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ABSTRACT 

 

PARALLELIZATION OF A NOVEL FREQUENT ITEMSET HIDING 

ALGORITHM ON A CPU-GPU PLATFORM 

 

Data mining is used to extract useful information from large data. But the 

organizations which mine the data might not be the owner of the data. So, before the 

owners can make their data accessible for data mining they want to make sure that no 

sensitive information can be mined from the released data whose discovery by others 

might harm them. Itemset hiding is one mechanism to prevent the disclosure of 

sensitive itemsets. In this thesis, a new integer programing based itemset hiding 

algorithm was developed and a mechanism to speed up the computation time of its 

implementation was proposed by using parallel computation on Graphical Processing 

Units (GPUs). 
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ÖZET 

 

YENI BIR SIK KÜMELERI GIZLEME ALGORITMASININ CPU-GPU 

PLAFORMU ÜZERINDE PARALLELLEŞTIRILMESI 

 

Veri madenciliği büyük veriden yararlı bilgileri ayıklamak için kullanılır. Ancak 

veriyi ayıklayan örgütler verinin sahibi olmayabilirler. Bu yüzden,veriyi Veri 

madenciliği için erişilebilir yapmadan önce veri sahipleri serbest bırakılan veriden 

hassas bilgilerin ayıklamadığından emin olmak istiyorlar. Itemset gizleme hassas 

itemset'lerinin açıklanmasını önlenmek için bir mekanizmadır. Bu tezde, yeni bir 

tamsayı programlama tabanlı Itemset gizleme algoritması geliştirilmiştir ve hesaplama 

zamanını hızlandırmak için Grafik İşleme Birimi (GPU) üzerinde paralel hesaplama 

kullanarak bir mekanizma önerilmiştir. 
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CHAPTER 1 

 INTRODUCTION 

     

Data mining is a technique used for extracting information from large data [1]. It 

is used in a wide range of areas. There are different data mining algorithms and one of 

them is association rule mining. Association rule mining is concerned with extraction of 

association rules, which are implications of the form 𝑋 → 𝑌 [3]. Association rules are 

used for various purposes with market basket analysis being one of them. The Apriori 

algorithm can be used for mining of association rules. 

Privacy preserving association rule mining (association rule hiding) is one area 

of privacy preserving data mining which aims at preventing sensitive association rules 

from being disclosed as a result of data mining carried out by third parties without 

authorization or approval[8][10]. There are heuristic, border-based and exact association 

rule hiding algorithms [9]. Since by hiding the frequent itemsets of a dataset which 

result in sensitive association rules it is also possible to hide the sensitive association 

rules, in this paper a new exact algorithm for hiding of such sensitive frequent itemsets 

is proposed. 

The proposedd IP based itemset hiding algorithm aims at minimizing the 

number of items removed from the database, the number of non-sensitive itemsets 

removed from transactions and the number of non-sensitive itemsets removed from the 

database while meeting a number of constraints. The results of the implementation of 

the proposed IP based sanitization algorithm shows that the algorithm successfully hides 

sensitive itemsets from the input datasets with the least possible impact on the non-

sensitive itemsets.  

Our dataset-sanitization algorithm involves solving of an integer programming 

problem that specifies the goals and the constraints of the sanitization process. There are 

exact and heuristic algorithms for solving of such integer programming problems[12]. 

But, since our itemset hiding approach is exact, i.e. since we want to obtain optimal and 

not approximate solutions, one of the most commonly used exact algorithms called the 

branch and bound algorithm was used. The bound phase of the branch and bound 

algorithm requires linear programming(LP) problems to be solved. And among the 
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algorithms for solving linear programming problems  the revised simplex method was 

chosen[16]. 

Since integer programming problems are NP hard [13] and it may take quite a 

long time to solve them, the use of GPU to offload some of the computation from the 

CPU was proposed. The main way in which GPUs differ from CPUs is in the large 

number of cores they posses which gives them the ability to execute several 

computations in parallel[18]. Although GPUs were originally created for rendering 

graphics, they are now also widely used for General Purpose computation. Among the 

high level languages one can use to write programs for GPUs are Cuda and OpenCL. In 

this thesis, OpenCL was used because while programs  written using OpenCL have the 

advantage of being portable, their performance was also found not  to be affected due to 

their portability[26]. One research shows that instead of doing all the computations on 

CPU or GPU alone, if the computations are done on a CPU-GPU platform by switching 

between the two platforms appropriately, a better performance gain is 

obtained[22].Accordingly, our proposed CPU-GPU architecture also shows speedup 

over the sanitization computations that are done only on CPU.  

But, the use of GPUs was only feasible for small sanitization problems. This is 

because for large sanitization problems, the sanitization IP problem will have lots of 

constraints and variables. Attempting to solve such a large problem on GPU will make 

the GPU run out of memory since memory efficient representations like sparse matrix 

representations can’t be implemented on GPUs as GPUs (OpenCL) donot allow 

dynamic memory allocations [38]. We will suggest at the end how this limitation can be 

overcome in the future. 

The rest of this paper is organized as follows: Section 2 discusses approaches for 

hiding frequent itemsets(Association Rules) when datasets are mined using a branch of 

data mining called association rule mining. Approaches for solving integer 

programming (IP) and linear programming (LP) problems are also discussed in this 

section since exact itemset hiding algorithms rely on solving such problems. At the end 

of section 2 an introduction to GPUs is given and how GPUs have been used until now 

to parallelize optimization problems like Integer Programming. In Section 3, we 

introduce our proposed IP based sanitization algorithm and how it is implemented on a 

CPU-GPU platform. In Section 4, we show the results of our implementation and in 

Section 5, we summarize the achievements of our thesis and how remaining works can 

be approached in the future.  
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CHAPTER 2 

LITERATURE REVIEW 

   

2.1. Data Mining 

   

Due to advances in technology, large datasets with gigabytes or terabytes of data 

are created or collected by the computer systems of different companies and institutions 

[1]. These datasets can range from daily credit card transactions or CCTV recordings to 

the terabyte of data that is generated by companies like NASA with its Earth 

Observation satellites [2]. There usually exist potentially valuable information or 

embedded knowledge within these huge data that can potentially make companies make 

profits and scientists make discoveries. But extraction of this information is not trivial 

because it usually gets obscured within the large data and if we can’t be able to extract 

all or most of the embedded knowledge with in the huge data and if we merely store the 

data, we will miss out on making the best use of the collected data. 

Data mining is thus developed to solve this problem and it is a method of 

analyzing a large data to identify potentially useful and previously unknown 

relationships and patterns so as to create a useful summary of the data [1]. Without the 

use of data mining it is difficult to extract those useful information and patterns because 

they will be hidden with the large amount of data. 

Data mining is used in a wide variety of areas such as targeted marketing, 

weather forecasting, financial forecasting and medical diagnosis [2]. For example, a 

supermarket can collect data on its customer’s transactions and after determining its 

high value customers by data mining ( which for instance may turn out to be people 

within a certain age group or gender), then it can target its marketing to these customers. 

Similarly, data mining can be used in medical diagnosis to predict the probability that a 

cancer patient may respond to chemotherapy so as to avoid unnecessary costs if it is 

applied to patients who don’t respond to it. 

There are different types of data mining algorithms or procedures which take 

data as input and produce output in the form of patterns [2]. The algorithms differ from 

one another based on the following components i) the purpose of the data mining (e.g. 

classification, clustering, association rule learning etc.) ii) the type of pattern or model 
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that they try to fit to the data iii) the objective function that they use to determine the 

quality of fit of the suggested models or patterns iv) the mechanism that they use to 

optimize (maximize/minimize) the objective function v) the data structures that they use 

to store and retrieve the data 

 

2.2. Association Rule Mining 

 

Let  𝐼 = {𝑖1, 𝑖2, … , 𝑖𝑚} be a set of items. An association rule is an implication of 

the form 𝑋 → 𝑌 where 𝑋 𝑈 𝑌 ⊆ 𝐼  ,   𝑋 ∩ 𝑌 = ∅ and where 𝑋 and 𝑌 are a set of items 

(Itemsets) from 𝐼 that are called antecedent and consequent respectively [3]. The 

support of an association rule 𝑋 → 𝑌 is expressed as sup (𝑋 → 𝑌), which is equivalent 

to sup(𝑋 𝑈 𝑌),  and it denotes the number of transactions in the database that support 

the rule. A database 𝐷 is said to support an association rule 𝑋 → 𝑌 if there exists a 

transaction 𝑇 in the database such that𝑋 → 𝑌 ⊆  𝑇.  

It is important to note that association rules do not always hold [3]. For example, 

the association rule 𝐵𝑟𝑒𝑎𝑑 → 𝐵𝑢𝑡𝑡𝑒𝑟 can’t hold 100% of the time because not 

everyone who buys bread also buys butter. So, a quantity called confidence is used as a 

measure of the probability of a rule holding at a given time or as the measure of the 

degree of confidence we have on the correctness of the rule at a given time. For the rule 

→ 𝑌 , its confidence is  sup(𝑋 𝑈 𝑌)/ sup(𝑋) the confidence is the proportion of items 

that support the rule from the set of itemsets that support its antecedent. 

  

2.2.1. Application Areas of Association Rules 

 

Association rules are mainly used for market basket analysis [3]. Market basket 

analysis is the analysis of the market basket of customers to find associated products. 

For example, after analyzing customer’s transactions, a store may find out 80% of 

customers who buy bread also buy butter.  

Association rules can help a store sale many items by offering discount to items 

bought in pair. If the two items forming the pair are closely associated to each other, 

customers will likely buy both of them when they are offered together, thus increasing 

the number of items sold by the store. Another way a store can use association rules is 
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that it can place the two associated items side by side so that customers wishing to buy 

one of the items will be reminded to also buy the other item. 

 

2.2.2. The Apriori Algorithm for Association Rule Mining 

 

There are different algorithms for mining association rules, i.e. rules whose 

support and cofidence is above a user specified minimum threshol[3]. The most 

common are Apriori[4], FP-Growth[5] and Eclat[6]. Here we will only discuss the 

Apriori Algorithm as the focus of our thesis is on hiding frequent itemsets, which can 

result in association rules we don’t want to be known, regardless of with what method 

they were obtained and since Apriori is a well-known algorithm which can do the work 

of obtaining frequent itemsets. 

The Apriori algorithm finds all frequent itemsets, which are itemsets whose 

support exceeds a minimum support threshold [3]. Then, it uses the frequent itemsets to 

determine all rules whose confidence exceeds a minimum confidence threshold. 

