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ABSTRACT

VIBRATION ANALYSIS OF LAMINATED COMPOSITE CIRCULAR
PLATES WITH RADIAL SLOTS

Vibration characteristics of laminated composite annular circular plates with
radial slots are studied by Finite Element Method (FEM). As theoretical background,
vibration analysis of orthotropic annular circular plates, mechanics of laminated
composites and finite element modeling are summarized. Laminated composite annular
circular plates with radial slots are introduced. The APDL program in ANSYS is
developed for the titled problem and verified by the available literature for the annular
circular plate. Then, the effects of lamination parameters on natural frequencies are

investigated.
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OZET

RADYAL KANALLI DAIRESEL KOMPOZIT PLAKALARIN
TITRESIM ANALIZI

Radyal kanalli halkasal tabakali kompozit plaklarin titresim karakteristikleri
Sonlu Elemanlar Yontemi (SEY) ile ¢calisilmistir. Teorik altyapi olarak, isotropic halkasal
plaklarin titresim analizi, tabakali kompozitlerin mekanigi ve sonlu elemen modellemesi
Ozetlenmistir. Basliktaki problem i¢cin ANSYS de APDL programi gelistirilmis ve
literatiirde olan halkasal plak sonuglar ile dogrulanmistir. Daha sonra, kompozit tabaka

parametrelerinin dogal frekanslara etkileri arastirilmigtir.
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CHAPTER 1

GENERAL INTRODUCTION

Composite laminated annular circular plates are used in a wide range of
engineering applications such as saw blades, disk brakes of bikes etc. Nowadays,
engineers are very interested in composite materials since they have lower weight,
more stiffness and strength.

There are a lot of studies on the vibration of annular and circular plates in
literature. First of all, Southwell (1922) investigated natural frequency for annular
plate vibration in a vacuum atmosphere as a pioneer .Conway (1948) developed the
static analysis of radially tapered disc springs. Timoshenko and Krieges (1959)
proposed an exact solution for Conway’s (1948) study. Conway et al (1964) presented
vibration of tapered bars and circular plates. Vogel and Skinner (1965) studied on
vibration of circular plates with different boundary conditions.

Ramaiah and Vijayakumar (1973) investigated natural frequencies of polar
orthotropic annular plates. Also, Narita (1984) found the natural frequencies of
completely free annular and circular plates which have polar orthotropy. Chen and
Juang (1987) studied on axisymmetric vibration of bimodulus thick circular and
annular plates. Narita and Leissa (1992) applied Ritz method to study frequencies and
mode shapes of cantilevered laminated composite rectangular plates.

Viswanathan et al (2009) presented asymmetric free vibrations of laminated
annular cross ply circular plates including the effects of shear deformation and rotary
inertia by using spline method.

In this study, vibration characteristics of laminated composite annular circular
plates with and without radial slots are studied by Finite Element Method (FEM). The
APDL program in ANSYS is developed for the titled problem and verified by the
available literature for the annular circular plate. Then, the effects lamination

parameters on natural frequencies are investigated.



CHAPTER 2

THEORETICAL BACKGROUND

2.1. Introduction

This chapter is presented to describe the problem, to introduce the geometry of
the circular plates with radial slots, to summarize the vibration analysis of circular
plate and mechanics of laminated composites, to model the system by finite elements
and finally to review the vibration analysis of the system.

The detailed information about the circular plates with radial slots can be
found in numerious textbooks. Althougth, the aforementioned textbooks present the
fundamental concepts to the readers, some important concepts are summarized in this

chapter.

2.2. Description of the Problem

The problem is finding the natural frequencies and mode shapes of circular
plates with radial slots with different lamination parameters. After validating the finite
element model for vibration analysis, vibration characteristics of the laminated

circular plates with radial slots are studied.(Figure 2.1)

2.3. Geometry of the Circular Plates with Radial Slots

Geometry of the composite laminated annular circular plates with radial slots
is shown in Figure 2.1. In this figure, notations related to geometry of it are also
shown. It can seen from Figure 2.1 that R, is the inner radius of the disk, R} is the
outer radius of the disk, R, is the inner radius of the slot, 4 is the thickness of the plate,
hy is the thickness of the K™ layer and z is the distance from the mid-plane of the disk

to the k"™ layer.



Section A-A

I ]
I

T |
| | | | -
= | I

= | 1

Figure 2.1. Section view and Geometry of the circular plates with radial slots.

