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ABSTRACT 

 

STACKING SEQUENCE OPTIMIZATION OF THE ANTI-BUCKLED 

GRAPHITE/EPOXY LAMINATED COMPOSITES FOR MINIMUM 

WEIGHT USING GENERALIZED PATTERN SEARCH ALGORITHM 

 
Composite materials have been increasingly used during the last decades due to 

their properties such as low weight, high stiffness, superior fatigue and corrosion 

resistance. They have been used in aerospace, automobile, marine applications and etc. 

Composite materials being an expensive but efficient technology to get minimum 

weight structures, it is logical to make an attempt to find out how to design properly 

optimum laminated composite plates with no reduction in their strength. The aim of the 

thesis is to find the optimum stacking sequence to obtain the minimum thickness 

(weight) of laminated composite plates in different loadings and plate dimensions under 

buckling constraint. Moreover, a comparison study of conventional and continuous 

designs are performed to determine the effect of stacking sequence on weight. The 

objective function is the critical buckling load factor. Fiber angles of the composite 

plates are taken as continuous design variables and the plate is assumed to be balance 

and symmetric. Composite plates made of graphite/epoxy have been considered in this 

thesis. A combination of Generalized Pattern Search Algorithm (GPSA) and Genetic 

Algorithm (GA) has been considered as an optimization method.  All the results show 

that the loading conditions and dimensions of composite plates are significant in 

stacking sequences optimization of laminated composite materials in terms of maximum 

critical buckling load factor and minimum thickness. 
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ÖZET 

 

GENELLEŞTİRİLMİŞ MODEL ARAMA ALGORİTMASI 

KULLANILARAK BURKULMAYAN TABAKALI GRAFİT/EPOKSİ 

KOMPOZİTLERİN MİNİMUM AĞIRLIK İÇİN TABAKA 

DİZİLİMLERİNİN OPTİMİZASYONU 

 
Son yıllarda, fiber katkılı tabakalı kompozit malzemeler, yüksek dayanıklılığa 

sahip ve hafif olmalarından dolayı, otomobil ve havacılık gibi birçok mühendislik 

uygulamalarında kullanılmaktadır. Kompozit malzemeler pahalı olmasına karşın hafif 

yapılar elde edebilmek için elverişli bir teknolojidir. Bu yüzden, dayanımlarında azalma 

olmaksızın optimum tabakalı kompozit plakaların tasarımlarını bulmaya çalışmak 

mantıklı bir girişim olacaktır. Bu çalışmada, minimum kalınlıkta ve burkulmaya 

dayanıklı çok katmanlı kompozit malzemelerinin optimum tabaka dizilimi tasarımları 

farklı en-boy oranlarında ve yükleme koşullarına göre incelenmiştir. Ayrıca yaygın 

olarak kullanılan açılar (geleneksel) ve sürekli açılarla yapılan tabaka dizilimleri 

karşılaştırılıp, ağırlık üzerindeki etkiside belirlenmiştir. Kritik burkulma yükü faktörü 

amaç fonksiyonu olarak alınmıştır. Grafit /epoksi kompozit plakalar, balans ve simetrik 

bir yapıya sahip plakalar olarak değerlendirilmiştir.  Sürekli fiber yönlenme açıları da 

tasarım parametresi olarak düşünülmüştür. Genelleştirilmiş model arama algoritması 

(GPSA) ve genetik algoritmasının (GA) kombinasyonu optimizasyon methodu olarak  

kullanılmıştır. Bütün sonuçlar incelendiğinde, yükleme koşullarının ve plaka ölçülerinin 

tabakalı kompozitlerin maksimum burkulma yük kapasitesi ve minimum ağırlık 

açısından kritik önem taşıdığı ve fiber yönlenme açılarınında kırılmanın burkulmadan 

veya kırılma kriterlerinden kaynaklandığını belirlemede etkili olduğunu göstermektedir. 
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CHAPTER 1 

INTRODUCTION 

 

Fiber-reinforced composite material is material system composed of two or 

more macro constituents that differ in shape and chemical composition and which are 

insoluble in each other. Fiber-reinforced composites are used extensively in the form of 

relatively plate, and consequently the load carrying capability of composite plate against 

buckling has been intensively considered by researchers under various loading and 

boundary conditions. In many engineering structures such as columns, beams, or plates, 

their failure develops not only from excessive stresses but also from buckling.  They 

have been used in aerospace, automobile, marine applications and etc. due to their low 

weight, high stiffness, superior fatigue and corrosion properties. 

Optimization of composite structures is a recent issue, because both optimization 

techniques and composite structures have been developed during the last few decades 

and therefore, the conjunction of both of them is even more recent. Composite materials 

being an expensive but efficient technology to get minimum weight structures, it is 

logical to make an attempt to find out how to design properly optimum laminated 

composite plates with no reduction in their strength. 

Many researchers have investigated studies using various optimization 

techniques considering several optimization objectives in the literature for the 

optimization of laminated composite materials. Generalized pattern search, genetic 

algorithm, simulated annealing algorithm, tabu search and ant colony optimization are 

most commonly used method of the stochastic optimization methods in the literature. 

One of the most commonly used the design objective is weight or thickness 

minimization of the laminated composite plates.  

The earliest attempt in composite optimization seems to be due to Foye (1968), 

who studied the minimum weight optimum design of laminated composite for strength 

and membrane stiffness. Multiple in-plane loading conditions were considered, and a 

random search method was used to find ply orientation angles, such that the strength 

and stiffness requirement would be satisfied with the smallest number of plies. Another 

procedure for the optimum design of laminates was reported by Waddoups (1969). 
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Minimum weight designs are obtained by considering strength constraints under 

multiple distinct loading conditions. Either the Tsai-Hill or the maximum strain 

criterion may be used, and all laminae are assumed to behave linearly to failure. 

Many researchers tried to make a better laminated composite material either by 

increasing static strength of composite laminates or reducing the weight for a given 

thickness. Especially, genetic algorithm, which is stochastic optimization method, was 

firstly studied to obtain the minimum thickness design of composite laminated plate by 

Riche and Haftka (1995). The thinnest symmetric and balanced laminates satisfying the 

4-ply contiguity constraint which do not fail because of the fact that buckling or 

excessive strains are obtained (Le Riche and Haftka 1995). Minimum weight design of 

composite laminates is presented using genetic algorithm considering the failure 

mechanism based, maximum stress and Tsai-Wu failure criteria as design constraints 

for different in-plane loading conditions and different ply orientations, which are 

defined as the design variable (Naik, et al. 2008). 

The problem of weight minimization of composite plates subjected to critical 

buckling load and maximum displacement constraints was studied by Adali, Richter and 

Verijenko (1997) where the fibre orientations are the design variables. The results for 

both single and multiple load conditions show that a minimum plate total thickness is 

reached. In stacking sequence optimization studies, the usage of fiber orientations 

angles as design variables can be divided into two groups. The first one contains 

research that modeled the orientation angle as a continuous variable by Adali (2003). 

This approach may lead to a non-optimal or out of feasible region stacking sequence 

during the manufacturing. The second one contains studies that modeled the orientation 

angle as a discrete variable by Irisarri (2009) and Erdal and Sonmez (2005) . In this 

study adopts the continuos modeling of the orientation angles. 

Some researchers have included the minimum weight design to minimum 

deflection or minimum cost design objectives. The minimum deflection and weight 

designs of laminated composite plates with four layers considering various boundary 

conditions, varying aspect ratios and different loading types are given separately using 

the finite element method based on Mindlin plate theory in conjunction with 

optimization routines (Walker, et al. 1997). 

The buckling load capacity of a composite plate under in-plane compressive 

loads is crucial for the design of the composite structures. The buckling could cause a 

premature failure of the structure. Therefore, buckling load maximization is a critical 
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issue that many researchers deal with. The stacking sequence design of a composite 

laminate for buckling load maximization considering strain failure has been studied 

using genetic algorithm by Haftka and Le Riche (1993). Their study involved the 

application of genetic algorithm technique to stacking sequence and minimum number 

of laminae optimization problems, to a simple rectangular composite laminate, 

subjected to buckling, strain and contiguity constraints. 

The optimization of the critical buckling load of composite plates is an issue of 

great interest. Therefore, researchers have studied the optimum design of composite 

laminates for buckling load. In Chao and Koh (1975) and Hirano (1979), the ply 

thickness and number of plies are constant while the fibre orientations vary. The closed 

form solution of the buckling problem of simply supported composite plates is used and 

an optimization search is conducted for plates with different aspect ratios and load 

conditions. Since the total thickness is constant, the structural weight is also constant 

and the critical budding load is maximized.  

Erdal and Sonmez (2005) presented optimization of laminated composite plate 

for maximum buckling load using simulated annealing that is one of the most popular 

stochastic optimization techniques. 

Soykasap and Karakaya (2007, 2009) have investigated the critical buckling 

load for various load cases such as biaxial load and uniaxial load, and different plate 

aspect ratios. They showed that, not only uniaxial and biaxial loadings but also pure 

shear loading and the combination of shear and biaxial loadings change the optimal 

solutions for maximum buckling load. 

Generalized pattern search algorithm (GPSA) represent a subclass of direct 

search algorithms, in which the minimizer of a continuous function is sought without 

the use of derivatives. GPSA is a mostly local search method and the use of the 

algorithm in composite optimization is very few. GPSA has been used for optimal 

stacking sequence of a 64-layer composite plate made of graphite epoxy by Karakaya 

and Soykasap (2009). Generalized pattern search algorithm has not been used for the 

stacking sequence optimization of the laminate composites before Karakaya and 

Soykasap because this algorithm is mostly a local algorithm. They have compared the 

method with GA and GPSA, and concluded that the Genetic Algorithm is expensive but 

more effective in finding distinct global optima than generalized pattern search 

algorithm. 
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Another study about GPSA is minimization of energy consumption in the 

workplace and house was studied by Wetter and Wright (2003). They have compared 

GPSA with GA. Genetic Algorithm has given better solution because they have thougt 

that the problem has many local minima. But they have added GPSA is more effecient. 

Hough, Kolda and Torczon (2000) have studied on GPSA in their earlier work  

“while the theory for pattern search assumes that an objective function is continuously 

differentiable, pattern search methods can be effective on nondifferentiable (and even 

discontinuous) problems precisely because they do not explicitly rely on derivative 

information to drive the search.”  

