponential Euler solution.

Proof We denote the notational convention as in (Holden & Lubich & Risebro)

un
k = Φ

n−kh(uk)

which is the exact solution of 3.37. With this notation, we note

un = un
n and u(tn) = u0

n.

We make the induction by assuming that

∥uk∥Hs ≤ R,

∥uk − u(tk)∥Hs ≤ γh.

27

The global error can be obtained by using Telescope sum and the triangle inequality as

follows

∥un − u(tn)∥Hs = ∥un
n − u0

n∥Hs = ∥un
n − un−1

n + un−1
n − un−2

n + un−2
n − ... − u0

n∥Hs ,

=
∥∥∥ k+1∑

k=0

uk+1
n − un

k

∥∥∥
Hs ≤

k+1∑
k=0

∥uk+1
n − un

k∥Hs . (3.49)

By using notational convention (3.49) becomes

∥un − u(tn)∥Hs ≤
n−1∑
k=0

∥Φ(n−k−1)h(uk+1) − Φ(n−k)h(uk)∥Hs ,

=

n−1∑
k=0

∥Φ(n−k−1)h(Πhuk
) − Φ(n−k−1)h(Φh(uk)

)∥Hs . (3.50)

For k ≤ n − 2 we get

∥∥∥Πhuk

∥∥∥
Hs = ∥uk+1∥Hs ≤ R, (3.51)

and

∥∥∥Φh(uk)
∥∥∥

Hs =
∥∥∥Φh(uk) − Φh(u(tk)) + Φh(u(t)k)

∥∥∥
Hs ,

≤
∥∥∥Φh(uk) − Φh(u(tk))

∥∥∥
Hs +

∥∥∥Φh(u(t)k)
∥∥∥

Hs . (3.52)

By using the Lipschitz continuity, (3.52) turns to

∥∥∥Φh(uk)
∥∥∥

Hs ≤ K(R, h)∥uk − u(tk)∥Hs + ∥u(tk+1)∥Hs ≤ K(R, h)γh + ρ, (3.53)

from the assumption of the induction. Let choose K(R, h)γh = R − ρ,

∥∥∥Φh(uk)
∥∥∥

Hs ≤ R. (3.54)

28

Now, by using Hypothesis (3.1) and Lemma (3.2), we get, for k ≤ n − 1 and nh ≤ T ,

∥∥∥Φ(n−k−1)h(Πhuk
) − Φ(n−k−1)h(Φh(uk)

)∥∥∥
Hs ≤ K(R,T)

∥∥∥Πh(uk) − Φh(uk)
∥∥∥

Hs ,

≤ K(R,T)c1h2. (3.55)

Substituting this result into (3.50), we obtain

∥un − u(tn)∥Hs ≤ nK(R, T)c1h2 ≤ γh (3.56)

where c1 depends on ∥u0∥Hs+l∥. This completes the proof. �

3.2.4. Convergence Analysis of Burgers’ Equation

In this section we study Burgers’ equation as follows:

ut + uux = κ , u(t0) = u0. (3.57)

If we separate the equation (3.57) as in the general form (3.27), this gives us

Au = P(∂x)u = uxx (3.58)

B(u) = −uux (3.59)

where (4.11) is linear operator and (3.59) is the non-linear operator. Approximated solution

is given by the exponentail Euler method as:

un+1 = ehAun + hφ1(hA)B(un) (3.60)

where φ1 is given in the equation (3.14). To prove the convergence results for Burgers’

equation by using exponential Euler method, we use the same framework as in Allen-Cahn

29

equation’s error estimation. The major difference between two equation is the nonlinear parts

of the problems.

3.2.5. Local Error

In this section, to obtain local error estimation for exponential Euler method, we use

the hypotheses that are defined in the previous section. The following lemma gives the local

error result.

Lemma 3.3 Let s ≥ 1 be an integer and assume Hypothesis (3.2) and Hypothesis (3.3) hold

for k = s + l for the solution u(t) = Φt(u0) of (3.57). If the initial data u0 is in H s+l(R), then

the local error of the exponential-Euler method is bounded in H s by

∥Ψh(u0) − Φh(u0)∥Hs ≤ c1h2, (3.61)

where c1 depends on ∥u0∥Hs+l and where h is small time step.

Proof Let Φt
A(v) = etAv where A is the linear flow. We start from the variation-of-constant

formula for Φh(u0)

u(t) = etAu0 +

∫ t

0
e(t−s)AB(u(s)) ds. (3.62)

Taylor expansion of B(u(s)) is

B(u(s)) = B(u(0)) +
∫ s

0
dB(u(σ))[B(u(σ))] dσ. (3.63)

Take t = h and insert (3.63) into (3.62),

u(h) = ehAu0 +

∫ h

0
e(h−s)AB(u0) ds + δ, (3.64)

where

δ =

∫ h

0

∫ s

0
e(h−s)AdB(u(σ))[B(u(σ))] dσds. (3.65)

30

One step exponential-Euler (3.60) is as follows

u1 = ehAu0 + hφ1(hA)B(u0). (3.66)

The error between the exact and the exponential-Euler solution is,

u1 − u(h) = hφ1(hA)B(u0) − (− I − ehA

A
B(u0)) + δ, (3.67)

= δ.

We continue with the error bound for δ. This estimation gives us

∥δ∥Hs ≤
∫ h

0

∫ s

0
∥e(h−s)AdB(u(σ))[B(u(σ))]∥Hsdσds

≤
∫ h

0

∫ s

0
∥dB(u(σ))[B(u(σ))]∥Hsdσds

≤
∫ h

0

∫ s

0
∥((u(σ))(B(u(σ))))x∥Hsdσds

≤
∫ h

0

∫ s

0
∥(u(σ))(B(u(σ)))∥Hs+1dσds

≤ C
∫ h

0

∫ s

0
∥(u(σ)∥Hs+1∥B(u(σ))∥Hs+1dσds.

Using the definition of B

∥δ∥Hs ≤ C
∫ h

0

∫ s

0
∥(u(σ)∥Hs+1∥(u(σ)ux(σ)∥Hs+1dσds

≤ C
∫ h

0

∫ s

0
∥(u(σ)∥Hs+1∥(u(σ)∥Hs+1∥ux(σ)∥Hs+1dσds

≤ C
∫ h

0

∫ s

0
∥(u(σ)∥Hs+1∥(u(σ)∥Hs+1∥u(σ)∥Hs+2dσds.

Using the Hypothesis 2 for H s+l(R), which gives that

∥u(σ)∥Hs+1 ≤ ∥u(σ)∥Hs+2 ≤ ∥u(σ)∥Hs+l ≤ R,

31

when l ≥ 2 which results in

∥δ∥ ≤ C
∫ h

0

∫ s

0
R3dσds = CR3

∫ h

0
sds = CR3h2 = c1h2 (3.68)

This completes the proof. �

3.2.6. Global Error

To obtain the global error estimation and the first order convergence rate, we need

to show that the exponential Euler solution at each step is bounded. Thus we need to use

Lemma (3.3) which gives the local error estimation. The proof is done with the same way as

we did in the proof of Theorem (3.1).

Theorem 3.2 Assume there exists a solution of (3.57) and let s ≥ 1 be an integer. If Hypoth-

esis (3.1) and Hypothesis (3.3) hold for k = s and Hypothesis (3.2) holds for k = s + l for

l ≥ 2, then there exists h > 0 such that for all h ≤ h and tn = nh ≤ T,

∥un − u(tn)∥Hs ≤ Ch,

where un is the exponential Euler solution.

Proof The notational convention can be written as in (Holden & Lubich & Risebro)

un
k = Φ

n−kh(uk)

which is the exact solution of 3.57. With this notation, we note

un = un
n and u(tn) = u0

n.

The induction is started by assuming that

∥uk∥Hs ≤ R

∥uk − u(tk)∥Hs ≤ γh.

32

Convergence result can be obtained by using Telescope sum and the triangle inequality as

follows

∥un − u(tn)∥Hs = ∥un
n − u0

n∥Hs = ∥un
n − un−1

n + un−1
n − un−2

n + un−2
n − ... − u0

n∥Hs

=
∥∥∥ k+1∑

k=0

uk+1
n − un

k

∥∥∥
Hs ≤

k+1∑
k=0

∥uk+1
n − un

k∥Hs . (3.69)

Using notational convention 3.69 becomes

∥un − u(tn)∥Hs ≤
n−1∑
k=0

∥Φ(n−k−1)h(uk+1) − Φ(n−k)h(uk)∥Hs

=

n−1∑
k=0

∥Φ(n−k−1)h(Πhuk
) − Φ(n−k−1)h(Φh(uk)

)∥Hs . (3.70)

We obtain for k ≤ n − 2

∥∥∥Πhuk

∥∥∥
Hs = ∥uk+1∥Hs ≤ R, (3.71)

and

∥∥∥Φh(uk)
∥∥∥

Hs =
∥∥∥Φh(uk) − Φh(u(tk)) + Φh(u(t)k)

∥∥∥
Hs

≤
∥∥∥Φh(uk) − Φh(u(tk))

∥∥∥
Hs +

∥∥∥Φh(u(t)k)
∥∥∥

Hs . (3.72)

Using the Lipschitz continuity, (3.72) turns into

∥∥∥Φh(uk)
∥∥∥

Hs ≤ K(R, h)∥uk − u(tk)∥Hs + ∥u(tk+1)∥Hs ≤ K(R, h)γh + ρ, (3.73)

from the assumption of the induction argument. We choose ≤ K(R, h)γh = R − ρ,

∥∥∥Φh(uk)
∥∥∥

Hs ≤ R. (3.74)

