

ONTOLOGY BASED QUALITATIVE

INFORMATION COLLECTION

A Thesis Submitted to

The Graduate School of Engineering and Sciences of

İzmir Institute of Technology

in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

in Computer Engineering

by

Ezgi KAYSI

APRIL 2014

İZMİR

We approve the thesis of Ezgi KAYSI

Examining Committee Members:

Prof.Dr.Sıtkı AYTAÇ

Department of Computer Engineering

Izmir Institute of Technology

Assist. Prof Dr. Selma TEKİR

Committee Member

Assist. Prof Dr. Semih UTKU

Committee Member

 27 May 2014

Prof.Dr.Sıtkı Aytaç

Supervisor, Department of Computer

Engineering

Izmir Institute of Technology

Prof. Dr. İ. Sıtkı AYTAÇ

Head of Department of Computer

Engineering

Prof. Dr. R. Tuğrul SENGER

Dean of Graduate School of

Engineering and Science

ACKNOWLEDGMENTS

I express sincere appreciation to my supervisor Yrd.Doç.Dr.Tuğkan

TUĞLULAR for sharing his knowledge with me and guiding me throughout my thesis.

Without his thesis proposal, support, encouragement, guidance and persistence this

thesis would never have happened.

Secondly, I should also express my appreciation to my manager Kurtuluş

PESEN from Tüpraş for giving me this opportunity, his support and encouragement to

do my thesis.

I would like to thank my close friend Gökhan KESLER for his love and great

support in all steps of this thesis and for showing interest in and patience with my study.

Finally, I would like to thank my parents Metin and Havva KAYSI and my sister

Beste for their unlimited patience, support and love during the this thesis and all my

life.

iv

ABSTRACT

ONTOLOGY BASED QUALITATIVE INFORMATION

COLLECTION

The World Wide Web is an information resource with essentially limitless

potential. However, this potential is relatively untapped because it is tough for machines

to process and integrate this information meaningfully. Recently, researchers have

started to explore to combine web content with specified meaning, in order to create a

Semantic Web. It is one of the most encouraging and rising areas of computer science.

Its capabilities to make information that is understandable to be understood and

processed by machines and humans. Semantic Web approach will strictly change the

effectiveness of the Internet and will enable the reuse of information and increase

the representative power of information. It will be possible to combine information

from different locations and process them together since they are defined in a standard

way.

The potential of the Semantic Web is demonstrated with “Semantic Hotel

Search” application. Also basic concepts referring knowledge with a Semantic Web

language, ontology processing, reasoning and querying on ontologies are presented.

Semantic Hotel Search application that contains a dynamic knowledge base holding

hotel related information, which is updated at every day from the information provided

in the hotels‟ websites. All the information and application logic have been moved

into an OWL file which controls all the content and the structure of the

application. In addition to, sentimental analysis is associated with this application.

Therefore, users can see what the other people said about hotels and whether user has

positive or negative comment in order to make better decision.

Both travelers and travel service providers can benefit from the implemented

semantic web based application. Semantic Web based travel portal can reduce search

costs and a case study shows that the system provides time efficiency and is helpful in

decision making.

Keywords: Semantic Web, Ontology, Sparql, Information Extraction,

Semantic Hotel Domain, Sentimental Analysis, Web Services

v

ÖZET

ONTOLOJĠ TEMELLĠ NĠTEL BĠLGĠ TOPLAMA

Ġnternet sonsuz potansiyeliyle bir bilgi kaynağıdır. Ancak bu potansiyel büyük

oranda kullanılmamaktır çünkü makinelerin bilgileri anlamlı bir şekilde işleyip

bütünleştirmesi oldukça zordur. Son zamanlarda araştırmacılar, Anlamsal Web

yaratmak için web ile beli tirlen anlamını birleştirmeye başladılar. Anlamsal Web

bilgisayar bilimlerinde geleceği parlak ve gelişen bir alandır. Anlamsal webin yeteneği

bilgileri insanlar ve makineler tarafından anlaşabilir ve işlenebilir yapmaktır. Anlamsal

Ağ yaklaşımı Ġnternetin etkinliğini büyük oranda arttıracak, bilginin tekrar

kullanımını sağlayacak, ve bilginin sunum gücünü arttıracak. Bilgiler bir

standart ile tanımlandığından, farklı yerlerdeki bilgilerin birleştirilmesi ve bu

bilgilerin birlikte işlenmesi mümkün olacaktır.

Anlamsal webin gücü “Semantik Otel Arama” uygulaması ile gösterildi. Ayrıca

bilginin Anlamsal Ağ dili ile sunulması, ontoloji işleme, ontolojiler üzerinden çıkarım

yapma ve sorgulama kavramları gerçekleştirilmiştir. Anlamsal Otel Arama uygulaması

otel ile ilgili bilgilerinin, her gün bilgilerin sağlandığı siteden güncellenerek, dinamik

olarak tutmaktadır. Tüm bilgi ve uygulama mantığı uygulamanın içeriğini ve

yapısını kontrol eden OWL (Web Ontoloji Dili) ontoloji dosyasına yüklenmiştir,

ve bu dosya var olan mantıksal ifadelerden yeni bilgiler elde etmek için çıkarım

yapmaya olanak sağlar. Bununla birlikte anlamsal otel arama uygulamasına duygu

analizi de eklenmiştir. Bunun sonucunda kullanıcılar otele ait diğer insanların yaptığı

yorumları görüp, aradığı kriterlerle ilgili olarak yapılan yorumların olumlu mu olumsuz

mu olduğuna bakıp daha iyi seçim yapabilmektedir.

Hem seyahat edenler hem seyahat firmaları bu uygulamadan yarar sağlayacaktır.

Ayrıca anlamsal web tabanlı seyahat uygulaması arama maliyetini düşürmektedir ve

durum analizi göstermektedir ki bu sistem zamandan kazanç sağlamakta ve karar

vermekte yardımcı olmaktadır.

Anahtar kelimeler: Anlamsal Ağ, Ontoloji, Sparql, Bilgi Çıkarımı, Anlamsal

Otel Bilgi Alanı, Duygu Analizi, Web Servisleri

vi

TABLE OF CONTENTS

LIST OF FIGURES ... viii

LIST OF TABLES .. x

CHAPTER 1.INTRODUCTION .. 1

CHAPTER 2.SEMANTIC WEB .. 3

2.1. Overview of the Web .. 3

2.1.1. Web Languages .. 4

2.1.2. Information Management on the Web ... 5

2.1.3. Information Retrieval on the Web ... 7

2.2. Overview of the Semantic Web .. 9

2.3. Information Retrieval with Semantic Web ... 14

2.4. Semantic Web Tools and Languages .. 16

2.4.1. URI and Uniform ... 18

2.4.2. XML (eXtensible Markup Language) ... 18

2.4.3. RDF (Resource Description Framework) 20

2.4.4. RDFS (RDF Schema) .. 22

2.4.5. OIL (Ontology Inference Layer) .. 23

2.4.6. DAML+OIL (DARPA Agent Markup Language – OIL) 24

2.4.7. OWL (Web Ontology Language) .. 26

CHAPTER 3.ONTOLOGYAND QUERY LANGUAGES ... 29

3.1. Ontology Editors ... 35

3.2. Ontology Management System ... 41

3.3. Ontology Query Languages .. 44

CHAPTER 4.ONTOLOGY BASED QUALITATIVE INF. COLLECTION 46

4.1. Overview of the Application .. 48

4.2. Application Domain .. 49

4.3. Application Design ... 52

CHAPTER 5.IMPLEMENTATION .. 58

vii

5.1. Implementing the Ontology with Protégé ... 58

5.2. Html Parser ... 66

5.3. Semantic Web Services for Semantic Hotel Search Application 69

5.3.1. HotelService ... 69

5.3.2. Semantic Hotel Web Service ... 70

5.4. Sentimental Analysis .. 72

5.5. Web Interface .. 73

5.6. Evaluation ... 77

CHAPTER.6.CONCLUSION .. 80

REFERENCES ... 83

APPENDICES

APPENDIX A.HOTEL DOMAIN ONTOLOGY .. 87

APPENDIX B.HOTEL DOMAIN ONTOLOGY ONTOLOGY GRAF

VISUALIZATION .. 102

viii

LIST OF FIGURES

Figure Page

Figure 2.1 Manual Information Searching by People .. 6

Figure 2.2 Current Web Information Retrieval .. 8

Figure 2.3 Example Graph of Semantic Relationships ... 13

Figure 2.4 Ontology Exploitation for Information Extraction (cyclic process) 15

Figure 2.5 Semantic Web Layer Cake .. 17

Figure 2.6 Sample RDF Representation of Triples .. 21

Figure 3.1 Relations among Some Classes and Instances .. 32

Figure 3.2 Guarino's Kinds of Ontologies .. 35

Figure 3.3 Screenshot of Protege 3.1 Beta .. 38

Figure 3.4 Sample Onto Graph Visualization ... 40

Figure 3.5 Sample OWLViz Visualization ... 41

Figure 4.1 The Overall Structure of theApplication ... 48

Figure 4.2 Architecture of Semantic Hotel Search Application 53

Figure 4.3 Classes of Hotel Domain Ontology ... 55

Figure 4.4 Sample individiuals with property values on Hotel Ontology 56

Figure 4.5 Sentiment Anaylsis Architecture of Semantic Hotel Search Application 57

Figure 5.1 Methodology for Domain Ontology Creation ... 59

Figure 5.2 booking.com .. 60

Figure 5.3 tripadvisor.com .. 60

Figure 5.4 Protégé Ontology Editor .. 61

Figure 5.5 Hotel Domain Ontology Class hierarchy .. 62

Figure 5.6 Hotel Type Categories ... 62

Figure 5.7 Comment Individuals. ... 63

Figure 5.8 Instance of Hotel Theme Class .. 65

Figure 5.9 Semantic Hotel Web Service Methods .. 72

Figure 5.10 Semantic Hotel Search GUI .. 74

Figure 5.11 Required Fields of Application ... 75

Figure 5.12 Sample Semantic Hotel Search ... 75

Figure 5.13 Sample Search Result of Application .. 76

Figure 5.14 Selected Hotel Details of Application ... 76

ix

Figure 5.15 The Selected Hotel Detail Page of Application ... 77

Figure 5.16 Sample Hotel Review for Hotel Condal .. 78

x

LIST OF TABLES

Table Page

Table 2.1 Comparison of World Wide Web and Semantic Web 12

Table 2.2 Comparison Relational Databases and Knowledgebases 13

Table 2.3 Advatages and Disadvantages of Semantic Web .. 16

Table 2.4 Sample Triple Format ... 22

Table 3.1 Semantic Web Framework Summary ... 43

Table 5.1 Score Schema of Comments Class Individuals .. 64

Table 5.2 Accuracy Rate Comparison of Sentimental Analysis 78

1

CHAPTER 1

INTRODUCTION

After the creation of the World Wide Web (known as WWW), presented by Tim

Berners-Lee in 1989, the web was thought as some exchange of documents and data

and some kind of working collaboration. It was meant to be a big working place where

the programs and databases could share their knowledge and work together. But the

explosion of personal computers and major advances in the field of telecommunications

were the triggers of the Web as we know it today [1]. Nowadays the Web contains

documents and multimedia resources concerning almost every imaginable subject, and

all of this data is instantaneously available to anyone via Internet connection and the

volume of information available through the web has been increasing continuously.

Its main problem is that appeared in the WWW is that the information is written

only for human consumption in most of the cases. The machines cannot understand

what the meaning of what is online is. A lot of pictures, drawings, movies and natural

language populate the actual web. This information is not useful at all for the machines,

which cannot operate with this data; they only show it to the user using a proper format.

Furthermore, users also want to use the Web to perform some task. For example,

a user might want to find the best price on a desktop computer, plan and book a

romantic vacation to Ibiza Island, or make reservations at a moderately-priced Chinese

restaurant within three blocks of the movie they plan to see that evening. Completing

these tasks often involves visiting a series of pages, integrating their content and

reasoning about them in some way. This is far beyond the capabilities of contemporary

directories and search engines, but could they eventually perform these tasks?

The main obstacle is the fact that the web was not designed to be processed by

machines. Machines cannot perform tasks which require combining and processing data

from different sources. This is why semantic web is needed.

Semantic web is an initiative by World Wide Web Consortium (W3C) in this

direction to be able to make machines process such tasks. Semantic web emphasizes

integration and combination of data from different data sources [2]. While the current

web focuses on documents, semantic web extends the principles of web from

documents to data. In this thesis, representing relevant information with a semantic web

2

language, ontology processing, reasoning and querying on ontologies have been

implemented to realize a semantic web application.

The main goal of this thesis is to extract information from the current Web which

extracts relevant information from an unstructured set of HTML pages about the hotel„s

context. This information is processed in order to provide meaning to it; so the system

can “understand” the texts, extract information from them, relate it and storage it. So the

user can make advanced queries based on the meaning instead of the semantics. All this

process of providing meaning to the unstructured texts is guided by an Ontology.

The main part of the thesis focused on Semantic Hotel Search application to

show semantic web abilities and power. The main goals in Semantic Hotel Search are

the integration of heterogeneous data sources and the (as far as possible) efficient and

high-performance application of Semantic Web technologies in the tourism domain

The outcome of this thesis is a semantic hotel search system prototype, which

uses an ontology to enrich the user search criteria. Users can search hotels based on

their criteria such as review, hotel stars, location, view etc… Then more information

about hotel are reachable based on sentiment analysis.

The remainder of thesis is organized as follows:

Chapter 2 gives the background information about the concept of Web, general

problems and Information Management on the current Web. Then the history of

Semantic Web, the domain of the Semantic Web and Semantic Web Tools and

Languages are presented.

Chapter 3 is about what ontology is, Ontology Editors and Query Languages.

Chapter 4 includes System Design of Semantic Hotel Search application,

System Domain and Specifications has been explained.

Chapter 5 presents the implemented ontology with Protege. Extracting

information from Web via html parser. Also, explaining semantic Web services in order

to update hotel information and sentimental analysis over hotel reviews.

Chapter 6 presents conclusions from the results obtained in this thesis.

3

CHAPTER 2

SEMANTIC WEB

2.1. Overview of the Web

The Internet has changed the style of communication with each other and the

style of business is conducted. It lies at the heart of a revolution that is currently

transforming the developed world toward a knowledge economy and, more broadly

speaking, to a knowledge society. This development has also changed how we think

about computers. Originally they were used for computing numerical calculations.

Currently their predominant use is for information processing, typical applications

being database systems, and games [3]. At present there is a transition of focus toward

the view of computers as entry points to the information highways.

Nowadays web content is mostly suitable for human consumption. Even Web

content that is generated automatically from databases is usually presented without the

original structural information found in databases [4]. Typical uses of the Web today

involve people‟s seeking and making use of information, searching for and getting in

touch with other people, reviewing catalogs of online stores and ordering products by

filling out forms, and viewing adult material.

These activities are not particularly well supported by software tools. Apart from

the existence of links that establish connections between documents, the main valuable,

indeed indispensable, tools are search engines.

Keyword-based search engines such as Yahoo and Google are the main tools for

using today‟s Web. It is clear that the Web would not have become the huge success it

is, were it not for search engines. However, there are serious problems associated with

their use [5]:

 High recall, low precision. Even if the main relevant pages are retrieved, they

are of little use if another 28,758 mildly relevant or irrelevant documents are also

retrieved. Too much can easily become as bad as too little.

 Low or no recall. Often it happens that we don‟t get any relevant answer for our

request, or that important and relevant pages are not retrieved. Although low recall is a

less frequent problem with current search engines, it does occur.

4

 Results are highly sensitive to vocabulary. Often our initial keywords do not get

the results we want; in these cases the relevant documents use different terminology

from the original query. This is unsatisfactory because semantically similar queries

should return similar results.

 Results are single Web pages. If we need information that is spread over various

documents, we must initiate several queries to collect the relevant documents, and then

we must manually extract the partial information and put it together.

Interestingly, despite improvements in search engine technology, the difficulties

remain essentially the same. It seems that the amount of Web content outpaces

technological progress [3].

But even if a search is successful, it is the person who must browse selected

documents to extract the information he is looking for. That is, there is not much

support for retrieving the information, a very time-consuming activity. Therefore, the

term information retrieval, used in association with search engines, is somewhat

misleading; location finder might be a more appropriate term. Also, results of Web

searches are not readily accessible by other software tools; search engines are often

isolated applications.

The main obstacle to providing better support to Web users is that, at present,

the meaning of Web content is not machine-accessible. Of course, there are tools that

can retrieve texts, split them into parts, check the spelling, and count their words. But

when it comes to interpreting sentences and extracting useful information for users, the

capabilities of current software are still very limited. It is simply difficult to distinguish

the meaning of

“I am a professor of computer science.”

from

“I am a professor of computer science, you may think.”

2.1.1. Web Languages

A big amount of languages used to publish data in the current Web. Some of

these languages are: HTML, PHP, JSP and ASP and some Media-oriented Web

languages such as Flash. However, these scripting and markup languages are only

meant to process the business logic of the applications and the visual presentation of the

information they are dealing with. Markup languages such as HTML does not care

5

about what the information is, it will only control the layout and appearance of the

given information. Server side web scripting languages such as PHP are generally

targeted to the dynamic behavior of the web applications and the business logic of such

applications. However, the above mentioned languages all have a common lack in

providing and processing semantic meaning bound to information. They just treat data

as plain text without any meaning, that is, such web languages are not “aware” of the

information they are dealing with.

2.1.2. Information Management on the Web

The incredible growth of the web has as a direct consequence of a big explosion

of all kinds of online web documents. The information storage and collection on the

web is as follows; the information is generally stored in large databases that are kept in

the servers. The programs running on the servers generate the requested Web

documents “on the fly”, based on the needed data at some state. Most of these

dynamically generated on-line documents are only made for human consumption and it

is impossible for the machines to understand the meaning of these documents. Such

kind of Web documents is difficult to reuse and to make available to other parties

because they not permanent but are being generated on specific requests without any

well-defined meaning.

Most of these on-line documents are only produced for human consumption,

being impossible for the machines to understand the meaning of these documents. Also

manual searching by people is often a hard task and has several limitations, as it is

explained on the next page, Figure 2.1.

6

Figure 2.1 Manual Information Searching by People
1

1
 Villarías L. G., “Ontology-based semantic querying of the WEB with respect to food recipes” (MS Thesis., Technical University of Denmark, 2004), 118–12

7

2.1.3. Information Retrieval on the Web

Human time and effort are required to browse the retrieved documents for

relevant information. Current intelligent agents are unable to carry out this task in a

satisfactory fashion. Information retrieval on the Web refers to the act of recovering

information from the vast amount of online Web documents; getting the desired

documents and presenting them to the user. This is the classic and the most widely way

of obtaining information from the Web. With this approach a user does not extract any

information from a document. However, the user just picks up some documents among

all the available documents in the Web. The user will get a document or a set of

documents and will have to analyze the document to find the desired information if it

exists. Actually in this approach, only a portion of the computational power exposed by

the computers is used to fetch the desired information. The computing systems used are

only responsible in transferring the document and presenting to the user. No processing

power is used to retrieve directly relevant information through context-aware processes

and methods [3].