 

The Frequent Itemset Mining Phase 

The Apriori algorithm starts from an empty set and identifies a set of candidate 

itemsets of size 1 which can potentially be frequent [3]. Then it scans the database to 

determine the support of these candidate itemsets. The candidates whose support 

exceeds the minimum support threshold become frequent. After obtaining frequent 

itemsets of size 1, it creates candidate itemsets of size 2 from the frequent itemsets of 

size 1 by adding one more item to them. Again the support of the candidate itemsets is 

determined by scanning the database, and those candidates whose support exceeds the 

minimum support threshold will be added to the list of frequent itemsets. The process is 

repeated using new frequent itemsets until no more frequent itemsets can be generated.  

In general, the Apriori algorithm proceeds from a candidate itemsets of size Ck 

to find frequent itemsets of size k whose support in the database exceeds the minimum 

support threshold. Then, candidate itemsets of size k+1 are generated from the frequent 

itemsets of size k by adding one more item to them. Having candidate itemset of size 

k+1, the above procedures are repeated until no more candidate itemsets can be 

generated by adding one more item to the previous frequent itemsets. 
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The Apriori algorithm terminates at the first encounter of no frequent itemsets of 

size k because if an itemset of size k is infrequent, no superset of it can become frequent 

[3]. In other words, if we have two itemsets X and Y, where  𝑋 ⊆ 𝑌 , it is obvious that 

sup(𝑋)  ≥ sup(𝑌) always holds and this implies if sup(𝑋) is below the minimum 

support threshold, sup(𝑌) will also be below the minimum support threshold.  

 

𝐶1 = {𝑖} 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑖 ∈ 𝐼 

k = 1 

while 𝐶𝑘  ≠ ∅ 

{ 

 Find support of 𝐶𝑘 in D 

 Find frequent itemsets of size k 𝐹𝑘 s.t. 

      𝐹𝑘 = { 𝑆 ∈  𝐶𝑘 𝑠. 𝑡. sup(𝑆) > 𝑚𝑖𝑛𝑆𝑢𝑝} 

 Generate candidate itemsets of size k+1  𝐶𝑘+1  from 𝐹𝑘 

 k = k + 1 

} 

The frequent itemsets of the database are obtained as 𝐹1 ∪ 𝐹2 ∪ … . 𝐹𝑘−1 

Figure 2.1 The Apriori Algorithm (frequent itemset generation phase) 

 

If the set of items in our dataset are 𝐼 = {1,2,3}, then the set of itmsets that can 

be formed from them form the following lattice [3]. 

 

  

 

 

 

 

 

 

 

Figure 2.2. Itemset Lattice 

 

                            {1,2,3} 

 

{1,2}  {1,3}             {2,3} 

 

{1}   {2}   {3} 

 

                          {} 
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And for the above lattice, there is a corresponding tree structure which encodes 

every itemset in the lattice only once as shown in the figure below [3]. Every node in 

the tree represents an itemset which contains items in the path from the root of the tree 

to that node. 

 

        3 

        2      3      3 

             1           2           3 

               root 

Figure 2.3. Tree structure of the itemsets 

 

The tree structure makes generating candidate itemsets from frequent itemsets 

efficient because candidate itemsets of size k+1 can be generated from every 2 itemsets 

of size k having the same parent node in the tree. For instance, if 2 and 3 are frequent 

itemsets of size 1, a candidate itemset of size 2 can be generated from them by adding 3 

as a leaf of node 2. 

The above tree structure can also be used to find the support of candidate 

itemsets as follows. To determine the support of candidate itemsets of size k 𝐶𝑘 one 

pass through the dataset is needed. And at the start of each pass, the support of the 

candidate itemsets in 𝐶𝑘 will be set to zero. Then, for each transaction T in the database, 

the support of those candidate itemsets which are supported by transaction T will be 

incremented. This is done by following paths in the tree which contain the items in the 

transaction T and if we reach nodes at level k of the tree, the support of itemsets in  𝐶𝑘 

corresponding to those nodes will be incremented. 

Example: The steps of the Apriori algorithm can be best understood using the 

following example. Assume we are given the following database with 5 transactions and 

4 items and we want to mine frequent itemsets using a minimum support threshold of 2.  

Table 2.1. Example database(dataet) 

 𝑖𝑖 𝑖2 𝑖3 𝑖4 

𝑇1 1 1 0 0 

𝑇2 0 0 1 0 

𝑇3 0 0 0 1 

𝑇4 1 1 1 0 

𝑇5 1 1 1 1 
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Then  

 𝐹0 = {} 

 𝐶1 = {1}, {2}, {3}, {4}  𝑤𝑖𝑡ℎ 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 𝑜𝑓 3,3,3,2 

 𝐹1 = {1}, {2}, {3}, {4} 

 𝐶2 = {1,2}, {1,3}, {1,4}, {2,3}, {2,4}, {3,4} with support of 3,2,1,2,1,1 

 𝐹2 = {1,2}, {1,3}, {2,3} 

 𝐶3 = {1,2,3} 𝑤𝑖𝑡ℎ 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 𝑜𝑓 2 

 𝐹3 = {1,2,3} 

 𝐶4 = {}  //STOP 

The frequent itemsets of the database are then obtained as 𝐹1 ∪ 𝐹2  ∪

              𝐹3   

 

The Association Rule generation phase 

We already know that for every frequent itemset Z ,and 𝑋 ⊂ 𝑍, the rule 𝑋 →

(𝑍 − 𝑋) is added to our set of rules if 
sup(𝑍)

sup(𝑋)
> 𝑚𝑖𝑛𝐶𝑜𝑛𝑓[3]. Let 𝑍 = 𝑋1 ∪ 𝑌1 = 𝑋2 ∪

𝑌2, then 𝑌1 = 𝑍 − 𝑋1 and 𝑌2 = 𝑍 − 𝑋2. If we have 𝑌2 ⊂ 𝑌1 ⊂ 𝑍, it implies 𝑋1 ⊂

𝑋2 ⊂ 𝑍 and sup(𝑋1) ≥ sup (𝑋2) . Then, if 𝑐𝑜𝑛𝑓(𝑋1 → 𝑌1) = sup(𝑍) /sup (𝑋1) > 

minConf, then 𝑐𝑜𝑛𝑓(𝑋2 → 𝑌2) = sup(𝑍) /sup (𝑋2)  will also be above minConf. And 

if 𝑐𝑜𝑛𝑓(𝑋2 → 𝑌2) = sup(𝑍) /sup (𝑋2) < minConf, then 𝑐𝑜𝑛𝑓(𝑋1 → 𝑌1) =

sup(𝑍) /sup (𝑋1)  will also be below minConf. In general, if a confidence of a rule with 

a (k) consequent Y (i.e. Y containing k items) is below the minimum support threshold, 

then the confidence of a rule with a (k+1) superset of Y as its consequent will also be 

below the minimum support threshold.  

The Apriori algorithm uses the above fact to prune rules which don’t satisfy the 

minimum confidence threshold. For every frequent itemset, the Apriori algorithm starts 

from an empty set and identifies candidate consequents of size 1 which are subset of the 

frequent itemset. Then, for each candidate consequent, it finds subsets of the frequent 

itemset to become the antecedents for rules and for those antecedents resulting in rules 

with confidence above the minimum confidence threshold, the rules will be added to 



  

9 
   

our set of rules. Then for the same frequent itemset, we generate candidate consequents 

of size 2 that are subsets of the frequent itemset. But here, we make sure the candidate 

consequents are only from those supersets of the candidates of size 1 which were not 

pruned during the previous step. Then, for each candidate consequent, we again find 

antecedents resulting in rules with confidence above the minimum confidence threshold 

and we add those rules to our set of rules. We continue the above procedures until the 

candidate list is empty for each frequent itemset. The steps of rule generation using 

Apriori algorithm are shown below [3]. 

For all 𝑍 ∈ 𝐹 //for all frequent itemsets 

{ 

R = ∅  //i.e. initialize rules derived from the current frequent itemset to empty  

 𝐶1 = { {𝑖}  |  𝑖 ∈ 𝑌} //i.e. generate candidate consequents of size 1 

While 𝐶𝑘 ≠  ∅  //i.e. while the list of candidate consequents is not empty 

 { 

  //Find antecedents resulting in a rule i.e. 

  𝐴𝑘 = { 𝐴 ∈   (𝑍 − 𝐶𝑘)  |  𝑐𝑜𝑛𝑓(𝐴 → (𝑍 − 𝐴)) >   𝑚𝑖𝑛𝐶𝑜𝑛𝑓}  

 

  //Add rules containing the antecedents 𝐴𝑘 to our rules list 

  𝑅 = 𝑅 ∪ {𝐴 → 𝑍 − 𝐴 |  𝐴 ∈  𝐴𝑘} 

 

//generate new candidate consequents of size k+1 using the consequents 

of size k  //that were part of the rules added at the previous step 

𝐶𝑘+1 = candidateGeneration(𝑍 − 𝐴𝑘) 

} 

} 

Note that while separating the Apriori algorithm into frequent itemset mining 

and rule generation phases allows using different varieties of algorithms for each phase, 

practically, the two steps are combined so that part of the mechanism used for rule 

generation can also be used for finding frequent itemsets[3]. 
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2.3. Privacy Preserving Data Mining 

 

Most of existing data mining methods suffer from a side-effect in that they don’t 

keep the privacy of individuals and organizations ([9], pp vii). So, an area of data 

mining called privacy preserving data mining (PPDM) was developed to try to protect 

sensitive information from unwanted or unapproved disclosure [8]. Among the early 

works on privacy preserving data mining include the paper by Agrawal and Srinkat [7] 

in which the authors suggest a mechanism of mining data to obtain aggregated data 

without access to sensitive information in the data. 

Privacy Preserving Data Mining includes both Data hiding and Knowledge 

hiding methodologies ([9], pp vii). Data hiding methodologies are used to remove 

sensitive data in the version of the data that will be given to data mining tools where as 

knowledge hiding methodologies try to sanitize the data so that sensitive knowledge 

can’t be mined from the released data using the current data mining tools. 

