

PARALLELIZATION OF A NOVEL FREQUENT

ITEMSET HIDING ALGORITHM ON A CPU-GPU

PLATFORM

A Thesis Submitted to

the Graduate School of Engineering and Sciences of

İzmir Institute of Technology

in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

in Computer Engineering

by

Samuel Bacha HEYE

May 2014

IZMIR

We approve the thesis of Samuel Bacha HEYE

Examining Committee Members:

Asst. Prof. Dr. Tolga AYAV

Department of Computer Engineering, Izmir Institute of Technology

Asst. Prof. Dr. Belgin ERGENÇ

Department of Computer Engineering, Izmir Institute of Technology

Asst. Prof. Dr. Şevket GÜMÜŞTEKIN

Department of Electrical and Electronics Engineering, Izmir Institute of Technology

29 May 2014

Asst. Prof. Dr. Tolga AYAV

Supervisor, Department of Computer Engineering, Izmir Institute of Technology

________________________________ __________________________________

Prof. Dr. Sıtkı AYTAÇ

Head of the Department of Computer

Engineering

Prof. Dr. R. Tuğrul SENGER

Dean of the Graduate School of

Engineering and Sciences

ACKNOWLEDGMENTS

I would like to thank my advisor Assit. Prof. Dr. Tolga Ayav for coming up with

the thesis idea and the algorithm for hiding of sensitive frequent itemsets as well as for

his guidance and support to make me implement the sensitive frequent itemset hiding

algorithm on a CPU-GPU platform. I would also like to thank my family for their

continuous support throughout my life. My special thanks go to Juhar Abdella and

Tesfa Guchale for helping me to finalize the binding of my Thesis.

iv

ABSTRACT

PARALLELIZATION OF A NOVEL FREQUENT ITEMSET HIDING

ALGORITHM ON A CPU-GPU PLATFORM

Data mining is used to extract useful information from large data. But the

organizations which mine the data might not be the owner of the data. So, before the

owners can make their data accessible for data mining they want to make sure that no

sensitive information can be mined from the released data whose discovery by others

might harm them. Itemset hiding is one mechanism to prevent the disclosure of

sensitive itemsets. In this thesis, a new integer programing based itemset hiding

algorithm was developed and a mechanism to speed up the computation time of its

implementation was proposed by using parallel computation on Graphical Processing

Units (GPUs).

v

ÖZET

YENI BIR SIK KÜMELERI GIZLEME ALGORITMASININ CPU-GPU

PLAFORMU ÜZERINDE PARALLELLEŞTIRILMESI

Veri madenciliği büyük veriden yararlı bilgileri ayıklamak için kullanılır. Ancak

veriyi ayıklayan örgütler verinin sahibi olmayabilirler. Bu yüzden,veriyi Veri

madenciliği için erişilebilir yapmadan önce veri sahipleri serbest bırakılan veriden

hassas bilgilerin ayıklamadığından emin olmak istiyorlar. Itemset gizleme hassas

itemset'lerinin açıklanmasını önlenmek için bir mekanizmadır. Bu tezde, yeni bir

tamsayı programlama tabanlı Itemset gizleme algoritması geliştirilmiştir ve hesaplama

zamanını hızlandırmak için Grafik İşleme Birimi (GPU) üzerinde paralel hesaplama

kullanarak bir mekanizma önerilmiştir.

vi

TABLE OF CONTENTS

LIST OF FIGURES ... ix

LIST OF TABLES ... xi

CHAPTER 1. INTRODUCTION ... 1

CHAPTER 2. LITERATURE REVIEW .. 3

2.1. Data Mining .. 3

2.2. Association Rule Mining .. 4

2.2.1. Application Areas of Association Rules ... 4

2.2.2. The Apriori Algorithm for Association Rule Mining 5

2.3. Privacy Preserving Data Mining... 10

2.4. Algorithms for Privacy Preserving Association Rule Mining 10

2.4.1. Heuristic Algorithms ... 11

2.4.2. Border-based approaches .. 11

2.4.3. Exact Approaches .. 12

2.5. Optimization ... 13

2.6. Integer Programming .. 14

2.6.1. Formulation of Integer Programming Problems 15

2.6.2. Algorithms for Solving IP problems ... 15

2.6.2.1. Exact Algorithms for solving Integer Programs 16

2.6.2.2. Heuristic Algorithms for solving Integer Programs 24

2.7. Linear Programming Problems ... 25

2.7.1. Graphical Approach .. 25

2.7.2. Simplex Method .. 27

2.7.2.1. Basic Feasible Solution .. 28

2.7.2.2. Format of Input LP Problem to the Simplex Method 28

2.7.2.3. Theory of the Simplex Method .. 29

2.7.2.4. The Simplex Tableau ... 32

2.7.2.5. Algebraic derivation of the simplex method 35

2.7.2.6. The Revised Simplex Method .. 37

vii

2.7.2.7. Finding an Initial Basis .. 38

2.7.2.7. Special Cases in the Simplex Algorithm 40

2.7.3. Interior Point Algorithms .. 42

2.7.4. Simplex vs Interior Point .. 43

2.8. Literature Review on GPUs .. 43

2.8.1. Introduction to Parallel Systems ... 43

2.8.2. Introduction to GPUs .. 43

2.8.3. GPU vs CPU ... 44

2.8.4. GPGPU .. 45

2.8.5. OpenCL vs CUDA .. 47

2.8.6. OpenCL ... 48

2.8.6.1. Some OpenCL Terminologies .. 48

2.8.6.2. Steps for Writing an Application in OpenCL for a

Heterogeneous System .. 51

2.8.7. CPU+GPU Co-processing ... 51

2.9. Literature review on parallelization of optimization problems on

GPU .. 52

CHAPTER 3. METHODOLOGY .. 55

3.1. The Proposed IP based Itemset Hiding (Sanitization) Algorithm 55

3.1.1. Inputs to the Proposed Itemset Hiding (Sanitization) Algorithm .. 55

3.1.2. Terminologies Used To Express the Proposed Itemset Hiding

Algorithm ... 57

3.1.3. Objective of the Proposed Itemset Hiding Algorithm 59

3.1.4. Constraints on the Proposed Itemset Hiding(Sanitization)

Algorithm ... 59

3.1.5. The IP Problem for Sanitizing Datasets with Minimum Side-

Effect .. 61

3.1.6. The Standard Form of the Proposed IP Problem 62

3.2. Steps for Sanitizing an Input Dataset Using the Proposed Itemset

Hiding (Sanitization) Algorithm... 63

3.3. Generation of the Inputs to our Itemset Hiding Algorithm 64

3.4. The Proposed Architecture for Solving the Formulated IP problem .. 64

3.5. Summary of tasks done on CPU ... 65

3.6. Summary of All Tasks Done on GPU .. 81

viii

3.7. Sample Interactions with the Itemset Hiding(Sanitization) Program . 85

3.8. Hardware Used ... 87

3.9. Software Used .. 87

CHAPTER 4. RESULTS .. 88

4.1. Formulation of the Sanitization IP problem 88

4.2. Solving of Linear Programming (LP) Problems................................. 90

4.3. Solving of Integer Programming (IP) Problems 92

4.4. Sanitization of Datasets .. 93

4.4.1. Experiment 1 ... 93

4.4.2. Experiment 2 ... 97

4.5. Implementation on a CPU-GPU platform .. 102

CHAPTER 5. DISCUSSION AND CONCLUSION ... 109

REFERENCES ... 111

ix

LIST OF FIGURES

Figure Page

Figure 2.1 The Apriori Algorithm (frequent itemset generation phase) 6

Figure 2.2. Itemset Lattice .. 6

Figure 2.3. Tree structure of the itemsets ... 7

Figure 2.4. The original border separating frequent and infrequent itemsets 12

Figure 2.5. Revised border separating frequent and infrequent itemsets 12

Figure 2.6. The initial node in the branch and bound algorithm 21

Figure 2.7. Branching on the first fractional variable 𝑥1 ... 22

Figure 2.8. Solution sub-sets after branching on 𝑥1 of node 1 22

Figure 2.9. Pruning of node 3 as it gave integral solution and updating of the upper

bound .. 23

Figure 2.10. Solution subsets after branching on 𝑥2 of node 2 and the pruning of node

5 as it is infeasible and the pruning of node 6 as it is non-promising 23

Figure 2.11. The feasible region of the given LP problem. .. 26

Figure 2.12. The simplex Tableau .. 32

Figure 2.13. Tableau 1 .. 34

Figure 2.14. Tableau 2 .. 35

Figure 2.15. GPU vs CPU ... 45

Figure 2.16. OpenCL Platform Model .. 50

Figure 2.17. OpenCL Execution Model .. 50

Figure 2.18. OpenCL Memory Model .. 51

Figure 3.1. The procedures for sanitizing an input dataset ... 64

Figure 3.2. A CPU-GPU platform for parallelizing the branch and bound method 66

Figure 3.3. Summary of Function calls on the CPU code .. 81

Figure 3.4. Summary of function calls on the GPU code ... 85

Figure 3.5. An input data set in market-basket format ... 85

Figure 3.6. Frequent Iemsets .. 86

Figure 3.7. Support of the frequent itemsets ... 86

Figure 3.8. Snapshot of the command window during sanitization of a small dataset ... 86

Figure 3.9. The binary form of the input dataset which was in market-basket format ... 87

Figure 3.10. The sanitized dataset in binary format ... 87

Figure 4.1. A dataset to verify the IP formulation .. 88

x

Figure 4.2. Frequent itemsets... 89

Figure 4.3. Support of the frequent itemsets ... 89

Figure 4.4. The formulated IP problem for sanitization of the dataset 90

Figure 4.5. Screenshot of the solution obtained when solving the LP problem 91

Figure 4.6. Screenshot of the solution obtained when solving the IP problem 92

Figure 4.7. Sample dataset called small2 .. 93

Figure 4.8. Frequent itemsets in small2 ... 93

Figure 4.9. Support of the frequent itemsets ... 94

Figure 4.10. Items identified for removal to sanitize small2 .. 94

Figure 4.11. The sanitized version of small2 .. 95

Figure 4.12. Frequent itemsets in the sanitized version of small2 95

Figure 4.13. Performance of our sanitization algorithm for Experiment 1 96

Figure 4.14. A sample dataset for experiment 2 ... 97

Figure 4.15. The frequent itemsets in the dataset of experiment 2 99

Figure 4.16. The frequent itemsets in the sanitized version of the dataset of

experiment2 .. 100

Figure 4.17. Performance of our sanitization algorithm for Experiment 2 102

Figure 4.18. A sample dataset used to compare the performance of Implementation

of the sanitization algorithm on different platforms (CPU, GPU, CPU-

GPU) called small ... 103

Figure 4.19. Frequent itemsets in small.. 103

Figure 4.20. Support of the frequent itemsets ... 103

Figure 4.21. Screen shot of command window while trying sanitize sanitize the

dataset shown above using CPU only .. 104

Figure 4.22. The item identified for removal by our sanitization algorithm 104

Figure 4.23. The sanitized version of the dataset ... 104

Figure 4.24. Frequent itmestes in the sanitized version of ‘small’ dataset 105

Figure 4.25. Screen shot of the command window during sanitization of the dataset

using GPU only .. 106

Figure 4.26. Screen shot of the command window during sanitization of the dataset

using CPU-GPU platoform .. 107

Figure 4.27. Performance comparison of implementing the sanitization algorithm on

different platforms using the same sample dataset 108

xi

LIST OF TABLES

Table Page

Table 2.1. Example database(dataet) .. 7

Table 3.1. A sample dataset in market-basket format ... 55

Table 3.2. A sample dataset in binary format ... 56

Table 3.3. Format of an input dataset ... 56

Table 3.4. Sensitive Itemsets .. 57

Table 3.5. Non-Sensitive Itemsets .. 57

Table 3.6. sparse_matrix structure .. 67

Table 3.7. sparse-matrix2 structure ... 67

Table 3.8. cl_node structure .. 68

Table 3.9. A function for initialization of a GPU ... 69

Table 3.10. A function for formulation of the an IP problem which helps in

sanitization of an input dataset ... 70

Table 3.11. A function for solving IP problems using the branch and bound method ... 72

Table 3.12. A function for solving LP problems using the revised simplex method

without being given an initial basi c feasible solution 75

Table 3.13. A function for solving LP problem if given an initial basic feasible

solution ... 76

Table 3.14. A function for solving linear system of equations using LU

decomposition .. 78

Table 3.15. A function that performs the LU decomposition of a square matrix 80

Table 3.16. A function to branch on several IP nodes and compute their bounds in

parallel .. 82

Table 3.17. A function for branching on several IP nodes in parallel 83

Table 4.1. Performance of our sanitization algorithm for Experiment 1 96

Table 4.2. Performance of our sanitization algorithm for Experiment 1 101

Table 4.3. Performance of the implementation of the sanitization algorithm using

CPU platform only .. 105

Table 4.4. Performance of the implementation of the sanitization algorithm using

GPU platform only .. 106

Table 4.5. Performance of the implementation of the sanitization algorithm using

CPU-GPU platform combination ... 108

1

CHAPTER 1

 INTRODUCTION

Data mining is a technique used for extracting information from large data [1]. It

is used in a wide range of areas. There are different data mining algorithms and one of

them is association rule mining. Association rule mining is concerned with extraction of

association rules, which are implications of the form 𝑋 → 𝑌 [3]. Association rules are

used for various purposes with market basket analysis being one of them. The Apriori

algorithm can be used for mining of association rules.

Privacy preserving association rule mining (association rule hiding) is one area

of privacy preserving data mining which aims at preventing sensitive association rules

from being disclosed as a result of data mining carried out by third parties without

authorization or approval[8][10]. There are heuristic, border-based and exact association

rule hiding algorithms [9]. Since by hiding the frequent itemsets of a dataset which

result in sensitive association rules it is also possible to hide the sensitive association

rules, in this paper a new exact algorithm for hiding of such sensitive frequent itemsets

is proposed.

The proposedd IP based itemset hiding algorithm aims at minimizing the

number of items removed from the database, the number of non-sensitive itemsets

removed from transactions and the number of non-sensitive itemsets removed from the

database while meeting a number of constraints. The results of the implementation of

the proposed IP based sanitization algorithm shows that the algorithm successfully hides

sensitive itemsets from the input datasets with the least possible impact on the non-

sensitive itemsets.

Our dataset-sanitization algorithm involves solving of an integer programming

problem that specifies the goals and the constraints of the sanitization process. There are

exact and heuristic algorithms for solving of such integer programming problems[12].

But, since our itemset hiding approach is exact, i.e. since we want to obtain optimal and

not approximate solutions, one of the most commonly used exact algorithms called the

branch and bound algorithm was used. The bound phase of the branch and bound

algorithm requires linear programming(LP) problems to be solved. And among the

2

algorithms for solving linear programming problems the revised simplex method was

chosen[16].

Since integer programming problems are NP hard [13] and it may take quite a

long time to solve them, the use of GPU to offload some of the computation from the

CPU was proposed. The main way in which GPUs differ from CPUs is in the large

number of cores they posses which gives them the ability to execute several

computations in parallel[18]. Although GPUs were originally created for rendering

graphics, they are now also widely used for General Purpose computation. Among the

high level languages one can use to write programs for GPUs are Cuda and OpenCL. In

this thesis, OpenCL was used because while programs written using OpenCL have the

advantage of being portable, their performance was also found not to be affected due to

their portability[26]. One research shows that instead of doing all the computations on

CPU or GPU alone, if the computations are done on a CPU-GPU platform by switching

between the two platforms appropriately, a better performance gain is

obtained[22].Accordingly, our proposed CPU-GPU architecture also shows speedup

over the sanitization computations that are done only on CPU.

But, the use of GPUs was only feasible for small sanitization problems. This is

because for large sanitization problems, the sanitization IP problem will have lots of

constraints and variables. Attempting to solve such a large problem on GPU will make

the GPU run out of memory since memory efficient representations like sparse matrix

representations can’t be implemented on GPUs as GPUs (OpenCL) donot allow

dynamic memory allocations [38]. We will suggest at the end how this limitation can be

overcome in the future.

The rest of this paper is organized as follows: Section 2 discusses approaches for

hiding frequent itemsets(Association Rules) when datasets are mined using a branch of

data mining called association rule mining. Approaches for solving integer

programming (IP) and linear programming (LP) problems are also discussed in this

section since exact itemset hiding algorithms rely on solving such problems. At the end

of section 2 an introduction to GPUs is given and how GPUs have been used until now

to parallelize optimization problems like Integer Programming. In Section 3, we

introduce our proposed IP based sanitization algorithm and how it is implemented on a

CPU-GPU platform. In Section 4, we show the results of our implementation and in

Section 5, we summarize the achievements of our thesis and how remaining works can

be approached in the future.

3

CHAPTER 2

LITERATURE REVIEW

2.1. Data Mining

Due to advances in technology, large datasets with gigabytes or terabytes of data

are created or collected by the computer systems of different companies and institutions

[1]. These datasets can range from daily credit card transactions or CCTV recordings to

the terabyte of data that is generated by companies like NASA with its Earth

Observation satellites [2]. There usually exist potentially valuable information or

embedded knowledge within these huge data that can potentially make companies make

profits and scientists make discoveries. But extraction of this information is not trivial

because it usually gets obscured within the large data and if we can’t be able to extract

all or most of the embedded knowledge with in the huge data and if we merely store the

data, we will miss out on making the best use of the collected data.

Data mining is thus developed to solve this problem and it is a method of

analyzing a large data to identify potentially useful and previously unknown

relationships and patterns so as to create a useful summary of the data [1]. Without the

use of data mining it is difficult to extract those useful information and patterns because

they will be hidden with the large amount of data.

Data mining is used in a wide variety of areas such as targeted marketing,

weather forecasting, financial forecasting and medical diagnosis [2]. For example, a

supermarket can collect data on its customer’s transactions and after determining its

high value customers by data mining (which for instance may turn out to be people

within a certain age group or gender), then it can target its marketing to these customers.

Similarly, data mining can be used in medical diagnosis to predict the probability that a

cancer patient may respond to chemotherapy so as to avoid unnecessary costs if it is

applied to patients who don’t respond to it.

There are different types of data mining algorithms or procedures which take

data as input and produce output in the form of patterns [2]. The algorithms differ from

one another based on the following components i) the purpose of the data mining (e.g.

classification, clustering, association rule learning etc.) ii) the type of pattern or model

4

that they try to fit to the data iii) the objective function that they use to determine the

quality of fit of the suggested models or patterns iv) the mechanism that they use to

optimize (maximize/minimize) the objective function v) the data structures that they use

to store and retrieve the data

2.2. Association Rule Mining

Let 𝐼 = {𝑖1, 𝑖2, … , 𝑖𝑚} be a set of items. An association rule is an implication of

the form 𝑋 → 𝑌 where 𝑋 𝑈 𝑌 ⊆ 𝐼 , 𝑋 ∩ 𝑌 = ∅ and where 𝑋 and 𝑌 are a set of items

(Itemsets) from 𝐼 that are called antecedent and consequent respectively [3]. The

support of an association rule 𝑋 → 𝑌 is expressed as sup (𝑋 → 𝑌), which is equivalent

to sup(𝑋 𝑈 𝑌), and it denotes the number of transactions in the database that support

the rule. A database 𝐷 is said to support an association rule 𝑋 → 𝑌 if there exists a

transaction 𝑇 in the database such that𝑋 → 𝑌 ⊆ 𝑇.

It is important to note that association rules do not always hold [3]. For example,

the association rule 𝐵𝑟𝑒𝑎𝑑 → 𝐵𝑢𝑡𝑡𝑒𝑟 can’t hold 100% of the time because not

everyone who buys bread also buys butter. So, a quantity called confidence is used as a

measure of the probability of a rule holding at a given time or as the measure of the

degree of confidence we have on the correctness of the rule at a given time. For the rule

→ 𝑌 , its confidence is sup(𝑋 𝑈 𝑌)/ sup(𝑋) the confidence is the proportion of items

that support the rule from the set of itemsets that support its antecedent.

2.2.1. Application Areas of Association Rules

Association rules are mainly used for market basket analysis [3]. Market basket

analysis is the analysis of the market basket of customers to find associated products.

For example, after analyzing customer’s transactions, a store may find out 80% of

customers who buy bread also buy butter.

Association rules can help a store sale many items by offering discount to items

bought in pair. If the two items forming the pair are closely associated to each other,

customers will likely buy both of them when they are offered together, thus increasing

the number of items sold by the store. Another way a store can use association rules is

5

that it can place the two associated items side by side so that customers wishing to buy

one of the items will be reminded to also buy the other item.

2.2.2. The Apriori Algorithm for Association Rule Mining

There are different algorithms for mining association rules, i.e. rules whose

support and cofidence is above a user specified minimum threshol[3]. The most

common are Apriori[4], FP-Growth[5] and Eclat[6]. Here we will only discuss the

Apriori Algorithm as the focus of our thesis is on hiding frequent itemsets, which can

result in association rules we don’t want to be known, regardless of with what method

they were obtained and since Apriori is a well-known algorithm which can do the work

of obtaining frequent itemsets.

The Apriori algorithm finds all frequent itemsets, which are itemsets whose

support exceeds a minimum support threshold [3]. Then, it uses the frequent itemsets to

determine all rules whose confidence exceeds a minimum confidence threshold.