33

Therefore, by using Hypothesis (3.1) and Lemma (3.3), we get, for k ≤ n − 1 and nh ≤ T ,

∥∥∥Φ(n−k−1)h(Πhuk
) − Φ(n−k−1)h(Φh(uk)

)∥∥∥
Hs ≤ K(R, T)

∥∥∥Πh(uk) − Φh(uk)
∥∥∥

Hs

≤ K(R, T)c1h2. (3.75)

Substituting result (3.75) into (3.70), we obtain

∥un − u(tn)∥Hs ≤ nK(R,T)c1h2 ≤ γh. (3.76)

This completes the proof. �

34

CHAPTER 4

ITERATIVE LINEARIZATION TECHNIQUE

In this chapter a new numerical technique is proposed for the numerical solution

of non-linear differential equations. This technique is based on the Fréchet derivative and

Newton-Raphson method. In thsi technique, firstly we linearize the equation by using the

Frèchet derivative to overcome the nonlinearity. Then in space discretization, localized dif-

ferential quadrature method is used. In the time direction we apply the Crank-Nicolson

rule. In this process, we convert to nonlinear differential equation to set of linear equations

which are solved by a Newton-Raphson iterative method (Liu & Wu, 2000) and (Fazel &

Moghadam & Poshtan, 2013).

4.1. Linearization Processes

To linearize the non-linear differential equation, we use the Fréchet derivative. A

brief description about the Fréchet derivative was given in the Chapter 2. To start the process,

consider the general form of the non-linear differential equation

L(u) = 0 (4.1)

where L is the differential operator. First, Newton-Raphson iteration is applied to solve the

equation (4.1) as follows

u(n+1) = u(n) + θ(n) (4.2)

where u(n) is the approximated function of u, θ(n) is the refinement function and n is the iter-

ation number. The refinement variable θ(n) is obtained by solving the following differential

equation

θL′(θ) + L(u) = 0. (4.3)

35

The term θL′(θ) in equation (4.3) is the Fréchet derivative which is defined as

θL′(θ) =
∂

∂ε
L(u + εθ)

∣∣∣∣∣
ε=0
. (4.4)

Note that the refinement function θ goes to zero, thus the equation (4.3) reduced to the equa-

tion (4.1).

Now with this process we obtain the linear differential equation. To convert to linear differ-

ential equation into a system of algebraic equation, LDQ method is used. The idea of the

LDQ method will explain in the following section.

4.2. Localized Differential Equation

The initial step of the LDQM is to determine neighboring grids of the point of in-

terest and order of the approximation of the first derivative. For example if the function is

discretized at the beginning boundary of the physical domain with respect to space variable

x (at x = 0) or nearby it and a sixth-order first derivative approximation is used that means

7 neighboring grid points should be forward type in the direction of the space variable, and

if the function is discretized at the end boundary of the physical domain with respect to

space variable x (at x = L) or nearby it, the selection of the neighboring grid points should

be backward type. At the interior reference points central type scheme is used. Then, the

discretization of the first-order derivative of a function u(x) with respect to space variable,

x, at any discrete point xi can be approximated using a weighted linear combination of the

function values at some of the neighboring reference points within the computational domain

as

∂u(xi, t)
∂x

=
∑
j∈S i

a(1)
i j u(x j, t), i = 1, 2, ...,N, (4.5)

where S i represents the corresponding set of the neighboring nodes for the discrete grid point

xi in the domain or at the boundaries, N is the total amount of grid points in the direction of

x. Weighting coefficients of the first-order derivative can be evaluated as follows

a(1)
i j =

∏
k∈S i,k,i(xi − xk)

(xi − x j)
∏

k∈S i,k, j(x j − xk)
, i = 1, 2, ...,N, j ∈ S i, i , j, (4.6)

a(1)
ii = −

∑
j∈S i, j,i

a(1)
i j , i = 1, 2, ...,N (4.7)

36

Similarly,the higher order derivative can be expressed as:

∂ru(xi, t)
∂xr =

∑
j∈S i

a(r)
i j u(x j, t), i = 1, 2, ...,N, r ≥ 2 (4.8)

where

a(r)
i j = r.

(
ai ja

(r−1)
ii −

a(r−1)
i j

(xi − x j)

)
, i = 1, 2, ...,N, j ∈ S i, i , j, r ≥ 2, (4.9)

a(r)
ii = −

∑
j∈S i, j,i

a(r)
i j , i = 1, 2, ...,N, r ≥ 2. (4.10)

Convenient choice for the sampling points is that of the equally spaced sampling points.

(Zong & Zhang), (Zong & Lam) and (Yilmaz & Girgin & Evran)

After linearizing and applying the LDQ method in space, we have a set of linear equations

as follows

θt = Aθ (4.11)

To solve equation (4.11), we apply the Crank-Nicolson rule. The algorithm of this processes

is in the following form:

• Step 1: Fixed the initial condition as u0
1, u

0
2, ..., u

0
m.

• Step 2: Predict the initial guess of u1
1, u

1
2, ..., u

1
m.

• Step 3: Set the initial condition of θ as 0, 0, ..., 0.

• Step 4: Calculate the approximated derivatives using LDQ method.

• Step 5: Calculate the refinement function’s values θ1, θ2, ..., θm.

• Step 6: Update the values ui
1, u

i
2, ..., u

i
m from the linear equation.

• Step 7: Continue solving the equation (4.11) by using Crank-Nicolson rule until the

solutions approach to desired tolerance. Here we are also updated the approximated

solution for u, i.e, u(0), u(1)....u(n).

In order to elaborate the iterative procedure, we give a block diagram which is in Figure 4.1.

37

Figure 4.1. Diagram for the iterative solution procedure.

4.3. Linearization of the Allen-Cahn Equation

As an example of nonlinear differential equation, we consider Allen-Cahn equation.

This equation is given by

ut = γuxx + u − u3, x ∈ [−1, 1]. (4.12)

38

Differential operator L is defined according to equation (4.12) as

L(u) = ut − γuxx − u + u3. (4.13)

To obtain the Frèchet derivative of the operator (4.13),

L(u + εθ) = (u + εθ)t − γ(u + εθ)xx − (u + εθ) + (u + εθ)3. (4.14)

Then, definiton of the derivative is applied to equation (4.14)

∂L
∂ε

∣∣∣∣∣
ε=0
= θt − γθxx − θ + 3u2θ. (4.15)

By substituting equation (4.15) into (4.3), we get

ut − γuxx − u + u3 + θt − γθxx − θ + 3u2θ = 0. (4.16)

The equation (4.16) is linear with respect to θ. After this linearization, LDQ method is

applied to space variable x and calculation of the u values starts.

4.4. Linearization of the Burgers’ Equation

The second example is Burgers’ equation which is given by

ut + uux = κuxx. (4.17)

Differential operator of the Burgers’ equation can be defined as

L(u) = ut + uux − κuxx. (4.18)

39

Fréchet derivative of equation (4.18) is expressed in the following form

L(u + εθ) = (u + εθ)t + (u + εθ)(u + εθ)x − κ(u + εθ)xx,

= ut + εθt + uux + uεθx + εθux + ε
2θθx − κuxx − κεθxx. (4.19)

Applying the definition of Fréchet derivative, we obtain

∂L
∂ε

∣∣∣∣∣
ε=0
= θt + uθx + θux − κθxx, (4.20)

= θL′(θ).

Now, combining the equation (4.20) with equation (4.3), we get

θL′(θ) + L(u) = θt + uθx + θux − κθxx + ut + uux − κuxx = 0. (4.21)

Here the last equation (4.21) is linear with respect to θ and can be written as

θt = κθxx − uθx − θux + α

where

α = ut + uux − κuxx. (4.22)

Derivative of u and θ with respect to x is obtained from the LDQ method. Then we evaluate

the values of θ by using the Crank-Nicolson rule and update the u values.

40

CHAPTER 5

NUMERICAL EXPERIMENTATION

In this chapter, we numerically examine the exponential Euler method and new lin-

earization technique which are given in the previous chapters. We study two equations in

details; that is, we use the Allen-Cahn equation and viscous Burgers’ equation. Since we

have two different numerical scheme, we separate this section into two part. In the first part,

we give the numerical results for the exponential Euler method to support the theoretical

results. In the second part, we present the numerical results for the new linearization tech-

nique.

We consider the two test problem with the following initial and boundary conditions. First

equation is the Allen-Cahn equation.

Allen-Cahn Equation: Allen-Cahn equation is a well-known reaction diffusion equa-

tion of mathematical physics. The equation is given by

ut = γuxx + u(1 − u2), x ∈ [−1, 1], t ∈ [0, T] (5.1)

where γ = 0.001 with initial and boundary conditions

u(0, x) = 0.53x + 0.47sin(−1.5πx) (5.2)

u(t,−1) = −1 (5.3)

u(t, 1) = 1. (5.4)

This equation has a stable equilibria at u = 1 and u = −1 also has an unstable equilibrium

at u = 0. One of the interesting features of this equation is the phenomenon of metastability.

Regions of the solution that are near ± 1 will be flat, and the interface between such areas

can remain unchanged over a very long timescale before changing suddenly (Trefethen &

Kassam).