 

2.4. Algorithms for Privacy Preserving Association Rule Mining 

 

The three main goals of privacy preserving association rule mining (association 

rule hiding) are the following [10]. I) Any rule that is considered sensitive and that can 

be mined from the original dataset at a specified minimum support and confidence 

values should not be mined from the sanitized database at the same minimum support 

and confidence values ii) All non-sensitive rules that can be mined from the original 

database at specified minimum support and confidence values should also be mined 

from the sanitized database at the same minimum support and confidence values iii) 

Any rule that can’t be mined from the original database at specified minimum support 

and confidence values should not be mined from the sanitized database at the same 

minimum support and confidence values i.e. no ghost rules should be created in the 

sanitized database. In addition to the above three main goals association rule mining 

algorithms are also desired to be scalable to handle large amount of data and not to have 

an exponential time complexity. 

Exact association rule hiding approaches try to meet all three main goals of 

privacy preserving association rule mining listed above [10]. On the other hand, non-

exact hiding approaches try to provide an approximate feasible solution. 
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There are three main types of association rule hiding algorithms i) heuristic 

algorithms ii) border-based algorithms iii) exact algorithms[9] 

  

2.4.1. Heuristic Algorithms 

 

 Heuristic algorithms are fast and efficient sanitization algorithms [11]. They can 

be either data distortion techniques which work by replacing 1’s by 0’s or 0’s by 1’s or 

they can be data blocking techniques which work by replacing 0’s or 1’s by  unkowns 

“?”. But these approaches suffer from unwanted side-effects in that the heuristics they 

use usually make locally best decisions which may not be globally best and thus causing 

heuristic approaches to find approximate solutions whose proximity to the optimal 

solution can’t be guaranteed([9], chapter 3) 

 

2.4.2. Border-based approaches 

 

There exists a border that separates the frequent itemsets from the infrequent 

ones in the lattice of all itemsets [9]. Moving this border to exclude sensitive itemsets 

from the frequent itemsets will have an impact on non-sensitive frequent itemsets. So, 

border-revision approaches try to revise the original border in such a way that sensitive 

itemsets will be excluded from the frequent itemsets with minimal impact on the non-

sensitive itemsets i.e. with minimal impact on the original border. 

For example, let us be given the items shown in the figure below where the 

frequent itemsets are to the left of the border line where as the infrequent itemsets are to 

the right of it. .And let the sensitive itemsets be S = {e, ae, bc} 
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Figure 2.4. The original border separating frequent and infrequent itemsets 

 

The border revision technique revises the above border in such a way that the 

new border excludes from the frequent itmesets the sensitive itemsets as well as their 

supersets.  

 

 

  A   b   c   d   e   f 

Ab   ac   ad   cd   bcc   e   ae   be   bd   de 

          Acd   abc   ace   abe   bce 

Figure 2.5. Revised border separating frequent and infrequent itemsets 

    

2.4.3. Exact Approaches 

 

In exact approaches, association rule hiding is modelled as a constraint 

satisfaction problem, which is solved using integer programming ([9], chapter 3). The 

solutions obtained by these approaches are optimal solutions, which have minimal side-

effects during hiding of sensitive itemsets. Most of these approaches are derived from 

border based approaches in that they try to minimize the effect on the border during 

sanitization of the database under a set of constraints. 

Examples of exact approaches include i) the inline algorithm which formulates a 

measure of distance between the original and sanitized database and that tries to 

minimize this distance. ii) the two-phase iterative algorithm in which during phase 1 the 

inline algorithm is used for sensitive knowledge hiding and if the phase 1 fails, some 

constraints are removed in phase 2 until the constraint satisfaction problem (CSP) 

 

  A   b   c   d   e   f 

Ab   ac   ad   cd   bcc   e   ae   be   bd   de 

          Acd   abc   ace   abe   bce 

 

Revised 

border 

 

original border 
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becomes feasible and iii) the hybrid algorithm in which carefully crafted transactions 

are added to extend the original database that will enable hiding of sensitive patterns. 

 

2.5. Optimization 

 

Optimization problems are aimed at maximizing/minimizing some objectives 

[15]. They arise in a variety of fields ranging from engineering to everyday activities 

where the objective is to reduce the costs while attempting to maximize benefits. All 

optimization problems can be expressed in the following general form. 

maximize / minimize  f(x)        where x = (x1,x2,...,xn) 

s.t.  ∅𝑖(𝑥) = 0         for i = {1,2,...,K} 

𝜑𝑗(𝑥) ≥ 0        for j = {1,2,...,L} 

The variables x = {x1,x2,...,xn} are called decision variables and they can be 

continuous, discrete or mixed. The function f(x) is called the objective function i.e. the 

function to be optimized (maximized / minimized) [15]. The range of different 

combination of values the decision variables can have is called the search space where 

as the different values the objective function can have within this search space is called 

solution space.  ∅𝑖(𝑥) represents a set of K equality constraints and 𝜑𝑗(𝑥) represents a 

set of L inequality constraints. 

Some classification of optimization problems 

If the constraints ∅𝑖(𝑥) and 𝜑𝑗(𝑥) are linear, the optimization problem is called 

a linearly constrained problem [15]. If in addition to ∅𝑖(𝑥) and𝜑𝑗(𝑥), the objective 

function f(x) is also linear, the optimization problem is called a Linear Programming 

Problem (LIP). If in a linear programming problem, all decision variables are required 

to be integers, the linear programming is called Integer Programming or Integer Linear 

Programming (IP or LIP). Note the term programming in the above definitions is not 

used in the computer programming sense and it is used to imply planning. 
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2.6. Integer Programming 

   

Integer programming is a mechanism to model and solve discrete optimization 

problems from various disciplines [13]. It is used to solve many real-life optimization 

problems like the knap-sack problem and travelling salesman problem [12]. A 

representation of an Integer Programming problem contains a set of constraints which 

help to create the set of alternative feasible solutions and an objective function used to 

determine the optimal solution among the set of candidate feasible solutions.  

 A Linear Integer Programming Problem (LIP) is an integer programming (IP) 

problem which has a linear objective function and a set of linear equalities as constraints 

[12]. In this paper, when we talk about Integer Programming (IP) we are usually talking 

about Linear Integer Programming (LIP) problem. 

The general (canonical) form of Linear Integer Programming is given as follows 

[12]: 

 

     min 𝑐𝑥 

s.t. 𝐴𝑥 ≤ 𝑏 

x ≥ 0, x ∈ zn 

 

where 𝑥 is a vector of n integers, A is a matrix of mxn dimension, b is a vector 

of m numbers and c is a vector of n numbers 

Linear Integer Programming (LIP) problems are different from Linear 

Programming (LP) problems in that while LP problems have a convex feasible region, 

LIP problems have a lattice of feasible integer points [12]. This means while a local 

solution is also a global solution for LP problems, a local solution may not be global for 

LIP problems. Thus, for LIP problems, an obtained local solution must be verified that 

it is the global solution in order to be accepted as the optimal solution for the IP 

problem. 
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2.6.1. Formulation of Integer Programming Problems 

     

Optimization problems can be formulated as Integer Programming problems if 

their feasible region is finite [14]. But it is important to note that there are many 

optimization problems, even simple ones, which cannot be formulated as Integer 

Program because their feasible region is infinite. The following example shows how an 

Integer Programming problem can be formulated from a verbal formulation for the 

traveling sales man problem. 

The travelling salesman problem is verbally formulated as follows [14]. Given a 

set of N vertices and arcs(i,j) between any two of the vertices s.t. i,j = 1,2,..,N and where 

dij is the length of arc(i,j), then the objective is to find the shortest Hamiltonian circuit 

that passes through all N vertices by touching each vertex at most once. 

To convert the above verbal formulation into a combinatorial optimization 

problem formulation, we need to introduce a binary variable 𝑥𝑖𝑗 where 𝑥𝑖𝑗 will be set to 

1 if arc (i,j) is chosen to be in the Hamiltonian circuit. So, the travelling salesman 

problem can now be formulated as the following combinatorial optimization problem. 

  min ∑ 𝑑𝑖𝑗𝑥𝑖𝑗𝑖𝑗  

     s.t. 𝑥 ∈ 𝑆 

 where 𝑆 is the set 0-1 vector of of 𝑥𝑖𝑗 variables in a Hamiltonian circuit. 

 

Finally, the above combinatorial optimization problem can be converted into an IP 

problem as follows 

 

   min ∑ 𝑑𝑖𝑗𝑥𝑖𝑗𝑖𝑗  

   s.t.  ∑ 𝑥𝑖𝑗 = 1𝑖  ,  for  i = 1,2,...,N 

    ∑ 𝑥𝑖𝑗 = 1𝑗  , for j = 1, 2... N 

   𝑥𝑖𝑗 = 0 or 1, for i, j = 1, 2... N 

  

2.6.2. Algorithms for Solving IP problems 

 

Most integer programming problems are NP hard [13].NP hard problems are 

problems for which no exact algorithm exists to solve them polynomially on the order 
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of the problem size [12]. However, there are a number of exact and approximate non-

polynomial algorithms devised to solve Integer Programming problems [12]. 

    

2.6.2.1. Exact Algorithms for solving Integer Programs 

  

Exact approaches are based on identifying the mathematical structure exhibited 

by a problem and analyzing the polyhedron associated with that structure. The major 

categories of exact approaches  are i) Cutting Plane Algorithms ii) Enumerative 

Approaches, Branch And Bound, Branch And Cut And Branch And Price Methods and 

iii) Relaxation And Decomposition Techniques[12].  

  

I) Cutting Plane Algorithms 

Cutting plane approaches work by representing the set of constraints in the IP 

problem as a convex set of feasible points of the problem [12]. These set of feasible 

points form the vertices of a convex polyhedron which is formed by intersection of a 

finite number of half spaces where each half space comes from a particular constraint.  

The steps for solving an IP problem using cutting planes method are as follows 

[12]. First the integrality constraints on the variables of the IP problem are relaxed. 

Then, the resulting linear program is solved over the constraints. If the linear program is 

infeasible / unbounded, the IP problem is also infeasible/unbounded. But, if by luck, the 

solution of the linear program turns out to be integral solution, then the obtained 

solution is optimal solution for the IP problem. But, if the linear program doesn’t have a 

feasible integral solution a ‘facet-identification problem’ will be solved (also called a 

separation problem because we are trying to find a plane/facet that separates the non-

integral solution point from the rest of the feasible region). The solution of the ‘facet 

identification problem’ generates a linear inequality which cuts-off the fractional IP 

solution while keeping all other feasible integral solution points intact. In other words, 

the fractional solution point is removed from the set of feasible solution vertices 

composing a polyhedron. The algorithm stops if one of the following three conditions is 

met: 

i) if the solution of the LIP problem which is obtained as a result of relaxation 

gives an integral solution 



  

17 
   

ii) if the IP is infeasible because the solution of LIP obtained by relaxing it is 

infeasible 

iii) if the facet-identification problem doesn’t generate a cutting-linear 

inequality(a cut). 

