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ABSTRACT 

 

DEVELOPMENT OF MOLECULAR SPECTROSCOPIC 

MULTIVARIATE CALIBRATION MODELS FOR THE 

DETERMINATION OF FATTY ACID AND TRIACHYLGLYCEROL 

COMPOSITIONS OF OLIVE OILS 

 

The determination of fatty acid methyl esters and triachyl glycerol compositions 

of olive oils by chromatographic methods require not only sample pre treatment carried 

out but also extend the time of the analysis. Also, chromatographic methods are 

expensive. Therefore, there is a need for an alternative method. 

In this study, it is aimed to develop molecular spectroscopic multivariate 

calibration models for the determination of some of the fatty acid methyl esters and tri-

achyl glycerol compositions of olive oils. For this purpose, 79 olive oil samples from 

different regions of Turkey (Manisa and Bursa) were collected  and  scanned with 

Fourier Transform Infrared spectroscopy equipped with attenuated total reflectance 

(FTIR-ATR) accessory, Fourier Transform Near Infrared spectroscopy (FTNIR) and 

Gas Chromatography (GC), High Performance Liquid Chromatography (HPLC). 

Chromatographic analyses of these samples were done by Olive Oil Research Institute 

and spectroscopic analyses were done by our group. The data obtained from High 

Performance Liquid Chromatography (HPLC) was chosen as a reference method for tri-

achyl glycerol compositions and also the data obtained from Gas Chromatography (GC) 

was chosen as a reference method for fatty acid methyl esters. Also, Genetic inverse 

least squares (GILS) and Partial least square methods (PLS) were used for multivariate 

calibration. 

In conclusion, NIR and FTIR combined with multivariate calibration models can 

be more advantageous compare to chromatographic methods because of their simplicity 

and speed. When investigating the results, relatively successful calibration models were 

obtained from GILS method than PLS method.  

 

 

 

 



    v 

 

ÖZET 

 

ZEYTĠN YAĞLARININ YAĞ ASĠTLERĠ VE TRĠAÇĠL GLĠSEROL 

KOMPOZĠYONLARININ BELĠRLENMESĠ ĠÇĠN MOLEKÜLER 

SPEKTROSKOPĠK ÇOK DEĞĠġKENLĠ KALĠBRASYON 

MODELLERĠNĠN GELĠġTĠRĠLMESĠ 

 

Zeytinyağlarının yağ asidi metil esterleri ve triaçil gliserol kompozisyonlarının 

kromotografik yöntemlerle belirlenmesi hem örneğin ön iĢlem yapılmasını 

gerektirmekte hem de analiz süresinin uzun olmasına sebep olmaktadır. Ayrıca 

kromotografik yöntemlerin pahalı olması alternatif yöntem arayıĢına yol açmaktadır. 

Bu çalıĢmada zeytinyağlarının bazı yağ asidi metil esterleri ve triaçil gliserol 

kompozisyonlarını belirlemek için moleküler spektroskopik çok değiĢkenli kalibrasyon 

modellerinin geliĢtirilmesi amaçlanmıĢtır. Bu amaçla, Türkiye‟nin farklı yörelerinden 

(Manisa ve Bursa) 79 adet zeytinyağı örneği toplanmıĢ ve toplanan örnekler Fourier 

Transform Infrared spektroskopisinde zayıflatılmıĢ toplam reflektans aparatı (FTIR-

ATR),Fourier Transform Yakın Infrared spektroskopisi (FTNIR) ve Gaz Kromatografisi 

(GC) ayrıca Yüksek Performanslı Sıvı Kromatografisi (HPLC) ile taranmıĢtır.BU 

örneklerin kromatografik analizleri Zeytincilik AraĢtırma Enstitüsü tarafından ve 

spektroskopik analizleri grubumuz tarafından yapılmıĢtır. Triaçil gliserol 

kompozisyonları için Yüksek performans likit kromatografisi (HPLC), yağ asidi metil 

esterleri kompozisyonları için Gaz Kromotografisi (GC)‟nden elde edilen veriler 

kullanılıp, referans yöntem olarak alınmıĢtır. Ayrıca Genetik en küçük ters kareler 

yöntemi ve Kısmi ters kareler yöntemi çok değiĢkenli kalibrasyon olarak kullanılmıĢtır. 

Sonuç olarak, NIR ve FTIR spektroskopisiyle birleĢtirilmiĢ çok değiĢkenli 

kalibrasyon modelleri kromatografik yöntemlerle kıyaslandığında basit olması ve hızı 

yönünden daha avantajlı olabilmiĢtir. Sonuçlar incelendiğinde, GILS methodundan elde 

edilmiĢ kalibrasyon modelleri PLS e göre nispeten daha iyi sonuçlar vermiĢtir. 
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CHAPTER 1 

 

INTRODUCTION 

 

Olive oil is an important vegetable oil in the world. A lot of countries, especially  

Mediterranean countries such as Spain, Italy, Portugal, Tunisia, Turkey and Morocco 

meet the vast majority of olive oil production (Figure1.a). The main consuming 

Mediterranean countries are also the main olive oil producers. These countries represent 

%77 of world consumption (Figure1.b). Although Turkey is in the Mediterranean 

region, production and consuming of olive oil is highly low. In recent years, studies on 

olive oil have increased. Besides, also worldwide, due to the rapid increase in 

production and consumption of olive oil, scientists give importance and they study 

intensively about this vegetable oil. Because it‟s importance for health and  it is used as 

a cure for many diseases.  

 

 

 

(a) (b) 

Figure 1.1. a) Main producing countries in 2005 b) Main consuming countries in 2005 

aaaaaaaaaaa(Source: UNCTAD.org,2005 data from International Olive Oil Council 

aaaaaaaaaaa(IOOC)) 
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Turkey is the fifth country in terms of the presence of the tree in olive producing 

countries in the world and also is the fourth country in terms of production. 

Seventy six percentage of the Aegean, 14% of the Mediterranean, 5.7% of 

Marmara and 4%in South Eastand0.3% of Black Sea region produce olive oil in Turkey. 

Aegean and Marmara region is dominated by the production of Gemlik olive varieties. 

Fruits of Gemlik type are rich in fat. It is a quite common olive grown region. Total 

olive oil produced in Turkey is divided into %70 for oil seed and % 30 for table. 70% of 

table oil is consumed in domestic, % 15 of table oil is exported and  the rest of it is 

stocked. 45% of production of olive oil is used in domestic and 40% of olive oil is used 

to export and 15% of it is stocked. (Güler et al 2010). 

Olive oil constitutes various chemical components including triacylglycerols, 

free fatty acids, phosphotides as the major components and also minor components such 

as phenolic compounds, hydrocarbons etc. With increasing consumer demand for high 

quality olive oil, oil was produced from olives of just one variety. The European Union 

(EU) has established different categories of olive oil according to the production 

process (Bertran et all, 1998). In order to ensure the quality within the different 

categories, several analyses should be made. One of the important methods to determine 

olive oil quality is the fatty acid content. For the determination of the fatty acid 

composition, the TAGs are transesterified to give the methyl esters prior to analysis 

because the esters are less polar than the corresponding fatty acids, and, thus, are more 

compatible with the various chromatographic systems (Jennings, 1999). 

Chromatographic methods have been generally prefered in classification and 

adulteration studies. Although chromatographic methods supply high degree of 

precision, there is an increasing demand for rapid, inexpensive and effective techniques 

for determination of the authenticity of olive oils. Though these procedures have been 

successfully used in various chemical analyses, they do suffer from the disadvantages of 

being time, labor, and resources consuming. This can be avoided by using a 

spectroscopic technique which offers the potential for rapid determination of large 

numbers of samples by unskilled workers with minimal use and disposal of costly 

solvents and chemicals. Most vegetable oil spectroscopic applications focus on 

detecting adulteration (Lai, 1995), determining classification (Bewig, 1994), and 

establishing geographical origins (Tsimidou, 1994). Also, a few quantitative 

determinations have been done without any previous separation techniques. Thus, 

Fourier transform infrared (FTIR) spectroscopy has become an alternative to these 
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techniques because of its simplicity in sample handling and unnecessary pretreatment. 

The need to develop new simplified routine methods has resulted in little attention given 

to the selection of samples and their calibration; however, this process is essential if 

reliable predictions are desired. Thus, an overfitted calibration model may provide good 

results for the calibration set but poor predictive ability for similar samples if sufficient 

variability is not included in the calibration process. Therefore, proper development of 

analytical methods requires careful use of multivariate calibration methods to obtain 

reliable results. 

The aim of this study is to develop multivariate calibration models to determine 

of fatty acid methyl esters and triachyl glycerol compositions of olive oils using spectral 

data. These spectral data were used to construct calibration models. Extra virgin olive 

oil samples which are obtained from Gemlik variety harvested Marmara and Aegean 

regions were used in this study. Spectroscopic and chromatographic analyses were done 

simultaneously.  

 

1.1 Definitions and Composition of Olive Oil 

 

1.1.1. Definition of Olive Oil 

 

According to the International Olive Oil Council (IOOC) the international 

definition of olive oil is oil produced by extraction of the fruit of the olive tree 

(OleaEuropaea Sativa Hoffman et Link) to the exclusion of oils obtained using solvents 

or reesterification processes and of any mixture with oils of other kinds (Firestone 

2005).There are two major clusters of olive oil. One of them is virgin olive oil, and the 

other is olive pomace olive oil. 

Virgin olive oil is the oil obtained from the fruit of the olive tree solely by 

mechanical or other physical means under conditions, particularly thermal conditions, 

that do not lead to alterations in the oil, and which has not undergone any treatment 

other than washing, decantation, centrifugation, and filtration. 

Virgin olive oil is designed as a natural oil and categorized four different sub 

groups: 
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 Extra virgin olive oil is the virgin olive oil that has an organoleptic rating of 6.5 

or more as determined by the IOOC and a free acidity, expressed as oleic acid, 

of not more than 1 g per 100g. 

 Fine virgin olive oil is the virgin olive oil that has an organoleptic rating of 5.5 

or more and a free acidity, expressed as oleic acid, of not more than 1.5 g per 

100g. 

 Ordinary virgin olive oil is the virgin olive oil that has an organoleptic rating of 

3.5 or more and a free acidity, expressed as oleic acid, of not more than 3.3 g per 

100g. 

 Lampante virgin olive oil is the virgin olive oil that has an organoleptic rating of 

less than 3.5 or more and a free aciditiy, expressed as oleic acid, of  more than 

3.3 g per 100g 

Olive-pomace oil is an oil obtained by solvent extraction of olive–pomace and 

does not include any oil obtained by a reesterification procedure or any mixture with 

other kinds of oils. Olive pomace oil has different various categories. 

 Crude olive–pomace oil isolive–pomace oil intended for refining to produce a 

refined olive pomace oil suitable for human consumption, or intended for 

technical purposes.  

 Refined olive–pomace oil is is the oil obtained from "olive pomace" by 

extraction by means of solvents and made edible by means of refining methods 

which do not lead to alteration in the initial glyceridic structure. 

 Olive–pomace oil is a blend of refined olive–pomace oil and virgin olive oil .In 

no case may this be called „olive oil.‟ .These definitions about olive oil were all 

taken from the source of IOOC. In this study extra virgin olive oil which has the 

high quality was used. 

 

1.1.2. Chemical Composition of Olive Oil 

 

Olive oil has not a specific combination. Because, it depends on species of olive, 

year of manufacture, the region of olive, and the method of squeeze of olives. Olive oil 

is compositional so varies from year to year. 

Generally olive oil is composed mainly of triacylglycerols (triglycerides or fats) 

and contains small quantities of free fatty acids (FFA), glycerol, phosphatides, 
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pigments, flavor compounds, sterols, and microscopic bits of olive. The Table 1.1 

shows the chemical composition and percentages of the components of olive oil. 

 

Table 1.1. Chemical composition of olive oil 

 

Composition Ratio (%) 

Triglycerides % 99.8 

Saturated fatty acids (SFA) %14 

Palmitic acid(PA) %7.5-20 

Stearic acid (SA) %0.5-5.0 

Mono unsaturated fatty acids (MUFA) %72 

Oleic acid(OA) %55-83 

Palmitoleic acid(POA) %0.3-3.5 

Poly unsaturated fatty acids (PUFA) %12 

Linoleic acid(LO) %3.5-21 

Linolenic acid(LN) %0.0-1.5 

Non triglyceride compounds %0.2 

Vitamin E 150mg/kg 

Polyphenols 300mg/kg 

Cholesterol 0 

 

Triacylglycerols are the major energy reserve for plants and animals. These 

molecules derived from the natural esterification of three fatty acid molecules with a 

glycerol molecule. Most prevalent in olive oil is the oleic-oleic-oleic (OOO) 

triacylglycerol, followed, in order of incidence, by palmitic-oleic-oleic (POO), then 

oleic-oleic-linoleic (OOL), then palmitic-oleic-linoleic (POL) and stearic-oleic-oleic 

(SOO).  

Fatty acids are a class of compounds containing a long hydrocarbon chain and a 

terminal carboxylate group (-COOH). They have the general structure 

CH3(CH2)nCOOH. Fatty acids belong to a category of biological molecules called 

lipids, which are generally water-insoluble but highly soluble in organic solvents. Fatty 

acids can be either saturated or unsaturated, a distinction that has important 

consequences for their chemical properties as well as the properties of other lipids with 
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fatty acid components: 

Saturated fatty acids have no double bonds between the carbon atoms of the 

fatty acid chain which are fully saturated with hydrogen atoms. The major saturated 

fatty acids in olive oil are Palmitic acid (C16:0) is a saturated fatty acid that makes up 

7.5 to 20% of olive oil. Stearic acid (C18:0) is a saturated fatty acid that makes up 0.5 to 

5% of olive oil. 

Unsaturated fatty acids have one or more double bonds between carbon atoms. 

Monounsaturated fatty acids contain one double bond near the middle of the chain, 

creating a "kink" in the chain. One of the carbon atoms, bonded to only one hydrogen 

atom, forms a double bond with a neighboring carbon atom. Oleic acid and palmitoleic 

acid can be given an example. Oleic acid (C18:1) is a monounsaturated omega-9 fatty 

acid and it makes up 55 to 83% of olive oil. Palmitoleic acid (C16:1) is   a 

monounsaturated omega-7 fatty acid that makes up 0.3 to 3.5% of olive oil. 