Burgers’ Equation: Burgers’ equation is a partial differential equation that is used

in fluid mechanics. It take place in various areas of applied mathematics, such as modeling

41

of gas dynamics and traffic flow. For the Burgers’ equation, we consider two different initial

and boundary conditions. The first equation with periodic boundary conditions is given by

ut = κuxx − uux, x ∈ [−π, π], t ∈ [0, 1] (5.5)

where κ = 0.03. Initial and boundary conditions are

u(x, 0) = e−10 sin2(x/2), (5.6)

u(−π, t) = 0, (5.7)

u(π, t) = 0. (5.8)

The second equation with initial and boundary conditions is given by

ut = κuxx − uux, x ∈ [0, 1], t ∈ [0, 3], (5.9)

u(x, 0) = 4x(1 − x), (5.10)

u(0, t) = u(1, t) = 0, (5.11)

where κ = 0.1, 0.01.

For the Allen-Cahn equation and Burgers’ equation, the term uxx is caused the stiffness .

5.1. Numerical Results for Exponential Euler Method

In this section, we investigate the exponential Euler method numerically. Since we

have obtained theoretical results for this method, we now turn our attention to illustrate these

results by dealing with numerical experiments. In the numerical experimentation for the

Allen-Cahn equation and Burgers’ equation, we consider the accuracy of the errors and the

convergence rates.

5.1.1. Numerical Results for Allen-Cahn Equation

To obtain the results, we consider the Allen-Cahn equation with the initial and bound-

ary conditions which are given by equations (5.1)-(5.4).

42

To solve this equation numerically firstly, we need to apply a space discretization technique.

For the space discretization, we use the central finite difference method. The central differ-

ence approximation of uxx is

uxx

∣∣∣∣∣
(t,xi)
≈

u(t, xi+1) − 2u(t, xi) + u(t, xi−1)
h2

x
(5.12)

where hx is the spatial stepping in space that is divided the interval into N equal part and

i = 1, ...,N + 1. Now, the equation (5.1) turns to

ut = γAu + u(1 − u2) (5.13)

where A central difference coefficients matrix.

For time discretization, exponential Euler method is used. Thus, an approximation is given

as

un+1 = ehtγA + htφ1htγA(u − u3). (5.14)

We obtain the convergence rate for ht. Allen-Cahn equation is solved by using Nt = 50, 100,

200, 400, 800. We take Nx = 50 which gives hx = 0.04 for the calculations. Since the

exact solution does not exist, the solution that is obtained by using higher order exponential

method is used as an exact solution. The errors are computed using L1−, L2− and L∞−
norms. Standard linear regression on logarithmic scales is used to obtain convergence rates.

The convergence rates for ht for the exponential Euler method are given in Table 5.1. Error

plot is provided in Figure 5.1. We observe that the method is converge with the expected

rate.

43

hx ht L∞ order

0.04 0.2 0.01251
0.6494

0.1 0.007984
0.8243

0.05 0.00450
0.9120

0.025 0.00239
0.9560

0.0125 0.00123

Table 5.1. Error table of Allen-Cahn equation via exponential Euler method.

1.6 1.8 2 2.2 2.4 2.6 2.8 3
−3

−2.8

−2.6

−2.4

−2.2

−2

−1.8

−1.6

−1.4

−1.2

LOG(N.EVAL)

LO
G

(E
R

R
O

R
)

Accuracy of u for exponential Euler scheme

1

1

1

L1 norm

L2 norm

L∞ norm

Figure 5.1. Order of exponential Euler method for Allen-Cahn equation.

44

Figure 5.2. Exponential Euler solution of Allen-Cahn equation when hx = 0.04, ht =

0.01, T=10

5.1.2. Numerical Results for Burgers’ Equation

We consider the Burgers’ equations (5.5) and (5.9) to derive the numerical results.

To solve these two equations, exponential Euler method is used. For spatial discretization of

the first and the second derivative in space, central finite difference scheme is used. Central

finite difference scheme for the first derivative is

ux

∣∣∣∣∣
(t,xi)
≈

u(t, xi+1) − u(t, xi−1)
2h

.

The second derivative approximation is

uxx

∣∣∣∣∣
(t,xi)
≈

u(t, xi+1) − 2u(t, xi) + u(t, xi−1)
(h)2 .

The equation (5.5) turns into

ut = κAu + u(Bu) (5.15)

45

where A and B are the central difference coefficients matrix which comes from the second

derivative and the first derivative.

Implementation of exponential Euler method for the Burgers’ equation is given as follows:

un+1 = ehtκA + htφ1htκA(u(Bu)). (5.16)

Since we have two different initial conditions for the Burgers’ equation, we consider the

equations (5.5)-(5.8) as a first example. For the first example, to obtain the convergence

rate for ht we solve Burgers’ equation using Nt = 50, 100, 200, 400, 800. We take Nx =

64 which gives hx = 2π/64 for the calculations. Since the exact solution does not exist,

the solution that is obtained by using higher order exponential method is used as an exact

solution. The errors are computed using L1−, L2− and L∞− norms. Standard linear regression

on logarithmic scales is used to obtain convergence rates. The convergence rates and errors

for ht for the exponential Euler method are given in Table 5.2. Error plot is presented in

Figure 5.3. We observe that the method is converge with the expected rate. A plot of the

solution for exponential Euler method is givenin Figure 5.4. We note that solution conserve

the shape of initial condition.

hx ht L∞ order
2π
64 0.02 0.09749

1.0081
0.01 0.04847

1.0017
0.005 0.02420

1.0003
0.0025 0.01210

1.0000
0.00125 0.00605

Table 5.2. Error table of Burgers’ equation via exponential Euler method.

46

1.6 1.8 2 2.2 2.4 2.6 2.8 3
−2.5

−2

−1.5

−1

−0.5

LOG(N.EVAL)

LO
G

(E
R

R
O

R
)

Accuracy of u for exponential Euler scheme

1

1

1

L1 norm

L2 norm

L∞ norm

Figure 5.3. Order of exponential Euler method for Burgers’ equation

Figure 5.4. Numerical solution of Burgers’ equation via exponential Euler method .

47

We now consider the equations which are given by the equations (5.9)-(5.11) as a

second example of Burgers’ equation when κ = 0.1. We solve the equation at different ht

values. We obtain this values using Nt = 300, 6000, 1200, 2400, 4800 grid nodes. We take

Nx = 40 which gives hx = 1/40 for the calculations. We take the same norms with the

previous examples to obtain the convergence rates. Exponential Euler solution and the exact

solution of the equation at different time and space nodes is given in Table 5.3. From the

table we observe that numerical solution is close to exact solution. A standard error plot

is presented in Figure 5.5. This figure shows that expected order is achieved. Numerical

solutions at different times is given in Figure 5.6. A plot of the solution for exponential

Euler method is given in Figure 5.7. We observe that solutions conserve the shape of initial

condition.

x κ = 0.1
t Exp Euler Exact Solution

0.25 0.4 0.31748 0.31752
0.8 0.19956 0.19956
1.0 0.16563 0.16560
3.0 0.02781 0.02775

0.50 0.4 0.58471 0.58454
0.8 0.36763 0.36740
1.0 0.29860 0.29834
3.0 0.04116 0.04106

0.75 0.4 0.64672 0.64562
0.8 0.38628 0.38534
1.0 0.29660 0.29586
3.0 0.03051 0.03044

Table 5.3. Exponential Euler solution and exact solution of example 2 when hx =

0.05, ht = 0.00625 and κ = 0.1.

48

2.5 3 3.5 4
−5.5

−5

−4.5

−4

−3.5

−3

−2.5

LOG(N.EVAL)

LO
G

(E
R

R
O

R
)

Accuracy of u for exponential Euler scheme

1

1

1

L1 norm

L2 norm

L∞ norm

Figure 5.5. Order of Exponential Euler solution of example 2 when κ = 0.1.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

t=0.4
t=0.8
t=1.0
t=3.0

Figure 5.6. Exponential Euler solution of example 2 at different times when hx =

0.05, ht = 0.00625 and κ = 0.1.

49

Figure 5.7. Exponential Euler solutions of example 2 when hx = 0.05, ht = 0.01 and
κ = 0.1.

Now we consider the same equation for κ = 0.01. Exponential Euler solution and

exact solution for this example are given in Table 5.4. This table shows that numerical

solution converges to exact solution. The convergence rates for the exponential Euler method

are given in Figure 5.8. From this figure we observe that expected order is achieved. The

solutions of Burgers’ equation at different times are provided in Figure 5.9. This figure

reveals that numerical solutions conserve the shape of initial condition.

50

x κ = 0.01
t Exp Euler Exact Solution

0.25 0.4 0.36209 0.36226
0.8 0.23033 0.23045
1.0 0.19459 0.19469
3.0 0.07610 0.07613

0.50 0.4 0.68362 0.68368
0.8 0.45352 0.45371
1.0 0.38550 0.38568
3.0 0.15212 0.15218

0.75 0.4 0.92134 0.92050
0.8 0.66264 0.66272
1.0 0.56915 0.56932
3.0 0.22776 0.22774

Table 5.4. Exponential Euler solution and exact solution of example 2 when hx =

0.025, ht = 0.00625 and κ = 0.01.

2.5 3 3.5 4
−4

−3.5

−3

−2.5

−2

−1.5

−1

LOG(N.EVAL)

LO
G

(E
R

R
O

R
)

Accuracy of u for exponential Euler scheme

1

1

1

L1 norm

L2 norm

L∞ norm

Figure 5.8. Order of Exponential Euler solution of example 2 when κ = 0.01.

