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ABSTRACT 

 
ANALYSIS AND MODELLING OF A NOVEL APPROACH FOR THE 

INTERROGATION UNIT OF FIBER BRAGG GRATING SENSORS 

USING OPTICAL FREQUENCY DOMAIN REFLECTOMETRY 

TECHNIQUES 

 
The main purpose of this thesis is to demonstrate the feasibility of using 

polarization properties of FBGs interrogated by OFDR for quasi-distributed sensing 

applications.  

A fiber Bragg grating (FBG) is a constant and periodic refractive index value 

modulation within the core along an optical fiber. This modification is generally 

obtained by exposing the fiber core of a photosensitive optical fiber to an intense 

ultraviolet (UV) interference pattern. At the fabrication process of Bragg gratings, only 

one side of the fiber expose to UV light. As a result, refractive index change is not 

constant at the cross section of fiber. This non-uniformity on the refractive index gives 

rise to photo-induced birefringence which combines with the birefringence resulting 

from the slightly elliptical shape of the optical fiber and creates a global birefringence 

value. 

In the presence of the birefringence, the reflection (transmission) spectrum of 

Bragg grating is degenerated into two reflection (transmission) spectra corresponding to 

a pair of orthogonal polarization modes (x and y modes). The ratio between maximum 

and minimum optical transmitted power of these modes are defined as Polarization 

Dependent Loss (PDL).  

We analyzed the reflection spectrum, transmission spectrum and the PDL of the 

cascaded FBGs interrogated by an OFDR by the way of simulations. Based on the 

simulation results, we demonstrated the feasibility of a novel FBG interrogation method 

which can be implemented in quasi-distributed strain sensors embedded into composite 

materials. 
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ÖZET 

 
FREKANS BÖLGESİNDE OPTİK YANSIMA ÖLÇÜM TEKNİKLERİ 

KULLANILARAK FİBER BRAGG IZGARA SENSÖRLERİNİN 

SORGU ÜNİTESİ İÇİN YENİ BİR YAKLAŞIMIN ANALİZ VE 

MODELLENMESİ 

 
Bu çalışmanın ana hedefi, fiber Bragg ızgaraya ait (fiber Bragg grating, FBG) 

polarizasyon özelliklerinin, frekans bölgesinde optik yansıtıcı (Optical Frequency 

Domain Reflectometer, OFDR) kullanılarak sorgulanmasıyla gerçekleştirilen yeni bir 

sensör yaklaşımının uygulanabilirliğinin incelemektir.  

Bragg ızgaralar, fiber optik çekirdek (core) kırılma indisinin kalıcı bir şekilde ve 

periyodik olarak değiştirilmesiyle elde edilir. Fiber çekirdek indisindeki bu modulasyon 

sonucu, fiber içinde aksi yönlerde ilerleyen iki mod arasında rezonans dalga boyu 

(Bragg wavelength) çevresinde enerji aktarımı meydana gelir. Izgaraya uygulanacak 

bazı fiziksel etkiler (sıcaklık, gerilme vb.) Bragg dalga boyunun değişimi ile 

gözlenebilir. Bragg ızgaraların fabrika üretimi boyunca fiberin yalnızca bir kısmı mor 

ötesi (UV) lazere maruz kalır ve bu sebeple fiberin dairesel kesiti boyunca kırılma indisi 

sabit değildir. Kırılma indisindeki bu düzensizlik ışıkla indüklenen çift kırınıma 

(birefringence) neden olur ve fiberin hafif eliptik şeklinden kaynaklanan çift kırınımla 

birleşerek genel çift kırınımı oluşturur. 

Çift kırınımın varlığında Bragg ızgaranın iletim ve yansıma katsayıları iki moda 

ayrılır (x- ve y- modu). Bu modların maksimum ve minimum optik çıkış güçleri 

arasındaki oran polarizasyona bağlı kayıp (Polarization Dependent Loss, PDL) olarak 

tanımlanır.   
 
Çalışmada art arda bağlanmış ve frekans bölgesinde optik yansıtıcı ile 

sorgulanan fiber Bragg ızgaraların iletim ve yansıma spektrumları ile polarizasyona 

bağlı kaybını simülasyonlar yoluyla analiz ettik. Simülasyon sonuçları, fiber Bragg 

ızgaranın polarizasyon özelliklerinin OFDR tarafından sorgulanabilir olduğunu 

göstermiştir. Nihai bir uygulama alanı olarak ise kompozit malzeme içine gömülmüş 

yarı-dağıtık gerinim (strain) sensörleri, önerdiğimiz test sistemi kullanılarak 

tasarlanabilir. 
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CHAPTER 1  

 

INTRODUCTION 

 
Today’s industry tends to be guided ever stronger by the aims of optimal 

efficiency, productivity, security and cost-effectiveness. In order to achieve these 

objectives, many industrial sectors require the advanced technologies providing the 

ability to monitor the status and health of the systems. This is because the early 

detection of potential faults prevents serious damages of equipment, minimizes 

interruption of the production or service, and provides an enhanced security for people 

and goods. As a consequence, the market for all kinds of sensors is expanding.  

In particular, fiber optic sensors (FOS) have been gaining a prominent position 

in this marketplace thanks to their inherent advantages compared to their conventional 

counterparts such as low attenuation, immunity to electromagnetic interference (EMI), 

high bandwidth, small dimensions, high temperature tolerance, electrically passive 

nature and, low fabrication cost.  

Fiber Bragg gratings (FBGs) have brought about a revolutionary dimension to 

the fiber optic sensors. FBGs are low-cost, mass producible intrinsic sensing devices 

providing self-referencing and wavelength-encoded linear response to the physical 

parameter to be measured. Being photo-imprinted in the core of an optical fiber, FBGs 

not only benefit from all the advantages of FOS but they also offer an important 

instrumentation capability which is not possible with conventional sensors: quasi-

distributed and embedded sensing. Quasi-distributed sensing involves several 

concatenated FBGs on a single fiber that can be analyzed with a single interrogating 

system. Due to this multiplexing capability, the cost per sensing element decreases. In 

addition, sensors including FBG arrays can be embedded and/or attached into composite 

materials without degrading the performance and life of the host structure. In this 

context, a fast, reliable and cost-effective interrogation unit that can be implemented in 

many application areas is of paramount importance for FBG-based sensing systems. 
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Optical Time Domain Reflectometry (OTDR) and coherent Optical Frequency 

Domain Reflectometry (OFDR) techniques are the two main candidates that can be 

exploited in the optical sensing. In terms of equipment availability and cost, OTDR is a 

standard, off-the-shelf tool with accessible prices but brings about two big limitations 

related to the inevitable dead-zone and the long measurement time. OFDR on the other 

hand tackles the disadvantages of OTDR and has been nowadays gaining a renewed 

interest as an interrogating tool for use in the sensing fields also reduces the length 

between two sensing points thanks to its high spatial resolution [3-4].  

This thesis has focused on a novel interrogation approach that uses FBG sensors 

cascaded into optical fiber and interrogated by OFDR. The thesis contributes to the 

literature in terms of the simulations computing the spectral evolution of the 

polarization dependent properties (e.g. Polarization Dependent Loss (PDL)) of the 

FBGs and the corresponding OFDR demodulation results as a function of system 

parameters (physical grating parameters, global birefringence, wavelength range, …). 

The ultimate application area of the proposed interrogation scheme would be 

structural health monitoring of composite materials by the way of strain measurements 

in a distributed and/or quasi-distributed manner.  

 
1.1. Thesis Outline 

 
This thesis is organized in five chapters. In chapter two, basic principles of the 

optical fibers and fiber Bragg gratings are presented. It provides a detailed explanation 

about the spectral characteristics of uniform fiber Bragg gratings. 

In chapter three, interrogation schemes of fiber Bragg gratings based on 

reflectometry techniques are provided. It mainly focuses on the two reflectometry 

techniques; Optical Time Domain Reflectometry (OTDR) and Optical Frequency 

Domain Reflectometry (OFDR). 

Chapter four first summarizes the main concepts of light polarization in optical 

fibers and then focuses on the polarization phenomena that can be observed in uniform 

fiber Bragg gratings. 
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Chapter five investigates the response of uniform FBGs which are interrogated by 

(polarization sensitive) OFDR. A numerical model of the measurement system is built 

by using Transfer Matrix Method. Our model takes into account the global 

birefringence effect of fiber Bragg gratings. Implementing the proposed model, the 

Polarization Dependent Loss is simulated based on the demodulated transmission 

spectra of the fiber gratings. 

Simulation results show a good agreement between the theoretical PDL spectra 

(obtained by the analytical formula based on the coupled-mode theory) and the 

simulated PDL spectra using our proposed model. The results confirm the feasibility of 

using polarization properties of FBGs and OFDR for strain sensing in structural health 

monitoring applications.  

In chapter six, the conclusion and future aspects are discussed.  
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CHAPTER 2  

 

GENERAL CONSIDERATIONS ON FIBER BRAGG 

GRATINGS: BASICS, PROPERTIES AND SENSING 

ASPECTS 

 
2.1. Introduction 

 
This chapter summarizes the main concepts of optical fibers, classification of 

optical fiber sensors and most important properties of fiber Bragg gratings. There are 

several types of fiber gratings like apodized, chirped, tilted, and long period gratings 

which are suitable for many interesting sensor implementations. Nevertheless, the 

analysis realized in the framework of this thesis is uniquely based on uniform fiber 

Bragg gratings. Therefore this chapter focuses on the principles and properties of 

uniform FBGs related to FBG-based sensors. 

 
2.2. Basic Principle of Optical Fiber  

 
Optical fiber has a simple structure which acts as a waveguide and allows the 

propagation of light along it. Optical fiber consists of two concentric cylinders called 

core and cladding. The core and cladding have different refractive indices; the index of 

the core is always greater than the refractive index of the cladding.  

The core is the inner cylinder with a diameter of 8 and 10 micrometers for a 

standard single mode fiber. Optical fiber can be also multimode then it has a core 

diameter of about 50-62.5 micrometers and carries more than one mode of 

electromagnetic waves.  

The cladding is surrounding the core has a diameter of about 125 micrometers 

for a standard fiber.  
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Optical fibers are commonly manufactured by means of pure silica glasses. The 

use of dopants like germanium, nitrogen and phosphorus in the core composition 

slightly increases the refractive index value and creates the required difference between 

core and cladding refractive indices to have the total internal reflection condition. 

On the core-cladding interface, the incident angles which are greater than critical 

angle, light rays are reflected to the core and the light is guided through the core without 

refraction [5]. If the inclination to the fiber axis is greater, light rays are not guided 

through the core because they lose their power at each reflection into the cladding. 

 From the Snell’s law of refraction maximum acceptance angle θa’s value can be 

found as: 

                         n0 sin (θa) = n1 sin (π/2 – θc) = n1 cos (θc)                             (2.1) 

                         n1 sin (θc) = n2 sin (π/2) = n2                                                 (2.2) 

n0 is the refractive index of surrounding medium, n1 is the core refractive index 

and n2 is the cladding refractive index.  

 
 Figure 2.1. Total internal reflection in fiber geometry [6] 

 
In order to travel inside the fiber, light rays make an angle to the fiber axis when 

it enters inside the fiber. This angle called acceptance angle. Angle equal or smaller 

than the acceptance angle are guided to the fiber and continue its way in it. However 

angles greater than acceptance angle will be lost in the cladding. 

Finding an expression between refractive indices of core, cladding and 

surrounding medium will take us to the numerical aperture term. Numerical aperture 

shows the light gathering capability of the fiber. A fiber’s numerical aperture can be 

express as, 

NA= sin (θa) = (푛 − 푛 )                                         (2.3) 
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For a light ray, θa>θc condition is not sufficient to propagate inside the fiber as 

one can associate a plane wave to each ray. Therefore, interference effect between the 

plane waves should be taken into account. In other words, all points situated on the 

same wave front should be in phase to avoid destructive interference. This implies that 

light rays which have only limited number of θa values can propagate in the fiber. The 

light propagation is then possible through discrete modes which can be analyzed by 

solving Maxwell’s equations for optical fibers (mode analysis in optical fibers is beyond 

the scope of this thesis) [7], [8].  

 
2.3. Fiber Optic Sensors 

 
Optical fiber sensors take few steps forward against conventional electronic 

sensors at the areas that require immunity to electromagnetic interference, small size to 

easily embed the sensor into the structures, and resistance to harsh conditions. Optical 

fiber is the most important part for an optical sensor system. Based on fiber optics lots 

of physical quantities can be sensed. Some of them are temperature, strain, pressure, 

vibration, acceleration, displacement etc.  