Polyunsaturated fatty acids contain more than one double bond. Linoleic and 

linolenic acids can be given an example. Linoleic acid (C18:2) is a polyunsaturated 

omega-6 fatty acid that makes up about 3.5 to 21% of olive oil. Linolenic acid (C18:3) 

(especially α-linolenic acid) is a polyunsaturated omega-3 fatty acid that makes up 0 to 

1.5% of olive oil. 

Polyphenols in olive oil are natural antioxidants that contribute to a bitter taste, 

astringency and resistance to oxidation. They have been shown to have a host of 

beneficial effects from healing sunburn to lowering cholesterol, blood pressure, and risk 

of coronary disease. This molecule makes up 300mg/kg of olive oil. 

Tocopherols; olive oil contains the tocopherols α-, -, -, - (α- tocopherol 

covers almost 88%). The tocopherol content of olive oil depends not only on the 

presence of these compounds in olive fruit but also on several other factors, involved in 

the transportation, sorage and olive fruit processing. According to Viola et al. (1997), 6 

the ratio of vitamin-E to polyunsaturated fatty acids in olive oils is better than in other 

edible oils.  

Pigments; the colour of olive oil is mainly related to the presence of chlorophyll 

and pheophytin. Carotenoids are also responsible for the colour of olive oil. The 

presence of these constituents depends on several factors, such as cultivar, soil and 

climate, and fruit maturation as well as applied conditions during olive oil processing.  

Phenolic Compounds; olive fruit contains simple and complex phenolic 
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compounds. Most of these compounds pass into the oil increase its oxidative stability 

and improve the taste. Hydrohtyrosol, tyrosol and some phenolic acids are mainly found 

in olive oil (Kiritsakis, et al. 1998). The phenol content and the specific composition of 

these phenols in olive oil depend on the altitude where olive trees are grown, on the 

harvesting time and on the processing conditions (Cinquanta, et al. 1997; Kiritsakis, et 

al. 1998).  

Aroma Components; aroma and the taste of olive oil are its main sensory 

characteristics. These characteristics are attributed to a group of aroma compounds. 

Their formation occurs in olive fruit, via a series of enzymatic reactions (Kiritsakis, et 

al. 1998). 

Fatty acids and tri achyl glycerol compositions which are specified in the Table 

1.1 and described in detail. OLL, PoOO, POP, OOO and SOO are used in this study. 
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CHAPTER 2 

 

MULTIVARIATE ANALYSIS TECHNIQUES 

 

According to the International Chemometric Society (ICS), chemometry 

chemical data and the implementation of mathematical and statistical techniques can be 

defined as the assimilation of these data more useful information. The purpose of which 

is accepted as a branch of analytical chemistry, chemometrics, chemometric methods to 

integrate its various applications in the field of chemistry. 

In recent years, computerized devices have improved due to technological 

advances. The evaluation of a large number of data processing and statistical 

information is needed in analytical chemistry. Chemometric techniques collect not only 

quality data used in design of experiments, provide guidance on the optimization of 

experimental parameters, calibration and signal processing. General information about 

calibration techniques and detailed information about the genetic inverse least square 

method are given in this chapter. 

 

2.1 Calibration Methods 

 

2.1.1 Overview 

 

Calibration is a process a model is constructed to obtain a relation between the 

output of an instrument and chemical or physical properties of samples. Prediction is a 

process that the constructed model is used to estimate the properties of samples which 

their instrument responses are given. The model is set up by measuring instrument 

responses and concentration levels of certain chemical contents of the samples. Then, 

this model is used to predict the concentration of an unknown content sample (Beebe, et 

al. 1998).  

Calibration is an important step in chemical analysis since a good accuracy and 

precision can only be achieved with a good calibration model. Calibration techniques 

are divided into two types: univariate and multivariate calibration. One response is 
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taken from an instrument and that response is related to the concentration of the 

chemical component of a sample in many applications. This method is called univariate 

calibration because the number of  the instrumental response for each sample is just 

one. If more than one device is performed to reduce data for more than one sample the 

analyte is called multivariate calibration (Beebe, et al.1998). 

Univariate calibration methods are defined as zero-order calibration and  include 

such as spectrophotometer measurements obtained the use of a certain wavelength for 

determining the concentration of an analyte. In this method, absorption at a wavelength 

or a peak area is taken and its relation to the concentration of a sample is then modelled. 

This method is generally have been used for quantitative analysis in many spectroscopic 

techniques such as UV-Vis, IR and NIR spectroscopy, where the relationship between 

the concentration of an analyte and the instrumental response is expressed by Lambert 

Beer´s law.  

Univariate calibration methods are divided into two types: classical and inverse 

calibration methods. 

 

2.1.2 Classical Univariate Calibration 

 

The classical univariate calibration method uses the statistical model, which 

assumes Beer‟s law. In this method, a series of experiments can be performed to relate 

the concentration to a single spectroscopic wavelength or chromatographic peak area. 

The formula of classical univariate calibration is: 

 

                                            a ≈ c ⋅s                                                 (2.1) 

 

where,  a is a vector of  absorbance  at one wavelength  for a number of 

samples. c is of the corresponding concentrations. The scalar s relates these parameters 

and is determined by this equation: 

 

                                        s≈ (c′ ⋅c) ⋅c′ ⋅a                                         (2.2) 

 

c′ is  the transpose of the concentration vector. After this step, the prediction 

model for the unknown sample is constructed by this equation:  
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ĉ≈ â / s                                                (2.3) 

 

where the hat symbol of the scalar a and s refer to  the prediction. 

To increase the quality of the prediction models, errors or residuals are 

calculated. Errors or residuals are the difference between the predicted and observed 

concentration values. If the residuals are less, the model can be better. (Brereton, 2000). 

 

e=c-ĉ                                                  (2.4) 

 

2.1.2.1 Inverse Univariate Calibration 

 

Although classical univariate calibration is the most widely used method in 

analytical chemistry, it is not always the most suitable approach in terms of two reasons. 

Firstly, the overall objective is to estimate concentration from a spectrum or 

chromatogram. The other reason depends on the error distributions. Generally, the error 

in response depends on instrumental response. But today, devices are more reliable due 

to the developments in the reproducibility of instruments. Because concentration values 

are generally determined gravimetrically by weighing, dilutions, the source of error is 

larger than instrumental error. It can be said that the source of error is due to the 

concentration. Classical calibration constructs a model where all errors are in the 

response (Figure 2.1.a). After the developments in instrumentation, the more suitable 

assumption indicates that errors are in the measurement of concentration (Figure 2.1.b). 
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Figure 2.1. Difference between errors in a) classical and b) inverse calibration 

 

Inverse calibration can be modeled as: 

 

c≈ a.b                                                         (2.5) 

 

b is scalar coefficient and is inverse of  s. b is only approximately the inverse of 

s (see above), because each model makes different assumptions about error 

distributions. b can be determined by this formula. 

 

b≈ (a
1
.a)

−1
.a

1
.c                                              (2.6) 

 
The prediction of an unknown sample can be performed by using b value 

(Brereton, 2003). 

 

                                           ĉ≈â.b                                                    (2.7) 

 

2.1.3 Multivariate Calibration 

 

Mathematical methods applied to chemical analysis when multivariate 

calibration methods contain more than one instrument for each sample. In spectroscopy, 

generally multivariate calibration is related to data included instrument signals and 

calculated multiple wavelengths for a sample containing multiple components. 

Multivariate calibration methods find the solutions to problems in univariate calibration 
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methods. Due to lot of data are used to estimate the concentration of an analyte, 

Multivariate calibration has some advantages over univariate calibration. 

There has to be one measurement for each component by univariate method. So, 

It takes a long time. In multivariate calibration method, there can be 

measurement for one more components at the same time. So, spent time will be less. 

(Beebe et al.1998) 

Multivariate calibration has fault-detection capabilities. That means unknown 

interferences in the sample can be sort out by multivariate calibration. The presence of 

interferences may cause wrong prediction of concentration of analyte in univariate 

calibration. To prevent this problem, physical separation of analyte from interfering 

material or using selective measurements is needed and this means necessity of more 

effort. Figure 2.2 demonstrates how calibration curve is affected by interferences.  

By multivarite calibration, nonlinearities caused by the interferences can be 

reduced by selecting more variables and chance of obtaining better calibration curve can 

be increased. Therefore, time and effort spent to remove interferences physically is 

respectably decreased. (Öztürk, 2003). 
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Figure 2.2. (a) Spectra of a sample in different concentrations which has no interference 

(b) univariate calibration curve; (c) spectra of a sample in different 

concentrations which has interfering materials (d) univariate  calibration 

curve. (Source:Karaman 2008) 

 

During the last few years, advances in chemometrics, for the analysis of 

complex chemical mixtures led to the development of a wide variety of calibration 

methods. Some of the most widely used multivariate calibration methods are Classical 

Least Squares (CLS), Inverse Least Squares (ILS), Partial Least Squares (PLS) and 

Principle Component Regression (PCR). 

In this study, Genetic Inverse Least Square (GILS) method is used. Before 

explain this method, an overview of ILS and CLS methods will be given.  
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2.1.3.1 Classical Least Squares (CLS) 

 

This method is based on Lambert Beer law and accepts absorbance values 

depend on the concentration. Modeling is done with this equation.  

 

A= K × C + E                                              (2.8) 

 

A: is the matrix which consists of absorbance values at different wavelengths of 

samples. 

C: is the matrix which consists of concentration values of samples which have 

multicomponent. If component analysis is done in sample, c is used as an vector.. 

K: is an absorptivity coefficient and also is the matrix multiplied by path length. 

Each member of this matrix corresponds to absorptive coefficient of an absorption value 

at a certain wavelength. 

E: is the error matrix. 

K matrix is calculated by the following formula. 

 

K= (C´·C)
-1 
·C´·A                                             (2.9) 

 

In the prediction step, an unknown sample spectrum is measured. (â).Given â 

and K, concentration can be predicted by using simple matrix algebra: 

 

                               ĉ= â· K´· (K·K´)
-1                                                               

(2.10) 

 
The notations of prediction elements are vector,because there are more than one 

component and there are more than one absorbance value in one unknown sample. The 

difference between the reference and predicted concentration values is residual. 

Residual is calculated the following formula:  

 

e = c-ĉ                                                 (2.11) 

 

CLS method can be applied to simple systems where all of the pure-component 

spectra can be measured. The pure-component spectra are measured for each analyte in 

the sample. These are utilized to form spectral matrix and the CLS model is then 
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constructed. This calibration model is used to predict the concentrations of components 

in unknown samples. 

CLS method has some advantages and disadvantages. In a wide spectral, 

absorbance measurements in a large number of wavelength can be used in calibration.  

One of the advantages of this method is that calculations are fast and the selection of 

wavelength is not required. Small number of samples is needed to construct the 

calibration model. Since many variables are used, it is possible to overcome overlapping 

problems (Beebe, et al. 1998). All the components in the sample must be known in this 

calibration method. CLS calibration is not suitable for the analysis of mixtures 

containing components that interact with each other. 

 

2.1.3.2 Inverse Least Squares (ILS) 

 

In some cases, CLS may not work because the system of interest is not simple or 

it may not be possible to obtain the pure spectra of all the analyte in the unknown 

samples. This need can be eliminated by using Inverse least squares (ILS) method. ILS 

method involves the application of linear systems the reverse statement of Lambert Beer 

law. Briefly, it is accepted that concentration varies depending on absorbance. Modeling 

is:     

 

                                C=A× P + E                                                  (2.12) 

 

C is the concentration matrix, A is the absorbance matrix E is the error matrix.  

P matrix contains the model coefficients and can be determined by: 

 

P= (A
´
·A)

-1
·A

´
· C                                              (2.13) 

 

A predicted concentration of a multi-component sample can be obtained by: 

 

 ĉ= â· P                                                       (2.14) 

 

The residual is, as in the CLS model, the difference between the reference and 

predicted concentration values. 

 

e = c-ĉ                                                        (2.15) 
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In conclusion, ILS can be used to construct accurate calibrations when just 

knowing the concentrations of analytes in the sample. That means there is no need to 

know all of the components in the sample. To use ILS, one should be selected as many 

variables as there are sources of variation in the system instead of using the full spectra. 

The weaknesses of ILS are that it has limited outlier detection and there is no efficient 

method for optimal wavelength selection for predictive models. Also collinearity 

between the absorbance values causes problems the validation of the model because it 

prevents stabilization of the predictions against noise in absorbances. So, it is very 

important to select the best set of wavelengths to use in the construction of calibration 

(Beebe, et al. 1998). 

 

2.1.3.3 Genetic Inverse Least Squares (GILS) 

 

GILS is a modified version of ILS. In this version genetic algorithms (GA) are 

used as a tool for wavelength selection. GA is global search and optimization method 

based on the principles of natural evolution and selection developed by Darwin (Wang, 

et al.1991). According to the Darwin‟s theory of evolution, individuals who fit better to 

the environment are more likely survive and breed, thus are able to pass their genetic 

information to their offspring. However, individuals who do not fit and unable to adapt 

will eventually be eliminated from the population. This process progresses slowly over 

a long period of time. 

In early 1960‟s the studies on GA is done by Holland for the first time. He 

developed a genetic algorithm on adaptive systems in his research so, he was considered 

as a father of this field (Gilbert, et al. 1997). Over the years, GA have attracted attention 

and have been applied to various global optimization problems in many areas including 

(Fontain 1992, Cong and Li 1994, Wienke, et al. 1993, Hibbert 1993, Lucasius and 

Kateman 1991). In terms of calibration, there have been several applications of GA to 

wavelength selection (Lucasius, et al. 1994, Lucasius and 19 Kateman 1992, Paradkar 

and Williams 1997, Ozdemir, et al. 1998a, Ozdemir, et al. 1998b, Ozdemir and 

Williams 1999).  

Generally genetic algorithm consists of five basic steps. These steps have taken 

their names from the biological foundation of the algorithm. The implementation of a 

typical GA is shown in Figure 2.3. 
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Figure 2.3. General flow chart of genetic algorithm used in GILS 

 

2.1.3.3.1 Initialization 

 

A gene is defined as a potential solution to a given problem which changes from 

application to application and depends upon the problem being investigated. In the 

GILS method, the term „gene‟ is referred as the collection of instrumental response at 

the wavelength range of the data set. Each gene finds a value between  instrument signal 

and components with concentration. Population is used to describe the collection of 

individual genes in the current generation. 

In the initialization step, in the initial gene pool, a gene consists of absorbance 

values at randomly chosen wavelengths between predefined limit and upper limit. 