If the algorithm stops as a result of the third condition, it means the search area 

has been narrowed to the maximum that no additional cut to further narrow it down can 

be generated [12]. In this case, the solution obtained when the algorithm is terminated is 

very close to the optimal integer solution value. 

 

II) Enumerative Approaches  

 

A) Explicit enumeration 

Explicit enumeration is the simplest of the enumerative approaches [12]. In this 

approach, all possible feasible solutions to the IP problem are enumerated before the 

optimal solution is determined. This approach is applicable and feasible only if the list 

of possible feasible solutions is small in number. The approach is not applicable for 

large problems because as the size of the problem increases the list of possible solutions 

increases exponentially. Some better enumerative algorithms for solving IP problems 

are Branch and Bound, Branch and Cut and Branch and Price algorithms. 

 

B) Branch and Bound 

 

Introduction to Branch and Bound 

Branch and bound is the most commonly used of the enumerative approaches 

[12]. In the name branch and bound, branching refers to the enumeration part of the 

algorithm while bounding refers to the fathoming of candidate solutions by comparing 

them with the bounds on the objective function value. When fathoming candidate 

solutions, the solutions’ objective values are compared with the upper bound for 

minimization IP problems and with the lower bound for maximization problems. For 

minimization problems, solutions whose objective value is higher than the upper bound 

will be fathomed where as for maximization problems, solutions whose objective value 

is lower than the lower bound will be fathomed. 
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Branch and bound implicitly (not explicitly) enumerates the possibly many but 

finite number of feasible solutions of an ILP [13]. Even though the search tree increases 

exponentially with the size of the problem, branch and bound is able to handle such 

situations because it is able to eliminate and prune large number of infeasible solutions 

and feasible solutions which are not optimal. 

 

Branch and Bound Algorithm 

The steps for solving IP problems using branch and bound algorithms are given 

as follows [12]. First, the integrality constraints in the IP problem are dropped. Then, 

the resulting linear program obtained by the relaxation of the integrality constraints is 

solved. If the solution of the linear program luckily satisfies all the integrality 

constraints, then it means an optimal solution has been found to the IP problem. But, if 

the solution of the linear program is fractional, branching is performed to remove the 

fractional solution while keeping all other feasible integer solutions. The branching 

creates a search tree where the optimal solution is going to be searched and a linear 

program is solved for each node in the tree. Nodes in the search tree are fathomed if 

their LP solution is infeasible or if their LP solution is an integral solution better than 

the existing incumbent integral solution or if their LP solution is integral solution but 

worse than a known (the incumbent) integer solution. 

The above steps can be expressed in the following compact algorithm form [13]. 

1. Choose one or more sub problems from the list of all candidate sub problems 

that may give the solution of the IP problem. 

2. Solve the chosen sub problem/ sub problems without the integrality constraints. 

(This process is also called relaxation and is needed because the candidate sub 

problems are usually hard to solve.) 

3. Fathom one or more of the chosen sub problems if the sub problems i) are 

infeasible ii)give non-integral solutions which don’t promise a better solution 

than the current incumbent solution(best integral solution) iii) give an integral 

solution better than the current incumbent solution iv) give an integral solution 

which is not better than the current incumbent integral solution. 

4. Apply branching on the unfathomed problems to create sub problems that will 

be added to the list of sub problems. (Branching is done by choosing a branching 
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variable and dividing the problem based on the possible values the variable can 

have.) 

5. Repeat steps 1 to 4 until the candidate list is empty 

Among the factors affecting the performance of branch and bound implementations 

are the use of efficient means to solve relaxations, the use of a good strategy for 

choosing the most promising candidate sub-problems at each iteration and the use of 

efficient branching strategy that will help to limit unnecessary expansion of the search 

tree [13]. 

Sequential implementations of the branch and bound algorithm choose only one sub 

problem for processing in a particular iteration of the branch and bound algorithm while 

parallel implementations of the branch and bound algorithm, on the other hand, choose 

multiple sub problems to be processed simultaneously in a single iteration of the branch 

and bound algorithm[13]. 

 

Sub-problem selection strategies for Branch and Bound 

Note that in step 1 of the branch and bound algorithm we saw earlier, we 

initially have only one ILP in the candidate list, the input ILP [13], so we initially 

branch from the node corresponding to this ILP. But, during subsequent iterations of the 

branch and bound algorithm, many sub problems of the original ILP will be created. 

Thus, a selection rule is needed to choose a sub-problem/node for branching from the 

list of all candidate sub-problems at each iteration. The two most common sub-problem 

selection rules or candidate sub problem selection strategies are Depth First Search 

(DFS) and Best First Search (BFS). 

DFS chooses the sub-problem/sub-problems recently added to the candidate list. 

It is a last in first out (LIFO) approach where candidates added last to the candidate list 

will be processed first. It is called depth first because each chosen candidate sub 

problem in the search process increases the depth of the search tree [13]. 

BFS chooses the candidate with the best bound i.e. for minimization IP 

problems it chooses the candidate with the least lower bound and for maximization IP 

problems it chooses the candidate with the highest upper bound. If multiple candidates 

have equal lower or upper bound, then a last in first out rule (LIFO) is used to break the 

tie [13]. 

One difference between BFS and DFS approaches is that BFS requires the 

bounds to be computed for all sub-problems in the candidate list [13]. To ensure that all 
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candidates have their bounds computed, the relaxation of each sub-problem is computed 

before it is added to the candidate list. Another difference between the two search 

approaches is that BFS is suitable when our target is to minimize the number of 

candidate problems solved while DFS is suitable if our target is to reach the end of the 

search tree fast so that in the best case, in the case where an integral solution is obtained 

in the first leaf at the end of the search tree, the time to solve the problem is minimized. 

 

Branching variable selection strategies 

Some of the most commonly used branching strategies are listed below. 

 

1) Greedy branching 

In the greedy branching strategy, branching is done on the first fractional 

variable that is encountered. 

 

2) Most infeasible branching 

In the most infeasible branching strategy, the variable whose fractional part is 

closest to 0.5 is chosen for branching [27] i.e. the branching strategy tries to select the 

variable which is difficult to determine if it is close to its rounded down number or it’s 

rounded up number. But, this branching approach doesn’t result in a better performance 

than selecting the branching variable randomly. 

 

3) Pseudo cost branching 

Among the fractional variables, pseudo cost branching chooses the one which 

had the greatest improvement in the objective function when it was previously chosen 

as branching variable [27]. This branching strategy is a sophisticated branching strategy 

that needs to store the history of the variables impact on the objective function in order 

to choose the variable which historically produced the greatest improvement for 

branching. 

 

4) Strong branching 

Strong branching tests all the fractional variables for the maximum improvement 

that they can provide to the objective function if they are chosen as branching variable. 

To test the fractional variables, it temporarily branches on them and solves the resulting 

problems by relaxing the integrality constraints [27]. The variable, if we branch on it 

and solve its two sub-problems, which gives the biggest improvement in the objective 

function, will be selected for branching. 
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In conclusion, among the branching strategies strong branching in general 

results in small number of branches but the computational time spent on each node is 

long [27]. The branching strategy which was experimentally determined to result in the 

least computational time was pseudo cost branching. 

Example 

The following example shows the steps of the branch and bound algorithm. 

Assume we are given the following IP problem. 

  

 

We first begin the branch and bound algorithm by solving the problem as a regular 

linear programming problem without the integrality constraints. The solution we obtain 

is x1 = 0.31, x2 = 4.04, min z = -11.5. The lower bound then becomes LB = -11.5 and 

the upper bound will at first be initialized to infinity. So, node 1 appears like in this 

figure. 

 

LB = -11.5 (𝑥1 = 0.31, 𝑥2 = 4.04) UB=∞ 

Figure 2.6. The initial node in the branch and bound algorithm 

  

Then, from this relaxed solution, two solution subsets will be created by 

branching on a fractional variable. Since both of the variables are fractional in the 

obtained solution, we branch from the first fractional variable i.e. x1. Since x1 must be 

an integer, we add the following two constraints to the problem 

     x1  ≤ 0  Or x1  ≥  1   

And we obtain the two sub-problems shown in Figure 2.7. The solutions at node 

2 and 3 are obtained by relaxing the integrality constraints as in node 1 and the branch 

and bound tree looks as shown in Figure 2.8 after their solutions are obtained. We can 

min 𝑧 = 2𝑥1 − 3𝑥2  

s.t. −10𝑥1 + 2𝑥2  ≤ 5 

 3𝑥1 + 2𝑥2 ≤ 9 

𝑥1, 𝑥2  ≥ 0 , 𝑥1, 𝑥2 ∈ 𝑁 

1 

-11.5 
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see that an integral solution is obtained for node 3 and hence we update the upper bound 

to the LB value of node 3 as shown in Figure 2.9.  

Node 3 will then be pruned since it gave integral solution and since node2’s 

lower bound is below the new upper bound (since it is promising) we continue the 

branch and bound procedure on node 2. We branch from node 2 using the only 

fractional variable at node 2 i.e. x2. Since x2 must be an integer, we can add the 

following two constraints 

x2  ≤ 2  Or x2  ≥  3   

The solutions at node 4 and 5 are obtained by relaxing the integrality constraints 

and they are shown in Figure 2.10. 

 

LB = -11.5(𝑥1 = 0.31, 𝑥2 = 4.04) UB=∞ 

  

                   𝑥1  ≤ 0 𝑥1  ≥ 1  

 

Figure 2.7. Branching on the first fractional variable 𝑥1 

 

LB = -11.5(𝑥1 = 0.31, 𝑥2 = 4.04)  UB=∞ 

 

                                𝑥1  ≤ 0           𝑥1  ≥ 1  

       LB = -7.5(𝑥1 = 0, 𝑥2 = 2.5)               LB = -7(𝑥1 = 1, 𝑥2 = 3)  

Figure 2.8. Solution sub-sets after branching on 𝑥1 of node 1 
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Figure 2.9. Pruning of node 3 as it gave integral solution and updating of the upper 

bound 

 

     LB = -11.5(𝑥1 = 0.31, 𝑥2 = 4.04)  UB=∞ 

  

 

                                                            𝑥1  ≤ 0                     𝑥1  ≥ 1  

                   LB = -7.5(𝑥1 = 0, 𝑥2 = 2.5) UB = -7           LB = -7(𝑥1 = 1, 𝑥2 = 3) UB=-7 

 

 

                          𝑥2  ≤ 2                             𝑥2  ≥ 3 

  LB = -6(𝑥1 = 0, 𝑥2 = 2) UB = -7            

 

 

Figure 2.10. Solution subsets after branching on 𝑥2 of node 2 and the pruning of node 5 

as  it is infeasible and the pruning of node 6 as it is non-promising 

 

We can see that the LB of node 4 is above the upper bound. So, node 4 will be 

pruned since it is non- promising. On the other hand, node 5 will also be pruned since it 

is infeasible (i.e. the combination of x1 and x2  is outside the feasible region.) 