A basic sensor system that measures these physical parameters (measurands) 

generally consists of an optical source, an optical fiber, a modulator (or a sensing 

element) and a detector. The light sent by the source is guided inside the optical fiber 

and during its propagation some properties of light (e.g. polarization, wavelength …) 

are modulated due to external effects. An optical detector converts the light into 

electrical form and finally some signal processing electronics like optical spectrum 

analyzer help to obtain the changes on the physical parameter to be sensed [9].  

 

 

 

 

 

 

 
 

 

Figure 2.2. Basic components of an optical fiber sensor system  

Source 

Measurand 

Detector Transducer 

Electronic 

Processing 

Optical fiber Optical fiber 
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2.3.1. Classification of Fiber Optic Sensors  

 
Table 2.1. Fiber optic sensors classification 

 

 

 

 

 

 
Fiber optic sensors can be classified with respect to their spatial distribution as 

point sensors, distributed sensors and quasi-distributed sensors [10]. 
In point sensors, sensor is generally placed at the end or near the end of an 

optical fiber to provide a connection between the interrogator and the sensing element.  

These types of sensors are especially used at the implementations where it is 

more interesting to use multiplexing techniques (capability of interrogating several 

different -more than 10-20- sensor points along the same optical fiber).  

 

 

 

 
Figure 2.3. Point sensing 

 

Distributed sensors can be defined as a sensor where the whole optical fiber 

itself acts as the sensing medium. Rather than using wide number of connecting cables 

distributed sensors only need a single connection cable to transmit the information to 

the reading unit. 

 

Figure 2.4. Distributed sensing 

          Spatial Distribution                        Sensing Location 

 
Point         Distributed      Quasi- Distributed           Extrinsic           Intrinsic 
Sensors      Sensors                Sensors                      Sensors            Sensors 

    InterrogationUnit 

Sensing  element 

    InterrogationUnit 
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In quasi distributed sensors, a single fiber includes lots of sensors in series along 

the fiber to monitor the physical effects. In quasi distributed sensors monitoring of 

measurand is not continuous along the fiber length, however it is realized at a finite 

number of locations [11]. This means that it will be able to analyze a set of concatenated 

point sensors with one interrogating unit.  

 

 

 
Figure 2.5. Quasi- Distributed sensing 

  

Optical fiber sensors can also be classified depending on the sensing location as 

extrinsic and intrinsic. In an extrinsic fiber optic sensor, the modulation of light takes 

place outside of the fiber. The fiber is used only to carry light from the source to the 

sensing medium and from the sensing medium to the detector. 

Another type of sensors is intrinsic fiber optic sensors. This type of sensors can 

also be called as all fiber sensors. The modulation of light totally occurs inside the 

optical fiber. By applying the physical effect to be measured, fiber’s geometrical, 

physical and optical properties are influenced giving rise to the modulation of light 

during its propagation inside the fiber. Fiber Bragg grating sensors are categorized 

under this sensor group. 

 

                                           
                                                                     

 
Figure 2.6. Extrinsic and Intrinsic sensing schemes 
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2.4. Basic Principle of Fiber Bragg Gratings 

 
A fiber Bragg grating is a constant and periodic refractive index value 

modulation within the core along an optical fiber. To obtain this modification a 

photosensitive optical fiber is used and the core of this optical fiber is illuminated by a 

ultraviolet pattern of interference [12]. The parameters describing a fiber Bragg grating 

can be listed as follows:  

 The length L over which the variation on refractive index is achieved. It ranges 

from a few mm up to a few tens of cm.  

 The periodicity Λ, also called the grating pitch, ranging from 200 nm to 800 nm.  

 The magnitude δn of the neff modulation. neff is the effective refractive index (i.e. 

the refractive index seen by the fiber core at the Bragg wavelength before the 

grating inscription). This modulation δn typically ranges from 10−5 to 10−3. 

The modulation of fiber core refractive index results in the coupling between 

modes propagating in opposite directions [13]. Mode coupling grows for some 

wavelengths around so called Bragg wavelength (λBragg) which can be described by,  

                                                         λBragg = 2neff Λ                                                     (2.4) 

   

 
 Figure 2.7. Fiber Bragg grating [14] 
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Physically the refractive index variation of the fiber Bragg grating give rise to a 

weak Fresnel reflection with each period of the grating (Λ). The weak contributions are 

added in phase and created a strong reflection for the Bragg wavelength. Therefore, a 

fiber Bragg grating can be defined as a selective mirror around the Bragg wavelength as 

schematically represented in Figure 2.7.  

 

2.4.1.  Model of the Uniform Bragg Grating 

 
In uniform fiber Bragg gratings phase fronts is perpendicular along the fiber 

longitudinal axis and plane of the grating has constant periodic refractive index 

modulation.  This kind of grating works as narrow-band reflective optical filter that 

reflects a portion of the spectrum around the wavelength which satisfies Bragg 

condition.  

If the Bragg condition is not satisfied, light reflecting from the consecutive 

planes will be out of phase and finally be canceled out. When the Bragg condition is 

satisfied, contribution of light reflected from the each grating plane overlaps 

constructively to the backward creating a reflected peak at the central wavelength which 

is determined by the grating parameters.   

Therefore, around the Bragg wavelength, FBG couples the light from the 

forward propagating guided modes to backward propagating guided modes.  

 

 

         

 

 

 

      Figure 2.8. Wave vectors of uniform Bragg grating for Bragg condition 

 

Bragg grating condition satisfies the conservation of energy and momentum. To 

satisfy energy conservation, frequencies of both reflected and incident radiation need to 

be equal [12].  

                                                    h ωf = h ωi                                                                          (2.5) 

 

푘⃗ 푘⃗ 

퐾⃗ 
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where h is the Planck constant (6.626 10−34 J.s) and ωi and ωf are the frequencies of the 

incident radiation and the reflected radiation, respectively. 

To satisfy momentum conservation, wavevector of incident wave k⃗ and grating 

K⃗	should be equal to the wavevector of scattered radiation	k⃗. Here, grating wavevector 

has a magnitude of 
Λ

 and perpendicular to the grating planes (see Fig. 2.8).  

 

                                                 푘⃗ + 퐾⃗ = 푘⃗                                                      (2.6) 

 

The diffracted wavevector is equal in magnitude, but opposite in direction, to the 

incident wavevector. The conservation of momentum simplifies to the first order Bragg 

equation and can be expressed as, 

 

                                                λBragg = 2 neff Λ                                              (2.7) 

 

where λBragg is the Bragg wavelength, neff effective refractive index of the fiber core at 

the center wavelength, Λ grating periodicity. 

 
2.4.2. Implementation of Transfer Matrix Method 

 
To determine reflection and transmission spectra of an FBG in the presence of 

mode coupling, coupled mode theory is used. This theory provides us an accurate 

analytical solution for uniform fiber Bragg gratings.  

In the framework of this thesis, the analytical solutions provided by the coupled 

mode theory have been used as a starting point without demonstrating the whole steps 

of the theory (these steps are given in Appendix A, Coupled Mode Theory). 

The analytical results of the coupled-mode theory can be implemented in an 

efficient way to model the reflection and transmission spectra of the grating in a 

distributed manner all along the grating. Transfer matrix method is a simple and 

precise technique which is easy to integrate into coupled mode equations [1]. 

In this method, grating is divided into N cascaded sections and each section is 

affecting succeeding section. For instance, (N-1) th section’s matrix outputs are used as 

the Nth section matrix inputs [13].  
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In this approach, the FBG can be considered as a 4-port device as shown in 

Figure 2.9,  

 

 

 

                      

 

 

 

                
 

 

Figure 2.9.  Input and output fields of Bragg grating 

 

The forward-propagating fields R(0) and R(z),  backward-propagating waves 

S(0) and S(z), and the section length, ∆z =  are represented in Figure 2.9. Transfer 

matrix of the grating (T) comprises both the amplitude and phase information. 

By the help of transfer matrix, input and output fields are connected to each 

other as: 

                                  R
(0)
S(0)  = [T] R

(z)
S(z)                                                         (2.8) 

 

In the case of reflection grating the reflected amplitude at input field of grating 

R(0)	is normalized to unity and output field amplitude S(z) is zero (i.e. backward-going 

field does not exist further than the grating length as there is no perturbation away from 

the end of the grating). Equation 2.8 is revised in the light of boundary conditions and 

the relation is written as: 

 

                                             1
S(0)  = T 	T

T T   R(z)
0

                                               (2.9) 

 

                                        R(z) = 	                                                             (2.10) 

                                        S(0) =                                                               (2.11) 
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The entire grating after the Nth section can be defined as: 

 

                                       1
S(0)  = [T ]…..[T ][T ][T ] R(z)

0
                               (2.12) 

 

The transfer matrix for the whole Bragg grating is the multiplication of all 

individual section transfer matrices. 

 

                                                         [T] = ∏ T                                                     (2.13)         

            

Solving the couple mode theory equations given in Appendix A, elements of transfer 

matrix are determined as, 

 

                                                T = cosh(αz) − 	( )                                      (2.14) 

                                                T =	− κ 	( )                                                      (2.15) 

                                                T =	 κ 	( )                                                         (2.16) 

                                                T = cosh(αz) + 	( )                                      (2.17) 

 

The parameters in equations from 2.14 to 2.17 are defined by the following 

relationships, 

 

Self-coupling coefficient                     σ = δ + σ                                                      (2.18) 

AC coupling coefficient                       κ = π
λ

υδn                                                      (2.19)              

Tuning rate                                 δ = β − π
Λ
= 2πn (	

λ
−

λ
 )                            (2.20)  

DC coupling coefficient                        σ = π
λ

δn                                                      (2.21) 

                                               α = κ − σ                                                   (2.22) 
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 The amplitude (r) and power (R) reflection coefficients of Bragg grating are 

defined as 

                       r = ( )
( )

=                                                  (2.23)   

                                               r = κ 	(α )
σ (α ) α 	(α )

                                        (2.24) 

             (R = |r|2)                            R = ( )
( )

                                               (2.25) 

 
 

 The amplitude (t) and power (T) transmission coefficients of Bragg grating are 

defined as 

                                       t = (1 − r) = ( )
( )

=                                         (2.26)               

                                            t =
σ (α ) α 	(α )

                                           (2.27) 

              (T = |t|2)                       	T =
( )

                                                  (2.28)              
 

 
2.4.3. Amplitude Spectral Response of Uniform FBG: Some Examples 

 
In this paragraph, the interesting features of fiber Bragg gratings is presented. 

The numerical simulations for the evolution of power reflection coefficient R depending 

on fiber length, average refractive index modulation and periodic refractive index 

modulation have been plotted versus normalized wavelength defined by λ /λmax. 

                                     λmax =    (1+  )    λBragg                                            (2.29) 

                                     λmax = 2 (neff + 훿푛) Λ                                                   (2.30) 

 

where λmax is wavelength at where the maximum reflectivity occurs. In figure 2.10 the 

relation between the reflected and transmitted spectra are observed as,        
                                  

                                         R(λ) + T(λ) = 1                                           (2.31)                                                
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Figure 2.10. Reflection and transmission spectra of a uniform fiber Bragg grating. 

        Parameters used for the simulation: as ν=0.5; δn=1x10-4; Λ=540 nm; 
L=1cm 

 

In figures 2.11, 2.12 and 2.13, the effect of grating length (L), average refractive 

index modulation (δn) and periodic refractive index modulation (Λ) on the reflection 

spectrum are presented, respectively.  

             
Figure 2.11.  The power reflection coefficient variation as a function of grating length in  

uniform fiber Bragg gratings. The parameters are ν=0.5; Λ=540 nm;   
δn= 1x10-4 
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It is seen from figure 2.11 that when the Bragg length increases, reflectivity of 

the grating also increases. There is a direct proportionality among them.  
 

 
Figure 2.12. The power reflection coefficient variation as a function of average 

refractive index modulation in uniform fiber Bragg gratings. 
The parameters are ν=0.5; Λ=540 nm; L=1 cm  

Figure 2.13. The power reflection coefficient variation as a function of periodic 
refractive index modulation in uniform fiber Bragg gratings. 
The parameters are ν=0.5; L=1 cm; δn=1 10-4 
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In Figure 2.12 the effect of the core refractive index modulation on the reflection 

spectrum is observed. It is obvious from the figure that reflectivity increases when the 

refractive index modulation increases.  

 Figure 2.11 and 2.12 also show that the spectral bandwidth between first zeros 

increases when δn increases and/or when L decreases. 

The evolution of the power reflectivity (R) with respect to periodic refractive 

index variation (Λ) is shown in Figure 2.13. Contrary to L and δn variation, an increase 

on the periodic refractive index value decreases the reflectivity of FBG.  

