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ABSTRACT 

COMPUTATION OF THE CONVECTION-DIFFUSION  EQUATION 

BY THE FOURTH-ORDER COMPACT FINITE DIFFERENCE 

METHOD 

This dissertation aims to develop various numerical techniques for solving the 

one dimensional convection–diffusion equation with constant coefficient. These 

techniques are based on the explicit finite difference approximations using second, third 

and fourth-order compact difference schemes in space and a first-order explicit scheme 

in time. The suggested scheme has been seen to be very accurate and a relatively 

flexible solution approach in solving the contaminant transport equation for Pe ≤ 5. For 

the solution, the combined technique has been used instead of conventional solution 

techniques. The accuracy and validity of the numerical model are verified. The 

computed results showed that the use of the current method in the simulation is very 

applicable for the solution of the convection-diffusion equation. The technique is seen 

to be alternative to existing techniques. 

 This dissertation is divided into six chapters: The derivation of the convective 

diffusion equation is given in Chapter 2. The main idea behind the higher order finite 

difference technique is given in Chapter 3. The numerical approximations to CDE 

described with ten different explicit schemes are introduced in Chapter 4.  The results of 

numerical experiments using second, third and fourth-order compact difference schemes 

are presented in Chapter 5. Chapter 6 is devoted to a brief conclusion. Finally the 

references are introduced at the end. 
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ÖZET 

KONVEKSİYON – DİFÜZYON DENKLEMİNİN DÖRDÜNCÜ 

MERTEBEDEN KOMPAK SONLU FARK METODU İLE ÇÖZÜMÜ  

Bu tez, bir boyutlu sabit katsayılı konveksiyon-difüzyon denkleminin çözümü 

için bir çok sayısal metotlar geliştirmeyi amaçlamıştır. Bu teknikler sonlu zamanda 

birinci derece ve uzayda ikinci, üçüncü ve dördüncü dereceden kompak sonlu fark 

yaklaşımına dayanır. Sonlu fark denklemlerinin analizi Warming ve Hyett tarafından 

1974ꞌte geliştirilen, kısmi diferansiyel denklemine dayanır. Geliştirilen yöntem, Pe ≤ 5 

için, kirlilik taşınım denkleminin çözümünde doğruluk ve esneklik özelliğine sahiptir. 

Çalışmada, geleneksel çözüm tekniği yerine, bileşik teknik kullanılmıştır. Uygulama 

sonuçları göstermiştir ki, kullanılan metot konveksiyon -difüzyon denkleminin çözümü 

için uygundur. Geliştirilen metot bu gibi denklemlerin çözümü için mevcut yöntemlere 

alternatif ve güvenilirdir. 

 Tez altı bölümden oluşmaktadır: Konveksiyon-difüzyon denkleminin elde 

edilişi Bölüm 2ꞌde verilmiştir. Yüksek mertebeden sonlu fark tekniği Bölüm 3ꞌte 

verilmiştir. CDE için on farklı açık şema sayısal çözümü metotları Bölüm 4ꞌte 

verilmiştir. İkinci, üçüncü ve dördüncü dereceden kompak sonlu fark şeması 

kullanılarak yapılan sayısal çözüm sonuçları Bölüm 5ꞌte verilmiştir. Sonuç kısmı Bölüm 

6ꞌda ve Kaynaklar tezin sonunda verilmiştir. 
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CHAPTER 1 

INTRODUCTION 

Convection-Diffusion Equation (CDE) is a description of contaminant transport 

in porous media where advection causes translation of the solute field by moving the 

solute with the flow velocity and dispersion causes spreading of the solute plume. This 

equation reflects physical phenomena where in the diffusion process particles are 

moving with certain velocity form higher concentration to lower concentration. This 

process is described by the last term of the Convection-Diffusion Equation presented in 

equation (1.1). Second and third terms represent the concentration of the contaminant 

particles as respect to the change in distance and the acceleration in velocity gained over 

distance, respectively. The convection-diffusion equation in one-dimensional case, 

without source term, can be expressed as follows (Alkaya et al, 2013):  

  

  
    

  

  
   

   

   
                                                         

The subscripts t and x stand for differentiation with respect to time and space, 

respectively. D is diffusion coefficient,        is concentration,        is velocity of 

water flow, and L is length of the channel, respectively. Equation (1.1) describes two 

processes: Convection and diffusion. Notice that D > 0 and u > 0 are considered to be 

positive constants quantifying the diffusion and convection processes, respectively.  

ADE is benefited in applications in different disciplines such as environmental 

engineering, mechanical engineering, soil science, petroleum engineering, chemical 

engineering and as well as in biology (Mazaheri et al,2013). 

The initial condition can be: no concentration, constant concentration or a space-

dependent concentration source as:  

1.                                                                                                                   

2.                                                                                                                   

3.                                                                                          
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Boundary conditions can be fixed constant concentration and time–dependent 

concentration or fixed concentration and gradient B.C (or mixed) B.C:  

                   

                                                                                                         

        
  

  
          

where        and g are prescribed functions whilst c is unknown function, concentration 

CDE is used in transfer of mass, heat, energy, velocity, etc. The solution of the equation 

models some of the phenomena such as the contaminant transport in groundwater, 

spread of pollutants in rivers, contaminant dispersion in shallow lakes and reservoirs. 

The slow progress has been made towards the analytical solutions of the ADE when 

initial and boundary conditions are intricate. Since many of the analytical solutions have 

not much easy use, many attempts have been carried out on developing the accurate 

numerical techniques. A number of numerical techniques have been recommended to 

illuminate physical phenomena described by the convection-diffusion equation in 

various fields of science. The difficulties arising in numerical solutions of the ADE 

results are due to the dominant  convection that is for relatively high Peclet number 

(Sari et al,2010).  

1.1. Related Works  

In the following literature review, we present mathematical models used to solve 

the convection-diffusion equation and a critique is submitted to evaluate each model. 

In (Juanes and Patzek, 2004), a numerical solution of miscible and immiscible 

flow in porous media was studied and focus was presented in the case of small 

diffusion; this turns linear convection-diffusion equation into hyperbolic equation.  

In this effort, a stabilized finite element method was presented which arises from 

considering a multi-scale decomposition of the variable of interest into resolved and 

unresolved scales. This approach incorporates the effect of the fine (sub grid) scale onto 
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the coarse (grid) scale. The numerical simulations clearly show the potential of the 

method for solving multiphase compositional flow in porous media. 

In (Claassen, 2010), one-dimensional diffusion on the real line was studied 

through ignoring  the effects of convection  in the  three  dimensional equation, 

i.e.       
   ⃗    ; was reduced to            . The researcher made 

assumptions about k to be constant and        to be function of time only. The 

researcher obtained the one-dimensional diffusion equation by setting        to 

reach        . By coupling this equation with the initial condition              

and considering its domain to be the real line, he/she reached out the following initial 

value problem:  

                          

             

One-dimensional diffusion equation was investigated against multiple properties such 

the invariance and the uniqueness of the solution. The solution to the convection-

diffusion there was initiated by guessing a particular solution of the diffusion initial 

value problem; this guess was motivated by the invariance properties investigated 

earlier in the research. The researcher provides a methodology to solve the convection-

diffusion equation by constructing solutions for any initial condition     .  