In this study, optimal stacking sequence designs of laminated composite plates 

for maximum buckling load and minimum weight are determined using generalized 

pattern search algorithm (GPSA). Symmetric and balanced composite plates which are 

simply supported on four sides, are analyzed under different load conditions and aspect 

ratios (length to width). Fiber orientation angle in each layer is taken as a design 

variable and  the orientation angle as a continuous variable. Design constraint is based 

on critical buckling load factor. 
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CHAPTER 2 

COMPOSITE MATERIALS 

2.1.  Definition and Basic Characteristics 

A composite material consists of two or more separable materials which are 

combined in a macroscopic structural unit (Gibson, 1994). The most important 

advantage of using a composite structural material compared to other structural 

materials such as metals, ceramics or polymers, is that the specific strength (the ratio of 

tensile strength to density) of composites is much higher. In addition in applications 

such as aircraft or spacecraft where weight reduction is important, composites can play 

a significant role.  

The main idea of composite structures is to utilise the materials in the best 

possible way by tailoring the material to the application. A composite material is thus 

not just used in an immediate form but designed to meet the specified requirements. 

From mechanics of materials it is well known that the maximum stresses happen in a 

certain direction. Thus, having uniform strength of the material in all directions leads to 

a natural "oversizing" in the non-maximum directions. This oversizing is strongly 

reduced in laminated composite structures as the material is designed to have directional 

strength where needed. 

The properties of a composite material depend on the properties of the 

constituents, geometry and distribution of the materials. One of the most important 

parameters for composite materials is volume fraction and it represents fiber volume 

ratio of composite structure. Volume fraction can be defined by burn-out test. The 

distribution of reinforcing fibers defines homogeneity or heterogeneity. The more 

heterogeneity areas of composite structure, the higher are the possibility of failure in the 

weakest areas.  

The fiber orientation and geometry cause the isotropy or orthotropy. If the 

composite material properties such as stiffness, strength, thermal expansion and thermal 

conductivity are the same in all directions, it is called that isotropic composite. 

Otherwise  an anisotropic material properties are vary with direction or fiber orientation 
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(Daniel and Ishai 1994).  Common metals, such as steel and aluminum alloys, are 

isotropic, due to showing the same property values for all directions. However, a fiber-

reinforced composite is not isotropic materials because of that the properties depend  on  

the  direction of measurement. 

Directional strength is not the only possibility of tailoring a composite material 

to the application. A wide variety of properties can be improved by the use of composite 

materials. Some of these properties are strength, stiffness, fatigue life, weight and etc. 

(Jones, 1999). In addition, composites show more superior properties than single phase 

material. For example, some of carbon reinforced composites are ten times stronger 

than steel and lighter. On the other hand, fabricating techniques used in composite 

production increase the cost of composites, for this reason, the main challenge of the 

composite world is to reduce cost of the laminated materials  (Staab, 1999). The most 

commonly used advanced composites are polymer matrix composites which have a 

polymer (e.g., epoxy, polyester, Vinyl Ester, urethane)   reinforced   by   fibers   (e.g., 

carbon, graphite, aramids, kevlar). 

                 

 

 

Figure 2.1. Specific strength and stiffness comparison for selected composites and    

conventional bulk materials (Source: Staab,1999) 

 

A composite offers strength-to-weight and stiffness-to-weight ratios superior to 

those of conventional materials. Figure 2.1 represent the comporasion of strength and 

stiffness for several composite material As seen in these figures, a wide range of 
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specific strength and specific modulus are available. In some instances strength may be 

a primary consideration, while in others the stiffness is more important. In all cases 

shown the specific strength for the composite material systems is better than that for the 

conventional materials, whereas the specific modulus is not always superior (Staab, 

1999). 

Although composite materials have certain advantages over conventional 

materials, composites also have some disadvantages (Jan Gou); 

 Fabrication of composites’ costs are higher than metals . 

 Mechanical definition of a composite structure is more complicated than a metal 

structure. 

 Repair of composites is a complex process compared to that for metals 

 Composites don’t have a high combination of strength and fracture toughness 

compared to metals. 

 Composites don’t necessarily give higher performance in all the properties used 

for material selection: strength, toughness, formability, joinability, corrosion 

resistance, and affordability. 

 

2.2. Types and Classification of Composite Materials 

 

Composite materials are usually categorized according to the type of 

reinforcement used. Most made composite materials are produced by two materials. A  

reinforcement material called fiber and a base material, called matrix material.  

Composite materials are commonly formed in three different types. Fibrous 

composites, which consist of fibers of one material in a matrix material of another. 

Particulate; which are composed of macro size particles of one material in a matrix of 

another. Laminated composites, which are made of layers of different materials, 

including composites of the first two types. Each has unique properties and application 

potential, and can be subdivided into specific categories (J.N. Reddy,2004). 

A fibrous composite consists of either continuous (long) or chopped (whiskers, 

short) fibers suspended in a matrix material (Staab,1999). A continuous fiber is 

geometrically defined as having a very high length-to-diameter ratio. They are generally 

stronger and stiffer than bulk material. The geometry and physical makeup of a fiber are 
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somehow crucial to the evaluation of its strength and must be considered in structural 

applications.  

A whisker (discontinuous) is generally considered to be a short, stubby fiber. 

Discontinuous fibers have actually the same near crystal sized diameter as a fiber, 

though the length to diameter ratio can be in the hundreds (Jones, 1999).  

 

 

 

Figure 2.2. Classification of composite material systems 

                                             (Source: Daniel and Ishai 1994) 

 

The reinforcements in the composites can be manufactured as a whiskers or 

fibers. hence, they have either random or biased orientation. Material systems composed 

of discontinuous reinforcements are considered single layer composites. The 

discontinuities can manufacture a material response that is anisotropic, but in many 

instances the random reinforcements manufacture nearly isotropic composites. 

Continuous fiber composites can be either single layer or multilayered. The single layer 

continuous fiber composites can be either unidirectional or woven, and multilayered 

composites are generally referred to as laminates. Fiber composites consist of matrices 
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as the continuous phase, reinforced fibers (short (discontinuous) or long (continuous)) 

and an interface. Carbon, graphite, aramids, boron, and kevlar can be selected as fibers 

for composites and they are generally anisotropic. Resins such as epoxy, vinylester, 

polyester; metals such as aluminum, magnesium or titanium, and ceramics such as 

calcium–alumina silicate are examples of matrices. Continuous fiber matrix composite 

materials include unidirectional or woven fiber laminas. Laminas are stacked on top of 

each other at various angles to form a multidirectional laminate.  

The table below presents properties of various kinds of fibres. 

Table 2.1. Properties of glass, aramid and carbon fibres (Source: Zobel H,2004) 

 

 The material response of a continuous fiber composite is generally orthotropic. 

Figure 2.3. is schematics of both types of fibrous composites. 

 

 

 

 

Figure 2.3. Schematic representation of fibrous composites (Source: Staab,1999) 

http://en.wikipedia.org/wiki/Aluminium
http://en.wikipedia.org/wiki/Magnesium
http://en.wikipedia.org/wiki/Titanium
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A particulate composite is defined as being composed of particles suspended in 

a matrix. Particles can have virtually any shape, size or configuration. Examples of 

well-known particulate composites are concrete and particle board. They are isotropic 

because of the randomness of particle distribution. Particular composites can be 

categorized into four groups. These are nonmetallic particles in a nonmetalic matrix 

(glass feinforced with mica flakes), metallic particles in nonmetallic matrices 

(aluminium particles in polyurethane), metallic particles in metallic matrices (lead 

particles in copper alloys) and nonmetallic particles in metallic matrices (silicon carbide 

particles in aluminium). A flake composite is generally composed of flakes with large 

ratios of platform area to thickness, suspended in a matrix material (particle board, for 

example). A filledskeletal composite is composed of a continuous skeletal matrix filled 

by a second material: for example, a honeycomb core filled with an insulating material. 

Particulates cause improved strength, increased operating temperature, oxidation 

resistance of composite materials. The response of a particulate composite can be either 

anisotropic or orthotropic. Such composites are used for many applications in which 

strength is not a significant component of the design. Figure 2.4 is schematic of several 

types of particulate composites (Staab,1999).  

 

 

 

Figure 2.4. Schematic representation of particulate composites (Source: Staab,1999) 

 

Laminate which is made by stacking a number of very thin layers of fibers can     

be defined as assemblages of layers of fiber-reinforced composite materials. In order to                

control the stacking sequence of various layers in a composite laminate properties   

including in-plane stiffness, bending stiffness, strength, and coefficients of thermal 

expansion, it can be generated  Laminate composite is made of two dimensional sheets 

or panels that have a preferred high strength direction such as in wood and continuous 
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and aligned fibre reinforced plastics.  Layers are stacked and subsequently cemented 

together such that the orientation of high strength direction varies with each successive 

layer laminations may also be constructed using fabric material such as cotton, paper 

etc.  Thus a laminate composite has relatively high strength in a number of directions.  

However the strength  in any given direction is of course lower than it would be if all 

fibres were oriented in that direction.. 

2.3. Fundamental Composite Material Terminology 

Some of the more prominent terms used with composite materials are defined 

below. 

A lamina has been described as a thin single layer of composite material. An 

individual layer of the laminate. Also known as a ply.  A lamina or ply is a typical sheet 

of composite materials, which is generally of a thickness of the order 1 mm. Both 

unidirectional and woven lamina are schematically shown in Figure 2.5.   

 

 

 

Figure 2.5. Schematic representation of unidirectional and woven composite lamina 

(Source: Staab,1999) 

 

A laminate is constructed by stacking a number of lamina in the direction of the 

lamina thickness. A laminate is a stack of lamina, as illustrated in Figure 2.6, oriented in 

a specific manner to achieve a desired result. The layers are usually bonded together 

with the same matrix material as in the single lamina (Altenbach,2004).  
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Figure 2.6. Schematic of a laminated composite (Source: Staab,1999). 

 

Designers use reinforcements to make the composite structure or component 

stronger. The most extensively used reinforcements are boron, glass, graphite (often 

referred to as simply carbon), and Kevlar, but there are other types of reinforcements 

such as alumina, aluminum, silicon carbide, silicon nitride, and titanium.  

The matrix is the binder material that supports, allocates, and protects the fibers. 

It provides a path by which load is both transferred to the fibers and redistributed among 

the fibers in the event of fiber breakage. The fibers typically has a higher density, 

stiffness, and strength than the matrix. Matrices can be brittle, ductile, elastic, or plastic. 

They can have either linear or nonlinear stress-strain behavior. In addition, the matrix 

material must be capable of being forced around the reinforcement during some stage in 

the manufacture of the composite. Fibers must often be chemically treated to ensure 

proper adhesion to the matrix. The most commonly used matrices are carbon, ceramic, 

glass, metal, and polymeric. Each has special appeal and usefulness, as well as 

limitations. 