 
2.4.4. Advantages of Fiber Bragg Gratings 

 
 Fiber optic sensors (FOS) have been gaining a remarkable position in 

marketplace thanks to their advantages compared to conventional sensors that are listed 

as follows: 

 The information of the measurand is wavelength-encoded. This property makes 

the sensor self-referencing and independent from the fluctuations of light power 

levels that might rise on the system. Therefore the system is unaffected from the 

source power fluctuations, detector sensitivity changes, connector losses, or by 

the presence of other FBGs at different wavelengths. This property is the main 

advantage of the FBG-based sensors. 

 Multiplexing is one of the most important advantages of optical fibers. Sensing 

points can be placed in series on the same optical fiber. The multiplexing ability 

provide us monitoring different types of sensors along the same fiber like strain 

sensors and thermal sensors.  

 Linear response to the physical parameter to be measured over large ranges.  

 Optical fibers have low attenuation, so it is easy to monitor sensing locations 

from a remote interrogation station at large distance (the interrogation unit can 

be placed tens of kilometers away from the sensing points). 

 Easy to install: just one optical fiber is required to bond to the structure and 

connected to the interrogator.  

 Because of their small size and geometric versatility FBG sensors can easily 

be embedded into various structures to provide damage or strain detection and 

offer the best option in hard-to-reach and space-limited environments.  
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 Optical fibers are safe, passive because they don’t need to use electricity to 

work. That is why there will be no risk of fires or explosions. This is an 

important issue for the nuclear or chemical applications.  

 They have long durability, as they are composed of rugged passive 

components. 

In addition to above advantages, FBGs are also immune to electromagnetic interference 

and low in price [15], [16].  

 

2.4.5. Applications of Fiber Bragg Gratings 

 
Application areas of fiber Bragg gratings are several. Some of them are listed as, 

 

 Aerospace: Structural health monitoring, maintenance of safety and integrity in 

aerospace structural system [17].  

 Medical: Used as pressure sensor to measure muscular strength of hands or 

weight profile of patients [18]. 

 Renewable wind energy: Monitoring strain distribution along the wind turbine 

wing [19].  

 Civil structures: Implementation of fiber Bragg gratings array in to the bridges, 

tunnels, buildings, and dams to monitor structural health.  

 Automotive: Frame stress detection to increase safety. 

 Transportation and Rail: Monitoring deformation on the rail, imbalance or 

strain on the wheels in high-speed railways or trains carrying overloads [20]. 

 Marine: Monitoring fast military vessels, racing yachts, and sub-sea vessels 

[21]. 

 Oil and Gas: Humidity and hydrogen detection, monitoring oil, gas, water and 

waste pipelines.  

 Power: Vibration and temperature monitoring on the nuclear power plants [22].  
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CHAPTER 3  

 
FIBER BRAGG GRATING INTERROGATION 

TECHNIQUES 

 
3.1. Introduction 

 
This chapter describes detection schemes for fiber Bragg grating sensors. All 

interrogation types are differing in system performance as well as in system complexity, 

robustness, and costs. 

As already presented in the previous chapter, fiber Bragg gratings are intrinsic 

optical sensors where the wavelength of the reflected (or transmitted) spectrum is 

shifted as a function of external parameter to be measured.  

To interrogate the FBGs, a straightforward approach might be the wavelength 

interrogation of the reflected or transmitted spectral components. General principle of 

the wavelength measurement is to convert wavelength shift to some measurable 

parameters such as amplitude, phase or frequency.   

Since this thesis focuses on one of the optical reflectometry technique which is 

optical frequency domain reflectometry, the other interrogation techniques are 

summarized briefly.  

 
3.2. Wavelength Detection Techniques 

 
In all wavelength detection techniques, the set-up contains broadband light 

source to illuminate the fiber Bragg grating. Light coming from this source is coupled to 

the optical fiber and reflected light from fiber Bragg grating sensor is analyzed by a 

wavelength detection scheme. 
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Linearly wavelength dependent optical filter; In this type of detection scheme, 

Bragg wavelength shift is monitored depending on power variation. Although this 

method has a simple scheme, it is not easy to apply multiplexed FBGs to this scheme. 

Moreover, the measurements are affected by the power fluctuations. The set-up of 

measurement contains a filter, a broadband light source and fiber Bragg grating. The 

ratio of the reflected signal intensity between the reference arm and the filter’s arm is 

changed linearly depending on the Bragg wavelength shift [23]. 

Linearly wavelength dependent optical coupler; In this method, main 

component of the set-up is wavelength division multiplexing (WDM) coupler. WDM 

coupler has a linear and opposite response in the coupling ratios between input and 

output ports. This coupler receives the reflected light from Bragg grating to detect the 

wavelength shift. This shift is achieved by computing (linear change) the ratio between 

sum and difference of output arms of the couplers [24].  

These two methods explained above use passive components at the detection 

schemes.  

 

 

 

 

 

 

 

 

 

 

 

                 Figure 3.1. Scheme of Wavelength Division Coupler interrogation system 
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Detection with a scanning optical filter; One of the most attractive 

interrogations to measure the wavelength shift of a Bragg grating is based on the use of 

a tunable filter for tracking the spectrum reflected from the grating. 

The filter center is tuned until the multiplication of fiber Bragg grating and 

scanning filter spectra match, at the match condition the system output takes its 

maximum. Different applications for this method are available and some of them can be 

found in [25], [26], [27]. 

Fiber Optic Interferometer; In this technique, interferometer converts the 

wavelength shifts at back reflected light coming from grating to the phase variation. 

When comparing with the other detection techniques fiber optic interferometry has 

more wavelength sensitivity [28]. To convert the wavelength shift to the phase 

variation, reflected spectrum of Bragg grating topazes through an interferometer which 

has a wavelength dependent transfer function with the form (1+cosø) (the ø phase term 

depends on the input wavelength).  

 
3.3. Optical Reflectometry Techniques 

 
In this paragraph, Optical Time Domain Reflectometry (OTDR) measurement 

technique is presented then study about the Optical Frequency Domain Reflectometry 

(OFDR) technique are detailed.  

Optical reflectometry can be classified into two categories as direct-detection 

and coherent-detection. In direct detection, only the optical reflected signal is incident 

on the photodetector but in coherent detection reflected signal and a reference optical 

signal are incident on the photodetector [29].  
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3.3.1. Optical Time Domain Reflectometry (OTDR) 

 
Optical Time Domain Reflectometry’s basic principle is to detect and analyze the 

scattered light coming from small imperfections, inhomogeneities and impurities in the 

optical fiber. Conventional OTDRs use Rayleigh backscattering to determine the 

location of fiber breaks, the fiber attenuation coefficient, splice loss, and various other 

link characteristics. By using OTDR some parameters can be measured and provided; 

 

 Distance to splice loss, connector loss, bend loss and their quantities. 

 Reflectivity of mechanical splices, connectors 

 Active monitoring on live fiber optic system 

 Fiber slope and fiber attenuation 

 

 

 

 

 

 

 
 

Figure 3.2. Principle diagram of an OTDR 

 
A basic OTDR diagram is shown in Figure 3.2. Light coming from a laser is 

connected to a coupler. When the pulse propagates along the fiber, some of its power is 

lost because of Rayleigh scattering, absorption and radiation loss [30].  

The most significant loss in OTDR measurements is Rayleigh scattering. The 

80-90% of the total loss of light is produced by Rayleigh scattering. Microscopic 

inhomogeneities at the refractive index of the fiber create this scattering. 

The probe signal can also be attenuated due to splices, bends or connectors at 

discrete locations in the fiber as shown in Figure 3.3.  
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1 Reflection from Front Connector 

2 Fiber Attenuation 

3 Non-Reflective Loss (Fusion Splice or Bending) 

4 Reflective Loss (Mechanical Splice or Connector) 

5 Fiber End Reflection 

6 Noise Level 

 

Figure 3.3. Events on a typical OTDR trace 

 
When the optical pulse is sent to the fiber and it meets with a discontinuity in the 

refraction index, some of the signal energy is reflected back and coupler directs it to the 

optical receiver. An OTDR software displays the losses on a generated graph and 

provides the loss value in dB as a function of distance. 

The received power is measured as a function of time. Then a conversion is 

needed to obtain measurements in length (in km). Because of light travels forward and 

backward directions before reaching the receiver, it propagates twice the distance.  

The OTDR software multiplies the time value by the group velocity of the light 

in the fiber, in order to convert time into a one-way distance. That is why optical power 

is computed by using 5log10 formula not with 10log10 formula [31]. 

Some key parameters are considered when investigating the performances of an 

OTDR. 
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The dynamic range of an OTDR is defined as the strength of the initial 

backscattering level to the noise level. It shows the maximum loss the equipment is able 

to measure. To increase the OTDR’s dynamic range, backscatter level should be 

increased and noise should be decreased. (see Fig. 3.4)  

 

 
Figure 3.4. Dynamic Range 

 
The spatial resolution parameter gives the information about capability of 

OTDR to resolve two close events. The spatial resolution length depends on optical 

pulse width (half of the pulse width). 

In an OTDR measurement, there is a trade-off between spatial resolution and 

dynamic range. When shorter pulses (narrow pulse width) are used to provide good 

spatial resolution, the signal to noise ratio is worse because of the smaller backscattered 

power (decreasing in the pulse energy is decreasing the signal level), so the attainable 

dynamic range is smaller. In contrast, when the pulse width is broadened dynamic range 

becomes larger but spatial resolution becomes worse.  

After having received a strong reflection, the OTDR receiver is blinded 

(saturation) during a certain time interval. There is a distance after the reflection peak 

where no proper measurement can be performed. This region is denoted by the term 

dead zone.  

To interrogate FBGs by OTDR, several techniques are proposed where the 

OTDR provides information about position, magnitude and phase of the reflective 

events (FBGs in this case). 
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To extract the wavelength shift information some signal processing is required 

as shown schematically in Figure 3.5.  

 
  

 

 

   

                                 
  

 

 

 

 

Figure 3.5. Optical reflectometry techniques for FBG interrogation 

 
Conventional OTDR is one of the applications for interrogation of FBGs. As 

shown in Figure 3.6, sensor pairs are interrogated by OTDR. The physical parameters 

are not applied on the reference grating. The reference grating is used to compensate 

power fluctuations on the source. The whole range of the wavelength is used by the 

OTDR source and back reflected signal from the sensing grating is measured by OTDR 

receiver. The Bragg wavelength shift can be obtained by the linear change in the 

measured power according to the linear edge of the source spectrum [32]. 

The wavelength of the sensing grating is located at the increasing or decreasing 

edge of the source spectrum to obtain maximum power variation as a function of 

wavelength shift.  

 

          

    

 
 

 

Figure 3.6. Conventional OTDR scheme 
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OTDR with an adjustable Fabry-Perot filter, This method is based on the 

association of a commercial OTDR with a band pass filter. The schematic of the 

proposed system is shown in figure 3.7. A concatenation of several arrays of fiber 

Bragg gratings (FBG1 . . . FBGn) is interrogated.  

The FBGs in each array have got approximately the same nominal Bragg 

wavelengths, λ1 . . . λn. The passband of the Fabry-Perot filter (1.3 nm) is slightly 

narrower than the FWHM of the Bragg gratings (1.5 nm). When the reflection spectrum 

of a given FBG coincides with the passband of the FP filter, a detectable signal will be 

generated at the OTDR receiver. By using low reflective gratings, several FBGs at the 

same nominal wavelength but at different positions (hence with different delay times) 

can be addressed simultaneously for a given center wavelength of the filter [33]. 

 

          

    

 

 
 

 

Figure 3.7. Scheme of OTDR with a spectral filtering 

 
Wavelength Tunable OTDR: as shown in Figure 3.8 a wavelength conversion 

system is combined with a conventional OTDR. The optical pulses emitted from a 

conventional OTDR are first converted to electrical pulses and then modulate the 

Tunable Laser Source (TLS) at the desired wavelength [34]. 

Optical pulses obtained at the desired wavelength are sent to the FBGs. The 

reflected light from FBGs is directed to the OTDR. Tunable laser source scans the 

proper set of wavelength and using a set of OTDR traces obtained these wavelenghts, 

the reflection spectra of all FBGs are reconstructed.  