Because the iteration time of algorithm varies from direct proportion to the number of 

gene. So, this determines the operating time. An example gene is provided below:  

Initialization of gene population 

Evaluate and rank the population 

Selection of genes for breeding 

Crossover and mutation 

Replacing the parent genes with their 

off spring 

              Terminate 

Selection of the best gene 

YES 

N

O 
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S = [A8432A6895A5128] 

 
Where S defines a gene and A is the absorbance measured at the indicated 

wavelength. Each absorbance value is a vector of sample and these vectors forms the 

new absorbance matrix. This matrix is also defined as a gene. the population is formed 

according to the number of genes initially entered as an input of the software. 

 

2.1.3.3.2 Evaluate and Rank the Population 

 

In order to evaluate each gene‟s success in the prediction of analyte 

concentration, fitness function such as the reciprocal of standard error of calibration 

(SEC) is used. SEC is calculated from the ILS model in which absorbance values from 

the selected wavelengths are used to construct the model. SEC is calculated from the 

following equation: 

 

                               SEC =√
∑ (ci –ĉi)
m
i 1

2

  – 2
                                                (2.16) 

 

Where ci is the reference and ĉi is the predicted concentration values of i
th 

sample. m is the number of samples. The degree of freedom is m−2 because when a 

linear model is assumed, there are only two parameters to be extracted which are the 

slope of the actual vs. reference concentration plot and the intercept. In each step, 

increase in the fitness value is targeted. 

 

2.1.3.3.3 Selection of Genes for Breeding 

 

The third step depends on the selection of the parent genes from the current 

population for breeding. The selection is made by using a selection method according to 

their fitness values. The goal of a selection method is to give higher chance to those 

genes with higher fitness so that only the best performing members of the population 

will survive in the long run and will be able to transfer their information to next 
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generations. Here, it is expected that the genes better suited for the problem will 

generate better off-springs. The genes with low fitness values will have lower chance to 

breed and as a consequence most of them will be unable to survive (Wang, et al. 1991). 

There are a variety of selection methods that can be used for parent (Wang, et al. 

1991). The simplest selection method is the top down for parent selection. After genes 

are ranked in the current gene pool, they are allowed to mate in a way that the first gene 

mates with the second gene, third one with the forth one and so on. All the members of 

the current gene are given a chance to breed. The roulette wheel selection method, 

which is used in GILS, is the one where the chance of selecting gene is directly 

proportional to its fitness. In this method, each slot in the roulette wheel represents a 

gene. The gene with the highest fitness has the slot that has the largest area and the gene 

with the lowest fitness has the slot that has the smallest area. Therefore, when the wheel 

is rotated, there is a higher chance of selection for a gene with high fitness than for a 

gene with a low fitness. There will also be the genes which are selected multiple times 

and some of the genes will not be selected at all. 

 

2.1.3.3.4 Crossover and Mutation 

 

The genetic algorithm does most of its work in the breeding/mating step. After 

the selection of parent genes is completed, all of them mate to produce their offspring 

by crossing over until there is no more rest. The step involves breaking the genes at 

random points and cross-coupling them as illustrated in the following example: 

Consider S1 and S2 are parent genes which are to breed; S3 and S4 are their 

corresponding off-springs. 

S1=[A4135A5442# A9217A4320] 

S2=[A5123A8397A9743A7832 # A8522A9210] 

S3=[A4135A5442A8522A9210] 

S4=[A9217A4320A5123A8397A9743A7832] 

Here, the first part of S1 is combined with the second part of S2 to give S3. 

Likewise the second part of S1 with the first part of S2 to give S4. This process is called 

single point crossover and it is used in GILS. The symbol # is used to indicate the 

separation of the genes and the place where crossover occurs. Singlepoint crossover will 
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not provide different off-spring if both parent genes are identical, which may happen in 

the roulette wheel selection, and broken at the same point. To avoid this problem, two 

points crossover, where each gene is broken in two points and recombined, can be used. 

Mutation, which introduces random deviations into the population, can be also 

introduced into the algorithm during the mating step at a rate of 1% as is typical in GA. 

Replacing one of the wavelengths in an existing gene with a randomly generated 

new wavelength usually does this. However, in this study it is not used in GILS. 

 

2.1.3.3.5 Replacing the Parent Genes by their Offspring 

 

After crossover, the parent genes are replaced by their off-springs. The ranking 

process based on their fitness values follows the evolution step. Then the selection for 

breeding/mating starts again. This is repeated until a predefined number of iterations are 

reached. 

At the end, the gene with the lowest SEC (highest fitness) is selected for model 

building. This model is used to predict the concentrations of component being analyzed 

in the validation set. The success of the model in the prediction of the validation set is 

evaluated using standard error of prediction (SEP) which is calculated as: 

 

SEP =
√∑ (ci –ĉi)

m
i 1

2

m 
                        (2.17) 

 

m is the number of samples in validation sets. 

 

2.1.3.3.6 Termination 

 

The termination of the algorithm is done by setting the predefined iteration 

number for the number of breeding/mating cycles. No extensive statistical test has been 

done to optimize it, though it can also be optimized. Since the random processes are 

heavily involved in the GILS, the program is set to run predefined number of times for 

each component in a given multi-component mixture. The best run, i.e. the one 
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generating the lowest SEC for the calibration set and at the same time obtained SEP for 

the validation set that is in the same range with SEC, is subsequently selected for the 

evaluation and further analysis. 

GILS has some major advantages over the classical univariate and multivariate 

calibration methods. First of all, it is quite simple in terms of the mathematics involved 

in the model building and prediction steps, but at the same time it has the advantages of 

the multivariate calibration methods with a reduced data set since it uses the full 

spectrum to extract genes. By selecting a subset of instrument responses, it is able to 

eliminate nonlinearities that might be present in the full spectral region. 

 

2.1.3.4. The Eigenvector Quantitation Methods 

  

In real samples, spectrum can be made by using different variables such as the 

components of sample, inter-component interactions, instrument variations (i.e., 

detector noise), changing environmental conditions, differences in sampling handling. 

When the spectral data are taking place, there should be finite number of these 

variations even if with all these complex takes place. Hopefully the largest variations in 

the calibration set would be the concentrations of the constituents of the mixtures in the 

spectrum. If it was possible to calculate a set of “variation spectra” that represented the 

changes in the absorbances at all the wavelengths in the spectra, then this data could be 

used instead of the raw spectral data for building the calibration model. The “variation 

spectra” could be used to rebuild the spectrum of sample by multiplying each one by a 

different constant scaling factor and adding the results together until the new spectrum 

closely matches the unknown spectrum. Because of the difference between all the 

concentrations of constituent, each spectrum in the calibration set would have a 

different set of scaling constants for each variation. Therefore, the fraction of each 

spectrum that must be added to construct the unknown data should be related to the 

concentration of the constituents. The “variation spectra” are often called eigenvectors 

or spectral loadings or loading vectors or principle components or factors. The scaling 

constants used to reconstruct the spectra are generally known as scores. 

The eigenvectors must relate to the concentrations of the constituents that make 

up the samples, since they came from the original calibration data. 
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The calculated scores are unique to each separate principle component and 

training spectrum, and can be used in place of absorbances. Since the representation of 

the mixture spectrum is reduced from many wavelengths to a few scores as shown in 

Figure 2.4. This method is combining both the CLS and ILS methods together in the 

same calculation. Since it is better than the classical models in the meaning of accuracy 

and robustness. 

 

 

 

Figure 2.4. PCA breaks the spectral data into most common spectral variations (Factors, 

eigenvectors, loadings) and the corresponding scaling coefficients (scores) 

  

The trick in using these models comes from the calculation of the eigenvectors. 

These models are based on the concentration predictions and changes in the data, not 

the absolute absorbance measurements that are used in all classical models. 

In order to calculate the PCA model, the spectral data must change in some way. 

To accomplish this it is the best way to vary the concentration of the constituent. Since 

there can be problem with colinearity. For example, if the concentrations of the two 

constituents present always in same ratio, the model will detect only one constituent not 

two. Also not only the concentration of the constituents if the absorbance peak of the A 

increase or decrease when constituent B also increases or decreases, only one variation 

will be detected and this is the changes in the mixture of A and B. Therefore, it is very 

important to have randomly concentration ratios in the mixtures. 
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2.1.3.5. Partial Least Squares 

 

Partial Least Squares (PLS) is another method that also calculates the variations 

in the spectra. It is soft modeling techniques in which the data are decomposed into new 

variables that are linear combinations of the original data. This new variable is named as 

principal components or factors and therefore, PLS is often called factor methods. The 

way in which the new variables are created can be visualized for a two dimensional 

system. If the instrument responses for a set of m samples at two wavelengths (n=2) are 

plotted against each other, a new axis is formed in the direction that represents 

maximum variability of the data. This new axis is called first principle component or 

first eigenvector. If all the samples fall on this new axis, then all of the variations can be 

described using only one eigenvector (Hartnett, 1997).  Otherwise a second eigenvector 

can be found that is perpendicular or orthogonal to the first eigenvector. The second one 

describes the maximum amount of residuals, not fit by the first one, in the data set and 

so on. If more than two wavelengths are included in instrument response matrix, the 

plotting space becomes multidimensional and several eigenvector can be found, each 

one successfully accounting for the maximum possible amount of remaining variability 

and each orthogonal to others. In general, the number of principle component or factor 

that can be generated is less than or equal to the number of sample (Haaland, et al 

2002). 

PLS is full spectrum method so it retains the full spectrum advantages of CLS. 

However, all of the component concentrations need to be known because, both the PLS 

can perform the analysis one component at a time while avoiding the ILS wavelength 

selection problems. PLS and PCR differ in the way the matrix of the spectra 

decomposed into two smaller matrices. In the PCR, decomposition is performed 

independently of analyte concentration whereas in the PLS, the concentration 

information is used to extract factors. Therefore, the PLS method is expected to provide 

better calibration models and prediction (Mark,1986). The model for either the PLS is 

described as: 

 

                                   A = TB + EA                                                                       (2.18) 

 

where A is the same before, B is a hxn matrix of basis vectors or loading 

spectra. T is an mxh matrix of intensities or scores in the new coordinate system defined 
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by the h loading vectors. EA is now the mxn matrix if spectral residuals not fit by the 

model. The difference between CLS and these factor methods is that the loading vectors 

in B are not pure component spectra but they are linear combinations of the original 

calibration spectra. Also the intensities in the new coordinate system are no logger 

constrained to the concentrations as were in CLS, but modeling can be done to relate the 

scores in T to the component concentrations. The number of basis vectors, h, to 

represent original calibration spectra is determined by an algorithm during the 

calibration step. 

The spectral intensities in the new coordinate system can be related to the 

concentrations of the analyte with an ILS model given by: 

 

                                              c = Tv + ec                                                                                   (2.19) 

 

where c is the mxl vector of component concentrations, v is the hxl vector of 

coefficients which relate spectral intensities to the component concentration and ec is 

the mxl vector of errors in reference values of the component that is being analyzed. 

However, since the columns of the T matrix are orthogonal, inversion of the diagonal 

(T
T
 T) matrix is trivial. The estimate of v vector is given as: 

 

                                     ̂ = (T
T
 T)

-1 
T

T
 c                                                    (2.20) 

 

where  ̂  is the least-squares estimate of v. The T and B matrices are calculated 

in a stepwise manner (one vector at a time) until the desired model has been obtained. 

As mentioned earlier, PLS and PCR differ in the way they generate T and B matrices. In 

the PCR model, NIPALS (nonlinear iterative partial least squares) algorithm developed 

by Wold (Wold, 1966) is used. The NIPALS algorithm extracts the full spectrum 

loading vectors without using concentration information in the decomposition of 

spectral matrix A. Therefore; the prediction of component concentrations is expected to 

be poorer that the results obtained by PLS which applies a modified version of NIPALS 

algorithm (Haaland, et al, 2002). This modified version of the algorithm uses 

concentration information in the process of obtaining loading vectors thereby resulting 

in a generator predictive ability. 

There are two PLS methods that are available today in the analysis of complex 

chemical mixtures. These are called PLS1 and PLS2 methods. In the PLS1 method, the 

analysis performed one component at a time and other component concentrations not 
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included in the model building step. This is the most commonly used form the PLS 

method and it is reported that the predictions obtained with PLS1 are better that those 

obtained PLS2. It is suggested that PLS2 algorithm should be used for qualitative 

application.  

Before applying the factor based methods to the data, it is common practice to 

do some sort of data pretreatment such as mean centering and scaling (Kowalski, et al, 

1986).The mean centering is usually applied to both calibration spectra and 

corresponding analyte concentrations in which the average concentrations for the 

component of interest are subtracted from each spectrum and from given component 

concentrations, respectively. After the data pretreatment, a CLS calibration model is 

selected for the analysis of one component at a time. Then the PLS1 algorithm starts 

with the calculation of the estimated first weighed loading vector,  ̂  , by setting h to 1. 

This is done with the method of least squares and is given by: 

 

                                         ̂   = A
T
 c (c

T
 c)

-1
                                                 (2.21) 

 

where  ̂   is an nxl vector representing the first order approximation of the pure 

component spectra for the component that is being analyzed. This weighted loading 

vector is then used to form the score vector   ̂  , with an ILS prediction model. The 

method of least squares is used to regression of A on  ̂   which produces the first 

estimated  ̂  vector as given: 

 

                                                  ̂  = A  ̂                                                      (2.22) 

 

With a linear least-squares regression, this score vector can be related to the 

component concentrations. The scalar regression coefficient,  ̂  , is estimated by: 

 

                                             ̂  =  ̂ 
  c ( ̂ 

   ̂  )
-1

                                           (2.23) 

 

The least-square estimated regression coefficient is later used to obtain 

concentration residuals. In order to eliminate collinearty problems, the PLS loading 

vector,  ̂  , is now calculated with a new model for A. Once again the method of least 

squares is used to find estimated b vector by: 

 

                                        ̂ =  ̂ 
  A ( ̂ 

   ̂  )
-1                                                               

(2.24) 

 



    26 

 

where  ̂  is an nx1 vector. It is now possible to calculate the first PLS 

approximation to the calibration spectra by multiplying the score vector ( ̂ ) with 

transpose of PLS loading vector ( ̂ 
 ). The first residual matrix is calculated by 

subtracting the PLS approximation matrix from A matrix. The residuals in 

concentration vector calculated in a similar manner where scalar regression coefficient 

( ̂ ) is multiplied with score vector and this product is subtracted from original 

concentration vector. The following equations provide residuals in both A and c. 