The most common advanced composites are polymer matrix composites 

including a thermoset (e.g., epoxy, polyimide, polyester) or thermoplastic (poly-ether-

ether-ketone, polysulfone) reinforced by thin diameter fibers (e.g., graphite, aramids, 

boron). These composites have high strength, simple manufacturing technique and low 

cost. Metal matrix composites consist of metals or alloys (aluminum, magnesium, 

titanium, copper) reinforced with boron, carbon (graphite) or ceramic fibers. The 

materials are widely used to provide advantages over metals such as steel and 

aluminum. Some of these advantages contain higher specific strength and modulus by 

low density metals such as aluminum and titanium, lower coefficients of thermal 

expansion, such as graphite. Ceramic matrix composites have ceramic matrices (silicon 



13 

 

carbide, aluminum oxide, glass-ceramic, silicon nitride) reinforced with ceramic fibers. 

Ceramic matrix composites have many advantages, some of these advantages are high 

strength, hardness, high service temperature limits for ceramics, chemical inertness and 

low density. However fracture toughness is low for ceramic matrix composites. Carbon-

carbon composites use carbon fibers in the carbon or graphite matrix. They have 

excellent properties of high strength at high temperature, low thermal expansion and 

low density.  

2.4. Applications of Composites 

Composite structures are extensively used nowadays in range of components for 

automotive, aircraft, marine, satellite and even in consumer products such as golf, ski, 

and tennis. Military aircraft designers were among the first to recognize the importance 

of composites for weight reduction since performance of these vehicle heavily depend 

on weight. Examples of aircrafts with composite components are Boeing 757 and 756 

where most of the body, wing and empennage are made out of long fiber and woven 

composite. Although composite have been used for a variety of aircraft parts, yet they 

have not been used for engine components due to their temperature and fuel exposure 

limitation (Gibson, 1994). 

The main structural applications for fiber-reinforced composites are in the field 

of military and commercial aircrafts, for which weight reduction is critical for higher 

speeds and increased loads. Figure 2.7 shows the use of composite material in Boeing 

787. With the use of carbon fibers in the 1970s, carbon fiber-reinforced composites 

have become the primary material in many wing, fusel age, and empennage 

components. The structural integrity and durability of components have increased 

confidence in their performance and developments of other structural aircraft 

components, so increasing amount of composite materials are used in military aircrafts. 

For example, the F-22 fighter aircraft also contains 25% by weight of carbon fiber 

reinforced polymers; the other major materials are titanium (39%) and aluminum 

(16%). The stealth aircrafts are almost all made of carbon fiber-reinforced polymers 

because of design features that have special coatings, reduce radar reflection and heat 

radiation. Furthermore, many fiber-reinforced polymers are used in military and 
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commercial helicopters for making baggage doors, fairings, vertical fins, tail rotor spars 

and so on (Mallick 2007). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.7. Composite Materials used in Boeing 787 body 

(Source: Bintang, 2011) 

 

Everyone is familiar, to some degree, with space activities. However, few are 

conversant with the role that various composite materials play in these activities. 

Weight savings are a crucial arena for space structures because of the enormous cost of 

boosting every structure from earth into space. Thus, composite materials are playing a 

compelling role in virtually all space structures, but not as much as they will in the 

future as more applications are developed. 

Some graphite epoxy structures can be tailored to have a zero coefficient of 

thermal expansion, a big advantage for large antennas that must pass in and out of the 

sun, yet maintain dimensional stability for accuracy of pointing the signal. For example, 

a graphite epoxy truss is used to stabilize and support the Hubble Space Telescope 

(Jones, 1999). 

Composite materials have been a part of the automotive industry for several 

decades, with early application in the 1953 Corvette. The automotive industry faces 

many challenges, including increased global competition, the need for higher-

performance vehicles, a reduction in costs and tighter environmental and safety 

requirements. The materials used in automotive engineering play key roles in 

overcoming these issues: ultimately lighter materials mean lighter vehicles and lower 

emissions. Composites have been the reduced weight and parts consolidation 
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opportunities the material offers, as well as design flexibility, corrosion resistance, 

material anisotropy, and mechanical properties For this reasons, composites are being 

used increasingly in the automotive industry.  

 

 

 

Figure 2.8. 1953 Chevrolet Corvette- the first production car to use structural 

composite materials. 
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CHAPTER 3 

MECHANICS OF COMPOSITE MATERIALS 

 

The mechanics of materials considers the concepts of stresses, strains, and 

deformations in structures exposed to mechanical and environmental effects for 

example temperature, moisture, and radiation. A typical composite structure consists of 

a system of layers bonded together. The layers can be made of different isotropic or 

anisotropic materials, and have different structures, thicknesses, and mechanical 

properties. In contrast to typical layers whose primary properties are determined 

experimentally, the laminate characteristics are usually calculated using the information 

concerning the number of layers, their stacking sequence, geometric and mechanical 

properties which should be known. The design steps from micromechanics (which takes 

into account the fiber and matrix properties and matrix properties) through 

macromechanics (which treats the properties of composite) to structural 

analysis(Mallick, 2007). A laminated composite is made by stacking a number of such 

orthotropic sheets at specific orientations to get composite materials with desired 

characteristics. When then use the existing theory of laminated plates to examine 

macromechanically such laminated composites (Chawla,1998). These steps are 

illustrated in Figure 3.1. fiber-reinforced composite materials are inhomogeneous and 

non-isotropic (orthotropic). For this reason, the analysis of mechanics of fiber-

reinforced composite materials are much more complicated than that of traditional 

materials . 
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Figure 3.1. The levels of analysis for a structure made of laminated composite 

                           (Source: Kollar,2003) 

 

The mechanical analysis of fiber-reinforced composites are performed in two 

levels: (i) macromechanical analysis, (ii)  micromechanical analysis. These terms can be 

defined as follows: 

Micromechanics: Mechanical analysis of the materials on the level of the individual 

constituents(the microscopic level). This study is generally performed with the aid of a 

mathematical model describing the response of each constituent material. 

Macromechanics: The study of composite material behavior wherein the material is 

presumed homogeneous and the effects of the constituent materials are detected only as 

averaged apparent properties of the composite.  micromechanics to determine the 

properties of individual layers and then use only these layer properties to describe the 

composite. 

 



18 

 

3.1. Macromechanics of Composite Laminates 

Classical lamination theory based on classical plate theory is only valid for thin 

laminates and used to analyze the infinitesimal deformation of laminated structures. In 

this theory, it is assumed that  laminate is thin and wide, perfect bounding exists 

between laminas, there exist a linear strain distribution through the thickness and all 

laminas are macroscopically homogeneous and behave in a linearly elastic manner 

(Kaw, 2006). Thin laminated composite structure subjected to mechanical in-plane 

loading (Nx, Ny) considered in this thesis is shown in Figure 3.1. Cartesian coordinate 

system x, y and z define  global coordinates of the layered material. A layer-wise 

principal material coordinate system is denoted by 1, 2, 3 and  fiber direction is oriented 

at angle   to the x axis. Representation of laminate convention for  the n-layered  

structure with total thickness  h  is given in Figure 3.2 

 

 

 

Figure 3.2. A thin fiber-reinforced laminated composite subjected to in plane loading  

 

 a) 

 

 b) 
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Figure 3.3. Coordinate locations of plies in a laminate  

 

In most structural applications, composite materials are used in the form of thin 

laminates loaded in the plane of the laminate. Consequently, composite laminates can 

be considered to be under a condition of plane stress with all stress components in the 

out-of-plane direction (3-direction) being zero. 

The strains at any point in the laminate to the reference plane can be written as  
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The stress-strain relation for the k-th layer of a composite plate based on the 

classical lamination theory can be written in the following form; 
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where [ ijQ ]k are the components of the transformed reduced stiffness matrix, [
o ] is 

the mid-plane strains [ ] is curvatures. 

The elements of the transformed reduced stiffness matrix [ ijQ ] expressed in 

Equation 3.2 can be defined as in the following form; 

 

                            22
6612

4
22

4
1111 )2(2 csQQsQcQQ                                         (3.3) 

 

                             )()4( 44
12

22
66221112 scQcsQQQQ                                   (3.4) 

 

                             22
6612

4
22

4
1122 )2(2 csQQcQsQQ                                       (3.5) 

 

                             csQQQscQQQQ 3
661222

3
66121116 )2()2(                     (3.6) 

 

                             
3

661222
3

66121126 )2()2( scQQQcsQQQQ                      (3.7) 

 

                           )()22( 44
66

22
6612221166 scQcsQQQQQ                        (3.8) 

 

where stiffness matrix quantities [ ijQ ] are 
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Figure 3.4. Stress resultants and couples applied to reference plane of layer. 

                             (Source: Vasiliev) 

 

The principal stiffness terms, ijQ , depend on elastic properties of the material 

along the principal directions, 1E , ,2E 12G , 12 , and 21 . The in-plane loads ( xN , yN
 

and xyN ) and the moments ( ,xM  yM , xyM ) in general have the following relations; 
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The matrices [A], [B] and [D] given in Equation 3.13 and 3.14 are extensional stiffness, 

coupling stiffness and bending laminate stiffness, respectively. These matrices can be 

defined as; 
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The [A], [B], and [D] matrices are called the extensional, coupling, and bending 

stiffness matrices, respectively. Combining Equation 3.13 and Equation 3.14 gives six 

simultaneous linear equations and six unknowns as; 
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The extensional stiffness matrix [A] relates the resultant in-plane forces to the 

in-plane strains, and the bending stiffness matrix [D] relates the resultant bending 

moments to the plate curvatures. The coupling stiffness matrix [B] couples the force and 

moment terms to the mid-plane strains and mid-plane curvatures (Kaw 2006). 
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Now, stresses and strain expressions based on classical lamination theory can be 

expressed by local coordinate system (1, 2). The relation between the local and global 

stresses in an angled lamina can be written as in the following form; 
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Similarly, the local and global strains are written as follows: 
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Transformation matrix [T] used in order to obtain the relation between principal 

axes (1, 2) and reference axes (x, y), is given by 
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3.2. Buckling Analysis of a Laminated Composite Plate 

 

Determining the buckling load capacity of a composite plate under in-plane 

compressive loads is crucial for the design of the composite structures since the 

buckling of composite plates usually occurs at a lower applied stress and generates large 

deformations. The buckling could yield a premature failure of the structure. For the 

buckling analysis, we assume that the only applied loads are the in-plane compressive 

forces and other mechanical and thermal loads are zero.   