The problems associated with the retrieval of quality information from the

Internet are many. We can consider the Internet as a connected undirected graph with

many nodes where the connections are the edges. In this perspective, the nodes are

distributed across the world without regard for cultures of time zones. From this point

of view, the idea of a connected undirected graph captures elegantly the idea of the

Internet. The problems related to traversal of the Internet to retrieve information are that

the data is distributed to the whole world and the nodes of the Internet are spread across

the world. And, it is obvious that the Internet is changing very fast and the data is

volatile. Every six months the Internet nodes and connections are doubling in a

topology that is not predefined. The data is redundant and stored in an unstructured

way, and the data on the Web is duplicated in many instances across mirror sites. And

also, the quality of the data is poor. The volume of data to be searched and found on the

Web is growing at an exponential rate. Not all the data is in the same language because

the Web is a reflection of the real world in that it is multicultural and multilingual. New

media types are appearing at a fast rate, particularly where audio-visual or multimedia

files are concerned. Many Web pages content‟s are created dynamically on demand.

On the Web, the unstructured markup languages make it difficult for humans

and even more difficult for the machines to locate and acquire the desired information.

8

To retrieve information on the Web, current methods are browsing and keyword based

searching. Both of the mentioned methods have several limitations when retrieving

information from the Web.

Figure 2.2 Current Web Information Retrieval
2

Browsing: Browsing the web refers to the act of retrieving a web document by

means of its URI (Uniform Resource Identifier) and displaying it in the local client

browser to view its content. The user often has to traverse from link to other link in

order to reach the desired information if it ever happens.

Anybody familiar with the Web knows the drawbacks of looking for

information by means of browsing:

 It is very time consuming.

 It is not always possible to reach the desired information even though it exists

somewhere on the Web.

 It is also very easy to get lost and disoriented following all the links the user

might find relevant; suffering from what is called the “lost-in-hyperspace” syndrome.

Keyword Searching: Keyword searching is an easier way to retrieve information

when compared against browsing Web documents through Web links. Keyword

searching on the Web refers to the act of looking for information using some words to

guide the searching. These keywords that the user wants to search for are entered into a

2
 Villarías L. G., 2004, 118–13

9

search engine which will perform the searching on the Web cache it has stored and

indexed locally. Beforehand, the search engines continually traverse all the links

available on the Web caching and indexing all the Web documents they reach. The

search engines search the reduced copy of the Web following the links and trying to

match the input words with the words found in its index tables. When a match occurs,

the links pointed to by the index tables are returned back to the user.

Keyword searching is more useful than just browsing when looking for

information, since the user does not need to know the exact URI of the desired Web

document, however this approach still has some disadvantages:

 The user must be aware of the available search engines and choose the correct

one that fits his/her necessities.

 The keywords entered by a user are the ones the user considers more relevant for

the information he/she wants to look for, which is a very subjective decision.

 The entered keywords have to exactly match the words presented in the Web

documents. Even a slight variation is not tolerated.

 Keyword searching normally returns vast amounts of useless document

references/links the user has to filter by hand.

Although search engines index much of the Web's content, they have little

ability to select the pages that a user really wants or needs.

2.2. Overview of the Semantic Web

The Semantic Web is an extension of the current Web in which information is

given well-defined meaning, better enabling computers and people to work in

cooperation. A web of data that can be processed directly and indirectly by machines

[6].

A definition for the Semantic Web begins with defining semantic. Semantic

means meaning. Meaning enables a more effective use of the underlying data. Meaning

is often absent from most information sources, requiring users or complex programming

instructions to supply it. For example, Web pages are filled with information and

associated tags. Most of the tags represent formatting instructions, such as <H1> to

indicate a major heading. Semantically, we know that words surrounded by <H1> tags

are more important to the reader than other text because of the meaning of H1. Some

Web pages add basic semantics for search engines using the <META> tag; however,

10

they are merely isolated keywords and lack linkages to provide a more meaningful

context. These semantics are weak and limit searches to exact matches. Similarly,

databases contain data and limited semantic hints, if well-named tables and columns

surround the data. Semantics give a keyword symbol useful meaning through the

establishment of relationships.

 The current Web is made up of many Web documents (pages). Any given Web

document, in its current form (HTML tags and natural text), only gives the machine

instructions about how to present information in a browser for human eyes. Therefore,

machines have no idea about the meaning of the document they are presenting; in fact,

every single document on the Web looks exactly the same to machines. Machines have

no way to understand the documents and cannot make any intelligent decisions about

these documents. Developers cannot process the documents on a global scale (and

search engines will never deliver satisfactory performance). One possible solution is to

modify the Web documents, and one such modification is to add some extra data to

these documents; the purpose of this extra information is to enable the computers to

understand the meaning of these documents. Assuming that this modification is

feasible, we can then construct tools and agents running on this new Web to process the

document on a global scale; and this new Web is now called the Semantic Web.

The Semantic Web is not Artificial Intelligence: The concept of machine-

understandable documents does not imply some magical artificial intelligence which

allows machines to comprehend human words and fully understand them as human

beings do. Semantic Web only denotes a machine's ability to solve a well-defined

problem by performing well-defined operations on existing well-defined data. Instead

of asking machines to deduce people's language, it involves asking people to make the

extra effort so that the machines are able to process the data in some specific way [7].

Even though it is simple to define information with languages such as RDF, at

the level with the power of a Semantic Web these language will be complete languages,

capable of expressing paradoxes and tautologies. And it will be possible to phrase

questions whose answers normally would require a machine to search the entire Web

and take an unpredictable amount of time to find the answer. Each mechanical

application relying on such languages will use a schema to restrict its use to an

intentionally limited language. However, when links are made between the Webs

relying on such languages, the result will be an expression of a big amount of

11

information. It is obvious that because the Semantic Web must be able to include all

kinds of data to represent the world, the languages must be completely expressive.

A Semantic Web will not require every application to use expressions of

arbitrary complexity [8]: Even though the languages used to define information allow

expressions of arbitrary complexity and computability, applications which generate

semantically defined information will in practice be limited to generating simple

expressions such as access control lists, privacy preferences, and search criteria.

A Semantic Web will not require proof generation to be useful: proof

validation will be enough: Although access control on Web sites involve validation of

a previously prepared proof, there is no requirement for them to answer an arbitrary

question, find the path and the construct of a valid proof. It is well known that to search

for an answer for an arbitrary question and generate a proof for the question is typically

an intractable process as many other real world problems, and a Semantic Web

language does not require this (unsolvable) problem to be solved in order to be useful.

A Semantic Web is not an exact rerun of a previous failed experiment [9]:

Until now other arguments has been raised against the Semantic Web concept because

of the similarity to Knowledge Representation Systems. More or less, such systems

have tried to achieve similar results as the Semantic Web concept is trying to do.

Systems such as KIF
3
(Knowledge Interchange Format) and CYC

4
are some examples

of such Knowledge Representation Systems. However the success or failure of such

systems should not be a threshold or limit for the Semantic Web concept/project. A

more constructive approach would be to feed the Semantic Web with design experience

and the Semantic Web may provide a source of data for reasoning engines developed in

similar projects such as those that utilize Knowledge Representation systems.

According to above explanation, The Semantic Web is envisioned as an

extension of the current web where, in addition to being human-readable using WWW

browsers, documents are annotated with meta-information. This meta-information

defines what the information is about in a machine processable way. The explicit

representation of meta-information, accompanied by domain theories, will enable a web

that provides a qualitatively new level of service. It will weave together an incredibly

3
 W3[Internet]. RDF Notes; http://www.w3.org/DesignIssues/RDFnot.html (accessed date: 21

Dec 2013)

4
 CYC [Internet]. Cycorp Home Page; http://www.cyc.com/tech.html# (accessed date : 23 Nov

2013)

12

large network of human knowledge and will complement it with machine

processability.

FEATURE WWW SEMANTIC WEB

Fundamental component Unstructured content Formal statements

Primary audience Humans Application

Links Indicate location
Indicate location and

meaning

Primary vocabulary Formatting instructions Semantic and logic

Logic Informal/nonstandard Description logic

Table 2.1 Comparison of World Wide Web and Semantic Web

The flexibility and many types of Semantic Web statements allow the definition

and organization of information to form rich expressions, simplify integration and

sharing, enable inference, and allow meaningful information extractions while the

information remains distributed, dynamic, and diverse. Simply put, the semantic Web

improves your application‟s ability to effectively utilize large amounts of diverse

information on the scale of the WWW. This is accomplished through a structured,

standardized approach for describing information so as to allow rich information

operations.

Semantic relationships form the Semantic Web. The relationships include

definitions, associations, aggregations, and restrictions. Figure 2.3 shows a small graph

of statements.

13

Figure 2.3 Example Graph of Semantic Relationships

A set of statements that contribute to the Semantic Web exists primarily in two

forms; knowledgebases and files. Knowledgebases offer dynamic, extensible storage

similar to relational databases. Files typically contain static statements. Table 2.2

compares relational databases and knowledgebases.

FEATURE RELATIONAL DATABASE KNOWLEDGEBASE

Structure Schema Ontology statements

Data Rows Instance statements

Administration language DDL Ontology statements

Query language SQL SPARQL

Relationships Foreign keys Multidimensional

Logic External of database/triggers Formal logic statements

Uniqueness Key for table URI

Table 2.2 Comparison Relational Databases and Knowledgebases

14

Relational databases depend on a schema for structure. A knowledgebase

depends on ontology statements to establish structure. Relational databases are limited

to one kind of relationship, the foreign key. The Semantic Web offers multidimensional

relationships such as inheritance, part of, associated with, and many other types,

including logical relationships and constraints. An important note is that the language

used to form structure and the instances themselves is the same language in

knowledgebases but quite different in relational databases. Relational databases offer a

different language, Data Description Language (DDL), to establish the creation of the

schema. In relational databases, adding a table or column is very different from adding a

row. Knowledgebases really are unique because the regular statements define the

structure or schema of the knowledgebase as well as individuals or instances.

2.3. Information Retrieval with Semantic Web

A lot of information is already available on the Web. We cannot expect that the

entire Web will be rewritten in a structured way. This maybe is never going to happen,

as the Web is not a controlled organization were some rules can be applied. Contrary it

is a very decentralized and unconstrained place where everybody can post anything they

want. So, there is a need new methods to gather all the spread documents and present

sensible information to the user.

The role of semantics in IE is often reduced to very shallow semantic labeling.

Today, most of the IE systems that involve semantic analysis exploit the simplest part

of the whole view of domain and task knowledge that is to called, named entities.

However, the growing need for IE application to domains that require more text

understanding pushes towards more sophisticated semantic knowledge resources and

thus towards ontologies viewed as conceptual models. In recent years, ontologies have

emerged as a new paradigm to model and formalize domain knowledge in a machine

readable way.

Ontologies are designed for being used in applications that need to process the

content of information, as well as to reason about it, instead of just presenting

information to humans. They permit greater machine interpretability of content than that

supported by XML, RDF and RDF Schema (RDF-S), by providing additional

vocabulary along with a formal semantics. So, ontologies represent an ideal knowledge

15

background in which to base text understanding and enable the extraction of relevant

information.

IE and ontologies are involved in two main and related tasks [10]:

 Ontology is used for Information Extraction: IE needs ontologies as part

of the understanding process for extracting the relevant information.

 Information Extraction is used for populating and enhancing the

ontology: texts are useful sources of knowledge to design and enrich

ontologies.

These two tasks, as can be seen in Figure 2.4, can be combined in a cyclic

process: ontologies are used for interpreting the text at the right level for IE and IE

extracts new knowledge from text, to be integrated in the ontology.

Figure 2.4 Ontology Exploitation for Information Extraction (cyclic process)
5

This approach presents some inconveniences, but on the other hand several

advantages are reached with this approach. It is very precise (very good rates of

performance can be obtained when a good implementation of the ontology is made). As

long as it relies on the data, if the data appearance or its order changes (and Web pages

5
 Monllao C. V., “Ontology-based Information Extraction” (MS Thesis., Polytechnic University

of Catalonia, 2011), 104–12

16

usually change very often) the same application can still extract information without

doing a single change.

The only dependent module is the ontology model, so if it is necessary to

reconstruct the knowledge-extraction system to another subject or to another language, it

is only necessary to change the ontology that describes the domain, the rest of the

application will remain the same.

ADVANTAGES DISADVANTANGES

The ontology is made manually, but only

once for each domain, (it covers all web

pages for the domain)

An ontology is only useful for the domain

changes then the ontology has to be

redefined. This has the additional work to

have to make a different ontology for each

topic

It is insensitive to changes in web-page

format

The pages need to have some particular

characteristics to apply this approach

This approach does not rely on the order or

data

Another inconvenience is the language it is

focus on. Ontology is a conceptual model

for a certain domain in a certain language.

Also a great knowledge of this domain is

required by the ontology developer, who has

to perfectly know the entities of this subject

and the relations between them

Table 2.3 Advantages and Disadvantages of Semantic Web

2.4. Semantic Web Tools and Languages

The Semantic Web is built not only on mathematical theories but also on

fundamental Internet technologies and philosophies. The success of the WWW has

taught us not to go it alone, at least if a technology wants to survive. Build success on

other proven successes. The Semantic Web is no different. The Semantic Web supports

the inclusive and evolutionary nature of the WWW. The Semantic Web layer cake

illustration in Figure 2.5 demonstrates some key dependencies such as URLs and XML

that form the foundation of the Semantic Web.

Figure 2.5 also shows that future Semantic Web capabilities will deal with trust

and providence.

17

Figure 2.5 Semantic Web Layer Cake
6

.

Figure 2.5 shows the “layer cake” of the Semantic Web (due to Tim Berners-

Lee), which describes the main layers of the Semantic Web design and vision. At the

bottom we find XML, a language that lets one write structured Web documents with a

user-defined vocabulary. XML is particularly suitable for sending documents across the

Web. RDF is a basic data model, like the entity-relationship model, for writing simple

statements about Web objects (resources). The RDF data model does not rely on XML,

but RDF has an XML-based syntax. Therefore, in Figure 2.5, it is located on top of the

XML layer.

RDF Schema provides modeling primitives for organizing Web objects into

hierarchies. Key primitives are classes and properties, subclass and sub property

relationships, and domain and range restrictions. RDF Schema is based on RDF. RDF

Schema can be viewed as a primitive language for writing ontologies. But there is a

need for more powerful ontology languages that expand RDF Schema and allow the

representations of more complex relationships between Web objects.

The Logic layer is used to enhance the ontology language further and to allow

the writing of application-specific declarative knowledge.

6
 Antoniou G. Harmelen V.F., A Semantic Web Primer (Cambridge, MA: MIT Press, 2008), 18.

18

The Proof layer involves the actual deductive process as well as the

representation of proofs in Web languages (from lower levels) and proof validation.

Finally, the Trust layer will emerge through the use of digital signatures and

other kinds of knowledge, based on recommendations by trusted agents or on rating and

certification agencies and consumer bodies. Sometimes “Web of Trust” is used to

indicate that trust will be organized in the same distributed and chaotic way as the

WWW itself. Being located at the top of the pyramid, trust is a high-level and crucial

concept: the Web will only achieve its full potential when users have trust in its

operations (security) and in the quality of information provided.

These standards are explained in detail below:

2.4.1. URI and Uniform

URI : A URI is uniform resource identifier and it is used for the identification

purposes of the Web contents. Every Web content has its own URI address which is in

the form of the characters or strings and it helps in recognizing the contents [11].

Uniform Resource Identifiers is simply used for identifying the resource in

semantic Web URI plays an important role. The contents on the Web have a unique

identity URI and it's just same as the social security number (SSN). URI consists of

combination of characters and symbols.

Uniform : Uniformity delivers numerous assistances: it lets diverse kinds of

resource identifiers to be used in the identical context, even also when the type of

method used to access those resources may contrast and the other one is that it lets

uniform semantic clarification of mutual syntactic agreements across dissimilar kinds of

resource identifiers, also it lets introduction of new kinds of resource identifiers

Deprived of interfering with the way that current identifiers are used; and, it lets the

identifiers to be reused in numerous diverse contexts, therefore authorizing new

applications or protocols to influence a big, and diversely used combination of resource

identifiers.

2.4.2. XML (eXtensible Markup Language)

Despite its popularity, HTML suffered from two problems. First, whenever

someone felt that HTML was insufficient for their needs, they would simply add

19

additional tags to their documents, resulting in a number of non-standard variants [12].

Second, because HTML was mostly designed for presentation to humans, it was

difficult for machines to extract content and perform automated processing on the

documents. To solve these problems, the World Wide Web Consortium (W3C)

developed the Extensible Markup Language (XML).

XML is already widely known, and is the basis for a rapidly growing number of

software development activities. It is designed for mark-up in documents of arbitrary

structure, as opposed to HTML [13], which was designed for hypertext documents with

fixed structures. A well-formed XML document creates a balanced tree of nested sets of

open and close tags, each of which can include several attribute-value pairs. There is no

fixed tag vocabulary or set of allowable combinations, so these can be defined for each

application. In XML 1.0 this is done using a document type definition (DTD) to enforce

constraints on which tags to use and how they should be nested within a document. A

DTD defines a grammar to specify allowable combinations and nesting of tag names,

attribute names, and so on. Developments are well underway at W3C to replace DTDs

with XML Schema definitions. Although XML Schema offers several advantages over

DTDs, their role is essentially the same: to define a grammar for XML documents.

XML is used to serve a range of purposes:

 Serialization syntax for other mark-up languages. For example, the synchronized

multimedia integration language (SMIL) is syntactically just a particular XML DTD; it

defines the structure of a SMIL document. The DTD is useful because it facilitates a

common understanding of the meaning of the DTD elements and the structure of the

DTD.

 Separating form from content. An XML serialization can be used in a Web page

with an XSL style sheet to render the different elements appropriately.

 Uniform data-exchange format. An XML serialization can also be transferred as

a data object between two applications.

It is important to note that in all these applications of XML, a DTD (or an XML

schema) only specifies syntactic conventions; any intended semantics are outside the

realm of the XML specification.

20

One examples of XML text:

<?xml version="1.0"?>

<Gift>

<to>Peter</to>

<from>Frank</from>

<wordings>Happy Birthday!</wordings>

<body>Have a Great day</body>

</Gift>

At the start of the line there is declaration of the XML and its version. It is

necessary to include that part in the XML code. Also we have to note down that there is

no closing tag for the declaration line. So we have to keep in mind that declaration does

not need closing tag.

2.4.3. RDF (Resource Description Framework)

Resource Description Framework, this is the basic framework that the rest of the

Semantic Web is based on. On the Semantic Web, information is represented as a set of

declarations called statements made up of three parts: subject[14], predicate, and object.

Because of these three parts, statements are also sometimes referred to as triples. The

fundamental concepts of RDF are resources, properties, and statements.

Resources : We can think of a resource as an object, a “thing” we want to talk

about. Resources may be authors, books, publishers, places, people, hotels, rooms,

search queries, and so on. Every resource has a URI, a Uniform Resource Identifier. A

URI can be a URL (Uniform Resource Locator, or Web address) or some other kind of

unique identifier; note that an identifier does not necessarily enable access to a resource.

URI schemes have been defined not only for Web locations but also for such diverse

objects as telephone numbers, ISBN numbers, and geographic locations. There has been

a long discussion about the nature of URIs, even touching philosophical questions (for

example, what is an appropriate unique identifier for a person?), but we will not go into

detail here. In general, we assume that a URI is the identifier of a web resource.