2.4. Vibration Analysis of Isotropic Circular Plates

An isotropic annular plate of constant thickness #, inner radius R, and outer radius R,

is considered. The equations of motion is given as (Amabili 2008),

DV4w+phv'f/:O 2.1
where

_ER
120-0%)

V* =[02/0r® +(1/r)(9/r) +9*/(r*06))?

In the case of axisymmetric boundary conditions, by using the separation of

variables, the solution of the Equation 2.1 takes the following form:

w(r.0.0=3 S W, (1) cos(nB)e " 2.2)



where

A r A, r
Wm n (r) = Cm an ° + dWl nYn y
’ ’ Rh ’ Rb

A, .r A,
+ em nln X + ng VlKVl X
! Rb ! Rh

in which m and n represent the number of nodal circles and diameters, respectively;

(2.3)

Cmns Amn, €mn and g,,, are the mode shape coefficients, which are determined by the
boundary conditions; J, and Y, are the Bessel functions of first and second kind, 7, and
K, are the modified Bessel functions of first and second kind, respectively, and A, is
the frequency parameter, which is also determined by the boundary conditions.

The frequency parameter 4,,, is related to the circular natural frequency w,,,

by

2
_ P | D (2.4)
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R\ ph
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Mode shapes of circular plate depending on (m, n) are shown in Figure 2.2.
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Figure 2.2. Mode shapes of clamped circular plate depending on (m, n)



2.5. Mechanics of Laminated Composites

2.5.1. Macromechanical Analysis of a Lamina in cartesian coordinates

In order to explain the stress—strain relationship for an angle lamina in x-y

coordinate system, Figure 2.3 is considered.

2 \
// 7

0

/

/// / Z

Figure 2.3. Local and global axes of an angle lamina.

yll

"

The stress—strain relationship in x-y coordinate system is (Kaw 2006)

O-x gl 1 gl 2 gl 6 gx
0,1=|0n On 0Ox|\&, (2.5)
Txy Q16 Q26 Q66 7/xy

where Qj are called the elements of the transformed reduced stiffness matrix [é ]and

are given by

0, =0,,c* +0,5* +2(0,, +20,,)s’c’ (2.6)
§12 =(Q,, +0,, —40 )5262 + 0., (C4 + 52) 2.7)
Q,, =0,s* +0,,¢c* +2(0,, +20,,)s’c* (2.8)

§16 =(0, — 0, =204 )e’s — (O =01 =204 )s’c (2.9)



§26 =(0), — 01, =204 Jes® — (O, = 0Oy =204 )sc? (2.10)

Qg = (0, + 0y =20, =20 )c’s> + Qg (s +¢*)  (2.11)

in which ¢=Cos(d) and s=Sin(d) The stiffness coefficients Q;; are related to the

engineering constants and given as:

E
0, = L (2.12)
1_7)21012
v, E
Q, =—272 (2.13)
” 1_7)21012
E
0, = 2 (2.14)
1_021012
Qg =G, (2.15)

Since the Q; presented above do not allow a direct study of the effect of the angle of

the lamina on the Qj , they can be written in invariant form as

0, =U,+U,Cos20+U,Cos486 (2.16)

Q,, =U, —-U,Cos48 (2.17)

Q,, =U, —U,Co0s26 +U,Cos46 (2.18)
U, .. .

0 =—F Sin260 +U,Sin40 (2.19)
U, . :

0y ==+ Sin26 — U, Sin46 (2.20)



§66 :%(Ul -U,)-U,Cos40 (2.21)

U,,U,,U;,U , are the four invariants and are combinationsof the Qj;, in which

U, = %(3Qn +30,, +20,, +4Q,) (2.22)
U, = %(Q11 —05) (2.23)
U, = é (30, +Q,, —20,, —40,,) (2.24)
U, = é(QU +0,, +60, —40,,) (2.25)

2.5.2. Macromechanical Analysis of Laminates in Cartesian

Coordinates

A laminate is made of a group of single layers bonded to each other as shown
in Figure 2.4. Special notations are used for the laminate code. Some laminate codes

are illustrated in Figure 2.5.a-d.

Fiber direction

\?ﬂ_'
\x\\\ x

hi

Figure 2.4. Schematic of a laminate.
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Figure 2.5. Laminate code examples

[0/-45/90/60/30] denotes the code for the laminate shown in Figure 2.5.a. It
consists of five plies, each of which has a different angle to the reference x-axis. A
slash separates each lamina. The code also implies that each ply is made of the same
material and is of the same thickness.