51

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x−axis

C
om

pu
te

d
S

ol
ut

io
ns

Computed solutions of Allen equation for different values of time

t=0.4
t=0.8
t=1.0
t=3.0

Figure 5.9. Exponential Euler solutions of example 2 when hx = 0.025, ht = 0.00625
and κ = 0.01.

5.2. Numerical Results for New Linearization Technique

In this section, we present the numerical results for new linearization technique. Lin-

earization of the Allen-Cahn equation and Burgers’ equation were given in Chapter 4 with

the equations (4.16) and (4.21). We now focus on the application of this process in numerical

sense.

5.2.1. Numerical Results for Allen-Cahn Equation

In this process, as a space discretization technique we use the LDQ method which

given in Chapter 4. After linearizing and applying the LDQ method, we obtain the Allen-

Cahn equation (5.1) in the following form.

ut − γAu − u + u3 + θt − γAθ − θ + 3u2θ = 0 (5.17)

52

where A is the coefficient matrix that comes from LDQ method. In equation (5.17), to solve

the system, Crank-Nicolson scheme is used. Then, the system returns to

un+1 − un

∆t
+
θn+1 − θn

∆t
= γA

un+1 + un

2
+

un+1 + un

2
−

(un+1 + un

2

)3

+ γA
θn+1θn

2
,

+
θn+1 + θn

2
− 3

(un+1 + un

2

)2 θn+1 + θn

2
. (5.18)

To solve the system (5.18), un+1, un and θn have to be known. For the first step, u0 which is the

initial condition is known, u1 is guessed and θ0 = 0. Since we do not have the exact solution

of Allen-Cahn equation, we show the efficiency of the methods with the stability. To show

that the method is stable, we take different time steps as ht = 0.1, 0.01, 0.001. Numerical

solutions of this equation at different times and spaces values is given in Table 5.5. From this

table, We observe that the new technique is stable. A plot of numerical solution is presented

in Figure 5.10. This figure shows that the numerical solutions conserve the shape of initial

condition.

x t ht = 0.1 ht = 0.01 ht = 0.001

0.1 0.073564 0.073561 0.073561
-0.5 0.5 0.104196 0.104175 0.104175

0.9 0.145777 0.145730 0.145729
0.1 6.10968e-20 -1.76754e-20 6.71595e-21

0 0.5 -5.91510e-19 -3.30568e-20 -7.50574e-21
0.9 -5.06166e-19 2.64537e-19 -1.78773e-19
0.1 -0.073564 -0.073561 -0.073561

0.5 0.5 -0.104186 -0.104175 -0.104175
0.9 -0.145777 -0.145730 -0.145729

Table 5.5. Numerical solution of Allen-Cahn equation via iterative linearization tech-
nique at different times and different ∆t values.

53

Figure 5.10. Numerical solution of Allen-Cahn equation via iterative linearization tech-
nique when hx=0.04, ht=0.01, T=10.

5.2.2. Numerical Results for Burgers’ Equation

Equation (5.5) was linearized in the previous chapter. After linearizing the Burgers’

equation, for the spatial discretization in space we use the LDQ method. The first and the

second order derivatives are given with the equations (4.5) and (4.8). The linear equation for

the Burgers’ equation is given by

θt + ut − κAu − κAθ + u(Bθ) + θ(Bu) + u(Bu) = 0 (5.19)

where A and B are the coefficient matrixes that comes from LDQ method.

To solve the system, Crank-Nicolson rule is used and the system (5.19) returns to

un+1 − un

∆t
+
θn+1 − θn

∆t
= κA

un+1 + un

2
− un+1 + un

2

(
B

un+1 + un

2

)
+ κA

θn+1θn

2

− un+1 + un

2

(
B
θn+1 + θn

2

)
− θn+1 + θn

2

(
B

un+1 + un

2

)
. (5.20)

To solve the system (5.20), un+1, un and θn have to be known. For the first step, u0 which is

the initial condition is known, u1 is guessed and θ0 = 0. Firstly, as an example of Burgers’

equation we consider the equation (5.5)-(5.8). A plot of the numerical solution is given in

54

Figure 5.11. Numerical solutions of the Burgers equation at different times are shown in

Fgiure 5.12. From these figures, we observe that the numerical solutions conserve the shape

of initial condition.

Figure 5.11. Numerical solution of Burgers’ equation via iterative linearization technique

55

−4 −3 −2 −1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t=0.2
t=0.4
t=0.6
t=0.8
t=1.0

Figure 5.12. Numerical solution of Burgers’ equation via iterative linearization tech-
nique at different time

As a second example, we consider the equations (5.9)-(5.11). For this equation we

use the same processes as the previous example. After linearizing the equation, LDQ method

is applied on the space. Finally, the system is solved by Crank-Nicolson rule. At the first we

give the numerical results for κ = 0.1. In Table 5.2.2, the new technique is compared with the

well-known published schemes and the exact solution. Comparison shows that our presented

scheme is better than the others. A plot of the numerical solutions at different times is given

in Figure 5.13. The iterative linearization solution is provided in Figure 5.14 .

56

x κ = 0.1
t (Kutluay, 2004) (Ozis, 2003) (Jiwari, 2013) Present scheme Exact Solution

ht = 0.0001 ht = 0.0001 ht = 0.0001 ht = 0.0001
hx = 0.0125 hx = 0.0125 hx = 0.04 hx = 0.05

0.25 0.4 0.32091 0.32678 0.31744 0.31752 0.31752
0.8 0.20211 0.20274 0.19952 0.19955 0.19956
1.0 0.16782 0.16786 0.16557 0.16560 0.16560
3.0 0.02828 0.02814 0.02775 0.02775 0.02775

0.50 0.4 0.58788 0.59660 0.58443 0.58453 0.58454
0.8 0.37111 0.37293 0.36733 0.36740 0.36740
1.0 0.30183 0.30255 0.29830 0.29835 0.29834
3.0 0.04185 0.04161 0.04106 0.04106 0.04106

0.75 0.4 0.65054 0.64691 0.64556 0.64564 0.64562
0.8 0.39068 0.39120 0.38526 0.38536 0.38534
1.0 0.30057 0.30067 0.29582 0.29587 0.29586
3.0 0.03106 0.03084 0.03043 0.03044 0.03044

Table 5.6. Numerical and exact solutions of example 2 when hx = 0.05, ht = 0.0001
and κ = 0.1.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

t=0.4
t=0.8
t=1.0
t=3.0

Figure 5.13. Iterative linearization solution of example 2 at different times when hx =

0.05, ht = 0.01 and κ = 0.1.

57

Figure 5.14. Iterative linearization solution of example 2 when hx = 0.05, ht = 0.01 and
κ = 0.1.

We now give the iterative linearization technique results for κ = 0.01. The compari-

son of our presented scheme and the well-known published schemes is given in Table 5.2.2.

From this table, we observe that this new technique is better than the others. The numerical

solution at different times is presented in Figure 5.15. This figure show that the numerical

solutions conserve the shape of initial condition. Finally, the iterative linearization solutions

for κ = 0.1, 0.01, 0.001 are provided in Figure 5.16.

58

x κ = 0.01
t (Kutluay, 2004) (Jiwari, 2013) Present scheme Exact Solution

ht = 0.0001 ht = 0.0001 ht = 0.0001
hx = 0.0125 hx = 0.0125 hx = 0.05

0.25 0.4 0.36911 0.36213 0.36226 0.36226
0.8 0.23703 0.23066 0.23045 0.23045
1.0 0.20069 0.19468 0.19469 0.19469
3.0 0.07865 0.07613 0.07613 0.07613

0.50 0.4 0.68818 0.68357 0.68367 0.68368
0.8 0.46011 0.45412 0.45371 0.45371
1.0 0.39206 0.38563 0.38567 0.38568
3.0 0.15576 0.15217 0.15218 0.15218

0.75 0.4 0.92194 0.92064 0.92084 0.92050
0.8 0.66777 0.66303 0.66314 0.66272
1.0 0.57491 0.56929 0.56961 0.56932
3.0 0.23183 0.22774 0.22778 0.22774

Table 5.7. Numerical and exact solution of example 2 when hx = 0.05, ht = 0.0001
and κ = 0.01.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

t=0.4
t=0.8
t=1.0
t=3.0

Figure 5.15. Iterative linearization solutions of example 2 when hx = 0.025, ht = 0.01
and κ = 0.01.

59

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

κ=0.1

κ=0.01

κ=0.001

Figure 5.16. Numerical solutions at the end time T = 3 with different κ values.

60

CHAPTER 6

CONCLUSION

In this thesis, we present two numerical methods to solve the nonlinear stiff prob-

lems,namely exponential integrators and a new iterative linearization technique. We only

study the error analysis of exponential- Euler method by using the Sobolev space norms

and Frechet derivative on problem-based. After introducing well known time integration

methods, exponential Euler method and exponential Rosenbrock-Euler method, this analysis

technique are used for the Allen-Cahn equation and Burgers’ equation in order to estimate

the local and global errors. Then, we develop a new iterative linearization technique based

on the Frèchet derivative and Newton-Raphson method. For the space disceritization local-

ized differential quadrature rule is used, in addition in time discretization Crank-Nicolson

scheme is used. Several examples are illustrated in order to show how these methods are

work. We found that exponential Euler method solutions are preserved the convergence

rates. In addition, we illustrate the theoretical results by conducting numerical solutions for

the Allen-Cahn and Burgers’ equations. For the new linearization technique, we compared

our results with the well known techniques. This technique seems to be better than the other

techniques.