The Frequent Itemset Mining Phase

The Apriori algorithm starts from an empty set and identifies a set of candidate

itemsets of size 1 which can potentially be frequent [3]. Then it scans the database to

determine the support of these candidate itemsets. The candidates whose support

exceeds the minimum support threshold become frequent. After obtaining frequent

itemsets of size 1, it creates candidate itemsets of size 2 from the frequent itemsets of

size 1 by adding one more item to them. Again the support of the candidate itemsets is

determined by scanning the database, and those candidates whose support exceeds the

minimum support threshold will be added to the list of frequent itemsets. The process is

repeated using new frequent itemsets until no more frequent itemsets can be generated.

In general, the Apriori algorithm proceeds from a candidate itemsets of size Ck

to find frequent itemsets of size k whose support in the database exceeds the minimum

support threshold. Then, candidate itemsets of size k+1 are generated from the frequent

itemsets of size k by adding one more item to them. Having candidate itemset of size

k+1, the above procedures are repeated until no more candidate itemsets can be

generated by adding one more item to the previous frequent itemsets.

6

The Apriori algorithm terminates at the first encounter of no frequent itemsets of

size k because if an itemset of size k is infrequent, no superset of it can become frequent

[3]. In other words, if we have two itemsets X and Y, where 𝑋 ⊆ 𝑌 , it is obvious that

sup(𝑋) ≥ sup(𝑌) always holds and this implies if sup(𝑋) is below the minimum

support threshold, sup(𝑌) will also be below the minimum support threshold.

𝐶1 = {𝑖} 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑖 ∈ 𝐼

k = 1

while 𝐶𝑘 ≠ ∅

{

 Find support of 𝐶𝑘 in D

 Find frequent itemsets of size k 𝐹𝑘 s.t.

 𝐹𝑘 = { 𝑆 ∈ 𝐶𝑘 𝑠. 𝑡. sup(𝑆) > 𝑚𝑖𝑛𝑆𝑢𝑝}

 Generate candidate itemsets of size k+1 𝐶𝑘+1 from 𝐹𝑘

 k = k + 1

}

The frequent itemsets of the database are obtained as 𝐹1 ∪ 𝐹2 ∪ … . 𝐹𝑘−1

Figure 2.1 The Apriori Algorithm (frequent itemset generation phase)

If the set of items in our dataset are 𝐼 = {1,2,3}, then the set of itmsets that can

be formed from them form the following lattice [3].

Figure 2.2. Itemset Lattice

 {1,2,3}

{1,2} {1,3} {2,3}

{1} {2} {3}

 {}

7

And for the above lattice, there is a corresponding tree structure which encodes

every itemset in the lattice only once as shown in the figure below [3]. Every node in

the tree represents an itemset which contains items in the path from the root of the tree

to that node.

 3

 2 3 3

 1 2 3

 root

Figure 2.3. Tree structure of the itemsets

The tree structure makes generating candidate itemsets from frequent itemsets

efficient because candidate itemsets of size k+1 can be generated from every 2 itemsets

of size k having the same parent node in the tree. For instance, if 2 and 3 are frequent

itemsets of size 1, a candidate itemset of size 2 can be generated from them by adding 3

as a leaf of node 2.

The above tree structure can also be used to find the support of candidate

itemsets as follows. To determine the support of candidate itemsets of size k 𝐶𝑘 one

pass through the dataset is needed. And at the start of each pass, the support of the

candidate itemsets in 𝐶𝑘 will be set to zero. Then, for each transaction T in the database,

the support of those candidate itemsets which are supported by transaction T will be

incremented. This is done by following paths in the tree which contain the items in the

transaction T and if we reach nodes at level k of the tree, the support of itemsets in 𝐶𝑘

corresponding to those nodes will be incremented.

Example: The steps of the Apriori algorithm can be best understood using the

following example. Assume we are given the following database with 5 transactions and

4 items and we want to mine frequent itemsets using a minimum support threshold of 2.

Table 2.1. Example database(dataet)

 𝑖𝑖 𝑖2 𝑖3 𝑖4

𝑇1 1 1 0 0

𝑇2 0 0 1 0

𝑇3 0 0 0 1

𝑇4 1 1 1 0

𝑇5 1 1 1 1

8

Then

 𝐹0 = {}

 𝐶1 = {1}, {2}, {3}, {4} 𝑤𝑖𝑡ℎ 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 𝑜𝑓 3,3,3,2

 𝐹1 = {1}, {2}, {3}, {4}

 𝐶2 = {1,2}, {1,3}, {1,4}, {2,3}, {2,4}, {3,4} with support of 3,2,1,2,1,1

 𝐹2 = {1,2}, {1,3}, {2,3}

 𝐶3 = {1,2,3} 𝑤𝑖𝑡ℎ 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 𝑜𝑓 2

 𝐹3 = {1,2,3}

 𝐶4 = {} //STOP

The frequent itemsets of the database are then obtained as 𝐹1 ∪ 𝐹2 ∪

 𝐹3

The Association Rule generation phase

We already know that for every frequent itemset Z ,and 𝑋 ⊂ 𝑍, the rule 𝑋 →

(𝑍 − 𝑋) is added to our set of rules if
sup(𝑍)

sup(𝑋)
> 𝑚𝑖𝑛𝐶𝑜𝑛𝑓[3]. Let 𝑍 = 𝑋1 ∪ 𝑌1 = 𝑋2 ∪

𝑌2, then 𝑌1 = 𝑍 − 𝑋1 and 𝑌2 = 𝑍 − 𝑋2. If we have 𝑌2 ⊂ 𝑌1 ⊂ 𝑍, it implies 𝑋1 ⊂

𝑋2 ⊂ 𝑍 and sup(𝑋1) ≥ sup (𝑋2) . Then, if 𝑐𝑜𝑛𝑓(𝑋1 → 𝑌1) = sup(𝑍) /sup (𝑋1) >

minConf, then 𝑐𝑜𝑛𝑓(𝑋2 → 𝑌2) = sup(𝑍) /sup (𝑋2) will also be above minConf. And

if 𝑐𝑜𝑛𝑓(𝑋2 → 𝑌2) = sup(𝑍) /sup (𝑋2) < minConf, then 𝑐𝑜𝑛𝑓(𝑋1 → 𝑌1) =

sup(𝑍) /sup (𝑋1) will also be below minConf. In general, if a confidence of a rule with

a (k) consequent Y (i.e. Y containing k items) is below the minimum support threshold,

then the confidence of a rule with a (k+1) superset of Y as its consequent will also be

below the minimum support threshold.

The Apriori algorithm uses the above fact to prune rules which don’t satisfy the

minimum confidence threshold. For every frequent itemset, the Apriori algorithm starts

from an empty set and identifies candidate consequents of size 1 which are subset of the

frequent itemset. Then, for each candidate consequent, it finds subsets of the frequent

itemset to become the antecedents for rules and for those antecedents resulting in rules

with confidence above the minimum confidence threshold, the rules will be added to

9

our set of rules. Then for the same frequent itemset, we generate candidate consequents

of size 2 that are subsets of the frequent itemset. But here, we make sure the candidate

consequents are only from those supersets of the candidates of size 1 which were not

pruned during the previous step. Then, for each candidate consequent, we again find

antecedents resulting in rules with confidence above the minimum confidence threshold

and we add those rules to our set of rules. We continue the above procedures until the

candidate list is empty for each frequent itemset. The steps of rule generation using

Apriori algorithm are shown below [3].

For all 𝑍 ∈ 𝐹 //for all frequent itemsets

{

R = ∅ //i.e. initialize rules derived from the current frequent itemset to empty

 𝐶1 = { {𝑖} | 𝑖 ∈ 𝑌} //i.e. generate candidate consequents of size 1

While 𝐶𝑘 ≠ ∅ //i.e. while the list of candidate consequents is not empty

 {

 //Find antecedents resulting in a rule i.e.

 𝐴𝑘 = { 𝐴 ∈ (𝑍 − 𝐶𝑘) | 𝑐𝑜𝑛𝑓(𝐴 → (𝑍 − 𝐴)) > 𝑚𝑖𝑛𝐶𝑜𝑛𝑓}

 //Add rules containing the antecedents 𝐴𝑘 to our rules list

 𝑅 = 𝑅 ∪ {𝐴 → 𝑍 − 𝐴 | 𝐴 ∈ 𝐴𝑘}

//generate new candidate consequents of size k+1 using the consequents

of size k //that were part of the rules added at the previous step

𝐶𝑘+1 = candidateGeneration(𝑍 − 𝐴𝑘)

}

}

Note that while separating the Apriori algorithm into frequent itemset mining

and rule generation phases allows using different varieties of algorithms for each phase,

practically, the two steps are combined so that part of the mechanism used for rule

generation can also be used for finding frequent itemsets[3].

10

2.3. Privacy Preserving Data Mining

Most of existing data mining methods suffer from a side-effect in that they don’t

keep the privacy of individuals and organizations ([9], pp vii). So, an area of data

mining called privacy preserving data mining (PPDM) was developed to try to protect

sensitive information from unwanted or unapproved disclosure [8]. Among the early

works on privacy preserving data mining include the paper by Agrawal and Srinkat [7]

in which the authors suggest a mechanism of mining data to obtain aggregated data

without access to sensitive information in the data.

Privacy Preserving Data Mining includes both Data hiding and Knowledge

hiding methodologies ([9], pp vii). Data hiding methodologies are used to remove

sensitive data in the version of the data that will be given to data mining tools where as

knowledge hiding methodologies try to sanitize the data so that sensitive knowledge

can’t be mined from the released data using the current data mining tools.

2.4. Algorithms for Privacy Preserving Association Rule Mining

The three main goals of privacy preserving association rule mining (association

rule hiding) are the following [10]. I) Any rule that is considered sensitive and that can

be mined from the original dataset at a specified minimum support and confidence

values should not be mined from the sanitized database at the same minimum support

and confidence values ii) All non-sensitive rules that can be mined from the original

database at specified minimum support and confidence values should also be mined

from the sanitized database at the same minimum support and confidence values iii)

Any rule that can’t be mined from the original database at specified minimum support

and confidence values should not be mined from the sanitized database at the same

minimum support and confidence values i.e. no ghost rules should be created in the

sanitized database. In addition to the above three main goals association rule mining

algorithms are also desired to be scalable to handle large amount of data and not to have

an exponential time complexity.

Exact association rule hiding approaches try to meet all three main goals of

privacy preserving association rule mining listed above [10]. On the other hand, non-

exact hiding approaches try to provide an approximate feasible solution.

11

There are three main types of association rule hiding algorithms i) heuristic

algorithms ii) border-based algorithms iii) exact algorithms[9]

2.4.1. Heuristic Algorithms

 Heuristic algorithms are fast and efficient sanitization algorithms [11]. They can

be either data distortion techniques which work by replacing 1’s by 0’s or 0’s by 1’s or

they can be data blocking techniques which work by replacing 0’s or 1’s by unkowns

“?”. But these approaches suffer from unwanted side-effects in that the heuristics they

use usually make locally best decisions which may not be globally best and thus causing

heuristic approaches to find approximate solutions whose proximity to the optimal

solution can’t be guaranteed([9], chapter 3)

2.4.2. Border-based approaches

There exists a border that separates the frequent itemsets from the infrequent

ones in the lattice of all itemsets [9]. Moving this border to exclude sensitive itemsets

from the frequent itemsets will have an impact on non-sensitive frequent itemsets. So,

border-revision approaches try to revise the original border in such a way that sensitive

itemsets will be excluded from the frequent itemsets with minimal impact on the non-

sensitive itemsets i.e. with minimal impact on the original border.

For example, let us be given the items shown in the figure below where the

frequent itemsets are to the left of the border line where as the infrequent itemsets are to

the right of it. .And let the sensitive itemsets be S = {e, ae, bc}

12

Figure 2.4. The original border separating frequent and infrequent itemsets

The border revision technique revises the above border in such a way that the

new border excludes from the frequent itmesets the sensitive itemsets as well as their

supersets.

 A b c d e f

Ab ac ad cd bcc e ae be bd de

 Acd abc ace abe bce

Figure 2.5. Revised border separating frequent and infrequent itemsets

2.4.3. Exact Approaches

In exact approaches, association rule hiding is modelled as a constraint

satisfaction problem, which is solved using integer programming ([9], chapter 3). The

solutions obtained by these approaches are optimal solutions, which have minimal side-

effects during hiding of sensitive itemsets. Most of these approaches are derived from

border based approaches in that they try to minimize the effect on the border during

sanitization of the database under a set of constraints.

Examples of exact approaches include i) the inline algorithm which formulates a

measure of distance between the original and sanitized database and that tries to

minimize this distance. ii) the two-phase iterative algorithm in which during phase 1 the

inline algorithm is used for sensitive knowledge hiding and if the phase 1 fails, some

constraints are removed in phase 2 until the constraint satisfaction problem (CSP)

 A b c d e f

Ab ac ad cd bcc e ae be bd de

 Acd abc ace abe bce

Revised

border

original border

13

becomes feasible and iii) the hybrid algorithm in which carefully crafted transactions

are added to extend the original database that will enable hiding of sensitive patterns.

2.5. Optimization

Optimization problems are aimed at maximizing/minimizing some objectives

[15]. They arise in a variety of fields ranging from engineering to everyday activities

where the objective is to reduce the costs while attempting to maximize benefits. All

optimization problems can be expressed in the following general form.

maximize / minimize f(x) where x = (x1,x2,...,xn)

s.t. ∅𝑖(𝑥) = 0 for i = {1,2,...,K}

𝜑𝑗(𝑥) ≥ 0 for j = {1,2,...,L}

The variables x = {x1,x2,...,xn} are called decision variables and they can be

continuous, discrete or mixed. The function f(x) is called the objective function i.e. the

function to be optimized (maximized / minimized) [15]. The range of different

combination of values the decision variables can have is called the search space where

as the different values the objective function can have within this search space is called

solution space. ∅𝑖(𝑥) represents a set of K equality constraints and 𝜑𝑗(𝑥) represents a

set of L inequality constraints.

Some classification of optimization problems

If the constraints ∅𝑖(𝑥) and 𝜑𝑗(𝑥) are linear, the optimization problem is called

a linearly constrained problem [15]. If in addition to ∅𝑖(𝑥) and𝜑𝑗(𝑥), the objective

function f(x) is also linear, the optimization problem is called a Linear Programming

Problem (LIP). If in a linear programming problem, all decision variables are required

to be integers, the linear programming is called Integer Programming or Integer Linear

Programming (IP or LIP). Note the term programming in the above definitions is not

used in the computer programming sense and it is used to imply planning.

14

2.6. Integer Programming

Integer programming is a mechanism to model and solve discrete optimization

problems from various disciplines [13]. It is used to solve many real-life optimization

problems like the knap-sack problem and travelling salesman problem [12]. A

representation of an Integer Programming problem contains a set of constraints which

help to create the set of alternative feasible solutions and an objective function used to

determine the optimal solution among the set of candidate feasible solutions.

 A Linear Integer Programming Problem (LIP) is an integer programming (IP)

problem which has a linear objective function and a set of linear equalities as constraints

[12]. In this paper, when we talk about Integer Programming (IP) we are usually talking

about Linear Integer Programming (LIP) problem.

The general (canonical) form of Linear Integer Programming is given as follows

[12]:

 min 𝑐𝑥

s.t. 𝐴𝑥 ≤ 𝑏

x ≥ 0, x ∈ zn

where 𝑥 is a vector of n integers, A is a matrix of mxn dimension, b is a vector

of m numbers and c is a vector of n numbers

Linear Integer Programming (LIP) problems are different from Linear

Programming (LP) problems in that while LP problems have a convex feasible region,

LIP problems have a lattice of feasible integer points [12]. This means while a local

solution is also a global solution for LP problems, a local solution may not be global for

LIP problems. Thus, for LIP problems, an obtained local solution must be verified that

it is the global solution in order to be accepted as the optimal solution for the IP

problem.

15

2.6.1. Formulation of Integer Programming Problems

Optimization problems can be formulated as Integer Programming problems if

their feasible region is finite [14]. But it is important to note that there are many

optimization problems, even simple ones, which cannot be formulated as Integer

Program because their feasible region is infinite. The following example shows how an

Integer Programming problem can be formulated from a verbal formulation for the

traveling sales man problem.

The travelling salesman problem is verbally formulated as follows [14]. Given a

set of N vertices and arcs(i,j) between any two of the vertices s.t. i,j = 1,2,..,N and where

dij is the length of arc(i,j), then the objective is to find the shortest Hamiltonian circuit

that passes through all N vertices by touching each vertex at most once.

To convert the above verbal formulation into a combinatorial optimization

problem formulation, we need to introduce a binary variable 𝑥𝑖𝑗 where 𝑥𝑖𝑗 will be set to

1 if arc (i,j) is chosen to be in the Hamiltonian circuit. So, the travelling salesman

problem can now be formulated as the following combinatorial optimization problem.

 min ∑ 𝑑𝑖𝑗𝑥𝑖𝑗𝑖𝑗

 s.t. 𝑥 ∈ 𝑆

 where 𝑆 is the set 0-1 vector of of 𝑥𝑖𝑗 variables in a Hamiltonian circuit.

Finally, the above combinatorial optimization problem can be converted into an IP

problem as follows

 min ∑ 𝑑𝑖𝑗𝑥𝑖𝑗𝑖𝑗

 s.t. ∑ 𝑥𝑖𝑗 = 1𝑖 , for i = 1,2,...,N

 ∑ 𝑥𝑖𝑗 = 1𝑗 , for j = 1, 2... N

 𝑥𝑖𝑗 = 0 or 1, for i, j = 1, 2... N

2.6.2. Algorithms for Solving IP problems

Most integer programming problems are NP hard [13].NP hard problems are

problems for which no exact algorithm exists to solve them polynomially on the order

16

of the problem size [12]. However, there are a number of exact and approximate non-

polynomial algorithms devised to solve Integer Programming problems [12].

2.6.2.1. Exact Algorithms for solving Integer Programs

Exact approaches are based on identifying the mathematical structure exhibited

by a problem and analyzing the polyhedron associated with that structure. The major

categories of exact approaches are i) Cutting Plane Algorithms ii) Enumerative

Approaches, Branch And Bound, Branch And Cut And Branch And Price Methods and

iii) Relaxation And Decomposition Techniques[12].

I) Cutting Plane Algorithms

Cutting plane approaches work by representing the set of constraints in the IP

problem as a convex set of feasible points of the problem [12]. These set of feasible

points form the vertices of a convex polyhedron which is formed by intersection of a

finite number of half spaces where each half space comes from a particular constraint.

The steps for solving an IP problem using cutting planes method are as follows

[12]. First the integrality constraints on the variables of the IP problem are relaxed.

Then, the resulting linear program is solved over the constraints. If the linear program is

infeasible / unbounded, the IP problem is also infeasible/unbounded. But, if by luck, the

solution of the linear program turns out to be integral solution, then the obtained

solution is optimal solution for the IP problem. But, if the linear program doesn’t have a

feasible integral solution a ‘facet-identification problem’ will be solved (also called a

separation problem because we are trying to find a plane/facet that separates the non-

integral solution point from the rest of the feasible region). The solution of the ‘facet

identification problem’ generates a linear inequality which cuts-off the fractional IP

solution while keeping all other feasible integral solution points intact. In other words,

the fractional solution point is removed from the set of feasible solution vertices

composing a polyhedron. The algorithm stops if one of the following three conditions is

met:

i) if the solution of the LIP problem which is obtained as a result of relaxation

gives an integral solution

17

ii) if the IP is infeasible because the solution of LIP obtained by relaxing it is

infeasible

iii) if the facet-identification problem doesn’t generate a cutting-linear

inequality(a cut).

If the algorithm stops as a result of the third condition, it means the search area

has been narrowed to the maximum that no additional cut to further narrow it down can

be generated [12]. In this case, the solution obtained when the algorithm is terminated is

very close to the optimal integer solution value.

II) Enumerative Approaches

A) Explicit enumeration

Explicit enumeration is the simplest of the enumerative approaches [12]. In this

approach, all possible feasible solutions to the IP problem are enumerated before the

optimal solution is determined. This approach is applicable and feasible only if the list

of possible feasible solutions is small in number. The approach is not applicable for

large problems because as the size of the problem increases the list of possible solutions

increases exponentially. Some better enumerative algorithms for solving IP problems

are Branch and Bound, Branch and Cut and Branch and Price algorithms.

B) Branch and Bound

Introduction to Branch and Bound

Branch and bound is the most commonly used of the enumerative approaches

[12]. In the name branch and bound, branching refers to the enumeration part of the

algorithm while bounding refers to the fathoming of candidate solutions by comparing

them with the bounds on the objective function value. When fathoming candidate

solutions, the solutions’ objective values are compared with the upper bound for

minimization IP problems and with the lower bound for maximization problems. For

minimization problems, solutions whose objective value is higher than the upper bound

will be fathomed where as for maximization problems, solutions whose objective value

is lower than the lower bound will be fathomed.

18

Branch and bound implicitly (not explicitly) enumerates the possibly many but

finite number of feasible solutions of an ILP [13]. Even though the search tree increases

exponentially with the size of the problem, branch and bound is able to handle such

situations because it is able to eliminate and prune large number of infeasible solutions

and feasible solutions which are not optimal.