Since now all nodes have been pruned because either they are non-promising, 

infeasible or integral node, the best integral solution we have obtained to this point will 

LB = -11.5(𝑥1 = 0.31, 𝑥2 = 4.04)  UB=∞ 

  

 

                              𝑥1  ≤ 0                  𝑥1  ≥ 1  

  LB = -7.5(𝑥1 = 0, 𝑥2 = 2.5) UB = -7   LB = -7(𝑥1 = 1, 𝑥2 = 3) UB=-7 
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become the solution of the IP problem. Thus, the solution to the IP problem is x1 = 1 , 

x2 = 3  with min z =  −7. 

 

C) Branch and Cut 

Branch and cut is an algorithm which combines the branch and bound algorithm 

with the cutting planes method in order to create a more powerful algorithm [13]. The 

algorithm dynamically adds cutting planes to the problem which hold in every part of 

the search tree.   Branch and cut is aimed at further narrowing down the search space in 

the branch and bound algorithm because the bounds coming from LP relaxations in 

branch and bound are often weak.  

 

D) Branch and Price 

Branch and price is another enumerative approach to find solutions of IP 

problems [12]. It uses a technique called pricing to tighten the branch and bound 

algorithm in the same way cutting is used in branch and cut. Pricing is a column 

generation technique inside the simplex algorithm that is used to compute bounds in a 

branch and bound algorithm. The column generation technique is used to determine the 

most influential variable with negative reduced cost so that when it enters the problem 

(basis) it pushes the solution of the problem towards the optimal solution. 

In the simplex algorithm, the only variables which are allowed to enter the basis 

at each iteration are those variables with negative reduced costs [12]. But, in large 

problems with large number of variables we will have many variables with negative 

reduced costs at each iteration. So, choosing the appropriate variable which would 

drastically improve the objective function value is important.  As a result, branch and 

price uses the column-generation technique which is used to efficiently solve LPs so 

that a speed up could be obtained in the performance of the branch and bound 

algorithm. 

 

2.6.2.2. Heuristic Algorithms for Solving Integer Programs 

  

Since LIP optimization problems are NP hard and since it may take a long time 

to solve them, heuristic approaches are usually used to find approximate solutions. The 
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most commonly used and powerful of the heuristic approaches are Simulated Annealing 

and Tabu Search [12] 

 

Simulated Annealing 

Simulated Annealing is a local search algorithm in which in contrast to 

traditional local search algorithms it allows occasional movement towards worse 

solutions in order to avoid local optima which may not be globally optimal [28]. 

 

Tabu Search 

Tabu search is also a local search based method in which movement towards 

worse solutions is allowed to avoid local optima. Tabu search uses a short term memory 

called a tabu list in which solutions already considered are stored so that movement 

towards them is not allowed in order to avoid cycling [12]. 

  

2.7. Linear Programming Problems 

  

Linear programming finds the maximum or minimum value of an objective 

function under linear constraints [15]. The general form of linear programs is given as 

follows. 

min z = cx 

s.t. Ax ≤ b 

x ≥ 0 

There are three main approaches for solving linear programming problems i) The 

Graphical Approach ii) The Simplex Method and iii) Interior Point Algorithms 

 

2.7.1. Graphical Approach 

 

The graphical method works by plotting all constraints in the LP problem as 

straight lines [15]. These set of straight lines form a polygon and the inside of the 

polygon contains all feasible solutions that satisfy all constraints of the LP problem. The 

minimum or maximum value of the objective function lies at one of the vertices 

(extreme points) of the polygon. Thus, the objective function value is computed at each 
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of the vertices of the polygon and the vertex resulting in the maximum/minimum value 

for the objective function will become the solution point. 

Example:   If we are given the following LP problem 

min z = f(x1, x2) =  2x1 − 3x2 

s.t.       −x1 + 2x2 ≤ 2 

     x1 + 2x2 ≤ 6 

 x1, x2  ≥ 0 

And if we want to solve the LP problem using the graphical approach, we first 

draw lines corresponding to the equality form of the constraints. The plot of the straight 

lines for the above problem is shown below.  

 

 

Figure 2.11. The feasible region of the given LP problem. 

 

The shaded region is the inside of the polygon formed by the intersection of the 

lines corresponding to the constraints. The polygon has four vertices and the optimal 

solution for the LP problem lies at one of these vertices. To determine which vertex 

gives the optimal solution, we have to evaluate the objective function at each of the four 

vertices. 

  f(0,0) = 0,  f(0,1) = -3 f(2,2) = -2  f(6,0) = 12 

Since the vertex (extreme point) of the polygon which gave the minimum value 

for the objective function is (0,1) ,  the optimal solution will be x1 = 0, x2 = 1 and min z 

= -3 

Note however that the graphical approach can be used to solve LP problems 

only when the number of decision variables and constraints is small. As a result, it is not 
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applicable for most real-world LP problems which contain hundreds of (thousands of 

variables). For such large scale problems we have to use to use other approaches than 

the graphical method. 

 

2.7.2. Simplex Method 

 

Generally, the set of constraints in an LP problem form a polyhedron (Note: A 

polyhedron is a 3d or multidimensional equivalent of a polygon) where the inside of this 

polygon contains all feasible solutions [15]. The optimum feasible solution (i.e. the 

solution with maximum/minimum value for the objection function) lies in one of the 

vertices of the polyhedron. But, even for simple LP problems, the set of vertices 

(extreme points) of the polyhedron may be quite large [15]. So, checking all the vertices 

in order to determine the optimal solution point will not be feasible.  

So, the simplex method was developed to efficiently traverse along selected 

vertices of the polyhedron so that the optimal solution point or vertex can be obtained 

with small number of the vertices of the polyhedron being visited. The method was 

developed by George B. Dantzig in 1947  as a method of moving from one extreme 

point to another extreme point of the polyhedron of feasible solutions while improving 

the objective function value ( or at least not making it worse) until an optimal solution is 

found or the problem is determined to have infinite number of optimal solutions.  

The simplex method starts from a given extreme point and tests whether the 

extreme point is optimal or not using an optimality test derived from the objective 

function and the constraints [15]. If the extreme point fails the optimality test, an 

adjacent extreme point will be selected and the optimality test is done on the new 

extreme point.  The above processes are repeated until an optimal extreme point that 

passes the optimality test is found or until the IP problem is determined to be 

unbounded. 

The two major parts of the simplex method are i) a mechanism to test whether a 

given basic feasible solution(see the section below for what a basic feasible solution 

means) is optimal or not and ii) a mechanism to find an adjacent basic feasible solution 

if the current basic feasible solution is found to be not optimal[15]. 
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2.7.2.1. Basic Feasible Solution  

 

The basic feasible solution for the linear system Ax=b, where A is mxn matrix 

and x is nx1, which makes the constraints of the linear program min z=f(x) s.t. Ax=b 

and x ≥ 0  is obtained by setting n-m variables equal to zero and solving the remaining 

mxm system of linear equations in order to obtain a unique solution for the m variables 

which were not set to zero [15]. The n-m variables which were set to zero are called 

non-basic variables where as the m variables which were not set to zero are called the 

basic variables of the basic solution. 

The basic feasible solution lies at one of the corner points of the polyhedron 

which contains all feasible solutions [15]. The basic feasible solution has the 

characteristics that for every basic feasible solution there is a unique vertex of the 

polyhedron and for every vertex of the polyhedron, there exists exactly one basic 

feasible solution. Two basic feasible solutions for the system Ax = b, where A is mxn, 

are said to be adjacent if they share m-1 of their m basic variables. 

  

2.7.2.2. Format of Input LP Problem to the Simplex Method 

 

The simplex method requires the input IP problem to be expressed in standard 

form as follows [15].   

     min z = cx 

s.t. Ax = b 

 x ≥ 0 

where A is mxn matrix, b is mx1 vector , c is an nx1 vector and x is also nx1 vector. 

In the standard form of an LP problem, all the constraints in the LP problem are 

required to be expressed as equalities. Slack variables (surplus variables) are used to 

transform constraints containing inequalities into equalities. 

For example if we are given an IP problem not in standard form as follows 

min z =  2x1 − 3x2 

s.t.   −x1 + 2x2 ≤ 2 

x1 + 2x2 ≤ 6 

 x1, x2  ≥ 0 
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We can convert the first inequality in the constraints into equality by adding a 

new variable x3 to the left hand side of the inequality to obtain the following equality. 

𝑥1 + 2𝑥2 + 𝑥3 = 2 

The variable x3 in the above equation is the slack variable. 

Similarly, a slack variable x4 can be added into the second inequality of the 

constraints by which point we will have all the constraints expressed as equality as 

follows, which is the standard form of the given IP problem. 

min z =  2x1 − 3x2 

s.t.      −x1 + 2x2 + x3 = 2 

                                x1 + 2x2 + x4 = 6 

 x1, x2  ≥ 0 

 

2.7.2.3. Theory of the Simplex Method  

  

The theory behind the simplex method which is elaborated in [16] is 

summarized in this paper as follows. 

Let us be given the following LP problem 

     min 𝑧 = 𝑐𝑥 

s.t. 𝐴𝑥 = 𝑏 

𝑥 ≥ 0 

, where A is mxn matrix, b is mx1 vector, c is an nx1 vector and x is also nx1 vector. 

If a1,a2,...,an are mx1 column vectors that constitute A i.e. A = (a1,a2,...,an), then 

we will have 

 

                          Ax = x1a1 + x2a2 + ... + xnan = b   (2.1) 

 

If we are also given the following basic feasible solution to the above LP 

problem, 

  x = (x1,x2,...,xm,0,0...0) 

then, b and z will be expressed as 

 

                            x1a1 + x2a2 + ... + xmam = b   (2.2) 
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                             x1c1 + x2c2 + ... + xmcm = z   (2.3) 

Since the column vectors a1,a2,...,am are linearly independent, all of the column 

vectors of A including those corresponding to the zero-valued x variables can be 

expressed in terms of a1,a2,...,am as follows. 