 

                                              EA = A -  ̂  ̂ 
                                                   (2.25) 

 

                                              ec = c -  ̂  ̂                                                       (2.26) 

 

This is the end of the first iteration in the calibration step. This is the process is 

repeated for a desired number of loading vectors by incrementing h, substituting EA for 

A and ec for concentration in the first CLS calibration model at the beginning of the 

algorithm.  

The prediction step of PLS1 algorithm involves the calculation of final 

calibration coefficients, bf, which have the dimension of an original spectrum. Once the 

bf is calculated, it is possible to calculate the concentration of a new sample using the 

average concentration of the analyte and its spectra. The following equations show the 

prediction step in PLS1. 

 

                                   bf =  ̂ ( ̂  ̂  )
-1  ̂                                     (2.27) 

 

where  ̂ and  ̂ contains individual  ̂  and  ̂  vectors, respectively and vˆ is 

formed from individual regression coefficients ( ̂ ) The final prediction equation is then 

given as: 

 

                                  ̂ = a
T 

bf + c0                                                                           (2.28) 

 
where  ̂ is the predicted unknown sample c, a is the spectrum of that sample and 

c0 is the average concentration of calibration samples. 

The process of determining the optimal number of PLS factors may vary from 

algorithm. The cross-validation approach is one of the methods for this (Malinowski, 

1977). For m calibration spectra, the PLS1 algorithm is performed on m-1 spectra and 
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the left out spectrum is used to validate the model. This process is repeated until each 

spectrum is left out once in the calibration set. The predicted concentration for each left 

out sample is then compared with their original values and the prediction error sum of 

the squares (PRESS) is calculated for each added factor. The PRESS is a measure of 

how well a particular model fits the calibration data and given by: 

 

                          PRESS=∑   ̂    
 
                                            (2.29) 

 

where ci is the reference (known) concentration of the i
th

 sample and 

concentration is the predicted concentration of the i
th

 sample for m calibration standard. 

It is not the minimum PRESS value, however, that is used for the selection of 

optimal number of PLS factors since this may lead to over fitting resulting in a poorer 

prediction. Therefore a comparison needs to be done between two models that contain h 

and h+1 factor. Here, the better model is the one with smaller number of factors where 

the difference between the two PRESS values is determined by the F test to be 

significant. 
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CHAPTER 3  

 

INSTRUMENTATION AND EXPERIMENTATION 

 

3.1 Instrumentation 

 

3.1.1. Fourier Transform Infrared (FTIR) Spectrometry 

 

In infrared spectroscopy, IR radiation is passed through a sample. Some of the 

infrared radiation is absorbed by the sample and some of it is passed through 

(transmitted). The resulting spectrum represents the molecular absorption and 

transmission, creating a molecular fingerprint of the sample. Like a fingerprint no two 

unique molecular structures produce the same infrared spectrum. This makes infrared 

spectroscopy useful for several types of analysis. 

It can used ; 

* identify unknown materials, 

* determine the quality or consistency of a sample, 

* determine the amount of components in a mixture. 

Molecules are flexible, moving collections of atoms. The atoms in a molecule 

are constantly oscillating around average positions. Bond lengths and bond angles are 

continuously changing due to this vibration. A molecule absorbs infrared radiation 

when the vibration of the atoms in the molecule produces an oscillating electric field 

with the same frequency as the frequency of incident IR "light". 

All of the motions can be described in terms of two types of molecular 

vibrations. One type of vibration, a stretch, produces a change of bond length. A stretch 

is a rhythmic movement along the line between the atoms so that the interatomic 

distance is either increasing or decreasing.  

The second type of vibration, a bend, results in a change in bond angle. These 

are also sometimes called scissoring, rocking, or "wig wag" motions. Each of these two 

main types of vibration can have variations. A stretch can be symmetric or asymmetric. 

Bending can occur in the plane of the molecule or out of plane; it can be scissoring, like 

blades of a pair of scissors, or rocking, where two atoms move in the same direction. 
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(Thermo Nicolet, Introduction to FTIR, 2012). 

 

 

 

Figure 3.1.Types of molecular vibrations. + indicates motion from the page toward 

thereader; - indicates the motion away from the reader (Source: Skoog, et al.1998) 

 

The normal instrumental process is as follows: 

1. The Source: Infrared energy is emitted from a glowing black-body source. 

This beam passes through an aperture which controls the amount of energy presented to 

the sample (and, ultimately, to the detector). 

2. The Interferometer: The beam enters the interferometer where the “spectral 

encoding” takes place. The resulting interferogram signal then exits the interferometer. 

3. The Sample: The beam enters the sample compartment where it is transmitted 

through or reflected off of the surface of the sample, depending on the type of analysis 

being accomplished. This is where specific frequencies of energy, which are uniquely 

characteristic of the sample, are absorbed. 

4. The Detector: The beam finally passes to the detector for final measurement. 

The detectors used are specially designed to measure the special interferogram signal. 

5. The Computer: The measured signal is digitized and sent to the computer 

where the Fourier transformation takes place. The final infrared spectrum is then 

presented to the user for interpretation and any further manipulation. 
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Figure 3.2. Optical diagram of Fourier Transform Infrared (FTIR) Spectrometer 

(Source: Thermo Nicolet, 2012) 

 

Some of the major advantages of FT-IR over the dispersive technique include: 

• Speed: Because all of the frequencies are measured simultaneously, most 

measurements by FT-IR are made in a matter of seconds rather than several minutes. 

This is sometimes referred to as the Felgett Advantage. 

• Sensitivity: Sensitivity is dramatically improved with FT-IR for many reasons. 

The detectors employed are much more sensitive, the optical throughput is much higher  

which results in much lower noise levels, and the fast scans enable the coaddition of 

several scans in order to reduce the random measurement noise to any desired level. 

• Mechanical Simplicity: The moving mirror in the interferometer is the only 

continuously moving part in the instrument. Thus, there is very little possibility of 

mechanical breakdown. 

• Internally Calibrated: These instruments employ a HeNe laser as an internal 

wavelength calibration standard. These instruments are self-calibrating and never need 

to be calibrated by the user. 

These advantages, along with several others, make measurements made by FT-

IR extremely accurate and reproducible. Thus, it a very reliable technique for positive 

identification of virtually any sample. The sensitivity benefits enable identification of 

even the smallest of contaminants. This makes FT-IR an invaluable tool for quality 

control or quality assurance applications whether it is batch-to-batch comparisons to 

quality standards or analysis of an unknown contaminant. In addition,the sensitivity and 

accuracy of FT-IR detectors, along with a wide variety of software algorithms, have 

dramatically increased the practical use of infrared for quantitative analysis. 
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Quantitative method can be easily developed and calibrated and can be incorporated 

into simple procedures for routine analysis. 

 

3.1.2. Near Infrared (NIR) Spectrometry 

 

Infrared energy is the electromagnetic energy of molecular vibration. The 

energy band is defined for convenience as the near infrared (0.78 to 2.50 microns); the 

infrared (or mid-infrared) 2.50 to 40.0 microns; and the far infrared (40.0 to 1000 

microns). However, even though official standards, textbooks, and the scientific 

literature generally state that the NIR spectral region extends from 780-2500 

nanometers (12821 - 4000 cm-1), a simple set of liquid phase hydrocarbon spectra 

demonstrates that the vibrational information characterized by the harmonic vibrations 

of the C-H stretch fundamental and their corresponding combination bands occurs from 

approximately 690 to 3000 nm. The predominant near-infrared spectral features 

include: the methyl C-H stretching vibrations, methylene C-H stretching vibrations, 

aromatic C-H stretching vibrations, and O-H stretching vibrations. Minor but still 

important spectral features include: methoxy C-H stretching, carbonyl associated C-H 

stretching; N-H from primary amides, secondary amides (both alkyl, and aryl group 

associations), N-H from primary, secondary, and tertiary amines, and N-H from amine 

salts. 

The advantages touted for NIR measurements over other vibration techniques 

have proven themselves true throughout the 1980s up until today, they include: 

1) C-H associated vibrational information is repeated 8 times from 690 nm to 

3000 nm;  

2) Simple harmonics may be selected or more information rich combination 

regions;  

3) Low cost instruments with high signal-to-noise (SNR) are simple to make and 

typically exhibit signal-to-noise ratios (SNR) of 25000-100000:1;  

4) High NIR throughput is possible, even when employing low cost fiber optics;  

5) Variable path lengths for industrial use are possible, typically 1 mm to 10 cm 

or more using different NIR spectral regions;  

6) NIR Light penetrates plant and animal tissue easily for biomedical 

applications (when using 900 nm and longer).  
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Qualitative and quantitative near infrared (NIR) spectroscopic methods typically 

require the application of multivariate calibration algorithms and statistical methods 

(i.e. chemometrics) to model NIR spectral response to chemical or physical properties 

of the samples used for calibration. The NIR method relies on the spectra-structure 

correlations existing between a measured spectral response caused by harmonics of the 

fundamental vibrations occurring at infrared frequencies. These harmonic vibrations 

occur at unique frequencies depending upon the quantity of absorber (analyte), type of 

absorbing molecules present within the sample, and the sample thickness.  

Quantitative methods are possible where changes in the response of the near 

infrared spectrometer are proportional to changes in the concentration of chemical 

components, or in the physical characteristics (scattering/absorptive properties) of 

samples undergoing analysis. Recent refinements of the NIR measurement technique 

include the emergence of chemometrics and the diminishing distinction between near 

infrared, and infrared as measurement techniques. Rather the techniques are 

complementary, with each spectral region providing unique advantages for the analyst. 

For a wide range of NIR applications, particular attention is given to the appearance of 

methyl, methylene, methoxy, carbonyl, and aromatic C-H groups; hydroxy O-H; and N-

H from amides, amines, and amine salts. 

Near infrared spectroscopy is used where multicomponent molecular vibrational 

analysis is required in the presence of interfering substances. The near infrared spectra 

consist of overtones and combination bands of the fundamental molecular absorptions 

found in the mid infrared region. Near infrared spectra consist of generally overlapping 

vibrational bands that may appear non-specific and poorly resolved. The use of 

chemometric mathematical data processing and multiple harmonics can be used to 

calibrate for qualitative of quantitative analysis despite these apparent spectroscopic 

limitations.(Howard and Campbell,2008) 

 

3.1.3. Advantages and Disadvantages of Spectroscopic Techniques 

 

The biggest advantage of spectroscopic techniques is little or no sample 

preparation, and real-time data. Unlike most conventional analytical methods, NIRS is 

rapid, non-destructive, does not use chemicals, or generate chemical wastes requiring 

disposal, simultaneously determines numerous constituents or parameters, and can be 
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transported to nearly any environment, or true portable for field work. NIR 

instrumentation is simple to operate by non-chemists, and operates without fume hoods, 

drains, or other installations. NIR is not a stand-alone technology. Its accuracy is 

dependent upon the accuracy of the reference method used for training; however, the 

data from the NIR method has better reproducibility than the primary method. 

Another advantage of spectroscopy is 'thermal' noise. All internal electronic 

components are a source of thermal noise in the Mid-IR and Far-IR. However, internal 

sources of IR are either insignificant to NIR detectors or can be made insignificant by 

minor shielding. 

Spectroscopy is not a stand-alone technology. Separate calibrations are required 

for each constituent or parameter and a portion of unknown samples must periodically 

be analyzed by the reference method to ensure that calibrations remain reliable. It may 

be necessary to update calibrations several times during the initial phases of use to 

incorporate "outlying" samples, until the calibration is acceptable. Despite the intuitive 

disadvantage of broad and overlapping absorption bands, sophisticated chemometric 

techniques can extract meaningful information from the complex NIR spectra. The 

information about samples in the NIR spectra could not easily be accessed until the 

advent of sufficiently powerful computers that allowed the development of complex 

statistical relationships between the spectral data and constituents or parameters (e.g. 

functional properties) determined by conventional techniques. These statistical       

relationships between the spectral data and data from reference analyses are called 

calibration models (Howard and Campbell, 2008). 

 

3.1.4. High Performance Liquid Chromatography (HPLC) 

 

High performance liquid chromatography (HPLC) is a chemistry tool for 

quantifiying and analyzing mixtures of chemical compounds which is used to find the 

amount of a chemical compounds within a mixture of other chemicals. High performance 

liquid chromatography (HPLC) has the ability to separate, identify and quantitate the 

compounds that are present in any sample that can be dissolved in a liquid. 
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Figure 3.3. Schematic representation of a system for high performance liquid 

chromatography (HPLC).( Source: Boomer.org,2013) 

 

HPLC is a separation technique that involves the injection of a small volume of 

liquid sample into a tube packed with tiny particles (3 to 5 micron (μm) in diameter 

called the stationary phase) where individual components of the sample are moved 

down the packed tube (column) with a liquid (mobile phase) forced through the column 

by high pressure delivered by a pump. These components are separated from one 

another by the column packing that involves various chemical and/or physical 

interactions between their molecules and the packing particles. These separated 

components are detected at the exit of this tube (column) by a flow-through device 

(detector) that measures their amount. An output from this detector is called a “liquid 

chromatogram” (Agilent Technologies, 2013). 

High performance liquid chromatography (HPLC) and combined chromatographic 

methods has a great emphasis in olive oil analysis techniques. Several minor components of 

olive oil such as sterols, phenolic compounds, pigments, tocopherols and triacylglycerols 

can be identified and quantitated with this technique. Reversed-phase high performance 

liquid chromatography (RP-HPLC) currently is the most popular and reliable technique for 

the determination of triacylglycerols. Numerous mobile phases have been employed with 

different modifiers, which include methanol, acetonitrile or tetrahydrofuran (Ryan, et al. 

1999). Percentage determination of the various triglycerides present in virgin olive oil or 

high performance liquid chromatography offers a way of detecting possible adulterations 

with oils which, while having a similar fatty acid composition to olive oil, have a different 

triglyceride composition. 
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3.1.5. Gas Chromatography (GC) 

 

Gas chromatography (GC) is a powerful and widely used tool for the separation, 

identification and quantitation of components in a mixture. In this technique, a sample is 

converted to the vapor state and a flowing stream of carrier gas (often helium or nitrogen) 

sweeps the sample into a thermally-controlled column. In the case of gas liquid 

chromatography, the column is usually packed with solid particles that are coated with a 

non-volatile liquid, referred to as the stationary phase. As the sample mixture moves 

through the column, sample components that interact strongly with the stationary phase 

spend more time in the stationary phase vs. the moving gas phase and thus require more 

time to move through the column. Retention time is defined as the time from injection of 

the sample to the time a specific sample component is detected. Components with 

higher volatility (lower boiling points) tend to spend more time in the moving gas phase 

and therefore tend to have shorter retention times. After exiting the column the 

separated components are detected and a detector response is recorded (Figure 3.4).  