Branch and Bound Algorithm

The steps for solving IP problems using branch and bound algorithms are given

as follows [12]. First, the integrality constraints in the IP problem are dropped. Then,

the resulting linear program obtained by the relaxation of the integrality constraints is

solved. If the solution of the linear program luckily satisfies all the integrality

constraints, then it means an optimal solution has been found to the IP problem. But, if

the solution of the linear program is fractional, branching is performed to remove the

fractional solution while keeping all other feasible integer solutions. The branching

creates a search tree where the optimal solution is going to be searched and a linear

program is solved for each node in the tree. Nodes in the search tree are fathomed if

their LP solution is infeasible or if their LP solution is an integral solution better than

the existing incumbent integral solution or if their LP solution is integral solution but

worse than a known (the incumbent) integer solution.

The above steps can be expressed in the following compact algorithm form [13].

1. Choose one or more sub problems from the list of all candidate sub problems

that may give the solution of the IP problem.

2. Solve the chosen sub problem/ sub problems without the integrality constraints.

(This process is also called relaxation and is needed because the candidate sub

problems are usually hard to solve.)

3. Fathom one or more of the chosen sub problems if the sub problems i) are

infeasible ii)give non-integral solutions which don’t promise a better solution

than the current incumbent solution(best integral solution) iii) give an integral

solution better than the current incumbent solution iv) give an integral solution

which is not better than the current incumbent integral solution.

4. Apply branching on the unfathomed problems to create sub problems that will

be added to the list of sub problems. (Branching is done by choosing a branching

19

variable and dividing the problem based on the possible values the variable can

have.)

5. Repeat steps 1 to 4 until the candidate list is empty

Among the factors affecting the performance of branch and bound implementations

are the use of efficient means to solve relaxations, the use of a good strategy for

choosing the most promising candidate sub-problems at each iteration and the use of

efficient branching strategy that will help to limit unnecessary expansion of the search

tree [13].

Sequential implementations of the branch and bound algorithm choose only one sub

problem for processing in a particular iteration of the branch and bound algorithm while

parallel implementations of the branch and bound algorithm, on the other hand, choose

multiple sub problems to be processed simultaneously in a single iteration of the branch

and bound algorithm[13].

Sub-problem selection strategies for Branch and Bound

Note that in step 1 of the branch and bound algorithm we saw earlier, we

initially have only one ILP in the candidate list, the input ILP [13], so we initially

branch from the node corresponding to this ILP. But, during subsequent iterations of the

branch and bound algorithm, many sub problems of the original ILP will be created.

Thus, a selection rule is needed to choose a sub-problem/node for branching from the

list of all candidate sub-problems at each iteration. The two most common sub-problem

selection rules or candidate sub problem selection strategies are Depth First Search

(DFS) and Best First Search (BFS).

DFS chooses the sub-problem/sub-problems recently added to the candidate list.

It is a last in first out (LIFO) approach where candidates added last to the candidate list

will be processed first. It is called depth first because each chosen candidate sub

problem in the search process increases the depth of the search tree [13].

BFS chooses the candidate with the best bound i.e. for minimization IP

problems it chooses the candidate with the least lower bound and for maximization IP

problems it chooses the candidate with the highest upper bound. If multiple candidates

have equal lower or upper bound, then a last in first out rule (LIFO) is used to break the

tie [13].

One difference between BFS and DFS approaches is that BFS requires the

bounds to be computed for all sub-problems in the candidate list [13]. To ensure that all

20

candidates have their bounds computed, the relaxation of each sub-problem is computed

before it is added to the candidate list. Another difference between the two search

approaches is that BFS is suitable when our target is to minimize the number of

candidate problems solved while DFS is suitable if our target is to reach the end of the

search tree fast so that in the best case, in the case where an integral solution is obtained

in the first leaf at the end of the search tree, the time to solve the problem is minimized.

Branching variable selection strategies

Some of the most commonly used branching strategies are listed below.

1) Greedy branching

In the greedy branching strategy, branching is done on the first fractional

variable that is encountered.

2) Most infeasible branching

In the most infeasible branching strategy, the variable whose fractional part is

closest to 0.5 is chosen for branching [27] i.e. the branching strategy tries to select the

variable which is difficult to determine if it is close to its rounded down number or it’s

rounded up number. But, this branching approach doesn’t result in a better performance

than selecting the branching variable randomly.

3) Pseudo cost branching

Among the fractional variables, pseudo cost branching chooses the one which

had the greatest improvement in the objective function when it was previously chosen

as branching variable [27]. This branching strategy is a sophisticated branching strategy

that needs to store the history of the variables impact on the objective function in order

to choose the variable which historically produced the greatest improvement for

branching.

4) Strong branching

Strong branching tests all the fractional variables for the maximum improvement

that they can provide to the objective function if they are chosen as branching variable.

To test the fractional variables, it temporarily branches on them and solves the resulting

problems by relaxing the integrality constraints [27]. The variable, if we branch on it

and solve its two sub-problems, which gives the biggest improvement in the objective

function, will be selected for branching.

21

In conclusion, among the branching strategies strong branching in general

results in small number of branches but the computational time spent on each node is

long [27]. The branching strategy which was experimentally determined to result in the

least computational time was pseudo cost branching.

Example

The following example shows the steps of the branch and bound algorithm.

Assume we are given the following IP problem.

We first begin the branch and bound algorithm by solving the problem as a regular

linear programming problem without the integrality constraints. The solution we obtain

is x1 = 0.31, x2 = 4.04, min z = -11.5. The lower bound then becomes LB = -11.5 and

the upper bound will at first be initialized to infinity. So, node 1 appears like in this

figure.

LB = -11.5 (𝑥1 = 0.31, 𝑥2 = 4.04) UB=∞

Figure 2.6. The initial node in the branch and bound algorithm

Then, from this relaxed solution, two solution subsets will be created by

branching on a fractional variable. Since both of the variables are fractional in the

obtained solution, we branch from the first fractional variable i.e. x1. Since x1 must be

an integer, we add the following two constraints to the problem

 x1 ≤ 0 Or x1 ≥ 1

And we obtain the two sub-problems shown in Figure 2.7. The solutions at node

2 and 3 are obtained by relaxing the integrality constraints as in node 1 and the branch

and bound tree looks as shown in Figure 2.8 after their solutions are obtained. We can

min 𝑧 = 2𝑥1 − 3𝑥2

s.t. −10𝑥1 + 2𝑥2 ≤ 5

 3𝑥1 + 2𝑥2 ≤ 9

𝑥1, 𝑥2 ≥ 0 , 𝑥1, 𝑥2 ∈ 𝑁

1

-11.5

22

see that an integral solution is obtained for node 3 and hence we update the upper bound

to the LB value of node 3 as shown in Figure 2.9.

Node 3 will then be pruned since it gave integral solution and since node2’s

lower bound is below the new upper bound (since it is promising) we continue the

branch and bound procedure on node 2. We branch from node 2 using the only

fractional variable at node 2 i.e. x2. Since x2 must be an integer, we can add the

following two constraints

x2 ≤ 2 Or x2 ≥ 3

The solutions at node 4 and 5 are obtained by relaxing the integrality constraints

and they are shown in Figure 2.10.

LB = -11.5(𝑥1 = 0.31, 𝑥2 = 4.04) UB=∞

 𝑥1 ≤ 0 𝑥1 ≥ 1

Figure 2.7. Branching on the first fractional variable 𝑥1

LB = -11.5(𝑥1 = 0.31, 𝑥2 = 4.04) UB=∞

 𝑥1 ≤ 0 𝑥1 ≥ 1

 LB = -7.5(𝑥1 = 0, 𝑥2 = 2.5) LB = -7(𝑥1 = 1, 𝑥2 = 3)

Figure 2.8. Solution sub-sets after branching on 𝑥1 of node 1

1
-11.5

2

-7.5

3

-7

1
-11.5

2 3

23

Figure 2.9. Pruning of node 3 as it gave integral solution and updating of the upper

bound

 LB = -11.5(𝑥1 = 0.31, 𝑥2 = 4.04) UB=∞

 𝑥1 ≤ 0 𝑥1 ≥ 1

 LB = -7.5(𝑥1 = 0, 𝑥2 = 2.5) UB = -7 LB = -7(𝑥1 = 1, 𝑥2 = 3) UB=-7

 𝑥2 ≤ 2 𝑥2 ≥ 3

 LB = -6(𝑥1 = 0, 𝑥2 = 2) UB = -7

Figure 2.10. Solution subsets after branching on 𝑥2 of node 2 and the pruning of node 5

as it is infeasible and the pruning of node 6 as it is non-promising

We can see that the LB of node 4 is above the upper bound. So, node 4 will be

pruned since it is non- promising. On the other hand, node 5 will also be pruned since it

is infeasible (i.e. the combination of x1 and x2 is outside the feasible region.)

Since now all nodes have been pruned because either they are non-promising,

infeasible or integral node, the best integral solution we have obtained to this point will

LB = -11.5(𝑥1 = 0.31, 𝑥2 = 4.04) UB=∞

 𝑥1 ≤ 0 𝑥1 ≥ 1

 LB = -7.5(𝑥1 = 0, 𝑥2 = 2.5) UB = -7 LB = -7(𝑥1 = 1, 𝑥2 = 3) UB=-7

1

-11.5

2

-7.5

3

-7

1

-11.5

2

-7.5

3

-7

4

-6

5

24

become the solution of the IP problem. Thus, the solution to the IP problem is x1 = 1 ,

x2 = 3 with min z = −7.

C) Branch and Cut

Branch and cut is an algorithm which combines the branch and bound algorithm

with the cutting planes method in order to create a more powerful algorithm [13]. The

algorithm dynamically adds cutting planes to the problem which hold in every part of

the search tree. Branch and cut is aimed at further narrowing down the search space in

the branch and bound algorithm because the bounds coming from LP relaxations in

branch and bound are often weak.

D) Branch and Price

Branch and price is another enumerative approach to find solutions of IP

problems [12]. It uses a technique called pricing to tighten the branch and bound

algorithm in the same way cutting is used in branch and cut. Pricing is a column

generation technique inside the simplex algorithm that is used to compute bounds in a

branch and bound algorithm. The column generation technique is used to determine the

most influential variable with negative reduced cost so that when it enters the problem

(basis) it pushes the solution of the problem towards the optimal solution.

In the simplex algorithm, the only variables which are allowed to enter the basis

at each iteration are those variables with negative reduced costs [12]. But, in large

problems with large number of variables we will have many variables with negative

reduced costs at each iteration. So, choosing the appropriate variable which would

drastically improve the objective function value is important. As a result, branch and

price uses the column-generation technique which is used to efficiently solve LPs so

that a speed up could be obtained in the performance of the branch and bound

algorithm.

2.6.2.2. Heuristic Algorithms for Solving Integer Programs

Since LIP optimization problems are NP hard and since it may take a long time

to solve them, heuristic approaches are usually used to find approximate solutions. The

25

most commonly used and powerful of the heuristic approaches are Simulated Annealing

and Tabu Search [12]

Simulated Annealing

Simulated Annealing is a local search algorithm in which in contrast to

traditional local search algorithms it allows occasional movement towards worse

solutions in order to avoid local optima which may not be globally optimal [28].

Tabu Search

Tabu search is also a local search based method in which movement towards

worse solutions is allowed to avoid local optima. Tabu search uses a short term memory

called a tabu list in which solutions already considered are stored so that movement

towards them is not allowed in order to avoid cycling [12].

2.7. Linear Programming Problems

Linear programming finds the maximum or minimum value of an objective

function under linear constraints [15]. The general form of linear programs is given as

follows.

min z = cx

s.t. Ax ≤ b

x ≥ 0

There are three main approaches for solving linear programming problems i) The

Graphical Approach ii) The Simplex Method and iii) Interior Point Algorithms

2.7.1. Graphical Approach

The graphical method works by plotting all constraints in the LP problem as

straight lines [15]. These set of straight lines form a polygon and the inside of the

polygon contains all feasible solutions that satisfy all constraints of the LP problem. The

minimum or maximum value of the objective function lies at one of the vertices

(extreme points) of the polygon. Thus, the objective function value is computed at each

26

of the vertices of the polygon and the vertex resulting in the maximum/minimum value

for the objective function will become the solution point.

Example: If we are given the following LP problem

min z = f(x1, x2) = 2x1 − 3x2

s.t. −x1 + 2x2 ≤ 2

 x1 + 2x2 ≤ 6

 x1, x2 ≥ 0

And if we want to solve the LP problem using the graphical approach, we first

draw lines corresponding to the equality form of the constraints. The plot of the straight

lines for the above problem is shown below.

Figure 2.11. The feasible region of the given LP problem.

The shaded region is the inside of the polygon formed by the intersection of the

lines corresponding to the constraints. The polygon has four vertices and the optimal

solution for the LP problem lies at one of these vertices. To determine which vertex

gives the optimal solution, we have to evaluate the objective function at each of the four

vertices.

 f(0,0) = 0, f(0,1) = -3 f(2,2) = -2 f(6,0) = 12

Since the vertex (extreme point) of the polygon which gave the minimum value

for the objective function is (0,1) , the optimal solution will be x1 = 0, x2 = 1 and min z

= -3

Note however that the graphical approach can be used to solve LP problems

only when the number of decision variables and constraints is small. As a result, it is not

27

applicable for most real-world LP problems which contain hundreds of (thousands of

variables). For such large scale problems we have to use to use other approaches than

the graphical method.

2.7.2. Simplex Method

Generally, the set of constraints in an LP problem form a polyhedron (Note: A

polyhedron is a 3d or multidimensional equivalent of a polygon) where the inside of this

polygon contains all feasible solutions [15]. The optimum feasible solution (i.e. the

solution with maximum/minimum value for the objection function) lies in one of the

vertices of the polyhedron. But, even for simple LP problems, the set of vertices

(extreme points) of the polyhedron may be quite large [15]. So, checking all the vertices

in order to determine the optimal solution point will not be feasible.

So, the simplex method was developed to efficiently traverse along selected

vertices of the polyhedron so that the optimal solution point or vertex can be obtained

with small number of the vertices of the polyhedron being visited. The method was

developed by George B. Dantzig in 1947 as a method of moving from one extreme

point to another extreme point of the polyhedron of feasible solutions while improving

the objective function value (or at least not making it worse) until an optimal solution is

found or the problem is determined to have infinite number of optimal solutions.

The simplex method starts from a given extreme point and tests whether the

extreme point is optimal or not using an optimality test derived from the objective

function and the constraints [15]. If the extreme point fails the optimality test, an

adjacent extreme point will be selected and the optimality test is done on the new

extreme point. The above processes are repeated until an optimal extreme point that

passes the optimality test is found or until the IP problem is determined to be

unbounded.

The two major parts of the simplex method are i) a mechanism to test whether a

given basic feasible solution(see the section below for what a basic feasible solution

means) is optimal or not and ii) a mechanism to find an adjacent basic feasible solution

if the current basic feasible solution is found to be not optimal[15].

28

2.7.2.1. Basic Feasible Solution

The basic feasible solution for the linear system Ax=b, where A is mxn matrix

and x is nx1, which makes the constraints of the linear program min z=f(x) s.t. Ax=b

and x ≥ 0 is obtained by setting n-m variables equal to zero and solving the remaining

mxm system of linear equations in order to obtain a unique solution for the m variables

which were not set to zero [15]. The n-m variables which were set to zero are called

non-basic variables where as the m variables which were not set to zero are called the

basic variables of the basic solution.

The basic feasible solution lies at one of the corner points of the polyhedron

which contains all feasible solutions [15]. The basic feasible solution has the

characteristics that for every basic feasible solution there is a unique vertex of the

polyhedron and for every vertex of the polyhedron, there exists exactly one basic

feasible solution. Two basic feasible solutions for the system Ax = b, where A is mxn,

are said to be adjacent if they share m-1 of their m basic variables.

2.7.2.2. Format of Input LP Problem to the Simplex Method

The simplex method requires the input IP problem to be expressed in standard

form as follows [15].

 min z = cx

s.t. Ax = b

 x ≥ 0

where A is mxn matrix, b is mx1 vector , c is an nx1 vector and x is also nx1 vector.

In the standard form of an LP problem, all the constraints in the LP problem are

required to be expressed as equalities. Slack variables (surplus variables) are used to

transform constraints containing inequalities into equalities.

For example if we are given an IP problem not in standard form as follows

min z = 2x1 − 3x2

s.t. −x1 + 2x2 ≤ 2

x1 + 2x2 ≤ 6

 x1, x2 ≥ 0

29

We can convert the first inequality in the constraints into equality by adding a

new variable x3 to the left hand side of the inequality to obtain the following equality.

𝑥1 + 2𝑥2 + 𝑥3 = 2

The variable x3 in the above equation is the slack variable.

Similarly, a slack variable x4 can be added into the second inequality of the

constraints by which point we will have all the constraints expressed as equality as

follows, which is the standard form of the given IP problem.

min z = 2x1 − 3x2

s.t. −x1 + 2x2 + x3 = 2

 x1 + 2x2 + x4 = 6

 x1, x2 ≥ 0

2.7.2.3. Theory of the Simplex Method

The theory behind the simplex method which is elaborated in [16] is

summarized in this paper as follows.

Let us be given the following LP problem

 min 𝑧 = 𝑐𝑥

s.t. 𝐴𝑥 = 𝑏

𝑥 ≥ 0

, where A is mxn matrix, b is mx1 vector, c is an nx1 vector and x is also nx1 vector.

If a1,a2,...,an are mx1 column vectors that constitute A i.e. A = (a1,a2,...,an), then

we will have

 Ax = x1a1 + x2a2 + ... + xnan = b (2.1)

If we are also given the following basic feasible solution to the above LP

problem,

 x = (x1,x2,...,xm,0,0...0)

then, b and z will be expressed as

 x1a1 + x2a2 + ... + xmam = b (2.2)

30

 x1c1 + x2c2 + ... + xmcm = z (2.3)

Since the column vectors a1,a2,...,am are linearly independent, all of the column

vectors of A including those corresponding to the zero-valued x variables can be

expressed in terms of a1,a2,...,am as follows.

 𝑎̅1j𝒂𝟏 + 𝑎̅2j𝒂𝟐 + ⋯ + 𝑎̅𝑚j𝒂𝒎 = 𝒂𝒋 for j = 1,2,...,n (2.4)

Using the scalars 𝑎̅1j, 𝑎̅2j, … , 𝑎̅𝑚j in the above equation, we can define a new

quantity called zj which is expressed as a linear combination of the objective function

coefficients corresponding to the non-zero variables as follows.

 𝑎̅1j𝒄𝟏 + 𝑎̅2𝑗𝒄𝟐 + ⋯ + 𝑎̅𝑚𝑗𝒄𝒎 = 𝑧𝑗 for j = 1,2,...,n (2.5)

If we multiply equation (4) by some positive number 𝜃 and subtract it from

equation (2) and similarly if multiply equation (5) by the same positive number 𝜃 and

subtract it from equation (3), we will arrive at the following two equations.

 (𝑥1 − θ𝑎̅1𝑗)𝒂𝟏 + (𝑥2 − θ𝑎̅2𝑗)𝒂𝟐 + ⋯ + (𝑥𝑚 − θ𝑎̅𝑚𝑗)𝒂𝒎 + θ𝒂𝒋 = 𝒃 (2.6)

 (𝑥1 − θ𝑎̅1𝑗)𝑐1 + (𝑥2 − θ𝑎̅2𝑗)𝑐2 + ⋯ + (𝑥𝑚 − θ𝑎̅𝑚𝑗)𝑐𝑚 + θ𝑐𝑗

 = 𝑧 − 𝜃(𝑧𝑗 − 𝑐𝑗) = z’ (2.7)

, where θ𝑐𝑗 has been added to both sides of (7)

*** If for some j corresponding to non-basic variables all 𝑎̅𝑖j are negative, then

for some positive 𝜃, a new basic feasible solution x will be obtained with m+1 basic

variables i.e. x = (x1’,x2’, ...,xm’, xj ,0,0,...,0) , where x1’ = (𝑥1 − θ𝑎̅1j), x2’ = (𝑥2 −

 θ𝑎̅2j) ..., xj = θ and where the equivalents of equations (2) and (3) for the new basic

feasible solution will be given like this.

 x1’a1 + x2’a2 + ... + xm’am + xjaj = b (2.8)

31

 x1’c1 + x2’c2 + ... + xm’cm +xjcj= = 𝑧 − 𝑥𝑗(𝑧𝑗 − 𝑐𝑗)= z’ (2.9)

Theorem : Assuming a basic feasible solution is non-degenerate, if for some j

corresponding to a non-basic variable, if 𝑎̅𝑖𝑗 > 0 for at least one i, i = 1,2,...,m, then it is

possible to generate a new basic feasible solution with just m-positive variables that

give a better(lesser) objective value than the previous basic feasible solution i.e. from a

previous basic feasible solution of x = (x1,x2,...,xm,0,0...0), a new basic feasible solution

of . x = (x1’,x2’, ...,xm’, xj ,0,0,...,0) can be generated such that z’ < z.

Proof: If we have 𝑎̅𝑖j > 0 for some i, i = 1,2,...,m, the maximum value θ can

attain before making the coefficient of any 𝑎𝑖 negative in (6) is ,
𝑥𝑖

𝑎̅𝑖𝑗
 . If we have many

such positive 𝑎̅𝑖𝑗 values, then the largest value of θ which can maintain the non-

negativity restrictions on the new variables x1’, x2’ ...etc in (8) is

θ =
𝑥𝑟

𝑎̅𝑟𝑗
 = min

𝑥𝑖

𝑎̅𝑖𝑗
 for 𝑎̅𝑖𝑗 > 0 , for i = 1,2,...,m (2.10)

, where the minimum is obtained for some unique i, i =r.