61

REFERENCES

Beylkin, G. , Keiser J.M. and Vozovoi L. 1998: A New Class of Time Discretization
Schemes for the Solution of Nonlinear PDEs. J. Comput. Phys., 147 362-387.

Brugnano, L. and Trigiante, D. 1996: On the characterization of stiffness for ODEs. Dy-
nam. Contin. Discrete Impuls. Systems., 2(3) 317û335.

Caliari ,M. and Ostermann, A. 2009: Implementation of Exponential Rosenbrock-Type
Integrators. Elsevier Applied Numerical Mathematics, 59(3), 568-581 .

Cox ,S.M. and Matthews,P. C. 2002: Exponential Time Differencing for Stiff Systems .
Journal Compt. Phys, 176 430-455.

Curtis,C.F. and Hirschfelder,J.O. 1950: Integration of Stiff Equations. Proc. Natl. Acad.
Sci. USA , 38(3), 235-243.

Dahlquist, G. 1963: A Special Stability Problem for Linear Multi-Step. BIT Numer. Math.,
3, 27û43.

El-Azab,T.M.A. 2012: Exponential Peer Methods. Martin-Luther-Universität Halle-
Wittenberg .

Fazel, M.R. , Moghadam, M.M. and Poshtan, J. 2013: Application of The GDQ Method
in Nonlinear Analysis of a Flexible Manipulator Undergoing Large Deformation. J.
Mech. Eng. Science, 227(12), 2671û2685.

Hairer, E. and Wanner,G. 2000: Solving Ordinary Differential Equations II. Springer,
Second Edition.

Hochbruck ,M. and Ostermann, A. 2010: Exponential Integrators. Applied Numerical
Mathematics, Cambridge University Press, 209-286 .

Hochbruck ,M. and Ostermann, A. 2005: Explicit Exponential Runge-Kutta Methods for
Semilinear Parabolic Problems. SIAM Journal on Numerical Analysis, 43(3), 1069-
1090 .

Hochbruck ,M. , Ostermann, A. and Schweitzer,J. 2008: Explicit Exponential Runge-
Kutta Methods for Semilinear Parabolic Problems. SIAM Journal on Numerical Anal-
ysis, 47(1), 786-803.

Hochbruck ,M. and Ostermann, A. 2005: Exponential Runge-Kutta Methods for Parabolic
Problems. Applied Numerical Mathematics, 53(2-4), 323-339 .

Hochbruck,M. , Lubich,C. and Selhofer, H. 1998: Exponential Integrators for Large Sys-
tems of Differential Equations . SIAM J. Sci. Comput. , 19(5), 1552-1574.

62

Holden, H. , Lubich, C. and Risebro, H. 2011: Operator Splitting for Partial Differential
Equations with Burgers Nonlinearity. Math. Comp. , 82(2013), 173-185.

Huang,P. and Abduwali,A. 2011: A Numerical Method For Solving Allen-Cahn Equation
. J. Appl. Math. Informatics , 29, 1477-1487.

Jiwari, R., Mittal, R.C. and Sharma, K.K. 2013: A Numerical Scheme Based On Weighted
Average Differential Quadrature Method for The Numerical Solution of Burgers’
Equation. Appl. Math. Comput., 219, 6680-6691.

Kandolf, P. 2011: Exponential Integrators. McMaster University .

Kutluay, S., Esen, A. and Dag, I. 2004:Numerical Solution of The Burgers’ Equation
by The Least-Squares Quadratic B-spline Finite Element Method. J. Comput. Appl.
Math., 167, 251-261.

Liu, G.R. and Wu, T.Y. 2000: Numerical Solution for Differential Equations of Duffing-
Type Non-Linearity Using the Generalized Differential Quadrature Rule J.Sound and
Vibration , 237, 805-817.

Lambert, J.D 1991: Numerical Methods for Ordinary Differential Systems. John Wiley &
Sons.

Lawson,J. D. 1967: Generalized Runge-Kutta Processes for Stable Systems with Large
Lipschitz Constants. SIAM Journal on Numerical Analysis, 4(3), 372-380 .

Liniger ,W. and Willoughby,R. A. 1970: Efficient Integration Methods for Stiff Systems
of Ordinary Differential Equations . SIAM Journal on Numerical Analysis, 7(1) .

Luan ,V.T. and Ostermann, A. 2014: Explicit Exponential Runge-Kutta Methods of High
Order for Parabolic Problems. Journal of Compt. and Applied Maths. .

Minchev,B.V. ,2004: Exponential Integrators for Semilinear Problems. University of
Bergen ,PhD Thesis 2004.

Minchev,B.V. , Wright,W.M. ,2005: A review of exponential integrators for first order
semi-linear problems. NTNU 2005(2).

Nilsen,E.B. ,2011: On Operator Splitting for the Viscous Burgers’ and the Korteweg-de
Vries Equations. NTNU 201

Ozis, T., Aksan, E.N. and Ozdes,A. 2003:A Finite Element Approach for Solution of
Burgers’ Equation. Appl. Math. Comput., 139, 417-428.

Pope,D. A. 1963: An Exponential Method of Numerical Integration of Ordinary Differ-
ential Equations. Communications of the ACM, 6(8), 491-493 .

63

Schmelzer,T. , Trefethen,L.N. 2007: Evaluating Matrix Functions for Exponential In-
tegrators via Caratheodory-Fejer Approximation and Contour Integrals. Electronic
Transactions on Numerical Analysis 29,1-18.

Shampine , L.F. and Gear, C.W. 1976: A User’s View of Solving Ordinary Differential
Equations . Department of Computer Science University of Illinois at Urbana.

Spijker, M.N 1995: Stiffness in numerical initial-value problems. Journal of Computa-
tional and Applied Mathematics,72(1996), 393-406.

Kassam, A.K.and Trefethen, L.N. 2005: Fourth-order time stepping for stiff PDEs . SIAM
J. Sci. Comput., 26(4), 1214-1233.

Trefethen, L.N. : Finite Difference and Spectral Methods for Ordinary and Partial Differ-
ential Equations.

Varah, J.M, 1980: Stability Restrictions on Second Order, Three Level Finite Difference
Schemes for Parabolic Equations. SIAM J. Numer. Anal., 17, 300-309.

Yilmaz, Y., Girgin, Z. and Evran, S. 2013: Buckling Analyses of Axially Functionally
Graded Nonuniform Columns with Elastic Restraint Using a Localized Differential
Quadrature Method. Math. Prob. Eng., Vol. 2013 .

Zong, Z. and Lam, K.Y 2002: A localized differential differential quadrature(LDQ)
method and its application to the 2D wave equation. Comput. Mech., 382,29-39.

Zong, Z. and Zhang, Y. 2009: Advanced Differential Quadrature Methods. Chapmann &
Hall, applied mathematics and nonlinear science series

64

APPENDIX A

MATLAB CODES FOR NUMERICAL EXPERIMENTS

%% ALLEN-CAHN EQUATION BY EXPONENTIAL INTEGRATOR

%%Ut=eps*Uxx+U-U^3%%

%%U(x,0)=0.53*x+0.47*sin(-1.5*pi*x)%%

clear all;close all;clc

for e=1:5

N=50;

hx=2/N;

x=-1:hx:1;

l=0.001;

Nt=50*2^(e-1);

step(e)=Nt;

ht=10/Nt;

t=0:ht:10;

A=l*((1/hx)^2)*fin(N);

y(1,:)=0.53*x+0.47*sin(-1.5*pi*x);

u(:,1)=y(1,2:N)’;

for i=1:Nt

jac=A;

[V,D]=eig(ht*jac);

d=diag(D);

g(:,i)=u(:,i) - (u(:,i)).^3;

u(:,i+1)=expm(jac*ht)*u(:,i)

+ht*V*diag(phi1(d,ht,1))*inv(V)*(g(:,i));

end

v1(:,1:Nt+1)=-1;

v2(:,1:Nt+1)=1;

ua=vertcat(v1,u,v2);

if e==3

figure;

[X,Y]=ndgrid(x,t);

surf(X, Y,ua, ...

65

’FaceColor’,’interp’,...

’EdgeColor’,’none’,...

’FaceLighting’,’phong’)

axis tight

view(-50,30)

camlight left

alpha(0.6);

xlabel(’x’);

ylabel(’time’);

zlabel(’U(x,t)’);

title(’Allen Cahn Exp-Euler,\gamma=0.001’);

end

urk(:,1)=y(1,2:N)’;

for j=1:Nt

jac=A;

[V,D]=eig(ht*jac);

d=diag(D);

U1(:,1)=urk(:,j);

U2(:,1)=expm((.5)*jac*ht)*urk(:,j)+

ht*V*((.5)*diag(phi1(d,ht,2)))*inv(V)*G_tez(U1);

urk(:,j+1)=expm(jac*ht)*urk(:,j)+

ht*(V*diag(phi1(d,ht,1)-2*phi2(d,ht,1))*inv(V)*G_tez(U1)+

V*diag(2*phi2(d,ht,1))*inv(V)*G_tez(U2));

end

v1(:,1:Nt+1)=-1;

v2(:,1:Nt+1)=1;

u1=vertcat(v1,urk,v2);

er1=norm(abs(u1(:,Nt+1)-ua(:,Nt+1)),1)

er2=norm(abs(u1(:,Nt+1)-ua(:,Nt+1)),2)

erinf=norm(abs(u1(:,Nt+1)-ua(:,Nt+1)),inf)

u11(e)=max(er1);

u22(e)=max(er2);

u33(e)=max(erinf);

dt(e)=ht;

if e>1

order1(e)=abs((log(u11(e)/u11(e-1)))/(log(dt(e)/dt(e-1))));

order2(e)=abs((log(u22(e)/u22(e-1)))/(log(dt(e)/dt(e-1))));

66

order3(e)=abs((log(u33(e)/u33(e-1)))/(log(dt(e)/dt(e-1))));

else

order1(e)=0;

order2(e)=0;

order3(e)=0;

end

ht

end

figure

plot(log10(step),log10(u11),’-.m*’,...