When the stress resultants ,xN
yN and xyN  are uniformly loaded and w  is the 

pre-buckling deformation, the equation of equilibrium in the direction normal to plate is 

defined as 
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For simply supported plate with no shear load, xyN  is zero. In order to simplify the 

equation of equilibrium, the in-plane forces are defined as follows: 
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The simply supported boundary conditions on all four edges of the rectangular plate 

(Figure 3.5) can be defined as 
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Figure 3.5. Geometry, coordinate system, and simply supported boundary conditions for     

a rectangular plate (Source: Reddy 2004) 

 

As in the case of bending, Navier approach may be used for the solution 

considering simply supported boundary condition 
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Substituting Equation 3.27 into Equation 3.23, we have obtained the following 

equation: 
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For nontrivial solution  0mnW , the expression inside the curl brackets should be zero 

for every m and n half waves in x and y directions. Then we obtain  

 



26 

 

                                                 
)(

),(
220

 k

d
nmN mn


                                              (3.29) 

 

 where       4

22

22

6612

4

11 )2(2  DDDDdmn                                             (3.30) 

 

                                                 
a

m
                                                                      (3.31) 

                                                
b

n
                                                                        (3.32) 

 

where a  is the length of the plate, b  is the width of the plate. Substituting 

Equation 3.24 into Equation 3.29, the buckling load factor b is determined as 
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Where r  is the plate aspect ratio )/( ba . The buckling mode is sinusoidal and if 

the plate is loaded as xb

a

x NN   and yb

a

y NN  , the laminate buckles into m  and n  

half waves in x and y directions, respectively. The smallest value of b  over all 

possible combinations of m and n  is the critical buckling load factor cb  that 

determines the critical buckling loads for a specified combination of xN  and yN in 

Equation 3.34. If cb  is larger than 1, the laminate can sustain the applied loads xN  and 

yN  without buckling (Gurdal, et al. 1999). 
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The combinations of m  and n  result in the lowest critical buckling load and, 

which is not easy to find. When composite plate is subjected to in-plane uniaxial 

loading and is simply supported for all edges, the minimum buckling load occurs at 

1n . The value of m depends on bending stiffness matrix ( ijD ) and the plate aspect 

ratio )/( ba . Therefore, it is not clear which value of m will provide the lowest buckling 

load (Vinson 2005). The critical buckling load factor cb   limits the maximum load 

which the laminate can withstand without buckling and it is the smallest value of b  

under appropriate m and n values. Unless the plate has a very high aspect ratio or 

extreme ratios of ijD s, the critical values of m and n are small (Gurdal, et al. 1999). The 

optimization problem which we have considered in the thesis study is to find the 

optimum configurations of composite plates which have the maximum critical buckling 

load factors cb . The values of m and n are taken to be 1 or 2 in order to result in a good 

estimate of buckling load capacity for this reason smallest value of b  (1, 1), b (1, 2), 

b (2, 1) and b (2, 2) are considered in order to make a good prediction with respect to 

critical buckling load factor (Erdal and Sonmez 2005). 
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CHAPTER 4 

OPTIMIZATION 

 

4.1. General Information 

 

All of us are optimizers. We all make decisions that maximize our welfare in 

some way or another. Often the welfare we are maximizing may come later in life. By 

optimizing, it reflects our evaluation of future benefits versus current costs or benefits 

forgone. For instance, a small savings in a mass-produced part will cause substantial 

savings for the corporation. In many industries such as aircraft, marine, automotive, 

weight minimization of laminated composite material can impact fuel efficiency, 

increased payloads or performance. 

 Optimization, is a mathematical procedure for determining optimal allocation of 

scarce resources. Maximizing or minimizing some function relative to some set, often 

representing a range of choices available in a certain situation. The function allows 

comparison of the different choices for determining which might be “best”. Engineers 

have to take many decisions at several stages. The ultimate goal of all such decisions is 

either to minimize the effort required or to maximize the desired benefit. the process of 

adjusting the inputs of a device, mathematical process, or experiment to find the 

minimum or maximum output. It can be seen from Figure 4.1 that if a point x
*
 

corresponds to the minimum value of function f (x) , the same point also corresponds to 

the maximum value of the negative of the function, - f (x) . Consequently, without loss 

of generality, optimization can be taken to mean minimization because the maximum of 

a function can be found by searching for the minimum of the negative of the same 

function (Rao 2009).  
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Figure 4.1. Minimum and maximum of objective function (f(x)) 

                                      (Source: Rao 2009) 

 

An optimization algorithm is a procedure which is executed iteratively by 

comparing various solutions till an optimum or a satisfactory solution is found. 

With the advent of computers, optimization has become a part of computer-

aided design activities. There are two distinct types of optimization algorithms widely 

used today: (a) deterministic algorithms, (b) stochastic algorithms. These terms can be 

defined as follows: 

(a) Deterministic Algorithms: They use specific rules for moving one solution 

to other. These algorithms are in use to suite some times and have been successfully 

applied for many engineering design problems. 

(b) Stochastic Algorithms: The stochastic algorithms are in nature with 

probabilistic translation rules. These are gaining popularity due to certain properties 

which deterministic algorithms do not have. 

It is impossible to apply single formulation procedure for all engineering design 

problems, since the objective in a design problem and associated therefore, design 

parameters vary product to product different techniques are used in different problems. 

Purpose of formulation is to create a mathematical model of the optimal design 

problem, which then can be solved using an optimization algorithm. Figure 4.2 shows 

an outline of the steps usually involved in an optimal design formulation. 
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Figure 4.2 A flowchart of the optimal design procedure 

 

Composite design problems generally are very complicated and it is impposible 

to solve by the traditional optimization techniques. In these cases, the use of stochastic 

optimization methods such as Genetic Algorithms (GA), Generalized Pattern Search 

Algorithm (GPSA) and Simulated Annealing (SA) are appropriate. In composite 

laminate design problems, derivative calculations or their approximations are 

impossible to obtain or is often costly. Therefore, stochastic search methods have the 

advantage of requiring no gradient information of the objective functions and the 

constraints. In this thesis, GPSA has been considered and used with some modification 

for design of the laminated composites. In the following subsection, steps of the 

algorithm are shortly overviewed. 
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4.2. Definition of Optimization Problem 

An optimization or a mathematical programming problem can be defined as 

follows 

 

                                  Find    
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where X is an n-dimensional vector called the design vector, f (X ) is termed the 

objective function, and gi (X )  and li (X )  are known as inequality and equality 

constraints, respectively. The number of variables n and the number of constraints m 

and/or p are not necessary to be related in any way. The optimization problem stated in 

Equation 4.1 is called a constrained optimization problem. There are not any constraints 

in some optimization problems which are called unconstrained optimization problems 

(Rao 2009). 

The formulation of an optimization problem begins with identifying the 

underlying design variables, which are primarily varied during the optimization process. 

A design problem usually involves many design parameters, of which some are highly 

sensitive to the proper working of the design. These parameters are called design 

variables in the parlance of optimization procedures. Other (not so important) design 

parameters usually remain fixed or vary in relation to the design variables. The first 

thumb rule of the formulation of an optimization problem is to choose as few design 

variables as possible. The outcome of that optimization procedure may indicate whether 

to include more design variables in a revised formulation or to replace some previously 

considered design variables with new design variables. 

The constraints represent some functional relationships among the design 

variables and other design parameters satisfying certain physical phenomenon and 

certain resource limitations. The nature and number of constraints to be included in the 
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formulation depend on the user. Constraints may have exact mathematical expressions 

or not. 

4.3. Generalized Pattern Search Algorithm 

Generalized pattern search (GPS) algorithms were decribed and examined by 

Torczon (1997) for derivative-free unconstrained optimization on continuously 

differentiable functions using positive spanning directions later extended to take 

nonlinear constrained optimization problems into account. Pattern search algorithms are 

a direct search method well capable of solving global optimization problems of 

irregular, multimodal objective functions, without the need of calculating any gradient 

or curvature information, especially for addressing problems for which the objective 

functions are not differentiable, stochastic, or even discontinuous (Torczon, 1997). As 

opposed to more traditional local optimization methods that use information about the 

gradient or partial derivatives to search for an optimal solution, pattern search 

algorithms compute a sequence of points that get closer and closer to the globally 

optimal point. At each iteration, the algorithms poll a set of points, called a mesh, 

around the current point — the point computed at the previous iteration of the 

algorithms, looking for a point whose objective function value is lower than the value at 

the current point. If this occurs, the poll is called successful and the point they find 

becomes the current point at the next iteration. If the algorithms fail to find a point that 

improves the objective function, the poll is called unsuccessful and the current point 

stays the same at the next iteration. The mesh is formed by adding the current point to a 

scalar multiple (called mesh size) of a set of vectors (called a pattern). In addition to 

polling the mesh points, pattern search algorithms can perform an optional step at every 

iteration, called search. At each iteration, the search step applies another optimization 

method to the current point. If this search does not improve the current point, the poll 

step is performed (Lewis and Torczon, 2002). GPSA has some collection of vectors that 

form the pattern and has two commonly used positive basis sets; the maximal basis with 

2N vectors and the minimal basis with N+1 vectors. 
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Figure 4.3 How the poll steps works in the GPS method 

 

In order to clarify the algorithm, a laminated composite plate optimization 

problem including two independent variables 1 and 2  in  the objective function has 

been considered. In this case, pattern consists of the vectors ]01[1 v , ]10[2 v  

]10[],01[ 43  vv   for the positive basis 2N  or ]10[],01[ 21  vv  

]11[3 v  for the positive basis N+1. These cases are shown in Figure 4.4.  

 

 

Figure 4.4 Positive basis set 2N and N+1 
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The mesh is defined by set of spanning directions pattern vectors by a scalar 

called mesh size. The mesh size is defined as follows:  

 

                                                                                                                          (4.2) 

 

where xk-1 is previous point; xk is new point; dk is the length of the corresponding 

direction. 