Equation 2.10 is called the minimum ratio test where the minimum is obtained

for some unique i, i = r. For a θ value obtained using the minimum ratio test, the

coefficient of the ar vector will be zero in equation (8), so the new basic feasible

solution will be x = (x1’,x2’,.., xr’...,xm’, xj ,0,0,...,0) where xr’ = 0 for some r in 1 to m

corresponding to the minimum ratio test, meaning the solution contains just m basic

variables.

So, if 𝑎̅𝑖𝑗 > 0 for at least one i, i = 1,2,...,m, then the equivalent of equations

(2.8) and (2.9) will be the following two equations.

 x1’a1 + x2’a2 + ... +0ar+...+ xm’am + xjaj = b (2.11)

 x1’c1 + x2’c2 + ... +0ar+... xm’cm +xjcj= 𝑧 − 𝑥𝑗(𝑧𝑗 − 𝑐𝑗) = z’ (2.12)

Thus, in the above equations a previously non-basic variable 𝑥𝑗 enters the basic

variables while a previously basic variable xr leaves the basis to become non-basic. The

32

above operations which resulted in the exchange of the two variables are called

pivoting. If the pivoting operation is applied using some j corresponding to a non-basic

variable such that the quantity (𝑧𝑗 − 𝑐𝑗), also called reduced cost , is greater than zero,

then the new basic feasible solution will result in an improved(lesser) objective value of

z’ compared to z of the previous basic feasible solution.

As long as the reduced cost (𝑧𝑗 − 𝑐𝑗) > 0 (or equivalently as long as the negative

reduced cost -(𝑧𝑗 − 𝑐𝑗)=(𝑐𝑗 − 𝑧𝑗) is less than 0), the objective function can be improved

(made less) for some non-zero values of the entering variable xj (i.e. for non-degenerate

cases). Thus, we can continue with the next iteration of the simplex algorithm by

performing pivot operations.

But, if we reach an iteration where the reduced cost (𝑧𝑗 − 𝑐𝑗) ≤ 0 (or

equivalently the negative reduced cost (𝑐𝑗 − 𝑧𝑗) ≥ 0), it means the objective function

can’t be improved by further pivot operations (i.e. by moving to new feasible solution

points) and it means the current solution is optimal.

2.7.2.4. The Simplex Tableau

Simplex tableau is a method of expressing a linear program problem which

allows the simplex method to be applied efficiently when solving the problem [16]. The

tableau displays all the quantities that are needed at each iteration of the simplex

algorithm. The general form of the simplex tableau is as shown below.

Figure 2.12. The simplex Tableau

𝑐𝐵 𝑎𝐵 a1 a2 aj an XB = b
𝑏𝑖

𝑎̅𝑖𝑗

𝑐𝐵1 𝒂𝑩𝟏
 𝑎̅11 𝑎̅12 𝑎̅1𝑗 𝑎̅1𝑛 b1

𝑏1

𝑎̅1𝑗

𝑐𝐵2
 𝒂𝑩𝟐

 𝑎̅21 𝑎̅22 𝑎̅2𝑗 𝑎̅2𝑛 b2
𝑏2

𝑎̅2𝑗

𝑐𝐵𝑚
 𝒂𝑩𝒎

 𝑎̅𝑚1 𝑎̅𝑚2 𝑎̅𝑚𝑗 𝑎̅𝑚𝑛 bm
𝑏𝑚

𝑎̅𝑚𝑗

 c c1 c2 cj cn

𝑐𝑗 − 𝑧𝑗 𝑐1 − 𝑧1 𝑐2 − 𝑧2 𝑐𝑗 − 𝑧𝑗 𝑐𝑛 − 𝑧𝑛

33

The column with the heading 𝑎𝐵 contains the column vectors of A that are in the

basis i.e. the row headings 𝑎𝐵1
, 𝑎𝐵2

,..., 𝑎𝐵𝑚
 correspond to the column vectors of A that

are in the basis. The column with the heading 𝑐𝐵 contains the coefficients of the

objective function corresponding to the vectors in the 𝑎𝐵 column. The column headings

a1,a2,..aj,...,an (not the columns themselves) correspond to the column vectors of A. The

coefficients 𝑎̅11 , 𝑎̅12, ..., 𝑎̅𝑚𝑛 are used to express a1,a2,..aj,...,an and z1,z2,...,zn as a

linear combination of 𝒂𝑩𝟏
, 𝒂𝑩𝟐

,..., 𝒂𝑩𝒎
. For instance, aj and zj can be expressed as

follows.

𝑎̅1𝑗𝒂𝑩𝟏
+ 𝑎̅2𝑗𝒂𝑩𝟐

+ ⋯ + 𝑎̅𝑚𝑗𝒂𝑩𝒎
= 𝒂𝒋

 𝑎̅1𝑗𝑐𝐵1 + 𝑎̅2𝑗𝑐𝐵2 + ⋯ + 𝑎̅𝑚𝑗𝒄𝑐𝐵𝑚
= 𝑧𝑗

(Note that for the column vectors of A that are in the basis, the vector of 𝑎̅𝑖𝑗𝑠 used to to

express them as a linear combination of 𝒂𝑩𝟏
, 𝒂𝑩𝟐

,..., 𝒂𝑩𝒎
 are unit vectors.)

The column with the heading XB = b stores the current values of the basic

variables. Assuming aj is the vector to enter the basis, the column of the tableau with

heading
𝑏𝑖

𝑎̅𝑖𝑗
 contains the ratios

𝑏𝑖

𝑎̅𝑖𝑗
. The row heading c corresponds to the coefficients of

the variables x1,..,xn in the objective function and the row heading 𝑐𝑗 − 𝑧𝑗 corresponds

to the negative reduced cost for the variables.

The tableau shown in the previous figure can be used to select the vector that

will enter the basis based on which non-basic column has negative reduce cost 𝑐𝑗 − 𝑧𝑗

(or the least negative reduced cost if there are multiple non-basic columns with negative

reduced cost). If an entering variable cannot be determined, it means the current

solution is optimal. After the entering variable xj is determined the leaving variable, xr

can be determined by choosing a unique row i, i = r , r in 1,2,..m, corresponding to the

minimum ratio
𝑏𝑖

𝑎̅𝑖𝑗
 where 𝑎̅𝑖𝑗 > 0 (i.e. using minimum ratio test). Then, a pivot

operation can be applied to make the vector of 𝑎̅𝑖𝑗𝑠 that are used for expressing the

column vector aj a unit vector.

Example

Let us be given the following LP.

min 𝑧 = 2𝑥1 − 3𝑥2

s.t. −𝑥1 + 2𝑥2 ≤ 2

34

 𝑥1 + 2𝑥2 ≤ 6

 𝑥1, 𝑥2 ≥ 0

We will first express it in standard form as follows by the addition of slack

variables.

min 𝑧 = 2𝑥1 − 3𝑥2

s.t. −𝑥1 + 2𝑥2 + 𝑥3 = 2

𝑥1 + 2𝑥2 + 𝑥4 = 6

 𝑥1, 𝑥2 ≥ 0

Then the first Tableau will be as follows.

𝑐𝐵 𝑎𝐵 a1 a2 a3 a4 XB = b
𝑏𝑖

𝑎̅𝑖𝑗

0 𝑥3 −1 2 1 0 2 1

0 𝑥4 1 2 0 1 6 3

 c 2 -3 0 0

𝑐𝑗 − 𝑧𝑗 2 −3 0 0

Figure 2.13. Tableau 1

Where indicates the vector which shall enter into basis because of having the

least negative reduced cost while indicates the vector which will leave the basis

because it corresponds to the row with minimum non-zero ratio for
𝑏𝑖

𝑎̅𝑖𝑗
 . Then Tableau 2

will look like this.

35

𝑐𝐵 𝑎𝐵 a1 a2 a3 a4 XB = b
𝑏𝑖

𝑎̅𝑖𝑗

-3 𝑥2 −1/2 1 1/2 0 1

0 𝑥4 2 0 −1 1 4

 c 2 -3 0 0

𝑐𝑗 − 𝑧𝑗 1/2 3 3/2 0

Figure 2.14. Tableau 2

Since we don’t have negative reduced cost in Tableau 2, it means the current

solution is optimal, where the optimal solution is given by

 x1 = 0, x2 = 1 and min z = -3

2.7.2.5. Algebraic derivation of the simplex method

The algebraic derivation of the simplex method is illustrated in [17] where it is

summarized in this paper as follows.

Assume we are given an IP problem in standard as follows

min 𝑧 = 𝑐𝑥

s.t. 𝐴𝑥 = 𝑏

 𝑥 ≥ 0

If B is an initial basic matrix of A and N is the corresponding non-basic matrix

of A corresponding to an initial basic feasible solution of x = (xB,xN) , then the

constrains of the LP problem can be expressed as follows.

 Ax = BxB + NxN = b (2.13)

Similarly, we can partition c into cB and cN to express the objective function as

follows

36

 z = NNBB xcxccx  (2.14)

From equation (2.13), we have

 NB NxBbBx 11   (2.15)

And substituting this into Equation (2.14), we will get

 z = NNNB xcNxBbBccx  )(11
 = NBNB xNBccbBc)(11   (2.16)

Differentiating the above equation with respect to the non-basic variables we

will get

 jBj

j

aBcc
x

z 1




 , for all j such that xj is in xN , where aj is the j’th column of N (2.17)

The quantity jBj aBcc 1 = negRedCostj is called the negative reduced cost for

the xj variable.

If one xj from the xN vector in the basic feasible solution becomes non-zero

while the other elements of xN remain zero, then the new value of the objective function

can be computed using equation (16) as follows

 z’ = z + (jBj aBcc 1)xj = z + negRedCostj*xj (2.18)

Using the above algebraic representation, the procedures for selecting the

entering and leaving variables in the simplex method are as follows [17].

Entering Variable Selection Criteria

For a negRedCostj < 0 and a positive value of xj , the new objective function

value corresponding to the new feasible solution that is going to be determined will be

less than the current objective function value corresponding to the current feasible

37

solution. Thus, we chose the entering variable xj from the elements of xN whose

negRedCostj < 0 and such that it results in the minimum negative reduced cost so that

for a slight increase of xj from its previous 0 value, the value of the objective function

decreases by a large amount.

Leaving variable Selection Criteria

After we chose xj from xN as the entering variable, equation (2.15) will now

reduce to

 jjB xaBbBx 11   , where aj is the j’th column of N (2.19)

Then, equation (2.19) can be re-written as

 jjB xabx  , where b = bB 1 and ja = jaB 1
 (2.20)

If all elements of the vector ja are less than zero, jx can be increased

indefinitely without violating the non-negativity restrictions. But if at least one element

of the vector ja is greater than 0, then for the entering variable xj not to violate the non-

negativity restriction on x’s, it can be increased from zero only upto a certain maximum

value. This maximum value xj can attain is given by the minimum ratio test.

 xj = min { mi
a

b

ij

i
,...,1:  and

ija > 0} (2.21)

The basic variable xi corresponding to the minimum ratio value becomes the

leaving variable.

2.7.2.6. The Revised Simplex Method

The main drawback of the simplex method is that it computes and stores many

numbers which are not all needed in the next iterations [16]. This makes its computation

38

very time consuming. So, the revised simplex method is developed to handle these

drawbacks.

The revised simplex method follows the same general approach as the simplex

method. But it differs from the simplex method in the way it makes calculations to

move from one iteration to the next, by computing/storing only those quantities that are

needed at each iteration [16].

From the algebraic derivation of the simplex method, we can see that the

quantities that are required at each iteration of the simplex method are

i) jBj aBcc 1 for all the previous non-basic variables in order to determine

which non-basic variable among them enters the basis

ii) ja = jaB 1
which is used in the minimum ratio test to determine which

previous variable will leave the basis

iii) The value of the basic variables xB = b = bB 1 which is used in the minimum

ratio test to determine which previous basic variable will leave the basis

iv) And optionally, the previous objective function value z = BB xc = bBcB

1

inorder to determine the new objective function value of the new basic

feasible solution that will result after the end of the current iteration i.e. z’ =

z + negRedCostj* xj

2.7.2.7. Finding an Initial Basis

The simplex method requires an initial basic feasible solution to start its

iterations [16]. For simple LP problems, the initial basic feasible solution may be

determined readily by manual inspection. But, for most problems, finding an initial

basic feasible solution is not trivial. Thus, special techniques are used to find the initial

basic feasible solution. The two commonly used methods to find the initial basis for

simplex are i) the two-phase method, developed by Dantzig, Orden and Wolfe and ii)

The method of penalities, by A. Charnes. In this paper, we will look at the two-phase

method.

39

The two phase method

In the two phase method, the linear programming problem is first expressed in

standard form and then the simplex method is applied in two phases [16]. In phase 1,

the simplex method is applied to a modified version of the original LP problem and the

solution of this auxiliary problem, if it exists, will serve as the basic feasible solution to

the original LP problem. In phase 2, using the basic feasible solution obtained from

phase 1, the original problem is solved by applying the simplex method.

The steps of the two phase method

In the two phase method, the linear programming problem must first be

expressed in standard form by the addition of slack/surplus variables. All the constraints

whose right hand side is negative must also be multiplied by -1 to make the right hand

side non-negative. Thus, the IP problem shall be expressed as follows

 min z = cx

 s.t. Ax = b

 x ≥ 0 , b ≥ 0 ,

 where A is mxn matrix, b is mx1 vector, c is nx1 vector and x is also nx1 vector.

Phase 1

In phase 1, the original LP problem is modified by the introduction of new

variables called artificial variables and by setting the coefficients of the objective

function in the original LP problem to zero so that the LP problem becomes

 min z= 0x + 𝑒𝑇a

 s.t. Ax + Ia= b

where a is mx1 vector and 𝑒𝑇 = (1,1,...,1) is an mx1 vector.

The initial basic feasible solution for this auxiliary problem can be easily

obtained by setting x = 0 and a = b. Then, this basic feasible solution is used to solve the

auxiliary problem using the simplex method.

The solution of phase 1 may indicate different things. 1) If min z > 0, it means

the original LP problem is infeasible 2) If min z = 0 and all artificial variables are non-

basic, the solution of phase 1 will serve as the basic feasible solution for phase 2. 3) If

min z = 0 but at least one artificial variable is basic, pivoting needs to be applied to

40

exchange the basic artificial variables with the non-basic variables of the original LP

problem before proceeding to phase 2. The presence of artificial variables in the

solution of phase 1 indicates the original system has redundancies or degenerate

solutions.

Phase 2

In phase 2, the basic feasible solutions obtained when min z = 0 in phase 1 are

used as the initial basic feasible solution to the original LP problem and then, the

simplex method is applied to solve the original LP problem. The simplex method stops

when an optimal solution is found or an unbounded solution is detected.

2.7.2.7. Special Cases in the Simplex Algorithm

Degeneracy

A basic feasible solution is said to be degenerate, if one or more of the basic

variables are zero [16]. A new solution obtained by moving from a degenerate feasible

solution will again be degenerate which will produce no improvement in the value of

the objective function. If degeneracy is encountered in successive iterations, it may

result in a return to a basis already obtained thus creating a cycling that the simplex

method can’t come out of. Thus, in the presence of degeneracy, there is no guarantee

that the simplex method will terminate in a finite number of steps.

Since degeneracy may result in cycling and since degeneracy is a common

experience, one might expect cycling to also be encountered very frequently. But, in

practice cycling is a very rare phenomenon occurring mainly in specially constructed

test problems in researches.

How to deal with degeneracy

One way degeneracy can be handled in the simplex method is through the use of

perturbation. One perturbation technique developed by A. Charnes makes sure the

simplex method will get out of degeneracy and ensures it will have a finite number of

iterations [16].

Since degeneracy in an LP problem occurs when the right hand side vector b

can’t be expressed as a linear combination of the basis vectors formed from A, if we

41

perturb b it might be possible to express the perturbed b as a linear combination of the

basis vectors of A. Thus Charne’s method works by replacing 𝑏𝑖 in the simplex tableau

by 𝑏𝑖 + ∑ 𝑎̅𝑘𝑖

𝑛
𝑘=1

For example, if degeneracy occurs for the system

 x1a1 + x2a2 + ... + xmam = b (2.22)

then, we can perturb the right hand side of b to obtain the following system

 x1a1 + x2a2 + ... + xmam = b +∈1 𝑎1+∈2 𝑎2 + ⋯ +∈𝑛 𝑎𝑛 = 𝑏(∈) (2.23)

The advantage of the Charnes’ method is that the solution of the perturbed

system can be determined without knowing the actual value of ∈. And if the solution to

the perturbed system is known, it will also be the solution to the original problem if we

set ∈ to zero.

Whereas the solution of the original system in (22) is obtained as 𝑥 = 𝐵−1𝑏, the

solution for the perturbed system in (23) is obtained as follows

 𝑥(∈) = + ∈ 𝐵−1𝑎1 +∈2 𝐵−1𝑎2 + ⋯ . +∈𝑛 𝐵−1𝑎𝑛 , where 𝑥 = 𝐵−1𝑏 is the

solution of the unperturbed problem.

Each element of the vector 𝑥(∈) is thus obtained as follows

 𝑥𝑖(∈) = 𝑥𝑖 + ∑ ∈𝑗𝑛
𝑘=1 𝑎̅𝑘𝑖

 for i = 1,2,...,m (2.24)

The entering variable in the simplex method for the perturbed method is then

found using the following minimum ratio test.

 min
𝑖

{
𝑥𝑖+∑ ∈𝑗𝑛

𝑘=1 𝑎̅𝑘𝑖

𝑎̅𝑗𝑖

, 𝑎̅𝑗𝑖
> 0} (2.25)

The Charnes’ method chooses the entering variable using equation (25) as

follows. First, it compares the ratios
𝑥𝑖

𝑎̅𝑗𝑖

 in equation (25). If a minimum ratio is obtained

for unique i, there is no degeneracy. But, if a unique i can’t be obtained for the

42

minimum ratio of
𝑥𝑖

𝑎̅𝑗𝑖

 ,we go on and compare the ratios
𝑎̅1𝑖

𝑎̅𝑗𝑖

 for the rows which had a tie

for the ratios of
𝑥𝑖

𝑎̅𝑗𝑖

. Again, if we have rows tied for the ratios
𝑥𝑖

𝑎̅𝑗𝑖

 and
𝑎̅1𝑖

𝑎̅𝑗𝑖

, we go on to

the next column and compare the ratios
𝑎̅2𝑖

𝑎̅𝑗𝑖

. We go on comparing more ratios until we

find a unique ratio. These procedures in the Charnes’ method ensure a new basic

feasible solution is obtained with all basic variables strictly positive.

Unboundedness

As the simplex method goes from one vertex to an adjacent vertex of the

polyhedron of feasible solutions, along the edges of the polyhedron, it might reach an

edge along which the objective function value can be reduced indefinitely without

reaching to another vertex [16]. In such cases, the LP problem is said to be unbounded

and the simplex method will stop without finding a solution.

2.7.3. Interior Point Algorithms

Unlike the simplex method which moves along the edges of the feasible region

(polyhedron), interior point algorithms move through the interior of the feasible region.

The first significant interior point algorithm was the Ellipsoid algorithm developed by

Khachiyan in 1979 and it had a worst case running time complexity of (𝑛6𝐿2) , where n

is the number of variables and L is the number of bits to encode the input[32]. But, the

algorithm didn’t have a performance to compete with the simplex method since for

almost all inputs its running time complexity is close to its worst case running time

complexity.

A better and efficient interior point algorithm was the projective algorithm

developed by Kramarka in 1984[32]. This algorithm has a worst case complexity of

(𝑂(𝑛3.5𝐿2) and was found to be efficient in practice.

43

2.7.4. Simplex vs Interior Point

A comparison of simplex methods with interior point methods shows that good

implementations of simplex methods and interior point methods have similar

performance although for some applications one may be better than the other [33]

2.8. Literature Review on GPUs

2.8.1. Introduction to Parallel Systems

Concurrent System vs Parallel System

A system is concurrent if it contains several operations that are ready for

execution at the same time [25]. If there is only one processing element (processor) for

executing the operations, only one operation will be executed at a time while all the

other operations are forced to wait until the operation completes. But, if in a concurrent

system we also have multiple processing elements (processors), several operations can

execute simultaneously and we call such a system a parallel system.

Steps for writing programs to a parallel system

To write programs for a parallel system, first the programmer must identify the

concurrency in the problem he/she wants to solve [25]. Then, this concurrency should

be expressed in the software they write. Finally, their program is run so that the

concurrent parts are run in parallel to give a good performance in terms of speed of

execution.

2.8.2. Introduction to GPUs

GPU stands for Graphical processing unit [19]. GPUs are devices mainly used

for image processing [18] and they were developed, in particular, for rendering graphics

applications [19]. (Rendering is the transformations of vertices into pixels or the process

of generating a 2D image from a model composed of thousands or millions of

polygons)) GPUs can do graphics processing at significantly higher speed than CPU

because they are developed to handle operations that are very common in graphics

applications [19].