’LineWidth’,2)

hold all

plot(log10(step),log10(u22),’-.g*’,...

’LineWidth’,2)

hold all

plot(log10(step),log10(u33),’-.r*’,...

’LineWidth’,2)

grid on

xlabel(’LOG(N.EVAL)’)

ylabel(’LOG(ERROR)’)

legend(’L-1 norm’,’L-2 norm’,’L-inf norm’)

title(’Accuracy of u for exponential Euler scheme ’)

figure

plot(x,ua(:,81),’-.m’,...

’LineWidth’,2)

hold all

plot(x,ua(:,161),’-.g’,...

’LineWidth’,2)

hold all

plot(x,ua(:,481),’-.b’,...

’LineWidth’,2)

hold all

plot(x,ua(:,end),’-.r’,...

’LineWidth’,2)

xlabel(’x-axis ’)

ylabel(’Computed Solutions’)

hold off

67

legend(’t=1’,’t=2’,’t=6’,’t=10’)

erroreuler1=u11

erroreuler2=u22

erroreuler3=u33

ordereuler1=order1

ordereuler2=order2

ordereuler3=order3

%% BURGERS EQUATION BY EXPONENTIAL INTEGRATOR

%%Ut=kappa*Uxx-UUx%%

%%U(x,0)=exp(-10*((sin(x/2)).^2))%%

for e=1:5

eps=0.03;

N=64;

hx=2*pi/N;

x=-pi:hx:pi;

Nt=50*2^(e-1);

ht=1/Nt;

step(e)=Nt;

t=0:ht:1;

AA=fin(N);

A=eps*AA/(hx^2);

CC=fin2(N);

C=CC/(hx*2);

f(1,1:N+1)=exp(-10*((sin(x/2)).^2));

u(1:N-1,1)=(f(1,2:N))’;

for i=1:Nt

jac=A;

[V,D]=eig(ht*jac);

d=diag(D);

g(:,i)=-u(:,i).*(C*u(:,i)) ;

u(1:N-1,i+1)=expm(ht*jac)*u(:,i)+

ht*V*diag(phi1(d,ht,1))*inv(V)*(g(:,i));%%%%exp.eulerr

end

v1(:,1:Nt+1)=0;

v2(:,1:Nt+1)=0;

k3=[v1;u;v2];

usol=real(k3);

68

figure ;

[X ,T]=ndgrid(x,t);

surf(X, T,usol, ...

’FaceColor’,’interp’,...

’EdgeColor’,’none’,...

’FaceLighting’,’phong’)

axis tight

view(-50,30)

camlight left

alpha(0.6);

xlabel(’x’);

ylabel(’time’);

zlabel(’U(x,t)’);

title(’Burgers Equation via exponential Euler, \kappa=0.03’);

figure;

plot(x,usol(:,41),’r*-’)

hold all,

plot(x,usol(:,81),’bd-’)

hold all

plot(x,usol(:,101),’gs-’)

hold all

plot(x,usol(:,301),’co-’)

urk(:,1)=u(1:N-1,1);

for j=1:Nt

jac=A;

[V,D]=eig(ht*jac);

d=diag(D);

U1(:,1)=urk(:,j);

U2(:,1)=expm((.5)*jac*ht)*urk(:,j)+

ht*V*diag(phi1(d,ht,2))*inv(V)*FT(U1,C);

urk(:,j+1)=expm(jac*ht)*urk(:,j)+

ht*(V*diag(phi1(d,ht,1)-2*phi2(d,ht,1))*inv(V)*FT(U1,C)+

V*diag(2*phi2(d,ht,1))*inv(V)*FT(U2,C));

end

v1(:,1:Nt+1)=0;

v2(:,1:Nt+1)=0;

u1=vertcat(v1,urk,v2);

69

usol2=real(u1);

er1=norm(abs(usol2(:,Nt+1)-usol(:,Nt+1)),1)

er2=norm(abs(usol2(:,Nt+1)-usol(:,Nt+1)),2)

erinf=norm(abs(usol2(:,Nt+1)-usol(:,Nt+1)),inf)

u11(e)=max(er1);

u22(e)=max(er2);

u33(e)=max(erinf);

dt(e)=ht;

if e>1

order1(e)=abs((log(u11(e)/u11(e-1)))/(log(dt(e)/dt(e-1))));

order2(e)=abs((log(u22(e)/u22(e-1)))/(log(dt(e)/dt(e-1))));

order3(e)=abs((log(u33(e)/u33(e-1)))/(log(dt(e)/dt(e-1))));

else

order1(e)=0;

order2(e)=0;

order3(e)=0;

end

ht

end

figure

plot(log10(step),log10(u11),’-.m*’,...

’LineWidth’,2)

hold all

plot(log10(step),log10(u22),’-.g*’,...

’LineWidth’,2)

hold all

plot(log10(step),log10(u33),’-.r*’,...

’LineWidth’,2)

grid on

xlabel(’LOG(N.EVAL)’)

ylabel(’LOG(ERROR)’)

legend(’L-1 norm’,’L-2 norm’,’L-inf norm’)

title(’Accuracy of u for exponential Euler scheme ’)

figure

plot(x,usol(:,11),’-.m’,...

’LineWidth’,2)

hold all

70

plot(x,usol(:,21),’-.g’,...

’LineWidth’,2)

hold all

plot(x,usol(:,61),’-.b’,...

’LineWidth’,2)

hold all

plot(x,usol(:,end),’-.r’,...

’LineWidth’,2)

xlabel(’x-axis ’)

ylabel(’Computed Solutions’)

hold off

legend(’t=1’,’t=2’,’t=6’,’t=10’)

erroreuler1=u11

erroreuler2=u22

erroreuler3=u33

ordereuler1=order1

ordereuler2=order2

ordereuler3=order3

%% BURGERS EQUATION BY EXPONENTIAL INTEGRATOR

%%Ut=kappa*Uxx-UUx%%

%%U(x,0)=4*x.*(1-x)%%

for e=1:5

eps=0.1;

N=40;

hx=2/N;

x=0:hx:1;

Nt=50*2^(e-1);

ht=1/Nt;

step(e)=Nt;

t=0:ht:1;

AA=fin(N);

A=eps*AA/(hx^2);

CC=fin2(N);

C=CC/(hx*2);

f(1,1:N+1)=4*x.*(1-x);

u(1:N-1,1)=(f(1,2:N))’;

for i=1:Nt

71

jac=A;

[V,D]=eig(ht*jac);

d=diag(D);

g(:,i)=-u(:,i).*(C*u(:,i)) ;

u(1:N-1,i+1)=expm(ht*jac)*u(:,i)+

ht*V*diag(phi1(d,ht,1))*inv(V)*(g(:,i));%%%%exp.eulerr

end

v1(:,1:Nt+1)=0;

v2(:,1:Nt+1)=0;

k3=[v1;u;v2];

usol=real(k3);

figure ;

[X ,T]=ndgrid(x,t);

surf(X, T,usol, ...

’FaceColor’,’interp’,...

’EdgeColor’,’none’,...

’FaceLighting’,’phong’)

axis tight

view(-50,30)

camlight left

alpha(0.6);

xlabel(’x’);

ylabel(’time’);

zlabel(’U(x,t)’);

title(’Burgers Equation via exponential Euler, \kappa=0.1’);

save(’burger_exp.mat’,’usol’)

figure;

plot(x,usol(:,41),’r*-’)

hold all,

plot(x,usol(:,81),’bd-’)

hold all

plot(x,usol(:,101),’gs-’)

hold all

plot(x,usol(:,301),’co-’)

urk(:,1)=u(1:N-1,1);

for j=1:Nt

jac=A;

72

[V,D]=eig(ht*jac);

d=diag(D);

U1(:,1)=urk(:,j);

U2(:,1)=expm((.5)*jac*ht)*urk(:,j)+

ht*V*diag(phi1(d,ht,2))*inv(V)*FT(U1,C);

urk(:,j+1)=expm(jac*ht)*urk(:,j)+

ht*(V*diag(phi1(d,ht,1)-2*phi2(d,ht,1))*inv(V)*FT(U1,C)+

V*diag(2*phi2(d,ht,1))*inv(V)*FT(U2,C));

end

v1(:,1:Nt+1)=0;

v2(:,1:Nt+1)=0;

u1=vertcat(v1,urk,v2);

usol2=real(u1);

er1=norm(abs(usol2(:,Nt+1)-usol(:,Nt+1)),1)

er2=norm(abs(usol2(:,Nt+1)-usol(:,Nt+1)),2)

erinf=norm(abs(usol2(:,Nt+1)-usol(:,Nt+1)),inf)

u11(e)=max(er1);

u22(e)=max(er2);

u33(e)=max(erinf);

dt(e)=ht;

if e>1

order1(e)=abs((log(u11(e)/u11(e-1)))/(log(dt(e)/dt(e-1))));

order2(e)=abs((log(u22(e)/u22(e-1)))/(log(dt(e)/dt(e-1))));

order3(e)=abs((log(u33(e)/u33(e-1)))/(log(dt(e)/dt(e-1))));

else

order1(e)=0;

order2(e)=0;

order3(e)=0;

end

ht

end

figure

plot(log10(step),log10(u11),’-.m*’,...