 

 

 

Figure 4.5 Search points and directions  

 

The pattern search begins at a provided initial point vector 0 . In this example 

problem, ]6020[0  , the mesh size m =5 and positive basis 2N are taken into 

account. At the first iteration, the following  mesh points can be calculated as 

]5520[]6020[5]10[

]6051[]6020[5]01[

]6520[]6020[5]10[

]6025[]6020[5]01[









 

and the algorithm computes the objective function at these mesh points before polls  

(Karakaya & Soykasap, 2009; Spall, 2003; Mathworks 2008b). If the algorithm finds an 

objective function value which is smaller than the value at ]6020[0  , the poll at  

corresponding iteration  is called as “successful”. Supposing the vector ]6520[  

satisfies the  condition, the algorithm sets the next point in the sequence equal to 

]6520[1  . After obtaining a successful poll, the algorithm multiplies the current 

k

kkm

d

xx 1

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mesh size by expansion factor. For example, if the expansion factor is taken as 2, the 

mesh size for the second iteration becomes 5x2=10 and the mesh at the second iteration 

is to be  

]5520[]6520[10]10[

]6510[]6520[10]01[

]7520[]6520[10]10[

]6530[]6520[10]01[









 

 

Now, suppose that ]7520[2   produce smaller objective function value 

than the value at ]6520[1  . This procedure repeats until none of the mesh points 

has a smaller objective function value than the value at last (say n) successful poll 

iteration. This poll is called as “unsuccessful” in the corresponding iteration. In this 

case, the algorithm does not change the current point at the next iteration as nn  1  

In such a case, the algorithm multiplies the current mesh size by given 

contraction factor and the algorithm then polls with a smaller mesh size. The algorithm 

stops when any of the stopping criteria conditions satisfied. 

4.4. Matlab Optimization Toolbox 

MATLAB Global Optimization Toolbox provides methods that search for global 

solutions to problems that include multiple maxima or minima. It contains global 

search, multistart, pattern search, genetic algorithm, and simulated annealing solvers. 

These solvers to solve optimization problems where the objective or constraint function 

is continuous, discontinuous, stochastic, does not possess derivatives, or includes 

simulations or black-box functions with undefined values for some parameter settings. 
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4.4.1. Patternsearch Solver 

Global Optimization Toolbox includes three direct search algorithms: 

generalized pattern search (GPS), generating set search (GSS), and mesh adaptive 

search (MADS). While more traditional optimization algorithms use exact or 

approximate information about the gradient or higher derivatives to search for an 

optimal point, these algorithms use a pattern search method that implements a minimal 

and maximal positive basis pattern. The pattern search method handles optimization 

problems with nonlinear, linear, and bound constraints, and does not require functions 

to be differentiable or continuous. 

The Patternsearch solver interface has two separated parts: problem set 

up(objective functions, start point, linear inequalities, linear inequalities, lower and 

upper bounds, nonlinear constraint function and result screen)  and options(Poll, search, 

mesh, algorithm settings, cache, stopping criteria, plot functions, output function, 

display to command window, user function evaluation). Poll option consists of the 

following sub-options: poll method, complete poll and polling order. These sub options 

are responsible the controlling of the pattern search poll of the mesh points at each 

iteration. 

Poll method (PollMethod) specifies the pattern the algorithm uses to create the 

mesh. There are two patterns for each of the classes of direct search algorithms: the 

generalized pattern search (GPS) algorithm, the generating set search (GSS) algorithm, 

and the mesh adaptive direct search (MADS) algorithm. These patterns are the Positive 

basis 2N and the Positive basis N+1. 

Complete poll (CompletePoll) specifies whether all the points in the current 

mesh must be polled at each iteration. Complete Poll can have the 

values On or Off. Complete poll to On means that the algorithm polls all the points in 

the mesh at each iteration and chooses the point with the smallest objective function 

value as the current point at the next iteration. Complete poll to Off means which is the 

default value that the algorithm stops the poll as soon as it finds a point whose objective 

function value is less than that of the current point. The algorithm then sets that point as 

the current point at the next iteration. 
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Search options specify an optional search that the algorithm can perform at each 

iteration prior to the polling. If the search returns a point that improves the objective 

function, the algorithm uses that point at the next iteration and omits the polling.   

Complete search (CompleteSearch) applies when Search method to GPS 

Positive basis Np1, GPS Positive basis 2N,GSS Positive basis Np1, GSS Positive basis 

2N, MADS Positive basis Np1, MADS Positive basis 2N, or Latin hypercube are 

setted. Complete search can have the values On or Off. 

In patternsearch, a search is an algorithm that runs before a poll. The search 

attempts to locate a better point than the current point. (Better means one with lower 

objective function value.) If the search finds a better point, the better point becomes the 

current point, and no polling is done at that iteration. If the search does not find a better 

point, patternsearch performs a poll. By default, patternsearch does not use search. The 

Figure 4.6 illustrated patternsearch with a search method contains a flow chart of direct 

search including using a search method. The main reason to use a search method, to 

obtain a better a global solution. 

 

 

 

Figure 4.6 A flowchart of pattern search includes search method 

http://www.mathworks.com/help/gads/searching-and-polling.html#bspigjw
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Figure 4.7 represents the parameter selection steps for the GPSA analysis of 

patternsearch solver user interface. In Table 4.1 generalized pattern search algorithm 

parameters used in the model problems approach have been listed. 

 

 

 

Figure 4.7 Matlab optimization toolbox patternsearch solver user interface 
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Table 4.1. GPSA solver parameters used in the problems 

 

Poll Method GPS Positive basis 2N 

Complete poll off 

Polling Order Consecutive 

Complete search on 

Search method GA 

Mesh initial size 1.0 

Mesh Max size infinity 

Mesh Accelerator off 

Mesh Rotate on 

Mesh Scale on 

Mesh Expansion 

factor 

2.0 

Contraction factor 0.5 

Initial penalty 1.0 

Penalty factor 100 

Bind tolerance  10^-3 

 

Stopping criteria 

 

 

Mesh tolerance=10^-6 

Max iterations= 200*number of 
variables 

Max function 

evaluations=2000*number ofvariables 

Time limit=infinity 

X tolerance=10^-6 

Function tolerance=10^-6 

Nonlinear constraint tolerance=10^-6 

 

In this thesis, genetic algorithm is used as search method. Some specific 

information are given the following subheading.  

4.4.1.1. Genetic Algorithm 

The Genetic Algorithm (GA) is a stochastic optimization and search technique 

which allows to obtain alternative solutions for some of the complex engineering 

problems such as increasing composite strength and light weight structures, etc. GA 

method utilizes the principles of genetics and natural selection. This method is simple to 
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understand and uses three simple operators: selection, crossover and mutation. Genetic 

Algorithm always considers a population of solutions instead of a single solution at each 

iteration. It has some advantages in parallelism and robustness of genetic algorithms. It 

also improves the chance of finding the global optimum point and helps to avoid local 

stationary point. However, GA is not guaranteed to find the global optimum solution to 

a problem. GA has been applied to the design of a variety of composite structures 

ranging from simple rectangular plates to complex geometries. 

 

 

Figure 4.8. Flow chart of genetic algorithm 

  (Source: Cepin 2011) 
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CHAPTER 5 

RESULTS AND DISCUSSIONS 

5.1. Problem Statement 

In this thesis study, the stacking sequence design of light-weighted laminated 

composite plates resisting to buckling have been considered. 

The graphite/epoxy laminated composite plates under consideration are 

rectangle, simply supported on four sides with a length of a and width of b and 

subjected to in-plane compressive loads xN and yN , as shown in Figure 5.1.   The 

length of plate  508.0a  m and a ply thickness 25.0t  mm. 

    

 

 

 

 

 

 

 

Figure 5.1. Composite plate subjected to in-plane compressive loadings 

                                (Source: Soykasap and Karakaya 2007) 

 

Different loading cases have been considered: xN =1000 N/mm, 2000 N/mm, 

3000 N/mm in design process. yN  and b have been calculated from the load ratio k (

yx NN / ) and the plate aspect ratio r )/( ba  accordingly. The plate designs have been 

studied under loading ratios; k =1/2, 1, 2 and plate aspect raitos; r =1/2,1,2. 

In design process, fiber orientation angles are taken as design variables and the 

allowable orientation angles are continuous ( 9090   ). The number of design 

variables is reduced from n to n/4 because the plate the plate has assumed to be balance 
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and symmetric which n represented the number of layers. The representation of stacking 

sequences of n layered composite plate can be given as; 

snn ]//...//////////[ 4/1)4/(10987654321   

 

The optimization problem can be represent as follows, 

 

Find         :  i , i    90,90   ni ,...,1  

Minimize  : Weight 

Subject to : Critical buckling load, cb 1 

In order to obtain the plates with minimum weight which could resist to 

buckling, n should be 4 at least. Then, n is increased 4 by 4 untill the buckling criteria is 

reached, cb 1. 

The elastic properties of the layers have been taken from a previous study 

(Akbulut and Sonmez 2008) and given in Table 5.1. 

 

Table 5.1. Elastic properties of Graphite/Epoxy (T300/5208) 

                                       (Source: Akbulut and Sonmez 2008) 

 

Property Graphite/Epoxy (T300/5208) 

Young's modulus, E1 (GPa) 181 

Young's modulus, E2 (GPa) 10.3 

Shear modulus, G12 (GPa) 7.17 

Poisson rate, 12  0.28 

 

The critical buckling load factor ( cb ) has been used as an objective function in 

optimization. The objective function for each design has been obtained using the 

MATLAB Symbolic Math Toolbox and the algorithm is given in Appendix A. In order 

to obtain optimum stacking sequences of laminated composite material, cb , the critical 

buckling load factor (Equation 3.33) is maximized by using generalized pattern search 
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algorithm. Here, the smallest value of b  (1, 1), b (1, 2), b (2, 1) and b (2, 2) is 

taken as the critical buckling load factor ( cb ).  

 

5.2.  The Verification of Algorithms in Matlab 

 

In this thesis, the optimum stacking sequence designs have been examined 

considering buckling and minimum weight. The algorithms for buckling analysis are 

written in MATLAB. Before optimization process, the verification of algorithms 

considering the critical buckling load factor (Equation 3.33) is satisfied by using the 

some literature studies. 