Properties: Properties are a special kind of resources; they describe relations

between resources, for example “written by”, “age”, “title”, and so on. Properties in

RDF are also identified by URIs (and in practice by URLs). This idea of using URIs to

identify “things” and the relations between them is quite important. This choice gives us

21

in one stroke a global, worldwide, unique naming scheme. The use of such a scheme

greatly reduces the homonym problem that has plagued distributed data representation

until now.

Statements : Statements assert the properties of resources. A statement is an

object attribute-value triple, consisting of a resource, a property, and a value. Values can

either be resources or literals. Literals are atomic values (strings), the structure of which

we do not discuss further.

Some triple examples:

Ezgi knows Beste.

Ezgi's surname is Kaysi.

Beste knows Metin.

Gokhan works with Metin.

RDF representation will be like the figure given on the next page.

Figure 2.6 Sample RDF Representation of Triples

In the Figure 2.6 we can see that two objects are linked with each other with the

predicate. In first case Gokhan is liked with Metin with a predicate “workwith” because

they are colleagues while Beste is linked with Metin by predicate “knows”.

Any connection between a document and the thing(s) in the world it describes is

made only by the person who reads the document. There could be a link from a

worksWith

knows
knows

Surname

Gökhan

Ezgi

Kaysı

Beste

Metin

22

document about Einstein to a document about Oslo-Norway, but there is no conception

of an entity that is Einstein or linking it to the thing that is Oslo-Norway. In the

Semantic Web we refer to the things in the world as resources, a resource can be

anything that someone might want to talk about. Einstein, Oslo, “the value of X”, and

“all the companies in Grimstad” are all examples of things someone might talk about

and that can be resources in the Semantic Web. In any case, resource is the word used in

the Semantic Web standards. In fact, the name of the base technology in the Semantic

Web (RDF) uses this word in an essential way.

Sample Triples

Subject Predicate Object

Einstein Died 1955

Einstein Field is Physics

Einstein Won Nobel Prize

Table 2.4 Sample Triple Format

2.4.4. RDFS (RDF Schema)

RDFS is the schema language for RDF. RDF Schema extends RDF by

introducing a set of distinguished resources into the language [15]. This is related to the

way in which a traditional programming language can be extended by defining new

language-defined keywords. But there is an important difference: XML parsers can

automatically determine whether a particular XML document conforms to a given

schema. Other schema languages help us to interpret particular data. For example, a

database schema provides header and key information for tables in a relational database.

There is neither anything in the table itself to indicate the meaning.

<rdf:RDF

 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

 xmlns:rdfs="http://www.w3.org/2000/01/rdf-shema#">

<rdfs:Class rdf:ID="lecturer">

 <rdfs:comment>

The class of lecturers

All lecturers are academic staff members.

23

 <rdfs:subClassOf rdf:resource="#academicStaffMember"/>

 </rdfs:Class>

<rdf:Property rdf:ID"involves">

 <rdfs:comment>

It relates only courses to lectures

 <rdfs:comment>

 <rdfs:domain rdf:resource="#course"/>

zrdfs:range rdf: resource=#lecturer"/>

2.4.5. OIL (Ontology Inference Layer)

The frame structure of OIL is based on XOL (Karp et al., 1999), an XML

serialization of the OKBC-lite knowledge model (Chaudhri et al., 1998). In these

languages classes (concepts) are described by frames, whose main components consist

of a list of superclasses and a list of slot-filler pairs. OIL extends this basic frame syntax

so that it can capture the full power of an expressive description logic. These extensions

include the following:

 Arbitrary Boolean combinations of classes (called class expressions) can be

formed, and used anywhere that a class name can be used. In particular, class

expressions can be used as slot fillers, whereas in typical frame languages slot fillers are

restricted to being class (or individual) names.

 A slot-filler pair (called a slot constraint) can itself be treated as a class: it can be

used anywhere that a class name can be used, and can be combined with other classes in

class expressions.

 Class definitions (frames) have an (optional) additional field that specifies

whether the class definition is primitive (a subsumption axiom) or nonprimitive (an

equivalence axiom). If omitted, this defaults to primitive.

 Different types of slot constraint are provided, specifying value restriction,

existential quantification and various kinds of cardinality constraint (some frame

languages also provide this feature, referring to such slot constraints as facets).

 Global slot definitions are extended to allow the specification of super slots

(subsuming slots) and of properties such as transitive and symmetrical.

 Unlike many frame languages, there is no restriction on the ordering of class and

slot definitions, so classes and slots can be used before they are „defined‟‟. This means

that OIL ontologies can contain cycles.

24

 In addition to standard class definitions (frames), OIL also provides axioms for

asserting disjointness, equivalence and coverings with respect to class expressions (and

not just with respect to atomic concepts).

Many of these points are standard for a DL, but are novel for a frame language.

OIL is also more restrictive than typical frame languages in some respects. In particular,

it does not support collection types other than sets (e.g. lists or bags), and it does not

support the specification of default fillers. These restrictions are necessary in order to

maintain the formal properties of the language (e.g. monotonicity) and the

correspondence with description logics.

2.4.6. DAML+OIL (DARPA Agent Markup Language – OIL)

These two languages are the XML and Web-based languages to support the

development of Semantic Web.

DAML+OIL is a descriptive semantic markup language for Web resources

which is built on top of earlier defined languages such as RDF and RDF Schema, and

extends these languages with richer modeling primitives enabling reasoning systems to

process it more effectively [16]. DAML+OIL was developed by the Defense Advanced

Research Projects Agency (DARPA) under the DARPA Agent Markup Language

(DAML3) Program.

With DAML+OIL, in order to make the information/data yet more expressive

and powerful, it is possible to use description logic to describe the data enabling it to be

processed on reasoning systems. In this way, not only the explicitly given data will be

available but some new facts and conclusions will be available about the data provided.

In order to achieve this extra feature, the DAML+OIL is a suitable language because of

its expressiveness with descriptive logic. For achieving this extra power, an extension of

RDF, called DAML+OIL, can be used. DAML+OIL is a description logic language

disguised in an XML format.

DAML extends RDFS in the following ways:

 Support of XML Schema data types rather than just string literals and primitive

data types such as dates, integers, decimals, etc.

 Restrictions on properties like cardinality constraints.

 Definition of classes by enumerations of their instances.

25

 Definition of classes by terms of other classes and properties. In order to enable

the definition from other classes different expressions has been defined such as;

unionOf, intersectionOf, complementOf, hasClass and hasValue which some of them

has their roots in classic set theory.

 It is possible to make Ontology and instance mappings (sameClassAs,

samePropertyAs, sameIndividualAs, differentIndividualFrom) permitting translation

between ontologies.

 Additional hints to reasoning systems such as; disjointWith, inverseOf,

TransitiveProperty and the UnambiguousProperty.

DAML is not completely developed yet. Even though it was actually the

recommended ontology language by the World Wide Web Consortium, a new project

called Ontology Web Language (OWL) has been developed to replace DAML. The

OWL project has removed some of the requirements specified for DAML language, as

rules, queries and services are still under development.

Description logics (DLs) are a family of knowledge representation languages

that can be used to represent the knowledge of an application domain and is very well-

suited to provide structure to information [17]. Description Logics is a subset of First

Order Logic, which is non functional and does not allow explicit variables. It is less

expressive in favor of having greater decidability when processed by inference

procedures. Description Logics is different form predecessors, such as semantic

networks and frames, in that they are equipped with a formal, logic-based semantics.

High quality Web ontologies are necessary for the Semantic Web to be

successful, and their construction, integration, and evolution is greatly dependent on the

availability of a well-defined semantics and powerful reasoning systems. Since DLs

provide these aspects, they should be ideal candidates for creating and developing

ontology languages. That much was already clear ten years ago, but at that time, there

was a fundamental mismatch between the expressive power and the efficiency of

reasoning that DL systems provided, and the expressivity and the large knowledge

bases that ontologists needed. Through the basic research in DLs in the last 10 to 15

years, the gap between the needs of ontologists and the systems that DL researchers

provide has finally become narrow enough to build stable bridges.

26

2.4.7. OWL (Web Ontology Language)

OWL (Web Ontology Language) is the latest recommendation of W3C [18], and

is probably the most popular language for creating ontologies today. It is also the last

technical component we need to familiarize ourselves with. The good news is that it is

built on RDF schema; as you have already established a solid understanding of RDF

schema, much of the material here is going to be looked familiar.

OWL = RDF schema + new constructs for expressiveness.

Therefore, all the classes and properties provided by RDF schema can be used

when creating an OWL document.

OWL and RDF schema have the same purpose: to define classes, properties, and

their relationships. However, compared to RDF schema, OWL gives us the capability to

express much more complex and richer relationships. The final result is that you can

construct agents or tools with greatly enhanced reasoning ability.

Therefore, we often want to use OWL for the purpose of ontology development;

RDF schema is still a valid choice, but its obvious limitations compared to OWL will

always make it a second choice.

OWL Lite: OWL Lite is targeted for users only needing simple constraint

features and classification hierarchies. For example, even though OWL Lite supports

cardinality constraints the cardinality values are restricted. For such constraints only the

values 0 and 1 is allowed. It is much simpler to provide tool support for OWL Lite than

it is for its more expressive relatives. This will allow easy migration to OWL Lite from

different ontology languages being used on the market.

OWL DL: OWL DL supports users who want the maximum expressiveness

without the lack of computational completeness (all entailments are guaranteed to be

computed) and decidability (all computations will finish in finite time) of reasoning

systems. OWL DL includes all OWL language constructs with restrictions such as type

separation (a class cannot also be an individual or property, a property cannot also be an

individual or class) enabling to create distinct definitions. It is named as OWL DL

because of its correspondence to Description Logic, a field of research that has studied a

decidable fragment of first order logic. OWL DL was designed so that it has desirable

computational properties for reasoning systems.

27

OWL Full: OWL Full is targeted for users who want maximum expressiveness

and the syntactic freedom of RDF with no computational guarantees[19]. Decidability

and completeness properties have not been restricted as it is in OWL DL. Type

separation is not as strict as it is in OWL DL. For example, in OWL Full a defined class

can be treated as a collection of different individuals and as an individual in its own

right simultaneously. Another important difference from OWL DL is that in OWL Full

a owl:DatatypeProperty can be marked as an owl:InverseFunctional-Property. OWL

Full allows an ontology to incorporate the meaning of a pre-defined (RDF or OWL)

vocabulary. It is unlikely that any reasoning software will be able to support every

feature supported by OWL Full.

Each of the sublanguages mentioned above is an extension of their simpler

predecessor; both in what can be legally expressed in the ontology and in what can be

validly concluded in it. The following set of relations hold, but their inverses do not.

Every legal OWL Lite ontology considered legal OWL DL ontology.

Every legal OWL DL ontology considered legal OWL Full ontology.

Every valid OWL Lite conclusion considered valid OWL DL conclusion.

Every valid OWL DL conclusion considered valid OWL Full conclusion.

Ontology developers should consider which of the species best suits their needs

when choosing an OWL language. When making choice between OWL Lite and OWL

DL, the choice depends on whether the users need the more expressive restriction

constructs provided by OWL DL. Reasoning systems for OWL Lite will have desirable

computational properties. Reasoners for OWL DL will be subject to higher worst-case

complexity because of its more expressiveness compared to OWL Lite. When

considering OWL DL and OWL Full, the choice between them mainly depends on the

extent to which users require the meta-modeling facilities provided by RDF Schema

(i.e. defining classes of classes). Reasoning support is less predictable when comparing

OWL Full to OWL DL.

Moreover, OWL makes an open world assumption, that is, descriptions of

resources are not bounded to a single file or scope. While class C1 may be defined

originally in the ontology O1, it can also be extended in other ontologies. The

consequences of these additional propositions about C1 are not reversible. New

information cannot retract previous information where the new information is originated

from. New information from reasoning can be contradictory, but facts and entailments

can only be added and never deleted.

28

It is the responsibility of the designer of the ontology to take into consideration,

the possibility of these contradictions. It is expected that tool support will help detecting

such cases. In order to write an ontology that can be interpreted unambiguously and

used by software agents, a syntax and formal semantics for OWL is required. In

addition, OWL is a vocabulary extension of RDF.

29

CHAPTER 3

ONTOLOGYAND QUERY LANGUAGES

Ontology describes the concepts in the domain and also the relationships that

hold between those concepts[20]. Different ontology languages provide different

facilities. The most recent development in standard ontology languages is OWL from

the World Wide Web Consortium (W3C). There are several definitions of ontology

each and one differ from each other.

Ontologies are designed for the purpose of defining knowledge, reusing and

sharing it effectively. It is a formal definition for some ontological commitment so that

different parts can participate when relying on the same definitions and vocabularies.

An ontology is a set of definitions written using a formal vocabulary [21]. To specify a

conceptualism this is the main approach used because it has some properties enabling

AI processing systems to share knowledge among them. In other words, an ontological

commitment is a kind of an agreement involving different domain specifications to use

a specific vocabulary when defining concepts. Different processing systems are being

built so that they can participate in such commitments. That is they can be “connected”

to some ontology without any conflicts with respect to the definitions and the

vocabularies used. An ontology is built so that such systems can participate into them,

and share knowledge among other systems.

Specified a significant domain, an ontology defined for that domain is the base

for the knowledge to represent for that domain. An ontology enables the definition of a

vocabulary in order to express the knowledge for some domain. Without a definition of

some vocabulary it is not possible to share knowledge among different systems/agents.

Simply said, there will be no common ground for such systems to exist and share

knowledge. A domain is a specific area of a subject or an area of knowledge like travel,

medicine, economy a specific research etc. Ontologies are used by systems/agents such

as databases application programs or any other thing that need to share knowledge.

Ontologies are being build up of basic concepts and the different relations between

them. The definitions of such concepts and relation are computer usable so that

computing systems can process these concepts and relations.

30

Another definition can be “ontology is a formal explicit description of concepts

in a domain of discourse. Classes which are sometimes called concepts, properties of

these classes are call slots or roles, while restrictions on slots are called facets. When

ontology is together with the instances it creates knowledge base [22]. Ontology is truly

based on the representation of classes. So it can be said that classes give concept to

ontology.

Class definitions are the most common approach when defining some domain in

an ontology. Class definitions are suitable to define and describe the different concepts

within a domain. For example, a class defining a pizza represents all the different pizza

instances that exist. Any pizza is an instance of the class defining and describing a

pizza. Classes can have inheritance relations between them enabling the definition of

more specific classes from a given class. Definition of more general classes is also

possible. For example we can have subclasses of the class pizza as “spicy pizza” and

“non spicy pizza” where the class pizza is a super-class of these two classes.

Since the beginning of the 1990s ontology became an admired research topic

investigated by quite a few AI research communities including knowledge engineering,

natural language processing, and knowledge representation. More recently, the notion

of ontology is also becoming extensive in the fields like intelligent information

integration, cooperative information systems, information retrieval, electronic

commerce, and knowledge management [23].

In computer science and information science, ontology is a formal

representation of the knowledge by a set of concepts within a domain and the

relationships between those concepts. It is used to reason about the properties of that

domain, and may be used to describe the Domain. An ontology supports software

agents, or in general all computer systems requiring to share and reuse domain

knowledge. Important features of an ontology are listed on below [24]:

 Ability to reuse domain language.

 Making domain assumptions explicit.

 Separation of operational knowledge and domain knowledge.

 Sharing the formal definitions and vocabularies when describing some concept.

 Analysis of domain knowledge.

31

Components of an Ontology

Most ontology describes individuals (instances), classes (concepts), attributes, and

relations. Common components of ontologies include [25]:

 Individuals: Individuals are also known as instances. Individuals can be referred

to as being `instances of classes'. Individuals, represent objects in the domain that we

are interested in.

 Classes: Sets, collections, concepts, classes in programming, types of objects, or

kinds of things. Classes is described using formal descriptions that state requirements

for membership. It may be organized into superclass- subclass hierarchy.

Example: Dog is a subclass of Animal. Superclass- subclass relationships may be

computed by a reasoner.

 Attributes: Aspects, properties, features, characteristics, or parameters that

objects (and classes) can have. Another definition can be binary relations on

individuals. It can be transitive or symmetric.

 Relations: Ways in which classes and individuals can be related to one another

 Function terms: Complex structures formed from certain relations that can be

used in place of an individual term in a statement.

 Restrictions: Formally stated descriptions of what must be true in order for some

assertion to be accepted as input.

 Rules: Statements in the form of an if-then (antecedent-consequent) sentence

that describe the logical inferences that can be drawn from an assertion in a particular

form.

 Axioms: Assertions (including rules) in a logical form that together comprise the

overall theory that the ontology describes in its domain of application.

 Events: The changing of attributes or relations.

32

Figure 3.1 Relations among Some Classes and Instances

Some classes, instances, and relations among them in the enrollment ontology

domain. Yellow color was used for classes and pink for instances. Links represent data

property and object property for relation of between two classes.

Sharing common understanding of the structure of information among people or

software agents is one of the more common goals in developing ontologies. For

example, suppose several different Web sites contain medical information or provide

medical e-commerce services. If these Web sites share and publish the same underlying

ontology of the terms they all use, then computer agents can extract and aggregate

information from these different sites. The agents can use this aggregated information to

answer user queries or as input data to other applications.

Enabling reuse of domain knowledge was one of the driving forces behind

recent surge in ontology research. For example, models for many different domains

need to represent the notion of time [26]. This representation includes the notions of

time intervals, points in time, relative measures of time, and so on. If one group of

researchers develops such an ontology in detail, others can simply reuse it for their

domains. Additionally, if we need to build a large ontology, we can integrate several

existing ontologies describing portions of the large domain.

Making explicit domain assumptions underlying an implementation makes it

possible to change these assumptions easily if our knowledge about the domain changes

33

[27]. Hard-coding assumptions about the world in programming-language code makes

these assumptions not only hard to find and understand but also hard to change, in

particular for someone without programming expertise. In addition, explicit

specifications of domain knowledge are useful for new users who must learn what terms

in the domain mean.

Separating the domain knowledge from the operational knowledge is another

common use of ontologies. We can describe a task of configuring a product from its

components according to a required specification and implement a program that does

this configuration independent of the products and components themselves [28]. We can

then develop an ontology of PC-components and characteristics and apply the algorithm

to configure made-to-order PCs. We can also use the same algorithm to configure

elevators if we “feed” an elevator component ontology to it.

Analyzing domain knowledge is possible once a declarative specification of the

terms is available. Formal analysis of terms is extremely valuable when both

attempting to reuse existing ontologies and extending them [29].

Often an ontology of the domain is not a goal in itself. Developing an ontology

is akin to defining a set of data and their structure for other programs to use. Problem-

solving methods, domain-independent applications, and software agents use ontologies

and knowledge bases built from ontologies as data.

What are the differences between ontologies and relational databases?

Although databases and ontologies have some similarities, they differ in many

important features. First of all an ontology is not storage for data but is a defining model

for the data whereas a relational database is a data repository. An ontology can be used

as filter or a framework to access and manipulate data where a database can be used to

store the different data instances defined by the ontology [30]. Another important

difference is querying. When making queries against a relational database the returned

data will be the same data stored previously, just matching some conditions. However

when making a query against an ontology, together with some reasoning process, the

returned data can be some inferred data which was not stored previously but generated

from some facts represented by the ontology. In ontologies, queries can also be made

for some specific relations while this is not possible with ordinary relational databases.