 

 

 

 

 

 

      OTDR 

 ( FBG 1  …  FBG n)1 

      λ1     ...       λn 

 (FBG 1   …   FBG n)2 

       λ1      ...     λn   PC Adjustable 

spectral band pass 



 

27 
 

 

 

 

          

*    

 

 

 

 

 
                                 

Figure 3.8. Wavelength tunable OTDR interrogation scheme 

 
3.3.2. Coherent- Optical Frequency Domain Reflectometry (OFDR) 

 
When the optical system under consideration is several tens of meters in length, 

OFDR can be used because of its millimeter resolution, high sensitivity and large 

dynamics. OFDR overcome the limitations of OTDR on spatial resolution, dynamic 

range and measurement speed for the immediate and definite detection of any structural 

damage. 

To interrogate fiber Bragg grating spectrum, coherent-optical frequency domain 

reflectometry is the best suited method providing high spatial resolution between two 

measured point over multiple tens of meters of optical length [35].  

Optical frequency domain reflectometry (OFDR) technique works with similar 

principle as optical time domain reflectometry (OTDR) technique and provides 

information about reflection and transmission spectrum on the measurand. OTDR is 

based on direct detection scheme but OFDR is operating in coherent detection mode.  
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3.3.2.1. Principle of OFDR 

 
In its basic configuration, the optical carrier frequency of a tunable laser source 

(TLS) is swept linearly in time without mode hops. Then, the frequency modulated 

continuous-wave signal (probe signal) is split into two paths (see figure 3.9), namely the 

test arm and the reference arm.  

The test signal which is reflected back from the reflection sites in the test arm 

coherently interfere at the coupler with the reference signal returning from the reference 

reflector. This interference signal contains the beat frequencies which appear as peaks at 

the network analyzer display after the Fourier transform of the time-sampled 

photocurrent [36].  

Using a linear optical frequency sweep, the measured beat frequencies can be 

mapped into a distance scale (the proportionality factor between beat frequency and the 

corresponding distance is determined by the rate of change of the optical frequency), 

while the squared magnitude of the signal at each beat frequency reveals the reflectivity 

of each reflection site. This method is often called as coherent FMCW (Frequency-

Modulated Continuous Wave) [37].  

 
 

 
 
 
 
 
 
 
 
 
 
  
 
 
 

  

 

 

Figure 3.9. Basic configuration of distributed C-OFDR 

Linearly-chirped 

source 

Receiver 

FFT spectrum 

analyzer 

Optical Frequency 

t 

coupler 

 Local Oscillator 

 (Reference arm) 

Device Under Test  

      (Test Arm) 

  L 



 

29 
 

In this thesis the formulation is described by the wavenumber of light and results 

of the analysis are presented in terms of wavelength of the light. The relation between 

wavenumber k and wavelength can be expressed as, 

 

                                                                      푘 = 	                                                     (3.1) 

 

The intensity measured at the detector varies as a cosine function of the 

wavenumber k and can be expressed as in equation 3.2 (derived in the Appendix B 

[38]), 

                                      퐷 = cos	 2푛 푘퐿                                                    (3.2) 

 

where neff  is the effective refractive index of optical fiber core.  

This equation shows that light reflected from device under test and light 

reflected from the reference reflector have an optical path difference of 2neffL.  

Due to the linear modulation of the optical frequency, each reflection on side on 

the optical fiber corresponds to a beat frequency. These beat frequencies can be 

observed by taking the Fourier transform of the interference signal and then can be 

converted into distance [39]. 

As the laser is tuned light intensity observed by dedector varies depending on 

wavenumber change Δk and can be expressed as [40],        

                  

                                                 Δk =                                                      (3.3) 

 

The schematic of the Fourier and Inverse Fourier Transform application can be 

shown in Figure 3.9 and 3.10. 

The Fourier transform separates the interference signal waveform into sinusoids 

of different frequencies.  
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Figure 3.10. Spectral mapping between wavenumber and length [41] 

 
By using a bandpass filter around a proper position of a reflection and by 

applying an inverse Fast Fourier transform to the filtered signal, the spectrum of each 

reflection can be obtained independently from the others. 
 
 

 
 

Figure 3.11. Schematic of demodulation process [41] 

 
In summary, to obtain the reflection spectra of a reflection side (this could be a 

FBG or a discrete reflection) in the test arm of the OFDR, a band-pass filter (centered at 

a particular beat frequency, hence position) is used to extract the portion having the 

information related to this particular reflection.  
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This is followed by an inverse Fast Fourier transform to recover the complex 

FBG spectrum and the obtained spectrum is called as demodulated reflection 

(transmission) spectrum. Steps to obtain demodulated spectrum can be shown in figure 

3.12 where identical uniform FBGs are used as reflection points [37].  

 

 

  

 

 

 

                                                                             
  

 

 

 

 

 
Figure 3.12.  Schematic of signal processing 

 
The flowchart belong to above explained signal process is represented in Figure 3.13 as, 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Figure 3.13. Flowchart of signal processing 
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 Matlab Simulation Example 

 
As an example to above discussion, we simulated the OFDR trace when there is 

one FBG in the test arm at the position: 1.38 m. In these simulations the reflectivity of 

Bragg grating is derived by using equations 2.28, the interferometer signal is examined 

and the location information is provided by taking Fourier transform of the signal. 

Inverse Fourier transform of the signal allows demodulating the reflection coefficient of 

fiber Bragg grating. Finally theoretical reflection coefficient is compared to the 

demodulation result in Figure 3.15. The simulation parameters are as follows:  

 

Table 3.1. Parameters used for Matlab simulation 
 

Visibility 1 

z  (location of FBG) 1.38 m 

neff (effective refractive index) 1.45 

L (Fiber Bragg grating length) 200 mm 

δneff (Average index change) 1.6 x 10-5 

λBragg (Bragg wavelength) 1583.7 nm 

Λ (periodic refractive index change). 547.59 nm 

NoP  (Number of point used in Fourier 

transform) 

  40000 
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Figure 3.14. Reflectivity of FBG found by mathematical derivation (Eq.2.25) 

 

Figure 3.15. Comparison of demodulated signal with the mathematically obtained 
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Figure 3.16. Simulated OFDR trace 

 
3.3.2.2. OFDR Interrogation of Fiber Bragg Grating by using Transfer 

Matrix Method 

 
In previous examples, the results are obtained by using the analytical approach 

derived in the Appendix B. This approach does not permit us to realize a distributed 

analysis along the length of the FBG. In this part, we implement the Transfer matrix 

method to model the FBG interrogated by the OFDR. In the model, there is a single 

FBG on the test arm of the OFDR as shown in Figure 3.17. 

In order to simulate detector signal (D), FBG and mirror are modeled on the C-

OFDR system. The model is determined based on transfer matrix method as mentioned 

in section 2.4.4. Fiber Bragg grating is divided into N uniform section and each section 

length is Δz long [42]. 
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Figure 3.17. Model of FBG and mirror on C-OFDR system (TLS: Tunable Laser 

Source, PD: Photodetector, C: Coupler)  
 

The elements of the grating matrices FB1…N is formed by equations and is 

expressed as, 

 

                                               T = cosh(αL) − 	( )                                         (3.4) 

                                                T =	− κ 	( )                                                        (3.5) 

                                                T =	 κ 	( )                                                           (3.6) 

                                     T = cosh(αL) + 	( )                                       (3.7)  
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       퐹 =
cosh(αΔz) − ( ) 													− κ ( )	

										 κ 	( ) 																								cosh(αΔz) + 	( )	
               (3.8) 

 

The phase shift matrix PMirror and PBragg of the reflection matrices is obtained in 

the transfer matrix by multiplying the reflectivity of the Nth section by matrix elements 

only containing phase terms of reflectivity and calculated as: 

 

                                             푃 = 푒
ø
				0

0						푒
ø                                                       (3.9) 

 

                                                ø = 푛 푧                                                   (3.10) 

 

In the case of mirror side of the optical path the relation between output and 

input of the system is given as, 

 

                                       
푅 (0)
푆 (0) = 푃 푅 (푧 )

푆 (푧 ) 	                                 (3.11)                 

 

where RM is the amplitude of the forward propagation mode, SM is the amplitude 

of the backward propagating mode and PM is the mirror phase shift matrix. 

The phase shift matrix PMirror of the mirror reflection matrix is given as, 

 

                                       푃 = 푒
ø
				0

0						푒
ø                                                 (3.12) 

 

                                             ø = 푛 푧                                                     (3.13) 

 

When the boundary conditions are applied, 

 

                                            푅 (0) = 1                                                          (3.14) 

 

                                            푆 (푧 ) = 푅 (푧 )푒                                          (3.15) 
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                           1
푆 (0) = 푃 				푃

푃 					푃
푅 (푧 )

푅 (푧 )푒
                              (3.16) 

 

The mirror reflection coefficient is given as, 

 

                              푅퐿 = 	푆 (0) =                                  (3.17) 

 

                              푅퐿 = 푒 ( )                                                (3.18)     

 

For the optical path contains fiber Bragg grating, the transfer matrix (T) for the 

whole optical path is considered as the multiplication of the transfer matrices of all the 

individual FBG sections and express as, 

 

                                          T=PBraggFB1FB2……FBN                                        (3.19) 

 

where PBragg is Bragg phase shift matrix and given as, 

 

                                       푃 = 푒
ø
				0

0						푒
ø                                                 (3.20) 

 

                                             ø = 푛 푧                                                    (3.21) 

 

The relation between input and output of the Bragg system is defined by the 

equation 3.22, 

 

                                 
푅 (0)
푆 (0) = 푇 				푇

푇 					푇
푅 (푧 )
푆 (푧 )                                    (3.22) 

 

where RB is the amplitude of the forward propagating mode and SB is the amplitude of 

the backward propagating mode. 
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 The boundary conditions for the Bragg system is defined as, 

 

                                              푅 (0) = 1                                                        (3.23) 

                                              푆 (푧 ) = 0                                                       (3.24) 

 

When the boundary condition is applied on equation 3.22, the reflection 

coefficient for Bragg grating cab be defined as, 

 

                                     푅퐿 = 푆 (0) =                                              (3.25) 

	

Finally the output signal observed by detector (D) is calculated by using two-

beam interference method and given by [7], 

 

                 	퐷 = 푅퐿 + 푅퐿 푅퐿 + 푅퐿
∗
                   (3.26) 

                  퐷 = 푅퐿 + 푅퐿                                                         (3.27) 

 
 Matlab Implementation 

 
In this part, mathematical model is verified for the above scheme (Figure 3.17) 

with the Matlab simulations. Figures 3.18, 3.19, 3.20, 3.21 and 3.22 are obtained by 

using equations from 3.4 to 3.27. The parameters used in simulations are as follows, 

 

Table 3.2. Parameters used for the Matlab implementation of OFDR 
 

Visibility  0.3944 

z0  (absolute location of the mirror) 1 m 

z1 (location of FBG) 4.96 m 

neff (effective refractive index of fiber core) 1.45 

L (Fiber Bragg grating length) 200 mm 

δneff (Average index change) 3.10 x 10-6 

λBragg (Bragg wavelength) 1548.163 nm 

N (number of FBG section) 100 
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In figure 3.18, the reflection spectrum of a uniform fiber Bragg grating is 

obtained by using Transfer Matrix Method. This results that Bragg grating reflects %20 

of the incident signal. Figure 3.19 shows the composite detector signal, D which is 

normalized by its maximum value at the Bragg wavelength (1548.163 nm) 

Figure 3.18. Evolution of Fiber Bragg Grating reflection spectrum by transfer matrix 
method 

 

 
Figure 3.19. Output signal calculated by photodetector 
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In Figure 3.20, the Fourier transform of interference signal is taken to obtain the 

OFDR trace showing the power reflected from the FBG as a function of position. The 

reason of the power decrease along the grating length is the loss of the light when it 

propagates though the grating.  
 

 

Figure 3.20. Simulated beat spectrum of the interferometer 

 
In Figure 3.21 Inverse Fourier transform is applied on the selected position 

(between 4.96 m- 5.16 m) as explained before to “demodulate” the reflection spectrum 

of the FBG. This demodulated reflection spectrum is then compared with the original 

reflection spectrum where a good agreement is observed between the two approaches. 

This means that our demodulation process works well and our simulation results match 

with the theoretical values. 
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Figure 3.21. Comparison of demodulated signal with calculated reflectivity  

 
Figure 3.22 represents the spectrogram of the output signal D. The spectrogram 

is obtained by applying Short Time Fourier Transform of the signal and provides the 

spectrum information in 3 dimensions, namely, wavelength, position and intensity. 

To perform STFT, a proper window (Hanning window is used in simulations) is 

applied for a definite wavelength, the information about the signal around focused 

wavelength is obtained.  

Then by using Fast Fourier Transform the extracted signal analyzed and each 

frequency components power in the output signal is achieved.  