 

            𝑎̅1j𝒂𝟏 + 𝑎̅2j𝒂𝟐 + ⋯ + 𝑎̅𝑚j𝒂𝒎 = 𝒂𝒋  for j = 1,2,...,n   (2.4) 

 

Using the scalars 𝑎̅1j, 𝑎̅2j, … , 𝑎̅𝑚j in the above equation, we can define a new 

quantity called zj which is expressed as a linear combination of the objective function 

coefficients corresponding to the non-zero variables as follows. 

 

              𝑎̅1j𝒄𝟏 + 𝑎̅2𝑗𝒄𝟐 + ⋯ + 𝑎̅𝑚𝑗𝒄𝒎 = 𝑧𝑗  for j = 1,2,...,n   (2.5) 

 

If we multiply equation (4) by some positive number 𝜃 and subtract it from 

equation (2) and similarly if multiply equation (5) by the same positive number 𝜃 and 

subtract it from equation (3), we will arrive at the following two equations. 

 

 (𝑥1 −  θ𝑎̅1𝑗)𝒂𝟏 + (𝑥2 −  θ𝑎̅2𝑗)𝒂𝟐 + ⋯ + (𝑥𝑚 −  θ𝑎̅𝑚𝑗)𝒂𝒎 + θ𝒂𝒋 =  𝒃 (2.6)  

 

   (𝑥1 −  θ𝑎̅1𝑗)𝑐1 + (𝑥2 −  θ𝑎̅2𝑗)𝑐2 + ⋯ + (𝑥𝑚 −  θ𝑎̅𝑚𝑗)𝑐𝑚 + θ𝑐𝑗      

  =  𝑧 −  𝜃(𝑧𝑗 − 𝑐𝑗) = z’  (2.7) 

 

, where θ𝑐𝑗 has been added to both sides of (7) 

*** If for some j corresponding to non-basic variables all 𝑎̅𝑖j are negative, then 

for some positive 𝜃, a new basic feasible solution x will be obtained with m+1 basic 

variables i.e. x = (x1’,x2’, ...,xm’, xj ,0,0,...,0) , where x1’ = (𝑥1 −  θ𝑎̅1j), x2’ = (𝑥2 −

 θ𝑎̅2j) ..., xj = θ and where the equivalents of equations (2) and (3) for the new basic 

feasible solution will be given like this. 

 

                     x1’a1 + x2’a2 + ... + xm’am + xjaj = b   (2.8) 

 



  

31 
   

          x1’c1 + x2’c2 + ... + xm’cm +xjcj= =  𝑧 −  𝑥𝑗(𝑧𝑗 − 𝑐𝑗)= z’   (2.9) 

Theorem : Assuming a basic feasible solution is non-degenerate, if for some j 

corresponding to a non-basic variable, if 𝑎̅𝑖𝑗 > 0 for at least one i, i = 1,2,...,m, then it is 

possible to generate a new basic feasible solution with just m-positive variables that 

give a better(lesser) objective value than the previous basic feasible solution i.e. from a 

previous basic feasible solution of x = (x1,x2,...,xm,0,0...0), a new basic feasible solution 

of . x = (x1’,x2’, ...,xm’, xj ,0,0,...,0) can be generated such that z’ < z. 

Proof: If we have  𝑎̅𝑖j > 0 for some i, i = 1,2,...,m, the maximum value θ can 

attain before making the coefficient of any 𝑎𝑖 negative in (6) is , 
𝑥𝑖

𝑎̅𝑖𝑗
 . If we have many 

such positive 𝑎̅𝑖𝑗 values, then the largest value of θ which can maintain the non-

negativity restrictions on the new variables x1’, x2’ ...etc in (8) is  

 

θ  = 
𝑥𝑟

𝑎̅𝑟𝑗
 = min 

𝑥𝑖

𝑎̅𝑖𝑗
     for 𝑎̅𝑖𝑗 > 0 , for i = 1,2,...,m  (2.10) 

 

, where the minimum is obtained for some unique i, i =r. 

Equation 2.10 is called the minimum ratio test where the minimum is obtained 

for some unique i, i = r. For a θ value obtained using the minimum ratio test, the 

coefficient of the ar vector will be zero in equation (8), so the new basic feasible 

solution will be x = (x1’,x2’,.., xr’...,xm’, xj ,0,0,...,0) where xr’ = 0 for some r in 1 to m 

corresponding to the minimum ratio test, meaning the solution contains just m basic 

variables. 

So, if 𝑎̅𝑖𝑗 > 0 for at least one i, i = 1,2,...,m, then the equivalent of equations 

(2.8) and (2.9) will be the following two equations. 

 

          x1’a1 + x2’a2 + ... +0ar+...+ xm’am + xjaj = b  (2.11) 

 

          x1’c1 + x2’c2 + ... +0ar+... xm’cm +xjcj= 𝑧 −  𝑥𝑗(𝑧𝑗 − 𝑐𝑗) = z’  (2.12) 

 

Thus, in the above equations a previously non-basic variable 𝑥𝑗 enters the basic 

variables while a previously basic variable xr leaves the basis to become non-basic. The 
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above operations which resulted in the exchange of the two variables are called 

pivoting. If the pivoting operation is applied using some j corresponding to a non-basic 

variable such that the quantity (𝑧𝑗 − 𝑐𝑗), also called reduced cost , is greater than zero, 

then the new basic feasible solution will result in an improved(lesser) objective value of 

z’ compared to z of the previous basic feasible solution. 

As long as the reduced cost (𝑧𝑗 − 𝑐𝑗) > 0 (or equivalently as long as the negative 

reduced cost -(𝑧𝑗 − 𝑐𝑗)=(𝑐𝑗 − 𝑧𝑗) is less than 0), the objective function can be improved 

(made less) for some non-zero values of the entering variable xj (i.e. for non-degenerate 

cases). Thus, we can continue with the next iteration of the simplex algorithm by 

performing pivot operations. 

But, if we reach an iteration where the reduced cost (𝑧𝑗 − 𝑐𝑗) ≤ 0 (or 

equivalently the negative reduced cost (𝑐𝑗 − 𝑧𝑗) ≥ 0), it means the objective function 

can’t be improved by further pivot operations (i.e. by moving to new feasible solution 

points) and it means the current solution is optimal. 

 

2.7.2.4. The Simplex Tableau  

 

Simplex tableau is a method of expressing a linear program problem which 

allows the simplex method to be applied efficiently when solving the problem [16]. The 

tableau displays all the quantities that are needed at each iteration of the simplex 

algorithm. The general form of the simplex tableau is as shown below. 

 

 

 

 

 

 

 

Figure 2.12. The simplex Tableau 

 

𝑐𝐵       𝑎𝐵        a1            a2                    aj        an          XB = b     
𝑏𝑖

𝑎̅𝑖𝑗
 

𝑐𝐵1       𝒂𝑩𝟏
     𝑎̅11          𝑎̅12                 𝑎̅1𝑗         𝑎̅1𝑛         b1           

𝑏1

𝑎̅1𝑗
 

𝑐𝐵2
      𝒂𝑩𝟐

    𝑎̅21          𝑎̅22                  𝑎̅2𝑗           𝑎̅2𝑛         b2           
𝑏2

𝑎̅2𝑗
 

 

𝑐𝐵𝑚
     𝒂𝑩𝒎

    𝑎̅𝑚1           𝑎̅𝑚2              𝑎̅𝑚𝑗          𝑎̅𝑚𝑛       bm          
𝑏𝑚

𝑎̅𝑚𝑗
 

      c                    c1          c2                  cj              cn 

𝑐𝑗 − 𝑧𝑗           𝑐1 − 𝑧1   𝑐2 − 𝑧2         𝑐𝑗 − 𝑧𝑗      𝑐𝑛 − 𝑧𝑛 
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The column with the heading 𝑎𝐵 contains the column vectors of A that are in the 

basis i.e. the row headings 𝑎𝐵1
, 𝑎𝐵2

,..., 𝑎𝐵𝑚
  correspond to the column vectors of A that 

are in the basis. The column with the heading 𝑐𝐵 contains the coefficients of the 

objective function corresponding to the vectors in the 𝑎𝐵 column. The column headings 

a1,a2,..aj,...,an (not the columns themselves) correspond to the column vectors of A. The 

coefficients 𝑎̅11 , 𝑎̅12, ..., 𝑎̅𝑚𝑛  are used to express  a1,a2,..aj,...,an and z1,z2,...,zn as a 

linear combination of   𝒂𝑩𝟏
, 𝒂𝑩𝟐

,..., 𝒂𝑩𝒎
. For instance, aj and zj can be expressed as 

follows. 

𝑎̅1𝑗𝒂𝑩𝟏
+ 𝑎̅2𝑗𝒂𝑩𝟐

+ ⋯ + 𝑎̅𝑚𝑗𝒂𝑩𝒎
= 𝒂𝒋 

       𝑎̅1𝑗𝑐𝐵1  + 𝑎̅2𝑗𝑐𝐵2  + ⋯ + 𝑎̅𝑚𝑗𝒄𝑐𝐵𝑚  
= 𝑧𝑗 

(Note that for the column vectors of A that are in the basis, the vector of 𝑎̅𝑖𝑗𝑠 used to to 

express them as a linear combination of 𝒂𝑩𝟏
, 𝒂𝑩𝟐

,..., 𝒂𝑩𝒎
 are unit vectors.)  

The column with the heading   XB = b   stores the current values of the basic 

variables. Assuming aj is the vector to enter the basis, the column of the tableau with 

heading   
𝑏𝑖

𝑎̅𝑖𝑗
 contains the ratios 

𝑏𝑖

𝑎̅𝑖𝑗
. The row heading c corresponds to the coefficients of 

the variables x1,..,xn in the objective function and the row heading 𝑐𝑗 − 𝑧𝑗 corresponds 

to the negative reduced cost for the variables. 

The tableau shown in the previous figure can be used to select the vector that 

will enter the basis based on which non-basic column has negative reduce cost 𝑐𝑗 − 𝑧𝑗 

(or the least negative reduced cost if there are multiple non-basic columns with negative 

reduced cost). If an entering variable cannot be determined, it means the current 

solution is optimal. After the entering variable xj is determined the leaving variable, xr 

can be determined by choosing a unique row i, i = r , r in 1,2,..m, corresponding to the 

minimum ratio 
𝑏𝑖

𝑎̅𝑖𝑗
 where 𝑎̅𝑖𝑗 > 0 (i.e. using minimum ratio test). Then, a pivot 

operation can be applied to make the vector of 𝑎̅𝑖𝑗𝑠 that are used for expressing the 

column vector aj a unit vector.  