In (Ahmed, 2012), a novel finite difference method as well as a numerical 

scheme was presented to solve and analyze the convection-diffusion equation. The 

developed scheme was based on a mathematical combination between Siemieniuch and 

Gradwell approximation for time and Dehghan’s approximation for spatial variable.  In 

that work, a special discretization for the spatial variable was made in such a way that 

when applying the finite difference equation at any time level two nodes from both ends 

of the domain were left. Then, the unknowns at the two nodes adjacent to the 

boundaries were obtained from the interpolation technique. The proposed methodology 

was tested for their validity to solve advection-diffusion with constant and variable 

coefficients. Three different examples for advection-diffusion with constant coefficients 

were presented to study the effect of the some dependant variables. The results show a 

great agreement with analogue numerical methodologies. 
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In (Pereira et al, 2013), an evaluation of the first-order upwind and high-order 

flux-limiter for solving the advection-diffusion equation on unstructured grids, was 

accomplished. The numerical schemes were implemented as a module of an 

unstructured two-dimensional depth-averaged circulation model for shallow lakes (IPH-

UnTRIM2D), and they were applied to the Guaiba River in Brazil. Their performances 

were evaluated by comparing mass conservation balance errors for two scenarios of a 

passive tracer released into the Guaiba River. The circulation model showed good 

agreement with observed data collected at four water level stations along the Guaiba 

River, where correlation coefficients achieved values up to 0.93. In addition, volume 

conservation errors were lower that 1% of the total volume of the Guaiba River. For all 

scenarios, the higher order flux-limiter scheme was shown to be less diffusive than a 

first-order upwind scheme. 

Noye and Tan (1988) used a weighted discretization with the modified 

equivalent partial differential equation. Soon after, the authors extended this scheme to 

solve two- dimensional advection-diffusion equation (Noye and Tan, 1989). However, 

solution of two- and three- dimensional problems by using these methods was difficult 

due to requirement of matrix inversions at each time step. The upwind scheme 

(Spalding, 1972) and the flux-corrected scheme (Boris and Book, 1973) were available 

for the solution of the depth-averaged from of the advection-diffusion equation. An 

alternative widely used approach was the split-operation approach, in which the 

advection and diffusion terms were solved by two various numerical methods (Li and 

Chen, 1989; Sobey, 1983). 

To solve the advection-diffusion equation accurately, various versions of the 

finite difference methods were used in the literature (Patel et al, 1985). Stability of their 

schemes for the advection-diffusion problems were carried out in several studies in the 

literature (Hindmarsh et al, 1984). 

In (Kaya, 2010), the advection-diffusion equation (ADE) was solved using 

differential quadrature method (DQM), and results were compared to explicit finite 

difference method (EFDM), Implicit finite differences method (IFDM) and exact 

solution.  
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 1.2. Definition of The Basic Terms of Advection – Diffusion Equation 

In the following sections we present the definition of the basic terms of the 

advection-diffusion equation. It is essential to understand its physical meaning and 

mathematical representation in order to develop solution methodologies. 

1.2.1. Diffusion  

A fundamental transport process in environmental fluid mechanics is the 

diffusion. Diffusion differs from advection in that it is random in nature (i.e., it does not 

necessarily follow a fluid particle). A well-known example is the diffusion of perfume 

in an empty room. If a bottle of perfume is opened and allowed to evaporate into the air, 

soon the whole room will be scented. We know also from experience that the scent 

would be stronger near the source and weaker as we move away, but fragrance 

molecules would have wondered throughout space due to random molecular and 

turbulent motions. Thus, diffusion has two primary properties: it is random in nature, 

and transport occurs from regions of high concentration to low concentration, with an 

equilibrium state of uniform concentration. 

In advection-diffusion equation (1.1), the term ( –  
   

    ) is the one-dimensional 

diffusive flux equation. It is important to note that diffusive flux is a vector quantity 

and, since concentrationis expressed in units of [   ⁄ ], it has units of [    ⁄ ]. To 

compute the total mass flux rate m, in units [  ⁄ ], the diffusive flux must be integrated 

over a surface area (Sobey, 1983). 

1.2.2. Advection (Convection) 

Advection is the gradient of concentration of pollutant particles corresponding to 

distances and it is given by the term (  
  

  
 ), where   is flow velocity and can be 

constant. It is obvious that this term is one dimensional concentration gradient. 
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Both advection and diffusion move the pollutant from one place to another, but 

each accomplishes this in different ways. That is; advection moves in one way (i.e., in 

the flow direction downstream) while diffusion spreads out (i.e., regardless of a stream 

flow direction). Another important property is that advection is represented by first-

order derivate, which means that if x is replaced by –x the term changes signs; this is 

the anti-symmetry, while by observing, diffusion term is introducing the symmetry 

property where if x is replaced by –x then the term does not change sign (Sobey, 1983).  

1.2.3. Accumulation 

This is the third term in the advection-diffusion equation as (
  

  
  , represents the 

change of concentration over the time. This term is evaluated in term of the gradient 

(i.e., one direction or three dimensions). It represents the starting point to evaluate the 

movement of pollutant particles. It is important to mention that the advection and 

diffusion terms are proportional to each other and each term can dominate the entire 

system (Sobey, 1983). 
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CHAPTER 2 

CONVECTION DIFFUSION EQUATION 

In nature, transport occurs in fluids through the combination of convection and 

diffusion. The previous chapter introduced convection diffusion. This chapter gives the 

derivation of the convection diffusion equation. 

2.1.  Derivation of the Convective Diffusion Equation 

Convection-Diffusion equation uses the mass balance approach. We form a 

continuity equation by equating the difference between the mass of material entering a 

volume element and that leaving the element (i.e., net influx of mass) to the rate of 

accumulation of mass inside the volume. The net influx is composed of terms involving 

dispersion and convection. The dispersion coefficient that appears in the dispersion 

component is assumed to be independent of concentration. In addition, it is assumed 

that the densities of viscosity of all the fluids in the system are the same and that no loss 

or addition of matter occurs within the system. For case of exposition, the development 

will be in terms of Cartesian coordinates. Consider a volume element of porous 

mediums in three - dimensional Cartesian coordinates (see Fig. 2.1). Since we are 

considering only convection and dispersion as the two modes of transport of a fluid 

within the porous medium, we can mathematically represent these two modes of 

transport (in the x-direction) as:  

 

transport by convection = u C dA 

transport by dispersion  =    
  

  
    

 

where dA is an elemental cross-sectional area of the cubic element, and     is the 

dispersion coefficient in the x-direction.   
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Figure 2.1. Mass balance in a volume element of a porous medium. 

 

The total amount of fluid entering the volume element is:  

                                       

where    ,   , and    represent the total amount of mass per unit cross-sectional area 

transported in the x, y, and z directions, respectively. 

Assuming that the two components (convection and dispersion) may be 

superposed, the total amount of material transported parallel to any given direction is 

obtained by summing the convective and dispersive transports. Thus, 

           (
  

  
)                                                                  

           (
  

  
)                                                                 

           (
  

  
)                                                                  

where u, v, w are velocities in the x, y, and z directions, respectively,            are 
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dispersion coefficients in the x, y, z directions, respectively, C is concentration of the 

material in the volume elements,  n is porosity of the medium. 

The negative sign indicates that the contaminant moves forward the zone of 

lower fluid concentration.  

The total amount of solute leaving the volume element is:  

                
   
  

                   
   

  
                    

   
  

           

where the partial terms indicate the spatial change of the fluid mass in the specified 

direction. Therefore, 

                   
   
  

 
   

  
 

   
  

           

By continuity (         no loss in the mass of the liquid), the total difference between the 

outflow and the inflow of the volume element must be equal to the total change in time 

in the concentration of the material in the volume element. That is,   

                    
  

  
       

Yielding, 

                                        (
   
  

  
   

  
  

   
  

)    
  

  
                                                  

equation (2.2) is a mathematical statement of the law of conservation of mass under the 

conditions stipulated. 