Sliding the window to all wavelengths and performing Fourier transform 

provided us three dimensional information that includes wavelength information at the 

x-axis, position information at the y-axis and colored part shows the power of the 

signal.  
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Figure 3.22 Spectrogram of interference signal 

 
In figure 3.22 the red colored part of the spectrogram denotes the highest 

intensity regions from red to dark blue region the intensity of light is increase. It is 

logical because of the reflection is occurs at the Bragg wavelength 1548.16 for this 

simulation and the intensity of light is expanded around this wavelength.  
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Under a physical effect applied on Bragg grating, the Bragg wavelength shifts 

differently proportional to the applied effect. Figure 3.23 and 3.24 shows shift on the 

reflection coefficient of the fiber Bragg grating and shift on the detector signal under 

applied strain. In this simulation the Bragg wavelength shift is 0.2 nm at its center in 

other words it shifts from 1548.16 nm to 1548.36 nm. So the output and reflection 

spectrum is separated by 0.2 nm.  

 
Figure 3.23. Reflection spectrum of uniform  FBG for 0.2 nm shifts 

 

Figure 3.24. Output signals for  0.2 nm shifts 
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Figure  3.25. Spectrogram of the 0.2 nm shifted interference signal 
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In figure 3.25 the reflection center wavelength shift is obtained in spectrogram. 

Bragg wavelength. The spectrogram is obtained by appliying STFT on the detector 

signal. The reflected light is sampled by 0.14 1/m (Δk) wave number spacing. This 

results a 0.053 pm wavelength spacing (Δλ). Analysis is done by using 4000 points 

Hanning window and FFT is applied to 214 points. Window is slided 20 points. The 

window length is choosed as 4000 point due to influencing distance and wavelength 

resolution. Here figures show that applied strain effects amount of wavelength shift on 

the Bragg wavelength.  
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CHAPTER 4  

 

POLARIZATION CONCEPTS 

 
4.1. Introduction  

 
Fiber Bragg gratings that studied in Chapter 2 is manufactured by exposing one 

side of the optical fiber to an intense UV interference pattern. It is accepted that the 

writing process of the fiber leads to small amount of birefringence. This quantity 

combines with the intrinsic birefringence. The small birefringence values have 

significant polarization dependent effects on Bragg gratings. In this chapter, the basic 

phenomena of the polarization of light are studied. Then, the mathematical formalism to 

define the state of the polarization is examined. Birefringence term and the effect of this 

phenomenon to the uniform fiber Bragg gratings are also explained in detail. Finally, 

the effect of grating parameters (physical length, refractive index modulation) and the 

value of the birefringence on the Polarization Dependent Loss (PDL) are studied. 

 
4.2. Polarization of Light 

 
A polarized lightwave signal propagating in free space or in a waveguide like 

optical fiber can be described by electrical and magnetic field vectors perpendicular to 

each other in a transverse plane and perpendicular to the direction of propagation [43].  

The state of polarization is presented by the pattern plotted by electrical field 

vector as a function of time at a fixed point in a transverse plane [44]. 
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Figure 4.1. Concept of polarization of light 
 

To present the polarized light propagating along the z direction mathematically 

(in terms of the x and y axis projections of electrical field vector), x and y components 

of the electric field at z=0 given by, 

                                               퐸 = 휀 푒   ;    퐸 = 휀 푒                             (4.1) 

                                               휀 = 퐸 푒       ;    휀 = 퐸 푒                                 (4.2) 

 

                                              퐸 (푧, 푡) = 퐸 cos	(휔푡 + 훿 − 푘푧)                                (4.3) 

                                              퐸 (푧, 푡) = 퐸 cos	(휔푡 + 훿 − 푘푧)                               (4.4) 

 

where E0x and E0y are the maximum amplitudes, δx and δy are the corresponding phases. 

The pattern drawn by electrical field is found by eliminating (ωt-kz) term from the 

equations 4.3 and 4.4 so the relation is define as,  

 

                                             + − 2 cos δ = sin 훿                                 (4.5) 

 

where δ= δx- δy is the phase difference between x and y components.  

Equation 4.5 is the polarization ellipse equation trace out in the transverse plane 

by the tip of the electrical field vector in a fixed point of space and as a function of time 

[45]. Fully polarized light wave’s state of polarization is elliptical by the equation it is 

obvious that state of polarization depends three parameters E0x, E0y and δ. This ellipse is 

presented in figure 4.2.  
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Figure 4.2. Polarization ellipse 

 
where ø is the azimuth between the major axis and x axis of ellipse and defined as, 

                                                         ø = tan                                                       (4.6) 

 

The ellipticity e is defined as,  

 

                                                       푒 = tan휒 = ±                                                     (4.7)    

                           

where a and b are the length of half the major and minor axis. e remains between -1 and 

+1. Positive/negative sign in the preceding equation represents left/right rotation of the 

electric field vector. If the electrical field vector in the clockwise, the state of 

polarization is right handed and sign of ellipticity is positive. 

In the case of linear polarization state, phase difference between x and y 

component should be δ=±mπ m=0, 1, 2,… so χ=0  and the resultant state of polarization 

is linear.  
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4.2.1. Jones Vector Formalism of Polarized Light 

 
Polarization variation of an incident wave when it passes through an optical 

component can be described by three formalisms:; Jones calculus, Mueller calculus, and 

the Poincaré sphere. 

Between 1941 and 1948 Clark Jones proposed a mathematical representation of 

polarized light based on optical fields. This method represents a given SOP by only a 

two dimensional vector of complex numbers known as Jones vector and uses simple 2 × 

2 matrices to calculate the effect of a polarizer or a birefringent medium for a given 

state of polarization (SOP) [46]. 

Description of the electric field vector of an arbitrarily polarized light wave in 

terms of two orthogonal and linearly polarized components can be written as, 

 

                    퐸(푧, 푡) = 퐸 cos(휔푡 + 훿 − 푘푧) 풙 + 퐸 cos	(휔푡 + 훿 − 푘푧)풚m      (4.8) 

 

The SOP is defined in terms of a 2 × 1 matrix as, 

 

                                      퐸(푧, 푡) =
퐸
퐸 =

퐸 cos(휔푡 + 훿 − 푘푧)
퐸 cos	(휔푡 + 훿 − 푘푧)                          (4.9) 

 

                                      퐸(푧, 푡) =
퐸 e
퐸 푒

= e
퐸
퐸 e                (4.10) 

 

When the common phase factor is omitted to simplify the representation of the 

phases, equation 4.10 is written as, 

 

                                       퐸(푧, 푡) =
퐸
퐸 e                                                               (4.11) 

To normalize the Jones vector given by Equation 4.11, the amplitudes E0x and 

E0y are divided by 퐸 + 퐸    and obtained as, 

                                               퐸(푧, 푡) =
퐸
퐸 e                                         (4.12) 
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A linearly polarized wave of amplitude E0x making an angle ø with the x axis 

can be described as a superposition of the x- and y polarized components. Thus, the 

corresponding normalized Jones vector is given by,  

 

                                                            퐸(푧, 푡) = cosø
푠푖푛ø                                              (4.13) 

 

For the different values of ø, ø = 0 or ø = π/2, a linear horizontal or vertical 

polarization, the Jones vectors is expressed as, 

 

Horizantal:                                          푒̂ = 1
0                                                          (4.14) 

Vertical:                                             푒̂ = 0
1                                                           (4.15) 

 

The effect of any polarization component on a given SOP can be described by a 

2 × 2 Jones matrix, hence, Jones matrix connects the input and the output of Jones 

vectors.  

As shown in Figure 4.3, if a given polarization state A is passed through a 

polarizing device whose Jones matrix is J, the output polarization state A′ will be given 

by as, 

 

                                              A′ = J A.                                                           (4.16) 

 

If there are two devices in a series with Jones matrices J1 and J2, respectively, 

the Jones matrix of the combination is given by J2 J1, and the output polarization state 

will be given by  

                                         A′ = J2 J1 A                                                           (4.17) 

 

            
 

Figure 4.3. Jones matrix presentation of optical component 

A A′ 
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4.2.2. The Stokes Parameters Formalism 

 
In previous section, the Jones vector formalism of polarized light is studied. 

Although Jones vector presentation is quite simple and straightforward this formalism 

only described polarized light. In 1852 George Gabriel Stokes was proposed Stokes 

parameters, to obtain a mathematical definition of the polarization state of light which 

can be unpolarized, partially polarized or polarized [47]. 

In Jones formalism, the representation of polarized light was based on optical 

fields and described by complex numbers. But Stokes formalism is developed for 

expressing polarization in terms of measured intensities and described by real numbers. 

The polarization states of the electric fields is defined by four dimensional 

Stokes vector (S) as, 

                                                  S =

S
S
S
S

                                                     (4.18) 

                                            S0 = I0                                                      (4.19) 

                                            S1 = IH – IV                                               (4.20) 

                                            S2 = I+45 – I-45                                           (4.21) 

                                            S3 = IRCP – ILCP                                         (4.22) 

where S0, S1, S2 and S3 are the Stokes parameters. 

S0= Total power (Polarized + Unpolarized) 

S1= Power through Linear Horizontal Polarizer (LHP) + power through Linear 

Vertical Polarizer (LVP) 

S2= Power through Linear +45 deg polarizer - power through linear -45 deg 

polarizer 

S3= Power through Right Circular Polarizer (RCP) – power through Left 

Circular Polarizer (LCP) [48]. 

To obtain normalized Stokes parameters, Stokes parameters are divided into 

total power So and founded as, 

                                              푠 =   ;   푠 =     ; 푠 =                                       (4.23) 

The new Stokes vector for the normalized Stokes parameters can be written as, 
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                                                 푠 =
1
푠
푠
푠

                                                       (4.24) 

Thus, the range of the normalized Stokes parameters is -1 to +1. For the fully 

polarized light the analogy between Jones vectors and Stokes vectors can be expressed 

as, 

                                  푆 = 퐸 + 퐸                                                             (4.25) 

                                  푆 = 퐸 − 퐸                                                             (4.26) 

                                  푆 = 2푅푒 퐸 퐸∗ = 2퐸 퐸 cos훿                             (4.27) 

                                              푆 = 2퐼푚 퐸 퐸∗ = 2퐸 퐸 sin 훿                             (4.28) 

 

4.3. Birefringence in Optical Fibers 

 
A single-mode fiber supports two (degenerate) modes (H퐸 , H퐸 ) to propagate 

simultaneously, which are orthogonally polarized. In an ideal circular-core fiber (has 

perfect circular symmetry); these two degenerate modes will propagate with the same 

phase and velocity. Practical fibers have slightly elliptical core.  Furthermore, the 

doping concentration in the core section of optical fiber is not perfectly uniform and the 

fiber material can be subjected environmental factors as bend, twist, and anisotropic 

stress. This asymmetry in core leads to removing of degeneracy and the refractive index 

value will be different for the orthogonal polarization pairs called polarization modes. 

This property is called as birefringence. 

 

 

 

 

 

 

 

 

 

Figure 4.4. Schematic of polarization states for orthogonally polarized HEx and HEy 
modes 

퐻퐸  퐻퐸  
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For a standard fiber the order of magnitude of the intrinsic birefringence is 

typically 10-7 [49], [50].  

Birefringence can be defined by taking the absolute value of the difference 

between the polarization modes propagation constants, 

                             ∆훽 = 훽 − 훽 = 푛 , − 푛 , = ∆푛                           (4.29) 

 

In equation 4.29, Δn is the refractive index difference (the degree of 

birefringence), c is the speed of the light in vacuum and neff,x and neff,y is the effective 

refractive indices of two polarization modes.  

Optical fibers that is described by the uniform birefringence have constant 

difference between propagation constant of two polarization modes and phase delay 

between two modes is equal to ∆ø = ∆훽퐿. The birefringence property of an optical fiber 

which characterized by a uniform birefringence can be divided as linear birefringence 

and circular birefringence.  

For a linear birefringence the two polarization modes are linearly polarized and 

orthogonal to each other. For a circular birefringence two polarization modes are 

circularly polarized one of them is right handed polarized and another one is left handed 

[46].  

 The ellipticity of core that leads the geometrical anisotropy produces a linear 

birefringence. 

 Transversal stress applied on optical fibers results proportional change on the 

linear birefringence.  

 A transverse electric field results linear birefringence.  

 An asymmetrical lateral stress on the fiber introduces linear birefringence. 

 Twisting an optical fiber introduces a circular birefringence in the optical fiber. 