Example 

Let us be given the following LP. 

 

min 𝑧 =  2𝑥1 − 3𝑥2 

s.t.  −𝑥1 + 2𝑥2 ≤ 2 
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  𝑥1 + 2𝑥2 ≤ 6 

   𝑥1, 𝑥2  ≥ 0 

 

We will first express it in standard form as follows by the addition of slack 

variables. 

min 𝑧 =  2𝑥1 − 3𝑥2 

s.t.  −𝑥1 + 2𝑥2 + 𝑥3 = 2 

𝑥1 + 2𝑥2 + 𝑥4 = 6 

 𝑥1, 𝑥2  ≥ 0 
 

Then the first Tableau will be as follows. 

 

𝑐𝐵       𝑎𝐵        a1            a2                a3         a4       XB = b     
𝑏𝑖

𝑎̅𝑖𝑗
 

0          𝑥3       −1           2           1           0       2              1 

0         𝑥4           1             2          0           1       6              3 

      c                 2           -3          0           0 

𝑐𝑗 − 𝑧𝑗              2          −3          0           0 

 

Figure 2.13. Tableau 1 

 

Where indicates the vector which shall enter into basis because of having the 

least negative reduced cost while        indicates the vector which will leave the basis 

because it corresponds to the row with minimum non-zero ratio for 
𝑏𝑖

𝑎̅𝑖𝑗
 . Then Tableau 2 

will look like this. 
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𝑐𝐵       𝑎𝐵        a1            a2                a3         a4       XB = b     
𝑏𝑖

𝑎̅𝑖𝑗
 

-3        𝑥2       −1/2       1          1/2        0            1          

0         𝑥4          2             0         −1         1            4 

      c                 2          -3          0           0 

𝑐𝑗 − 𝑧𝑗             1/2        3          3/2        0 

Figure 2.14. Tableau 2 

 

Since we don’t have negative reduced cost in Tableau 2, it means the current 

solution is optimal, where the optimal solution is given by 

    x1 = 0, x2 = 1 and min z = -3 

  

2.7.2.5. Algebraic derivation of the simplex method 

  

The algebraic derivation of the simplex method is illustrated in [17] where it is 

summarized in this paper as follows. 

Assume we are given an IP problem in standard as follows 

 

min 𝑧 = 𝑐𝑥 

s.t. 𝐴𝑥 = 𝑏 

 𝑥 ≥ 0 

 

If B is an initial basic matrix of A and N is the corresponding non-basic matrix 

of A corresponding to an initial basic feasible solution of x = (xB,xN) , then the 

constrains of the LP problem can be expressed as follows.  

 

                                 Ax = BxB + NxN = b    (2.13) 

 

Similarly, we can partition c into cB and cN to express the objective function as 

follows 
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                                    z = NNBB xcxccx    (2.14) 

 

From equation (2.13), we have 

 

                                        NB NxBbBx 11       (2.15) 

 

And substituting this into Equation (2.14), we will get 

 

     z = NNNB xcNxBbBccx   )( 11
 = NBNB xNBccbBc )( 11      (2.16) 

 

Differentiating the above equation with respect to the non-basic variables we 

will get 

 

                                      jBj

j

aBcc
x

z 1



  

  , for all j such that xj is in xN , where aj is the j’th column of N (2.17) 

 

The quantity jBj aBcc 1 = negRedCostj is called the negative reduced cost for 

the xj variable. 

If one xj from the xN vector in the basic feasible solution becomes non-zero 

while the other elements of xN remain zero, then the new value of the objective function 

can be computed using equation (16) as follows 

 

                   z’ = z + ( jBj aBcc 1 )xj = z + negRedCostj*xj  (2.18) 

 

Using the above algebraic representation, the procedures for selecting the 

entering and leaving variables in the simplex method are as follows [17]. 

 

Entering Variable Selection Criteria 

For a negRedCostj < 0 and a positive value of xj , the new objective function 

value corresponding to the new feasible solution that is going to be determined will be 

less than the current objective function value corresponding to the current feasible 
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solution. Thus, we chose the entering variable xj  from the elements of xN whose 

negRedCostj < 0 and such that it results in the minimum negative reduced cost so that 

for a slight increase of xj from its previous 0 value, the value of the objective function 

decreases by a large amount. 

 

Leaving variable Selection Criteria 

After we chose xj from xN as the entering variable, equation (2.15) will now 

reduce to  

 

        jjB xaBbBx 11    , where aj is the j’th column of N  (2.19) 

 

Then, equation (2.19) can be re-written as 

 

               jjB xabx   , where b = bB 1  and ja = jaB 1
 (2.20) 

 

If all elements of the vector ja  are less than zero, jx can be increased 

indefinitely without violating the non-negativity restrictions. But if at least one element 

of the vector ja is greater than 0, then for the entering variable xj not to violate the non-

negativity restriction on x’s, it can be increased from zero only upto a certain maximum 

value. This maximum value xj can attain is given by the minimum ratio test. 

 

                     xj = min  { mi
a

b

ij

i
,...,1:  and 

ija >  0}  (2.21) 

 

The basic variable xi corresponding to the minimum ratio value becomes the 

leaving variable. 

 

2.7.2.6. The Revised Simplex Method 

 

The main drawback of the simplex method is that it computes and stores many 

numbers which are not all needed in the next iterations [16]. This makes its computation 
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very time consuming. So, the revised simplex method is developed to handle these 

drawbacks. 

The revised simplex method follows the same general approach as the simplex 

method. But it differs from the simplex method in the way it makes calculations to 

move from one iteration to the next, by computing/storing only those quantities that are 

needed at each iteration [16]. 

From the algebraic derivation of the simplex method, we can see that the 

quantities that are required at each iteration of the simplex method are 

i) jBj aBcc 1 for all the previous non-basic variables in order to determine 

which non-basic variable among them enters the basis 

ii) ja = jaB 1
which is used in the minimum ratio test to determine which 

previous variable will leave the basis 

iii) The value of the basic variables xB =  b = bB 1 which is used in the minimum 

ratio test to determine which previous basic variable will leave the basis 

iv) And optionally, the previous objective function value z = BB xc = bBcB

1
 

inorder to determine the new objective function value of the new basic 

feasible solution that will result after the end of the current iteration i.e. z’ = 

z + negRedCostj* xj 

 

2.7.2.7. Finding an Initial Basis 

 

The simplex method requires an initial basic feasible solution to start its 

iterations [16]. For simple LP problems, the initial basic feasible solution may be 

determined readily by manual inspection. But, for most problems, finding an initial 

basic feasible solution is not trivial. Thus, special techniques are used to find the initial 

basic feasible solution. The two commonly used methods to find the initial basis for 

simplex are i) the two-phase method, developed by Dantzig, Orden and Wolfe and ii) 

The method of penalities, by A. Charnes.  In this paper, we will look at the two-phase 

method. 
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The two phase method 

In the two phase method, the linear programming problem is first expressed in 

standard form and then the simplex method is applied in two phases [16]. In phase 1, 

the simplex method is applied to a modified version of the original LP problem and the 

solution of this auxiliary problem, if it exists, will serve as the basic feasible solution to 

the original LP problem. In phase 2, using the basic feasible solution obtained from 

phase 1, the original problem is solved by applying the simplex method. 

 

The steps of the two phase method 

In the two phase method, the linear programming problem must first be 

expressed in standard form by the addition of slack/surplus variables. All the constraints 

whose right hand side is negative must also be multiplied by -1 to make the right hand 

side non-negative. Thus, the IP problem shall be expressed as follows 

     min z = cx 

     s.t. Ax = b 

     x ≥ 0 , b ≥ 0 , 

 where A is mxn matrix, b is mx1 vector, c is nx1 vector and x is also nx1 vector. 

 

Phase 1 

In phase 1, the original LP problem is modified by the introduction of new 

variables called artificial variables and by setting the coefficients of the objective 

function in the original LP problem to zero so that the LP problem becomes 

     min z= 0x + 𝑒𝑇a 

     s.t.  Ax + Ia= b 

where a is mx1 vector and 𝑒𝑇 = (1,1,...,1) is an mx1 vector. 

The initial basic feasible solution for this auxiliary problem can be easily 

obtained by setting x = 0 and a = b. Then, this basic feasible solution is used to solve the 

auxiliary problem using the simplex method. 

The solution of phase 1 may indicate different things. 1) If min z > 0, it means 

the original LP problem is infeasible 2) If min z = 0 and all artificial variables are non-

basic, the solution of phase 1 will serve as the basic feasible solution for phase 2. 3) If 

min z = 0 but at least one artificial variable is basic, pivoting needs to be applied to 
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exchange the basic artificial variables with the non-basic variables of the original LP 

problem before proceeding to phase 2. The presence of artificial variables in the 

solution of phase 1 indicates the original system has redundancies or degenerate 

solutions. 

 

Phase 2 

In phase 2, the basic feasible solutions obtained when min z = 0 in phase 1 are 

used as the initial basic feasible solution to the original LP problem and then, the 

simplex method is applied to solve the original LP problem. The simplex method stops 

when an optimal solution is found or an unbounded solution is detected. 

 

2.7.2.7. Special Cases in the Simplex Algorithm 

 

Degeneracy 

A basic feasible solution is said to be degenerate, if one or more of the basic 

variables are zero [16]. A new solution obtained by moving from a degenerate feasible 

solution will again be degenerate which will produce no improvement in the value of 

the objective function. If degeneracy is encountered in successive iterations, it may 

result in a return to a basis already obtained thus creating a cycling that the simplex 

method can’t come out of. Thus, in the presence of degeneracy, there is no guarantee 

that the simplex method will terminate in a finite number of steps. 

Since degeneracy may result in cycling and since degeneracy is a common 

experience, one might expect cycling to also be encountered very frequently. But, in 

practice cycling is a very rare phenomenon occurring mainly in specially constructed 

test problems in researches. 

 

How to deal with degeneracy 

One way degeneracy can be handled in the simplex method is through the use of 

perturbation. One perturbation technique developed by A. Charnes makes sure the 

simplex method will get out of degeneracy and ensures it will have a finite number of 

iterations [16]. 