Substituting (2.1) into (2.2) gives: 

 

  
(    

  

  
   )   

 

  
(    

  

  
   )   

 

  
(    

  

  
   )    

  

  
                

If the flux per unit area is constant (i.e., u, v, and w are constants): 

 

  
(  

  

  
)   

 

  
(  

  

  
)   

 

  
(  

  

  
)  

  

  
   

  

  
   

  

  
  

  

  
                          

where U, V, and W represent average velocities (i. e., U = u/n, V= v/n, and W= w/n). 
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Results of two-dimensional experiments indicate that the magnitudes of the 

dispersion coefficient depend on the direction of the flow, with the larger value oriented 

in the direction parallel to the flow. The inclusion of this directional dependency in the 

transport equations requires that the dispersion coefficient is to be represented as a 

tensor. Researchers have shown that for unidirectional flow in an isotropic porous 

medium the dispersion coefficient is described by a tensor composed of two 

components: longitudinal and transverse components (Marino, 1974). 

The difficulties inherent in the application of the tensor to evaluate mass 

transport arise from difficulties in measuring the various components. Thus (as in heat 

flow or diffusions), it is generally necessary to assume that the dispersion coefficient is 

characterized by three independent components parallel to the chosen reference axes. 

Under this assumption, the dispersion tensor is a second-rank tensor consisting of nine 

components. 

Using the standard notation for second-order tensors, the dispersion component 

of the transport equation can be expressed as:   

                                               

  

   

                                                                          

In other words, the three components of mass transport are written as: 

        

  

   
    

  

   
    

  

   
                                                      

        

  

   
    

  

   
    

  

   
                                                      

        

  

   
    

  

   
    

  

   
                                                      

and the dispersion tensor can be represented by a matrix: 

         

         

         

         

 

The advantage of the tensor notation is that it provides a shorthand method of 

describing (in general) the physical phenomena. It can be shown that the general form 
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of the convective-dispersion equation for a homogeneous and isotropic porous medium 

is expressed as follows: 

              
 

   
(   

  

   
     )   

  

  
                                                                   

The equation describing the field distribution for a system of anisotropic mass 

transport is expressed as: 

   

   

   
    

   

   
    

   

   
          

   

      
           

   

      

           
   

      
   

  

  
  

  

  
  

  

  
  

  

  
                               

Equation (2.8) is known as a quadric, and by the use of standard transformations 

it can be reduced to the form of Equation (2.4). This transformation involves rotating 

the coordinate axes so that the reference axes parallel the principal axes of dispersion.  

Recent experimental and analytical studies point to the fact that in isotropic and 

homogeneous media, the principal axes of dispersion are oriented parallel and 

transverse to the mean direction of regional flow. This indicates that for homogeneous 

isotropic media, the mass transport system can be defined by two characteristic 

dispersion components that are specified when the mean direction of regional flow is 

known (Marino, 1974). 

Assuming that the principal axes can be defined, the dispersion tensor can be 

transformed so that only the elements of the major diagonal remain, all others being 

zero. The matrix representation of the tensor then becomes: 

       

    
    

    

 

In unidirectional flow, symmetry about the mean flow line exists so that Dy = 

Dz. For steady unidirectional flow in the x-direction, the mass transport equation can be 

written as: 
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where    is longitudinal dispersion coefficient (also represented as   );    is transverse 

or lateral dispersion coefficient (also represented as   );   is average seepage velocity 

(       / porosity).  

If the lateral variation in concentration is assumed to be insignificant, then 

Eqution (2.9) becomes: 

                                                   

   

   
  

  

  
   

  

  
                                                              

2.2. Boundary and Initial Conditions 

Boundary conditions associated with a linear second order partial differential 

equation:  L(C) = G (t, x) for t, x ∈  R, can be written in the operator form as: 

                                                                                                                                

where ∂R denotes the boundary of the region R and f (t, x) is a given function of t and x. 

If the boundary operator B(C) = C, the boundary condition represents the dependent 

variable being specified on the boundary. These types of boundary conditions are called 

Dirichlet conditions. If the boundary operator        
  

  
           ̂ denotes a 

normal derivative, then the boundary condition is that the normal derivative at each 

point of the boundary is being specified. These types of boundary conditions are called 

Neumann type conditions. Neumann conditions require the boundary to be such that one 

can calculate the normal derivative 
  

  
 at each point of the boundary of the given region 

R. This requires that the unit exterior normal vector  ̂ be known at each point of the 

boundary. If the boundary operator is a linear combination of the Dirichlet and 

Neumann boundary conditions, then the boundary operator has the form       
  

  
 

    , where α and β are constants. These types of boundary conditions are said to be of 

the Robin type. The partial differential equation together with a Dirichlet boundary 

condition is sometimes referred to as a boundary value problem of the second kind. A 

partial differential equation with a Neumann boundary condition is sometimes referred  
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to as a boundary value problem of the second kind. A boundary value problem of the 

third kind is a partial differential equation with a Robin type boundary condition. A 

partial differential equation with a boundary condition of the form: 

               

                                    {

                                               

  

  
                                     

                                      

 

is called a mixed boundary value problem. If time t is one of the independent variables 

in a partial differential equation, then a given condition to be satisfied at the time t = 0 is 

referred to as an initial condition. A partial differential equation subject to both 

boundary and initial conditions is called a boundary-initial value problem (Alexander, 

2005).  

2.3. Robin Boundary Condition 

The Robin boundary condition, or third type boundary condition, is a type of 

boundary condition, named after Victor Gustave Robin (1855–1897). When imposed on 

a partial differential equation, it is a specification of a linear combination of the values 

of a function and the values of its derivative on the boundary of the domain. Robin 

boundary conditions are a weighted combination of Dirichlet boundary conditions and 

Neumann boundary conditions. This contrasts to mixed boundary conditions, which are 

boundary conditions of different types specified on different subsets of the boundary. 

Robin boundary conditions are also called impedance boundary conditions, due to their 

application in electromagnetic problems. 

If R is the domain on which the given equation is to be solved and    denotes its 

boundary, the Robin boundary condition is expressed as: 

                                               
  

  
                                                                   

http://en.wikipedia.org/wiki/Boundary_condition
http://en.wikipedia.org/wiki/Victor_Gustave_Robin
http://en.wikipedia.org/wiki/Partial_differential_equation
http://en.wikipedia.org/wiki/Linear_combination
http://en.wikipedia.org/wiki/Function_(mathematics)
http://en.wikipedia.org/wiki/Boundary_(topology)
http://en.wikipedia.org/wiki/Dirichlet_boundary_condition
http://en.wikipedia.org/wiki/Neumann_boundary_condition
http://en.wikipedia.org/wiki/Mixed_boundary_condition
http://en.wikipedia.org/wiki/Electromagnetism
http://en.wikipedia.org/wiki/Boundary_(topology)
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for some non-zero constants α and β and a given function g defined on   . Here, C is 

the unknown solution defined on R and 
  

  
 denotes the normal derivative at the 

boundary. More generally, α and β are allowed to be (given) functions, rather than 

constants. 

In one dimension, if, for example,   [   ] the Robin boundary condition 

becomes the conditions: 

                                           
  

  
                                                              

                                            
  

  
                                                             

where          . Notice the change of sign in front of the term involving a 

derivative: that is because the normal to [0,1] at 0 points in the negative direction, while 

at 1 it points in the positive direction. 

The Robin boundary condition is a general form of the insulating boundary 

condition for convection–diffusion equations. Here, the convective and diffusive fluxes 

at the boundary sum to zero: 

                                                         
       

  
                                                  

where D is the diffusive constant, u is the convective velocity at the boundary and c is 

the concentration. The second term is a result of Fick's law of diffusion (Gustafson, 

1998; Eriksson et al, 2004). 

 

  

http://en.wikipedia.org/wiki/Normal_derivative
http://en.wikipedia.org/wiki/Convection%E2%80%93diffusion_equation
http://en.wikipedia.org/wiki/Fick%27s_law_of_diffusion
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CHAPTER 3  

HIGHER-ORDER FINITE DIFFERENCE SCHEMES 

In this chapter, we review the calculus of finite differences. The Taylor 

expansion provides a very useful tool for the derivation of higher-order approximation 

to derivatives of any order.  