 
4.4. Polarization Dependent Loss 

 
Polarization dependent loss (PDL) can be defined as the measure of the power 

variation of an optical system for all possible input states of polarization. PDL can be 

calculated by taking the ratio of the maximum and minimum power of the output of the 

optical system with regard to all polarization states.  
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The PDL can be expressed as, 

                                           푃퐷퐿 = 10 log                                        (4.30) 

 

where Pmax is the maximum output power and Pmin  is the minimum output power 

through the test component of the system. For classical optical fibers, PDL is often very 

small (≤ 0.1 dB for a fiber coupler) and is thus neglected. [51]. 

 
4.5. Polarization Manifestation in Uniform Fiber Bragg Gratings 

 
Until now, the polarization concept of light in optical fibers is studied. In this 

part of this chapter the effect of polarization in uniform Bragg grating is investigated in 

order to include this effect in the model and simulations.  

Exposing one side of the fiber to the UV light source, during the fabrication 

process of fiber Bragg grating, induces variation of refractive index along the cross 

section of fiber. The refractive index becomes larger at the core side which is subjected 

to UV laser. Refractive index variation produces photo-induced birefringence (order of 

magnitude varies between 10-6 and 10-5 in practice). Combination of photo-induced 

birefringence with the intrinsic fiber birefringence results a global birefringence value 

Δn.  

The differences between effective refractive indices of the two polarization 

modes are expressed as, 

                                                  푛 , = 푛 + ∆                                                   (4.31) 

                                                  푛 , = 푛 − ∆                                                  (4.32) 

 

where neff stands for the mean effective refractive index in the fiber core without 

birefringence and Δn is the global birefringence value reached at the end of the writing 

process.  

Polarization modes propagating along the grating subjected to different coupling 

due to the presence of birefringence. As a result the complex reflection and transmission 

coefficients of Bragg grating degenerate into two (x and y) modes [2].  

Writing one side of the core during the fabrication process is assumed to lead a 

linear birefringence, applying a transversal load can also create liner birefringence.  
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In a Cartesian coordinates system whose reference axes match the grating 

polarization modes one can therefore associate a diagonal Jones matrix to the grating 

and the Jones vector of the transmitted signal is then [52]: 

 

                                           
퐸 ,
퐸 ,

=
푡 			0
0			푡

퐸 ,
퐸 ,

=
푡 퐸 ,
푡 퐸 ,

                                (4.33) 

 

Jones vector of the input signal is expressed as, 

                                                        
퐸 ,
퐸 ,

=
푎 푒
푎 푒

                                            (4.34) 

 
where 푎 ,  and 휑 ,  are the amplitude and phase of the  polarization state of the input 
signal.  

As obtained in equations from 2.17 to 2.25, the obtained equations by using 

Transfer Matrix Method are implemented for two polarization modes (x and y).   

                                                           α = κ − σ                                                (4.35) 

                                                           κ = π
λ

υδn                                                         (4.36) 

                                                        σ = π( , δ )
λ

−
Λ

                                           (4.37)                                   

 
So the transmission coefficient is rewritten as, 

 
                                     	푡퐹퐵퐺(푗) =

αj

−σj sinh iαjL +αjcosh	(iαjL)
                                    (4.38) 

 

If 	퐴 = , the transmission coefficient of a uniform fiber Bragg grating is 

express as, 

                                 푡 ( ) = ( )
                                      (4.39) 

 

Since polarization dependent loss (PDL) is defined as the measure of the power 

variation in transmission, PDL can be calculated by taking the ratio of the maximum 

and minimum transmission [53]. PDL for a uniform Bragg grating is obtained by 

following equation [51], 

             푃퐷퐿 = 10 log ( )
( )
		; 		푇 ( )(휆) = 푡 ( )(휆)               (4.40) 
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4.5.1. Study of Polarization Properties of Uniform Fiber Bragg 

     Gratings 

 
Using the above equations, the impact of some fiber Bragg gratings parameters 

(physical length (L), refractive index modulation (δn) and birefringence value (Δn)) on 

the spectral evolutions of the PDL is theoretically analyzed. In all simulations following 

parameters are used shown in Table 4.1.  

 

Table 4.1. Parameters used in numerical example 
 

Visibility  0.5 

neff (effective refractive index) 1.4514 

L (Fiber Bragg grating length) 1 cm 

δneff (Average index change) 1x 10-4 

Λ (periodic refractive index change) 530 nm 

Δn (value of birefringence) 5x10-6 

 
As shown in Figure 4.5 transmission spectrum of two polarization modes split 

from each other because of the birefringence Δn. 

The PDL evolution in Figure 4.6 can be justified from the transmitted spectra in 

figure 4.5 corresponding to the x and y modes. Indeed, null PDL values are reached at 

wavelengths λi for which Tx(λi)=Ty(λi). In particular, it happens close to the center of 

the rejection band. Between two consecutive minimum values, PDL evolutions exhibit 

local maximum values at wavelengths λj corresponding to the local maximum 

differences of amplitude between Tx(λj) and Ty(λj).  

The greatest PDL values are obtained at the edges of the rejection band where 

the difference of amplitude between Tx(λ) and Ty(λ) is also the largest.  
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Figure 4.5. Evolution of transmission coefficient of a uniform fiber Bragg grating 

Figure 4.6. Polarization Dependent Loss of a uniform fiber Bragg grating 

 

As shown on these figures 4.7, 4.8, 4.9, 4.10, the grating length and the 

refractive index modulation have similar effect on the PDL spectra, which is an increase 

of the peak amplitudes at wavelengths coinciding with the edges of the rejection band of 

the transmitted spectrum.  

1538 1538.1 1538.2 1538.3 1538.4 1538.5 1538.6 1538.7 1538.8 1538.9 1539
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Wavelength (nm)

TF
B

G
x 

TF
B

G
y

 

 

Tx
Ty

1538 1538.1 1538.2 1538.3 1538.4 1538.5 1538.6 1538.7 1538.8 1538.9 1539
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Wavelength (nm)

P
D

L 
(d

B
)



 

58 
 

The transmitted spectrum is characterized by an increasing amplitude variation 

at the edges of the main rejection band whereas the wavelength spacing between the 

two polarization modes is slightly influenced. As a result, sharp PDL evolutions with 

important maximum values in the rejection band are obtained for gratings characterized 

by long physical lengths and/or high refractive index modulations.  

In figures, the curves are obtained as a function of the normalized wavelength.  

Normalized wavelength is defined as the ratio between the working wavelength and the 

central wavelength λmax (λ /λmax).  

 

Figure 4.7. Transmitted spectrum evolution as a function of grating length 

 

Figure 4.8.  Polarization Dependent Loss spectra as a function of grating length 
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Figure 4.9. Transmitted spectrum evolution as a function of grating periodicity 

 

Figure 4.10. Polarization Dependent Loss spectra as a function of grating periodicity 
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Figure 4.11. Transmitted spectrum evolution as a function of birefringence value 

 

Figure 4.12. Polarization Dependent Loss spectra as a function of birefringence value 
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CHAPTER 5  

 

INTERROGATION OF POLARIZATION EFFECTS 

 IN FBG BY USING OFDR  

 
5.1. Introduction 

 
In this chapter, in order to understand whether the polarization properties of 

uniform FBGs may be interrogated by the way of OFDR, a numerical simulation model 

is built for the OFDR system where the FBG is modeled by implementing the transfer 

matrix method. This model takes into account the effect of birefringence on the FBG’s 

spectral response. Once the signal on the photodetector of the OFDR is modeled, the 

signal processing steps (based on FFT and IFFT), as explained in chapter 3, are used in 

order to obtain (“demodulate”) the transmission spectrum responses of the FBG. 

Finally, based on the demodulated transmission spectra for both polarization modes, 

Polarization Dependent Loss of the FBG is determined. 

 
5.2.  Numerical Simulation Model of OFDR System Considering Two 

        Polarization Modes 

 
Figure 5.1 represents the distributed sensing system containing C-OFDR and 

FBG. The main difference from the model used in section 3.3.2.2 is that two transfer 

matrices are assigned to each small section of the FBG [54]. Therefore, it is allowed to 

obtain Bragg spectra at an arbitrary position for given birefringence value. 
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Figure 5.1.  Model of FBG and mirror on C-OFDR system with two polarization modes 
                  (TLS: Tunable Laser Source, PD: Photodedector, C: Coupler) 

 
As shown in Figure 5.1 the tunable laser source sweeps the wavelength λ of the 

incident light. This probe signal is split at the coupler C1 into mirror and test arms. 

Reflected light from mirror and FBG interfere and observed at the detector (D1).   

The distributed spectrum of the FBG at each position all along the grating length 

can be obtained by applying Short Time Fourier Transform (STFT) on the detector 

signal (D1). 

A certain range of wavenumber is extracted by window function. Fast Fourier 

transform is applied to the defined range to obtain the power profile of each frequency 

component. By sliding window function through the whole wavenumber range and by 

realizing proper conversions (wavenumber and frequency domains are converted to the 

wavelength and position, respectively), a spectrogram is constructed which shows the 

power profile along the FBG for each optical wavelength [55]. 

In the presence of birefringence, two grating matrices, phase shift matrices, and 

input /output fields are assigned to two polarization modes. 
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The elements of the grating matrices 퐹 ( …. )  (j=x or y) are formed in equations 

5.1, 5.2, 5.3, 5.4 as, 

                                               T = cosh α L − 	( )
                                     (5.1) 

                                                T =	− κ 	( )
                                                       (5.2) 

                                                T =	 κ 	( )
                                                          (5.3) 

                                     T = cosh α L + 	( )
                                    (5.4)  

    

       퐹 =
cosh α Δz − 											− κ 	

										 κ 	( ) 																								cosh α Δz + 	( )	
          (5.5) 

 

The phase shift matrices PMj and PBj (j=x or y) of the reflection  matrices of two 

polarization modes are calculated as,  

                                             푃 = 푒
ø

				0

0						푒
ø                                                     (5.6) 

 

                                                ø = 푛 , 푧                                                 (5.7) 

 

In the case of mirror side of the optical path, the relation between output and 

input of the system is given as, 

 

                                       
푅 (0)
푆 (0) = 푃

푅 (푧 )
푆 (푧 ) 	                                      (5.8)                 

 

where RMj is the amplitude of the forward propagation mode, SMj is the amplitude of the 

backward propagating mode and PMj is the mirror phase shift matrix. 

The phase shift matrix PMj of the mirror is given as, 

                                           푃 = 푒
ø

				0

0						푒
ø                                                    (5.9) 

                                             ø = 푛 , 푧                                                 (5.10) 
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When the boundary conditions are applied, 

                                            푅 (0) = 1                                                        (5.11) 

 

                                            푆 (푧 ) = 푅 (푧 )푒                                        (5.12) 

 

                           
1

푆 (0) =
푃 				푃
푃 					푃

푅 (푧 )
푅 (푧 )푒

                        (5.13) 

 

 

The mirror reflection coefficient is given as, 

                              푅퐿 = 	푆 (0).풙 + 푆 (0).풚 

                                              = .풙 + . 풚         (5.14) 

 

For the optical path contains fiber Bragg grating, the transfer matrix (Tj) for the 

whole optical path is considered as the multiplication of the transfer matrices of all the 

individual FBG sections and express as, 

                                          푇 = 푃 퐹 ( ) ……퐹 ( )퐹 ( )                           (5.15) 

 

where PBj (j=x or y) is Bragg phase shift matrix and given as, 

                                        푃 = 푒
ø

				0

0						푒
ø                                                     (5.16) 

 

                                         ø = 푛 , 푧                                                      (5.17) 

 

The relation between input and output of the Bragg system for the two 

polarization mode is defined by the equation 5.18, 

                                 
푅 (0)
푆 (0) = 푇

푅 (푧 )
푆 (푧 )                                                (5.18) 

 

where RBj is the amplitude of the forward propagating mode and SBj is the amplitude of 

the backward propagating modes.  
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The boundary conditions for the Bragg system will be defined as, 

                                              푅 (0) = 푎 푒                                               (5.19) 

                                              푅 (0) = 푎 푒                                              (5.20) 

                                              푆 (푧 ) = 0                                                      (5.21) 

                                              푆 (푧 ) = 0                                                      (5.22) 

 

where the amplitude and the phase of the two polarization state are expressed as aj and 

φj (j=x or y), respectively, 

When the boundary condition is applied on equation 5.18, the reflection 

coefficient for Bragg grating can be obtained as, 

                                     푅퐿 = 푆 (0). 풙 + 푆 (0). 풚 

                                               = 푎 푒 . 풙 + 푎 푒 . 풚                   (5.23) 

 

The transmission coefficient of the Bragg grating is obtained as, 

 

                                                푇 = 푅 (푧 ). 풙 + 푅 (푧 ). 풚  

                                                         = 푎 푒 . 풙 + 푎 푒 . 풚                     (5.24) 

 

The obtained detector signal can be expressed as, 

                                               퐷 = |푅퐿 + 푅퐿 |                                          (5.25) 
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 An Example For Numerical Simulations 
 

For the following example, in order to obtain a clear understanding about 

observed signal of the birefringent FBGs in the OFDR system, the analytical signal of 

FBG response is studied by numerical simulations [56]. At the simulation, the fiber is 

written into a high birefringent fiber (Δn = 1.2 10-4). The schematic of the system shown 

in Figure 5.1 is explained in detailed in the section 5.1. 