44

The first GPU was the GeForce 256 which was released in 1999[22]. Before

GPUs, rendering was done on CPU [22]. But, doing rendering on a CPU is very

computationally intensive. For instance, a given image may be modelled by millions of

triangles where, in turn, each triangle may hold hundreds of pixels. Thus, generating an

image from the vertices of the triangles is a very computationally intensive task to be

done by the CPU. Due to this, a dedicated Graphical Processing Unit which handles

rendering was developed to free the CPU to do other useful computational tasks. At

present the main manufacturers of GPUs are Nvidia and AMD/ATI[23]. Nvidia are

famous for their GeForce series where as AMD/ATI have their Radeon series.

GPUs were primarily developed to meet the demands of the gaming industry

[23] and they were initially single purpose rendering devices [24]. But, now, they are

programmable processors [24] that execute programs, including general purpose

programs which have nothing to do with graphics, mainly in a SIMD (Single Instruction

Multiple Data) way. (SIMD is a programming model where a single instruction is

executed in parallel across multiple processing elements with each processing element

working on its own data [24]). GPUs are also a cheap parallel architecture to implement

data parallel applications as a reasonably powerful GPU costs only a few hundred

dollars [18].

2.8.3. GPU vs CPU

One way in which GPUs differ from CPUs is in the number of cores they have.

GPUs can be equipped with up to thousands of cores [18] while most CPUs have few

cores (most commonly from 4 to 16 cores). GPUs have smaller but large number of

processing cores optimized for parallel computing while CPUs have one or few large

processing cores optimized for serial computing. The main reason GPUs are equipped

with such large number of cores and parallel threads is because of the need for

rendering complicated and high resolution 3D scenes at real-time to create interactive

frame rates for games [22].

45

 GPU CPU

Figure 2.15. GPU vs CPU

Another way in which GPUs differ from CPUs is in the way they handle the

latency while accessing memories. While CPUs use caches to hide the latency in

accessing memory, GPUs primarily hide this latency by running large number of

threads at the same time [23] i.e. while one thread is accessing the memory, there are

several other threads still executing on the GPU cores effectively hiding the latency of

that one thread.

2.8.4. GPGPU

GPGPU stands for General Purpose Graphics Processing Unit [18]. With the

GPGPU paradigm GPU’s began to be used for general purpose scientific computation

in addition to their primary use as rendering devices [18]. GPGPU is now becoming a

popular choice for developing general purpose parallel applications because GPUs are

powerful devices, yet not expensive. GPUs are in fact one of the most powerful

computation hardware for their price [20]. Furthermore, GPUs are drawing attention

because their performance is growing fast even above Moore’s law i.e. the performance

of GPU devices is doubling in less than 18 months. This is because many of the GPU

transistors are used for computation rather than non-computation tasks like branch

prediction [20].

The following are some of the many areas GPUs have been used for general purpose

computation [20].

 Physics simulations e.g. for boiling simulation, cloth simulation and fluid

dynamics simulations

46

 Signal and image processing applications e.g. for segmentation, real-time stereo

depth extraction and in computed tomography (CT) to reconstruct an object

from its projections.

 Geometric computations e.g. for calculating distance fields which are used for

path planning.

 Databases and data mining e.g. for accelerating the performance of database

queries.

But not all applications are inherently parallel and able to be parallelized by GPUs.

For instance, applications dominated by memory communication, instead of

computation, like word processing applications are tough to parallelize in GPUs [20].

Evolution of GPGPU

Before programming GPUs for general purpose applications (GPGPU) was

started GPUs, which were fixed function rendering devices, began to be programmed

for graphics [24].The graphics computations were expressed using graphical terms such

as vertices, textures, and fragments and blending [21].

Then, in the early days of programming a GPU for general purpose programs

(GPGPU), general purpose programs were programmed using graphics API .i.e. general

purpose computations were expressed in graphics terms such as vertices, textures,

fragments and blending. Examples of these early programming languages for general

purpose GPU computing include HLSL(High Level Shader Language) and

GLSL(OpenGL shading Language).

At present, high-level languages which use general terms (not graphical terms)

are used for GPGPU computing. In this new approach, computations are specified as a

set of thread which can execute in parallel. Then, a SPMD (Single Program Multiple

Data) program is executed on each thread. The computation result of each thread is

stored in a buffer (global memory). Then, finally, the value of the buffer is read and can

optionally be used for additional computation.

The present approach allows developers to have access to the processing

elements of a GPU without being forced to use a graphical interface (a graphics API)

when developing general purpose programs on GPUs i.e. it is currently possible to have

full access to the powerful GPU hardware using familiar high-level programming

languages using the derivatives of the C-syntax (the C programming language). At

47

present, the most common programing language for GPGPU computing are Nvidia’s

CUDA and OpenCL.

Frameworks for GPGPU programming

Computation toolkits (frameworks) for GPGPU were at first high-level shading

languages like Cg and HLSL. But, at present, they are modern programming languages

based on C like Cuda and OpenCL[26]. A brief list of some notable languages for

writing programs on GPU is shown below [19].

 Cg[29](C for Graphis) : Cg was used for writing shader programs for OpenGL

and Direct X.

 Accelerator [30]: Accelerator is a .Net assembly allowing access to the GPU

through the Direct X interface.

 HLSL[31](High Level Shader Language) is an application developed by

Microsoft for developing shader programs for Direct X with a capabilitiy to run

both on Windows and Xbox platforms.

 Cuda(Compute Unified Device Architecture) : Cuda is a programming language

for writing programs to Nvidia graphics devices[26].

 OpenCL(Open Computing Language) : OpenCL is a standard for writing

parallel applications that can run on heterogeneous platforms with different

devices from different vendors[25].

2.8.5. OpenCL vs CUDA

At present, the two most common programing languages for writing GPGPU

programs are CUDA and OpenCL. CUDA is a framework for developing general

purpose parallel programs on Nvidia GPUs. CUDA was introduced in 2006 and with

the advent of CUDA, the use of graphics APIs for writing general purpose programs on

GPUs was eliminated [26].

OpenCL is a framework first released in 2008 to give programmers a portable

and efficient access to powerful processing elements(GPUs,CPUs,DSPs etc) . The APIs

of OpenCL are not vendor specific and one can develop a single program that can run

on a wide range of devises from different vendors. OpenCL and CUDA share many

48

core ideas and even terminologies and it is fairly easy to translate CUDA codes to

OpenCL and vice versa.

The portability of OpenCL is found not to affect its performance by a recent

research[26]. The research was done using 16 bench marks composed of synthetic

applications and real-world applications and in a fair-comparision, OpenCL programs

were found to perform as fast as the corresponding CUDA programs.

2.8.6. OpenCL

OpenCL was first released in December 2008[25].It is a framework for writing

programs which execute on parallel processing platforms [24]. It is not specifically used

for programming GPUs only but it is also used across a range of devices including

CPUs, DSPs and FPGAs [18]. OpenCL allows developers to have portable and efficient

access to the capabilities of various processors from different vendors in a

heterogeneous environment [24]. I.e. it allows writing a single program which can run

on different types of systems from cellphones to super computers [25]. OpenCL

programs are written using a subset of ISO C99 with some extensions and limitations

[24] and they can be used for both data parallel and task parallel programming models.

2.8.6.1. Some OpenCL Terminologies

Platform: A platform refers to a host device and a collection of other devices on

which an application can execute kernels.

Device: A device is composed of one or more compute units.

Compute Unit: A compute units is made up of one or more processing elements

and one work group executes on one compute unit.

Processing element: Processing elements are the components that the compute

unit is made of in addition to local memory

Kernel: A kernel is a function that will be executed in an OpenCL device. It is

identified from other functions by its __kernel qualifier.

Work Item: A work item is one of the many parallel executions a kernel issues

on a device by a command i.e. it is a kernel instance.

49

Command: A command is the OpenCL operations (e.g. executing kernels,

reading and writing memory objects) that are placed into a command queue for

execution.

Command queue: A command queue is used for queuing commands to a device.

Workgroup: A workgroup is a group of work items that execute on the same

compute unit.

Context: A context is composed of a group of devices, the memory accessible to

the devices , the properties of the memories(read only, write only etc) and one or more

command queues. It is the environment in which kernels execute.

Host: A host is a device that interacts with the context using OpenCL API and it

coordinates the executions of kernels on devices.

Program: An OpenCL program is made up of a set of kernels, other functions

called by the kernels and a constant data.

Kernel Object: A kernel object is used to encapsulate a specific __kernel

function and its argument values.

Global ID: A global ID can uniquely identify a work item. It is unique to the

whole index space.

Local ID: A local ID is a work-item id unique with in a workgroup.

Global memory: A global memory is a region of memory accessible to all work-

items executing in a context.

Constant memory: Constant memory is the same as global memory but it

remains constant (not updated) while the kernel is being executed.

Local memory: Local memory is a region of memory accessible by all work-

items in the same-workgroup but not by work items from other workgroups.

Private memory: Private memory is a region of memory private to a work item.

50

Figure 2.16. OpenCL Platform Model

Figure 2.17. OpenCL Execution Model

Host

Processing Element

Compute Device

Compute Unit

P
latfo

rm

51

Figure 2.18. OpenCL Memory Model

2.8.6.2. Steps for Writing an Application in OpenCL for a

Heterogeneous System

To write a program in OpenCL that is capable of running on a heterogeneous

system, first we have to discover what components the heterogeneous system is

composed of [25]. Then, we have to get information about the properties of the

components so that our software can make best use of the components. Then, we have

to create blocks of instructions (kernels) which will run on the platform. Then, we will

setup memory objects (buffers) required to do the computation. After this, we execute

the kernels in the appropriate components. Finally, we can read the final result.

2.8.7. CPU+GPU Co-processing

Writing applications that execute only on a CPU or a GPU may not be efficient

because most applications have serial part suitable for execution on a CPU and a

parallel part that benefits from execution on GPUs [22]. The CPU+GPU co-processing

approach is developed because CPU and GPU have complimentary attributes (i.e. CPUs

are good for serial programs and GPUs are suitable for parallel programs). Most

programs that use CPU+GPU co processing have been found to have better

Compure Unit 1

PEN

2

PE1 Memory Data Cache

Global Memory

Constant Memory

Compure Device

Compure Unit N

Private Memories for

Processing Elements(PE)

52

performance per power consumed or die area than programs that run on CPU or GPU

cores alone.

2.9. Literature review on parallelization of optimization problems on

GPU

In [34], the authors implemented a branch and bound algorithm for a class of

integer programming problems called Knapsack problems using GPU. The hardware

they used in their experiment was a GTX 260 GPU and 3GHZ Xeon Quadro Intel

Processor.

Knapsack problems try to maximize the profit of n-items that fill a knapsack

where each item has a weight of wi where i ∈{1,..n}. Knapsack problems can be

modeled as Integer Programming problem and can be solved by branch and bound. If

the size of sub-problems in the branch and bound tree is small, the authors chose the

computation to be done on CPU. But, for large number of sub-problems, a list of sub-

problems was selected using breadth first search strategy and transferred to GPU.

Branching on the sub-problems was done in the GPU and using the result obtained,

bound computation was again done on GPU. And the list of created sub-problems

whose bound was computed was returned to CPU for pruning. For a problem size of

500, they obtained a speed up of 9.27

Our approach differs from theirs in that we don’t make two separate kernel calls

from the CPU once to do the branching and another to do the bounding. Instead with

one call to a kernel, we branch on nodes passed to the GPU and the bound of the

resulting nodes(sub-problems) will also be computed in the GPU and then the resulting

nodes whose bounds is computed will be returned back to the CPU. The second

difference is that while we are solving an LP problem during bound computation they

are solving a different formula to obtain the bound. And the third main difference of our

approach from them is that while finding the best lower bound, we also perform partial

(forward) pruning. And when we do full pruning, the number of nodes we prune will be

smaller since some nodes were already pruned while doing partial pruning when the

best lower bound is computed. Their approach instead finds the lower bound and after

that it will prune nodes and the size of the nodes in their pruning stage will therefore be

larger than the size of the nodes in our approach.

53

In [35], Chakroun and Melab tried to parallelize the branch and bound algorithm

which they used for solving the Flow Shop Scheduling Problem (FSP) by performing

parallel computation of bounds. (FSP is related to scheduling of n jobs in m machines.)

They used Nvidia Tesla T10 GPUs each with 240 CUDA cores and 4GB global. They

took a pool of nodes from the branch and bound tree using depth first search strategy

and they performed the bound computations for these pool inside GPUs and then they

performed elimination and branching on the CPU. They obtained an acceleration of x78

for a 200x20 problem instance using a single GPU and an acceleration of x105 for the

same problem instance using two GPUs.

They also dynamically tuned the size of sub-problems fed into the GPU

depending on the problem because the performance of GPU acceleration depended on

the input problem. In the dynamic tuning, they solved the problems with progressively

larger sizes of sub-problems until the maximum number of sub problems that the GPU

can handle at a time was reached. And, for each sub-problem size that was used, the

speed up per sub-problem was computed and the size that resulted in greatest speedup

was selected. And it was verified that using such dynamic tuning heuristic, instead of

using fixed size pool of sub problems, produces a better speedup.

Our approach differs from theirs in that we do branching on GPU in addition to

bound computation. And our approach uses best first search strategy (BFS) to choose

group of unexplored nodes from the branch and bound tree while their approach uses

depth first search (DFS).

In [36], the authors suggest parallelizing of the standard simplex method to solve

non-sparse LP problems. Although the revised simplex method generally outperforms

the standard simplex method, they chose the standard simplex method since for non-

sparse matrices both the standard and revised simplex methods give the same

performance. Since most of the standard simplex method procedures are spent on

pivoting, they suggested doing the pivoting on GPU. In their approach, the simplex

tableau is transferred to a GPU and the minimum ratio test and pivoting are done in

GPU where as finding the index of the entering and leaving variable are done on CPU.

They used a GTX 260 board and for large simplex tableau instances i.e.

7000x7000, they obtained a speed up of 12.5 over the corresponding CPU

implementation, where as for small size problems i.e. 500x500, they obtained a speed

up of 2.66.

54

Our approach differs from them in that we parallelize IP problems instead of LP

problems i.e. instead of parallelizing a single simplex instance; we are parallelizing

computations of several simplex instances to perform bound computations in parallel.

And instead of using simplex during bound computation, we use the revised simplex

method.

In [37], the authors presented a GPU implementation of the revised simplex

method to parallelize solving of linear programming problems. They used an nVidida

GeForce 9600 GT GPU with 1.0 GB RAM and with 64 shader processors. They used as

a bench mark randomly generated linear programming problems in canonical form.

They compared their implementation with an open source Linear Programming solver

called GLPK and for large problem instances they obtained up to 18x speedup over the

corresponding CPU implementation by GLPK.

Our approach differs from theirs’ in that instead of using graphics library to

write programs for GPU we use OpenCL which is a general purpose programming

language and we parallelize IP problems instead of LP problems. And another

difference is that they use the steepest edge method to select entering variables while we

use an approach where non-basic variables corresponding to the largest decrease in the

objective function value are chosen as entering variable.

55

CHAPTER 3

METHODOLOGY

3.1. The Proposed IP based Itemset Hiding (Sanitization) Algorithm

3.1.1. Inputs to the Proposed Itemset Hiding (Sanitization) Algorithm

Before using our IP based itemset hiding algorithm to sanitize datasets, we have to

make sure that the input datasets are represented in binary format. If not, we have to

first convert them into binary format. For example, the sample dataset in Table 3.1

which is not in binary format (it is expressed in market basket format) has to be

converted into the binary format shown in Table 3.2.

Table 3.1. A sample dataset in market-basket format

TID (Transaction ID) Items making the transaction

1 1 2

2 3

3 4

4 1 2 3

5 1 2 3 4

56

Table 3.2. A sample dataset in binary format

dij Item 1 Item 2 Item 3 Item 4

T1 1 1 0 0

T2 0 0 1 0

T3 0 0 0 1

T4 1 1 1 0

T4 1 1 1 1

In general a dataset that is to going to be sanitized by our sanitization algorithm

has to be first expressed in the following binary format.

Table 3.3. Format of an input dataset

dij i1 i2 im

T1

T2

.

.

Tn

where the values in the cells of the above table can have only a binary value of 0 or 1

corresponding to the absence or the presence of an item in a transaction.

The goal of the sanitization procedure is to make sure sensitive itemsets cannot

be mined from the sanitized database. Thus, after mining the input dataset and obtaining

the non-singleton frequent itemsets, the frequent itemsets are split into sensitive and

non-sensitive itemsets depending on which itemsets are sensitive so that we don’t want

them to be shown when mining the sanitized dataset.

The sensitive and non-sensitive itemsets are the other inputs to our sanitization

algorithm. These itemsets, like the input dataset, also have to be expressed in binary

format before being fed into the sanitization algorithm. In general, the sensitive and

non-sensitive itemsets shall be expressed in the binary formats shown in Table 3.4 and

3.5 when being used in the sanitization algorithm. The values in the cells of thebtables

can have only a binary value of 0 or 1 corresponding to the absence or the presence of

an item in an itemset.

57

Table 3.4. Sensitive Itemsets

skj i1 i2 im

I1

I2

.

.

Io

Table 3.5. Non-Sensitive Itemsets

nrj i1 i2 im

I1

I2

.

.

I

p

3.1.2. Terminologies Used To Express the Proposed Itemset Hiding

Algorithm

n : The total number of transactions in the dataset

m : The total number of unique items in the dataset

 : The minimum support threshold i.e. itemsets having support above the

minimum support threshold are called frequent where as itemsets whose support is

below the minimum support threshold are called infrequent.

o : The total number of non- singleton sensitive itemsets

p : The total number of non-singleton non-sensitive itemsets

)(kI : The support of the kth sensitive itemset

)(rI : The support of the rth non-sensitive itemset

58

i : A transaction number ranging from 1 to n

j : An item number ranging from 1 to m

k : A sensitive itemset number ranging from 1 to o

r : A non-sensitive itemset number ranging from 1 to p

dij : A binary variable used to indicate whether the jth item is present in the ith

transaction or not where },...1{ ni and },...1{ mj . If dij is 1, it means the jth item is

present in the ith transaction where as if it is 0, it indicates the jth item is not found in the

ith transaction. A matrix of dij values are used to represent the input dataset in binary

format.

skj: A binary variable used to indicate whether the jth item is present in the kth

sensitive itemset or not where },...1{ ok  and },...1{ mj . If skj is 1, it means the jth item

is present in the kth sensitive itemset where as if it is 0, it indicates the jth item is not

found in the kth sensitive itemset. A matrix of skj values are used to represent all the

sensitive itemsets.

nrj: A binary variable used to indicate whether the jth item is present in the rth

non-sensitive itemset or not where },...1{ pr and },...1{ mj .If nrj is 1, it means the jth

item is present in the rth non-sensitive itemset where as if it is 0, it indicates the jth item

is not found in the rth non-sensitive itemset. A matrix of nrj values are used to represent

all the non-sensitive itemsets.

xij : A binary decision variable used to determine which items of the input

dataset will be removed during sanitization where },...1{ ni and },...1{ mj . If xij is set

to 1, dij will be set to 0 when sanitizing the database. But, if xij is set to 0, the original

value of dij will not change when sanitizing the database.

zir : A binary decision variable used to determine whether or not the rth non-

sensitive itemset will be removed from transaction i during sanitization where

},...1{ ni and },...1{ pr . If zir is set to 1, it means the rth non-sensitive will be removed

from the ith transaction during sanitization. But, if zir is set to 0, it means the rth non-

sensitive itemset will not be removed from transaction i. (But note that a non-sensitive

itemset cannot be removed from a transaction which didn’t contain the non-sensitive

itemset in the first place. So, zir can be set to 1 in only those transactions which

59

contained the rth non-sensitive itemset. i.e. sup[i,r] must be 1 for zir to attain a value of

1.)

Rr: The amount by which the support of the rth non-sensitive itemset will be

reduced below the minimum support threshold as a side effect of the sanitization

process. Note that the maximum amount the support of the rth nonsensitive itemset can

be reduced below the minimum support threshold() is  , by which point the support

of the rth non sensitive itemset will be 0.

Ur: A binary decision variable used to determine whether or not the rth non-

sensitive itemset will be removed from the dataset (i.e. whether or not its support will be

reduced below the minimum support threshold ) during sanitization. If Ur is set to 1,

it means the rth non-sensitive will have its support reduced below the minimum support

threshold (i.e. removed from the database) during sanitization. But, if Ur is 0, it means

the rth non-sensitive itemset will remain frequent after sanitization.

3.1.3. Objective of the Proposed Itemset Hiding Algorithm

Objective

The objectives of the proposed sanitization algorithm when sanitizing the

database are (i.e. minimizing the number of non-sensitive itemsets whose support

will be reduced below the minimum support threshold as a side effect of removing

sensitive itemsets)

3.1.4 Constraints on the Proposed Itemset Hiding(Sanitization)

Algorithm

Constraint 1

To remove the kth sensitive itemset from the dataset, the sensitive itemset must

be removed from at least 1)( kI number of transactions. And to remove a

sensitive itemset from a particular transaction at least one item of the itemset must be

removed from the transaction. Thus, to remove the kth sensitive itemset from the

database by removing it from 1)( kI transactions at least a total of 1)( kI

items of the sensitive items must be removed from the dataset. (But note that we have to

60

make sure that we are attempting to remove sensitive itemsets from transactions which

contained the sensitive itemsets in the first place (i.e. sup[i, k] = 1))

Constraint 2

To remove the kth sensitive itemset from transaction i, it is sufficient to remove

only one item of the kth sensitive itemset from transaction i. Removing just one item of

the sensitive itemset to remove the sensitive itemset from a particular transaction

ensures minimum disturbance to the original database during sanitization. Thus, we can

impose the constraint that while sanitizing the database remove only one item of a

sensitive itemset to remove the sensitive itemset from a particular transaction.(But note

that we have to make sure that we are attempting to remove sensitive itemsets from

transactions which contained the sensitive itemsets in the first place (i.e. sup[i, k] = 1))

Constraint 3

In ideal sanitization process which doesn’t have any side-effect on the non-

sensitive itemsets, the support of the rth non-sensitive itemset can be decreased by upto

 )(rI without making the non-sensitive itemset infrequent in the sanitized dataset.