3.1. Finite Difference Approximations of the Derivatives 

The main idea behind the finite difference methods for obtaining the solution of 

a given partial differential equation is to approximate the derivatives appearing in the 

equation by a set of values of the function at a selected number of points. The most 

usual way to generate these approximations is through the use of Taylor series. The 

numerical techniques developed here are based on the modified equivalent partial 

differential equation as described by Warming and Hyett (1974).  

This approach allows the simple determination of the theoretical order of 

accuracy, thus allowing methods to be compared with one another. Also from the 

truncation error of the modified equivalent equation, it is possible to eliminate the 

dominant error terms associated with the finite difference equations that contain free 

parameters (weights), thus leading to more accurate methods (Dehghan, 2004). 

To derive a numerical approximation to the governing equation, one replaces 

derivatives by the difference equation using the discrete nodal values. Figure 3.1 

schematically shows finite difference discretization in space and time. According to 

Figure 3.1,      = time step,       = space step and C(t,x) is solution at nodals  

 

Figure 3.1. Scheme representation of finite difference 
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3.1.1. The Time Derivative 

The approximation for the time derivative can be found by using Taylor series 

expansion as: 

                         
     

  
  

      

   
  

  
                                           

where k = ∆t discretization step size (see Figure 3.1). Solving equation (3.1) for the time 

derivative gives: 

     

  
 

           

 
 

      

   
 

  
    

Considering only the first term a right hand side, 

                                    (
  

  
)
 
 

       

 
                                                               

where      = C (t+k),    = C (t) . In short; forward difference: (
  

  
)
 
 

       

 
 and 

Truncation error = O (k) =  
 

 

      

   
 are obtained.  

3.1.2. Arbitrary-Order Approximations of Derivatives 

Finite-difference approximations of arbitrary order can be obtained 

systematically (e.g., Celia and Gray 1992). The approximation of       ⁄ , which is 

the mth derivative of C, can be obtained by expanding the derivative across q discrete 

nodes in the x-direction. If the independent variable is time, the derivative can be 

expanded along q time steps. The minimum number of nodes allowed in the expansion 

is m + 1. In general, the maximum order of approximation of a finite difference solution 

is q−m, although it may be smaller or larger for some individual cases. For instance, 

when m is even and the grid spacing is constant, the order of approximation can by 

increased to q − m + 1. Figure 3.2 shows the arbitrary grid spacing for the derivation to 

come. 
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Figure 3.2. Grid spacing of an arbitrary-spaced grid where q=5. The derivative is taken 

at node point x3, marked∗.  

 

The location at which the derivative is taken does not need to correspond to a 

node point, although in the figure the derivative is assumed to be taken at node  point 

  . The distance between two node points  is                , where i varies from 1 

to q – 1 (Jacobson,2005). 

For example; considering there are 6 points; for the     approximate, if m=2 

(   derivative)  and  q=10  (i.e. 10 nodes)  then  q-m=8  (i.e. we can have a maximum 

8-order approximation for the second derivative ) 

3.2. Fourth– Order Difference Approximation of 
  

   
 

It would be beneficial to recall the single finite difference (   order) approximation 

to the     derivatives as follows: 

(
  

  
)
 
 

       

 
           Forward difference 

(
  

  
)
 
  

       

 
            Backward difference 

(
  

  
)
 
  

         

  
         Central difference 

where ∆x = h ( discretization step),    = C(  ),      = C(   +h),     = C(  -h) and    is 

discretization point. Taylor series expansion is always used to obtain higher order 

approximation as follows: 

                                                    ∑
      

 

  

 

   

(
   

   
)
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3.2.1. Fourth-Order Forward Difference Approximation of 
  

   
  

This is found by using a Taylor series (3.3). We start the procedure by 

expressing the value of      ,     ,     and      in terms of as Ci follows:  

          (
  

  
)
 
 

  

 
(
   

   
)
 

 
  

 
(
   

   
)
 

 
  

  
(
   

   
)
 

 
  

   
(
   

   
)
 

           

           (
  

  
)
 
 

     

 
(
   

   
)
 

 
     

 
(
   

   
)
 

 
     

  
(
   

   
)
 

 
     

   
(
   

   
)
 

                                                                                            

           (
  

  
)
 
 

     

 
(
   

   
)
 

 
     

 
(
   

   
)
 

 
     

  
(
   

   
)
 

 
     

   
(
   

   
)
 

                                                                                            

           (
  

  
)
 
 

     

 
(
   

   
)
 

 
     

 
(
   

   
)
 

 
     

  
(
   

   
)
 

 
     

   
(
   

   
)
 

                                                                                            

As such, we can express the first derivative by multiplying equations (3.4), 

(3.5), (3.6) and (3.7) by the coefficients             respectively. Then taking the 

summation of these four equations, one obtains the following expressions:  
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[      (

  

  
)
 
 

  

 
 (

   

   
)
 

 
  

 
 (

   

   
)
 

 
  

  
 (

   

   
)
 

 
  

   
 (

   

   
)
 

             (
  

  
)
 
     (

   

   
)
 

 
 

 
   (

   

   
)
 

 
  

  
   (

   

   
)
 

 
  

   
   (

   

   
)
 

       

    (
  

  
)
 
 

 

 
   (

   

   
)
 

 
  

 
  (

   

   
)
 

 
  

  
  (

   

   
)
 

 
   

   
  (

   

   
)
 

          (
  

  
)
 
 

  

 
   (

   

   
)
 

 
  

 
   (

   

   
)
 

 
   

  
   (

   

   
)
 

 
    

   
   (

   

   
)
 

  ]           

Upon rearrangement of equation (3.8): 

                              

 
 

 
                        (

  

  
)
 

 
 

 
             (

   

   
)
 

 
  

 
              (

   

   
)
 

 
  

  
                (

   

   
)
 

 
  

   
                  (

   

   
)
 

                                                 

At this stage; in order to satisfy the accurate fourth order in equation (3.9), we 

need to find the values of the coefficients             such that the coefficient of 

(
  

  
)
 
must equal 1 and the coefficients of  (

   

   )
 
 (

   

   )
 
and (

   

   )
 
 must be zeros and 

the coefficient  of (
   

   )
 
 should be not zero. Thus, one obtains the following linear 

equations to be solved: 
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where equation (3.10) has truncation error as: 

                            
  

   
                  (

   

   
)
 

                          

The four equations (3.10) are solved for the unknowns α, β, γ, δ and θ. The first 

step is to use equation E2 to eliminate the unknown β from E3, E4 and E5 by 

performing: 

(  -  )                        

(  -  )                        

(  -  )                        

The resulting system is: 

                                                  

                                                                                                                            

                                                   

                                                     

where the new equations (3.12) are for simplicity, again labeled      ,   and   . In the 

new system (3.12),    is used to eliminate γ from    and    by the operations: 

 

(  -3  )                        

(  -7  )                        
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Resulting in the system  

                                                             

                                                                                                                             

                                                                          

                                                                       

    

where the new equations (3.13) are, for simplicity, again labeled     ,   and   . 