’LineWidth’,2)

hold all

plot(log10(step),log10(u22),’-.g*’,...

’LineWidth’,2)

73

hold all

plot(log10(step),log10(u33),’-.r*’,...

’LineWidth’,2)

grid on

xlabel(’LOG(N.EVAL)’)

ylabel(’LOG(ERROR)’)

legend(’L-1 norm’,’L-2 norm’,’L-inf norm’)

title(’Accuracy of u for exponential Euler scheme ’)

figure

plot(x,usol(:,11),’-.m’,...

’LineWidth’,2)

hold all

plot(x,usol(:,21),’-.g’,...

’LineWidth’,2)

hold all

plot(x,usol(:,61),’-.b’,...

’LineWidth’,2)

hold all

plot(x,usol(:,end),’-.r’,...

’LineWidth’,2)

xlabel(’x-axis ’)

ylabel(’Computed Solutions’)

hold off

legend(’t=1’,’t=2’,’t=6’,’t=10’)

erroreuler1=u11

erroreuler2=u22

erroreuler3=u33

ordereuler1=order1

ordereuler2=order2

ordereuler3=order3

FINITE DIFFERENCE FUNCTIONS

function A=fin(N)

A=zeros(N-1,N-1);

for i=1:N-1

for j=1:N-1

if i==j

A(i,j)=-2;

74

end

if (i-j)==1

A(i,j)=1;

end

if (i-j)==-1

A(i,j)=1;

end

end

end

A;

function B=fin2(N)

%A=zeros(N-1,N-1);

for i=1:N-1

for j=1:N-1

if (i-j)==1

B(i,j)=-1;

end

if (i-j)==-1

B(i,j)=1;

end

end

end

B;

ORDER TRIANGLE

function ordertriangle(order, varargin)

if(nargin==2)

b_loglog = varargin{1};

else

b_loglog = false;

end

if(nargin==3)

color = varargin{2};

else

color = ’k’;

end

[x y] = ginput(2);

posinit = struct(’x’, x(1), ’y’, y(1));

75

width = x(2)-x(1);

if(b_loglog)

a = y(1)/(x(1)^order);

posy = a* x(2)^order;

posxt= sqrt(x(2)*x(1));

posyt= a* (posxt)^order;

else

posy = (posinit.y+width*order);

posxt = posinit.x+width/2;

posyt = posinit.y+width/2*order;

end

if(order>0)

text(posxt, posyt, sprintf(’%i’, order),...

’VerticalAlignment’,’bottom’,...

’HorizontalAlignment’,’right’);

else

text(posxt, posyt, sprintf(’%i’, -order),..

. ’VerticalAlignment’,’top’,...

’HorizontalAlignment’,’right’);

end

line([posinit.x (posinit.x+width)

(posinit.x+width) posinit.x],...

[posinit.y posy (posinit.y) posinit.y],...

’Color’, color);

end

ALLEN-CAHN EQUATION VIA ITERATIVE

Ut=eps*Uxx+U-U^3%%

U(x,0)=0.53*x+0.47*sin(-1.5*pi*x)%%

clear all;

close all;

clc

itermax=1000;

x0=-1;

76

xn=1;

nx=101;

dx=(xn-x0)/(nx-1);

x=x0:dx:xn;

x=x’;

%%

t0=0;

tn=1;

nt=101;

dt=(tn-t0)/(nt-1);

t=t0:dt:tn;

%%

gama=0.001;

cr=dt/dx;

pe=dx/gama;

%%

temp=zeros(nx,1);

teta=zeros(nx,1);

cy=zeros(nx,1);

ce=0.53.*x+0.47.*sin(-1.5.*pi.*x);

u(:,1)=ce;

%%

temp(1)=-1;temp(nx)=1;

teta(1)=0;teta(nx)=0;

cy(2:nx-1,1)=0;

%%

[a,b]= LDQ10(nx,dx);

for i=1:nt-1

ce(1)=-1;ce(nx)=1;

cy(1)=-1;cy(nx)=1;

for j=1:itermax

amat=(1/dt)*eye(nx)-(0.5*gama)*b-(0.5)*eye(nx)

-(1.5)*diag(((cy+ce)/2).^2);

bmat=-(1/dt)*(cy-ce)+(0.5*gama)*b*(cy+ce)

+(0.5)*(cy+ce)-((cy+ce)/2).^3;

teta=amat(2:nx-1,2:nx-1)\bmat(2:nx-1);

temp(2:nx-1,1)=cy(2:nx-1,1)+teta;

77

err=norm(temp-cy,2);

cy=temp;

if err<1e-10

break

end

end

u(:,i+1)=cy;

ce=cy;

end

%% plot

v1(:,1:nt)=-1;

v2(:,1:nt)=1;

usol=vertcat(v1,u(2:nx-1,:),v2);

[T X]=meshgrid(t,x);

surf(X, T,usol, ...

’FaceColor’,’interp’,...

’EdgeColor’,’none’,...

’FaceLighting’,’phong’)

axis tight

view(-50,30)

camlight left

alpha(0.6);

xlabel(’x’);

ylabel(’time’);

zlabel(’U(x,t)’);

title(’Allen Cahn,\gamma=0.001,\Delta x=0.04,\Delta t=0.1’);

BURGERS EQUATION VIA LDQ

Ut+UU_x=epsU_{xx}%%

U(x,0)=exp(-10*(\sin(x/2))^2) , -\pi<x<\pi %%

U(0,t)=U(1,t)=0 , 0<t<1%%

clear all

close all

clc

%% Space discretization

x0=-pi;

xn=pi;

nx=65;

78

dx=(xn-x0)/(nx-1);

x=x0:dx:xn;

x=x’;

%%

gama=0.03;

%% time

t0=0;

tn=1;

nt=101;

dt=(tn-t0)/(nt-1);

t=t0:dt:tn;

%%

cr=dt/dx

pe=dx/gama

%%

itermax=1000;

%%

temp=zeros(nx,1);

teta=zeros(nx,1);

cy=zeros(nx,1);

%%

ce=exp(-10*(sin(x/2)).^2);

u(:,1)=ce;

%%

temp(1)=0;temp(nx)=0;

teta(1)=0;teta(nx)=0;

cy(2:nx-1,1)=0;

%%

[a,b]= LDQ10(nx,dx);

%% Loop

for i=1:nt-1

ce(1)=0;ce(nx)=0;

cy(1)=0;cy(nx)=0;

for j=1:itermax

amat=(1/dt)*eye(nx)+(0.5)*diag((cy+ce)/2)*a

+(0.5)*diag(a*((cy+ce)/2))-

(0.5*gama)*b;

79

bmat=-(1/dt)*(cy-ce)-(0.25)*(cy+ce).*(a*(cy+ce))

+(0.5*gama)*b*(cy+ce);

teta=amat(2:nx-1,2:nx-1)\bmat(2:nx-1);

temp(2:nx-1,1)=cy(2:nx-1,1)+teta;

err=norm(temp-cy,2);

cy=temp;

if err<1e-10

break

end

end

u(:,i+1)=cy;

ce=cy;

end

%% Plot

figure

plot(x,u(:,21),’r*-’)

hold all

plot(x,u(:,41),’bo-’)

hold all

plot(x,u(:,61),’gd-’)

hold all

plot(x,u(:,81),’ys-’)

hold all

plot(x,u(:,101))

figure ;

[X ,T]=ndgrid(x,t);

surf(X, T,u, ...

’FaceColor’,’interp’,...

’EdgeColor’,’none’,...

’FaceLighting’,’phong’)

axis tight

view(-50,30)

camlight left

alpha(0.6);

xlabel(’x’);

ylabel(’time’);

zlabel(’U(x,t)’);

80

title(’Burgers Equation \kappa=0.03’);

%%BURGERS EQUATION 2 LDQ%%

%%Ut+UUx=epsUxx%%

%%U(x,0)=4x(1-x) , 0<x<1 %%

%%U(0,t)=U(1,t)=0 , 0<t<1%%

clear all

close all

clc

%% Space discretization

x0=0;

xn=1;

nx=41;

dx=(xn-x0)/(nx-1);

x=x0:dx:xn;

x=x’;

%%

gama=0.01;

%% time

t0=0;

tn=3;

nt=3*10^2+1;

dt=(tn-t0)/(nt-1);

t=t0:dt:tn;

%%

cr=dt/dx

pe=dx/gama

%%

itermax=1000;

%%

temp=zeros(nx,1);

teta=zeros(nx,1);

cy=zeros(nx,1);

%%

ce=4*x.*(1-x);

u(:,1)=ce;

%%

temp(1)=0;temp(nx)=0;

81

teta(1)=0;teta(nx)=0;

cy(2:nx-1,1)=0;

%%

[a,b]= LDQ10(nx,dx);

%% Loop

for i=1:nt-1

ce(1)=0;ce(nx)=0;

cy(1)=0;cy(nx)=0;

for j=1:itermax

amat=(1/dt)*eye(nx)+(0.5)*diag((cy+ce)/2)*a

+(0.5)*diag(a*((cy+ce)/2))-

(0.5*gama)*b;

bmat=-(1/dt)*(cy-ce)-(0.25)*(cy+ce).*(a*(cy+ce))

+(0.5*gama)*b*(cy+ce);

teta=amat(2:nx-1,2:nx-1)\bmat(2:nx-1);

temp(2:nx-1,1)=cy(2:nx-1,1)+teta;

err=norm(temp-cy,2);

cy=temp;

if err<1e-10

break

end

end

u(:,i+1)=cy;

ce=cy;

end

%% Plot

figure;

plot(x,u(:,41),’r*-’)

hold all,

plot(x,u(:,81),’bd-’)

hold all

plot(x,u(:,101),’gs-’)

hold all

plot(x,u(:,301),’co-’)

axis tight

figure ;

[X ,T]=ndgrid(x,t);

82

surf(X, T,u, ...