The most application field of Gas Chromatography (GC) in olive oil analysis is 

the determination of methyl esters of fatty acids. The aim of this determination is to 

establish the percentage composition of fatty acids in olive oil, more commonly known 

as fatty acid composition, which is influenced by the olive variety, production zone, 

climate and stage of maturity of the drupes when they are collected. Determination of 

fatty acid composition of olive oil is not only a quality indicator but also is used for 

characterization of the oils. 

 

 

Figure 3.4. Schematic representation of a system for gas chromatography (GC)  

(Source: Oliveoil, 2012) 
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3.2 Experimentation 

 

3.2.1 Olive Oil Samples 

 

In this study, Gemlik variety of olive oil samples are used harvest for the year 

2011.Marmara and Manisa region samples are provided by the Olive Research Institute. 

Also at two locations within the Olive Research Institute (Bornova and KemalpaĢa) 

trees in the Gemlik variety, samples are produced a three-phase continuous system.  

Data of these samples will be used as reference. The samples were stored in dark brown 

bottles in deep freezer until they were analyzed. Details about the region of samples are 

given in Table 3.1. Also all FAME and TAG components, are shown in Table 3.2 and 

Table 3.3. The components used in this study are marked in bold. 

 

Table 3.1 : Regions and settlements, that collected olive oils of which harvest Gemlik 

variety. 

 

Olive Research Institute:1)Olive Oil Research Institute Garden/Bornova  2) 

Olive Oil Research Institute Garden Garden/ KemalpaĢa 

Manisa region (Akhisar and Salihli): 1)Dereköy, Ballıca, Zeytinliova, 

Mecidiye, Beyoba, Kayalıoğlu/Akhisar 2) Dombaylı, Kestelli, Görece, Pazarköy, 

Borlu/Salihli 

Marmara Region: 1)Mudanya, Gemlik,Ġznik, Orhangazi/Bursa 2)Marmara 

Birlik 3)Erdek,Edincik/Balıkesir 4)Mürefte/Tekirdağ 

 

 

 



Table 3.2. : FAME components of olive oil

(cont. on next page)
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Table 3.2. (cont.)

(cont. on next page)
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Table 3.2. (cont.)

(cont. on next page)
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Table 3.2. (cont.)



Table 3.3. : TAG components of olive oil samples
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(cont. on next page)
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(cont. on next page)

Table 3.3. (cont.)
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(cont. on next page)

Table 3.3. (cont.)
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Table 3.3. (cont.)
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3.2.2 Methods 

 

Examples of natural oil varieties of Gemlik, were filtered by dehydrated sodium 

sulfate of which placed over Whatman - No. 42 filter paper. Oil samples were used on 

tri-achyl glycerol (TAG) analyses. Besides, with fatty acid esterification process, fatty 

acids were converted into methyl esters and FAME analyses were applied. To be 

esterification by oil samples, it was used cold methylation method (IUPAC Method 

2.301) which certificated from International Olive Oil Council (Anonymous, 1979). 

Implementation of the method is as follows: 

 approximate 200 mg  (few drops) oil samples were weighed in  vial 

 It was added over 10 ml hexane that be chromatographic purity, then shaked by 

hand. 

 And then, it was added 500 l from 2M methanolic KOH solution, and since 

clear solution, it was shaked with hand for twice. 

 It was injected from upper side clear phase to chromatography after dividing 

phase of glycerol. 

 

3.2.2.1 Analyses of Fatty Acids Components 

 

Fatty acids that belong to fatty samples converted to the methyl esters were 

analyzed by gas chromatography GC HP 6890 model. 

Flame ionization detector (FID) and the capillary column (DB -23, bonded 50% 

cyanopropyl, 30 m X 0.25 mm ID x 0.250 micro M, J & W Scientific, Folsom, CA, 

USA) were used. The device operating parameters are shown below Table 3.2. 
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Table 3.4 : Parameters of GC instrument 

 

The detector temperature 250ºC 

Injector temperature 250ºC 

Injection Split model 1/100 

Carrier gases : Helium flow rate 

Hydrogen flow rate 

Air flow rate 

0.5 ml/min 

30ml/min 

300ml/min 

Make up gases:  Nitrogen flow rate 24 ml/min 

Oven temperature program 

Programmed between 170 – 210 
0
C 

On analyses, between 170 
0
C‟ - 210 

0
C   

Oven Program is to be 

implementedincrementally20
o
C/min and 

analysis will be completed with samples will 

be waited 10 minutes at 210
0
C  

 

Fatty acids used in the analysis were myristic acid (C14:0), palmitic acid 

(C16:0), palmitoleic acid (C16:1), margaric acid (C17:0), margoleic acid (C17:1), 

stearic acid (C18:0), elaidic acid (C18:1 trans), oleic acid (C18:1), linoelaidic acid 

(C18:2 trans), linoleic acid (C18:2), trans linolenic acid (C18:3 trans), linolenic acid 

(C18:3), arachidic acid (C20:0), gadoleic acid (C20:1), behenic acid (C22:0), lignoseric 

acid (C24:0). Each sample was analyzed at least two times. 16 main fatty acids in olive 

oil samples were determined by retention time of each one according to the reference of 

standard fatty acids. The area of the each peak which belonged to these fatty acids was 

integrated by using Chem-station software. The integrated area of each fatty acid was 

converted to the % concentration by dividing the calculated area of each acid to total 

area content of all related fatty acids existed in olive oil. These fatty acids are shown in 

Figure3.5. 
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Figure 3.6. Fatty acids in Gas chromatogram 

 

In this study, as a result of analyzing the fatty acids; palmitic acid, palmitoleic 

acid, stearic acid, oleic acid, linoleic acid and linolenic acid were preferred due to 

amount of mass percentages were more. The chromatographic analysis results for fatty 

acid methyl esters were used as the reference method. In addition, spectroscopic 

measurements of fatty acid methyl esters are made simultaneously chromatographic 

measurements, spectra are recorded. 

 

3.2.2.2 Analysis of Triacylglycerol Components 

 

Analyses of triacyl glycerol components of natural olive oil samples 

(triglyceride (TAG)) were determined by HPLC Agilent 1200 device, according to  

international standards(IUPAC 2324) that is recommended by EC 2568-91 directive of 

the European Union and  based on the principle HPLC that is adopted by IOOC. 

Refractive index detector as a detector (RID), as column Superspher 100 RP-18 column 

(244 x 4 mm ID x 4 m) were used.TAG was analyzed at 350
o
C temperature, up to 200 

bar maximum pressure and 1.2 mL / min mobile phase flow rate. Mobile phase is 

Acetone + 63.6% 36.4% acetonitrile and injection volume is 500 l. Tri acyl glycerol 

components are shown in Figure 3.6 
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Figure 3.7. Tri acyl glycerol components in HPLC chromatogram 

 

In this study PoOO, OLL, OOO, POP and SOO which were the main 

components of olive oil triacyl glycerol, of the chromatographic and spectroscopic 

measurements were evaluated. 

 

3.3 Spectroscopic Analysis 

 

In parallel with the chromatographic analysis, simultaneously two different 

molecular spectroscopic methods have been used for spectroscopic analysis. These 

spectroscopic methods are Fourier transform infrared spectroscopy and near infrared 

spectroscopy. 

Fourier transform infrared spectroscopic analyses were performed by Perkin 

Elmer Spectrum 100 model equipped with diamond-ZnSe ATR accesory. The working 

range was set 600-4000 cm
-1

wavenumber with 4 cm
-1

 resolution by averaging 64 scan 

numbers. Absorbance spectrums were collected at room temperature. Background 

spectrum was obtained empty and dry ATR cell. Before and after each sample analyses 

background was collected to reduce the contaminations that were come from the ATR 

crystal. ATR crystal was cleaned with pure ethanol and allowed to dry.
 

Near-infrared spectroscopic analyses were performed at room temperature with 

FTS-3000 NIR spectrometer (Bio-Rad, Excalibur, Cambridge, MA) and the working 

range was set 4500 -10000 cm
-1

wavenumber with 8 cm
-1

 resolution by averaging 64 

scan numbers. Sample spectra were collected in absorbance method. Before and after 

each sample analyses background was collected to reduce the contaminations that might 
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come from sample cuvette. Quartz cuvette was cleaned with pure acetone and allowed 

to dry. 

 

3.4 Data Analysis 

 

The collected spectra were transferred in ASCII file format and were combined 

with Microsoft Excel program. Then, for multivariate analyses data files (calibration 

and validation) were prepared as text files. Genetic algorithm based calibration method 

was written in MATLAB programming language Version 7.0 (MathWorks Inc., Natick, 

MA).Partial Least Square was also applied  in Minitab programme and data files were 

collected ASCII file format. 
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CHAPTER 4 

 

RESULT AND DISCUSSION 

 

4.1. GILS Results 

 

Spectrum 100 (Perkin Elmer, Waltham, MA, USA) Fourier Transform Infrared 

(FTIR) spectrometer system coupled to attenuated total reflectance (ATR) accessory 

was used to measure the olive oil samples. Both blank and sample spectra were 

collected in absorbance method. FTIR was used to develop of multivariate calibration 

methods for the determination of olive oil compositions. This calibration technique was 

used to determine for both the FAME and the TAG compositions of olive oil samples. 

The collected spectra are shown in Figure 5.1. 

 

 

(a) 



    51 

 

 

(b) 

Figure 4.1. FTIR spectra of olive oil samples measured in the range of a)4000-600 cm
-

1
.b) 1800-600 cm

-1
 using ATR accessory attached diamond ZnSe crystal. 

 

Figure 4.1 shows the spectrum of olive oil samples which are scanned between 

4000 and 600 cm
-1

. Maximum absorbance wave number that obtained from spectrum is 

1746cm
-1

. The band seen in 3470 cm
-1 

is the overtone of the glyceride ester carbonyl 

absorption. At 3009 cm
-1

 band are corresponded to CH stretching of = CH. 2960 cm
-1 

value band is shown symmetric and asymmetric vibration of aliphaticCH3 groups.   

Band at 2925 cm
-1 

is corresponded asymmetric stretching of aliphatic CH2 groups and 

the band at 2854 cm
-1 

is also corresponded symmetric stretching of aliphatic 

CH2groups.Stretching of ester carbonyl functional group of triglycerides (C=O) are 

seen at 1745 cm
-1

. The band seen as a shoulder in 1710 cm
-1

 is the acid group of free 

fatty acids. The peak illustrated in 1655 cm
-1 

is C=C stretching vibration of olefins. It is 

shown that the band at1460 cm
-1

is bending vibration of CH2 and CH3 aliphatic groups 

and rocking vibration of CH bonds of cis-disubstituted olefins is seen at 1418 cm
-1

.The 

peak between 1241 and 1033 cm
-1

 is stretching vibration of C-O ester and the peak can 

be seen at 950 cm
-1 

is bending vibration of out of plane of trans-disubstituted olefinic 

groups.  Finally the band at 723 cm
-1

 is methylene rocking vibration and out-of –plane 

bending vibration of cis-disubstituted olefins. (Guillén and Cabo 1997, Vlachos, et al. 

2006) 

Near infrared spectra of the olive oil samples were collected with FTS-3000 

NIR spectrometer (Bio-Rad, Excalibur, Cambridge, MA) and spectrums were collected 
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between 4500 and 10000 cm
-1

at room temperature. The sample spectra were collected 

in absorbance method. Before and after each sample analyses background was 

collected to reduce the contaminations. Pure ethanol was used to clean the instrument. 

NIR was also used  to develop of spectroscopic multivariate calibration methods for the 

determination of olive oil compositions. This spectroscopic technique was used for 

both FAME and TAG compositions of olive oil samples. The collected spectra are 

shown in Figure 4.2. 

 

  

Figure 4.2. NIR spectra of olive oil samples measured in the range of 10000– 4500
cm-1

. 

 

Figure 4.2 shows the spectrum of olive oil samples which are scanned between 

4500 and 10000 cm
-1

. As can be seen band at 4590 cm
-1
(ı) belongs to-CH=CH- and 

corresponds asymmetric stretching of C-H, and asymmetric stretching of C=C. The 

band at 4656 cm
-1 

(h) also belongs to-CH=CH- group and shows stretching =C-H and 

C=C. Maximum absorbance wave number that obtained from spectrum is 5794 cm
-1

 (e) 

.This maxima shows C-H stretching first overtone of CH3 groups, The  shoulder peak 

at 5675 cm
-1

 (f) C-H stretching first overtone of -CH2 groups . At 7170 cm
-1

 (c) weak 

band corresponds 2C-H stretching of CH3 group and at 7074 cm
-
1(d) band shows 2C-H 

stretching of-CH2 group. At 8560 cm
-1 

(a) weak and broad band second overtone of -

CH3groups, peak at 8240 cm
-1 

(b) corresponds second overtone of- C-H of CH2 group. 

(Ozaki, et al. 2004). 

After spectroscopic analysis, data are collected and calibration models are 

separately modeled both FAME and TAG compositions. First results will be given for 

FAME components. 
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4.1.1 Results of FAME Compositions 

 

In order to construct FTIR multivariate calibration models for fatty acid methyl 

ester compositions, firstly interested fatty acid was chosen. Percentage values of olive 

oil samples for linolenic acid (LN) that is reference oil acid content are given in the 

following tables. The sets of measurement consist of two parts: calibration and 

validation sets. 53 olive oil samples were included in calibration set. On the other hand 

26 samples were also assigned as validation set (Table 4.1 and Table 4.2). Likewise 

calibration and validation sets were created for NIR measurements. 53 olive oil samples 

were included in calibration and 26 samples were also assigned as validation set. For 

each set of samples absorbance matrices included spectral answers were created. 

Calibration models are constructed separately for each component by GILS method and 

tested. GILS is a wavelength selection based method, so when working with GILS, the 

program set to 30 genes, 40 iteration numbers, and 100 runs. These parameters are used 

for each calibration models for all TAG and FAME compositions. 