In the new system (3.13),    is used to eliminate δ from    by the operation:  

(  -6  )                        

Resulting in the system:  

                                                               

                                                                                                                             

                                                                          

                                                                                  

The system of equations (3.14) is now in reduced form and can easily be solved 

for the unknown by a backward-substation process: 

Noting that E5 implies:        
 

  
 

   can be solved for δ: 

  
 

 
[     ]  

 

 
[    ( 

 

  
)]  

 

 
[   ] 

                                    
  

  
 

Continuing    and    gives:     
  

  
  and    
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It can easily be verified that these values satisfies the equations in (3.9). Substituting 

solution into equations (3.8) and (3.9) yields:  

The fourth-order forward-difference approximation of 
  

  
 

                     (
  

  
)
 
 

                                  

    
                               

and the truncation error (T.E)       
  

   
                  (

   

   )
 
 

                                               
  

   
(
  

  
 

  ∗   

  
 

   ∗   

  
 

 ∗     

  
)(

   

   
)
 

 

                                                 
  

 
(
   

   
)
 

 

3.2.2. Fourth-Order Backward Difference Approximation of  
  

  
 

It is found by using a Taylor series (3.3). Start by expressing the value of 

    ,     ,      and      in terms of   : 

         (
  

  
)
 
 

  

 
(
   

   
)
 

 
  

 
(
   

   
)
 

 
  

  
(
   

   
)
 

 
  

   
(
   

   
)
 

          

          (
  

  
)
 
 

     

 
(
   

   
)
 

 
     

 
(
   

   
)
 

 
     

  
(
   

   
)
 

 
     

   
(
   

   
)
 

                                                                                          

          (
  

  
)
 
 

     

 
(
   

   
)
 

 
     

 
(
   

   
)
 

 
     

  
(
   

   
)
 

 
     

   
(
   

   
)
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          (
  

  
)
 
 

     

 
(
   

   
)
 

 
     

 
(
   

   
)
 

 
     

  
(
   

   
)
 

 
     

   
(
   

   
)
 

                                                                                          

 

As such, we again can express the first derivative by multiplying equations 

(3.16), (3.17), (3.18) and (3.19) by the coefficients             respectively. Then, that 

taking the summation of these four equations, one obtains the following expression:  

                               
 

 
             

              (
  

  
)
 
 

        
 

 
             (

   

   
)
 

 

                
  

 
               (

   

   
)
 

 

                   
  

  
                (

   

   
)
 

 

   
  

   
                   (

   

   
)
 

                        

 

At this stage; in order to satisfy the accurate fourth  order in  equation  (3.20) we 

need to find the value of the coefficients             such that the coefficient of  

(
  

  
)
 
must equal 1 and the coefficients of  (

   

   )
 
 (

   

   )
 
and (

   

   )
 
 must be zeros and 

the coefficient  of (
   

   )
 
 should be not zero. We can call the coefficient of     as   such 

that            , thus we obtain the following linear equations to be solved: 
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Truncation error (T.E) = 
  

   
                   (

   

   
)
 
                                   

Multiplying the equations E2 and E4 by (-1), we obtain the system: 

                                                  

                                                    

                                                                                                                         

                                                 

                                               

The system of linear equation (3.23) is equivalent to the system of equations 

(3.9) except that the coefficients of equations    and    one multiplied by (-1). Then the 

solution of the system (3.23) is as follows: 

  
  

  
,   

   

  
,   

  

  
,   

   

  
  And   

 

  
 

Substituting solutions into equations (3.20) and (3.22) gives the fourth order backward –

difference approximation of  
  

  
 as: 

            (
  

  
)
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(     ∗

 

  
    ∗
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) (

   

   
)
 

 

                                    
  

 
(
   

   
)
 

                                                                                        

3.2.3. Fourth-Order Central Difference Approximation of 
  

  
 

It is found by using a Taylor series (3.3). Start by expressing the values of     , 

    ,    , and      then multiplying the equations (3.4), (3.5), (3.16) and (3.17) by 

      and   respectively and collocating the summation of these equation we obtain the 

following expression:  

 

                        

 
 

 
                         (

  

  
)
 
  

 
 

 
           (

   

   
)
 

 
  

 
            (

   

   
)
 

 
  

  
             (

   

   
)
 

 
  

   
              (

   

   
)
 

                                                         

 

At this stage; in order to satisfy the accurate fourth order in  equation (3.26) we 

need to find the values of the coefficients             such that the coefficient of  

(
  

  
)
 
must equal 1 and the coefficients of  (

   

   )
 
 (

   

   )
 
and (

   

   )
 
 must be zeros and 

the coefficient  of (
   

   )
 
 should be not zero. We can call the coefficient of     as   such 

that             , thus we obtain the following linear equations to be solved: 
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Truncation error = 
  

   
              (

   

   )
 
                                                           

The five equations (3.27) are solved for the unknown α,β,γ,δ and θ respectively. 

The first step to rearrange the equation   , resulting the system is: 

                                 

                                

                                                                                                                            

                                 

                                  

The rest steps we can do the same procedures that previously be followed in, as 

resulting in the system: 
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The system of equations (3.30) is now in reduced from and can easily be solved 

for the unknown by a backward-substation process: 

   
 

  
,   

 

  
,    

 

  
,   

 

  
  ,     

It can easily be verified that these values also satisfy the equations in (3.27). 

Substituting solutions into equations (3.26) and (3.28) gives the fourth-order central-

difference approximation of 
  

  
 as following: 

                                (
  

  
)
 
 

                     

   
                                            

And Truncation error        
  

   
(   ∗

 

  
 

 

  
 

 

  
   ∗

  

  
) (

   

   )
 
 

                                   
  

  
(
   

   
)
 

                                                                            

3.3. Fourth–Order Central-Difference Approximation of 
   

   
 

It is found by using a Taylor series in (3.3). Start by substituting the value of 

    ,     ,     and      in (3.4), (3.5), (3.16) and (3.17) and multiplying them by 

      and   respectively and collocated the summation of these equation we obtain the 

following expression:   
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)
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)
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             (
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              (

   

   
)
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At this stage; in order to satisfy the accurate fourth order in equation (3.33) we 

need to find the value of the coefficients            such that the coefficient of  

(
   

   )
 
must equal 1 and the coefficients of (

  

  
)
 
  (

   

   )
 
and (

   

   )
 
 must be zeros and the 

coefficient  of (
   

   
)
 
 should be not zero, we can call the coefficient of     as   such that 

            , thus we obtain the following linear equations to be solved   

                                

                               

                                                                                                                             

                              

                                 

Yielding, 

    
  

   
              (

   

   )
 
  

  

   
                                      

We follow the same procedure in previous sections to solve the system of linear 

equations (3.34), reduced from and can easily be solved for the unknown by a 

backward-substation process:   

   
 

  
,   

  

  
,   

  

  
,    

 

  
,      

  

  
 

when these values are substituted in (3.34) gives: 

 The fourth-order central-difference approximation of 
   

    as following 

       (
   

   
)
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With the truncation error:  

    
  

   
              

   

   
 

  

   
             

   

   
 

        
   

  

   

   
                                                                                                                 

3.4. Finite Difference Approximation  

For illustrative purpose, in the previous section, we presented the derivation 

of backward, forward and central differences fourth order finite difference for first 

derivative and the derivation of central differences fourth order finite difference 

for second derivative. The similar procedure can be carried out for the other 

approximation of any order in a similar fashion. For the sake of brevity, we 

summarized them in Table 3.1, where one can see the approximations and the 

truncation error terms. 
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Table 3.1. The approximation and truncation errors of first and second derivative   

     backward, forward and central differences for several order of accuracy  

 Order m q Approximation 
Truncation 

error 

1 First-order backward 1 2 
  

  
 

       

 
 

 

 
(
   

   )
 

 

2 First-order forward 1 2 
  

  
 

       

 
 

 

 
(
   

   )
 

 

3 Second-order central 1 3 
  

  
 

         

  
 

  

 
(
   

   )
 

 

4 
Second-order 

backward 
1 3 

  

  
 

              

  
 

    

  
(
   

   )
 

 

5 Second-order forward 1 3 
  

  
 

               

  
 

    

  
(
   

   )
 

 

6 Third-order backward 1 4 
  

  
 

                    

  
 

   

  
(
   

   )
 

 

7 Third-order forward 1 4 
  

  
 

                     

  
  

  

  
(
   

   )
 

 

8 Fourth-order central 1 5 
  

  
 

                     

   
  

  

  
(
   

   )
 

 

9 Fourth-order backward 1 5 
  

  
 

                               

   
  

  

 
(
   

   )
 

 

10 Fourth-order forward 1 5 
  

  
 

                                

   
  

  

 
(
   

   )
 

 

11 Second-order central 2 3 
   

    
             

   
  

  
(
   

   )
 

 

12 Fourth-order central 2 5 
   

    
                             

     
   

  
(
   

   )
 

 

13 Third-order forward 2 5 
   

    
                                  

     
    

  
(
   

   )
 

 

14 Third-order backward  2 5 
   

    
                                   

     
    

  
(
   

   )
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CHAPTER 4 

A NUMERICAL APPROXIMATION TO CDE 

The following notation is used with j, i for the time and space, respectively (see 

Figure 4.1.) 