 Ontologies should be well designed and also well defined. By a good design it

is meant that they should adequately capture the modeled domain, be understandable

for a human user and provide good support for machine processing [31]. With a good

34

definition it is meant not only the syntax, but also the semantics. The formal semantics

is important that if we want to introduce an automated reasoning over ontologies. Such

reasoning enables to support the ontology design (such as consistency checking or

supporting more authors developing one ontology), integrating and sharing ontologies

automatically, determining and establishing relationships among ontologies etc.

Types of Ontologies

Ontologies can be classified from at least two aspects, by the type of information

they capture, and by the richness of their internal structure. The former is divided into

six groups [32]:

Top level ontologies or upper-level ontologies are the most general ontologies

describing the top-most level in ontologies to which all other ontologies can be

connected, directly or indirectly. In theory, these ontologies are shareable as they

express very basic knowledge, but this is not the case in practice, because it would

require agreement on the conceptualization of being, which is very difficult. Any first

step from the top-most concept would be either too narrow, thereby excluding

something, or too broad, thereby postponing most of the problem to the next level,

which means of course that controversial decisions are required.

Domain ontologies describe a given domain, e.g. medicine, agriculture, politics,

etc. They are normally attached to top-level ontologies, if needed, and thus do not

include common knowledge. Different domains can be overlapping, but they are

generally only reusable in a given domain. The overlap in deferent domains can

sometimes be handled by a so-called middle-layer ontology, which is used to tie one or

more domain ontologies to the top-level ontology.

Task ontologies define the top-level ontologies for generic tasks and activities.

Domain-task ontologies define domain-level ontologies on domain specific

tasks and activities.

Method ontologies give definitions of the relevant concepts and relations

applied to specify a reasoning process so as to achieve a particular task.

Application ontologies define knowledge on the application level and are

primarily designed to fulfill the need for knowledge in a specific application [33].

35

Figure 3.2 Guarino's Kinds of Ontologies
7

3.1. Ontology Editors

Effective and efficient work with the semantic Web must be supported by

advanced tools enabling the full power of this technology. In particular, it requires the

following elements [34]:

 Formal languages to express and represent ontologies (We already discussed

some of these in the last section)

 Editors and semiautomatic construction to build new ontologies

 Reusing and merging ontologies (ontology environments that help to create new

ontologies by reusing existing ones)

 Reasoning services (instance and schema inferences that enable advanced query

answering service, support ontology creation, and help map between different

terminologies)

 Annotation tools to link unstructured and semi structured information sources

with metadata

 Tools for information access and navigation that enable intelligent information

access for human users

7
 Reciis [Internet]. Ontology and its inference in description logics;

http://www.reciis.icict.fiocruz.br/index.php/reciis/article/viewArticle/339/759 (accessed date: 11 Dec

2013)

36

 Translation and integration services between different ontologies that enable

multistandard data interchange and multiple view definitions (especially for B2B

electronic commerce).

Ontology editors help human knowledge engineers build ontologies. They

support the definition of concept hierarchies, the definition attributes for concepts, and

the definition of axioms and constraints. They enable the inspection, browsing,

codifying, and modification of ontologies and in this way support the ontology

development and maintenance task. To be useful in this context, they must provide

graphical interfaces and must conform to existing standards in Web-based software

development.

Today, there are more than 90 tools available for ontology development from

both non-commercial organizations and commercial software vendors [35] [36]. Most of

them are tools for designing and editing ontology files. Some of them may provide

certain capabilities for analyzing, modifying, and maintaining ontologies over time, in

addition to the editing capabilities. One of the more popular editing tools is Protégé,

developed by the Stanford University School of Medicine [37]. Other tools are

SemTalk, OilEd , Unicorn, Jena, and Snobase, to name a few.

Some of the different tools available can be integrated to each other enabling a

more complete development environment. For example the ontology editor Protégé can

communicate with the Inference engine to make reasoning and consistency checking on

the ontology being built.

Protégé: Protégé
8
is free ontology editor which is created by Stanford

University. It is very popular tool for editing and creating ontology. It supports Frame

based ontology design and OWL ontology. The plus point for protégé is that it has

several plug-ins which is very handy and useful. Due to its plug-ins it is used a lot all

over the world. Protégé has a frame-based knowledge model, which is completely

compatible with OKBC (The Open Knowledge-Base Connectivity protocol) enabling

interoperability with other knowledge-representation systems. Protégé enables a

development environment supported by a number of third party plug-in, targeted to the

specific needs of specific knowledge domains. It is also an ontology development

platform which can easily be extended to include various graphical components such as

8
 ProtégéWiki [Internet]. WebProtégé; http://protegewiki.stanford.edu/wiki/WebProtege

(accessed date: 11 Jan 2014)

37

graphs and tables, media such as sound, images, and video, and various storage formats

such as OWL, RDF, XML, and HTML.

38

Figure 3.3 Screenshot of Protege 3.1 Beta

39

Web protégé: Web protégé is also a product of Stanford centre but it is used for

developing web ontology. Its user interface is just as same as Protégé so it's online

version of protégé.

Ontolingua: The Ontolingua system [38] [39] provides users with the ability to

manage, share and reuse different ontologies stored on a remote ontology server. The

system has been developed at the Knowledge Systems Laboratory at Stanford

University in the early 90s. Ontolingua supports a wide range of translations while most

ontology editors only support a limited range of translations. It can easily import and

export constructed ontologies with the newer languages like DAML+OIL and OWL.

WebOnto: WebOnto [40] can manage ontologies constructed in OCML. It is a

Web-based tool for browsing, editing and managing ontologies constructed with

OCML. WebOnto has been developed at the Knowledge Media Institute, at the Open

University as part of several European research projects in the late 90s. It is basically a

Java based client application connected to a specific Web server having access to

ontologies constructed with OCML.

NeOn Toolkit: NeOn is an ontology engineering tool. Just like Protégé it has

plug-ins but which are lesser in amount as protégé. Basically this tool is used for making

weighty projects for example Ontology mapping and integration, multi-modular

ontologies etc.

SWOOP: It is a small but very simple tool for developing ontology. Due to its

simplicity it is majorly used by beginners for developing ontology.

The tool used in this thesis is called Protégé and there are a lot of reasons for

using the protégé and those are;

 User Friendly user interface: The interface for protégé is very simple for

starters in ontology engineering. The workspace can be modified for more simplicity

and rapid work.

 Scalability: In Protégé user can develop from small ontology to heavy weight

ontology containing several thousands of classes.

 Plug-in Architecture: The plug-in architecture in Protégé is very good plus

point for protégé which differentiate it from other tools. The plug-ins are used for

several purpose. The plug-ins can be used for visualizing the ontology. For example the

OWLviz and OntoGraf are the type of plug-ins which helps in visualizing the created

ontology. On next pages, In Figure3.4 and Figure3.5 we can see the visualization

40

Figure 3.4 Sample Onto Graph Visualization
9

9
 Shahzad M., “A semantic web approach for dealing with university courses” (MS Thesis., University of Agder, 2013), 166–24

41

Figure 3.5 Sample OWLViz Visualization
10

Not only visualization but there are more plug-ins which works very differently.

There are some more useful plug-in listed below

 DL Query

 Ontology Differences

 OWL Code Generation

3.2. Ontology Management System

An ontology management system for ontologies is similar to a database

management system for relational databases. A DBMS allows an application to access

data stored in a database via a standard interface. The techniques for storing and

structuring the data is left to the DBMS itself so that the application does not have to

consider these issues. The DBMS system allows the application to access data stored in

10

 Shahzad M., “A semantic web approach for dealing with university courses” (MS Thesis.,

University of Agder, 2013), 166–24

42

the database with a query language (SQL) taking care of all the things related to data

storage, indexing of data and data file management. An ontology management system

allows access to ontologies in a similar way that a DBMS does. The application making

queries on an ontology through an ontology management system does not have to worry

about how the underlying processes relate to data storage, and how structuring of data is

done. Ontology editing capabilities are not the central parts of an ontology management

system, however some systems may provide capabilities to edit ontologies

programmatically through a programming interface. In the case that such editing

capabilities are not provided, developers can choose to use some graphical editing

environments such as Protégé.

Jena Framework: Jena
11

 is a toolkit for developing applications within the

semantic web. Jena is implemented in the Java programming language. These Java-

based abstractions translate the statements and constructs of the Semantic Web into

useful programming artifacts such as Java classes, objects, methods, and attributes. Jena

provides several Reasoner types to work with different types of ontologies. Some

important capabilities of Jena are listed below [41]:

 Provides a RDF Application Programming Interface (API).

 Reading and writing RDF in RDF/XML, N3 and N-Triples

 Provides an OWL API.

 Provides both in-memory and persistent storage ontology models

 Provides support for RDQL – a query language for RDF

In addition on the fine grain access provided by the Jena API, SDB can be

coupled with the web-server - „Joseki‟ - which is SPARQL query server. This enables

an SDB store to be queried over HTTP. Jena recently introduced a non-transactional

native store called TDB. For our current evaluation we have Jena SDB backed with

MySQL.

Sesame: Sesame
12

 is an open source framework for storage, inferencing and

querying of RDF data. Sesame matches the features of Jena with the availability of a

11

 Jena Apache [Internet]. Jena Ontology API; http://jena.apache.org/documentation/ontology/

(accessed date: 11 Jan 2014)

12
Bioontology[Internet].Sesame;http://www.bioontology.org/wiki/images/6/6a/Triple_Stores.pdf

(accessed date: 11 Jan 2014)

43

connection API, inferencing support, availability of a web server and SPARQL

endpoint. Like Jena SDB it provides support for multiple back ends like MySQL and

Postsgre. Sesame Native is the native triple store offering from Sesame. As compared

to be Jena‟s native triple, TDB, it is less scabable mentions that Sesame native has been

tested with up to ~70 Million triples while Jena TDB is known to work with 1.7 Billion

triples [42].

LinqToRDF: LinqToR
13

DF is a Semantic Web framework for .NET. It provides

an easy way to integrate Semantic Web queries into your software. At the core of the

system sits a LINQ query provider (like LINQ to SQL) that converts your queries into

the SPARQL query language. You don't have to know that much SPARQL or RDF to

be able to use it. It also provides a UML-style design surface allowing you to create

RDF files, and to generate compatible C# code to work with the RDF.

It provides developers with an intuitive way to make queries on semantic web

databases. The project has been going for a year and it's starting to be noticed by

semantic web early adopters in the .NET community. LINQ provides a standardized

query language and platform enabling any developer to understand systems using

semantic web technologies via LinqToRDF. It will help those who don't have the time

to ascend the semantic web learning curve to become productive quickly.

FRAMEWORK LANGUAGE/INTERFACE SEMANTIC LEVEL

Jena Java RDF to OWL

Sesame Java & RESTful web service RDF

OWL API Java OWL 2

RAP-RDF API PHP RDF

Redland C,Python,Ruby,Perl, & PHP RDF

LinqToRDF .NET RDF

Table 3.1 Semantic Web Framework Summary

13

 Google [Internet]. linqtordf; https://code.google.com/p/linqtordf/ (accessed date: 11 Jan 2014)

44

3.3. Ontology Query Languages

Based on the ontology languages described above, several query languages and

systems have been already developed. RDQL is the query language for Jena2. Vampire

is a FOL theorem prover using TPTP3 format for problem input and query input. nRQL

is the query language for RACER. Finally, OWL-QL is a query language for the OWL-

QL system. SPARQL is a Server-Client-based RDF query language. It has SQL syntax

and is influenced by RDQL and SquishQL4 . SPARQL supports disjunction in the query

and thus can process more complex query than RDQL. SPARQL also provides optional

variable binding and result size control mechanisms for real world usage. However, we

did not choose SPARQL as a query language for testing, since there was no supporting

system available at the time [43].

OWL-QL (OWL Query Language): OWL-QL is a query language and

protocol supporting agent-to-agent query-answering dialogues using knowledge

represented in OWL language [44]. The semantic relationship is exactly specified

among a query, a query answer and the included ontologies to produce query answer. It

also provides dialog with the query engine so that the query engine can use automated

reasoning methods to derive answers to queries. The query engine could need some

extra information from the querying agent in order to produce the answer. So a dialog

could exist between the two parts in order to produce the answer to a query. This is why

OWL-QL has the properties as a protocol. In this setting, the set of answers to a query

may be of unpredictable size and may require an unpredictable amount of time to

compute since the domain is not totally restricted because multiple knowledge bases can

be involved in the dialog between query agents. The following quote is from the OWL-

QL specification; “an OWL-QL query contains a query pattern that is a collection of

OWL sentences in which some literals and/or URI-refs have been replaced by variables.

A query answer provides bindings of terms to some of these variables such that the

conjunction of the answer sentences – produced by applying the bindings to the query

pattern and considering the remaining variables in the query pattern to be existentially

quantified – is entailed by a knowledge base (KB) called the answer KB”.

OWL-QL is relatively simple and expressive. To make a query, a querying agent

can simply describe what is being searched for, indicating the variables and their

matching concepts for the answer queried. The advantage of the OWL-QL query

language is that the underlying mechanism is easily adaptable for different ontology

45

representation languages.

RDQL and Jena2: RDQL is a query language for RDF in the Jena framework.

The development of RDQL is to provide a data-oriented query model. This means that

RDQL only retrieves information stored in the model which contains a set of N-Triple

statements. RDQL provides no reasoning mechanisms. The reasoning is provided by

user selected reasoners bound to the model containing the original ontology

information. Provided with a proper reasoner, RDQL can process ontology in various

languages including OWL. SPARQL RDQL predates SPARQL - in fact, RDQL design

predates the current RDF specifications and some of the design decisions in RDQL are a

reflection of that. The biggest of these is that RDF didn't have any data typing so RDQL

handles tests on, say, integers without checking the data type (if it looks like an integer,

it can be tested as integer). SPARQL has all the features of RDQL and more [45]:

 ability to add optional information to query results

 disjunction of graph patterns

 more expression testing (date-time support, for example)

 named graphs

 sorting

However, above all, it is more tightly specified so queries in one implementation

should behave the same in all other implementations.

RDF is a directed, labeled graph data format for representing information in the

Web. This specification defines the syntax and semantics of the SPARQL query

language for RDF. SPARQL can be used to express queries across diverse data sources,

whether the data is stored natively as RDF or viewed as RDF via middleware. SPARQL

contains capabilities for querying required and optional graph patterns along with their

conjunctions and disjunctions. SPARQL also supports aggregation, sub queries,

negation, creating values by expressions, extensible value testing, and constraining

queries by source RDF graph. The results of SPARQL queries can be result sets or RDF

graphs.

George Washington’s Namesakes

SELECT ?location

WHERE {

?person <http://www.w3.org/2000/01/rdf-schema#label>

"George Washington"@en.

?location <http://dbpedia.org/property/namedFor> ?person

 }

46

CHAPTER 4

ONTOLOGY BASED QUALITATIVE INFORMATION

COLLECTION

In the previous chapter we introduced the vision of the Semantic Web. This

chapter will go through the design and specifications of the Semantic Web application

project implemented for this thesis. Specifications regarding choice of domain, services,

user facilities etc. will be discussed in detail in this chapter.

As the Internet has been in a period of rapid growth, the need of applications

making use of machine and human consumable data has come on to the scene as a

promising candidate for a new breakthrough in information presentation and processing.

Various kind of technologies have been developed along with different standards and

techniques proposed by different communities making use of the Web. The Semantic

Web project is moving forward in becoming an important actor in the mainstream.

Applications, tools, Semantic Web languages are constantly being developed creating a

solid background for future Semantic Web developments and a valuable pool of

experience are gained from the effort spent on these developments.

Hotel Search Using Semantic Web Technologies

The online travel segment was one of the first success stories in e-commerce, but

since online travel agencies are facing fierce competition, to maintain a winning

position or simply just to survive they do not only have to offer effective services and

good value-for-money hotels or trips but most of all deliver more customized results

w.r.t customer needs. The importance of quality of service depends on the different

wishes of customers and the ever-changing demands of the market are paramount in

today‟s world. The increasingly individualistic consumption patterns and lifestyles will

make it increasingly difficult for tourist service providers to anticipate consumer

behavior and configure their services accordingly, i.e. the tourist industry must focus

more on a “hybrid consumer” whose travel choice will be increasingly complex. To

tackle these problems head on and to give travel agencies, online portals and hotels the

opportunity to take full advantage of the modern convenience of electronic business-to-

business and business-to-customer trading. The general goal of such projects is to

semantically connect, organize and share currently isolated pieces of tourism

47

information in order to enable better teroperability and integration of inter- and intra-

company travel information systems, facilitate the user to find and understand the

information sources as well as to allow for individual use of travel offers. Better

interoperability and integration of inter- and intra-company travel information systems,

facilitate the user to find and understand the information sources as well as to allow for

individual use of travel offers.

In the “Semantic Hotel Search” thesis we have concentrated on the usage of

Semantic Web technologies to build a hotel recommendation engine which focuses on

ranking the available hotels by matching customer profiles with hotel features, e.g.

hotel or room amenities, by using additional information regarding points of interest as

well as geographical dependencies. We use RDF as well as non-RDF data, but

semantics play a vital role in our Semantic Hotel Search application in that it provides a

shared and common understanding of data and services provided by travel information

systems. Our engine assists in the various phases of the hotel search process [46]:

Information providers & hotel description: Nowadays hotel descriptions are

written in free text – which limits the machine processability of matching hotel offers to

customer‟s needs. In contrast, the usage of a common language in the form of a set of

controlled vocabularies (ontologies) to describe hotel details not only facilitates the

communication and integration of individual hotels into the online travel portal but also

improves the hit frequency (the more precise the hotel description the more often the

hotel will come up).

Customers & their needs: In every travel portal customers (travelers and travel

managers) can define their requirements either by filling out (“on the fly”) a request

form or creating a user profile, which is then saved, or both. In each case the quality of

the matches between the defined user needs and hotel characterization is directly

proportional to the precision of both parties‟ descriptions: semantic annotation using a

common ontology, one that has a predefined set of vocabularies, enhances the accuracy

of the match results.

Travel portal & the selection/ranking of the suitable offers: Besides

improving the precision of the matching process another benefit from having hotel and

user requirements annotated with terms from a controlled vocabulary is that the

matching engine can utilize (additional to the hotel description) background knowledge

such as point of interests or public transportation information: e.g. a physically disabled

customer‟s needs (information gleaned from user profile) will best be met by a hotel

48

which has been specially outfitted for the disabled (information from hotel description)

and is near a subway station which also has access to an elevator (information form

public transportation data).

The purpose of this thesis is to explore the potential advantages of Semantic

Web ontologies and to demonstrate how different technologies can be combined to

create applications primarily based on ontologies.Our Semantic web application,

developed within the thesis “Semantic Hotel Search”, provides semantic matching by

combining data obtained from online reservation systems with ontology-based matching

functions between hotel descriptions and customer profiles.

4.1. Overview of the Application

As explained in the previous chapters, there are several benefits of Web

ontologies in the Semantic Web context. The developed Web application for this thesis

is based on making use of Semantic Web technologies to show the benefits of such

technologies. The overall structure of the system is illustrated in the Figure 4.1 below.