In the stacking sequence optimization of the laminated composites, Generalized 

Pattern Search Algorithm (GPSA) from MATLAB Global Optimization Toolbox has 

been used. In order to increase the reliability of GPSA and also to find the optimum 

design, 30 searches are independently tested and the GPSA parameters used are shown 

in Table 4.1 

Firstly, the critical buckling load factor algorithm is verified from the study of 

Karakaya and Soykasap (2009). They have used the genetic algorithm and generalized 

pattern search algorithm for optimum stacking sequences of a composite plate. Buckling 

load factor of the plate is maximized for different load cases (k=1/2, 1 and 2) and aspect 

ratios (r=1/2, 1 and 2). The obtained optimum fiber orientation angles have been 

converted to manufacturing values such as 90, 0, and 45  orientations.  Using 

specifications of the model problems, the optimum critical buckling load factor values 

are achived and it is seen that the results are very closed when compared to the related 

study (Table 5.2). This means that algorithm could yield reliable results.  
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Table 5.2. Results of different algorithms for buckling analysis 

 

Loading Cases λcb (Karakaya and Soykasap 

2009) 
λcb (Present Study) 

a/b Nx/Ny 

2 1 695,781.30 695,781.3 

1 1 242,823.10 242,823.1 

1/2 1 173,945.30 173,945.3 

2 2 1,057,948.30 1,057,949.2 

1 2 323,764.00 323,764.3 

1/2 2 206,492.9 206,492.9 

2 1/2 412,985.80 412,986 

1 1/2 161,882.10 161,882.1 

1/2 1/2 132,243.50 132,243.6 

 

5.3. Optimization Results and Discussion.  

The results of this study are presented in Tables (5.3-5.10). Firstly, the optimum 

stacking sequences for minimum thickness under various in-plane loads and aspect 

ratios are obtained by using Generalized Pattern Search Algorithm. Critical buckling 

loads in x and y directions are calculated. Then, the designs obtained are checked by 

critical buckling load. The all fiber orientation angles vary continuously.   

The laminated composite plate is subjected to xN =1000 N/mm and optimum 

designs have been investigated depending on various loading ratios in Tables 5.3-5.5. 

Table 5.3 shows the optimum designs of laminated composite plates for the aspect ratio 

r=1/2. For these cases cb  and stacking sequences are calculated and these values are 

listed in the table. The optimum composite plate designs which resist to buckling and 

have minimum thickness are shown in grey color. As it can be understood from Table 

5.3, when the same number of layers is taken into consideration, buckling load factor 

increases with increasing load ratio. This fact not only accounts for the values in Table 

5.3 but also in Table 5.4 and Table 5.5. 
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Table 5.3. Optimum stacking sequence for Nx=1000 N/mm r=0.5 

 

Nx/Ny Layer 

number 
cb Stacking Sequence 

0.5 

4 0.00036  s28
 

8 0.00285  s2.28/28   

12 0.0096  s1.34/8.25/5.28   

16 0.02278  s5.29/5.29/4.27/28    

20 0.04443  s8.42/1.30/2.29/1.25/9.28    

24 0.07677  s1.38/6.35/7.22/5.29/2.29/27    

28 0.12191  s44/3.35/4.22/6.24/7.26/5.29/9.28   

32 0.18179  s40/3.20/3.17/8..23/4.34/29/2.27/1.28    

36 0.25911  s8.23/3.9/3.27/7.29/27/1.24/6.30/8.26/6.29    

40 0.35478  
s4.3

/2.29/4.34/1.36/7.27/8.33/3.23/7.22/3.29/1.29


   

44 0.47278  
s6.0/7.29

/2.33/3.30/1.34/21/3.22/6.27/5.29/6.29/3.28





  

48 0.61164  
s45/8.44/7.32

/1.37/8.38/8.21/2.32/4.31/29/5.25/4.20/31





  

52 0.77988  
s8.43/7.44/5.37/24

/8.27/1.19/9.30/29/6.26/8.32/1.30/1.24/9.27





  

56 0.97389  
s4.44/5.41/22/44/9.26

/6.31/26/3.32/9.22/8.28/2.24/1.26/31/5.28





  

60 1.19839  
s1.39/3.44/1.18/1.30/2.13/9.27

/2.38/4.30/9.27/2.32/9.27/7.26/8.26/7.27/27






 

1 

4 0.00046  s3.91
 

8 0.00367  s8.18/4.19   

12 0.01238  s30/8.11/1.21   

         

                                                                                                                                       (cont. on next page) 

 

 

 

 



46 

 

Table 5.3 (Cont.) 

1 

16 0.02938  s1.20/7.17/8.22/9.17   

20 0.05738  s5.35/6.11/6.21/6.17/2.20   

24 0.0992  s1/3.18/3.20/4.20/1.17/4.20    

28 0.15752  s1.25/2.9/21/4.19/8.16/6.20/8.19    

32 0.23482  s6.29/4.22/6.26/6.26/1.22/3.14/3.21/5.16    

36 0.33433  s6.6/9.18/9.15/4/9.7/9.16/6.21/8.22/8.20    

40 0.45914  s1/1.22/1.25/8.10/5.16/3.18/3.20/1.17/7.20/6.20    

44 0.61031  s4.26/7.29/1/14/9.30/4.19/8.19/9.23/6.15/5.19/4.17    

48 0.79268  
s6.35/7.18

/1.26/2.26/9.18/9.9/4.25/8.18/18/5.20/5.22/4.15





  

52 1.00849  
s3.28/9.8

/2.13/12/5.7/4.24/21/18/8.17/1.18/6.17/1.22/5.20






 

2 

4 0.00053  s.311
 

8 0.00425  s8.11/2.11   

12 0.01434  s2/1.9/3.12   

16 0.03398  s1/2.13/9.13/5.9    

20 0.06633  s7.8/4.0/17/0/3.13   

24 0.11459  s5.15/2.14/20/3.17/6.7/3.7    

28 0.18196  s4/3.11/3.0/3.7/9.6/1.17    

32 0.27179  s2.0/1.1/1/8.12/1.3/7.7/2.14/13    

36 0.38699  s0/7.11/2.0/9.9/1.0/7.11/1.16/9.9/3.11   

40 0.53074  s1.1/2/3.1/6.9/0/2.13/4/3.16/1.8/6.13    

44 0.70614  s1/1/5.1/0/7.0/4.3/7.13/3.2/1/2.16/5.15   

48 0.91633  s9/9.0/0/2.9/7.4/9.1/7.7/4.0/6.1/1/7.18/2.16    

52 1.16561  
s0/9.26

/8.17/8.19/1.0/5.11/14/6.6/7.13/1/1.17/14/6.3


 
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Table 5.4 shows the optimum designs of laminated composite plates for the plate 

aspect ratio r = 1 It can be observed that all possible fiber orientations consist of 

combinations of +45 or -45 angles which are discrete values.  

 

Table 5.4. Optimum stacking sequence for Nx=1000 N/mm r=1 

 
Nx/Ny Layer 

number 
cb Stacking Sequence 

 

0.5 

4 0.00041  s45
 

8 0.00327  s45/45   

12 0.01102  s4545/45 /    

16 0.02613  
s2

45/
2

45   

20 0.05103  
s2

45/
2

45/45    

24 0.08819  
s4

45/45/45    

28 0.14004  
s2

45/
5

45   

32 0.20904  
s3

45/45/
3

45/45    

36 0.29764  
s2

45/45/
2

45/45/
3

45    

40 0.40828  
s3

45/45/
4

45/
2

45    

44 0.54342  
s

45/
3

45/
5

45/
2

45    

48 0.70551  
s3

45/
4

45/45/
4

45    

52 0.89699  
s

45/
6

45/
5

45/45    

56 1.12032  
s

45/
7

45/
2

45/
4

45    

1 

4 0.00061  s45
 

8 0.0049  
s2

45  

     

(cont. on next page) 
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Table 5.4 (Cont.) 

1 

12 0.01654  
s3

45  

16 0.03919  
s

4545//
2

45    

20 0.07655  
s2

45/
2

45/45    

24 0.13228  
s

45/
5

45   

28 0.21006  
s

45/45/
2

45/45/
2

45    

32 0.31356  
s

4545//
3

45/45/45/45    

36 0.44645  
s4

45/45/
2

45/
2

45    

40 0.61242  
s2

4545//
2

4545//45/45/45/45    

44 0.81513  
s

45/
4

45/45/
5

45    

48 1.05826  
s3

4545/45//45/45/
5

45    

2 

 

 

 

4 0.00082  s45
 

8 0.00653  
s2

45  

12 0.02205  
s

45/
2

45   

16 0.05226  
s4

45  

20 0.10207  
s3

45/
2

45   

24 0.17638  
s

4545//45/
2

45/45    

28 0.28008  
s

45/
2

45/
2

45/
2

45    

32 0.41808  
s

4545//
3

45/45/45/45    

36 0.59527  
s2

45/45/45/
3

45/
2

45    

40 0.81656  
s

45/
2

4545/45/45//45/45/
2

45    

44 1.08684  
s3

45/45/
3

45/45/
3

45    
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Table 5.5 shows the optimum designs of laminated composite plates for the plate 

aspect ratio r = 2.  

 

Table 5.5. Optimum stacking sequence for Nx=1000 N/mm r=2 

 

Nx/Ny Layer 

number 
cb Stacking Sequence 

0.5 

4 0.00106  s78.7
 

8 0.0085  s2.18/1.78   

12 0.02867  s72.277.2//8.97   

16 0.06797  s3.85/8.82/79/8.77    

20 0.13269  s9.77/1.77/3.77/3.89/1.76    

24 0.22927  s6.87/6.81/2.85/9.88/2.80/7.74    

28 0.22927  s79/5.76/8.83/7.72/4.83/5.80/3.77    

32 0.54354  s4.74/1.82/7.73/6.74/8.75/4.77/1.77/1.85    

36 0.77377  s4.88/8.82/2.86/1.81/89/4.80/9.71/9.78/3.80    

40 1.06164  
s9.79

/2.77/1.79/5.78/8.77/78/8.80/3.87/2.74/9.78


   

1 

4 0.00184  s7.07
 

8 0.0147  s9.72/4.07   

12 0.0496  s78/7.72/6.96   

16 0.11755  s8.59/9.74/5.70/3.70   

20 0.22933  s8.49/5.93/8.68/1.75/70   

24 0.39644  s4.80/79/9.70/6.70/1.66/3.73    

28 0.62947  s8.74/8.71/1.70/6.79/4.67/7.73/1.68    

32 0.94031  s7.65/8.85/3.82/6.70/9.71/6.70/8.68/3.70    

          

       (cont. on next page) 
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Table 5.5 (Cont.) 