  
 
          

  
   

            

    
 

            

    
 

            

Figure 4.1. Numerical grid in one dimension 

A numerical approximation to C.D.E: 

                                              
  

  
  

  

  
  

   

   
                                                                   

can be obtained by replacing the derivatives by the following approximations 

                              (
  

  
)
 

 

  (
  

  
)
 

 

  (
   

   
)
 

 

                                                          

Depending upon the order and method approximation to first and second derivatives we 

presented 10 different cases of approximation to C.D.E. method in the following 

sections.  
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4.1. Second-Order Central Difference Approximation of 
  

   
 and 

   

   
 

(FTC2S).  

(
  

  
)
 

 

 
  

   
   

 

 
      

(
  

  
)
 

 

 
    

 
     

 

  
       

(
   

   
)
 

 

 
    

 
    

 
     

 

  
       

Substituting these approximations into (4.1) gives: 

  
   

   
 

 
  

    
 

     
 

  
  

    
 

    
 
     

 

  
         

Solving for the new value and dropping the error terms yields 

  
   

   
 
 

  

  
(    

 
     

 
)  

  

  
(    

 
    

 
     

 
)          

Thus, given C at one time (or time level), C at the next time level is given by: 

  
   

   
 
 

  

  
(    

 
     

 
)  

  

  
(    

 
    

 
     

 
)          

General difference approximation then becomes: 

             
   

 (
  

  
 

  

  )    
 

 (  
   

  )  
 
 (

  

   
  

  
)     
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4.2. Fourth-Order Central Difference Approximation of 
  

   
 and 

   

   
 

(FTC4S).  

(
  

  
)
 

 

 
    

 
      

 
      

 
     

 

   
       

(
   

   
)
 

 

 
     

 
       

 
     

 
       

 
     

 

    
       

Substituting these approximations into (4.1) gives: 

  
   

   
 

 
  

    
 

      
 

      
 

     
 

   

  
     

 
       

 
     

 
       

 
     

 

    
         

Solving for the new value and dropping the error terms yields 

  
   

   
 
 

  

   
(    

 
      

 
      

 
     

 
)

 
  

    
(     

 
       

 
     

 
       

 
     

 
) 

General difference approximation then becomes:  

  
   

  (
  

   
 

  

    
)     

 
 (

   

   
 

    

    
)     

 
 (  

    

    
)   

 

 (
    

    
  

   

   
)    

 
 (

  

   
 

  

    
)     
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4.3. Third-Order Forward Difference Approximation of 
  

   
 and 

   

   
  

(FTF3S). 

(
  

  
)
 

 

 
      

 
    

 
      

 
     

 

  
       

(
   

   
)
 

 

 
    

 
        

 
        

 
       

 
       

 

    
       

Substituting these approximations into (4.1) gives: 

  
   

   
 

 
 

 

  
(      

 
    

 
      

 
     

 
)

 
 

    
(    

 
        

 
        

 
       

 
       

 
)          

Solving for the new value and dropping the error terms yields 

  
   

   
 
 

  

  
(      

 
    

 
      

 
     

 
)

 
  

    
(    

 
        

 
        

 
       

 
       

 
) 

General difference approximation then becomes:  

  
   

 
   

  
    

 
 (  

   

  
 

    

    
)   
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)     
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4.4. Third-Order Backward Difference Approximation of 
  

   
 and 

   

   
 

(FTB3S). 

(
  

  
)
 

 

 
    

 
      

 
    

 
      

 

  
       

(
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Substituting these approximations into (4.1) gives: 
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Solving for the new value and dropping the error terms yields 
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General difference approximation then:  
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4.5. Second-Order Central Difference Approximation of 
  

   
 and 

Third-Order Forward Difference Approximation of 
   

   
 

(FTC2F3S). 
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Substituting these approximations into (4.1) gives: 

  
   

   
 

 
  

    
 

     
 

  

  
    

 
        

 
        

 
       

 
       

 

    
         

Solving for the new value and dropping the error terms yields 
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General difference approximation then becomes:  
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4.6. Second-Order Central Difference Approximation of 
  

   
 and 

Fourth-Order Central Difference Approximation of 
   

   
  

(FTC2C4S). 

(
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Substituting these approximations into (4.1) gives: 

  
   

   
 

 
  

    
 

     
 

  
  

     
 

       
 

     
 
       

 
     

 

    
         

Solving for the new value and dropping the error terms yields 
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General difference approximation is:  
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4.7. Third-Order Forward Difference Approximation of 
  

   
 and 

Fourth-Order Central Difference Approximation of 
   

   
 

(FTF3C4S) 

(
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Substituting these approximations into (4.1) gives: 

  
   

   
 

 
  

      
 

    
 
      

 
     

 

  

  
     

 
       

 
     

 
       

 
     

 

    
 

Solving for the new value and dropping the error terms yields 
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General difference approximation becomes in compact form as:  
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4.8. Third-Order Forward Difference Approximation of 
  

   
 and 

Second-Order Central Difference Approximation of 
   

   
 

(FTF3C2S). 
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Substituting these approximations into (4.1) gives: 

  
   

   
 

 
  

      
 

    
 
      

 
     

 

  
  

    
 

    
 
     

 

  
 

Solving for the new value and dropping the error terms yields 
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General difference approximation becomes:  
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4.9. Fourth-Order Forward Difference Approximation of 
  

   
 and 

Third-Order Forward Difference Approximation of 
   

   
 

(FTC4F3S). 
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Substituting these approximations into (4.1) gives: 

  
   

   
 

 
  

    
 

      
 

      
 

     
 

   

  
    

 
        

 
        

 
       

 
       

 

    
 

Solving for the new value and dropping the error terms yields 
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General difference approximation:  
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4.10. Fourth-Order Central Difference Approximation of 
  

   
 and 

Second-Order Central Difference Approximation of 
   

   
 

(FTC4C2S). 

(
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Substituting these approximations into (4.1) gives: 

  
   

   
 

 
  

    
 

      
 

      
 

     
 

   
  

    
 

    
 
     

 

  
 

Solving for the new value and dropping the error terms yields 
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General difference approximation in a compact form is:  
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CHAPTER 5 

NUMERICAL ILLUSTRATIONS 

To demonstrate the applicability of the previous methods, we have applied it to 

some model problems of the convection-diffusion equation with the initial and 

boundary conditions whose numerical results are presented and compared with the exact 

solutions. The differences between the computed solutions and the exact solutions are 

shown in tables for next two examples. To test the performance of the proposed method, 

   and    error norms are used as follows: 

                                  √∑   
        

            
   

   

                                                   

and 

                               |  
        

          |                                                     

An important non-dimensional parameter in numerical analysis is the Courant 

(  ) number. This parameter gives the fractional distance relative to the grid spacing 

travelled due to advection in a single time step,           ⁄ . It is possible to show 

using a Fourier error analysis that for a forward difference in time approximation (i.e. 

explicit), no matter what approximation is used for the spatial derivatives, that the 

transport equation is stable for values of the     . This stability constraint for explicit 

transport equations states that one cannot advent the concentration more than one grid 

cell in a single time step (Sari et al, 2010). 