 

Table 4.1. Percentage content by mass of Linolenic Acid (LN) in oil samples of 

calibration set 

sample no LN acid (w/w%) sample no LNacid(w/w%) sample no 

LN acid 

(w/w%) 

1 0.64 19 0.89 37 0.64 

2 0.87 20 0.79 38 0.78 

3 0.69 21 0.62 39 0.72 

4 0.92 22 0.68 40 0.56 

5 0.68 23 0.72 41 0.75 

6 0.8 24 0.75 42 1.14 

7 0.71 25 1.03 43 0.99 

8 0.79 26 0.57 44 0.62 

9 0.74 27 1.05 45 1.03 

10 0.75 28 1.03 46 0.61 

11 0.62 29 0.99 47 0.76 

12 1.02 30 0.95 48 1.13 

13 0.78 31 0.71 49 1.08 

14 0.68 32 1.02 50 1.12 

15 1.02 33 0.77 51 0.56 

16 0.8 34 0.74 52 1.2 

17 0.92 35 0.66 53 1.15 

18 0.8 36 0.9     
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Table 4.2. Percentage content by mass of Linolenic acid (LN) in oil samples of 

validation set 

sample no LN acid (w/w%) sample no LN acid (w/w%) 

1 0.96 14 0.77 

2 0.88 15 0.67 

3 0.75 16 0.85 

4 0.78 17 0.94 

5 0.82 18 0.66 

6 0.66 19 0.83 

7 0.66 20 0.69 

8 0.64 21 0.98 

9 0.67 22 0.67 

10 0.81 23 0.78 

11 0.86 24 0.97 

12 0.74 25 0.93 

13 0.69 26 0.94 

 

 

  

(a) (b) 

 

Figure 4.3. (a) Reference Linolenic acid (LN) content vs. predicted values based on 

FTIR-ATR spectra using GILS method(b) Reference Linolenic acid (LN) 

content vs. predicted values based on NIR spectra using GILS method 
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Reference linolenic acid contents versus predicted values based on FTIR and 

NIR spectra using GILS method are shown in Figure 4.3. Calibration models based on 

FTIR spectra for linolenic acid content determination gave standard error of calibration 

(SEC) and standard error of prediction (SEP) values as 0.0486%(w/w) and 

0.1147%(w/w) for calibration and prediction sets. On the other hand calibration models 

based on NIR spectra for linolenic acid content determination, the SEC and SEP values 

were 0.0789%(w/w) and 0.1398%(w/w) for calibration and prediction sets, respectively. 

The R
2
value of regression lines was 0.9682 for FTIR and that for linolenic acid content 

was 0.939 for NIR spectra. When compare the results of two device, it can be said that 

calibration model of FTIR showed a more uniform distribution than calibration model 

of NIR looking at R
2
values. 

Percentage values of olive oil samples for linoleic acid (LO) that is reference oil 

acid content are given in the Table 4.3 and Table 4.4. 

 

Table 4.3. Percentage content by mass of Linoleic acid (LO) in oil samples of 

calibration set 

sample no 

LO acid 

(w/w%) sample no 

LO acid 

(w/w%) 

sample 

no LO acid (w/w%) 

1 8.46 19 9.25 37 7.7 

2 8.03 20 9.15 38 8.9 

3 9.55 21 12.29 39 5.9 

4 6.71 22 8.49 40 12.8 

5 9.96 23 7.57 41 12.97 

6 7.83 24 6.74 42 11.92 

7 9.1 25 10.44 43 6.63 

8 8.7 26 9.07 44 10.52 

9 10.45 27 9.27 45 12.26 

10 12.55 28 7.56 46 8.19 

11 9.32 29 11.02 47 11.42 

12 8.19 30 9.92 48 13.5 

13 6.91 31 10.36 49 13.8 

14 6.49 32 8.32 50 9.12 

15 10.62 33 10.6 51 7.64 

16 6.47 34 10.57 52 13.87 

17 6.77 35 5.26 53 5.26 

18 9.55 36 10.69     
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Table 4.4. Percentage content by mass of Linoleic acid (LO)  in oil samples of 

validation set 

sample no LO acid (w/w%) sample no LO acid (w/w%) 

1 8.62 14 8.01 

2 9.09 15 8.62 

3 8.39 16 9.98 

4 12.05 17 8.05 

5 9.37 18 7.50 

6 10.17 19 8.20 

7 9.81 20 7.76 

8 9.00 21 10.57 

9 10.22 22 10.54 

10 7.62 23 12.14 

11 9.41 24 9.70 

12 10.50 25 5.74 

13 8.90 26 7.64 

 

53 olive oil samples were included in calibration and 26 samples were also 

assigned as validation set. For each set of samples absorbance matrices included 

spectral answers were created. Calibration models are constructed separately for each 

component by GILS method and tested. 
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(a) (b) 

  

Figure 4.4. (a) Reference Linoleic acid (LO) content vs. predicted values based on 

FTIR-ATR spectra using GILS method  (b) Reference Linoleic acid (LO) 

content vs. predicted values based on NIR spectra using GILS method 

 

Looking at the Figure 4.4 in the SEC, SEP, and R
2 

values, Calibration models 

based on FTIR spectra for linoleic acid content determination gave standard error of 

calibration (SEC) and standard error of prediction (SEP) values as 0.2525%(w/w) and 

0.2699 % (w/w) for calibration and prediction sets. On the other hand calibration 

models based on NIR spectra for linoleic acid content determination, the SEC and SEP 

values were 0.9280 %(w/w) and 1.5198%(w/w) for calibration and prediction sets, 

respectively.FTIR spectrum of the calibration model can be seen in a better model was 

established. When SEC and SEP values are examined in the first model, it is seen that 

the agreement between these values are better than the NIR based model. On the other 

hand, the R
2 

of calibration lines of NIR model were now lower than FTIR based model. 

In conclusion, linearity is provided between reference and predicted values in 

calibration model based on FTIR spectrum. By using GILS method and spectroscopic 

methods, calibration models are constructed and necessary and useful information can 

be easily obtained from the spectrum. 
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Oleic acid (OA) is the most abundant poly unsaturated fatty acid in olive oil. 

Percentage values of olive oil samples for oleic acid (OA) that is reference oil acid 

content are given in the Table 4.5 and Table 4.6 and calibration models are constructed.  

 

Table 4.5. Percentage content by mass of Oleic acid (OA) in oil samples of calibration 

set 

sample no OA(w/w%) sample no OA(w/w%) sample no OA(w/w%) 

1 65.39 19 69.38 37 66.94 

2 65.63 20 65.52 38 73.29 

3 65.21 21 66.12 39 68.47 

4 72.20 22 66.45 40 66.58 

5 71.70 23 71.95 41 70.42 

6 67.97 24 67.15 42 72.22 

7 67.78 25 73.76 43 66.46 

8 69.49 26 69.41 44 74.61 

9 73.31 27 66.78 45 65.74 

10 67.14 28 65.64 46 72.22 

11 71.04 29 65.34 47 69.47 

12 73.03 30 65.77 48 62.07 

13 65.84 31 65.36 49 67.19 

14 65.69 32 67.16 50 74.11 

15 73.33 33 66.75 51 62.61 

16 67.36 34 69.03 52 75.65 

17 69.24 35 71.94 53 74.66 

18 70.32 36 73.41 

   

Table 4.6.  Percentage content by mass of Oleic acid (OA) in oil samples of validation 

set 

sample no OA(w/w%) sample no OA(w/w%) 

1 72.31 14 71.93 

2 68.45 15 67.15 

3 67.01 16 72.58 

4 67.41 17 71.56 

5 69.08 18 69.11 

6 65.95 19 68.34 

7 66.74 20 67.82 

8 67.33 21 69.59 

9 70.42 22 65.51 

10 66.68 23 67.15 

11 67.08 24 71.73 

12 66.63 25 66.73 

13 70.34 26 67.95 
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(a)                                                                                (b) 

  

Figure 4.5. (a) Reference OA acid content vs. predicted values based on FTIR-ATR 

spectra using GILS method (b) Reference OA acid content vs. predicted 

values based on NIR spectra using GILS method 

 

Reference extractives and OA content versus predicted values based on NIR and 

FTIR-ATR spectra using GILS method are shown in Figure 4.4.Looking at the figures 

created and modeled for oleic acid, calibration models for OA content determination 

gave standard error of calibration (SEC) and standard error of prediction (SEP) values 

as 0.4942% (w/w) and 0.4486% (w/w) for FTIR results. Besides SEC and SEP values of 

NIR spectrum results were 1.6843% (w/w) and 2.3737 % (w/w). When these SEC and 

SEP values for NIR are examined, it is seen that the values are higher than the FTIR 

values. The R
2
 value of regression lines for FTIR-ATR based model was 0.978 and that 

for NIR based model was 0.9342. When compare two methods, FTIR based model was 

more successful than NIR based calibration model. 

 

 

 

 

y = 0.978x + 1.5178 

R²   0.978 

60

65

70

75

80

60 70 80

F
T

IR
 P

re
d

ic
te

d
  
O

A
  

ac
id

 c
o

n
te

n
t 

(w
/w

 %
) 

Reference  OA acid content(w/w %) 

Calibration

Validation

y = 0.7447x + 17.589 

R²   0.9342 

60

65

70

75

80

60 70 80

N
IR

 P
re

d
ic

te
d

  
O

A
 a

ci
d

 c
o

n
te

n
t(

w
/w

%
) 

Reference OA acidcontent(w/w%) 

Calibration

Validation



    60 

 

Table 4.7. Percentage content by mass of  Palmitic Acid (PA) in oil samples of 

calibration set 

 

sample no PA(w/w%) sample no PA(w/w%) sample no PA(w/w%) 

1 13.82 19 11.94 37 12.13 

2 14.98 20 15.37 38 15.37 

3 12.77 21 12.32 39 15.59 

4 12.95 22 15.05 40 15.66 

5 14.33 23 12.26 41 11.77 

6 14.14 24 14.48 42 11.99 

7 14.86 25 14.86 43 11.89 

8 13.43 26 13.92 44 14.44 

9 14.62 27 14.19 45 11.86 

10 13.19 28 12.85 46 13.26 

11 14.79 29 14.68 47 15.53 

12 12.83 30 14.87 48 16.11 

13 14.39 31 15.24 49 12.64 

14 13.79 32 15.46 50 15.92 

15 13.39 33 12.43 51 10.41 

16 14.13 34 13.05 52 12.46 

17 12.03 35 11.54 53 15.92 

18 13.48 36 14.31 

  

 

Table 4.8. Percentage content by mass of Palmitic Acid (PA) at oil samples of 

validation set 

 

sample no PA(w/w%) sample no PA(w/w%) 

1 13.17 14 13.86 

2 14.45 15 14.82 

3 12.54 16 12.47 

4 13.35 17 14.24 

5 13.79 18 13.25 

6 14.34 19 14.57 

7 13.82 20 12.87 

8 12.71 21 14.37 

9 14.94 22 13.54 

10 12.87 23 13.59 

11 13.62 24 14.51 

12 12.25 25 12.11 

13 14.86 26 14.36 

 

 

   



    61 

 

  

(a) (b) 

 

Figure 4.6. (a) Reference Palmitic acid (PA) content vs. predicted values based on 

FTIR-ATR spectra using GILS method  (b) Reference Palmitic acid (PA) 

content vs. predicted values based on NIR spectra using GILS method 

 

Table 4.7 and Table 4.8 were percentage content by mass of PA values for 

calibration and validation sets. Reference PA content versus predicted values based on 

NIR and FTIR spectra using GILS method are shown in Figure 4.6. When compare 

calibration models based on two instruments, it is seen that better calibration model is 

obtained from the results of FTIR-ATR. Reference values and predicted values showed 

good linearity in this method. Calibration models based on FTIR spectra for palmitic 

acid content determination gave standard error of calibration (SEC) and standard error 

of prediction (SEP) values as 0.4604%(w/w) and 0.4287%(w/w) for calibration and 

prediction sets.SEC and SEP values of FTIR based model are close to each other. But 

the plot of Figure 4.6.b, SEP value (1.3725%) is two times the value of SEC (0.7028%). 

The R
2
 value of regression lines for FTIR based model was 0.9681 and R

2
value for NIR 

based model 0.9449.  
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Table 4.9. Percentage content by mass of Palmitoleic Acid (POA) in oil samples of 

calibration set 

sample no POA(w/w%) sample no POA(w/w%) sample no POA(w/w%) 

1 1.42 19 1.37 37 1.63 

2 1.25 20 1.38 38 1.67 

3 1.09 21 1.64 39 1.38 

4 1.57 22 1.49 40 1.08 

5 1.56 23 1.01 41 1.36 

6 1.57 24 1.64 42 1.74 

7 1.03 25 1.15 43 1.07 

8 1.49 26 1.47 44 1.58 

9 1.08 27 1.11 45 0.97 

10 1.11 28 1.55 46 0.94 

11 1.43 29 1.21 47 1.02 

12 1.47 30 1.24 48 1.78 

13 1.54 31 1.34 49 1.66 

14 1.45 32 1.75 50 0.68 

15 1.33 33 1.34 51 1.84 

16 1.75 34 1.53 52 1.98 

17 1.24 35 1.74 53 1.02 

18 1.64 36 1.19 

  

 

Table 4.10. Percentage content by mass of Palmitoleic Acid (POA) in oil samples of 

validation set 

sample no POA(w/w%) sample no POA(w/w%) 

1 1.36 14 1.22 

2 1.65 15 1.27 

3 1.29 16 1.17 

4 1.25 17 1.24 

5 1.23 18 1.53 

6 1.67 19 1.67 

7 1.45 20 1.26 

8 1.52 21 1.76 

9 1.26 22 1.38 

10 1.48 23 1.29 

11 1.25 24 1.57 

12 1.58 25 1.54 

13 1.39 26 1.38 
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(a) (b) 

 

Figure 4.7. (a) Reference Palmitoleic acid (POA) content vs. predicted values based on 

FTIR-ATR spectra using GILS method (b) Reference Palmitoleic 

acid(POA) content vs. predicted values based on NIR spectra using GILS 

method 

 

Table 4.9 and 4.10 and Figure 4.7 belong to palmitoleic acid which is the type of 

fatty acid. 53 olive oil samples were included in calibration and 26 samples were also 

assigned as validation set. When Figure 4.7 examined, calibration model based on FT-

IR measurements gave the better results with calibration model based on FT-NIR data. 