Figure 4.1 The Overall Structure of the Application

Current online hotel booking systems do not help travelers find hotels that meet

their interests, so we have defined hotel-domain ontology to include three kinds of

concepts:

1. Those associated with hotels themselves and their relationships with

49

neighboring artifacts

2. Those representing components of a hotel to be evaluated and their properties

3. Those corresponding to subjective, ambiguous terms that are used when

searching or evaluating hotels. To demonstrate the use of the ontology for a hotel

search, we developed a Semantic Hotel Search System using currently available

semantic web technologies. Finally, we show how an interesting, but complex, hotel

search query can be processed to find hotels using the system.

The application is mainly a web-based interface for accessing and querying

content stored in an OWL ontology which can be located on the local system or on any

Web server located somewhere on the Web. The targeted content domain is hotel

information whose data/information has been collected from various Web sites giving

access to hotel information.

The ontology being processed is not only intended to be used to retrieve data for

various hotels but also to structure the general view and behavior of the Web interface

such as categorizing the hotels and displaying them under a navigation menu. All the

information and Web content presented at the front end of the application is extracted

from the OWL ontology.

The actual ontology processing task is done by a different OWL server

implemented for this thesis. The Web interface retrieves the necessary data from this

server through a TCP connection. Loading and creating a model from OWL ontology,

hotel category extraction, hotel querying and hotel content extraction is all being done

by the OWL server working in the background of the application. As mentioned before,

the Web interface is a separate module interacting with OWL server only to accept user

input and present data returned from the server.

For constructing and creating the OWL ontology, a separate ontology editor has

been used. The ontology constructing and managing part have been kept external for the

thesis implementation because of the powerful editors already available today.

As functionality the Web interface provides an intuitive and easy to use interface

allowing users to browse through the hotels and providing search capabilities so the

users can easily find a hotel in order to book based on a certain specification.

4.2. Application Domain

As the information domain, hotel booking system has been selected for the thesis

50

because of its various interesting properties. A number of characteristics of a hotel

facilities and its environment such as golf, shopping center, swimming pool as well as

the attributes of the trip context, such as distance to a meeting place or public

transportation like airports, accessibility must be taken into consideration. Information

about hotels are widely being presented on the Web on a large number of Web sites.

This makes it easy to find information related to hotel and use these data when

constructing the ontology.

Currently, tourism information systems provide good use cases for studying the

potential brought by semantics and ontologies to solve the integration and

interoperability problems they have been confronted with for many years. It is easy to

classify the existing data and present this classification with an ontology. Concepts such

as classes, subclasses, properties and relations can easily be applied and demonstrated

within this domain.

The constructed ontology contains a large number of hotel information in which

data has been collected from the currently existing Web sites provide to book hotels.

Because of the common information structure of the hotels it has been easy to create a

common format and structure to store these information about hotels in the ontology file

that has been constructed. Properties such as rooms, stars, locations, facilities, activities,

nearest tourist attractions information etc. are all common to hotels. In addition, the

different features are all common to the domain, allowing them to be reusable

definitions instead of being distinct to each and every hotel.

booking.com was used to obtain hotel information. booking.com is a Dutch

online booking portal. It was established in 1996, and offers accommodation booking. It

claims to deal with more than 550,000 room nights‟ reservations per day. The main

reason to use this web site is easy to parse information about hotels and simple to

categorize features in order to apply on the ontology. Also, it has extensive hotel

network and hundreds of reviews about hotels the combination of both a very positive

score and a large number of reviews certainly delivers very powerful (and persuasive)

social proof of some of the hotels.

The second hotel website that we used for obtain information is tripadvisor.com.

It is a travel website providing directory information and reviews of travel-related

content. It also includes interactive travel forums. Its substructure is not as convenient as

booking.com in order to obtain facilities of hotels so it was used for hotel review‟s

http://www.tripadvisor.com/
http://www.booking.com/

51

sentimental analysis.

Including tripadvisor and booking, it has not been possible to find Web sites

which have published their hotel contents in any form of an ontology. All the available

data was marked up with HTML (Hyper Text Markup Language) which makes it almost

impossible for other systems to access the data and make use of it effectively.

When providing data for the ontology constructed for the application, automated

process have been created and used. Extracting information from such sites has been

done by creating html parser and retrieving the hotel information from Booking.com

and Tripadvisor.com. This part of thesis is explained in detail in Chapter 5.

Before designing the system, a detailed investigation of the different web sites

has been performed. The main focus was on the capabilities related on how different

users can access the relevant content as fast as possible. Not one of the mentioned web

sites have advanced search capabilities except for some of them which allows hotel

search based on the facilities. Some of the sites provide search capabilities only based

on keyword search where only the hotel titles are being used for keyword matching.

The content stored at various Web sites is not structured in a way so that they are

accessible for other systems. That is, the content is not reusable and is just waiting for

users which have plenty of time and passion to seek for it. The only way of retrieving

the stored information is by manually copying and pasting the information so that it can

be used for other purposes.

Storage and representation of information: The domain information is

represented with an ontology. All the data related to hotel domain including

classifications, properties and relations are all being stored in the ontology file. Tdb is

used to store RDF files and all information about hotels.

Ontology language: The ontology language used to construct the ontology was

specified as OWL because it is currently the most powerful ontology language with a

greater representational power compared to other ontology constructing language. The

OWL sublanguage has been specified as OWL DL because some of the more advanced

class related constructs such as subClassOf and disjointWith was used in constructing

the ontology.

Ontology processing: Ontology processing is being performed by using the

semantic web framework Jena. Ontology processing is implemented by making use of

the API provided by Jena and some crud operations are realized using jena library.

Web interface: The Web interface is a Web-based application that handles the

52

visual presentation of the hotel contents and provides navigation through the different

categories of hotels. It provides an easy to use search interface allowing the users to

construct queries with different criteria.

Application development platform: The OWL server responsible of ontology

processing has been developed using the popular object oriented programming language

ASP.NET. The Jena API library was optimized for .Net The Web interface is

implemented using the widely used C#, JavaScript and jquery.

4.3. Application Design

The Ontology-driven hotel search engine application developed for this thesis is

built up in five main parts; the OWL ontology, Web interface, semantic services,

sentimental analysis and Html parser to interact with the system. The ontology

constructed is the only information resource used for the application. All data such as

the text representing the hotel, facilities, review etc. are stored in the ontology file

constructed. Even the link names appearing on the menu displayed on the Web interface

are stored and retrieved from the ontology file.

After built ontology, needed to feed with hotel data. In order to achieve this html

parser is created. Taking a given URL as parameter, it parse hotel facilities,

specifications, reviews from Booking.com and Tripadvisor.com then load to tdb. Two

services were developed. One of them is windows service in order to update hotel

reviews every day. The other one is web services that acts as a bridge between the

constructed ontology and the web interface. It provides crud operations. After

constructed OWL ontology and data, it is ready to accept requests from the Web

interface.

Mainly four types of requests can be made from the Web interface.

 Request for hotel categories, countries, cities.

 Request for all city attractions under a specific country.

 Request for a hotel given a specific resource id for the hotel.

 Perform a search given some query.

The web interface is a .Net application which only performs the user interaction

with the OWL ontology server/model. The Web interface does not deal with any data

processing other that making requests to the OWL server and presenting the responses

in an HTML formatted page. It is responsible of accepting user input, creating a request

53

message and sending it to the OWL server. When the server returns the corresponding

response, the Web interface simply displays it to the user. The interface is available

selective facilities, specialties and the hotel information being displayed are all retrieved

from the OWL server dynamically on each page request. Whenever the category

structure and the content of the ontology file has been changed and modified, all the

changes are reflected at the Web interface and are made available to the user without

making any modification to the code for the Asp.Net web application.

After users select the hotel, they can see the hotel details based on their criteria.

For example user selects criteria like swimming pool, bar and fitness then hotels which

have these facilities are listed. After the selection one of them, in detailed page user

finds more details about these criteria like as positive and negative comments from

people who stayed there. Sentimental analysis part take charge in here. In addition to,

users can find most positive features and negative features about hotel.

The communications between the different parts of the system are based on

commonly used network communication techniques. All the five parts of the system can

be located remotely or on any machine having access to the Internet.

Figure 4.2 Architecture of Semantic Hotel Search Application

54

Protégé Ontology Editor: Protégé is developed by Stanford Medical

Informatics. It has been selected as the ontology editor for the thesis because it is

suitable to the project in many ways [47]. It is a widely used free ontology editor

especially for constructing and maintaining OWL ontologies. OWL is different than

other ontology languages in that it supports a richer set of operators such as AND, OR,

and Negation. Protégé supports all the advanced properties of OWL language and

provides all the functionality to maintain OWL ontologies. Because of its wide

popularity, it was easy to obtain support for it.

Plenty of tutorials, documentation and support forums are available for the

editor. The functionality of Protégé can be extended by various plug-in available online

on the home page for Protégé. In addition, different wizards to ease the work are

provided. The internal logical model allows it to interact reasoning services for example

to compute inferred types and make consistency checking on the ontology being

constructed.

55

Figure 4.3 Classes of Hotel Domain Ontology

56

Figure 4.4 Sample individuals with property values on Hotel Ontology

Sentigem API: Sentigem is a platform that offers an easy-to-use sentiment

analysis tool for English language based documents or text blocks. To this end, we

provide an API endpoint for computing sentiment from various consumption points

determined by the user and passed to our API as text [48] Sentigem api is used for

analyzing reviews of hotels. The service is presently an English only service and The

Sentigem API service only supports HTTPS calls. It is free api but needs the key. After

sign up, the key is given. Sentigem takes key and text as a parameter then returns

polarity of the text as positive, negative or neutral.

57

Figure 4.5 Sentiment Analysis Architecture of Semantic Hotel Search Application

58

CHAPTER 5

IMPLEMENTATION

In this section we describe our prototypical implementation of the technical

infrastructure of our Semantic Hotel Search by presenting a solution for data

integration, semantic matching and evaluators. Our hotel evaluation engine is composed

of five main parts: the OWL ontology, web interface, semantic services, sentimental

analysis and Html parser to interact with the system. All of them are implemented with

different technologies

5.1. Implementing the Ontology with Protégé

The web ontology file has been created so that it will represent hotel domain

ontology in detail. However, the ontology has not been created too fine grained, that it

will be difficult to provide specific information for all of the details being built into the

ontology. For example, room price according to searched date is not provided.

The ontology constructed makes advantage of concepts such as class

hierarchies, class relations and properties. In order to model the information domain in a

realistic manner, proper information description methods have been used together with

the powerful logic descriptors provided by OWL-DL and OWL-Full. The following part

will explain the different classes that have been defined together with the different

relations and properties. Domain ontologies specify concepts, relationship among

concepts, and inference rules for a single application domain (e.g., airline reservations,

art galleries, furniture, fishing, gourmet food) or task. Our domain is hotels.

Ontology creation requires heuristics and expertise, rather than an engineering

approach. Prior research has concentrated on related tasks, such as ontology learning,

ontology evaluation, evolution, and merging For example, ontology learning seeks to

discover ontological knowledge from various forms of data automatically or semi-

automatically using methods and tools such as UIMA, GATE, OpenCalais, and

WikiOnto. Several ontology creation methodologies have been proposed. There are six-

step methodology for semi-automated ontology creation using terms from the World

Wide Web. “The methodology is heuristic in nature and takes advantage of existing

59

tools. The methodology is based on a framework for ontology learning proposed by

Zhou (2007) and METHONTOLOGY (Fernández-López et al., 1997), which provides

high-level steps for ontology creation as an existing partial solution. Our research

expands and augments prior work and integrates tools. [49]” Figure 18 provides an

overview of our methodology.

Figure 5.1 Methodology for Domain Ontology Creation
14

Application domains for which ontologies are needed may be of various sizes.

Therefore, the initial step in domain ontology creation is to determine the scope of the

application domain (e.g., food recipe, sports, wine, pizza, automobile, hotel etc...)

This step is driven by the reason for the ontology development, intended uses,

and potential users. The extent requires the identification of the categories of the

domains in which the users are interested. Several initiative have been made to

categorize the many and diverse web pages on the www into domains motivated by the

fact that search engines are often unable to provide content-dependent, useful results.

The second step is determine target web sites. Target web sites are specified

within a domain or category selected from Step 1. The purpose of this step is to provide

the basic resources for the next four steps. booking.com and tripadvisor.com are the

biggest and the most preferred web sites for searching and booking accommodations.

14

 Kim W. j., “A Novel Approach to Ontology Management” (ScholarWorks., Georgia State

University, 2010), 146

http://tureng.com/search/initiative
http://www.booking.com/
http://www.tripadvisor.com/

60

Figure 5.2 booking.com

Figure 5.3 tripadvisor.com

61

Step 3 is crawling and scan web pages. Now we can crawl hotel information

from the websites. The way of crawling data is explained in detail in next section 5.2.

Html Parser. The needed information about hotels are main features and specialties

hotels and some concepts associated with hotels themselves and their relationships with

neighboring artifacts such as airports, subway stations, attractions and museums.

Candidate terms for ontologies are selected at step 4 by user. The user browses

the results of step 3 and selects candidate terms related to the domain based upon the

importance and the relevance of the term to the domain ontology.

The purpose of step 5 is to analyze terms and identify relationships among

selected terms.

Last and final straight forward step is constructing the domain ontology.

Ontology was created an implemented using the help of the powerful tools and wizards

the Protégé development environment provides. It allows creating and populating

classes and concepts by simple clicks while providing a visual overview of the created

classes and instances with class hierarchies and instance diagrams. Creating properties

and relations (objectProperties, dataProperties) is done similarly by defining the name

of the property and specifying the domain-range relation of the constituent

elements/definitions.

Figure 5.4 Protégé Ontology Editor

62

OWL Classes:

Figure 5.5 Hotel Domain Ontology Class hierarchy

Accommodation: This class is about accommodation types. It contains 6

subclass and at the same time these are used as the search criteria in the web interface.

Figure 5.6 Hotel Type Categories

63

Accommodation class has object and data type property. Datatype properties are

Name, Description, Price, Address, BookingUrl and TripadvisorUrl.

Object properties are;

hasDestination: relationship with Destination class. Defines which district the

place of the hotel is.

hasStar: relationship with AccomodationRating class. Defines how many star

hotel has.

hasComment: relationship with Comments. It determine hotel review score

from Booking and tripadvisor.

hasTransportation: relationship with Transportation class. It specify how to

access to hotel such as plane, bus, ship etc…

hasOtelFacility: relationship with OtelFacility class. It describes what facilities

hotel have.

hasPolicy: relationship with Policy class. It sets hotel‟s policy rules.

hasReviewModel: relationship with ReviewModel class. It set hotel‟s review

based on polarity like good or bad review.

hasTheme: relationship with HotelTheme class. It defines hotel theme such as

luxury, spa, mountain, seaside etc…

Accommodation Rating: It specify hotel stars. It has five individuals (one, two,

three, four and five stars). It has data property which names “star”.

Comments: Comments class remark hotel‟s score over ten that is taken by

Tripadvisor and Booking users. It has data property which names “score”.

Figure 5.7 Comment Individuals.

64

The score schema for comment class‟ individuals is below:

Caption Score

Exceptional 9.5-10

Wonderful 9.0 - 9.5

Excellent 8.5 - 9.0

Very Good 8.0 - 8.5

Good 7.0 - 8.0

Pleasant 6.0 -7.0

Table 5.1 Score Schema of Comments Class Individuals

Destination: It specifies the place of hotel. It has three subclasses: district, city,

country.

There is object property named “isDestinationOf” between Accommodation and

Destination. “IsdestinationOf” and “hasDestination” properties are inverse. In addition

to, City class has these object relations:

belongsToCountry: implies the city which is in a specified country.

hasAttraction: specify tourist attraction places in the city.

hasEvent: specify events such as concerts, festivals etc... in the city.

Country class has data property that is “shortName” and District class has object

property that is “belongsTocity” represent which city of the districts belongs to.

Event: This class represent events such as concerts, festivals, special carnival

etc… Event class has two subclass concert and festival.

Facility: Facility class about hotel features and specialties. It has these

subclasses: activities, food, highlight, Internet, room facility, language spoken,

outdoors, parking, general and service. Dataproperty of this class is “name”.

HotelHighlightedValue: This class implies polarity and rates of the most

popular features of the hotels. Its data property is “polarity” and “rate”. Also its object

relation is with “Highlight” class.

HotelTheme: It indicate theme of the hotels. It contains individuals shown on

the below figure:

65

Figure 5.8 Instance of Hotel Theme Class

PaymentMethod: It refers to payment methods to hotel charge. Payment

method class instances like: AmericanExpress, visa, master card, PayPal, cash.

Policies: It defines some general hotel rules. It has data property like allowed

pets, checking, checkout. Also it has relationship that named “hasPayment” with

“PaymentMethod”.

ReviewModel: It contains reviews, good and bad facilities of hotel. Datatype

property of this class is “review” and also it has object property that named

“hasBadFacility” and “hasGoodfacility” with “HotelHighlightValue” class.

Room: It defines hotel‟s room and room facilities. It has data property like

“name” and “room size” and has object property “hasRoomFacility” with the

“RoomFacility” class.

TouristAttraction: This class specify touristic places like Eiffel tower, The

Topkapı Palace etc... It has subclasses: monument, parks, museums, shopping areas, and

stadium arena.

Transportation: Transportation class implies how to access accommodation

place and which transportation vehicle is close to hotel. It has subclasses: airport, bus

terminal, port, train station.

Please refer to the Appendix – A for hotel domain ontology owl file and

Appendix B for hotel domain Onto Graf visualization.

66

5.2. Html Parser

The current web provides data that is only roughly connected and cannot be

used for rich querying. Especially tourism area is very dynamic because it is one of the

world‟s largest industries and its growth shows an increase every year. Also, tourism

are is not just be formed with Hotels there are other related areas such as renting car,

transportation to hotel etc.. In our thesis we need these information but we cannot use

directly these of information because of lack of availability of current web technologies.

In addition, it has not been constructed enhanced ontology in order to use ontology with

their instances. Because of these reasons, we need to extract information from web

pages using some web parsing tools. In order to parse web pages , HtmlAgilityPack tool

is used.

HtmlAgilityPack is an agile HTML parser that builds a read/write DOM and

supports plain XPATH or XSLT It is a .NET code library that allows you to parse "out

of the web" HTML files [50].

Semantic hotel domain data are supplied from www.booking.com. The main

reason to use Booking that this website has the closest information to ontology

structure. Before parsing Booking, we first to do is that choice hotels which we want to

add to our Tdb. This is the most troubled, challenging and time consuming process. I

created “Hotel.xml” file to store chosen hotel data in order to make other process is

automatic and dynamic. Extracting hotel information from url and saving to tdb are

quite dynamically created. The xml schema developed in this thesis is on the next page.

<?xml version="1.0" encoding="utf-8"?>

<HOTELS>

 <Hotel>

 <bookingUrl>http://www.booking.com/hotel/ad/roc-de-

caldes.en-

us.html?sid=ef88f56814d252602150c679d9dca258;dcid=1;checkin=2013

-12-28;checkout=2013-12-

29;srfid=68fc5fb87b85b21c7550b91b6d26ccce11224226X1</bookingUrl>

<tripadvisorUrl>http://www.tripadvisor.com/Hotel_Review-g190401-

d508095-Reviews-Hotel_Roc_de_Caldes-

Les_Escaldes_Escaldes_Engordany_Parish.html</tripadvisorUrl>

 <type>Hotel</type>

 <theme>City_Tour</theme>

 http://r-

ec.bstatic.com/images/hotel/max300/199/19900735.jpg

 <room>Standard Guest Room</room>

 <room>Superior Guest Room</room>

http://www.booking.com/

67

 <room>Deluxe Class Room</room>

 <price>245</price>

 <transportation>Bus_Terminal</transportation>

 <district>Escaldes-Engordany</district>

 <city>Andorra la Vella</city>

 </Hotel>

</HOTELS>

Hotel.xml file stores data which we cannot extract from web pages like hotel

type, price, and room types etc… the element of xml “bookingUrl” implies URL of

chosen hotels. Also bookingUrl and tripadvisorUrl are used for extracting hotel reviews.