But, practically, it is usually impossible to sanitize a dataset without removing some

non-sensitive itemsets as a side-effect. Thus the support of the rth non-sensitive itemset

may be reduced by Rr amount below the minimum support threshold during sanitization

thus making the non-sensitive itemset infrequent for non-zero values of Rr. Thus, we

can impose a constraint on the sanitization process so that the number of transactions

from which the rth non-sensitive itemset is removed must not exceed rr RI )(

where Rr is a quantity coming from the side-effect of removing non-sensitive itemsets in

the attempt to remove sensitive itemsets from the dataset.

Constraint 4

If the rth non-sensitive itemset will not be removed from transaction i during

sanitization, then no item of the non-sensitive itemset should be removed from the

transaction. But, if the rth non-sensitive itemset will be removed from transaction i

during sanitization, any number of items of the non-sensitive itemset can be removed

from transaction i. Since the rth non-sensitive itemset can have upto m items, upto m

items of the non-sensitive itemset can be removed from transaction i, if the non-

sensitive itemset is to be removed from transaction i during sanitization.

61

Constraint 5

If the rth non-sensitive itemset will not be removed from the dataset during

sanitization (i.e. Ur = 0), then its support cannot be reduced below the minimum support

threshold () by any non-zero amount Rr i.e. Rr must be zero. But, if the rth sensitive

itemset will be removed from the dataset during sanitization (i.e. Ur = 1), the support of

the rth non-sensitive itemset will be reduced by an amount Rr not exceeding  .

Constraint 6

xij is a binary variable i.e. it can have a value of 0 and 1 only.

Constraint 7

zir is a binary variable. i.e. it can have a value of 0 and 1 only.

Constraint 8

Ur is a binary variable. i.e. it can have a value of 0 and 1 only.

3.1.5. The IP Problem for Sanitizing Datasets with Minimum Side-

Effect

The above constraints on the sanitization procedure and the objective of the

sanitization process can be expressed into the following Integer Programming (IP)

problem.

 Min 
  


p

r

r

n

i

p

r

ir

n

i

m

j

ijij UCzCxdC
1

3

1 1

2

1 1

1 (3.1)

 s.t)1)(()**(
1 1


 

 k

n

i

m

j

ijkjij Ixsd

 , k :),(DFI s

k  and 1],sup[ki (3.2)

 s.t. 1)**(
1




m

j

ijkjij xsd

62

 ,),(ki :),(DFI s

k  , },...1{ ni and 1],sup[ki (3.3)

 s.t.))((
1

rr

n

i

ir RIz 




 , r :),(DFI n

r  and 1],sup[ri (3.4)

 s.t.)*()**(
1

ir

m

j

ijrjij zmxnd 


 ,),(ri :),(DFI N

r  , },...1{ ni and 1],sup[ri (3.5)

 s.t. rr UR  r :),(DFI n

r  (3.6)

 s.t. 1ijx ,),(ji : },...1{ ni and },...1{ mj (3.7)

 s.t. 1irz ,),(ri :),(DFI N

r  and },...1{ ni (3.8)

 s.t. 1rU , r :),(DFI n

r  (3.9)

3.1.6 .The Standard Form of the Proposed IP Problem

The above IP problem can be converted into the following standard form by the

addition of slack and surplus variables.

 Min 
  


p

r

r

n

i

p

r

ir

n

i

m

j

ijij UCzCxdC
1

3

1 1

2

1 1

1 (3.10)

 s.t)1)((1))**((
1 1


 

 kk

n

i

m

j

ijkjij Isxsd ,

 k :),(DFI s

k  and 1],sup[ki (3.11)

 s.t. 12))**((
1




ik

m

j

ijkjij sxsd ,

63

),(ki :),(DFI s

k  , },...1{ ni and 1],sup[ki (3.12)

 s.t.))((3)(
1

 


rrr

n

i

ir IsRz ,

 r :),(DFI n

r  and 1],sup[ri (3.13)

 s.t. 04)*())**((
1




irir

m

j

ijrjij szmxnd ,

),(ri :),(DFI N

r  , },...1{ ni and 1],sup[ri (3.14)

 s.t. 05)( rrr sUR  , r :),(DFI n

r  (3.15)

 s.t. 16  ijij sx .),(ji : },...1{ ni and },...1{ mj (3.16)

 s.t. 17  irir sz .),(ri :),(DFI N

r  and },...1{ ni (3.17)

 s.t. 18  rr sU . r :),(DFI n

r  (3.18)

3.2. Steps for Sanitizing an Input Dataset Using the Proposed Itemset

Hiding (Sanitization) Algorithm

The steps for sanitizing an input dataset using the proposed IP based itemset

hiding (sanitization) algorithm are shown below.

64

 Figure 3.1. The procedures for sanitizing an input dataset

The branch and bound algorithm was used to solve an IP problem. And within

the branch and bound algorithm, the algorithm used for solving linear programming

problems in order to obtain bounds was the revised simplex algorithm.

3.3. Generation of the Inputs to our Itemset Hiding Algorithm

In order to obtain the frequent itemsets and their supports, the Apriori algorithm

implemented in Java by the authors shown below was used with slight modification to

format its outputs. After an input data set is given to the code and the minimum support

threshold is set, this code outputs the non-singleton frequent itemsets, their supports, the

number of transactions and unique items in the dataset as well as the number of non-

singeleton frequent itemsets which are used as inputs in our sanitization algorithm.

 * @author Martin Monperrus, University of Darmstadt, 2010

 * @author Nathan Magnus and Su Yibin, under the supervision of Howard Hamilton,

 * University of Regina, June 2009.

 * @copyright GNU General Public License v3

3.4. The Proposed Architecture for Solving the Formulated IP Problem

The proposed architecture for solving the formulated IP problem on a CPU-GPU

platform is shown in Figure 3.2.

Reading inputs(i.e. dataset, frequent itemsets and their supports)

Determining sensitive itemsets and formulating an IP problem to remove the sensitive

items

Solving the formulated IP problem on a CPU-GPU platform using the branch and bound

method

Using the solution of the formulated IP problem to create a sanitized dataset

65

3.5. Summary of tasks done on CPU

The tasks done on a CPU are

 Initialization of the GPU

 Reading the inputs(i.e. dataset, frequent item sets and their supports) and

formulation of an IP problem which is used to sanitize the input dataset

 Solving the formulated IP problem with the branch and bound method or

delegating some part of the branch and bound steps to be done on GPU if the

search area in the branch and bound tree gets large.

 Using the solution of the formulated IP problem to sanitize the input dataset.

But note that in order to solve IP problems with the branch and bound method the

CPU uses a function called lpsolve which uses the two phase method(refer to section

2.7.2.7) to solve LP problems that result from relaxing the integrality constraints on the

IP problems, which will then be used to obtain the lower bounds on the objective

function value of the sub-problems(nodes).

lpsolve is used to obtain a solution of LP problems without being given an initial

basic feasible solution. But lpsolve depends on a function called revisedsimplexlu

which is used to solve LP problems only after being given an initial basic solution.

66

Figure 3.2. A CPU-GPU platform for parallelizing the branch and bound method

Create Priority Queue (PQ)

Compute LB of the input IP

problem(node) and add it to

PQ and set UB to INF

Remove a single sub-problem

(node) from PQ

Perform Branch and Bound

Pruning

Add unpruned sub-problems

(nodes) to PQ

Transfer as

many nodes as

Threshold from

PQ

Perform branch and

bound

sizeof(PQ) = 0

sizeof(PQ) <

Threshold

Get the

new nodes

CPU GPU

yes

yes

no

no

67

The revisedsimplexlu function needs to solve system of linear equations and for

this purpose it uses a function call lusolve which solves linear system of equations using

lu decomposition. So, the function lusolve in turn uses a function called lu to perform

LU decomposition of square matrices.

The inputs to the program are specified within a function called input_selector

where the paths of the input and output files as well as charachterstics of the input

dataset and frequent itemsets are specified. So, the parameters within this function must

be set before running the program.

More description of the components of the CPU code is shown in the tables

below.

Table 3.6. sparse_matrix structure

sparse_matrix : A c structure used to store a sparse matrix in row major form

Members Name Data type Description

values float ** Non zero values in the original matrix

col_indices int ** Column indices of the non zero values in

the original matrix

size_per_row Int * The number of non-zero elments per row

in the original matrix

Table 3.7. sparse-matrix2 structure

sparse_matrix2 : A c structure used to store a sparse matrix in column major

form

Members Name Data

type

Description

values float ** Non zero values in the original matrix

row_indices int ** Row indices of the non zero values in the

original matrix

size_per_colu

mn

int * The number of non-zero elments per column

in the original matrix

The following example demonstrates the above row-major and column-major

sparse matrix representations.

68

 Assume we are given the following matrix

1 0
2 3

Then its row-major sparse representation using sparse_matrix looks as follows.

Values col_indices size_per_row

And its column-major sparse representation using sparse_matrix2 looks as

follows

Table 3.8. cl_node structure

cl_node : a c structure used to store a sub-problem(node) corresponding to an IP

or LP problem

Name Data type Description

A sparse_matrix2 A matrix in the constraints Ax=b

b float * A vector in the constraints Ax=b

c float * A vector in the objective function

min z = cx

num_constraints int Number of constraints

num_vars int Number of variables

B int * Index of the basic variables

N int * Index of the non-basic variables

X float * An array to hold the Xs in the

solution of IP/LP problem of the

form min Z=CX s.t.AX=b)

 (cont. on next page)

69

Table3.8. (cont.)

objVal float A variable to hold the objective

function value(Z) in the solution of

IP/LP problem problem of the form

min Z=CX s.t.AX=b)

flag int A variable to hold the state of the

solution computed for the LP

problem. Possible values it can be

assigned are 0 (FEASIBLE), 1

(FEASIBLE_INTEGRAL) , 2

(INFEASIBLE) and

3(UNBOUNDED)

branching_var_indx int A variable to hold the index of the

most fractional variable in X if the

slution obtained for the LP problem

is not integral

Table 3.9. A function for initialization of a GPU

gpu_initialization()

Purpose To setup the GPU

Parameters None : But uses global variables

Steps  Gets a list of OpenCL platforms and chooses a particular platform

 Gets a GPU device from the chosen platform

 Creates memory buffers on the GPU device to hold the inputs that

will be passed to the GPU and to store outputs which result from

execution of a kernel

 Creates and builds program from the kernel source (i.e. OpenCL file

contacting the kernel)

 Creates a kernel object which encapsulates the kernel function and

makes it accessible from the CPU

 Creates a command queue to queue a command for execution on

the GPU

70

Table 3.10. A function for formulation of the an IP problem which helps in sanitization

of an input dataset

ip_formulator (.....)

Purpose To formulate the IP problem whose solution is used to sanitize the input

dataset

Paramete

rs

Name Data type Parameter

type

Description

Dataset String input Path to the input dataset

file where the input

dataset must be in

market-basket format

binaryDataset String input Path to a file where the

binary version of the

input dataset will be

stored

frequentItemsets String input Path to a file containing

the frequent itemsets in

the the dataset where

the frequent itemsets

must be in market-

basket format

frequentItemsets

Supports

String Input Path to a file containing

the support of the

frequent itemsetts

N Int input The number of

transactions in the input

dataset

M Int Input The number of different

items in the input datset

 (cont. on next page)

71

Table 3.10. (cont.)

 minItem Int Input The minimum item in the dataset

(allowed values are 0 or 1)

Psi Int Input The minimum support threshold

Q Int Input The number of non-singleton

frequent itemsets

Node cl_node* output A structure to store the formulated

IP problem

AA String Input Path to a file where the A in the

formulated IP problem will be stored

for debugging purposes(A where

min z= cx s.t. Ax=b, x>=0)

Bb String Input Path to a where the b in the

formulated IP problem will be stored

for debugging purposes

Cc String input Path to a file where the c in the

formulated IP problem will be stored

for debugging purposes

Steps  Reads the input dataset which must be in market basket format and

converts it into binary format

 Also reads the frequent itemsets and their supports from a file

 Asks the user which itemsets are sensitive and splits the frequent

itemsets and their supports into sensitive and non-sensitive parts

 Determines A, b and c of the sanitization IP problem whose solution

indicates the items that need to be removed from the original dataset

to sanitize it with a minimum side-effect.

72

Table 3.11. A function for solving IP problems using the branch and bound method

best_first_branch_and_bound (...)

Purpose To obtain the solution of the formulated IP problem

Paramete

rs

Name Data

Type

Parameter

Type

Description

RootNode Cl_node* Input/output A structure which holds the IP

problem which is going to be

solved and also which stores the

solution of the IP problem

Steps  Solves the IP problem without the integrality constraints

 If the solution of the above relaxed solution is infeasible or

unbounded, it STOPS without returning a solution as the IP

problem doesn’t have a solution

 Otherwise, if the relaxed solution of the IP is integral, it STOPS

since an integral solution has been found

 Otherwise, it PUSHES the problem whose relaxed solution is

already obtained into a priority queue where the lower bound of

the problem is the objective function value in the relaxed

solution

 Initializes the upperbound to INFINITY

 While the priority queue is not empty

 {

 If the size of the priority queue is less than the threshold for

using GPU (gpuThreshold), it does the following

computations on CPU

{

 Removes a single sub-problem from the priority queue

 Checks whether the removed sub-problem is promising

i.e. whether it has a lower bound below the upper

bound. If not, it PRUNES the sub-problem as non-

promising and it proceeds to another sub-problem

 (cont. on next page)

73

Table 3.11. (cont.)

  Branches from the first fractional variable in the sub-

problem’s relaxed solution to create two sub-problems

which we call the left and right sub-problems (nodes)

 Solves the left and right sub-problems (nodes) without

the integrality constraints.

 Sets the lower bounds of the left and right sub-problems

to their relaxed solutions’ objective function values

 If the left or right nodes are infeasible or non-promising

(with a lower bound above the upper bound), it

PRUNES them.

 If the left or right nodes have feasible and integral

solution , it UPDATES the upperbound to their lower

bound in its way and PRUNES them after making them

as the current best integral solution

 Otherwise it means the left or right nodes have feasible

relaxed solution which is not integral but promising with

a possibility of giving better integral solution. So, it

PUSHES them to the priority queue. }

 On the other hand, if the size of the priority queue is equal or

greater than the threshold for using GPU(gpuThreshold), it

does the following computations.

{

 It removes nodes from the priority queue upto the

threshold for using GPU(gpuThrehsold).

 Checks if all of the removed nodes are still promising. If

not, it PRUNES the non-promising nodes and removes

additional nodes from the priority queue until the

number of removed and not-pruned nodes reaches the

gpuThreshold.

 If the number of nodes removed but not-pruned is below

the threshold for using GPU(gpuThreshold), it returns

the

 (cont. on next page)

74

Table 3.11. (cont.)

  removed nodes back into the priority queue so that they

can be processed with CPU and it GOES to the

beginning of the while loop by escaping the

computations below.

 If the number of removed and not-pruned reaches

gpuThreshold, it transfers the removed nodes to GPU

where they are branched into left and right nodes and

their bounds is computed by solving them without the

integrality constraints.

 Then, it transfers the nodes(sub-problems)

(2*gpuThreshold number of them) whose bound is

already computed to CPU

 If any of these nodes are infeasible or non-promising

(with a lower bound above the upper bound), it

PRUNES them.

 If it encounters a node with a feasible and integral

relaxed solution while traversing the retrieved nodes, it

UPDATES the upper bound to its lower bound and it

prunes it after making it the current best integral solution

 Otherwise it means the unpruned nodes have feasible

 relaxed solutions which are not integral but promising

with a possibility of giving better integral solution. So, it

PUSHES them to the priority queue.

}

 }

It returns the solution marked as the current best integral solution as the

solution of the IP

75

Table 3.12. A function for solving LP problems using the revised simplex method

without being given an initial basic feasible solution

lpsolve (...)

Purpose To solve LP problems (It solves IP problems without the integrality

constraints i.e. it solves relaxed IPs which are basically LPs)

Parameters Name Data Type Parameter

Type

Description

phase2 Cl_node* Input/output A structure

which holds

an LP

problem

which is

going to be

solved and

also which

stores the

solution of

the LP

problem

Steps  It considers the given LP problem as an LP problem in phase 2

of the two phase simplex method

 It creates the LP problem of phase 1 by the addition of artificial

variables to the given LP problem and by setting the objective

function coefficients in the given LP problem to zero

 It solves the LP problem of phase 1 by the revised simplex

method using the artificial variables as basic variables

 If the solution of the LP problem in phase 1 is infeasible, it

means the original LP problem in phase 2(the relaxed IP

problem) is also infeasible. So, it EXITS without returning a

solution

 Otherwsie,it uses the basic variables in the solution of phase 1 as

the basic variables for the original LP problem in phase 2

 (cont. on next page)

76

Table 3.12. (cont.)

  If the basic variables in the solution of phase 1 contain artificial

variables, it applies pivoting to exchange the basic artificial

variables with the appropriate non-basic variables which are not

artificial

 It solves the LP problem in phase 2 using the revised simplex

method and using the basic variables obtained from the solution of

the phase 1 LP problem

Table 3.13. A function for solving LP problem if given an initial basic feasible solution

revisedsimplexlu ()

Purpose To solve an LP problem given the index of the basic variables

corresponding to an initial basic feasible solution

Parameters Name Data

Type

Parameter

Type

Description

 node cl_node* Input/output A structure which holds an LP

problem which is going to be

solved and also which stores the

solution of the LP problem given

an initial basic feasible solution to

the LP problem

Steps  It calculates the index of non-basic variables from the index of

basic variables

 It splits A and C of the given LP problem into basic and non-

basic parts (i.e. AB,AN,CB,CN)

 Computes the current basic variable values as 𝑏𝐵𝑎𝑟 = 𝑥𝐵 =

 𝐴𝐵−1𝑏

 Initializes the negative reduced cost(negRedCost) to a –

negative value e.g. -1

 (cont. on next page)

77

Table 3.13.(cont.)

  While negRedCost is less than zeron it does the following

 {

 Selects the entering variable. To do this

 It selects as a pivot column the non-basic column of the

simplex tableau corresponding to the least negative

negative-reduced-cost(negRedCost). To do this

 It first computes the negative reduced cost of all non-

basic variables as 𝑤𝑁 = 𝐶𝑁′ − (𝐶𝐵 ∗

𝐴𝐵−1)𝐴𝑁 𝑜𝑟 𝑤𝑁 = 𝐶𝑁′ − 𝑢′`
𝐴𝑁 𝑤ℎ𝑒𝑟𝑒 𝑢 =

 (𝐴𝐵′)−1𝐶𝐵

 Then it determines the index of the column of the

simplex tableau that gives the least negative negative-

reduced-cost value of negRedCost and then it computes

the entries in the pivot column of the simplex tablue as

𝑎𝐵𝑎𝑟 = 𝐴𝐵−1𝐴𝑁𝑝𝑖𝑣𝑜𝑡𝐶𝑜𝑙𝑢𝑚𝑛𝐼𝑛𝑑𝑒𝑥

 If there is no non basic variable (column of the simplex

tableau) with negative reduced cost, then an optimal

solution has been found and no entering non-basic

variable can improve the solution, so it RETURNS the

current solution.

 Selects the leaving variable. To do this

 Applies minimum ratio test to determine the leaving

variable

 If a minimum ratio value can’t be found, it means the

LP problem is unbounded (i.e. it is possible to increase

the value of the entering variable to infinity without

making any of the basic variables negative). So, it

RETURNS without a solution by indicating the LP

problem is unbounded

 If the minimum ratio is obtained by more than one

 (cont. on next page)

78

Table 3.13.(cont.)

  rows(or basic variables), it applies Charne’s

perturbation to determine which basic variable leaves

the basis

 Applies pivoting to exchange the entering and leaving

variables

 Updates AB,AN,CB,CN and index of the basic and non-

basic variables B and N

 Computes the current solution i.e. compute 𝑥𝐵 =

𝑏𝐵𝑎𝑟 𝑥𝑁 = 0 𝑎𝑛𝑑 𝑜𝑏𝑗𝑉𝑎𝑙 = 𝑐𝐵𝑥𝐵

 }

 Determines whether the current solution is feasible and integral.

If not, it means the current solution is only feasible but not

integral and thus determines the index of the fractional

variable(which will be used to perform branching in B&B

Returns the solution

Table 3.14. A function for solving linear system of equations using LU decomposition

lu_solve (...)