The Peclet number is another important non-dimensional parameter which 

compares the characteristic time for dispersion and diffusion given a length scale with 

the characteristic time for advection. In numerical analysis, one normally refers to a grid 

Peclet number          ⁄ , where u is the velocity of water flow and the 

characteristic length scale is given by the grid spacing     The literature suggests that 
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for stable solution     . More details on the effects of the Courant and Peclet 

numbers on the results can be found in Steefel and MacQuarrie (1996) 

5.1. Example 1: 

Flow  velocity  and  diffusion  coefficient  are  taken  to  be    = 0.01 m/s  and  

  = 0.002   /s in this experiment. Let the length of the channel be   = 100m. For this 

example, the Pe number is accepted to be ≤ 5 that leads ∆x to be not greater than 1. 

Accordingly, to satisfy     , ∆t must not be more than 100 s. Exact solution of the 

current problem is (Szymkiewicz, 1993): 

                     
 

 
    (

    

√   
)  

 

 
   (

  

 
)     (

    

√   
)                                 

At the boundaries the following conditions are used: 

                            (
  

  
)                                                           

Initial condition can be deduced from the exact solution. Comparison between 

the numerical solutions and the exact solution is given in Table 5.1. The exact results 

were calculated in MATLAB. In Table 5.1, the solutions were produced by FTC2S, 

FTC2C4S, FTF3C4S, FTC4C2S and FTC4S schemes for space step ∆x=1 and time step 

∆t=10 s. Note that the schemes give stable results but are not close enough to the exact 

solution (see Figures 5.1 and 5.2).  

The calculations were repeated for different time step ∆t = 1, 0.5 and 0.1s and 

space step ∆x = 1, 0.5, 0.1 and the corresponding maximum errors obtained from these 

computations are presented in Tables 5.2 and 5.3. 
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(a)  FTC2S                                         (b) FTC24S 

 

(c ) FTF3C4                                  (d) FTC42S 

 

Figure 5.1. Comparison of the analytical solution and the numerical solution obtained 

by (a)FTC2S, (b) FTC24S, (c) FTF3C4S and (d) FTC42S schemes for     

∆t =10  and ∆x=1 at  time=3000s 

 

 

 

Figure 5.2. Comparison of the analytical solution and the numerical solution obtained 

by FTC4S scheme for ∆t =10 and ∆x=1 at  time=3000s 
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Table 5.1. Comparison between numerical solutions of different schemes and the exact     

solution for ∆x = h = 1 m and ∆t = k = 10 s at Time=3000 s. 

X FTC2S FTC2C4S FTF3C4S FTC4C2S FTC4S Exact 

0 1 1 1 1 1 1 

10 1.000042793 0.999997699 0.99511773 0.99999934 1.000000042 0.999999998 

20 1.000124237 1.001640527 0.99988434 0.99931768 0.999436030 0.998480283 

30 0.464220777 0.466014337 0.50475789 0.51218883 0.513069832 0.522956922 

40 0.004574256 0.004335654 0.00114622 7.11264e-05 0.000253283 0.002251550 

50 1.445295e-06 9.782067e-07 1.38096e-08 1.05051e-09 3.078858e-08 4.87825e-09 

60 3.082604e-11 9.582876e-12 1.75836e-15 8.97263e-14 2.576221e-13 3.14712e-18 

70 6.919535e-17 5.200627e-18 1.23081e-24 2.39140e-19 1.994503e-18 5.360089e-31 

80 2.171451e-23 1.433724e-25 1.56591e-34 1.63797e-25 3.758043e-24 2.310465e-47 

90 1.156595e-30 6.402280e-35 4.19556e-44 6.06539e-32 1.636997e-29 2.472812e-67 

100 7.683836e-38 1.408349e-44 5.44279e-53 6.62012e-38 3.328681e-35 6.504858e-91 

As shown in Tables 5.2 and 5.3, the FTC4S scheme provided the less error 

among others. Thus, it gave better results and closer to the exact solution. The results of 

the FTC2S, FTC2C4S, FTF3C4S, FTC4C2S schemes for ∆t = 1s are seen to be 

acceptable level. Comparison of the exact solution and the numerical solution obtained 

with FTC4S scheme for ∆x = 0.1 m and ∆t = 0.1 s is shown in Figure 5.3.  As can be 

seen in this figure; there is an excellent agreement between FTC4S and exact solutions. 

Table 5.2. Error calculated by    norm for various ∆t, ∆x values at Time = 3000 s. 

∆t ∆x 
       

FTC2S 
       FTC2C4S 

       

FTF3C4S 

       

FTC4C2S 

       

FTC4S 

1 1 0.0441423 0.0434360 0.0142497 0.0064126 0.0050347 

1 0.5 0.01254143 0.0123152 0.0049283 0.0041731 0.0037178 

1 0.1 0.0037939 0.0037749 0.0038313 0.0038400 0.0038226 

0.5 1 0.0439290 0.0432437 0.0124733 0.0054143 0.0045548 

0.5 0.5 0.01214416 0.0119480 0.0030549 0.0023013 0.0018181 

0.5 0.1 0.00190392 0.001884 0.0019073 0.0019158 0.0018988 

0.1 1 0.04376306 0.043094 0.0112973 0.0048095 0.0043552 

0.1 0.5 0.01184982 0.0116813 0.0016765 0.0009370 0.0004940 

0.1 0.1 0.00059969 0.0005845 0.0003861 0.0003945 0.0003777 
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Table 5.3. Error calculated by      norm for various ∆t, ∆x values at Time = 3000 s 

∆t ∆x 
       

FTC2S 

       

FTC2C4S 

       

FTF3C4S 

       

FTC4C2S 
       FTC4S 

1 1 0.098786 0.097027 0.0324829 0.01462199 0.01178481 

1 0.5 0.037651 0.0369527  0.0164043 0.01431268 0.01302495 

1 0.1 0.029159 0.0290429 0.0293775 0.02943430 0.02932083 

0.5 1 0.098260 0.0966612 0.0285396 0.01159430 0.00952232 

0.5 0.5 0.036322 0.0358264 0.0099588 0.00778993 0.00649151 

0.5 0.1 0.014621 0.0145065 0.0146476 0.01470347 0.01459202 

0.1 1 0.097988 0.0965160 0.0256848 0.01012930 0.00909709 

0.1 0.5 0.036077 0.0357542 0.0052152 0.00290268 0.00162710 

0.1 0.1 0.004143 0.0040543 0.0029627 0.00301864 0.00290756 

 

 

Figure 5.3.  Comparison of the analytical solution and the numerical solution obtained 

by FTC4S scheme for ∆t =0.1 and ∆x=0.1 at time=3000s 
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5.2. Example 2: 

 A problem for which the exact solution is known is used to test the methods described 

for solving the advection–diffusion equation. These techniques are applied to solve 

equation (1.1) with   ,    and      known and C unknown (Dehghan, 2004). Consider 

the initial and boundary conditions as following: 

                                ( 
        

       
)                                                                                

                           
     

√              
    ( 

        

                
)                                                 

                          
     

√              
    ( 

        

                
)                                                  

 With D=0.01 and u=1, for which the exact solution is: 

                 
     

√              
    ( 

          

                
)                                   

In this example Pe number is also accepted to be ≤ 5 that leads ∆x to be not 

greater than 0.05. To satisfy the the condition     , ∆t must not be more than 0.05 s. 

The results obtained for        computed at time, t=1 s for ∆t = 0.008 and ∆x = 0.05, 

using the FTC2S, FTC2C4S, FTF3C4S, FTC4C2S and FTC4S techniques are  shown in 

Table 5.4 and  Figures 5.4 and 5.5.  