’FaceColor’,’interp’,...

’EdgeColor’,’none’,...

’FaceLighting’,’phong’)

axis tight

view(-50,30)

camlight left

alpha(0.6);

xlabel(’x’);

ylabel(’time’);

zlabel(’U(x,t)’);

title(’Burgers Equation ,\kappa=0.1,u(x,0)=4x(1-x)’);

%%LDQ FUNCTION

function [a,b]= LDQ10(n,dx)

a=zeros(n,n);

b=zeros(n,n);

i=1;

a(i,i)=-7381;a(i,i+1)=25200;a(i,i+2)=-56700;

a(i,i+3)=100800;a(i,i+4)=-132300;

a(i,i+5)=127008;a(i,i+6)=-88200;

a(i,i+7)=43200;

a(i,i+8)=-14175;a(i,i+9)=2800;

a(i,i+10)=-252;

i=2;

a(i,i-1)=-252;a(i,i)=-4609;a(i,i+1)=11340;

a(i,i+2)=-15120;a(i,i+3)=17640;

a(i,i+4)=-15876;a(i,i+5)=10584;

a(i,i+6)=-5040;

a(i,i+7)=1620;a(i,i+8)=-315;

a(i,i+9)=28;

i=3;

a(i,i-2)=28; a(i,i-1)=-560;

a(i,i)=-3069;a(i,i+1)=6720;a(i,i+2)=-5880;

a(i,i+3)=4704;a(i,i+4)=-2940;

a(i,i+5)=1344;

a(i,i+6)=-420;a(i,i+7)=80;a(i,i+8)=-7;

i=4;

83

a(i,i-3)=-7; a(i,i-2)=105;

a(i,i-1)=-945;a(i,i)=-1914;a(i,i+1)=4410;

a(i,i+2)=-2646;a(i,i+3)=1470;

a(i,i+4)=-630;

a(i,i+5)=189;a(i,i+6)=-35;

a(i,i+7)=3;

i=5;

a(i,i-4)=3; a(i,i-3)=-40;

a(i,i-2)=270;a(i,i-1)=-1440;a(i,i)=-924;

a(i,i+1)=3024;a(i,i+2)=-1260;

a(i,i+3)=480;

a(i,i+4)=-135;a(i,i+5)=24;

a(i,i+6)=-2;

for i=6:n-5

a(i,i-5)=-2; a(i,i-4)=25;

a(i,i-3)=-150;a(i,i-2)=600;a(i,i-1)=-2100;

a(i,i)=0;a(i,i+1)=2100;

a(i,i+2)=-600;

a(i,i+3)=150;a(i,i+4)=-25;

a(i,i+5)=2;

end

i=n-4;

a(i,i+4)=-3; a(i,i+3)=40;

a(i,i+2)=-270;a(i,i+1)=1440;a(i,i)=924;

a(i,i-1)=-3024;a(i,i-2)=1260;

a(i,i-3)=-480;

a(i,i-4)=135;a(i,i-5)=-24;a(i,i-6)=2;

i=n-3;

a(i,i+3)=7; a(i,i+2)=-105;

a(i,i+1)=945;a(i,i)=1914;a(i,i-1)=-4410;

a(i,i-2)=2646;a(i,i-3)=-1470;

a(i,i-4)=630;

a(i,i-5)=-189;a(i,i-6)=35;

a(i,i-7)=-3;

i=n-2;

a(i,i+2)=-28; a(i,i+1)=560;

a(i,i)=3069;a(i,i-1)=-6720;a(i,i-2)=5880;

84

a(i,i-3)=-4704;a(i,i-4)=2940;

a(i,i-5)=-1344;

a(i,i-6)=420;a(i,i-7)=-80;a(i,i-8)=7;

i=n-1;

a(i,i+1)=252;a(i,i)=4609;a(i,i-1)=-11340;

a(i,i-2)=15120;a(i,i-3)=-17640;

a(i,i-4)=15876;a(i,i-5)=-10584;

a(i,i-6)=5040;

a(i,i-7)=-1620;a(i,i-8)=315;

a(i,i-9)=-28;

i=n;

a(i,i)=7381;a(i,i-1)=-25200;

a(i,i-2)=56700;a(i,i-3)=-100800;a(i,i-4)=132300;

a(i,i-5)=-127008;a(i,i-6)=88200;

a(i,i-7)=-43200;

a(i,i-8)=14175;a(i,i-9)=-2800;

a(i,i-10)=252;

a=a./(2520*dx);

i=1;

b(i,i)=177133;b(i,i+1)=-972200;

b(i,i+2)=2754450;b(i,i+3)=-5232800;b(i,i+4)=7088550;

b(i,i+5)=-6932016;b(i,i+6)=4872700;

b(i,i+7)=-2407200;

b(i,i+8)=794925;b(i,i+9)=-157800;

b(i,i+10)=14258

i=2;

b(i,i-1)=14258;b(i,i)=20295;

b(i,i+1)=-188010;b(i,i+2)=401880;b(i,i+3)=-527660;

b(i,i+4)=501354;b(i,i+5)=-344820;

b(i,i+6)=167560;

b(i,i+7)=-54630;b(i,i+8)=10735;b(i,i+9)=-962;

i=3;

b(i,i-2)=-962;b(i,i-1)=24840;

b(i,i)=-32615;b(i,i+1)=-29280;b(i,i+2)=84420;

b(i,i+3)=-83216;b(i,i+4)=56910;

b(i,i+5)=-27360;

b(i,i+6)=8830;b(i,i+7)=-1720;

85

b(i,i+8)=153;

i=4;

b(i,i-3)=153;b(i,i-2)=-2645;

b(i,i-1)=33255;b(i,i)=-57860;b(i,i+1)=21210;

b(i,i+2)=13734;b(i,i+3)=-12530;

b(i,i+4)=6420;

b(i,i+5)=-2115;b(i,i+6)=415;

b(i,i+7)=-37;

i=5;

b(i,i-4)=-37; b(i,i-3)=560;

b(i,i-2)=-4680;b(i,i-1)=39360;b(i,i)=-70070;

b(i,i+1)=38304;b(i,i+2)=-3360;

b(i,i+3)=-320;

b(i,i+4)=315;b(i,i+5)=-80;b(i,i+6)=8;

for i=6:n-5

b(i,i-5)=8;b(i,i-4)=-125;

b(i,i-3)=1000;b(i,i-2)=-6000;b(i,i-1)=42000;

b(i,i)=-73766;b(i,i+1)=42000;b(i,i+2)=-6000;

b(i,i+3)=1000;b(i,i+4)=-125;b(i,i+5)=8;

end

i=n-4;

b(i,i+4)=-37; b(i,i+3)=560;

b(i,i+2)=-4680;b(i,i+1)=39360;b(i,i)=-70070;

b(i,i-1)=38304;b(i,i-2)=-3360;

b(i,i-3)=-320;

b(i,i-4)=315;b(i,i-5)=-80;b(i,i-6)=8;

i=n-3;

b(i,i+3)=153;b(i,i+2)=-2645;

b(i,i+1)=33255;b(i,i)=-57860;

b(i,i-1)=21210;b(i,i-2)=13734;

b(i,i-3)=-12530;b(i,i-4)=6420;

b(i,i-5)=-2115;b(i,i-6)=415;

b(i,i-7)=-37;

i=n-2;

b(i,i+2)=-962;b(i,i+1)=24840;

b(i,i)=-32615;b(i,i-1)=-29280;

b(i,i-2)=84420;b(i,i-3)=-83216;

86

b(i,i-4)=56910;

b(i,i-5)=-27360;b(i,i-6)=8830;

b(i,i-7)=-1720;b(i,i-8)=153;

i=n-1;

b(i,i+1)=14258;b(i,i)=20295;

b(i,i-1)=-188010;b(i,i-2)=401880;

b(i,i-3)=-527660;b(i,i-4)=501354;b(i,i-5)=-344820;

b(i,i-6)=167560;b(i,i-7)=-54630;b(i,i-8)=10735;b(i,i-9)=-962;

i=n;

b(i,i)=177133;b(i,i-1)=-972200;

b(i,i-2)=2754450;b(i,i-3)=-5232800;

b(i,i-4)=7088550;b(i,i-5)=-6932016;

b(i,i-6)=4872700;

b(i,i-7)=-2407200;b(i,i-8)=794925;

b(i,i-9)=-157800;b(i,i-10)=14258;

b=b./(25200*dx*dx);

end

87