Purpose  To solve linear system of equations that arise in the

revisedsimplexlu function(It is used to compute 𝑏𝐵𝑎𝑟 = 𝑥𝐵 =

 𝐴𝐵−1𝑏 , 𝑢 = 𝐴𝐵−1𝐶𝐵 and 𝑎𝐵𝑎𝑟 = 𝐴𝐵−1𝐴𝑁𝑝𝑖𝑣𝑜𝑡𝐶𝑜𝑙𝑢𝑚𝑛𝐼𝑛𝑑𝑒𝑥)

Parameters Name Data

Type

Paramete

r Type

Description

node cl_node

*

Input A structure which holds the

A matrix of an LP

problem(i.e. A where min

z=cx s.t. Ax=b)

(cont. on next page)

79

Table 3.14.(cont.)

 b float * input An array which holds the b

vector of an a system of

linear equations(i.e. b s.t.

Ax=b)

x float * output An array which holds the x

vector of an a system of

linear equations(i.e. the

solution vector x s.t. Ax=b)

size int input The dimension of the basic

matrix(AB) formed from A

of the LP problem, which is

the same as the number of

constraints in the LP

problem

useTranspose int input If set to 1, it means lusolve

will solve AB’*x=b other

wise it solves AB*x=b

where AB is the basic part

of the A matrix in the LP

problem

Steps  Given a system Ax=b , it finds L,U and P such that PAx =

LUx = Pb

 Then it lets Ux=y and forward solves Ly=Pb to obtain y

 Then backward solves Ux=y to obtain x

80

Table 3.15. A function that performs the LU decomposition of a square matrix

lu()

Purpose  To find the LU decomposition of a given matrix A(It is used in

particular to compute the LU decomposition of AB).

Parameters Name Data type Parameter type Description

Node cl_node* input A structure which holds

the A matrix of an LP

problem(i.e. A where

min z=cx s.t. Ax=b)

L

sparse_matrix

*

output A row-major sparse

matrix used to hold L in

the LU decomposition

the basic part of A, i.e.

AB, of an LP problem

U sparse_matrix

*

output A row-major sparse

matrix used to hold U in

the LU decomposition

the basic part of A, i.e.

AB, of an LP problem

P sparse_matrix

*

output A row-major sparse

matrix used to hold P in

the LU decomposition

the basic part of A, i.e.

AB, of an LP problem

size int input The dimension of the

basic matrix(AB)

formed from A of the

LP problem, which is

the same as the number

of constraints in the LP

problem

(cont. on next page)

81

Table 3.15. (cont.)

 useTranspose int If set to 1, it means

lu will find the LU

decomposition of

AB’*. Otherwise, it

finds the LU

decomposition of

AB, where AB is the

basic part of the A

matrix in the LP

problem AB

originates

Steps  It returns L,U and P such that PA=LU

Figure 3.3. Summary of Function calls on the CPU code

3.6. Summary of All Tasks Done on GPU

The tasks done on GPU are

 To branch on sub-problems (nodes) those were passed to the GPU

 To compute the bounds of the new sub-problems (nodes) produced by

the branching.

The description of the functions that make up the GPU code is shown below

inputSelector
Ip_formulator

best_first_branch_and

_bound

createSanitizedDatabase

lpsolve

revisedsimplexlu

free_sparsematrix

lu lusolve

free_sparsematrix2

main

IPSolverAndSanitizer.cpp

branch_and_bound

_kernel

82

 Table 3.16. A function to branch on several IP nodes and compute their bounds in

parallel

branch_and_bound_kernel (...)

Purpose To solve a list of LP sub-problems in parallel on GPU

Parameters Name Data

type

qualifier Parameter

type

Description

nAP2L cl_node

*

__global Input/output nAP2L is a buffer

which refers to node

array of phase 2 LP

problems in the two

phase method(refer

section 2.7.2.7) which

initially holds input LP

problems and which

finally stores the new

nodes corresponding to

left branches on the

input LP problems by

replacing the input LP

problems, where the

new nodes have their

bounds computed

nAP2R cl_node

*

__global output nAP2L is a buffer

which refers to node

array of phase 2 LP

problems in the two

phase method(refer

section 2.7.2.7) is used

to hold the new nodes

corresponding to right

branches of the input

LP problems, where the

new nodes have their

bounds computed

(cont. on next page)

83

Table 3.16. (cont.)

size Size __global input The number of LP

problems in nAP2L

which were passed to

the GPU to be

processed in parallel,

which is the same as

the number of right

nodes in nAP2R which

result from branching

on the LP problems

which were initially

stored in nAP2L.

Steps  It performs branching on the sub-problems(nodes) that were

passed to the GPU

 It computes the bounds of the new sub-problems produced by

branching

Table 3.17. A function for branching on several IP nodes in parallel

branch (...)

Purpose To branch on the fractional variables of the sub-problems that were

passed to it

Parameters Name Data

type

qualifier Paramet

type

Description

(cont. on next page)

84

Table 3.17. (cont.)

 L cl_node* __global Input/output L is a buffer which

refers to node array of

phase 2 LP problems in

the two phase

method(refer section

2.7.2.7) which initially

holds input LP problems

and which finally stores

the new nodes

corresponding to left

branches on the input

LP problems by

replacing the input LP

problems

R cl_node* __global output R is a buffer which

refers to node array of

phase 2 LP problems in

the two phase

method(refer section

2.7.2.7) which is used to

hold the new nodes

corresponding to right

branches of the input LP

problems

Steps Given a list of sub-problems(L), it branches on them and

stores half of the new sub-problems in the original buffer(L)

which is used to hold the input sub-problems and stores the

other half of the new sub-problems into another buffer.

85

The GPU code also has functions called lpsolve, revisedsimplexlu, lusolve and

lu with similar purposes as the corresponding functions in the CPU.

 Figure 3.4. Summary of function calls on the GPU code

3.7. Sample Interactions with the Itemset Hiding(Sanitization)

Program

Assume we are given the given a small dataset of 5 transactions and 4 itemsets

as shown in the figure 3.5 below which is then mined at minimum support threshold of

2 to give the frequent non-singleton itemsets in the figure 3.6 where the support of the

frequent itemsets is shown in the figure 3.7.

If we choose the itemset {1,3}in figure 3.6 as sensitive, which is found at row 2

in the figure, then a user’s interaction with our program for sanitizing an input dataset

looks as shown in the Figure 3.8.

Figure 3.5. An input data set in market-basket format

lusolve branch_and_bound_

kernel

revisedsimplexlu2 lpsolve

revisedsimplexlu

lu
branch

Branchandbound.cl

86

Figure 3.6. Frequent itemsets Figure 3.7. Support of the frequent

itemsets

Figure 3.8. Snapshot of the command window during sanitization of a small dataset

At the end of the program, we will find the input dataset in binary format as well

as a sanitized version of the input dataset also in binary format as shown in Figure 3.9

and Figure 3.10.

87

Figure 3.9. The binary form of the input dataset which was in market-basket format

Figure 3.10. The sanitized dataset in binary format

3.8. Hardware Used

The computer used to write the sanitization program had an Intel® Core™ i5-

3230M CPU @ 2.60GHz. The computer’s RAM was 8GHz. The GPU used was

NVIDIA GeForce GT 635M which has 90 cores @ 675 MHz and with 2048 MB of

memory.

3.9. Software Used

The Integrated Development Environment (IDE) used to write the programs was

Visual Studio 2012. The CPU side code was written using C++. And the GPU side code

was written using OpenCL.

88

CHAPTER 4

RESULTS

4.1. Formulation of the Sanitization IP problem

As discussed in section 3.1, we have come up with a new IP based sanitization

algorithm whose solution is used for sanitization of datasets. Before we try to solve the

formulated IP problem and use its solution to sanitize datasets, it was important to first

verify whether the IP problem formulated by the program we wrote matches with our

proposed sanitization IP problem shown in section 3.1.6. So, different small sample

datasets with their corresponding frequent itemsets and sensitive itemsets were given to

the part of our program that formulates the sanitization IP problem and this formulation

was compared with the IP formulation that can be obtained manually by using the input

datasets, frequent itemsets, sensitive itemsets and using the equations in section 3.1.6.

Here for demonstration purposes we will use a sample dataset of only 3 transactions

and 3 items and show that the sanitization IP problem that was formulated by our

program is as expected and as can be manually derived using the equations in section

3.1.6.

First, the following dataset was given as input to an implementation of the

Apriori algorithm to determine the non-singleton frequent itemsets.

Figure 4.1. A dataset to verify the IP formulation

When the above data set was mined using a minimum support threshold () of

2, the following frequent itemsets were found and they were then fed as input to the IP

formulator together with the input dataset.

89

Figure 4.2. Frequent itemsets Figure 4.3. Support of the frequent itemsets

Out of the two frequent itemsets shown above, the first itemset i.e. {1,2} was

chosen as sensitive.

So, from the above inputs, we had

 number of transactions in the dataset(n) = 3;

 number of unique items in the dataset(m) = 3;

 number of sensitive itemsets(o) = 1;

 number of non-sensitive itemsets(p) = 1;

 The sum of the support of sensitive itemsets(sensSupSum) = 2;

 The sum of the support of the non-sensitive itemsets(nonSensSupSum) = 2;

Then, when our sanitization IP problem of section 3.1.6 is formulated by our

program using the above inputs, the sanitization IP problem that is obtained looked as

shown in the Figure 4.4. The IP problem had 34 variables and 20 constraints which was

as expected and which was verified by manually formulating the IP problem using the

equations in section 3.1.6 and comparing it with the above IP problem.

The 34 variables in the figure represent the different variables found in the IP

problem of section 3.1.6. Note that in the sanitization IP problem of section 3.1.6, the

variables of the sanitization IP problem are composed of (n*m) number of xij variables,

and similarly (n*p) zir, (p) Ur, (p) Rr, (o) s1k, (sensSupSum) s2ik, (p) s3r,

(nonSensSupSumn*p) s4ir, (p) s5r and (n*m) number of s6ij variables. So, the 34

variables shown in Figure 4.4 represent (3*3) number of xij variables, and similarly

(3*1) zir, (1) Ur, (1) Rr, (1) s1k, (2) s2ik, (1) s3r, (2) s4ir, (1) s5r and (3*3) number of

s6ij variables.

90

Figure 4.4. The formulated IP problem for sanitization of the dataset

By referring to the equations in the sanitization IP problem of section 3.1.6 we can see

that, o number of constraints come from equation (3.9), and similarly sensSupSum

constraints from (3.10), p from (3.11), nonSensSupSum from (3.12), p from (3.x),

(n*m) from (3.14), (n*p) from (3.15) and p constraints from equation (3.16). So, out of

the 20 constraints in the figure above, 1 constraints comes from equation (3.9) and

similarly 2 constraints from (3.10), 1 from (3.11), 2 from (3.12), 1 from (3.13),

(3*3=9) from (3.14), (3*1=3) from (3.15) and 1 constraints from equation (3.16).

Also note that although we demonstrated the working of the sanitization IP

formulation using a small IP problem of 34 variables and 20 constraints, its correctness

was also verified for IP problems of over 2000 variables and over 1000 constraints

because sanitizations done using such large sanitization IP problems were also observed

to remove the sensitive item sets successfully.

4.2. Solving of Linear Programming (LP) Problems

As discussed in section 3, the algorithm that was used for solving the formulated

sanitization IP problems was the branch and bound algorithm. And in order to compute

bounds in the branch and bound algorithm the revised simplex algorithm was used,

since bounds are obtained by solving Linear Programming (LP) problems (see section

2.7.2 for more information about the simplex method).So, our implementation of the

revised simplex algorithm was tested with different sample LP problems to verify if it

91

solves LP problems correctly. For example, we will show below the result obtained

when solving a sample Linear Programming problem using our implementation of the

revised simplex method.

The standard form of the following Linear Programming problem was given to

our implementation of revised simplex algorithm.

min 2𝑥1 − 3𝑥2

s.t. 𝑥2 ≤ 1

𝑥1 + 𝑥2 ≤ 2

−0.5𝑥1 + 𝑥2 ≥ 8

−𝑥1 + 𝑥2 ≥ 6

And the solution that was obtained is shown in the figure below

Figure 4.5. Screenshot of the solution obtained when solving the LP problem

, where x1 = 4, x2 = 10 with an objective function value of -22. x3, x4, x5 and x6 were

slack and surplus variables which were used to convert the inequalities in the constraints

of the LP problem to equalities. We can verify that any other combination of x1 and x2

values won’t give solution with lesser objective function value while meeting all the

four constraints.

But note that the above LP problem was only used for demonstration purposes

and it wasn’t the only one which was used to verify the correctness of our

implementation of the revised simplex method. For instance, linear Programming

problems containing over 2000 variables and 1000 constraints were also correctly

solved by our implementation. The verifications were done by comparing the result of

our implementation with the result of open source linear programming solver libraries

like lpsolve (http://sourceforge.net/projects/lpsolve/).

One may ask why didn’t use already existing libraries like lpsolve in our

implementation. This is because in our project we use two platforms: CPU and GPU

depending on the size of the problem (i.e. depending on the number of active nodes in

the branch and bound tree). While it is possible to use already available libraries when

http://sourceforge.net/projects/lpsolve/

92

the program runs on CPU, it is not possible to use similar libraries when the program

runs on GPU. This is because the OpenCL library which was used to write programs for

the GPU doesn’t support the use of libraries, which need dlls(dynamically linked

libraries).

4.3. Solving of Integer Programming (IP) Problems

In order to solve the sanitization IP problems that were formulated the algorithm

that was used was the branch and bound algorithm. Like the revised simplex algorithm,

our implementation of the branch and bound algorithm was also tested with different

sample IP problems to verify if it solves IP problems correctly. For example, we will

show below the result obtained when solving a sample Integer Programming problem

using our implementation of the branch and bound method which in turn uses the

revised simplex method to compute bounds.

The standard form of the following Integer Programming problem was given to

our implementation of the branch and bound method.

min z = 2x1 − 3x2

s.t. −10x1 + 2x2 ≤ 5

3x1 + 2x2 ≤ 9

 x1, x2 ≥ 0 , x1, x2 ∈ N

And the solution that was obtained is shown in the figure below

Figure 4.6. Screenshot of the solution obtained when solving the IP problem

, where x1 = 1, x2 = 3 with an objective function value of -7. x3 and x4 were slack

variables which were used to convert the inequalities in the constraints of the IP

problem to equalities. We can verify that any other integral combination of x1 and x2

values won’t give solution with lesser objective function value while meeting all the

two constraints.

93

Like in the LP case, while there are Open Source libraries that can solve IP

problems, we can’t use such libraries in our project because our program not only runs

on CPU but it also runs on GPU. And the OpenCL library which we used to write our

GPU code doesn’t support the incorporation of external libraries because every code

that is written for the GPU is required to be compiled in order to run on the GPU which

is not possible for libraries.

4.4. Sanitization of Datasets

The result of experiments done on different sample datasets using our proposed

sanitization algorithm show that it is possible to remove sensitive item-sets from input

datasets with minimal impact on non-sensitive item-sets. Since our proposed

sanitization algorithm is an exact algorithm (Integer Programming based) its

sanitization output is always guaranteed to remove all sensitive item sets while also

meeting constraints that ensure minimal impact on the non-sensitive itemsets.

For instance, the results of sanitization of two sample datasets using our

proposed sanitization algorithm are shown in the following two experiments and the

observations from the experiments are also discussed.

4.4.1. Experiment 1

Sanitization Inputs

In this experiment, the dataset used was a sample dataset with 5 transactions and

4 unique items. This dataset is shown in the figure below both in market-basket-format

and binary format.

 or

Figure 4.7. Sample dataset called small2

94

When the above dataset was mined using the implementation of the Apriori

algorithm using a minimum support threshold () of 2, the following non-singleton

frequent itemsets were obtained.

Figure 4.8. Frequent itemsets in small2 Figure 4.9. Support of the frequent

itemsets

In this experiment, out of the four frequent itemsets shown above, the itemset

{1, 3} which is found at row 2 of figure 4.8 was chosen as sensitive.

Sanitization Outputs

A sanitization IP problem was then formulated by our sanitization program

according to the equations shown in section 3.1.6. The formulated IP problem had 99

variables (including slack or surplus variables) and 58 constraints. This IP problem was

then solved by our program using a branch and bound algorithm and its solution gave a

5x4 matrix of xij values, which were then used to determine which items of the input

dataset should be removed to sanitize the input dataset. The 5x4 matrix of xij values

obtained by the solution of the formulated IP problem indicated that the items shown

underlined in the figure below had to be removed in order to sanitize the input dataset.

Figure 4.10. Items identified for removal to sanitize small2

The sanitized dataset obtained by removing the above underlined items from the

input dataset is shown in Figure 4.11 both in market-basket format and binary

95

format.And When the sanitized dataset was mined using the implementation of the

Apriori algorithm and using the same minimum support threshold () of 2, the non-

singleton frequent itemsets shown in Figure 4.12 were obtained.

or

Figure 4.11. The sanitized version of small2

Figure 4.12. Frequent itemsets in the sanitized version of small2

In conclusion, we can observe from Experiment 1 that the chosen sensitive

itemset {1, 3} was successfully hidden from the sanitized dataset. I.e. the sensitive

itemset was not frequent when the sanitized dataset was mined at the same minimum

support threshold () of 2. Moreover, the sanitized dataset was obtained from the

input dataset while the following side-effects of sanitization were kept minimal (see

section 3.1) i) number of items removed from the input dataset ii) the number of non-

sensitive itemsets removed from transactions, and iii) the number of non-sensitive

itemsets that were made infrequent.

The following table summarizes the performance of the implementation of the

proposed sanitization algorithm for the inputs used in Experiment 1.

96

Table 4.1. Performance of our sanitization algorithm for Experiment 1

Sensitive Itemsets Not Removed None

Number of items removed during

sanitization

2 which accounts for 15.4% of all items

found in the original transactions.

Number of transactions affected by

sanitization

2 which accounts for 40% of the

transactions

Number of non-sesnsitive itemsets hidden

as side effect

1 which account for 33.3% of the non-

sensitive itemsets.

Sanitization time(in milli seconds) 18 with lpsolve library

Figure 4.13. Performance of our sanitization algorithm for Experiment 1

100

33.3

15.4

40

0

20

40

60

80

100

120

Performance of our sanitization algorithm on the sample

dataset of experiment 1

Percentage values

97

4.4.2. Experiment 2

Sanitization Inputs

In this experiment, the dataset used was a randomly generated sample dataset

with 100 transactions and 20 unique items. This dataset is shown in the figure below in

market-basket-format.

3 5 7 8 9 11 14 15 16 17 19 20

1 2 4 5 6 7 11 12 13 14 15 16 20

1 7 13 17 19 20

1 2 3 4 8 9 11 13 14 15 18 19 20

2 4 6 9 11 13 14 15 16 17 19 20

1 4 5 6 7 13 14 15 17 18

3 6 8 9 10 11 13 15 20

1 2 3 6 8 9 10 11 12 13 15 17 18

1 4 5 7 8 10 12 16

3 4 6 7 10 11 12 13 15 18 19

3 6 7 9 12 14 15 16

1 4 5 6 7 9 10 13 14 17 18 19

4 5 6 12 16 17 18 19 20

2 3 7 8 11 12 14 15 16 19 20

1 4 5 6 7 8 9 10 11 12 14 16 17

6 7 9 10 11 15 16 17 18

1 6 7 8 9 11 12 13 19

1 2 3 4 5 10 11 13 14 16

1 3 4 7 8 9 10 11 15 17 19

1 2 6 7 9 11 13 17

1 4 5 7 8 9 12 13 14 15 17 19 20

3 5 8 11 12 13 14 16 18 19

1 5 6 7 8 10

2 3 6 10 13 14 15 18

1 2 7 9 13 15 18 20

1 9 10 12 13 15 16 17 20

1 2 5 10 11 14 15 19 20

2 6 7 8 9 11 12 13 14 15 17 18 19 20

2 6 9 12 15 16 17 20

1 2 5 6 7 8 9 10 13 14 15 16 18 20

1 2 3 4 6 7 8 10 11 13 14 16 17 18

1 5 8 12 13 17 18 19 20

1 3 4 5 8 9 12 14 15 19 20

Figure 4.14. A sample dataset for experiment 2

 (cont. on next page)

98

3 5 9 11 13 14 16 17 18 19

3 5 7 11 13 16 19 20

2 3 5 6 8 14 15 16 17 19

5 6 7 8 9 10 12 15 17

4 6 7 13 17 18 19

3 6 7 8 9 11 12 15 18

1 2 3 4 6 7 9 11 14 16 18 20

3 4 5 6 8 10 11 13 16 17 18 19 20

4 5 13 16

2 4 6 7 8 10 11 12 13 18 19

2 3 4 7 9 12 17 18

4 5 9 11 14 17 20

1 3 4 6 9 11 12 14 15 17 19 20

3 4 6 7 8 10 12 13 14 15 16

2 3 9 12 13 14 16 18 19

3 7 9 10 12 13 16 17 18 20

2 4 6 8 11 16 17 19 20

1 4 6 8 14 16 18 19 20

1 2 7 9 10 13 14 16 18

2 4 5 7 9 12 14 16 18 20

1 3 7 8 9 10 11 13 17 20

2 3 8 10 11 12 13 16 17 19

1 5 7 10 11 13 15

1 2 5 8 10 12 15 16 17 18 20

1 2 3 6 7 9 10 12 13 14 15 17 18

7 11 15 19

1 7 12 13 15 16 20

2 3 4 6 10 11 14 17 19 20

2 4 5 6 7 9 12 15 16 20

1 3 4 7 10 13 15 16 17 18 20

1 5 7 9 10 14 15 17 18 19 20

2 5 6 9 10 11 14 16

1 3 4 5 8 9 10 11 14 15 18 19

1 2 3 4 5 6 7 8 9 11 13 16 18

2 3 4 5 6 12 14 15 16 17 18

1 3 4 5 6 9 10 12 15 19 20

2 4 5 7 8 9 10 13 14 18 19

2 4 7 9 10 14 15 17 19

2 3 4 6 7 9 10 11 12 14 17 18

1 4 6 7 8 9 10 11 12 13 20

3 4 5 9 10 11 13 16 17 18 19 20

2 3 4 6 8 10 11 12 18 19 20

1 2 5 7 12 13 14 16 20

2 3 5 6 10 11 12 13 15 18 20

1 2 4 5 6 7 8 12 15 16 19 20

1 3 5 6 8 10 11 13 14 15 19

1 2 3 5 7 9 11 13 15 16 17 19 20

Figure 4.14. (cont)

 (cont. on next page)

99

 1 2 6 8 10 11 12 13 14 15 16 18 20

2 3 4 8 13 14 15 16 17 18

2 3 5 6 7 13 14 15 17 19

1 4 7 8 9 10 11 13 15 16 17 20

1 2 3 4 8 9 10 11 12 15 16 17 19 20

3 6 8 10 11 12 14 15 16 17 18

1 2 3 5 7 10 11 12 18 20

1 2 3 5 6 7 9 10 11 12 14 15 17 19 20

1 2 4 5 6 9 10 11 12 13 14 16 17 18

1 2 4 6 9 10 11 14 15 19

1 2 3 5 7 8 9 10 12 13 14 15 17 19

1 2 5 9 10 11 12 14 15 17 18

3 4 9 10 14 16 17 18

3 4 5 13 14 16 18

1 3 4 6 8 9 10 11 13 14 17

4 5 7 13 15 16 17 19 20

1 5 6 8 9 10 11 15 16 19

3 4 6 7 9 16

1 4 9 11 13 14 16 17

2 3 5 6 10 15 16 17 18

Figure 4.14. (cont)

When the above dataset was mined using the implementation of the Apriori

algorithm using a minimum support threshold () of 30, the following 26 non-

singleton frequent itemsets were obtained

6 11

7 13

6 10

10 15

3 10

9 17

1 15

1 13

11 13

14 15

9 14

9 10

7 9

1 9

Figure 4.15. The frequent itemsets in the dataset of experiment 2

 (cont. on next page)

100

3 11

2 14

6 15

10 11

1 11

7 15

15 17

1 10

9 15

1 7

9 11

10 17

 Figure 4.15. (cont.)