[0/-45/90,/60/0] denotes the laminate shown in Figure 2.5.b, which consists of
six plies. Because two 90° plies are adjacent to each other, 90, denote them, where the
subscript 2 is the number of adjacent plies of the same angle.

[0/—45/60], denotes the laminate consisting six plies as shown in Figure

2.5.c. The plies above the midplane are of the same orientation, material, and
thickness as the plies below the midplane, so this is a symmetric laminate. The top
three plies are written in the code, and the subscript s outside the brackets represents
that the three plies are repeated in the reverse order.

[0/—45/ 36]5 denotes this laminate shown in Figure 2.5.d, which consists of

five plies. The number of plies is odd and symmetry exists at the midsurface;
therefore, the 60° ply is denoted with a bar on the top (Kaw 2006).
In this section, the classical lamination theory for a plate under the in-plane

loads and moments directions shown in Figure 2.6 is presented.
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N,, N, = normal force per unit length, N,,= sher force per unit length

Z

M., M, = bending moments per unit length, M,, = twsiting moments per unit length

Figure 2.6. Resultant forces and moments on a laminate.

The strain-displacement equations can be written in matrix form as:

(=} %mo %mo

éa v\a xﬁ

0
X K X
0
y Tz Ky
0
Xy ny

(2.26)

(2.27)

(2.28)



Let us consider a laminate made of n plies shown in Figure 2.7. Each ply has a

thickness of #; . Then the thickness of the laminate % is

h=Yt (2.29)

T Mid-plane

I
I  J ‘lk*I k-1
lk tk t k

k+1 h/i2y z

Figure 2.7. Coordinate locations of plies in a laminate.

The forces and moments in the plate having thickness 4 are written as

X hl2 X
N, |= [ |o,|d (2.30)
N, ~hi2 T,
MX hil2 O-X
M, |=[ |o,|zdz (2.31)
Mxy —h/2 "

Since the laminate made of n plies, forces and moments in each lamina are summed
after integrating the stresses for each lamina to give the resultant forces and moments

in the laminate as

10



x n hk x
N, (= | |o,]| dz (2.32)
ny k=1 pk—1 Z.xy )
Mx n hk O-x
M, (=X [ |o,| zde (2.33)
Mx; k=1 pk—1 Txy )

Now, the resultant forces and moments are written in terms of the midplane

strains and curvatures by using the stress—strain relationship as

Nx All A12 A16— 83 Bll Blz BIG Kx
N, |=|A, A, Ayg|é& |+|B, By, By|k, | (234
_N Xy Alé A26 A66 B _73); B 16 B 26 B 66 Xy
Mx Bll Blz Bl6_ )(3 Dll D12 D16 Kx
M, |=|B, By By|é& |+|D, Dy, Dy| &, | (2.35)
_M)g Bl6 st B66 L )(c)y D16 D26 D66 Xy

where the [A], [B], and [D] matrices are called the extensional, coupling, and bending
stiffness matrices, respectively. The matrix [A] relates the resultant in-plane forces to
the in-plane strains, and the matrix [D] relates the resultant bending moments to the
plate curvatures. The matrix [B] couples the force and moment terms to the midplane

strains and midplane curvatures. Elements of the [A], [B], and [D] are given as

A, =Yl@)ln ~h ). i=126 j=126 (236)
k=1
1 &= . .

B, =E;[(Qij)]k(hkz —h2), =126 j=12.6 (2.37)
1 &)= . .

D, ZE;[(Qii)]k(hZ —h;f_l)’ i=12,6; j=126 (2.38)

11



2.5.3. Macromechanical Analysis of Laminates in Polar Coordinates

In order to understand the angle lamina in -6 coordinate system, Figure 2.8 is
provided from excellent textbook written by Qatu (2004).

It can be concluded from Figure 2.3 and Figure 2.8 that the equations
presented in the previous two subsections are valid for the circular plates with circular
orthotropy by replacing r and 6 to x and y, respectively, except the midplane strains

and curvatures equations given in Equations 2.27 and 2.28.