Calibration models based on FT-NIR spectra for palmitoleic acid content determination 

gave standard error of calibration (SEC) and standard error of prediction (SEP) values 

as 0.158%(w/w) and 0.189%(w/w) for calibration and prediction sets. SEC 

(0.0817%w/w) and SEP (0.174%w/w) values of FTIR based models are narrower. Also 

predicted values and reference values have good linearity. When compared with the FT-

NIR and FTIR-ATR results, SEC and SEP values became higher and thus regression 

became smaller. One possible explanation of this improvement could be attributed to 

increased number of calibration and prediction samples. The R
2 

value of regression lines 

for FTIR was 0.9628 and that for NIR was 0.8699.  
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Table 4.11. Percentage content by mass of Polyunsaturated fatty acid(PUFA) in oil 

samples of calibration set 

sample no PUFA(w/w%) sample no PUFA(w/w%) sample no PUFA(w/w%) 

1 8.32 19 8.72 37 11.52 

2 10.34 20 7.37 38 11.26 

3 7.18 21 8.77 39 14.82 

4 13.54 22 11.35 40 8.81 

5 10.62 23 9.14 41 11.31 

6 10.57 24 8.93 42 13.01 

7 9.44 25 8.98 43 11.36 

8 11.33 26 9.69 44 9.82 

9 8.28 27 10.72 45 11.06 

10 10.56 28 6.57 46 10.35 

11 10.51 29 11.88 47 7.19 

12 8.75 30 13.77 48 9.88 

13 13.28 31 11.35 49 8.42 

14 10.35 32 8.24 50 5.88 

15 9.53 33 12.69 51 14.44 

16 7.24 34 8.39 52 14.65 

17 8.43 35 13.87 53 6.06 

18 9.87 36 12.22 

  

 

Table 4.12. Percentage content by mass of Polyunsaturated fatty acid(PUFA) in oil 

samples of validation set 

sample no PUFA(w/w%) sample no PUFA(w/w%) 

1 11.56 14 10.18 

2 11.62 15 9.64 

3 9.91 16 10.37 

4 10.11 17 11.25 

5 11.11 18 10.21 

6 11.42 19 7.47 

7 12.97 20 11.48 

8 9.51 21 9.08 

9 8.81 22 7.31 

10 8.19 23 7.41 

11 8.82 24 6.59 

12 9.43 25 9.62 

13 9.28 26 13.12 
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(a) (b) 

 

Figure 4. 8. (a) Reference Polyunsaturated fatty acid (PUFA) content vs. predicted 

values based on FTIR-ATR spectra using GILS method (b) Reference 

Polyunsaturated fatty acid(PUFA) content vs. predicted values based on 

NIR spectra using GILS method 

 

Table 4.11 and Table 4.12 were percentage content by mass of PUFA values for 

calibration and validation sets. Reference PUFA content versus predicted values based 

on NIR spectra using GILS method are shown in Figure 4.8.When Figure 4.8 was 

examined, linearity of both models is observed that more than 90%. 

When compare calibration models based on two instruments, it is seen that 

better calibration model is obtained from the results of FTIR-ATR. Reference values 

and predicted values showed good linearity in this method. 
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Table 4.13. Percentage content by mass of Stearic acid (SA) in oil samples of 

calibration set 

sample no SA(w/w%) sample no SA(w/w%) sample no SA(w/w%) 

1 2.59 19 2.93 37 2.12 

2 2.85 20 2.62 38 2.86 

3 2.36 21 2.24 39 2.69 

4 3.08 22 3.32 40 3.05 

5 2.66 23 2.46 41 3.27 

6 2.41 24 2.47 42 2.07 

7 2.27 25 2.47 43 2.62 

8 2.56 26 2.29 44 2.42 

9 3.02 27 2.38 45 2.25 

10 2.28 28 2.89 46 2.01 

11 2.84 29 3.14 47 3.09 

12 2.34 30 2.04 48 3.39 

13 2.33 31 2.69 49 3.09 

14 3.07 32 2.59 50 3.06 

15 2.36 33 3.06 51 1.83 

16 2.58 34 2.29 52 3.18 

17 2.64 35 3.26 53 1.95 

18 2.28 36 2.35 

  

 

Table 4.14. Percentage content by mass of Stearic acid (SA) in oil samples of validation 

set 

sample no SA(w/w%) sample no SA(w/w%) 

1 2.67 14 2.65 

2 2.65 15 3.04 

3 2.96 16 2.66 

4 2.61 17 2.94 

5 2.81 18 3.17 

6 2.39 19 2.47 

7 2.36 20 2.67 

8 2.67 21 2.32 

9 2.45 22 2.41 

10 2.52 23 2.36 

11 2.51 24 2.41 

12 2.55 25 2.14 

13 2.48 26 2.32 
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                              (a)                                                             (b) 

 

Figure 4.9. (a) Reference Stearic acid (SA) content vs. predicted values based on FTIR-

ATR spectra using GILS method  (b) Reference Stearic acid (SA) content 

vs. predicted values based on NIR spectra using GILS method 

 

Reference extractives and SA content versus predicted values based on NIR and 

FTIR-ATR spectra using GILS method are shown in Figure 4.9.Looking at the figures 

created and modeled for stearic acid, Calibration models for SA content determination 

gave standard error of calibration (SEC) and standard error of prediction(SEP) values as 

0.1811% (w/w) and 0.2824 % (w/w) for NIR results. Besides SEC and SEP values of 

FTIR spectrum results were %0.0696 (w/w) and %0.2512 (w/w). When these SEC and 

SEP values are examined, it is seen that the values are smaller than the FT-NIR values. 

The R
2
 value of regression lines for FTIR-ATR based model was 0.9618 and that for 

NIR based model was 0.9454. When compare two methods, FTIR based model was 

more successful than FT-NIR based calibration model. 

Because GILS is a wavelength selection based method, it is interesting to 

observe the distribution of selected wavelengths in multiple runs over the entire full 

spectral region. Figure 4.10 illustrates the frequency distribution of selected 

wavelengths in 100 runs with 40 genes and 30 iterations for FAME of olive oil samples. 
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Figure 4.10. Frequency distribution of GILS selected FTIR wavelengths for FAME  

(a)Linolenic acid (LN) (b)Linoleic acid (LO) (c) Oleic acid(OA)  

(d)Palmitic acid(PA) (e) Palmitoleic acid(POA) (f)Polyunsaturated fatty 

acid (PUFA) (g) Stearic acid(SA) contents of olive oil samples 

 

As can be seen from Figure 4.10 there are a number of regions where selection 

frequencies are very high compared to the rest of the spectrum. The wavelength region 

around 1240 and 3000 cm
-1

 for LN acid, around 900 and 3000 cm
-1

 for LO acid, around 

1100 and 3000 cm
-1

 for OA acid, around 1105 and 3000 cm
-1

 for PA, around 1085 and 

760 cm
-1

 for POA acid, around 1100 and 3020 cm
-1

 for PUFA indicates a strong 
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tendency for GILS method to select while for SA, around 1470 and 1470 cm
-1

 is the 

most frequently selected region. 

 

4.2. Results of Tri-achyl Glycerol (TAG) Compositions 

 

Triachylglycerol (TAG) compositions are important components in olive oil. 

Results from HPLC chromatography were used to reference in model.  Also 

measurements were taken from FTIR and NIR instruments. Finally these methods were 

evaluated in success of prediction. First, results of oleic-oleic-oleic (OOO) component 

are given. 

 

Table 4.15. Percentage content by mass of triolein (OOO) in oil samples of calibration 

set 

sample no OOO(w/w%) sample no OOO(w/w%) sample no OOO(%w/w) 

1 34.02 19 41.79 37 41.47 

2 32.99 20 33.72 38 32.12 

3 34.25 21 27.61 39 33.12 

4 31.36 22 39.96 40 34.03 

5 32.45 23 32.86 41 41.94 

6 42.73 24 36.38 42 33.58 

7 33.85 25 40.90 43 45.77 

8 37.56 26 36.43 44 41.41 

9 39.97 27 31.91 45 32.32 

10 35.83 28 41.78 46 31.32 

11 33.25 29 34.24 47 31.14 

12 35.35 30 35.91 48 43.78 

13 34.77 31 33.77 49 36.17 

14 33.59 32 32.74 50 36.76 

15 31.61 33 38.79 51 31.99 

16 39.81 34 32.05 52 30.13 

17 33.51 35 43.18 

  18 32.16 36 38.24 
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Table 4.16. Percentage content by mass of triolein (OOO) in oil samples of validation 

set 

sample no OOO(w/w%) sample no OOO(w/w%) 

1 31.66 14 33.18 

2 32.37 15 37.04 

3 32.26 16 42.12 

4 39.48 17 35.78 

5 36.24 18 32.97 

6 41.19 19 37.54 

7 43.97 20 31.92 

8 30.19 21 42.48 

9 34.97 22 33.51 

10 28.13 23 34.32 

11 34.07 24 40.53 

12 33.86 25 42.75 

13 37.71 26 35.86 

 

 

 

 

 

  

               (a)                                                                      (b) 

 

Figure 4.11. (a) Reference triolein (OOO) content vs. predicted values based on FTIR-

ATR spectra using GILS method  (b) Reference triolein (OOO) content vs. 

predicted values based on NIR spectra using GILS method 

 

Reference triolein contents versus predicted values based on FTIR and NIR 

spectra using GILS method are shown in Figure 4.11. Calibration models based on 
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FTIR spectra for triolein content determination gave standard error of calibration (SEC) 

and standard error of prediction (SEP) values as 1.14%(w/w) and 1.40 %(w/w) for 

calibration and prediction sets. The other hand calibration models based on NIR spectra 

for triolein content determination, the SEC and SEP values were 2.11%(w/w) and 

3.23%(w/w) for calibration and prediction sets, respectively. When these SEC and SEP 

values of FTIR based calibration model are examined, it is seen that these values are 

compatible with each other, which illustrates a good prediction. The R
2
 value of 

regression lines was 0.9649 for FTIR and that for triolein content was 0.9371 for NIR 

spectra. When compare results of two devices, the calibration model of FTIR showed 

uniform distribution when looking at R
2
 values. 

 

Table 4.17. Percentage content by mass of  1,2-dilinoleyl-3-oleylglycerol (OLL) in oil 

samples of calibration set 

sample no OLL(w/w%) sample no OLL(w/w%) sample no OLL(w/w%) 

1 1.32 19 3.08 37 1.79 

2 2.71 20 2.96 38 1.84 

3 3.74 21 1.80 39 3.32 

4 2.01 22 2.63 40 2.10 

5 3.44 23 2.66 41 4.28 

6 3.42 24 1.93 42 2.18 

7 2.75 25 4.31 43 3.10 

8 1.63 26 2.35 44 2.67 

9 2.59 27 2.32 45 1.69 

10 2.95 28 2.13 46 2.35 

11 3.82 29 2.03 47 0.87 

12 2.03 30 4.11 48 2.02 

13 3.69 31 2.13 49 3.12 

14 1.92 32 2.57 50 2.29 

15 1.96 33 2.38 51 2.09 

16 1.47 34 1.65 52 3.85 

17 1.51 35 2.43 

  18 2.30 36 1.93 
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Table 4.18. Percentage content by mass of OLL (1,2-dilinoleyl-3-oleylglycerol) at oil 

samples of validation set 

sample no OLL(w/w%) sample no OLL(w/w%) 

1 1.40 14 1.01 

2 4.57 15 1.44 

3 1.35 16 3.66 

4 2.70 17 2.66 

5 1.60 18 2.98 

6 2.61 19 1.21 

7 3.50 20 1.32 

8 2.22 21 2.59 

9 2.43 22 2.38 

10 0.97 23 2.36 

11 2.27 24 1.88 

12 2.11 25 1.39 

13 3.75 26 1.82 

 

 

 

 

 

  

                    (a)                                                                            (b)  

 

Figure 4.12. (a) Reference 1,2-dilinoleyl-3-oleylglycerol (OLL) content vs. predicted 

values based on FTIR-ATR spectra using GILS method (b) Reference 1,2- 

dilinoleyl-3-oleylglycerol (OLL) content vs. predicted values based on 

NIR spectra using GILS method 
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Table 4.17 illustrates that percentage content of OLL in calibration, Table 4.18 

also illustrates that percentage content of OLL in validation sets. 52 olive oil samples 

were used in calibration, 26 olive oil samples were also used in validation model. 

Calibration models based on FTIR spectra for OLL content determination gave SEC 

and SEP values as 0.2688%(w/w) and 0.2598%(w/w) for calibration and prediction sets. 

The other hand calibration models based on NIR spectra for OLL content determination, 

the SEC and SEP values were 0.3504%(w/w) and 0.5966%(w/w) for calibration and 

prediction sets, respectively. When compared with FTIR and NIR results, SEC and SEP 

values became higher and thus regression became smaller, but NIR based model gave a 

compatible agreement with reference and predicted values. The models based on FTIR 

and NIR spectrum results, NIR results gave good linearity with reference values. The 

R
2
valueof regression line is 0.9606 for NIR, so NIR based model is better than the 

model based on FTIR results. 

 

Table 4.19. Percentage content by mass of 1,2-dipalmitoyl-3-oleylglycerol(POP) in oil 

samples of calibration set 

sample no POP(w/w%) sample no POP(%w/w) sample no POP(%w/w) 

1 3.25 19 3.26 37 3.99 

2 4.36 20 3.33 38 3.11 

3 4.36 21 3.26 39 4.81 

4 3.65 22 2.82 40 4.31 

5 3.88 23 2.68 41 5.52 

6 3.73 24 3.68 42 3.29 

7 4.09 25 4.02 43 3.05 

8 4.06 26 3.41 44 2.57 

9 4.21 27 3.97 45 4.14 

10 4.63 28 5.43 46 3.78 

11 4.63 29 3.74 47 3.15 

12 4.53 30 2.81 48 4.46 

13 3.42 31 4.89 49 3.72 

14 4.18 32 4.49 50 4.82 

15 3.41 33 3.15 51 5.97 

16 3.07 34 3.64 52 5.02 

17 5.12 35 4.67 

  18 4.87 36 2.78 
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Table 4.20. Percentage content by mass of 1,2-dipalmitoyl-3-oleylglycerol(POP) in oil 

samples of validation set 

sample no POP(%w/w) sample no POP(%w/w) 

1 2.74 14 4.72 

2 4.07 15 3.92 

3 4.72 16 3.29 

4 3.05 17 2.83 

5 2.92 18 3.66 

6 4.17 19 3.26 

7 3.97 20 3.04 

8 4.56 21 4.37 

9 3.89 22 3.58 

10 4.21 23 3.86 

11 4.86 24 4.71 

12 4.26 25 3.72 

13 4.38 26 5.12 

 

 

  

               (a)                                                                                 (b) 

 

Figure 4.13. a) Reference 1,2-dipalmitoyl-3-oleylglycerol (POP) content vs. predicted 

values based on FTIR-ATR spectra using GILS method  (b) Reference 1,2-

dipalmitoyl-3-oleylglycerol (POP) content vs. predicted values based on 

FT-NIR spectra using GILS method 
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Reference POP (1,2-dipalmitoyl-3-oleylglycerol) contents versus predicted 

values based on FTIR and NIR spectra using GILS method are shown in Figure 4.13. 