After creating xml schema file, we ready to extract information from the hotel

web page. Firstly all xml nodes are read and for each node, we take bookingurl element

value then sends it to GetHtmlPage method as parameter. Its code example is in the

below:

XmlDocument doc = new XmlDocument();

doc.Load(HttpContext.Current.Server.MapPath(string.Format("~\\Ap

p_Data\\hotel.xml")))

XmlNodeList nodes =

doc.DocumentElement.SelectNodes("/HOTELS/Hotel");

foreach (XmlNode node in nodes)

{

 string bookingUrl =

node.SelectSingleNode("bookingUrl").InnerText;

 string tripadvisorUrl =

node.SelectSingleNode("tripadvisorUrl").InnerText;

}

After get hotel url from xml, we need to get full web page from url for this step

our “GetHtmlPage” method takes hotel url as a parameter and make http request and

returns full content of webpages as a string. Code sample is shown in the below code

snippet.

 String strResult;

 WebResponse objResponse;

 WebRequest objRequest = HttpWebRequest.Create(strURL);

 objResponse = objRequest.GetResponse();

 using (StreamReader sr = new

StreamReader(objResponse.GetResponseStream(),

Encoding.GetEncoding("UTF-8")))

 {

 strResult = sr.ReadToEnd();

 sr.Close();

 }

 return strResult;

Then this string content converted to HtmlDocument type by HtmlAgilityPack .

68

string response = GetHtmlPage(bookingUrl);

HtmlDocument dokuman = new HtmlDocument();

dokuman.LoadHtml(response);

Now, we acquired HtmlDocument file to parse information according to html

tag id etc… For example we acquire hotel name, we have to investigate html tag id,

class names etc… “hp_hotel_name” is id of hotel title label.

stringName=dokuman.DocumentNode.SelectNodes("//span[@id='h

p_hotel_name']").First().InnerText.Trim();

All these steps are repeated for each hotel node. Each hotel created as individual

for belong to class and set relationships between classes using semantic web services.

This semantic web services part is explained in section 5.3. Semantic Services. In

addition to, it is not enough to create ones all information then use it. We need new

updated information hotels and reviews. For these reasons, windows service was

created to update all information on every day. The detail code snipped about html

parser is in the below:

XmlDocument doc = new XmlDocument();

doc.Load(HttpContext.Current.Server.MapPath(string.Format(

"~\\App_Data\\hotel.xml")));

XmlNodeList nodes =

doc.DocumentElement.SelectNodes("/HOTELS/Hotel");

foreach (XmlNode node in nodes)

{

string bookingUrl =

node.SelectSingleNode("bookingUrl").InnerText;

 string tripadvisorUrl =

node.SelectSingleNode("tripadvisorUrl").InnerText;

 string response = GetHtmlPage(bookingUrl);

 HtmlDocument dokuman = new HtmlDocument();

 dokuman.LoadHtml(response);

 string Name =

dokuman.DocumentNode.SelectNodes("//span[@id='hp_hotel_nam

e']").First().Inn

erText.Replace("&", "").Trim();

 string hasStar =

dokuman.DocumentNode.SelectNodes("//*[contains(@class,'use_sprit

es

stars')]").Descendants().ParentNode.Attributes["title"].Va

lue;

}

69

5.3. Semantic Web Services for Semantic Hotel Search Application

Web services add a new level of functionality to the current Web, transforming

the Web from a distributed source of information to a distributed source of

functionality. They provide a standard means of interoperating between different

software applications, running on a variety of platforms and/or frameworks. [51]

Semantic Web services as Web services in which Semantic Web ontologies

ascribe meanings to published service descriptions, so that software systems

representing prospective service clients can interpret and invoke them. Enriching Web

services with semantic information allows automatic location, composition, innovation,

and interoperation of services.

5.3.1. HotelService

 As mentioned above, semantic hotel domain ontology was created.

Hotel.xml file was created to build instances. Then, Hotel Individuals are retrieved from

each hotel web pages. However it is not adequate to save individuals once, in order to

ensure consistency and accuracy of information. Also up to date data is necessary for

accurate reasoning about reviews and hotel. Therefore it is in need of a windows

service to update hotel domain individuals.

Hotel Service thesis is a small windows service project inside Semantic Hotel

Search web application. This service runs every day at 00:00 automatically and update

all hotel facilities, specialties and reviews. The figure below shows some code snipped

about service.

protected override void OnStart(sitring[] args)

{

 try

 {

 TimeSpan alertTime = new TimeSpan(00, 00, 00);

 DateTime current =DateTime.Now;

 TimeSpan timeToGo = aletTime - current.TimeOfDay;

 if (timeToGo.milliseconds < 0)

 {

 DateTime dt = DateTime.Today.AddDays(1);

 DateTime dt2 = DateTime.Now;

 timeToGo = dt-dt2;

 AddUpdateHotelReviewModel();

 }

 System.Threading.Timer timerforSourceRecord = new System.Threading.Timer (x =

 {

 this.AddUpdateHotelReviewModel();

70

 }, null, timeToGo, new TimeSpan(24, 00, 00));

 }

 catch (Exception e)

 }

 WritetoLog(e.Message);

 }

}

5.3.2. Semantic Hotel Web Service

Web services extend the World Wide Web infrastructure to provide the means

for software to connect to other software applications. Applications access Web services

via ubiquitous Web protocols and data formats such as HTTP, XML, and SOAP, with

no need to worry about how each Web service is implemented. Web services combine

the best aspects of component-based development and the Web, and are a cornerstone

of the Microsoft .NET programming model. [52]. Because of this feature of webservice,

developed semantic hotel webservice application.

Semantic Hotel Webservice was created in .net platform to interact web

interface and windows service. This two separate application uses methods of web

service. Although we can use these methods via creating it in both two application, it's

useless and effortful because if something changed, it is needed to alter both

application. It is time consuming.

Semantic Hotel Webservice provides methods for create, update, delete, get

individuals from tdb. Also there is a method “RunQuery”. It takes a sparql text as

parameter and runs this query then returns results as a datatable.

When this service starts, initially load ontology model from directory schema. It

checks it was created before in another means if exits “GOSP.DATA”, populate

ontologies else creates directory schema. Relevant sample codes are on the below.

private string owlPath =

@"C:\Users\ekaysi\Desktop\HotelSearch\HotelTDB\";

private string directorySchema =

"C:\Users\ekaysi\Desktop\HotelSearch\HotelTDB\tdbSchema";

string path = Path.Combine(directorySchema,

"GOSP.DAT");

 if (!System.IO.File.Exists(path))

 {

 CreateOntologyDbSchema();

 }

 private void CreateOntologyDbSchema()

 {

 tdb = TDBFactory.createNamedModel("rbt",

71

Path.Combine(owlPath, "tdbSchema"));

 FileManager.get().readModel(tdb,

Path.Combine(owlPath, "HotelOntology.owl"),

"RDF/XML");

 }

Main semantic hotel webservice‟s methods and definitions are on the below:

RunQuery: It takes a string sparql query and then returns results data table.

CreateIndividual: takes individual name, properties (object or data property)

and class name as a parameter. Saves individual to dependent class.

UpdateIndividual: Individual name and properties are parameters. Alter

properties of individuals

DeleteIndividual: Takes individual name and delete it from tdb.

GetAllClass: returns all hotel ontology model classes.

GetClassInstances: returns given class‟s individuals as a list.

GetIndividualPropertyValue: returns individual with their properties‟ values.

Such as individual name is Hilton Hotel as parameter. It returns Hilton hotel stars 5,

hotel theme seaside etc…

GetReviewFromUrl: This method returns hotel reviews as a string from given

hotel url which both Booking.com and Tripadvisor.com. It using same html parsing

methodologies.

72

Figure 5.9 Semantic Hotel Web Service Methods

5.4. Sentimental Analysis

Sentiment analysis is the process of detecting a piece of writing for positive,

negative, or neutral feelings bound to it. Humans have the innate ability to determine

sentiment; however, this process is time consuming, inconsistent, and costly in a

business context. It‟s just not realistic to have people individually read tens of thousands

of user customer reviews and score them for sentiment. It is out of the scope of this

thesis to develop sentimental analysis application. Therefore sentiment analysis tool

“Sentigem” is used in this thesis.

 Sentigem is a platform that offers an easy-to-use sentiment analysis tool for

English language based documents or text blocks. To this end, we provide an API

endpoint for computing sentiment from various consumption points determined by the

user and passed to our API as text [53]

Sentigem api is used for analyzing reviews of hotels. The service is an English

only service and The Sentigem API service only supports HTTPS calls. It is free api but

needs the key. After sign up, the key is given. Sentigem takes key and text as a

parameter then returns polarity of the text as positive, negative or neutral. Code snipped

is shown in the figure 25.

73

WebClient client = new WebClient();

string apikey =

"548102bd6d1d0c8edc1e32d484e71ca0t72sxgLNBuS_Yvb3zFCw9Pyr0j1TfVG

i";

var uri = "https://api.sentigem.com/external/get-

sentiment?api-key=" + apikey + "&text=" + item;

string text = client.DownloadString(uri);

 JavaScriptSerializer jss = new

JavaScriptSerializer();

 dynamic obj = jss.Deserialize<dynamic>(text);

 string type = obj["polarity"];

 DataRow row = dt.NewRow();

 row["Review"] = item;

 row["Situation"] = type;

 dt.Rows.Add(row);

5.5. Web Interface

The application, which is called Semantic Hotel Search is a .NET Web

application providing a HTML user interface for the user, the query is presented to the

system as illustrated in Figure 5.10.

74

Figure 5.10 Semantic Hotel Search GUI

Once the user presses search, the query is processed by a Jena43 supported

middleware Environment. Then the query has returned a list of matching results.

Application interface is quite simple and user friendly. Users just needed to select field

which they want to have features on the hotel. The users can create different requests

to send to the server and processes the responses differently.

There are three required field to make query more significant. These are:

Country, city and hotel type which they are shown in Figure 5.11.

75

Figure 5.11 Required Fields of Application

As a given sample query; we are going to Istanbul, Turkey. We want five stars

hotels which general review score is pleasant and more also have swimming pool, bar

and restaurant. Then click search button.

Figure 5.12 Sample Semantic Hotel Search

76

The query was constructed in the background of the application. Sample search

result is shown in Figure 5.13

Figure 5.13 Sample Search Result of Application

Users can see selected hotel features in short explanation as shown Figure 5.14.

Figure 5.14 Selected Hotel Details of Application

If users want to see more details, they click more details and navigate to hotels

page. In hotels own page, There are sentimental analysis about hotel and hotel facilities.

There are review analysis table which show reviews and their polarities. Also there is

graphic which show most popular features and most unfavoured features of the hotel.

77

Figure 5.15 The Selected Hotel Detail Page of Application

5.6. Evaluation

Test cases were run by using actual data from a set of about 400

accommodations located in five cities which of these are Barcelona, Madrid, Istanbul,

Antalya, Muğla (Bodrum) in two countries; Turkey and Spain. 400 accommodations

include about 250 Hotels, 60 hostels, 70 apartments, 20 bed and breakfast. For the test

runs, several user profiles were supposed to be family, young couple, young friend

groups, newly-wed couple etc… Each aggregating a list of different hotel preferences

such as a price range, locational preferences, hotel facilities and so on. As observed

from the Hotel Search project, Semantic web applications are efficient and easier to use

who utilize them. Semantic hotel search provides more meaningful result, time

efficiency and easiness in decision making. For example, in a normal hotel search

system like tripadvisor.com, searching parameters are restricted. Only few parameters

http://tripadvisor.com/

78

are selectable such as city, accommodation type and stars. Thus, according to these

parameters, a wide range of hotels are returned. Some of them irrelevant, some of them

less related with intended hotels and some of them are exactly expedient hotels.

Therefore, analyzing each hotels, reading each reviews are highly time consuming

process. Also, users need another search in different websites about hotel reviews. This

means that same process must be repeated. For this reason it takes a lot of time to make

decision about expedient hotel. On the other hand, searching parameters are various in

semantic hotel search application. Hotel location, review types, stars, hotel indoor and

outdoor activities, food, general specifications and services are selectable. Returned

hotel list only consist of intended parameters. Each hotel has sentiment review analysis

in their own page. Users can see whether facilities are good or not. Reviews are taken

from two different big hotel search web sites (Tripadvisor.com and Booking.com)

because of that, sentiment analysis is quite reliable.

Figure 5.16 Sample Hotel Review for Hotel Condal

 Positive Negative Neutral Total Accuracy

Human Analysis 325 73 95 493 100%

Semantic Hotel

Search Analysis

263 57 173 493 84%

Table 5.2 Accuracy Rate Comparison of Sentimental Analysis

As shown on Table 5.2, application agree on 263 positive expressed sentiment

out of 325, 57 negative sentiment out of 73 and sense more neutral sentiment, 173, than

79

human analysis which is 95. There upon, it can be deduced from the table that

application has difficulties to differentiate between positive and neutral sentiments. On

the other hand if total accuracy is interpreted, %84 of cases are agreed on.

According to studies two humans will only agree on expressed sentiment in 82

percent of cases. Although human perception of sentiment seems to be more mature and

accurate than an application's perception, it still is not 100% accurate. There have been

various studies run by people and companies and they ended up with that average rate

of human concordance is between 70% and 79%
15

. Thus, %84 accurate is satisfying for

the conclusion. Consequently, semantic hotel search application provides quite easy

way to users to provide making choice hotel that has desired in a very short time.

15

 Social Sentiment Sentiment Analysis [Internet]. ON SOCIAL SENTIMENT AND SENTIMENT

ANALYSIS; http://brnrd.me/social-sentiment-sentiment-analysis/ (accessed date: 24 APR 2013)

80

CHAPTER 6

CONCLUSION

The main goal of this thesis and in the Semantic Hotel Search application is the

integration of heterogeneous data sources and the (as far as possible) efficient and high

performance application of Semantic Web technologies in the tourism domain. The

current web provides data that is only loosely connected and cannot be used for rich

querying. The model presented in this paper demonstrates the effectiveness of the

semantic web for searching and extracting information. The semantic web, enabling

meaningful search, provides us with a tool to extract fewer and more relevant data from

the vast World Wide Web.

The Semantic Web element in this work is the knowledge base, and the contents

of the knowledge base comprise not only the system data but also the data schema (i.e.

metadata). The knowledge base is available through the Internet and therefore

accessible in an OWL format by other systems and agents that will be able to

understand and process its contents. It is also possible to augment this knowledge base

with some complex description logics expressing additional constraints to the data,

which is normally not possible when working with standard database systems.

The application has been designed in five independent parts: implementing the

hotel domain ontology, Html parser, semantic services, sentimental analysis and Web

interface to interact with the system. Initially we developed hotel domain ontology after

researching and analyzing some hotel booking and tourism web sites. We take pilot

websites www.booking.com and www.tripadvisor.com while creating class, subclass

and their relations. Those descriptions and relation definitions could not have been

implemented with usual relational database.

The architecture of the application is created in a way to overcome the

difficulties normally faced in building such systems. One of the major challenges is to

meaningfully integrate information in different web sites, as they do not have any

standard or set criteria to express transportation facilities, hotel and accommodation,

weather conditions or leisure activities. Therefore in order to integrate individuals, html

parser is designed. Html parser takes URL as a parameter and convert webpages to

http://www.booking.com/
http://www.tripadvisor.com/

81

HtmlDocument type via HtmlAgilityPack. Then related information are extracted and

individuals are saved to tdb using semantic web services.

Hotel Service application is a windows service project inside Semantic Hotel

Search web application. This service runs every day at 00:00 automatically and update

all hotel facilities, specialties and reviews. In consequence of, all hotel facilities,

reviews, specifications are up to date and search result, sentimental analysis results are

found accurately and consistently.

Semantic Hotel We Service was created in .Net platform and is bridge between

web interface and windows service. It contains CRUD operations method, RunQuery

method in order to run sparql queries, GetReviewfromUrl method to retrieve hotel

review from Booking and Tripadvisor.

Sentimental analysis analyze hotel reviews and finds its polarities. For example,

searching sentences includes swimming pool and returns general review polarity is

positive, negative or neutral. What the most favorite features or scunner facilities are

also searchable.

Semantic Hotel Search web interface makes it possible for the user to interact

with the ontology processing unit in a human understandable way. The users can

construct queries and search for hotels as they usual do in normal web sites. They do

not have to construct RDF queries, instead the processing background of the application

take criterion then converts it in actual RDF queries so that the user does not have to

worry about how exactly the information is extracted.

The Semantic Web is the future of the Web. It is already being used by some

industries such as the petroleum industry dealing with complex data sets. As different

technologies and tools are being developed together with the experience being

accumulated, Semantic Web will become the main technology used when dealing with

complex data sets and information which are related to other concepts in a complex

manner.

Not only Semantic web is growing technology, semantic web services are

growing technology as much as semantic web. Enriching Web services with semantic

information allows automatic location, composition, invocation, and interoperation of

services. Significant work has already been done in this decade on Semantic Web

services, and a large body of relevant work exists from earlier decades in fields such as

knowledge representation, planning, agent-based systems, databases, programming

82

languages, and software engineering. Nevertheless, many difficult research challenges

remain, semantic web services are developing.

Several extensions and improvements can be added to the application. First of

all, the information domain could have been described with richer properties and

relations. For example, when creating a representational model for hotel, additional

properties could have been included into the model such as the car rental. Also hotel

price is now static and is not accurate. It will be dynamic and can change according to

room type and time. Hotel booking system also can be included.

It is emphasized that the Semantic Web should not be viewed as a separate Web,

but an extension of the current one, in which information and services are given well-

defined meaning, thereby better enabling computers and people to work in cooperation.

Dealing with heterogeneity has continued to be a key challenge since it was made

possible to exchange and share data between computers and applications over the

Internet. The tourism industry has been particularly affected by this heterogeneity

because of its market fragmentation, and rather complex discovery and matchmaking

tasks, including substitution and composition. Our experiences have shown that both

travelers and travel service providers can benefit from the implementation of the

Semantic Web-based scenario. Nevertheless, what we have learned is that there are

some shortcomings to these new Internet technologies and emphasized, that if the

Semantic Web is to be applied to the real-life scenarios the performance and

expressiveness of Semantic Web technologies must be addressed.

83

REFERENCES

[1] Villarías, L.G. Ontology-Based semantic querying of the web withrespect to food

recipes. MS thesis, Technical University of Denmark, 2004.

[2] Pranav Parikh, B.E. Secured information integration with a semantic web-based

framework. MS thesis, The University of Texas at Dallas, 2009.

[3] Antoniou, G., and Frank van Harmelen. A Semantic Web Primer. Cambridge,

Massachusetts: The MIT Press, 2004.