>

Lamination Angle

Figure 2.8 Circular plates with circular orthotropy (Source: Qatu 2004)

Therefore, the laminate constitutive equations are written as

Nr All A12 A16 gr(’) Bll BlZ B16 Kr

NH = A12 A22 A26 83 + BIZ BZZ BZG KB (239)
NrH A16 A26 A66 7/1(")9 BIG BZG BG6 Krﬁ

Mr Bll BlZ B16 81(') Dll D12 D16 Kr

MB = B12 BZZ BZ6 83 + D12 D22 D26 KH (240)
MrB Bl6 BZ6 B66 7/?9 D16 D26 D66 Krﬂ

The midplane strains and curvatures in Equation 2.39 and 2.40 are given by Qatu
(2004) as

12



9y
g? N or
e b= Yo Mo (2.41)
o r6 r
Ve du, v, v,
060 Jdr r
_ 9w,
K'r az ar2 a
Wo Wo
=1 - - 2.42
Ko r’00*  ror (242)
Ko L 9%w, | dwy
rord@ r*o6

2.5.4. Equations of Motions of Laminated Plates in Cartesian

Coordinates

In this section, Classical Laminated Plate Theory (CLPT) is used for equation
of motions. CLPT is an extension of classical plate theory (Reddy 2004) and based on
that the transverse strains (y.., ), &) and consequently the transverse shear stresses

are zero. Equations of motions are given by Reddy (2004) as follows:

ON, ON, 0’u 9> (ow
= 2 =] o1 — 2 2.43
x oy v 18t2[8xj (2:43)
oN +aNy _ 9%, 7 i ow, (2.44)
ox dy ot ot oy .

o°’M O°M . O°M .
42 = +———+N(w,) +q =

ox’ i dyox dy
(2.45)

2 2 2 2 2
1, O Vo O[Oy Oy O[Oy, Oy
ot ot” | ox dy o’ dx  dy

13



where ¢ is distributed load in z direction, Iy, I}, I are the mass moment of inertia terms

and given as

I, o |1
L= [ |z|pd (2.45)
I k=1 k-1 _2
2 Z

in which py is density of the material of k® layer. Also, N(wp) in Equations 2.45 is

given as

0 ow ow 0 ow ow,
N =—|N O+ N o l+—| N O+ N 0 2.46
(WO) ax ( x ax + xy ay j + ay ( Xy ax + y ay ] ( )

2.5.5. Equations of Motion for Laminated Plates in polar coordinates

Equations of motions are given by Qatu (2004) as follows:

—(rN )+ (N;e) N,+rq, =r(1 uo) (2.47)
i(N )+i(rN )+ N, +rq,=r(1 V) (2.48)
ae 0 ar ré ré ] 0%0

—(rQ )+ (Qe) +rq, =r(l,W,) (2.49)

where ¢,, qo and g, represent the distributed forces in the r, 6 and n directions,

respectively. Also, rQ, and rQy are given as

rQ, :—(rM )+ 5 (M. =M, (2.50)

rQ, = (M )+ (erg) +M, (2.51)

14



2.6. Natural Frequencies by Finite Element Method

The free vibration equation of motion of a undamped multi-degree-of-freedom

system is given by
[M1{x@)}+ (K D{x()} =0 (2.52)

where [M] and [K] are mass and elastic stiffness matrices, respectively. Also, {x(?)} is
displacement vector.

Finite Element Method is based on the interpolation functions which are
properly selected for element geometry and nodal freedoms. For the present problem,
the displacements are approximated over an element by Lagrange and Hermite

interpolation functions as follows (Reddy 2004),

(e, =3, (0, (5, )
YERMED ROIACE) (2.53)

W(x’y’t):iAk(t)¢k(x’y)

where u;(f) and vi(f) denote the values of (u,v) at the j-th node of the Lagrange
elements, A, denote the values of w and its derivatives with respect to x and y at the
k-th node, and ¥,(x,y) and ¢.(x,y) are Lagrange and Hermite interpolation

functions, respectively. Therefore, Equation 2.52 is reduced the following equation to

find the natural frequencies and mode shapes of the system

[K"] [K"] [K"] M"1 o] MPI\({}) [0
K] [K2] [K®]|+@®| [0] [MZ] MP]|K{n.}i=100 (2.54)
[Kl3]T [K23]T [K33] [Ml3] [M23] [M33] {Ae} 0

15



where

in which

K= AL S+ A (S5 +57)+ A S

K =ALSY +AS: +AyS) +AeS)"

KZZ_A Sxx+A ( JCX+S)’X)+A S)’)’
ij T 466N ij 26\ jj ij 220 jj

13 _ XXx xyy _ XXy
Kik - BllRik BlZRik 2BZ6Rik

, » (2.55)
- B16Ri/‘<u - stR;i” - ZBésRix}
K? =-B,R;" —B,R}” —2B,R;"
B12Rm BzzRi/‘cH ZBzéRm
K /313 =-D, 1T/;m -D, (Tk)lcxyy + Tk';vw )
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CHAPTER 3

NUMERICAL RESULTS AND DISCUSSIONS

3.1. Geometrical Models of the Annular Circular Plates

In this chapter, numerical analyses are carried out for the composite laminated
annular circular plates with radial slots for different lay-up secuences in the order of
30°/0°/30°, 45°/0°/45°, 60°/0°/60°, 75°/0°/75°, 90°/0°/90°. The annular circular plates

is shown in Figures 3.1.