In this case, the amplitude and phase of the two polarization modes equal aj= 1, 

휑 = 0 (j=x or y), respectively. A Hanning window with a wavelength range of 400pm 

is applied for the signal processing. The spatial resolution was approximately 0.6mm. 

The window slide was set as 5 pm. The sampling rate of the wavelength was 

approximately 0.0827 pm.   

For the numerical simulation the parameters are as follows, 

 

Table 5.1. Parameters used in numerical simulation 

 

Visibility 0.394 

neff  1.45 

N (Number of FBG section) 100 

L (Length of fiber Bragg 

Grating) 

100mm 

z0 (absolute mirror location) 1m 

z1 (absolute FBG location)  4m 

Laser sweep range  1549-1554 nm 

NoP (Number of Point) 25059 

κ  (AC coupling coefficient) 1.42 

Δn(Birefringence value) 1.2 10-4 
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In Figure 5.2 and 5.3 reflection amplitude of x and y polarization modes and 

power of detector signal (D1) are presented where the split between the two polarization 

modes is equal to 240pm. 

 

 

 
Figure 5.2. Evolution of reflection spectrum of two polarization mode 
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Figure 5.3. Evolution of detector signal 

 

Figure 5.4.  Simulated beat spectrum converted to distance scale 

 

Simulated beat spectrum of the photodetector can be seen from the Figure 5.4. 

Intensity detected by the photodetector in above explained system is a wavenumber 

dependent sinusoidal function with a constant frequency called beat frequency. The beat 

frequency can be expressed as,  

                                                               훥푘 =                                                (5.26) 
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Figure 5.5 shows the power fluctuations when 240 pm Bragg wavelength splits 

are applied, the Bragg peaks of two polarization modes are district from each other The 

periodical power fluctuations can also be clearly observed on the spectrogram. For the 

240 pm split, the Bragg peaks of the two polarization modes are rather distinct 

compared with the power fluctuation which is seen between the two peaks. The 

maximum power of the power fluctuation is approximately 50% of that of the two 

Bragg peaks. This indicates that birefringence is directly detectable when the Bragg 

wavelength split is more than 200 pm.  

 

Figure 5.5. Spectrogram of FBG with 240pm wavelength splits 
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The main idea behind the proposed study is to interrogate polarization properties 

of Bragg gratings. In the framework of this thesis the study is first focused on PDL. The 

reason for that, the PDL has been shown as responsive to transversal strain in the 

literature [53]. Therefore interrogation of this parameter is promising in strain sensor 

applications. 
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The most important feature of our proposed system that distinguishes from the 

other systems is the capability to interrogate polarization dependent loss in quasi-

distributed manner (by using OFDR). 

Figure 5.6 shows the schematic of the proposed system to evaluate polarization 

dependent loss. In this system, a tunable laser source, a coupler, one fiber Bragg grating, 

a beam splitter and two OFDR units are used. 

In order to obtain the polarization dependent loss, it is needed to access 

transmission spectrum of Bragg grating for both polarization modes. In our model the 

tunable laser source is swept the wavelength λ of the incident light. The modulated 

optical signal is then split at the coupler into mirror and test arms. Reflected light from 

mirror and transmitted light from FBG (optical path of reflected signal from mirror and 

transmitted signal from Bragg grating is equal to each other) are interfered. Two 

components corresponding to two polarization modes are separated by the way of 

polarization beam splitter.   Finally, interference signals are observed on photodetector 

x and photodetector y, separately.  

 

 

 
 

                                                                                
 
 

 

                                                                                   
 
 

  
 
 

               

               
 
                 

Figure 5.6. Schematic representation of proposed C-OFDR system 
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By using equations obtained in section 5.2, output signals calculated at detector 

x and detector y can be provided.  

In the reference arm of the system reflected light from the mirror is calculated 

as, 

                                                 푅퐿 , = .풙                                 (5.27) 

                                                 푅퐿 , = . 풚                                (5.28) 

 

where 푃  and 푃  are the phase shift matrix for the optical path contains mirror.  

 

                                               푃 = 푒 ( , )				0
0							푒( , )	

                                          (5.29) 

 

For the optical path with FBG, transmitted light is calculated with respected 

boundary conditions in section 5.2 as, 

 

                                                  푇 , = 푎 푒 . 풙                                            (5.30) 

                                                  푇 , = 푎 푒 . 풚                                           (5.31) 

 

where 푎 ,  휑  (j=x or y) are the amplitude and phase of the  polarization state of the 

input signal and 푇  denotes the elements of transfer matrix , Tj.  

Finally the output signal can be expressed by taking the absolute square of 

coupled signals reflected from reference path and transmitted from test path. The 

obtained signal Dx and Dy were calculated as, 

 

                                    퐷 = 푅퐿 , + 푇 ,                                       (5.32) 
              	
                                                퐷 = 푅퐿 , + 푇 ,                                      (5.33) 
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 Demodulation of Transmission Spectra 

 

The OFDR spectrum is obtained applying Fast Fourier transform (as explained 

in chapter 3) on the interference signals and power profile of the frequency component 

converted to the corresponding distance of fiber Bragg grating.  

In order to determine the demodulated transmission spectrum, inverse Fast 

Fourier transform steps (as represented at the chapter 3) are applied around the 

particular position of FBG by defining a proper window around beat frequency as 

shown in Figure 5.7.  

 

 

 

  

 

 

 

                                                                             
  

  

 

 

 

 

 
 

 

Figure 5.7. Demodulation scheme for the transmitted spectra 

 

Extracted transmission evolution from demodulation allows computing 

polarization dependent loss.  

  

                                                푃퐷퐿 = 10 log ( )
( )

                                        (5.34) 

                    푇 , (휆) = 퐷푒푚표푑푢푙푎푡푒푑	푃표푤푒푟	푇푟푎푛푠푚푖푠푠푖표푛	퐶표푒푓푓푖푐푖푒푛푡푠     (5.35) 
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5.4. Simulation Results of the Proposed System and Discussion 

 
In the following part, numerical simulations (based on the model explained in 

section 5.2) are performed to obtain polarization dependent loss by using our proposed 

scheme represented in Figure 5.6. The simulation results are then compared with the 

theoretical PDL values obtained by analytical expressions as presented in Chapter 4.The 

parameters for the numerical simulations of C-OFDR are as follows, 

The parameters for the numerical simulations of C-OFDR are as follows, 

 

Table 5.2. The parameters used in PDL simulation 
 

Visibility 0.5 

neff  (effective refractive index) 1.4514 

δn (Average refractive index 

modulation)  

1x 10-4 

Λ (Periodic refractive index 

modulation ) 

530x10-9 

Δn (Degree of Birefringence effect) 5x10-6 

z0 (absolute mirror location) 1 m 

z1 (absolute FBG location) 4 m 

L (Length of Bragg grating) 1 cm 

N (Number of FBG section) 100 

λBragg (Bragg wavelength) 1538.5 nm 

Laser sweep range 1538-1539 nm 

NoP (Number of Point) 214 

 
 
According to these parameters, the transmission spectrum of fiber Bragg grating 

with respect to two polarization modes is obtained in figure 5.9. Under low 

birefringence value (5x10-6) the Bragg wavelength shift is around 10 pm.  

In figure 5.10, first calculated PDL variation with calculated transfer matrix 

transmission coefficients are introduced and it shows that when the power transmission 

coefficient of two modes equal to each other than polarization dependent loss is zero.  
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Between two successive minimum values of power transmission coefficient the 

polarization dependent loss takes its maximum values at the corresponding wavelength.  

Second part of the figure 5.10 shows us the polarization dependent loss, calculated by 

power transmission coefficient achieved after demodulation process this result is 

matching with the calculated results.  

As a result, a fiber Bragg grating transmission spectrum is demodulated and the 

polarization dependent information is extracted by demodulating OFDR signal. 

 

Figure 5.8. OFDR trace in frequency domain (converted into position)  
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Figure 5.9.  Transmitted spectrum of FBG for x and y modes  

Figure 5.10. (a) PDL obtained by analytical calculations (b) simulated PDL 
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After that impact of Bragg grating parameters as length (L), periodic refractive 

index modulation (δn), and birefringence value on the spectral evaluation of 

polarization dependent loss is performed. 

 

Figure  5.11. Computed transmission spectrum of x and y mode as a function of grating 
length 

 
Figure 5.12. (a) PDL obtained by analytical calculations (b) simulated PDL as a 

function of grating length () 
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Figure 5.13. Computed transmission spectrum of x and y mode as a function of 
refractive index modulation 
 

 
Figure 5.14. (a) PDL obtained by analytical calculations (b) simulated PDL as a 

function of refractive index modulation 
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 The evolution of the transmitted spectrum and PDL with respect to the grating 

length is investigated in Figure 5.11 and 5.12. Figure 5.13 and 5.14 present the same 

evolution with respect to the refractive index modulation. The parameters used in the 

simulations are given in table 5.2.  

As shown on figures, grating length and the refractive index modulation results 

in the same effect on polarization dependent loss spectra. The peak amplitude is 

increased at the wavelength coincidence with the edge of the rejection band of 

transmitted spectra. For the long grating length and high refractive index modulation 

values, sharp PDL evolution with maximum values in the rejection band is obtained.   

The results obtained by analytical calculations is in a good agreement with the 

results obtained after the demodulations process for grating length variation, refractive 

index modulation and birefringence value variation.  

The effect of the birefringence value is studied in Figure 5.15 and 5.16. For Δn 

values less than 1 10−4 which corresponds to photo-induced birefringence values, the 

birefringence effect is not well perceived in the transmitted spectrum as the two 

transmitted spectra corresponding to the x and y modes is not split well enough. For the 

Δn value bigger than 1.5 10-4 the split between the two spectra can be observed and the 

amplitude remains unchanged.  

For Δn values up to 1x10−4, the maximum PDL values monotonically increase whereas 

the wavelength spacing between them slightly decreases. For Δn higher than 1x10−4, the 

maximum PDL saturate but the wavelength spacing between the peaks is increased. 
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Figure 5.15. Computed transmission spectrum of x and y mode as a function of 
birefringence value 

 

 

Figure 5.16. (a) PDL obtained analytical calculations (b) simulated PDL as a function of 
birefringence value 
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 Discussion 
 

Birefringence in fiber Bragg gratings can be produced by combining the intrinsic 

birefringence with the birefringence induced by UV writing process or birefringence 

induced by transversal load can [1], [2]. As shown in Figures 5.15 and 5.16, 

birefringence leads to polarization dependent loss in fiber Bragg gratings. Furthermore 

when a grating is subjected to transversal load, this effect leads to a modification in 

PDL evolution. Because birefringence value variation depends on applied transversal 

load. [2] 

The transversal load effect is studied in literature as shown in Figure 5.17 that 

less than 250 N transversal force value can be measured based on monitoring PDL 

evolution. The result of the figure can be associated with figure 5.16 that after 1x10-4 

birefringence value PDL amplitudes saturate and amplitude of PDL can’t answer the 

load variation.  

 

 
 

Figure 5.17. Evolution of maximum PDL value as a function of the measured transverse         
force value and reconstructed birefringence value [2] 

 
 

The PDL evolution results of literature are good agreement with the presented 

study and show that the proposed approach in this thesis can be used to monitor 

transversal load on the structure in distributed or quasi-distributed manner.  
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CHAPTER 6  

 

CONCLUSIONS 

 
The goal of this thesis is to demonstrate the feasibility of an original fiber Bragg 

grating interrogation scheme which is able to obtain polarization properties of FBGs by 

using OFDR. 

A theoretical model has been introduced and numerical simulations have been 

carried out to study the responses of uniform fiber Bragg grating interrogated by OFDR. 

In first chapter of the thesis, fundamentals of fiber Bragg gratings are studied. 

The effect of grating parameters (length, grating period,...) on the reflection spectrum is 

analyzed using analytical formulas. 