Calibration models based on FTIR spectra for POP (1,2-dipalmitoyl-3-

oleylglycerol)content determination gave standard error of calibration (SEC) and 

standard error of prediction (SEP) values as 0.39%(w/w) and 0.45 %(w/w) for 

calibration and prediction sets. The other hand calibration models based on NIR spectra 

for content determination, the SEC and SEP values were 0.60%(w/w) and 0.56%(w/w) 

for calibration and prediction sets, respectively. The R
2
 value of regression lines was 

0.87 for FTIR and that for POP (1,2-dipalmitoyl-3-oleylglycerol) content was 0.7818 

for NIR spectra. It can be said that the calibration model of FTIR instrument has a good 

distribution than the model of FT-NIR.R
2
 values of FTIR showed this result. 

 

Table 4.21. Percentage content by mass of 2,3-dioleyl-1-stearoylglycerol (SOO) in oil 

samples of calibration set 

sample no SOO(w/w%) sample no SOO(w/w%) sample no SOO(w/w%) 

1 5.46 19 6.25 37 5.47 

2 4.18 20 5.51 38 4.02 

3 4.19 21 3.59 39 3.45 

4 3.91 22 3.78 40 5.18 

5 4.84 23 3.76 41 3.88 

6 3.84 24 4.96 42 2.83 

7 4.91 25 4.39 43 5.55 

8 3.89 26 4.84 44 4.55 

9 5.86 27 4.34 45 5.77 

10 4.75 28 4.32 46 4.01 

11 4.63 29 3.95 47 5.88 

12 3.76 30 5.62 48 6.39 

13 3.64 31 4.73 49 3.15 

14 3.67 32 3.78 50 4.48 

15 4.21 33 4.27 51 4.04 

16 4.47 34 4.88 52 2.88 

17 4.31 35 3.47 

  18 4.26 36 4.35 
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Table 4.22. Percentage content by mass of 2,3-dioleyl-1-stearoylglycerol (SOO) in oil 

samples of validation set 

sample no SOO(w/w%) sample no SOO(w/w%) 

1 3.16 14 2.75 

2 4.35 15 4.23 

3 4.94 16 4.48 

4 4.04 17 4.09 

5 3.52 18 4.38 

6 3.76 19 3.96 

7 4.11 20 4.08 

8 4.09 21 5.62 

9 3.26 22 4.14 

10 5.71 23 3.76 

11 5.35 24 5.98 

12 4.50 25 4.62 

13 3.84 26 5.16 

 

 

 

 

 

 

 
 

       (a)                                                             (b) 

 

Figure 4.14. (a) Reference 2,3-dioleyl-1-stearoylglycerol (SOO) content vs. predicted 

values based on FTIR-ATR spectra using GILS method  (b) Reference 2,3- 

dioleyl-1-stearoylglycerol (SOO) content vs. predicted values based on 

FT-NIR spectra using GILS method 
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The Table 4.21 and 4.22 and figure4.14 belongs to triachyl glycerol SOO (2,3-

dioleyl-1-stearoylglycerol) type triachyl glycerol. 52 olive oil samples were included in 

calibration and 26 samples were also assigned as validation set. When Figure 4.14 

examined, calibration model based on FT-NIR measurements gave approximately the 

same results with calibration model based on FTIR-ATR data. When compared with the 

NIR and FTIR-ATR results, SEC and SEP values became higher and thus regression 

became smaller. Lastly the calibration model based on FT-NIR gave the better result 

than the model based on NIR. 

 

Table 4.23. Percentage content by mass of 1-palmitioleoyl,2,3-dioleoyl (PoOO) in oil 

samples of calibration set 

sample no PoOO(w/w%) sample no PoOO(w/w%) sample no PoOO(w/w%) 

1 1.66 19 1.43 37 2.44 

2 1.37 20 1.41 38 1.21 

3 1.43 21 1.49 39 1.63 

4 1.42 22 1.15 40 2.14 

5 1.61 23 1.11 41 2.75 

6 1.57 24 1.95 42 1.13 

7 1.55 25 1.85 43 1.41 

8 1.22 26 1.93 44 0.93 

9 1.39 27 1.69 45 1.78 

10 1.68 28 1.54 46 2.66 

11 1.84 29 0.97 47 2.46 

12 1.54 30 1.48 48 0.73 

13 1.32 31 2.06 49 2.95 

14 1.31 32 1.51 50 2.78 

15 2.47 33 1.62 51 3.54 

16 2.32 34 1.18 52 3.65 

17 1.86 35 1.38 

  18 1.11 36 1.41 
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Table 4.24. Percentage content by mass of 1-palmitioleoyl,2,3-dioleoyl (PoOO) in oil 

samples of validation set 

sample no PoOO(w/w%) sample no PoOO(w/w%) 

1 2.18 14 2.02 

2 2.06 15 1.56 

3 1.75 16 1.83 

4 1.66 17 1.48 

5 1.82 18 1.82 

6 1.43 19 1.71 

7 1.86 20 1.66 

8 2.36 21 2.26 

9 1.88 22 1.28 

10 1.92 23 1.94 

11 2.07 24 1.14 

12 1.48 25 1.89 

13 1.64 26 1.34 

 

 

  

 

  

             (a)                                                                             (b) 

 

Figure 4.15. (a) Reference 1-palmitioleoyl,2,3-dioleoyl (PoOO) content vs. predicted 

values based on FTIR-ATR spectra using GILS method  (b) Reference 1-

palmitioleoyl,2,3-dioleoyl (PoOO) content vs. predicted values based on 

FT-NIR spectra using GILS method 
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Table 4.23 and Table 4.24 are percentage content of calibration and validation 

sets of PoOO values. Looking at Figure 4.15, the linearity of both models is observed 

that more than 85%.The results are very comparable but NIR results seem to have 

somewhat better R
2
values for calibration models. Reference and predicted values have 

good linearity and so it can be said the model of NIR is better than the model of FTIR. 

In conclusion, predicted values based on both two instrument using GILS method shows 

the success of calibration model. Figure 4.16 illustrates the frequency distribution of 

selected wavelengths in 100 runs with 40 genes and 30 iterations for TAG of olive oil 

samples. 
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Figure 4.16. Frequency distribution of GILS selected FTIR wavelengths for TAG 

(a)OLL acid (b)OOO acid (c) PoOO (d)SOO (e) POP contents of olive oil 

samples 

 

As can be seen from Figure 4.16 there are a number of regions where selection 

frequencies are very high compared to the rest of the spectrum. The wavelength region 

around 1500 and 3000 cm
-1

 for OLL acid, around 950 and 2400 cm
-1

 for OOO acid, 

around 2000 and 3000 cm
-1

 for PoOO acid, around 1300 and 2850 cm
-1

 for SOO, 

around 3300 and 1300 cm
-1

 for POP acid  indicates a strong tendency for GILS method 

to select which is the most frequently selected region. 
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Also, it tries to find the factors which have the greatest relevance for prediction. The 

PLS calibration models for each components were first calculated using cross–

validation. And all data was mean–centered not scaled. There are two main advantages 

of cross–validation methods. The first is estimation of the performance of the model. 

Since the predicted samples are not same as the samples used build the model. The 

second benefit of cross–validation is better outlier detection since each sample is left out 

of the models during the cross–validation process. On the other hand, it is a very time–

consuming process. Mean centering translates the collection of data to the origin of 

multivariate space where analysis will be performed. It also removes the need for an 

intercept from the regression model. Since fewer terms in the regression model may 

need to be estimated and estimated analyte concentrations may be more precise 

following mean centering of the data. More of the information content of a data set can 

usually be described with a simpler model if the data is mean centered. The major effect 

of mean–centering is removing the broad sloping background from the data collection. 

Also PLS–1 algorithm (one component at a time) was used here.  

In this study, PLS was performed for both sets of FAME and TAG using the 

data from the FTIR and NIR spectra. The aim is to provide the most successful model 

for the prediction of concentrations.  From Figure 4.17 to Figure 20 illustrates PLS 

results for the set of FAME compositions. According to between Figure 4.17. to Figure 

4.20 , the models for FAME components have low prediction ability of concentrations 

with low regression coefficients. The models are also suffering from high collinearity 

and cannot be trusted for producing a high calibration quality and for making prediction 

of concentrations in the validation samples. 

Generally, as can be seen Figure 4.17.,Figure 4.18, Figure 4.19 and Figure 4.20 

reference versus predicted values are not compatible with each other. When overall 

calibration performance models examine, it is possible to state that PLS is not best 

calibration method; since all FAME components have worst regression coefficient when 

comparing GILS method. 
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(a) (b) 

(c) (d) 

 

Figure 4.17. (a) Reference Linolenic acid (LN)  content vs. predicted values based on 

FTIR-ATR spectra using PLS method (b) Reference Linolenic acid (LN) 

content vs. predicted values based on NIR spectra using PLS method  (c) 

Reference Linoleic acid (LO) content vs. predicted values based on FTIR-

ATR spectra using PLS method  (d) Reference Linoleic acid (LO) content 

vs. predicted values based on NIR spectra using PLS method 
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                                     (a)                                                                                 (b)         

(c) (d) 

Figure 4.18. (a) Reference Oleic acid (OA) content vs. predicted values based on FTIR-

ATR spectra using PLS method  (b) Reference Oleic acid (OA) content vs. 

predicted values based on NIR spectra using PLS method  (c) Reference 

Palmitic acid (PA) content vs. predicted values based on FTIR-ATR 

spectra using PLS method  (d) Reference Palmitic acid (PA) content vs. 

predicted values based on NIR spectra using PLS method 
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(a)                                                                        ( b) 

 

(c) (d) 

 

Figure 4.19. (a) Reference Palmitoleic acid (POA) content vs. predicted values based on 

FTIR-ATR spectra using PLS method  (b) Reference Palmitoleic acid 

(POA)  content vs. predicted values based on NIR spectra using PLS 

method  (d) Reference Polyunsaturated fatty acid (PUFA)content vs. 

predicted values based on FTIR-ATR spectra using PLS method  (d) 

Reference Polyunsaturated fatty acid (PUFA) content vs. predicted values 

based on NIR spectra using PLS method 
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(a) (b) 

 

Figure 4.20. t(a) Reference Stearic acid (SA) content vs. predicted values based on 

FTIR-ATR spectra using PLS method  (b) Reference Stearic acid (SA) 

content vs. predicted values based on NIR spectra using PLS method  

 

According to Figure 4.21. to Figure 4.22 , the models for TAG components have 

low prediction ability of concentrations with low regression coefficients. And also the 

models are suffering from high collinearity and cannot be trusted for producing a high 

calibration quality and for making prediction of concentrations in the validation 

samples. 

Generally, as can be seen Figure 4.21., and Figure 4.22 reference versus 
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performance models examine, it is possible to state that PLS is not best calibration 

method; since all FAME components have worst regression coefficient when comparing 
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(a) (b) 

. 

(c) (d) 

 

Figure 4.21. (a) Reference 1,2-dilinoleyl-3-oleylglycerol (OLL) content vs. predicted 

values based on FTIR-ATR spectra using PLS method  (b) Reference 1,2-

dilinoleyl-3-oleylglycerol (OLL) content vs. predicted values based on 

NIR spectra using PLS method (c) Reference triolein (OOO) content 

vs.predicted values based on FTIR-ATR spectra using PLS method  (d) 

Reference triolein (OOO) content vs. predicted values based on NIR 

spectra using PLS method 
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(a) (b) 

 

(c) (d) 
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(e) (f) 

 

Figure 4.22. (a) Reference 1-palmitioleoyl,2,3-dioleoyl (PoOO) content vs. predicted 

values based on FTIR-ATR spectra using PLS method  (b) Reference 1-

palmitioleoyl,2,3-dioleoyl (PoOO) content vs. predicted values based on 

FT-NIR spectra using PLS method (c) Reference 1,2-dipalmitoyl-3-

oleylglycerol (POP) content vs. predicted values based on FTIR-ATR 

spectra using PLS method  (d) Reference 1,2- dipalmitoyl-3-oleylglycerol  

(POP) content vs. predicted values based on FT-NIRspectra using PLS 

method(e) Reference 2,3-dioleyl-1-stearoylglycerol  (SOO) content vs. 

predicted values based on FTIR-ATR spectra using PLSmethod  (f) 

Reference 2,3- dioleyl-1-stearoylglycerol (SOO) content vs. predicted 

values based on FT-NIR spectra using PLS method 
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CHAPTER 5 

 

CONCLUSION 

 

In this thesis, it is aimed to develop molecular spectroscopic multivariate 

calibration models for the determination some of fatty acid methyl esters and triachyl 

glycerol compositions of Gemlik type olive oils provided by Olive oil Research 

Institute. The data obtained from High Performance Liquid Spectroscopy (HPLC) was 

chosen reference method for tri-achyl glycerol compositions and also the data obtained 

from Gas Chromatography (GC) was chosen reference method for fatty acid methyl 

esters. Analyzes were done by Olive Oil Research Institute. Samples were also 

measured by spectroscopic techniques. These spectroscopic techniques are Fourier 

Transform Infra red spectroscopy (FTIR) and Near Infra Red spectroscopy (NIR). Data 

were obtained by both two instruments for TAG and FAME compositions. GILS 

(Genetic inverse least square) chemometric method which is multivariate calibration 

model based on genetic algorithm was used to construct calibration models for both 

compositions. Reliability of the calibration models was determined by SEC and SEP 

values as well as with the R
2
 values from the reference vs. predicted content plots. 

In conclusion, the models based on FTIR instrument data for both FAME 

compositions and TAG compositions gave successful results by using GILS method. 

From the results, it is seen that successful calibration models can be constructed by 

using the methods mentioned to provide fast and non-destructive determination of 

FAME and TAG compositions. This might give rise to improvements in the olive oil 

industry in economical manner. In addition, by wavelength selection feature of GILS 

method, the wavelengths which carry information of FAME and TAG could be 

determined in order to develop case specific analysis models. NIR and FTIR combined 

with multivariate calibration models could be more advantageous compare to 

chromatographic methods because of their simplicity and speed.  
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