Figure 3.1. Annular circular plate with radial slots

Geometrical data of the laminated annular plates have the following common

parameters:

Inner radius of the laminated annular plate R,= 60 mm

Outer radius of the laminated annular plate R,= 120 mm
Inner radius of the slot of laminated annular plate R.= 90 mm
Total thickness of the laminated annular plate 7= 3 mm

Layer thickness of the laminated annular plate /= 1 mm

Slot width of the laminated annular plate b=t

18



Other geometrical data for the each model is based on the following format:

LO-ss-rr

where L, -, s and r are used in the model name to identify the model, the 6, s and r
represent the top and bottom laminate angle, the number of slot s and the ratio of inner
slot radius to outer slot radius r= R, / Rp,. For example: L30-n2-1r0.75 means a model

with 30" lamination angle, 2 slots and ratio r=0.75.

3.2. Finite Element Models

The physical models introduced in Section 3.1 are modelled in ANSYS by
using SHELL99 element. S-Glass/ Epoxy (Scotchply 1002) is selected as plate
materials. Material properties are given as follows (Kaw 2006):

e Fiber volume fraction Vy= 0.45

¢ Longitudinal elastic modulus E; = 38.6 GPa

e Transverse elastic modulus E, = 8.27 GPa

® Major Poisson’s ratio vi; = 0.26

e Shear modulus G, = 4.14 GPa

e Ultimate longitudinal tensile strength G = 1062 MPa

e Ultimate longitudinal compressive strength Glcuh =610 MPa

e Ultimate transverse tensile strength G, i = 31 MPa

e Ultimate transverse compressive strength Gzcuh =118 MPa

e Ultimate in-plane shear strength 7= 72 Mpa

e Density p=1.8 10° kg/m’

The annular circular plate with radial slots is free on outside and clamped on inside.

The proper numbers of elements for annular circular plates in the ANSYS
program are determined by comparing the natural frequency results as follows:

¢ 10 elements in radial direction

e 72 elements in circumferential directions,

Therefore total 7200 elements are used.
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3.3. Validation of the Finite Element Model

The natural frequency parameters of the the isotropic annular plates obtained
by using the aforementioned shell elements are compared with the exact results given
by Leissa (1969). The results are given in Table 3.1. In order to demonstrate the
selected element capabilities, the ratio=the finite element result to exact result ratio is

provided in the same table.

Table 3.1. Comparison of natural frequency parameters A>

A% (m,n) Exact Shell99 Ratio
2% (0,0) 13.0 13.0000 1.0000
20,1 13.3 13.2784 0.9984
22(0.2) 14.7 14.7237 1.0016
27 (0.3) 18.5 18.6055 1.0057
A% (1,0) 85.1 84.0752 0.9881
A (1,1) 86.7 85.7338 0.9889
A (1,2) 91.7 90.7174 0.9893
27 (1,3) 100.0 99.0536 0.9905

It can be conculded from Table 3.1 that, Shell99 element for the present
problem which is vibration of isotropic plate gives good results.

In the reachable literature, there are no study on the vibration of laminated
annular plate with numerical results. Therefore, the finite element model created in

ANSYS is verified by isotropic plate studuy.
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3.4. Natural Frequencies and Mode Shapes

The results found for the several cases are given in the Table 3.2 to Table 3.6.

Table 3.2. Natural frequencies for 30°/0°/30°

f(m,n) L30-s0-r1 L30-s2-r0.75 | L30-s4-r0.75
£(0,0) 457.11 456.87 456.72
o 467.08 463.40 464.25
’ 467.08 468.45 464.25
505.29 491.85 481.95
f0.2) 505.29 508.95 512.56
590.72 560.00 563.21
S(0.3) 590.72 593.03 563.21
£(1.0) 3029.9 3021.82 3052.68
o 3065.7 3060.98 3075.26
’ 3065.7 3073.32 3075.26
o) 3173.5 3138.63 3133.58
’ 3173.5 316775 3164.38
e 3354.9 3302.7 3307.42
’ 3354.9 334236 3307.42