In the second chapter of the thesis, the state of the art covering various FBG 

interrogation methods is briefly presented. Optical Frequency Domain Reflectometry 

comes out to be a suitable technique for quasi-distributed sensor applications envisaged 

by this thesis. Therefore, after giving basic principles of OFDR, this chapter includes a 

mathematical analysis together with the numerical simulations of an OFDR system 

where a single FBG is used as the sensing element.   

In chapter four, preliminary studies have been conducted in order to include the 

effect of the birefringence in the proposed model.  Spectrograms have been obtained to 

study the power distribution along the FBG while taking both the polarization state of 

the input light beam and the birefringence of the FBG into consideration. 

Chapter five contains the main added-value of the thesis. In this chapter, we 

propose an original scheme to interrogate PDL of a number of cascaded FBGs by the 

way of polarization sensitive OFDR. Then, we analyzed the PDL of the FBGs by the 

way of numerical simulations. Our simulation results have shown a very good 

agreement with the theoretical results.  

In conclusion, our model and analysis have revealed the feasibility of an original 

scheme which is able to interrogate polarization dependent loss by optical frequency 

domain reflectometer. 

The results provide an important guidance in designing novel fiber optic sensors 

utilizing fiber gratings as the sensing element and OFDR as the interrogation unit. 
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 Perspectives 

 
 The results of the thesis open the door to an interesting application area, namely 

strain sensors monitoring composite materials. The use of optical fiber sensing, 

particularly embedding of fiber Bragg grating (FBG) sensors into composite materials 

has been gaining growing popularity thanks to various advantages of FBGs. For the 

development of smart structures, fiber Bragg gratings brought about a great 

contribution in many engineering fields (civil, aerospace, renewable energy, …). 

The use of composite materials in critical parts and high stress members 

(airplane wings, unmanned air vehicles, wind turbines…) has been exponentially 

growing thanks to their lightweight, superior strength, durability, and corrosion 

resistance. However, the unique mechanical properties of composite materials cannot be 

fully exploited without monitoring them when material is placed under constraints. This 

is because the behavior of composite materials under loading is different from metals 

and can rapidly degrade when internal damage occurs. It is therefore essential to 

monitor their behavior in the field or during manufacturing and prototyping for the 

purpose of improved performance, improved safety, and reduced cost. 

The occurrence and growth of damage in composite elements can be detected by 

continually measuring the mechanical load, stress and strain inside the structures.  

More than tens of fiber Bragg gratings can be cascaded in a single fiber. By 

combining the cascaded capability and compatibility with composite materials, optical 

fiber Bragg grating sensors are well suited to be embedded into composite materials 

without reforming their physical properties.  

In literature, sensitivity of polarization properties of FBG to the transversal 

strain is demonstrated in recent publications [3] [4]. However, none of the previously 

demonstrated reports using FBG sensors could exhibit quasi-distributed or distributed 

measurement capability which significantly limits their implementations into composite 

materials. The novel interrogation technique that we proposed in this thesis can be 

implemented in many applications related to the strain monitoring of composite 

materials. 
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APPENDIX A 
 

COUPLE MODE THEORY 

 
Let us consider a fiber Bragg grating formed within the core of an optical fiber 

with an average refractive index ncore. The refractive index profile along the longitudinal 

axis of the optical fiber z can be expressed as,     

      

                               푛(푧) = 푛 (푧) + 훿푛(푧) 1 + 휈(푧)푐표푠 푧 + ø(푧)              (A.1) 
          

where 

• δn (z) is the average refractive index modulation (typical values lie between 

10−5 and 10−3); 

• ν (z) represents the visibility of the interference fringes (0<v<1); 

• Λ (z) is the periodicity of the refractive index modulation; 

• ø (z) represents the phase variation inside the fiber grating. 

 

Equation (A.1) allows to define different kinds of fiber gratings since the 

amplitude, periodicity and phase of the refractive index modulation evolve along the 

grating length. 

In the ideal-mode approximation to coupled-mode theory, the transverse 

component of the electric field assumed as a superposition of the ideal modes labeled j 

(i.e., the modes in an ideal waveguide with no grating perturbation), so that 

monochromatic wave equation is mathematically obtained as [1], 

 

퐸⃗ (푥, 푦, 푧, 푡) = ∑ 퐴 (푧) exp(푖훽 ) + 퐵 (푧)exp	(−푖훽 ) . 푒⃗ (푥, 푦)exp	(−푖휔푡)         (A.2) 

 

where Aj(z) and Bj(z)  are slowly varying amplitudes of the jth mode traveling in the +z 

and –z directions, respectively. The transverse mode fields might describe the cladding 

or radiation modes.  

 



 

89 
 

When the modes are orthogonal in an ideal waveguide, there do not occur 

energy exchange, the presence of a dielectric perturbation causes the modes to be 

coupled such that the amplitudes Aj and Bj of the jth mode evolve along the z axis:  

 

                              = i∑ A 	(K + K )exp i β − β z  

                                       +i∑ B 	(K − K )exp −i β + β z                              (A.3) 

                             = −i∑ A 	(K − K )exp i β + β z  

                                      −i∑ B 	(K + K )exp −i β − β z                               (A.4) 

 

퐾 are the transverse coupling coefficients between modes j and k can be 

calculated by using overlapping integrals: 

 
                            K (z) = ∬ dxdy∆ε(x, y, z)푒⃗ (푥, 푦). 푒⃗∗ (푥, 푦)                         (A.5) 

 

where ∆ε (x, y, z) is the perturbation of the electrical permittivity. Δϵ can be 

approximated to 2ncoreδn when δn ≪ ncore. The longitudinal coefficients 퐾 (z)	are 

analogous to 퐾  but generally 퐾  (z) ≪	퐾 (푧) for fiber modes so that these 

coefficients are commonly neglected.  

In most fiber gratings, the induced refractive index change is approximately 

uniform across the core and zero outside the core. So the two coupling coefficient, σ 

stands for the ’DC’ coupling coefficient (average over one period) and κ is the ’AC’ 

coupling coefficient are obtained as: 

 

                          σ (z) = δn (z)∬ dxdy푒⃗ (푥, 푦). 푒⃗∗ (푥, 푦)                    (A.6) 

 

                          κ (z) = σ (z) = δn (z)∬ dxdy푒⃗ (푥, 푦). 푒⃗∗ (푥, 푦)   (A.7) 

 

Thus the general coupling coefficient will be defined:  

 

                         K (z) = σ (z) + 2κ (z)cos z + ø(z)                                       (A.8) 
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By this theory, a series of differential equations of the first order presenting the 

amplitude variation resultant of the mode coupling of the different modes propagating 

along the optical fiber is obtained. For a uniform fiber Bragg grating which has uniform 

and periodic perturbation has an analytical solution and occurs coupling between a 

mode of amplitude A(z) and an identical mode propagating in the opposite direction of 

amplitude B(z).  

As a result of the calculations, the coupled mode theory gives following 

equations: 

                                            = 푖휎푅(푧) + 푖κS(z)                                                     (A.9) 

                                            = −푖휎푆(푧) − 푖κR(z)                                                (A.10) 

 
Finally amplitudes R(z) and S(z) are defined as: 
 

 
                                           푅(푧) = 퐴(푧)exp	(푖훿푧 − ø)                                            (A.11) 

                                           푆(푧) = 퐵(푧)exp	(−푖훿푧 + ø)                                          (A.12) 

 

In these equations the parameters are defined by the following relationships: 

 

Self coupling coefficient                     σ = δ + σ                                                      (A.13) 

AC coupling coefficient                       κ = π
λ

υδn                                                      (A.14)              

Tuning rate                                 δ = β − π
Λ
= 2πn (	

λ
−

λ
 )                           (A.15)  

DC coupling coefficient                        σ = π
λ

δn                                                     (A.16) 

                                               α = κ − σ                                                  (A.17) 

                         

For a uniform fiber Bragg grating, the parameters ˆσ, σ and κ do not depend on 

the variable z. The system of differential equations is thus solved by specifying 

appropriate boundary conditions. The first condition considers that the incident light is 

normalized to 1 so that R(0)=1. The second condition sets S(z)=0 since the backward-

going wave does not exist further than the grating length L. With these two conditions, 

the following results are obtained: 
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                       푅(푧) = 푅(0) cos(훼푧) + 푖 sinh(훼푧) + 푆(0)푖 κ sinh(훼푧)             (A.18) 

           푆(푧) = 푆(0) cos(훼푧) − 푖 sinh(훼푧) − 푅(0)푖 κ sinh(훼푧)             (A.19) 

 

The amplitude evolution of the incident and reflected waves along the grating 

can be presented in the matrix form as shown in equation A.20, 

 

                                             R
(0)
S(0)  = T 	T

T T   R
(z)
S(z)                                (A.20)                        

      

Elements of transfer matrix are determined as: 

 

                                                T = cosh(αL) − 	( )                                     (A.21) 

                                                T =	− κ 	( )                                                     (A.22) 

                                                T =	 κ 	( )                                                        (A.23) 

                                                T = cosh(αz) + 	( )                                     (A.24) 

 

These coefficients of the matrix will help us to determine reflection and 

transmission coefficients belong to Bragg grating. 
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APPENDIX B 

 

          THEORY OF FMCW INTERFERENCE 

 
 

 
 
 
 
 
 
 
 
 
  
 

 
Figure B.1 Basic C-OFDR scheme 

 
As shown in figure probe signal is launched into the system and divided into two 

optical path as reference and test arm [33]. 

The probe signal is a continuous wave coming from frequency modulated light 

source and complex electric field of the probe signal can be expressed as, 

 

                                           E(t)=E0exp(jø(t))                                                  (B.1) 

 

where E0 is the amplitude of electric field and ø(t) is the phase component. The 

conversion from time domain to wavenumber domain is started with the equation,  

 

                                                푡 = = 푧                                                   (B.2) 

 

where n is the effective refractive index of the optical fiber.  

 

Laser 

Detector 

t 

coupler 

 Local Oscillator 

 (Reference arm) 

Device Under Test  

      (Test Arm) 
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The angular frequency which is the first derivative of phase component is 

defined as,  

                                                  휔(푡) = ø                                                      (B.3) 

                                                  휔(푧) = ø                                                  (B.4) 

 

 

 

 

 

 

   

 

 

 

Figure B.2. Test and reference signal interferency scheme 

 

Using sawtooth-wave optical frequency modulated interference which affects 

the beat term of the interference signal generates periodically ramped waveform due to 

the two interfering wave’s optical frequency [35]. 

As the angular frequency of the probe signal’s optical frequency swept linearly 

in time and can be expressed as, 

 

                                             휔(푡) = 2휋(훾 푡 + 휔 )                                        (B.5) 

 

The angular frequency can be written as, 

 

                                            휔(푧) = 2휋(훾 + 휈 )                                     (B.6) 

 

where ω0 is the initial angular frequency, ν0 is the initial optical frequency and γν is the 

tuning rate in Hz/s and γk is the tuning rate in 1/m2.   

 

                                 γ	 = 	     ;   γ	 = 	                                             (B.7) 

z 

λ 

  Zswp 

References 

Signal 

Test Signal 

kfinal 

k0 

 Δz 

Δvk 

훾  

0 
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where Tswp is the period of modulating signal in time domain and Zswp is the period by 

means of distance. 

So the phase component will be converted as,  

 

                                       ø(푡) = ∫ 휔(푢)푑푢 +ø                                             (B.8) 

 

                                       ø(푧) = 2휋∫ 훾 푢 + 휈 푑푢                           (B.9) 

 

Finally the phase will be, 
 

                                       ø(푧) = 푧 훾 + 휈 푧                                (B.10) 
 

 
So the electric field of reflected signal from local oscillator (Eref(z)) is expressed 

as, 

                           퐸 (푧) = 퐸 exp 푗ø(푧)                                               (B.11) 

 

                           퐸 (푧) = 퐸 exp 푧 훾 + 휈 푧                  (B.12) 

 
The electrical field of reflected signal from device under test (from discrete 

reflections- Etest(z)) is expressed as, 

 

                           퐸 (푧) = 퐸 exp 푗ø(푧 − 퐿)                                       (B.13) 

 

         퐸 (푧) = 퐸 exp (푧 − 퐿) 훾 + 휈 (푧 − 퐿)              (B.14) 
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The intensity of interference signal computed at the detector is the sum of 

individual electrical fields and can be defined as,  

 

                              퐷(푧) = 퐸 (푧) + 퐸 (푧)                                          (B.15) 

 

                      퐷(푧) = 퐸 (푧) + 퐸 (푧) 퐸 (푧) + 퐸 (푧)
∗
               (B.16) 

 

The obtained interference signal can be described as,  

 

                                           퐷 = cos	 2푛 푘퐿                                             (B.17) 

 

 