As seen, the results are acceptable but not at a desired level. Therefore, tests 

were carried out for different values of the Courant number   . For each value of   , 

three values of ∆t were used, namely ∆t =0.001, 0.002 and 0.004. For the three tests for 

each    were chosen to force ∆x =0.01, 0.02, 0.04 and 0.05. 
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FTC2S                                                                                   FTC2C4S 

 
FTF3C4S                                                                   FTC4C2S 

Figure 5.4. Comparison of the analytical solution and the numerical solution obtained 

by FTC2S, FTC2C4S, FTF3C4S and FTC4C2S schemes for ∆t =0.008 and 

∆x=0.05 at time=1s 

 

Figure 5.5. Comparison of the analytical solution and the numerical solution obtained  

by FTC4S schemes for ∆t = 0.008 and ∆x = 0.05 at time=1 s 
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Table 5.4. Comparison between numerical solutions of different schemes and the exact 

solution for ∆x= h = 0.05 m and ∆t= k = 0.008 s at Time= 1 s. 

x FTC2S FTC2C4S FTF3C4S FTC4C2S FTC4S Exact 

0 0.000406 0.0004061 0.0004061 0.0004061 0.0004061 0.0004061 

0.1 0.002361 0.0021607 0.0020033 0.0024914 0.0024716 0.0035992 

0.2 0.013213 0.0137380 0.0179764 0.0163945 0.0163713 0.0196423 

0.3 0.071859 0.0723070 0.0589178 0.0629977 0.0636372 0.0660099 

0.4 0.159839 0.1584572 0.1477484 0.1467381 0.1464142 0.1366028 

0.5 0.179882 0.1794202 0.2013436 0.1928833 0.1913374 0.1740777 

0.6 0.121636 0.1224944 0.1349935 0.1392791 0.1398626 0.1366028 

0.7 0.054770 0.0552682 0.0502551 0.0545550 0.0556842 0.0660099 

0.8 0.017536 0.0174647 0.0114197 0.0106773 0.0106042 0.0196423 

0.9 0.004162 0.0040118 0.0015620 0.0006354 0.0003194 0.0035992 

1 0.0004061 0.0004061 0.0004061 0.0004061 0.0004061 0.0004061 

Table 5.5. Error calculated by    norm for various    and ∆x =0.01 values at 

Time = 1s 

 
Cr        FTC2S        FTC2C4S 

       

FTF3C4S 

       

FTC4C2S 
       FTC4S 

1 0.1 0.0091819 0.009706195 0.00987037 0.0098713 0.00899398 

2 0.2 0.0188940 0.019764724 0.01993810 0.01993919 0.01870624 

3 0.4 0.0398658 0.040991924 0.04118870 0.04118923 0.03966196 

Table 5.6. Error calculated by    norm for various    and ∆x = 0.01 values at                

Time = 1s 

 
Cr        FTC2S 

       

FTC2C4S 

       

FTF3C4S 

       

FTC4C2S 

       

FTC4S 

1 0.1 0.0020302 0.00214636 0.00219392 0.00219392 0.0019806 

2 0.2 0.0041794 0.00437941 0.00443064 0.00443064 0.0041267 

3 0.4 0.0088727 0.00912411 0.00918114 0.00918114 0.0088134 
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As seen, FTC4S produces comparable less error. The performances of 

the schemes are in an acceptable range. Tables 5.5 and 5.6, present the error 

measures for different Cr  and  ∆t  conditions. FTC4S  produces  less    and 

   error values. Figure 5.6 shows  the  simulation  for  the  case  Cr = 0.1  and 

∆t = 0.001 at time t = 1s for FTC4S scheme. As seen, the method captures the 

exact solution. 

 

Figure 5.6.  Comparison of the analytical solution and the numerical solution obtained 

by FTC4S schemes for Cr = 0.1 such that ∆t = 0.001 and ∆x = 0.01 at      

time t =1s 

Table 5.7. summarizes the errors calculated by the two  norms (   and   ) for 

∆t = 0.001, 0.002, 0.004 and 0.008, ∆x = 0.02,0.04 and 0.05 at simulation time of 1 s. 

As seen, all the methods perform comparable well though FTC4S produces less error. 
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Table 5.7 Error calculated by     and     norms for various ∆t =0.001, 0.002, 0.004 and 0.008 and ∆x =0.02, 0.04 and 0.08 values at Time = 1s 

∆x ∆t 

FTC2S FTC2C4S FTF3C4S FTC4C2S FTC4S 

                              

0.02 0.001 0.0098124 0.0029526 0.0093719 0.0028319 0.007693 0.0024688 0.007199 0.00228 0.0067309 0.002087 

0.02 0.002 0.0141507 0.0044640 0.0135983 0.0042712 0.014814 0.0046974 0.014312 0.00449 0.0138264 0.004295 

0.02 0.004 0.0271584 0.0086223 0.0265540 0.0083820 0.029916 0.0094862 0.029359 0.00926 0.0288158 0.009042 

0.02 0.008 0.0591869 0.0189910 0.0584499 0.0186640 0.063927 0.0205089 0.063196 0.02019 0.0624836 0.019877 

0.04 0.001 0.0252148 0.0108313 0.0244634 0.0104743 0.010338 0.0047912 0.006040 0.00280 0.0049409 0.002291 

0.04 0.002 0.0254406 0.0104099 0.0244509 0.0100218 0.014789 0.0070882 0.010210 0.00459 0.0089310 0.003872 

0.04 0.004 0.0285049 0.0126602 0.0270933 0.0120222 0.025266 0.0119898 0.020296 0.00907 0.0188789 0.008254 

0.04 0.008 0.0430993 0.0201471 0.0411493 0.0190288 0.050126 0.0234914 0.043763 0.01942 0.0419663 0.018357 

0.05 0.001 0.0345378 0.0158988 0.0335427 0.0153800 0.014815 0.0079030 0.007834 0.00402 0.0069836 0.003635 

0.05 0.002 0.0345316 0.0156590 0.0333261 0.0151025 0.018353 0.0100535 0.010084 0.00515 0.0086786 0.004507 

0.05 0.004 0.0359904 0.0166343 0.0343565 0.0155533 0.027312 0.0146826 0.017710 0.00894 0.0159116 0.007897 

0.05 0.008 0.0448554 0.0232361 0.0424777 0.0218544 0.050081 0.0272659 0.037549 0.01881 0.0352611 0.017260 

5
1
 

 5
1
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CHAPTER 6 

CONCLUSIONS 

In this study, several numerical schemes were applied to the one-dimensional 

convection–diffusion equation. The proposed numerical schemes solved this equation 

quite satisfactorily. The explicit finite difference schemes are very simple to implement 

and economical to use. They are very efficient and they need less time step than the 

other finite difference methods. A comparison with the different schemes for the 

numerical solution of the advection–diffusion problem shows that the FTC4S finite 

difference methods, even though they have extended range of stability, use large central 

processor times. The explicit finite difference FTC4S scheme is very easy to implement 

for similar higher dimensional problems, but it may be more difficult when dealing with 

the FTC2S, FTC2C4S, FTF3C4S and FTC4C2S schemes. When comparing the explicit 

finite difference techniques described in this study, it was found that the most accurate 

method is the fourth-order explicit formula FTC4S scheme. This scheme like other 

explicit schemes can be used to take advantage on vector or parallel computers. For 

each of the finite difference schemes investigated the modified equivalent partial 

differential equation is employed which permits the order of accuracy of the numerical 

methods to be determined. The performance of the method for the considered problems 

was tested by computing     and    error norms. Also from the truncation error of the 

modified equivalent equation, it is possible to eliminate the dominant error terms 

associated with the finite-difference equations that contain free parameters (weights), 

thus leading to more accurate  methods. 
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