In this experiment, out of the four frequent itemsets shown above, the itemset

{6, 11},{14 15},{7,15} which are found at rows 1,10 and 20 of figure 4.15 were

chosen as sensitive.

Sanitization Outputs

A sanitization IP problem was then formulated by our sanitization program

according to the equations shown in section 3.1.6. The formulated IP problem had 9538

variables (including slack or surplus variables) and 5192 constraints. This IP problem

was then solved by our program using a branch and bound algorithm and its solution

gave a 100x20 matrix of xij values, which were then used to determine which items of

the input dataset should be removed to sanitize the input dataset. Once the sanitized

dataset is obtained, it was mined again to determine its frequent itemsets and to check

whether the sensitive itemsets were hidden and the following 23 frequent itemsets were

obtained by mining the sanitized dataset where none of the 3 sensitive itemses were

freuqent.

7 13

6 10

10 15

3 10

9 17

1 15

1 13

Figure 4.16. The frequent itemsets in the sanitized version of the dataset of experiment2

 (cont. on next page)

101

11 13

 9 14

 9 10

7 9

1 9

3 11

2 14

6 15

10 11

1 11

15 17

1 10

9 15

1 7

9 11

10 17

 Figure 4.16. (cont.)

Table 4.2 and Figure 4.17 summarize the performance of the implementation of

the proposed sanitization algorithm for the inputs used in Experiment 1.

Table 4.2.Performance of our sanitization algorithm for Experiment 1

Sensitive Itemsets Not Removed None

Number of items removed during sanitization 4

Number of transactions affected by sanitization 4

Number of non-sesnsitive itemsets hidden as side

effect

0

Sanitization time(in milli seconds) 4340 with lpsolve library

102

Figure 4.17. Performance of our sanitization algorithm for Experiment 2

Comparing the output of experiment 2 with the outputs of experiment 1 may

suggest that as the sanitization problem (the inputs datasets) gets larger the performance

of our sanitization algorithm increases in terms of accuracy but this has to be confirmed

by carrying out experiments with even larger datasets.

4.5. Implementation on a CPU-GPU platform

Writing a code that only runs on CPU differs from writing code that runs on

both CPU and GPU and which works by switching platforms depending on the problem

size. While the experiments and results shown before in sections 4.1 through 4.4 were

done using a program that was optimized for a CPU platform by using dynamic

memory allocation and sparse matrices, it is difficult to create such efficient program for

a program that will run on both CPU and GPU platforms. This is because in order to

represent IP problems we use a c structure and the way this structure is written must be

the same on both the CPU and the GPU codes of the program, when we use OpenCL to

write codes for GPU. Unfortunately, we can’t use c structures whose array members’

sizes vary dynamically in the GPU code while this is possible on the CPU code [38].

Thus we are forced not to use arrays with varying sizes as member of structures in the

CPU in order to make the CPU structure the same as the GPU’s , which means the

100

0 0.41 4

0

20

40

60

80

100

120

Sensitive
Itemsets
Hidden

Non-sensitive
itemsets hidden

Items removed Transactions
affected

Performance of our sanitization algorithm on the sample

dataset of experiment 2

Percentage values

103

GPU becomes a bottleneck in the way we write the c-structure for representing an IP

problem.

Here we will compare the performances that are obtained when doing all the

computations on CPU, on GPU and on the combination of CPU and GPU using the

versions of our codes that don’t use sparse matrix representations in accordance to the

limitation that the GPU creates as discussed above. The sanitization inputs used for all

the three cases are as shown below.

Common Sanitization Inputs for the Three Cases

Figure 4.18. A sample dataset used to compare the performance of Implementation of

the sanitization algorithm on different platforms(CPU,GPU,CPU-GPU)

called small

Figure 4.19. Frequent itemsets in small Figure 4.20. Support of the frequent itemsets

Where {1,3} was chosen as sensitive itemset.

Sanitization Ouptus

The CPU case

The following outputs were obtained when doing all the computations on CPU.

104

Figure 4.21. Screen shot of command window while trying sanitize sanitize the dataset

 shown above using CPU only

Figure 4.22. The item identified for removal by our sanitization algorithm

Figure 4.23. The sanitized version of the dataset

105

 Figure 4.24. Frequent itmestes in the sanitized version of ‘small’ dataset

Table 4.3. Performance of the implementation of the sanitization algorithm using CPU

platform only

Sensitive Itemsets Not Removed None

Number of items removed during

sanitization

1 which accounts for 9.1% of all items

found in the original transactions.

Number of transactions affected by

sanitization

1 which accounts for 20% of the

transactions

Number of non-sesnsitive itemsets

hidden as side effect

1 which account for 33.3% of the non-

sensitive itemsets.

Sanitization time(in milli seconds) 60659 with our cpu-gpu code, with no

sparse matrix representation

The GPU-case

The same outputs as the CPU case were obtained when doing all the

computations on GPU as shown below with the exception of the running time.

106

Figure 4.25. Screen shot of the command window during sanitization of the dataset

using GPU only

Table 4.4. Performance of the implementation of the sanitization algorithm using GPU

platform only

Sensitive Itemsets Not Removed None

Number of items removed during

sanitization

1 which accounts for 9.1% of all items

found in the original transactions.

Number of transactions affected by

sanitization

1 which accounts for 20% of the

transactions

Number of non-sesnsitive itemsets

hidden as side effect

1 which account for 33.3% of the non-

sensitive itemsets.

Sanitization time(in milli seconds) 80343 with our cpu-gpu code, with no

sparse matrix representation

107

The CPU-GPU Case

And again the same outputs were obtained as in the CPU and GPU cases with

the exception of the running time when doing the computations on CPU-GPU platform

using a Threshold of 5 which makes computations to be done on CPU when the number

of active nodes in the priority queue is below 5 and computations to be done on GPU

when the number of active nodes in the priority queue is at least 5. The use of a CPU-

GPU platform showed a remarkable speedup over the corresponding computations done

using CPU and GPU alone.

Figure 4.26. Screen shot of the command window during sanitization of the dataset

using CPU-GPU platoform

108

Table 4.5. Performance of the implementation of the sanitization algorithm using CPU-

 GPU platform combination

Sensitive Itemsets Not Removed None

Number of items removed during

sanitization

1

Number of transactions affected by

sanitization

1

Number of non-sesnsitive itemsets hidden

as side effect

1 which account for 33.3% of the

non-sensitive itemsets.

Sanitization time(in milli seconds) 18988 with our cpu-gpu code, with no

sparse matrix representation

The following figure summarizes the running times that were required by using

different platforms (i.e. cpu only, gpu only and cpu-gpu combination) when sanitizing a

sample dataset whose sanitization IP problem contains 95 variables and 54 constraints.

Figure 4.27. Performance comparison of implementing the sanitization algorithm on

 different platforms using the same sample dataset

60659

80343

18988

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

CPU GPU CPU-GPU(with
gpuThreshold of 5)

Performance comparison of execution of the implementations

of the sanitization algorithm on different platforms

Computation time(milli
seconds)

109

CHAPTER 5

DISCUSSION AND CONCLUSION

The goal of our thesis was coming up with a new integer programming based

itemset hiding algorithm and parallelization of its implementation with the use of GPU

since solving of integer programming problems is NP hard. The algorithm that we

proposed is exact which means it removes all sensitive itemsets with the least impact on

the non-sensitive itemsets. The correctness of its outputs was verified by using it to

sanitize some sample datasets.

Since sanitization using our approach requires solving of an integer

programming (IP) problem, the branch and bound method was used to solve a

sanitization IP problem. The performance of the branch and bound method largely

depends on how efficiently the bound is computed since it involves large number of

bound computations. The algorithm that we used for bound computation was the revised

simplex algorithm.

Since solving of IP problems is NP hard, we proposed a CPU-GPU architecture

to parallelize solving of the sanitization integer programming problem. The codes on the

CPU side were written in c++ using visual studio IDE while the codes on the GPU side

were writing using OpenCL. The platforms used were a computer with 8GHz of

memory and with Intel® Core™ i5-3230M CPU @ 2.60GHz. The GPU used was

NVIDIA GeForce GT 635M which has 90 cores @ 675 MHz and with 2048 MB of

memory

In the CPU-GPU architecture, when the number of active nodes in the branch

and bound tree exceeds a certain threshold, several nodes are transferred to the GPU to

perform branching on them and then bound computation on their children. And when

the number of active nodes in the branch and bound tree is below the specified

threshold, computations are done on CPU since the speed up that could be obtained by

using GPU will be offset by the time it takes to transfer nodes between CPU and GPU.

Implementation of our sanitization algorithm on a CPU-GPU platform shows that the

CPU-GPU architecture provides speedup over using CPU or GPU alone.

110

Limitations and Future Work

At the time of working on this thesis there was no dynamic memory allocation

support in OpenCL which prevented us from using sparse matrix representations [38].

And without sparse matrix representations computations will be slow and the GPU’s

memory will quickly get full and the program will run out of memory. This limitation

can be eliminated if support for dynamic memory allocation (like malloc of c) is

incorporated in future releases of OpenCL. In an article published on March 2014, the

authors of [38] have designed a memory manager called KMA that provides generic

malloc() and free() APIs. So, this limitation will probably be overcome in the near

future by using such APIs.

While our implementation of the proposed sanitization algorithm shows that it

can successfully remove sensitive itemsets while meeting all constraints specified in the

proposed IP based sanitization algorithm, our implementation of an integer

programming problem solver was found to be not as fast as open source

implementations. Our investigation of why this difference aroused showed that we need

to use a number of tricks to speed up the revised simplex algorithm that is used for

bound computations. One technique we used to speed up our implementation was the

use of sparse representation for large matrices and this resulted in a significant speedup.

Other techniques that can be used to speed up our implementation are suggested below.

Since degeneracy (see section 2.7.2.7) was observed to frequently occur in the

linear programming problems that are solved by the simplex method during bound

computations, we tried applying Charnes perturbation method to reduce the effect of

degeneracy in the simplex method[16]. But, it didn’t result in performance improvement

as expected. So, if other degeneracy handling algorithms are used, a better speed up of

the simplex method might be obtained. In addition, the following technique that can

speed up the simplex method was found from our literature review. Since the

implementation of the revised simplex method involves LU factorization of the basis

AB and its transpose AB’ after each iteration when solving for AB ∗ u = CB and AB′ ∗

aBar = ANpivotColumnIndex as shown in Table 3.13, it would be time consuming if the

LU factorization of AB and AB’ is done after each iteration. Thus, updating of the basis

AB and its transpose after each iteration rather re-factorizing them can increase the

performance of simplex implementation. So, in the future the Bartels-Golub-Reid

update [39] or similar basis update techniques can be tried to speed up the

implementation of the revised simplex method.

111

REFERENCES

[1] Hand, D. ; Mannila H. ; and Smyth P. ; 2001; “Principles of Data Mining“ ;

book published by The MIT Press, chapters 1.1, 1.8 and 5.1

[2] Bramer, M; 2013; “Principles of Data Mining“; Springer, 2nd ed, 2013 edition

[3] Maimon , O. ; Rokach L; 2010; “Data Mining and Knowledge Discovery

Handbook”, second edition,Springer, chapter 15

[4] Agrawal R. and Srikant R. 1994 ;“Fast Algorithms for Mining Association Rules

in Large Databases”;In International Conference on Very Large Data Bases, pages

487–499.

[5] Borgelt C. ; 2005; “An Implementation of the FP-growth Algorithm” ; In

International Workshop on Open Source Data Mining, pages 1–5.

[6] Borgelt C. ; 2003 ; “Efficient Implementations of Apriori and Eclat.” ; In

Proceedings of the IEEE ICDM Workshop on Frequent Itemset Mining

Implementations (FIMI 2003, Melbourne, FL)

[7] Agrawal R. and Srikant R. ; 2000 ; “Privacy Preserving Data Mining” ; In

the proceedings of the 2000 ACM S1GMDD international conference on

management of data

[8] Evfimievski A., Gradison T.; 2009; “Privacy Preserving Data Mining”; Handbook

of Research on Innovations in Database Technologies and Applications : Current

and Future Trends (pp. 527-536) , USA ;

[9] Gkoulalas-Divanis A. , Verykios V.S ; 2010 ; “Association Rule Hiding for

Data Mining”; Springer New York Dordrecht Heidelberg London;

[10] Sathiyapriya , K. ; Sadasivam G. S. ; 2013; ” A Survey On Privacy

Preserving Association Rule Mining” ; International Journal of Data Mining

& Knowledge Management Process (IJDKP) Vol.3, No.2,

[11] Jadav K. B.; Vania J.; Patel D. R.; 2013 ; ” A Survey on Association Rule

Hiding Methods”;In International Journal of Computer Applications, Volume 82 ,

No 13

112

[12] Genova K. ; Guliashki V. ; 2011; “Linear Integer Programming Methods

and Approaches – a Survey”, Cybernetics and Information Technologies, BAS,

Vol. 11, No 1, pp. 3-25, ISSN 1311-970

[13] Chandru V. ; 2010; “Integer Programming”; In the book Algorithms and theory

of computation handbook , Chapman & Hall/CRC, pp. 31-1 to 31-47, ISBN:

978-1-58488-822-2

[14] Ibaraki, T; 1976; “Integer programming formulation of combinatorial

optimization problems”; In the journal Discrete Mathematics 16, pp. 39-52

[15] Yang, X-S. ; 2008 ; “Introduction to Mathematical Optimization : From

Linear Programming to Metaheuristics”; a book published by Cambridge

International Science Publishing, pp 67-72 and pp 1-6;

[16] Sinha, S. M. ; 2006; “Mathematical Programming : Theory and Methods”; a

book published by Elsevier Science & Technology,pp 133-138 and pp 165-172

[17] Nocedal, Jorge Wright, Stephen J.; 2006 ; “Numerical Optimization”; published

by Springer, pp 372-390

[18] Jeannin-Girardon, A; Ballet, P; Rodin,Vincent ; 2013; “A Software Architecture

for Multi-Cellular System Simulations on Graphics Processing Units”; in the

journal Acta Biotheoretica , Volume 61, Issue 3, pp 317-327

[19] Banzhaf, W; Harding, S; Langdon, W.B. , Wilson, G; 2009;” Accelerating

Genetic Programming through Graphics Processing Units”;in the book Genetic

Programming Theory and Practice VI, Genetic and Evolutionary Computation ,

pp 1-19

[20] Owens, J. D. ; Luebke D. ; Govindaraju, N.; Harris M. ; Krüger J.; Lefohn

A.E. ; Purcell T. J.; 2007;” A Survey of General-Purpose Computation on

Graphics Hardware”; in the journal computer graphics forum, Volume 26, Issue

1,pp 80-113

[21] Owens J. D., ; Houston Mike,; Luebke D.; Green S.; Stone J. E., ; Phillips

J. C.; 2008; “GPU Computing”; Proceedings of the IEEE, Vol. 96, No. 5, May

2008, pp 879-899

[22] Nickolls, J. and Dally, W.J.; 2010; ” The GPU Computing Era”; in the journal

Micro, IEEE, pp 56-69

[23] Hallmans, D. ; Asberg, M. ; Nolte, T; 2012; ”Towards using the Graphics

Processing Unit (GPU) for embedded systems” ; IEEE 17th Conference

on Emerging Technologies & Factory Automation (ETFA), 2012,pp 1-4

http://link.springer.com/journal/10441/61/3/page/1

113

[24] Khronos OpenCL Working Group; 2012 ; “The OpenCL specification, version

1.2.”; Technical report, Khronos Group, 2012

[25] Munshi A.; Gaster B.; Mattson T. G.;Ginsburg D.; 2011;”OpenCL programming

guide”; Pearson Education, Jul 7, 2011

[26] Fang J.; Varbanescu A.L. ; Sips H . ; 2011 ; ”A Comprehensive Performance

Comparison of CUDA and OpenCL” ; In proceedings of the 2011

International Conference on Parallel Processing (IEEE Computer Society

Washington, DC, USA), pp. 216-225

[27] Achterberg T. ; Koch T.; Martin A. ; 2005; ” Branching rules revisited”;In

Operations Research Letters, Volume 33 Issue 1,pp. 42-54

[28] Bertsimas D. ; Tsitsiklis J. ; 1993 ; “Simulated Annealing”; in statistical science,

vol. 8, no. 1, pp 10-15

[29] Fernando R.; Kilgard M. J.; 2003 ; ” The CG Tutorial : The Definitive

Guide to Programmable Real-Time Graphics”, Addison-Wesley Professional,

ISBN 0 - 321-19496-9

[30] Tarditi D.; Puri S. ; Oglesby J; 2006; “Accelerator : using data parallelism to

program GPUs for general-purpose uses”; In ASPLOS XII Proceedings

of the 12th international conference on Architectural support for programming

languages and operating systems,pp. 325-335

[31] Oneppo M.; 2007; ” HLSL shader model 4.0”; In SIGGRAPH '07 ACM

SIGGRAPH 2007 courses, pp. 112-152

[32] Robere R.; 2012; “Interior Point Methods and Linear Programming”; University

of Toronto

[33] Gondizo J.; Terlaky T.; 1996; “A computational view of interior point methods”;

in the book Advances in linear and integer programming, pp. 103-144

[34] Boukedjar A.; Lalami M. E.; El-Baz D.;2012; ” Parallel Branch and Bound on a

CPU-GPU System”; 20th Euromicro International Conference on Parallel,

Distributed and Network-Based Processing (PDP), 2012

[35] Chakroun I., Melab N. ; 2012; “An Adaptative Multi-GPU based Branch-and-

Bound. A Case Study: the Flow-Shop Scheduling Problem” ; 4th IEEE

International Conference on High Performance Computing and Communications,

HPCC 2012

114

[36] Lalami M. E. ; Boyer V. ; El-Baz D.; 2011 ; “Efficient Implementation

of the Simplex Method on a CPU-GPU System”; In the 11th Proceedings of the

2011 IEEE International Symposium on Parallel and Distributed Processing

Workshops and PhD Forum

[37] Bieling J.; Peschlow P. ; Martini P.; 2010; ” An Efficient GPU Implementation of

the Revised Simplex Method”; In the 2010 IEEE International Symposium on

Parallel & Distributed Processing, Workshops and Phd Forum (IPDPSW)

[38] Spliet R.; Howes L.; Gaster B. R.; Varbanescu A. L. ; 2014; “KMA: A

Dynamic Memory Manager for OpenCL”; In proceedings of Workshop on

General Purpose Processing Using GPUs; ACM New York

[39] Reid J. K. ; 1982; ”A sparsity-exploiting variant of the Bartels—Golub

decomposition for linear programming bases”; In Mathematical Programming,

1982, Volume 24, Issue 1, pp 55-69