[4] Khosrowpour , M. Encyclopedia of Information Science and Technology

Hershey, New York: Information Science Reference, 2005.

[5] Padilla, A., and Ashok Sahu. A Report Submitted In Partial Fulfillment Of The

Requirements For CS53. http://www.armando.ws/wp content/uploads/2008/04/-

web.doc, (accessed date: 21 Jan 2014).

[6] Liyang, Y., Introduction to the Semantic Web and Semantic Web Services.

London: Springer-Verlag Berlin Heidelberg, 2011.

[7] Saleem, A., Semantic Web Vision: survey of ontology mapping systems and

evaluation of progress. MS thesis, Blekinge Institute of Technology, 2006.

[8] W3[Internet]. RDF Notes; http://www.w3.org/DesignIssues/RDFnot.html,

(accessed date: 12 Dec 2013).

[9] Institution of Information Science [Internet]. Papers; www.iis.sinica.edu.tw-

/sw/SW1.ppt , (accessed 12 Dec 2014).

[10] Nédellec, C. and Nazarenko, A., Ontologies and Information Extraction.

http://arxiv.org/ftp/cs/papers/0609/0609137.pdf. (accessed date: 21 Jan 2014).

[11] Shahzad, M., A semantic web approach for dealing with university courses. MS

thesis, University of Adgar, 2013.

[12] Pioneer Of Journal[Internet], Search Engine For Semantic Web; http://-

pioneerjournal.in/conferences/tech-knowledge/9th-national-conference/3514-

search-engine-for-semantic-web.html, (accessed date: 21 Nov 2013).

[13] Decker, S. and Melnik, S., The Semantic Web:The Roles of XML and RDF,

2000, http://www.cs.vu.nl/~frankh/postscript/IEEE-IC00.pdf, (accessed date: 14

Dec 2013).

[14] RDF About[Internet], Home Page, http://www.rdfabout.com/intro/, (accessed

date: 15 Dec 2013).

84

[15] Allemang, D. Hendle, J., Semantic Web for the Working Ontologist: Effective

Modeling in RDFS and OWL, Burlington, MA: Morgan Kaufmann Pub., 2011.

[16] Lemahieu, W., Web service description, advertising and discovery: WSDL and

beyond,http://www.econ.kuleuven.be/public/NDBAA62/Downloadable%20pape

rs/WSDLandBeyond.pdf, (accessed date: 23 Sep 2013).

[17] Baader, F., Horrocks, I. and Sattler, U., Description Logics. Elsevier, 2008.

[18] W3[Internet]. Web Ontology Language (OWL); http://www.w3c.org/TR/owl-

features, (accessed date: 18 Dec 2013).

[19] Christiaan, M. and Klein, A., Change Management for Distributed Ontologies,

Ph.D. diss., Vrije Universiteit, 2004.

[20] Mukhopadhyay, D., A Model Approach to Build Basic Ontology,

http://arxiv.org/abs/1311.6245 (accessed date: 25 Nov 2013).

[21] Gruber, T. R., Toward Principles for the Design of Ontologies Used for

Knowledge Sharing, [Journal] International Journal of Human-Computer Studies

- Special issue: the role of formal ontology in the information technology

archive Volume 43 Issue 5-6, Nov./Dec. 1995 Pages 907 - 928 .

[22] Computer Action Team[Internet], What are OWL Ontologies?,

http://web.cecs.pdx.edu/~howe/cs410/owl_overview.pdf, (accessed date: 2 Jan

2014).

[23] Shahzad, M., A semantic web approach for dealing with university courses. MS

thesis, University of Adgar, 2013.

[24] Juhnyoung, L., Frequently Asked Questions on Ontology Technology, IBM T.J.

Watson Research Center, Hawthorne, NY, , 2004.

[25] Computer Action Team[Internet], What are OWL Ontologies?,

http://web.cecs.pdx.edu/~howe/cs410/owl_overview.pdf, (accessed date: 2 Jan

2014).

[26] Informatics Review[Internet], Applied Ontology, http://www.informatics-

review.com/wiki/index.php/Applied_ontology, (accessed date: 10 Jan 2014).

[27] Zhaohui, W. and Chen, H., Semantic Grid: Model, Methodology, and

Applications, Hangzhou,; Hangzhou University Press, 2008.

[28] Rezaeiye, P.P., Fazli, M., Sharifzadeh, M., Moghaddam, H. and Gheisari, M.,

Creating an ontology using protégé: concepts and taxonomies in brief,

http://www.wseas.us/e-library/conferences/2012/Sliema/MACMESE/MAC-

MESE-56.pdf (accessed date : 23 Jan 2014).

85

[29] Jain, V. and Singh, M. Ontology Development and Query Retrieval using

Protégé Tool, Published Online August 2013 in MECS (http://www.mecs-

press.org/), I.J. Intelligent Systems and Applications, 2013, 09, 67-75 .

[30] Gali, A., Chen, C. X., Claypool, K. T. and Uceda-Sosa, R., from ontology to

relational databases,http://www.cs.uml.edu/~cchen/ontology/comwim_04.pdf

(accessed date: 10 Jan 2014).

[31] Marek Obitko, Jan Smid, Ontology Design with Formal Concept Analysis

, Department of Cybernetics, Czech Technical University in Prague, Czech

Republic.

[32] Henrik Bulskov Styltsvig, Ontology-based Information Retrieval, May 2006.

[33] Tar, H. and Nyunt, T.S., Ontology-Based Concept Weighting for Text

Documents , International Conference on Information Communication and

Management, 2011.

[34] Dieter Fensel, Jim Hendler, Henry Lieberman, and Wolfgang Wahlster,

Spinning The Semantic Web , 2003.

[35] Juhnyoung, L., Frequently Asked Questions on Ontology Technology, IBM T. J.

Watson Research Center, Hawthorne, NY, 2004.

[36] Denny,M.,OntologyToolsSurvey,Revisited, http://www.xml.com/pub/a/-

2004/07/14/onto.html, (accessed date: 15 Feb 2014).

[37] Stanford University[Internet], Stanford University School of Medicine

Resources, http://friendshost.com/university/stanford-university-school-of-

medicine.php, (accessed date: 21 Jan 2014).

[38] XML[Internet], Ontologies, http://www.xml.com/pub/a/2002/11/06/-

ontologies.html, Last access: 1.11.2004 (accessed date: 12 Jan 2014).

[39] Stanford University[Internet], http://www-ksl-svc.stanford.edu:5915/ (accessed

date: 12 Jan 2014).

[40] Eldora[Internet], WebOnto, http://eldora.open.ac.uk:3000/webonto (accessed

date : 12 Jan 2014).

[41] Archana, P. K., Architecting and Designing of Semantic Web Based Application

using the JENA and PROTÉGÉ -A Comprehensive Study, (IJCSIT) International

Journal of Computer Science and Information Technologies, Vol. 2 (3) , 2011,

1279-1282.

[42] Bioontology[Internet], Triple stores, http://www.bioontology.org/wiki/-

images/6/6a/Triple_Stores.pdf (accessed date 13 Jan 2014).

[43] Zhang, Z., Ontology Query Languages For The Semantic Web: A Performance

Evaluation, http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.138.3155-

&rep=rep1&type=pdf (accessed date : 15 Dec 2013).

86

[44] Taniar, D. and Rahayu, R.W., Web Semantics and Ontology, ISBN 1-59140-

907-1, 2006.

[45] W3[Internet]. Rdf Sparql Query; http://www.w3.org/TR/rdf-sparql-query/,

(accessed date: 12 Dec 2013).

[46] Magnus Niemann, Malgorzata Mochol, Robert Tolksdorf, Improving Online

Hotel Search - What Do We Need Semantics For? http://page.mi.fu-

berlin.de/mochol/papers/semantics06.pdf (accessed date : 21 Jan 2014).

[47] Stanford University[Internet], Protege; http://protege.stanford.edu/aboutus-

/aboutus.html (accessed date: 16 Jan 2014).

[48] Sentigem[Internet], About; http://sentigem.com/company/about (accessed date:

17 Jan 2014).

[49] Kim J.W.,A Novel Approach to Ontology Management,

http://scholarworks.gsu.edu/cgi/viewcontent.cgi?article=1038&context=cis_diss

2010, (accessed date: 28 Dec 2013).

[50] Html Agility Pack; http://htmlagilitypack.codeplex.com/ (accessed date: 18 Jan

2014).

[51] Abrahams, B., Tourism Information Systems Integration And Utilization Within

The Semantic Web, Ph.D. diss, Victoria University, 2006.

[52] Microsoft, Library; http://msdn.microsoft.com/en-us/library/ms950421.aspx

(accessed date: 20 January 2014).

[53] Sentigem[Internet], About; http://sentigem.com/company/about (accessed date:

17 Jan 2014).

87

APPENDIX A

HOTEL DOMAIN ONTOLOGY

<?xml version="1.0"?>

<rdf:RDF

xmlns:swrla="http://swrl.stanford.edu/ontologies/3.3/swrla.owl#"

 xmlns="http://www.owl-ontologies.com/hotel.owl#"

 xmlns:swrl="http://www.w3.org/2003/11/swrl#"

 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

 xmlns:owl="http://www.w3.org/2002/07/owl#"

 xmlns:xsp="http://www.owl-

ontologies.com/2005/08/07/xsp.owl#"

 xmlns:swrlb="http://www.w3.org/2003/11/swrlb#"

xmlns:protege="http://protege.stanford.edu/plugins/owl/protege#"

 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-

ns#"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema#"

xmlns:sqwrl="http://sqwrl.stanford.edu/ontologies/built-

ins/3.4/sqwrl.owl#"

 xmlns:daml="http://www.daml.org/2001/03/daml+oil#"

 xmlns:dc="http://purl.org/dc/elements/1.1/"

 xml:base="http://www.owl-ontologies.com/hotel.owl">

 <owl:Ontology rdf:about="">

 <owl:versionInfo

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >1.0 by Holger Knublauch

(holger@smi.stanford.edu)</owl:versionInfo>

 <rdfs:comment

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >An example ontology for tutorial

purposes.</rdfs:comment>

 <owl:imports

rdf:resource="http://swrl.stanford.edu/ontologies/3.3/swrla.owl"

/>

 <owl:imports

rdf:resource="http://sqwrl.stanford.edu/ontologies/built-

ins/3.4/sqwrl.owl"/>

 </owl:Ontology>

 <owl:Class rdf:ID="Hotel">

 <rdfs:subClassOf>

 <owl:Class rdf:ID="Accommodation"/>

 </rdfs:subClassOf>

 </owl:Class>

 <owl:Class rdf:ID="ReviewModel"/>

 <owl:Class rdf:ID="Facility"/>

 <owl:Class rdf:ID="PaymentMethod"/>

 <owl:Class rdf:ID="Outdoors">

 <rdfs:subClassOf rdf:resource="#Facility"/>

88

 </owl:Class>

 <owl:Class rdf:ID="Destination"/>

 <owl:Class rdf:ID="Museum">

 <rdfs:subClassOf>

 <owl:Class rdf:ID="TouristAttraction"/>

 </rdfs:subClassOf>

 </owl:Class>

 <owl:Class rdf:ID="TrainStation">

 <rdfs:subClassOf>

 <owl:Class rdf:ID="Transportation"/>

 </rdfs:subClassOf>

 </owl:Class>

 <owl:Class rdf:ID="Activities">

 <rdfs:subClassOf rdf:resource="#Facility"/>

 </owl:Class>

 <owl:Class rdf:ID="LanguageSpoken">

 <rdfs:subClassOf rdf:resource="#Facility"/>

 </owl:Class>

 <owl:Class rdf:ID="BusTerminal">

 <rdfs:subClassOf rdf:resource="#Transportation"/>

 </owl:Class>

 <owl:Class rdf:ID="Event"/>

 <owl:Class rdf:ID="Service">

 <rdfs:subClassOf rdf:resource="#Facility"/>

 </owl:Class>

 <owl:Class rdf:ID="City">

 <rdfs:subClassOf rdf:resource="#Destination"/>

 </owl:Class>

 <owl:Class rdf:ID="General">

 <rdfs:subClassOf rdf:resource="#Facility"/>

 </owl:Class>

 <owl:Class rdf:ID="AirportHotel">

 <rdfs:subClassOf>

 <owl:Class rdf:about="#Accommodation"/>

 </rdfs:subClassOf>

 </owl:Class>

 <owl:Class rdf:ID="Comments"/>

 <owl:Class rdf:ID="Food">

 <rdfs:subClassOf rdf:resource="#Facility"/>

 </owl:Class>

 <owl:Class rdf:ID="Concert">

 <rdfs:subClassOf rdf:resource="#Event"/>

 </owl:Class>

 <owl:Class rdf:ID="Room"/>

 <owl:Class rdf:ID="HotelTheme"/>

 <owl:Class rdf:ID="BudgetAccommodation">

 <owl:equivalentClass>

 <owl:Class>

 <owl:intersectionOf rdf:parseType="Collection">

 <owl:Class rdf:about="#Accommodation"/>

 <owl:Restriction>

 <owl:onProperty>

 <owl:ObjectProperty rdf:ID="hasStar"/>

 </owl:onProperty>

 <owl:someValuesFrom>

 <owl:Class>

 <owl:oneOf rdf:parseType="Collection">

89

 <owl:NamedIndividual

rdf:ID="OneStarRating">

 <rdf:type>

 <owl:Class

rdf:ID="AccommodationRating"/>

 </rdf:type>

 <Star

rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

 >1</Star>

 </owl:NamedIndividual>

 <owl:NamedIndividual

rdf:ID="TwoStarRating">

 <rdf:type>

 <owl:Class

rdf:about="#AccommodationRating"/>

 </rdf:type>

 <Star

rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

 >2</Star>

 </owl:NamedIndividual>

 </owl:oneOf>

 </owl:Class>

 </owl:someValuesFrom>

 </owl:Restriction>

 </owl:intersectionOf>

 </owl:Class>

 </owl:equivalentClass>

 <rdfs:comment

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >Accommodation that has either one or two star

rating.</rdfs:comment>

 </owl:Class>

 <owl:Class rdf:about="#Accommodation">

 <rdfs:comment

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >A place to stay for tourists.</rdfs:comment>

 </owl:Class>

 <owl:Class rdf:ID="District">

 <rdfs:subClassOf rdf:resource="#Destination"/>

 </owl:Class>

 <owl:Class rdf:ID="Parks">

 <rdfs:subClassOf rdf:resource="#TouristAttraction"/>

 </owl:Class>

 <owl:Class rdf:about="#AccommodationRating">

 <rdfs:comment

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >Consists of exactly three individuals.</rdfs:comment>

 <owl:equivalentClass>

 <owl:Class>

 <owl:oneOf rdf:parseType="Collection">

 <owl:NamedIndividual

rdf:about="#OneStarRating"/>

 <owl:NamedIndividual rdf:ID="FiveStarRating">

 <Star

rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

 >5</Star>

90

 <rdf:type

rdf:resource="#AccommodationRating"/>

 </owl:NamedIndividual>

 <owl:NamedIndividual rdf:ID="FourStarRating">

 <Star

rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

 >4</Star>

 <rdf:type

rdf:resource="#AccommodationRating"/>

 </owl:NamedIndividual>

 <owl:NamedIndividual

rdf:about="#TwoStarRating"/>

 <owl:NamedIndividual rdf:ID="ThreeStarRating">

 <Star

rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

 >3</Star>

 <rdf:type

rdf:resource="#AccommodationRating"/>

 </owl:NamedIndividual>

 </owl:oneOf>

 </owl:Class>

 </owl:equivalentClass>

 </owl:Class>

 <owl:Class rdf:ID="RoomFacility">

 <rdfs:subClassOf rdf:resource="#Facility"/>

 </owl:Class>

 <owl:Class rdf:ID="Airport">

 <rdfs:subClassOf rdf:resource="#Transportation"/>

 </owl:Class>

 <owl:Class rdf:ID="StadiumArena">

 <rdfs:subClassOf rdf:resource="#TouristAttraction"/>

 </owl:Class>

 <owl:Class rdf:ID="Policies"/>

 <owl:Class rdf:ID="Internet">

 <rdfs:subClassOf rdf:resource="#Facility"/>

 </owl:Class>

 <owl:Class rdf:ID="Festival">

 <rdfs:subClassOf rdf:resource="#Event"/>

 </owl:Class>

 <owl:Class rdf:ID="Campground">

 <rdfs:subClassOf rdf:resource="#Accommodation"/>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty>

 <owl:ObjectProperty rdf:about="#hasStar"/>

 </owl:onProperty>

 <owl:hasValue rdf:resource="#OneStarRating"/>

 </owl:Restriction>

 </rdfs:subClassOf>

 <owl:disjointWith rdf:resource="#Hotel"/>

 </owl:Class>

 <owl:Class rdf:ID="Monument">

 <rdfs:subClassOf rdf:resource="#TouristAttraction"/>

 </owl:Class>

 <owl:Class rdf:ID="Port">

 <rdfs:subClassOf rdf:resource="#Transportation"/>

 </owl:Class>

91

 <owl:Class rdf:ID="Country">

 <rdfs:subClassOf rdf:resource="#Destination"/>

 </owl:Class>

 <owl:Class rdf:ID="ShoppingAreas">

 <rdfs:subClassOf rdf:resource="#TouristAttraction"/>

 </owl:Class>

 <owl:Class rdf:ID="Parking">

 <rdfs:subClassOf rdf:resource="#Facility"/>

 </owl:Class>

 <owl:Class rdf:ID="BedAndBreakfast">

 <owl:disjointWith rdf:resource="#Campground"/>

 <owl:disjointWith rdf:resource="#Hotel"/>

 <rdfs:subClassOf rdf:resource="#Accommodation"/>

 </owl:Class>

 <owl:Class rdf:ID="Resorts">

 <rdfs:subClassOf rdf:resource="#Accommodation"/>

 </owl:Class>

 <owl:Class rdf:ID="HotelHighlightValue"/>

 <owl:Class rdf:ID="Highlight">

 <rdfs:subClassOf rdf:resource="#Facility"/>

 </owl:Class>

 <owl:ObjectProperty rdf:about="#hasStar">

 <rdfs:domain rdf:resource="#Accommodation"/>

 <rdfs:range rdf:resource="#AccommodationRating"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="hasReviewModel">

 <rdfs:range rdf:resource="#ReviewModel"/>

 <rdfs:domain rdf:resource="#Accommodation"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="hasComment">

 <rdfs:domain rdf:resource="#Accommodation"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="hasTransportation">

 <rdfs:range rdf:resource="#Transportation"/>

 <rdfs:domain rdf:resource="#Accommodation"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="hasBadFacility">

 <rdfs:range rdf:resource="#HotelHighlightValue"/>

 <rdfs:domain rdf:resource="#ReviewModel"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="hasRoom">

 <rdfs:range rdf:resource="#Room"/>

 <rdfs:domain rdf:resource="#Accommodation"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="hasName">

 <rdfs:range rdf:resource="#Highlight"/>

 <rdfs:domain rdf:resource="#HotelHighlightValue"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="hasPayment">

 <rdfs:range rdf:resource="#PaymentMethod"/>

 <rdfs:domain rdf:resource="#Policies"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="hasEvent">

 <rdfs:range rdf:resource="#Event"/>

 <rdfs:domain rdf:resource="#City"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="hasDestination">