1 36 1.33806  s7.54/3.63/1.69/61/4.70/6.71/7.72/9.68/9.72    

2 

 

 

 

4 0.00285  s62
 

8 0.02278  s5.61/1.62   

12 0.07681  s5.64/1.65/8.60   

16 0.18208  s7.67/1.64/3.59/8.62   

20 0.35563  s8.71/9.56/8.59/1.62/63    

24 0.61361  s6.51/2.56/9.59/7.56/1.65/63   

28 0.97553  s4.61/8.65/4.57/4.63/5.59/8.60/2.64    

32 1.45621  s8.64/3.52/2.57/3.58/3.64/7.62/5.63/3.61    

 

As a result of the above three tables, the stacking sequences include both 

continuous and discrete fiber angles depending on the aspect ratios. As mentioned 

briefly in the previous comments, stacking sequences hold continuous fiber angles in 

plate aspect ratios of 2 and 1/2 and stacking sequences hold discrete fiber angles when 

the plate aspect ratio is 1. It is also observed that the maximum buckling load factors 

corresponding to aspect ratios 1/2, 1 and 2, have been obtained for combination of (m,n) 

values cb (1,2), cb (1,1) and cb (2,1), respectively. It can be noted from the tables that 

when the aspect ratio is increased, number of layers decrease at same applied load and 

same loading ratios and consequently laminated composite plates become lighter. 

The effect of applied load has also been investigated. The results are shown  in 

Tables 5.6 and 5.7 compared with the results of Table 5.5. In all these tables loading 

ratios and aspect ratios are the same. In Table 5.6, the applied load equals to 2000 

N/mm. In Table 5.7, the applied load equals to 3000 N/mm. It is seen that, as expected, 

when applied loads are increased, optimum number of layers increases. Contrary to 

expectations, the applied load is increased by 2 times yet optimum number of layers 

does not increase by 2 times.  

 

 

 



51 

 

Table 5.6. Optimum stacking sequence for Nx=2000 N/mm r=2 

 
Nx/Ny Layer 

number 
cb Stacking Sequence 

0.5 

4 0.00053  s78.7
 

8 0.00425  s6.78/7.78   

12 0.01434  s87.5/6.87/4.78    

16 0.03398  s8.65/2.83/7.78/5.78    

20 0.06637  s9.82/4.80/4.82/1.79/3.77    

24 0.11469  s3.75/6.81/89/5.77/1.77/79    

28 0.18208  s1.65/5.76/76/9.82/1.85/6.75/5.78   

32 0.27182  s6.81/7.81/2.88/6.77/2.85/9.74/6.79/1.78    

36 0.38697  s9.66/8.75/8.77/73/3.78/74/4.82/6.77/82    

40 0.53078  
s3.65

/9.62/4.72/9.86/82/9.81/6.78/7.84/4.76/9.76


   

44 0.70625  
s7.72/9.76

/2.85/4.83/8.76/3.74/2.86/1.77/6.78/73/4.87





  

48 0.91708  
s9.72/5.89/9.72

/3.83/2.79/7.77/1.78/8.81/6.76/3.72/3.85/4.80





  

52 1.16605  
s8.59/2.75/8.65/1.86

/8.82/83/79/9.87/83/4.72/7.84/2.77/8.76





  

1 

4 0.00092  s7.07
 

8 0.00735  s8.73/2.07   

12 0.0248  s5.72/8.68/2.71   

16 0.05879  s6.74/5.68/5.70/1.71   

20 0.11463  s4.79/3.89/9.76/9.65/5.70   

24 0.19834  s8.67/3.70/65/69/73/1.71    

 

         (cont. on next page)     
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Table 5.6 (Cont.) 

1 

28 0.31461  s7.50/7.57/7.68/4.65/6.75/2.69/4.72    

32 0.46941  s9.48/69/7.62/3.75/2.72/7.72/8.75/66    

36 0.66925  s7.74/8.74/7.69/70/74/6.76/3.72/9.67/9.68    

40 0.91728  s4.80/9.63/1.68/1.75/5.80/9.66/3.80/7.68/8.69/2.68    

44 1.21927  s70/5.67/4.83/1.66/2.64/7.85/2.74/9.68/6.79/1.65/7.68    

2 

 

 

 

4 0.00142  s62
 

8 0.01139  s3.61/1.62   

12 0.03841  s8.71/4.60/1.62    

16 0.09088  s51/4.55/9.65/5.61   

20 0.1776  s4.60/6.62/3.55/8.62/5.63   

24 0.30633  s60/53/53/8.58/8.62/3.65    

28 0.48716  s4.47/6.65/9.58/3.61/69/1.61/9.59    

32 0.728  s3.64/8.66/1.71/1.64/9.62/60/4.63/60    

36 1.03422  s55/6.62/9.74/5.71/9.66/7.62/2.59/64/9.57    

 

Table 5.7. Optimum stacking sequence for Nx=3000 N/mm r=2 

 

Nx/Ny Layer 

number 
cb Stacking Sequence 

 

 

 

0.5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.5 

4 0.00035  s78.7
 

8 0.00283  s5.83/2.78   

12 0.00956  s09.8/77/4.78   

    
         (cont. on next page)     
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Table 5.7 (Cont.) 

Nx/Ny Layer 

number 
cb Stacking Sequence 

0.5 

16 0.02265  s6.85/8.74/5.84/2.77   

20 0.04424  s2.84/8.87/5.84/7.74/4.79    

24 0.07644  s8.74/1.82/2.82/5.78/3.74/7.81    

28 0.12135  s7.80/8.81/9.73/78/2.73/3.83/6.78    

32 0.18115  s8.54/5.68/6.72/1.88/2.77/8.87/5.77/5.77   

36 0.25791  s1.69/7.68/1.83/5.78/2.79/90/6.72/4.82/1.78    

40 0.35374 
s







4.73

/9.71/9.63/5.83/7.81/9.72/8.77/6.89/7.76/2.80   

44 0.47096  
s6.72/3.81

/1.68/6.84/3.81/9.76/1.73/3.82/2.80/7.75/4.82


   

48 0.61127  
s1.77/3.85/1.82

/5.82/9.79/7.85/7.67/5.82/76/3.80/80/6.79





  

52 0.7776  
s4.58/3.85/2.76/9.78

/9.75/85/6.82/7.74/81/3.81/5.80/4.76/6.77





  

56 0.9708  
s4.62/7.76/3.84/9.72/9.86

/7.87/73/4.77/6.89/9.80/3.75/7.74/8.88/77





  

60 1.19416  
s5.78/2.65/5.87/6.88/5.85/7.81

/1.79/3.72/4.79/8.76/3.80/3.82/7.73/2.77/9.84





  

1 

4 0.00061  s7.07
 

8 0.0049  s5.73/3.70   

12 0.01651  s7.81/6.76/3.68   

16 0.03918  s9.71/1.76/68/1.71   

20 0.07646  s59/8.78/1.68/4.75/3.68   

24 0.13218  s1.78/9.64/77/2.74/5.71/1.68   

28 0.20991  s3.68/1.84/7.73/3.66/4.74/4.71/8.68   

32 0.3129  s7.60/8.78/79/3.78/80/4.71/3.65/2.69    

         
                (cont. on next page)     
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Table 5.7 (Cont.) 

1 

36 0.44576  s3.89/4.70/1.83/3.70/2.75/6.64/2.72/75/5.67    

40 0.6113  s6.56/8.51/9.89/5.78/7.79/72/2.71/3.74/69/5.66    

44 0,81422  
s3.85/8.81

/8.62/8.88/7.72/3.67/72/1.67/4.68/1.69/8.74





  

48 1.05549  
s5.61/56/4.63

/1.77/7.83/3.84/3.68/2.64/6.65/6.66/8.74/5.73





  

2 

 

 

 

4 0.00095  s62
 

8 0.00759  s64/7.61   

12 0.02559  s6.52/65/4.61   

16 0.06067  s5.45/6.62/8.62/2.62    

20 0.11846  s2.45/6.70/5.61/8.60/2.62    

24 0.20463  s47/8.52/5.59/8.59/8.62/4.64   

28 0.32462  s5.88/8.68/4.75/2.60/1.61/2.64/1.59    

32 0.48543  s3.80/7.61/9.59/3.63/1.63/9.61/8.58/9.63    

36 0.69068  s53/7.67/5.60/1.58/9.67/4.64/1.58/4.63/2.61    

40 0.94687  s9.45/4.57/5.65/60/7.72/1.65/5.65/5.60/9.59/9.59    

44 1.26058  
s7.54

/7.65/1.72/6.59/4.62/8.71/1.64/4.59/7.58/3.61/3.62


   

 

The next three tables (Tables 5.8, 5.9 and 5.10) show the laminated composite 

plate weights at the optimum number of layers (optimum thickness). Both aspect ratio 

and loading ratio are taken as 1/2, 1 and 2.  
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Table 5.8. Weight of the optimum composite plates for Nx=1000 N/mm 

 

Nx r Nx/Ny 
Optimum Number 

of Layers 

Optimum 

weight (kg) 

1000 

0.5 

0.5 60 12.39 

1 52 10.74 

2 52 10.74 

1 

0.5 56 5.78 

1 48 4.96 

2 44 4.54 

2 

0.5 40 2.07 

1 36 1.86 

2 32 1.65 

 

Table 5.9. Weight of the optimum composite plates for Nx=2000 N/mm 

 

Nx r Nx/Ny 
Optimum Number 

of Layers 
Optimum 

weight (kg) 

2000 

0.5 

0.5 72 14.86 

1 68 14.04 

2 64 13.21 

1 

0.5 68 7.02 

1 60 6.19 

2 56 5.78 

2 

0.5 52 2.68 

1 44 2.27 

2 36 1.86 
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Table 5.10. Weight of the optimum composite plates for Nx=3000 N/mm 

 

Nx r Nx/Ny 
Optimum Number 

of Layers 
Optimum 

weight (kg) 

3000 

0.5 

0.5 84 17.34 

1 76 15.69 

2 72 14.86 

1 

0.5 80 8.26 

1 68 7.02 

2 64 6.61 

2 

0.5 60 3.1 

1 48 2.48 

2 44 2.27 

 

As seen in Table 5.8, Table 5.9 and Table 5.10, the lightest weight values have 

been obtained in the plates with aspect ratio of  2 and loading ratio of 2.  It is possible to 

obtain more lighter laminated composite plates which resist to buckling at the same 

loading ratio and same applied load just minimizing the geometry (r=2). It can be 

observed that the designed plates having aspect ratio of 2 is more resistant than the 

others in terms of buckling. For instance, at the load ratio k=1/2 and applied load xN

=3000 N/mm two different cases r=1/2 (plate dimensions a=0.508 and b=1.016) and 

r=2 (plate dimensions a=0.508 and b=0.254) are examined. It is eventually found that  

plate weights are 17.34 kg and 3.1 kg, respectively. Therefore, it can be concluded from 

here that plate aspect ratio has a significant effect on the minimum weight. 
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The effect of the stacking sequences on weight has been investigated by means 

of making comparisons between conventional and continuous designs. Table 5.11 

shows the optimum weights of the related design cases for xN =1000 N/mm, a/b=2 and 

Nx/Ny=1/2, 1, 2.  