Table 3.3. Natural frequencies for 45°/0°/45°

f(m,n) L45-s0-r1 1L45-s2-r0.75 | L45-s4-r0.75
£(0.0) 400.73 398.97 397.63
413.89 406.7 406.86
SO.1) 413.89 414.7 406.86
463.56 442.76 427.49
f(0.2) 463.56 466.97 470.33
571.03 527.41 529.83
S(0.3) 571.03 571.62 529.83

2479.69

£(1,0) 25384 ey 2499.87
o 2594.2 2591.32 2543.96
’ 2594.2 2626.60 2543.96
2 2758.8 274735 2669.17
’ 2758.8 277131 2741.18
A 3025.2 2041.58 200481
’ 3025.2 3013.37 2004.81

21



Table 3.4. Natural frequencies for 60°/0°/60°

F(m.n) L60-s0-r1 | L60-52-10.75 | L60-54-10.75
£(0.0) 358.00 353.10 394.64
367.27 357.26 356.60
SO.1) 367.27 367.50 356.60
416.04 393.12 375.02
f(0.2) 416.04 419.08 421.95
543.63 491.53 490.99
£(0.3) 543.63 538.70 490.99
£(1,0) 2142.6 2114.85 2040.53
o 22107 2165.88 2117.03
’ 22107 2207.16 2117.03
2 24102 2289.92 2391.02
’ 24102 2397.45 2465.04
A 2729.6 267721 2685.73
’ 2729.6 2713.86 2685.73

Table 3.5. Natural frequencies for 75°/0°/75°

f(m,n) L75-s0-r1 L75-s2-r0.75 | L75-s4-r0.75
£(0,0) 340.26 331.06 325.25
335.44 326.18 324.03
AGD) 335.44 334.61 324.03
365.54 348.07 331.92
F0-2) 365.54 368.14 369.93
515.77 455.92 448.82
F0.3) 515.77 499.37 448.82
f(1,0) 1955.78 1942.20 1913.37
FOLD 2006.67 2004.43 1981.79
’ 2006.67 2110.98 1981.79
F(1.2) 2165.37 21554 2100.29
’ 2165.37 2191.31 2150.42
F(1.3) 2446.26 2403.20 2336.96
’ 2446.26 2434.96 2336.96
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Table 3.6. Natural frequencies for 90°/0°/90°

Fmn) | L9050l | L90-s210.75 | L90-54-10.75
£(0,0) 337.22 328.24 319.11
323.92 316.45 312.90
SO 323.92 322.04 312.90
340,24 324.42 313.52
702 340.24 343.53 344.04
504.84 43971 428.19
03 504.84 480.40 428.19
£(10) 191682 | 191376 | 1883.07
o 1952.07 191460 | 194211
’ 1952.07 195076 | 194211
2 207109 | 205723 | 204943
’ 207109 | 205822 | 2054.81
A 2306.63 | 222127 | 2246.62
’ 2306.63 | 228555 |  2246.62

The mode shapes of the annular plate with 4 slots and labeled by L75-s4-1r0.75
are plotted in Figure 3.2 to 3.15.

It can be read from first column of the Table 3.2 to Table 3.6 which are
correspond to unslotted annular plates that, the natural frequencies for n # 0 are
repeated due to the axisymmetical geometry. On the other hand, the second and third
column of the same tables presents the results for the non-axisymmetical geometries;
therefore, there are no double frequencies.

Moreover, it can be seen from Figure 3.2 to 3.15 that, due to the non-
axisymmetical geometry of the annular plate with four slots, there are two different
vibration frequencies for the same (m,n), where n # 0. The difference between the
same vibration mode (m,n) shape is the orientation of the nodal diameters.

Finally, depending on the number of slots and the number of nodal diameters,
the natural frequencies for n # 0 are repeated. For example, the annular plate with four
radial slots have repeated natural frequencies for n=1, 3, . ., but the mode shape

orientations are differents.
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CHAPTER 4

CONCLUSIONS

In this study vibration characteristics of laminated composite annular circular
plates with and without radial slots are studied by Finite Element Method (FEM). The
APDL program in ANSYS is developed for the titled problem and verified by the
available literature for the annular circular plate. Then, the effects lamination
parameters on natural frequencies are investigated. It can be seen that radial slots
effects directly for natural frequencies and mode shapes which can shown in all tables.
For example, in circullar plates without slots, the two frequencies results are equals in
the same mode. However, in circullar plates with slots, these two frequencies are

different from each other.
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