92

 <owl:inverseOf>

 <owl:ObjectProperty rdf:ID="isDestinationOf"/>

 </owl:inverseOf>

 <rdfs:domain rdf:resource="#Accommodation"/>

 <rdfs:range rdf:resource="#District"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="hasService"/>

 <owl:ObjectProperty rdf:ID="belongsToCountry">

 <rdfs:domain rdf:resource="#City"/>

 <rdfs:range rdf:resource="#Country"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="belongsToCity">

 <rdfs:range rdf:resource="#City"/>

 <rdfs:domain rdf:resource="#District"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="hasOtelFacility">

 <rdfs:domain rdf:resource="#Accommodation"/>

 <rdfs:range rdf:resource="#Facility"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="isOfferedAt">

 <rdfs:domain rdf:resource="#Event"/>

 <rdfs:range rdf:resource="#Destination"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="hasAttraction">

 <rdfs:domain rdf:resource="#City"/>

 <rdfs:range rdf:resource="#TouristAttraction"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="hasRoomFacility">

 <rdfs:range rdf:resource="#RoomFacility"/>

 <rdfs:domain rdf:resource="#Room"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="hasGoodFacility">

 <rdfs:range rdf:resource="#HotelHighlightValue"/>

 <rdfs:domain rdf:resource="#ReviewModel"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="hasPart"/>

 <owl:ObjectProperty rdf:about="#isDestinationOf">

 <rdfs:domain rdf:resource="#Destination"/>

 <rdfs:range rdf:resource="#Accommodation"/>

 <owl:inverseOf rdf:resource="#hasDestination"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="hasPolicy">

 <rdfs:domain rdf:resource="#Accommodation"/>

 <rdfs:range rdf:resource="#Policies"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="hasTheme">

 <rdfs:range rdf:resource="#HotelTheme"/>

 <rdfs:domain rdf:resource="#Accommodation"/>

 </owl:ObjectProperty>

 <owl:DatatypeProperty rdf:ID="Address">

 <rdfs:domain rdf:resource="#Accommodation"/>

 <rdfs:range

rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="IsFree">

 <rdfs:range

rdf:resource="http://www.w3.org/2001/XMLSchema#boolean"/>

93

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="Star">

 <rdfs:domain rdf:resource="#AccommodationRating"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="Explanation">

 <rdfs:domain>

 <owl:Class>

 <owl:unionOf rdf:parseType="Collection">

 <owl:Class rdf:about="#Parking"/>

 <owl:Class rdf:about="#Internet"/>

 </owl:unionOf>

 </owl:Class>

 </rdfs:domain>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="RoomSize">

 <rdfs:domain rdf:resource="#Room"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="Checkout">

 <rdfs:domain rdf:resource="#Policies"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="Score">

 <rdfs:domain rdf:resource="#Comments"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="WifiPlaces">

 <rdfs:range>

 <owl:DataRange>

 <owl:oneOf rdf:parseType="Resource">

 <rdf:rest rdf:parseType="Resource">

 <rdf:rest rdf:parseType="Resource">

 <rdf:rest

rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#nil"/>

 <rdf:first

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >All Area</rdf:first>

 </rdf:rest>

 <rdf:first

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >Public Area</rdf:first>

 </rdf:rest>

 <rdf:first

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >Hotel Rooms</rdf:first>

 </owl:oneOf>

 </owl:DataRange>

 </rdfs:range>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="AllowedPets">

 <rdfs:range

rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

 <rdfs:domain rdf:resource="#Policies"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="ImageName">

 <rdfs:domain rdf:resource="#Accommodation"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="Review">

 <rdfs:range

rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

94

 <rdfs:domain rdf:resource="#ReviewModel"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="Rate">

 <rdfs:domain rdf:resource="#HotelHighlightValue"/>

 <rdfs:range

rdf:resource="http://www.w3.org/2001/XMLSchema#int"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="Currency">

 <rdfs:range>

 <owl:DataRange>

 <owl:oneOf rdf:parseType="Resource">

 <rdf:rest rdf:parseType="Resource">

 <rdf:first

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >EURO</rdf:first>

 <rdf:rest rdf:parseType="Resource">

 <rdf:first

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >TL</rdf:first>

 <rdf:rest

rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#nil"/>

 </rdf:rest>

 </rdf:rest>

 <rdf:first

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >DOLAR</rdf:first>

 </owl:oneOf>

 </owl:DataRange>

 </rdfs:range>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="Checkin">

 <rdfs:domain rdf:resource="#Policies"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="Description">

 <rdfs:domain rdf:resource="#Accommodation"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="BedSize"/>

 <owl:DatatypeProperty rdf:ID="Price">

 <rdfs:range

rdf:resource="http://www.w3.org/2001/XMLSchema#float"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="TripAdvisorUrl">

 <rdfs:range

rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

 <rdfs:domain rdf:resource="#Accommodation"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="BookingUrl">

 <rdfs:domain rdf:resource="#Accommodation"/>

 <rdfs:range

rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="ShortName">

 <rdfs:domain rdf:resource="#Country"/>

 <rdfs:range

rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="Polarity">

95

 <rdfs:domain rdf:resource="#HotelHighlightValue"/>

 <rdfs:range

rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="Name">

 <rdfs:domain>

 <owl:Class>

 <owl:unionOf rdf:parseType="Collection">

 <owl:Class rdf:about="#Accommodation"/>

 <owl:Class rdf:about="#Facility"/>

 <owl:Class rdf:about="#Service"/>

 <owl:Class rdf:about="#Room"/>

 </owl:unionOf>

 </owl:Class>

 </rdfs:domain>

 <rdfs:range

rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="price">

 <rdfs:domain rdf:resource="#Accommodation"/>

 </owl:DatatypeProperty>

 <owl:NamedIndividual rdf:about="http://www.owl-

ontologies.com/travel.owl#Cannes"/>

 <owl:NamedIndividual rdf:ID="BrÃ¼ksel">

 <belongsToCountry>

 <Country rdf:ID="Belgium">

 <ShortName

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >be</ShortName>

 </Country>

 </belongsToCountry>

 <rdf:type rdf:resource="#City"/>

 </owl:NamedIndividual>

 <owl:NamedIndividual rdf:ID="Sagrada_Familia">

 <belongsToCity>

 <City rdf:ID="Barcelona">

 <hasAttraction>

 <StadiumArena rdf:ID="Camp_Nou"/>

 </hasAttraction>

 <hasAttraction>

 <Museum rdf:ID="Cosmo_Casia"/>

 </hasAttraction>

 <belongsToCountry>

 <Country rdf:ID="Spain">

 <ShortName

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >es</ShortName>

 </Country>

 </belongsToCountry>

 </City>

 </belongsToCity>

 <rdf:type rdf:resource="#District"/>

 </owl:NamedIndividual>

 <PaymentMethod rdf:ID="Paypal"/>

 <RoomFacility rdf:ID="Bathroom"/>

 <LanguageSpoken rdf:ID="Turkish"/>

 <HotelTheme rdf:ID="Beach_SeaSide"/>

96

 <City rdf:ID="MuÄŸla">

 <belongsToCountry>

 <Country rdf:ID="Turkey">

 <ShortName

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >tr</ShortName>

 </Country>

 </belongsToCountry>

 </City>

 <HotelTheme rdf:ID="Luxury"/>

 <City rdf:ID="Amsterdam"/>

 <City rdf:ID="Paris">

 <belongsToCountry>

 <Country rdf:ID="France">

 <ShortName

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >fr</ShortName>

 </Country>

 </belongsToCountry>

 </City>

 <HotelTheme rdf:ID="Budget_Backpacker"/>

 <Comments rdf:ID="Wonderful">

 <Score

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >9</Score>

 </Comments>

 <District rdf:ID="Chamartin">

 <belongsToCity>

 <owl:NamedIndividual rdf:ID="Madrid">

 <rdf:type rdf:resource="#City"/>

 <belongsToCountry rdf:resource="#Spain"/>

 </owl:NamedIndividual>

 </belongsToCity>

 </District>

 <owl:NamedIndividual rdf:ID="AydÄ±n">

 <rdf:type rdf:resource="#City"/>

 <belongsToCountry rdf:resource="#Turkey"/>

 </owl:NamedIndividual>

 <HotelTheme rdf:ID="Gourmet"/>

 <Resorts rdf:ID="Radisson_Blu_Resort_Spa_Cesme">

 <BookingUrl

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >http://www.booking.com/hotel/tr/radisson-blu-resort-

spa-cesme.en-

us.html?sid=8aa80ffe4b7682747d7b6adc8a479b24;dcid=1#hash-

blockdisplay4</BookingUrl>

 <TripAdvisorUrl

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >http://www.tripadvisor.com/Hotel_Review-g298004-

d1229186-Reviews-Radisson_Blu_Resort_Spa_Cesme-

Cesme_Izmir_Province_Turkish_Aegean_Coast.html</TripAdvisorUrl>

 <Name

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >Radisson Blu Resort & Spa Cesme</Name>

 <hasReviewModel>

 <ReviewModel

rdf:ID="Radisson_Blu_Resort_Spa_Cesme_ReviewModel"/>

97

 </hasReviewModel>

 </Resorts>

 <District rdf:ID="Besiktas">

 <belongsToCity>

 <City rdf:ID="Istanbul">

 <hasAttraction rdf:resource="#Cosmo_Casia"/>

 <hasAttraction>

 <Monument rdf:ID="Columbus_Monument"/>

 </hasAttraction>

 <belongsToCountry rdf:resource="#Turkey"/>

 </City>

 </belongsToCity>

 <hasAttraction>

 <Monument rdf:ID="Dolmabahce_SarayÄ±"/>

 </hasAttraction>

 </District>

 <Airport rdf:ID="Sabiha_Gokcen_Airport"/>

 <Highlight rdf:ID="Highlight_Bar">

 <Name

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >Bar</Name>

 <Polarity

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >positive</Polarity>

 <Rate

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >10</Rate>

 </Highlight>

 <Comments rdf:ID="Exceptional">

 <Score

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >9.5</Score>

 </Comments>

 <owl:NamedIndividual rdf:about="http://www.owl-

ontologies.com/travel.owl#Bursa"/>

 <RoomFacility rdf:ID="Flat-Screen_Tv"/>

 <RoomFacility rdf:ID="Safe"/>

 <City rdf:ID="Sydney"/>

 <City rdf:ID="Miami_Beach">

 <belongsToCountry>

 <Country rdf:ID="United_States">

 <ShortName

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >us</ShortName>

 </Country>

 </belongsToCountry>

 </City>

 <owl:AllDifferent>

 <owl:distinctMembers rdf:parseType="Collection">

 <Hotel rdf:ID="The_Marmara_Pera">

 <Address

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >Mesrutiyet Cad.,Tepebasi, Beyoglu, 34430

Istanbul</Address>

 <hasComment>

 <Comments rdf:ID="Good">

98

 <Score

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >7</Score>

 </Comments>

 </hasComment>

 <hasReviewModel>

 <ReviewModel

rdf:ID="The_Marmara_Pera_ReviewModel"/>

 </hasReviewModel>

 <Name

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >The Marmara Pera</Name>

 <hasOtelFacility>

 <Food rdf:ID="Restaurant"/>

 </hasOtelFacility>

 <hasStar rdf:resource="#FiveStarRating"/>

 <hasService>

 <Service rdf:ID="Anniversary"/>

 </hasService>

 <hasPolicy>

 <Policies rdf:ID="TheMarmaraPera_Policies">

 <AllowedPets

rdf:datatype="http://www.w3.org/2001/XMLSchema#boolean"

 >false</AllowedPets>

 <Checkin

rdf:datatype="http://www.w3.org/2001/XMLSchema#time"

 >14:00:00</Checkin>

 <Checkout

rdf:datatype="http://www.w3.org/2001/XMLSchema#time"

 >12:00:00</Checkout>

 <hasPayment>

 <PaymentMethod rdf:ID="Visa"/>

 </hasPayment>

 <hasPayment>

 <PaymentMethod rdf:ID="MasterCard"/>

 </hasPayment>

 <hasPayment>

 <PaymentMethod rdf:ID="AmericanExpress"/>

 </hasPayment>

 <hasPayment>

 <PaymentMethod rdf:ID="Cash"/>

 </hasPayment>

 </Policies>

 </hasPolicy>

 <hasDestination>

 <District rdf:ID="Taksim">

 <isDestinationOf

rdf:resource="#The_Marmara_Pera"/>

 <belongsToCity rdf:resource="#Istanbul"/>

 <hasAttraction>

 <Parks rdf:ID="Gezi_ParkÄ±"/>

 </hasAttraction>

 </District>

 </hasDestination>

 <BookingUrl

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

99

 >http://www.booking.com/hotel/tr/the-marmara-

pera.en-

gb.html?sid=4a1a6b7ff2d2eb6670533713f56de5da;dcid=1#hash-

blockdisplay1</BookingUrl>

 <ImageName

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >http://r-

ec.bstatic.com/images/hotel/max300/189/18904632.jpg</ImageName>

 <hasTheme>

 <HotelTheme rdf:ID="City_Tour"/>

 </hasTheme>

 <TripAdvisorUrl

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >http://www.tripadvisor.com/Hotel_Review-g293974-

d530256-Reviews-The_Marmara_Pera_Hotel-

Istanbul.html</TripAdvisorUrl>

 <hasTransportation>

 <Airport

rdf:ID="Ataturk_International_Airport"/>

 </hasTransportation>

 <hasRoom>

 <Room rdf:ID="Standard_Double_or_Twin_Room">

 <RoomSize

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >2</RoomSize>

 <hasRoomFacility>

 <RoomFacility rdf:ID="Heating"/>

 </hasRoomFacility>

 </Room>

 </hasRoom>

 <hasOtelFacility>

 <Activities rdf:ID="Fitness_Center"/>

 </hasOtelFacility>

 <hasOtelFacility>

 <Food rdf:ID="Bar"/>

 </hasOtelFacility>

 <Description

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >hotel blaa blaa</Description>

 </Hotel>

 </owl:distinctMembers>

 </owl:AllDifferent>

 <Food rdf:ID="Snack_Bar"/>

 <HotelTheme rdf:ID="Family"/>

 <HotelTheme rdf:ID="Natural_Wildlife"/>

 <owl:AllDifferent>

 <owl:distinctMembers rdf:parseType="Collection">

 <owl:NamedIndividual rdf:about="#OneStarRating"/>

 <owl:NamedIndividual rdf:about="#ThreeStarRating"/>

 </owl:distinctMembers>

 </owl:AllDifferent>

 <Comments rdf:ID="Pleasant">

 <Score

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >6</Score>

 </Comments>

 <owl:AllDifferent>

100

 <owl:distinctMembers rdf:parseType="Collection">

 <owl:NamedIndividual rdf:about="#ThreeStarRating"/>

 <owl:NamedIndividual rdf:about="#TwoStarRating"/>

 </owl:distinctMembers>

 </owl:AllDifferent>

 <owl:AllDifferent/>

 <owl:NamedIndividual rdf:ID="Barcelonata">

 <belongsToCity rdf:resource="#Barcelona"/>

 <rdf:type rdf:resource="#District"/>

 </owl:NamedIndividual>

 <Activities rdf:ID="Private_Beach_Area"/>

 <Highlight rdf:ID="Highlight_Swimming_pool">

 <Name

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >swimming pool</Name>

 </Highlight>

 <Comments rdf:ID="Very_Good">

 <Score

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >8</Score>

 </Comments>

 <Outdoors rdf:ID="Sun_Deck"/>

 <HotelTheme rdf:ID="Romance_HoneyMoon"/>

 <General rdf:ID="Family_Rooms"/>

 <RoomFacility rdf:ID="Iron"/>

 <owl:NamedIndividual rdf:ID="Downtown_Barcelona">

 <rdf:type rdf:resource="#District"/>

 <belongsToCity rdf:resource="#Barcelona"/>

 </owl:NamedIndividual>

 <City rdf:ID="Antalya">

 <belongsToCountry rdf:resource="#Turkey"/>

 </City>

 <HotelTheme rdf:ID="Mountains"/>

 <owl:NamedIndividual rdf:ID="Cairns">

 <rdf:type rdf:resource="#City"/>

 </owl:NamedIndividual>

 <HotelHighlightValue rdf:ID="HotelHighlightValue_1"/>

 <Parks rdf:ID="Park_Guell"/>

 <LanguageSpoken rdf:ID="Spanish"/>

 <LanguageSpoken rdf:ID="French"/>

 <District rdf:ID="KadÄ±koy">

 <belongsToCity rdf:resource="#Istanbul"/>

 <hasAttraction>

 <ShoppingAreas rdf:ID="Optimum"/>

 </hasAttraction>

 </District>

 <owl:NamedIndividual rdf:ID="Raval">

 <rdf:type rdf:resource="#District"/>

 <belongsToCity rdf:resource="#Barcelona"/>

 </owl:NamedIndividual>

 <District rdf:ID="Moda">

 <belongsToCity rdf:resource="#Istanbul"/>

 </District>

 <HotelTheme rdf:ID="Design"/>

 <General rdf:ID="Air_Conditioning"/>

 <ShoppingAreas

rdf:ID="The_Centre_Comercial_MaremÃ gnumis"/>

101

 <owl:NamedIndividual rdf:ID="Ankara">

 <rdf:type rdf:resource="#City"/>

 <belongsToCountry rdf:resource="#Turkey"/>

 </owl:NamedIndividual>

 <owl:AllDifferent>

 <owl:distinctMembers rdf:parseType="Collection">

 <owl:NamedIndividual rdf:about="#OneStarRating"/>

 <owl:NamedIndividual rdf:about="#TwoStarRating"/>

 </owl:distinctMembers>

 </owl:AllDifferent>

 <HotelTheme rdf:ID="Spa_Relaxation"/>

 <City rdf:ID="Nice">

 <belongsToCountry rdf:resource="#France"/>

 </City>

 <Airport rdf:ID="Adnan_Menderes_Airport"/>

 <District rdf:ID="Salamanca">

 <belongsToCity rdf:resource="#Madrid"/>

 </District>

 <Outdoors rdf:ID="Swimming_Pool"/>

 <owl:NamedIndividual rdf:ID="Ramblas">

 <rdf:type rdf:resource="#District"/>

 <belongsToCity rdf:resource="#Barcelona"/>

 </owl:NamedIndividual>

 <owl:NamedIndividual rdf:ID="El_Born">

 <rdf:type rdf:resource="#District"/>

 </owl:NamedIndividual>

 <RoomFacility rdf:ID="Toilet"/>

 <Service rdf:ID="Tour_Desk"/>

 <Service rdf:ID="Car_Rental"/>

 <City rdf:ID="Izmir">

 <belongsToCountry rdf:resource="#Turkey"/>

 </City>

 <City rdf:ID="Ibiza">

 <belongsToCountry rdf:resource="#Spain"/>

 </City>

 <Outdoors rdf:ID="Outdoor_Pool"/>

 <LanguageSpoken rdf:ID="English"/>

 <District rdf:ID="Madrid_Center">

 <belongsToCity rdf:resource="#Madrid"/>

 </District>

 <Comments rdf:ID="Excellent">

 <Score

rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >8.5</Score>

 </Comments>

</rdf:RDF>

<!-- Created with Protege (with OWL Plugin 3.5, Build 649)

http://protege.stanford.edu -->

102

APPENDIX B

HOTEL DOMAIN ONTOLOGY ONTO GRAF VISUALIZATION