 

Table 5.11. Weight and stacking sequences of the optimum composite plates for both 

conventional designs and continuous designs  

 

Nx/Ny 

Number 

of layer 
cb Stacking Sequence 

Optimum 

Weight (kg) 

0.5 

40  1.0616  
s9.79/2.77

/1.79/5.78/8.77/78/8.80/3.87/2.74/9.78


         2.07 

48 1.0347   s1290/0  2.48 

48 1.2527   s1245  2.48 

1 

36  1.3380  s7.54/3.63/1.69/61/4.70/6.71/7.72/9.68/9.72    1.85 

40 1.0675   s1090/0  2.07 

40 1.3049   s1045  2.07 

2 

32  1.4562  s8.64/3.52/2.57/3.58/3.64/7.62/5.63/3.61    1.65 

36 1.2887   s990/0  1.85 

32 1.1135   s845  1.65 

 

As it can be understood from the table, when the weight is taken into 

consideration, continuous designs have more advantage among conventional ones. For 

continuous designs, weight reduction of the plates are obtained between the range of 

10.6% and 16%. These results show that continuous designs have important role on 

weight reduction and higher buckling load capacity. Surprisingly, for Nx/Ny=2 both 

continuous design and conventional design (45) have same weight but the continuous 

design has much higher load capacity than the conventional one. In conventional 

designs, stacking sequences for 45 have better performance than stacking sequences 

for 0/90. The conventional designs are mostly used in industry due to the manufacturing 

ease but the results show that designers could prefer the continuous designs where the 

weight is an important parameter.  
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(a) 

 

(b) 

 

(c) 

Figure 5.2. GPSA iteration steps for model problems Nx = 2000 N/mm, r=2 (a), k = 0.5,      

(b) k= 1, (c) k  = 2 
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The performance of GPSA for various design cases (Nx = 2000 N/mm loading, r 

= 2 plate aspect ratio, k = 1/2, 1, 2 load ratios) depending on function values and 

generations is shown in Figure 5.2. 

The best function value corresponds to critical buckling load factor (objective 

function) value at each iteration. The number of iteration determines in which the 

algorithm stops. It is observed from the figures that the best function values does not 

improve after the second iteration and converges to the optimal point for each case.  

In this study, the optimization process was performed 30 times in order to see 

the effectiveness and reliability of the algorithm. The best function values for specific 

case (Nx = 1000 N/mm, r = 2, k = 2) have been represented for each run in Figure 5.3. It 

is observed that five global points have been achieved in the range of 1,43814 and 

1,45621 and shown in red color. 

 

 

 

Figure 5.3. Probability of obtaining a global optimum versus number of runs 
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CHAPTER 6 

CONCLUSIONS 

 

The aim of this thesis is to find the optimum stacking sequence design of 

composite laminates for minimum thickness subject to a buckling constraint and the 

objective function is the critical buckling load factor. Fiber angles of the composite 

plates are taken as continuous design variables. The number of design variables is 

reduced from n to n/4 because the plate has assumed to be balanced and symmetric 

which n represented the number of layers. The optimization has been performed for 

different loading ratios (k =1/2, k =1, k =2) and plate aspect ratios (r =1/2, r =1, r =2). 

Loading cases has been considered as xN =1000 N/mm, 2000 N/mm, 3000 N/mm in 

design process. Composite plates made of graphite/epoxy have been considered in this 

thesis. The length of plate 508.0a  m and a ply thickness 25.0t  mm. yN  and b 

have been calculated from the load ratio k and the plate aspect ratio r accordingly. A 

stochastic search technique Generalized Pattern Search algorithm (GPSA) has been 

considered as an optimization method. MATLAB Global Optimization tool has been 

used in the optimization process. In order to increase the reliability of GPSA and find 

the best designs, GPSA is specialized by using GA as search method and setting GPS 

positive basis set 2N as poll method and 30 searches are independently carried out. 

Before optimization process, the verification of algorithms is very important to 

ensure that optimum results are achieved. Therefore, the accuracies of the critical 

buckling load factor and optimization algorithm are checked by using the literature 

studies. 

As it can be understood from the tables, buckling load capacity of laminated 

plates of the same xN  and r values increases with the increasing loading ratio for the 

same number of layers. The designed plates having aspect ratio of 2 is more resistant 

than the others in terms of buckling. The stacking sequences include both continuous 

and discrete fiber angles depending on the aspect ratios. Stacking sequences hold 

continuous fiber angles in plate aspect ratios of 2 and 1/2 and stacking sequences hold 

discrete fiber angles when the plate aspect ratio is 1. It can be noted from the tables that 

when the aspect ratio is increased, optimum number of layers decrease for same applied 
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load and same loading ratios and consequently, laminated composite plate can become 

lighter. Considering all investigated cases, the lightest weight values have been obtained 

in the plates with aspect ratio of 2 and loading ratio of 2. As a result, it is found that 

aspect ratio has a significant effect on the minimum weight and buckling resistance. 

A comparison study of conventional and continuous designs are performed to 

determine the effect of stacking sequence on weight and the result showed that the 

optimal continuous designs have better buckling capacity and lighter than conventional 

designs. Even if it seems that the use of cenventional designs in industry is 

adventageous in terms of manufacturing ease, continuous angles enable significant 

weight reduction. 

It can also be concluded that all the results showed that critical buckling load 

factor is an important parameter to determine buckling resistance and weight 

minimization. The critical buckling load factor should be as high as possible in order to 

increase buckling resistance. Thus, the number of layers must be increased or geometry 

(length to width) of the composite plate should be changed. On the other hand, if the 

weight minimization of composite plate has been taken into consideration, the critical 

buckling load factor should be equal to one or slightly higher than one. Therefore the 

number of layers of composite plate can be decreased according to critical buckling load 

factor. 
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APPENDIX A 

MATLAB COMPUTER PROGRAMS 

 
In this part, the computer program is shown. the computer program generating 

the objective functions and GPSA codes generated by Global Optimization Toolbox are 

given. 

 

 

function f=discrete_bucklinghakan(x) 

% x = round(x); 

% 1 psi=6894.757 Pa 

% 1 in=0.0254 m 

E11=127.6e9; %[psi] 

E22=13e9; %[psi] 

G12=6.4e9; %[psi] 

v12=0.3; 

a=0.508; %[in] 

Nx=1000000; %[lbf/in] load in the x-direction 

k=1; % load ratio 

Ny=Nx/k;  

r=0.5; % plate aspect ratio 

b=a/r; 

N1=40; % number of plies 

N4=N1/4; 

N2=N1/2; 

tp=(0.127e-3) *N1; % total plate thickness [in] 

v21=v12*(E22/E11); 

 

Q11 =E11/(1-v12*v21); 

Q12=v21*E11/(1-v12*v21); 

Q22=E22/(1-v12*v21); 

Q66=G12; 

Q = [ Q11 Q12 0; Q12 Q22 0; 0 0 Q66]; 

D=zeros(3,3); 

 

M=N1+1; 

 

for j=1:M 

z(j)=-tp/2+(j-1)*tp/N1; 

end 

j=1; 

 

for i=1:N4 

x1(j)=x(i); 

x1(j+1)=-x(i); 
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j=j+2; 

end 

 

for i=1:N2 

x(i)=x1(i); 

end 

  

for i=1:N2 

x(N2+i)=x(N2-i+1); 

end 

  

for k=1:N1 

m=cos(x(k)*pi/180); 

n=sin(x(k)*pi/180); 

 

Qbar11=Q11*m^4+2*(Q12+2*Q66)*n^2*m^2+Q22*n^4; 

Qbar12=(Q11+Q22-4*Q66)*n^2*m^2+Q12*(n^4+m^4); 

Qbar22=Q11*n^4+2*(Q12+2*Q66)*n^2*m^2+Q22*m^4; 

Qbar16=(Q11-Q12-2*Q66)*n*m^3+(Q12-Q22+2*Q66)*n^3*m; 

Qbar26=(Q11-Q12-2*Q66)*n^3*m+(Q12-Q22+2*Q66)*n*m^3; 

Qbar66=(Q11+Q22-2*Q12-2*Q66)*n^2*m^2+Q66*(n^4+m^4); 

Qbar=[Qbar11 Qbar12 Qbar16;Qbar12 Qbar22 Qbar26;Qbar16 Qbar26 Qbar66]; 

 

D(1,1)=D(1,1)+Qbar11*(z(k+1)^3-z(k)^3)/3; 

D(1,2)=D(1,2)+Qbar12*(z(k+1)^3-z(k)^3)/3; 

D(1,3)=D(1,3)+Qbar16*(z(k+1)^3-z(k)^3)/3; 

D(2,2)=D(2,2)+Qbar22*(z(k+1)^3-z(k)^3)/3; 

D(3,3)=D(3,3)+Qbar66*(z(k+1)^3-z(k)^3)/3; 

D(2,3)=D(2,3)+Qbar26*(z(k+1)^3-z(k)^3)/3; 

 

End 

 

D(2,1)=D(1,2); 

D(3,2)=D(2,3); 

D(3,1)=D(1,3); 

 

m1=1; 

n1=1; 

LAMDA1=pi^2*(m1^4*D(1,1)+2*(D(1,2)+2*D(3,3))*m1^2*n1^2*r^2+n1^4*r^4*D(2,

2))/(m1^2*a^2*Nx+r^2*a^2*n1^2*Ny); 

 

m1=1; 

n1=2; 

LAMDA2=pi^2*(m1^4*D(1,1)+2*(D(1,2)+2*D(3,3))*m1^2*n1^2*r^2+n1^4*r^4*D(2,

2))/(m1^2*a^2*Nx+r^2*a^2*n1^2*Ny); 

 

m1=2; 

n1=1; 

LAMDA3=pi^2*(m1^4*D(1,1)+2*(D(1,2)+2*D(3,3))*m1^2*n1^2*r^2+n1^4*r^4*D(2,

2))/(m1^2*a^2*Nx+r^2*a^2*n1^2*Ny); 
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m1=2; 

n1=2; 

LAMDA4=pi^2*(m1^4*D(1,1)+2*(D(1,2)+2*D(3,3))*m1^2*n1^2*r^2+n1^4*r^4*D(2,

2))/(m1^2*a^2*Nx+r^2*a^2*n1^2*Ny); 

 

LAMDA=[LAMDA1 LAMDA2 LAMDA3 LAMDA4] 

f=-min(LAMDA) 
 

 