Since degeneracy in an LP problem occurs when the right hand side vector b 

can’t be expressed as a linear combination of the basis vectors formed from A, if we 
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perturb b  it might be possible to express the perturbed b as a linear combination of the 

basis vectors of A. Thus Charne’s method works by replacing 𝑏𝑖 in the simplex tableau 

by  𝑏𝑖 + ∑ 𝑎̅𝑘𝑖

𝑛
𝑘=1  

 

For example, if degeneracy occurs for the system 

 

                      x1a1 + x2a2 + ... + xmam = b  (2.22) 

 

then, we can perturb the right hand side of b to obtain the following system 

 

       x1a1 + x2a2 + ... + xmam = b +∈1 𝑎1+∈2 𝑎2 + ⋯ +∈𝑛 𝑎𝑛 = 𝑏(∈)   (2.23) 

 

The advantage of the Charnes’ method is that the solution of the perturbed 

system can be determined without knowing the actual value of ∈. And if the solution to 

the perturbed system is known, it will also be the solution to the original problem if we 

set ∈ to zero. 

Whereas the solution of the original system in (22) is obtained as 𝑥 =  𝐵−1𝑏, the 

solution for the perturbed system in (23) is obtained as follows 

 𝑥(∈) =  + ∈ 𝐵−1𝑎1 +∈2 𝐵−1𝑎2 + ⋯ . +∈𝑛 𝐵−1𝑎𝑛 , where 𝑥 =  𝐵−1𝑏 is the 

solution of the unperturbed problem. 

Each element of the vector 𝑥(∈)   is thus obtained as follows 

 

                  𝑥𝑖(∈) =  𝑥𝑖 + ∑ ∈𝑗𝑛
𝑘=1 𝑎̅𝑘𝑖

   for i = 1,2,...,m    (2.24) 

 

The entering variable in the simplex method for the perturbed method is then 

found using the following minimum ratio test. 

 

                                min
𝑖

{
𝑥𝑖+∑ ∈𝑗𝑛

𝑘=1 𝑎̅𝑘𝑖
   

𝑎̅𝑗𝑖

, 𝑎̅𝑗𝑖
> 0}  (2.25) 

 

The Charnes’ method chooses the entering variable using equation (25) as 

follows. First, it compares the ratios 
𝑥𝑖

𝑎̅𝑗𝑖

 in equation (25). If a minimum ratio is obtained 

for unique i, there is no degeneracy. But, if a unique i can’t be obtained for the 



  

42 
   

minimum ratio of 
𝑥𝑖

𝑎̅𝑗𝑖

 ,we go on and compare the ratios 
𝑎̅1𝑖

   

𝑎̅𝑗𝑖

 for the rows which had a tie 

for the ratios of  
𝑥𝑖

𝑎̅𝑗𝑖

. Again, if we have rows tied for the ratios 
𝑥𝑖

𝑎̅𝑗𝑖

 and 
𝑎̅1𝑖

   

𝑎̅𝑗𝑖

, we go on to 

the next column and compare the ratios 
𝑎̅2𝑖

   

𝑎̅𝑗𝑖

. We go on comparing more ratios until we 

find a unique ratio. These procedures in the Charnes’ method ensure a new basic 

feasible solution is obtained with all basic variables strictly positive. 

 

Unboundedness 

As the simplex method goes from one vertex to an adjacent vertex of the 

polyhedron of feasible solutions, along the edges of the polyhedron, it might reach an 

edge along which the objective function value can be reduced indefinitely without 

reaching to another vertex [16]. In such cases, the LP problem is said to be unbounded 

and the simplex method will stop without finding a solution. 

 

2.7.3. Interior Point Algorithms 

  

Unlike the simplex method which moves along the edges of the feasible region 

(polyhedron), interior point algorithms move through the interior of the feasible region. 

The first significant interior point algorithm was the Ellipsoid algorithm developed by 

Khachiyan in 1979 and it had a worst case running time complexity of (𝑛6𝐿2) , where n 

is the number of variables and L is the number of bits to encode the input[32]. But, the 

algorithm didn’t have a performance to compete with the simplex method since for 

almost all inputs its running time complexity is close to its worst case running time 

complexity. 

A better and efficient interior point algorithm was the projective algorithm 

developed by Kramarka in 1984[32]. This algorithm has a worst case complexity of 

(𝑂(𝑛3.5𝐿2) and was found to be efficient in practice. 
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2.7.4. Simplex vs Interior Point  

 

A comparison of simplex methods with interior point methods shows that good 

implementations of simplex methods and interior point methods have similar 

performance although for some applications one may be better than the other [33] 

2.8. Literature Review on GPUs 

 

2.8.1. Introduction to Parallel Systems 

 

Concurrent System vs Parallel System 

A system is concurrent if it contains several operations that are ready for 

execution at the same time [25]. If there is only one processing element (processor) for 

executing the operations, only one operation will be executed at a time while all the 

other operations are forced to wait until the operation completes. But, if in a concurrent 

system we also have multiple processing elements (processors), several operations can 

execute simultaneously and we call such a system a parallel system. 

 

Steps for writing programs to a parallel system 

To write programs for a parallel system, first the programmer must identify the 

concurrency in the problem he/she wants to solve [25]. Then, this concurrency should 

be expressed in the software they write. Finally, their program is run so that the 

concurrent parts are run in parallel to give a good performance in terms of speed of 

execution. 

 

2.8.2. Introduction to GPUs 

 

GPU stands for Graphical processing unit [19]. GPUs are devices mainly used 

for image processing [18] and they were developed, in particular, for rendering graphics 

applications [19]. (Rendering is the transformations of vertices into pixels or the process 

of generating a 2D image from a model composed of thousands or millions of 

polygons)) GPUs can do graphics processing at significantly higher speed than CPU 

because they are developed to handle operations that are very common in graphics 

applications [19]. 
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The first GPU was the GeForce 256 which was released in 1999[22]. Before 

GPUs, rendering was done on CPU [22]. But, doing rendering on a CPU is very 

computationally intensive. For instance, a given image may be modelled by millions of 

triangles where, in turn, each triangle may hold hundreds of pixels. Thus, generating an 

image from the vertices of the triangles is a very computationally intensive task to be 

done by the CPU. Due to this, a dedicated Graphical Processing Unit which handles 

rendering was developed to free the CPU to do other useful computational tasks. At 

present the main manufacturers of GPUs are Nvidia and AMD/ATI[23]. Nvidia are 

famous for their GeForce series where as  AMD/ATI have their Radeon series. 

GPUs were primarily developed to meet the demands of the gaming industry 

[23] and they were initially single purpose rendering devices [24].  But, now, they are 

programmable processors [24] that execute programs, including general purpose 

programs which have nothing to do with graphics, mainly in a SIMD (Single Instruction 

Multiple Data) way. (SIMD is a programming model where a single instruction is 

executed in parallel across multiple processing elements with each processing element 

working on its own data [24]). GPUs are also a cheap parallel architecture to implement 

data parallel applications as a reasonably powerful GPU costs only a few hundred 

dollars [18].  

 

2.8.3. GPU vs CPU 

 

One way in which GPUs differ from CPUs is in the number of cores they have. 

GPUs can be equipped with up to thousands of cores [18] while most CPUs have few 

cores (most commonly from 4 to 16 cores). GPUs have smaller but large number of 

processing cores optimized for parallel computing while CPUs have one or few large 

processing cores optimized for serial computing.  The main reason GPUs are equipped 

with such large number of cores and parallel threads is because of the need for 

rendering complicated and high resolution 3D scenes at real-time to create interactive 

frame rates for games [22]. 
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                       GPU                                                       CPU 

 

 

 

Figure 2.15. GPU vs CPU 

 

Another way in which GPUs differ from CPUs is in the way they handle the 

latency while accessing memories. While CPUs use caches to hide the latency in 

accessing memory, GPUs primarily hide this latency by running large number of 

threads at the same time [23] i.e. while one thread is accessing the memory, there are 

several other threads still executing on the GPU cores effectively hiding the latency of 

that one thread. 

 

2.8.4. GPGPU 

 

GPGPU stands for General Purpose Graphics Processing Unit [18]. With the 

GPGPU paradigm GPU’s began to be used for general purpose scientific computation 

in addition to their primary use as rendering devices [18]. GPGPU is now becoming a 

popular choice for developing general purpose parallel applications because GPUs are 

powerful devices, yet not expensive. GPUs are in fact one of the most powerful 

computation hardware for their price [20]. Furthermore, GPUs are drawing attention 

because their performance is growing fast even above Moore’s law i.e. the performance 

of GPU devices is doubling in less than 18 months. This is because many of the GPU 

transistors are used for computation rather than non-computation tasks like branch 

prediction [20]. 

The following are some of the many areas GPUs have been used for general purpose 

computation [20]. 

 Physics simulations e.g. for boiling simulation, cloth simulation and fluid 

dynamics simulations 
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 Signal and image processing applications e.g. for segmentation, real-time stereo 

depth extraction and in computed tomography (CT) to reconstruct an object 

from its projections. 

 Geometric computations e.g. for calculating distance fields which are used for 

path planning. 

 Databases and data mining e.g. for accelerating the performance of database 

queries. 

But not all applications are inherently parallel and able to be parallelized by GPUs. 

For instance, applications dominated by memory communication, instead of 

computation, like word processing applications are tough to parallelize in GPUs [20]. 

 

Evolution of GPGPU 

Before programming GPUs for general purpose applications (GPGPU) was 

started GPUs, which were fixed function rendering devices, began to be programmed 

for graphics [24].The graphics computations were expressed using graphical terms such 

as vertices, textures, and fragments and blending [21]. 

Then, in the early days of programming a GPU for general purpose programs 

(GPGPU), general purpose programs were programmed using graphics API .i.e. general 

purpose computations were expressed in graphics terms such as vertices, textures, 

fragments and blending.  Examples of these early programming languages for general 

purpose GPU computing include HLSL(High Level Shader Language) and 

GLSL(OpenGL shading Language). 

At present, high-level languages which use general terms (not graphical terms) 

are used for GPGPU computing. In this new approach, computations are specified as a 

set of thread which can execute in parallel. Then, a SPMD (Single Program Multiple 

Data) program is executed on each thread. The computation result of each thread is 

stored in a buffer (global memory). Then, finally, the value of the buffer is read and can 

optionally be used for additional computation. 

The present approach allows developers to have access to the processing 

elements of a GPU without being forced to use a graphical interface (a graphics API) 

when developing general purpose programs on GPUs i.e. it is currently possible to have 

full access to the powerful GPU hardware using familiar high-level programming 

languages using the derivatives of the C-syntax (the C programming language). At 
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present, the most common programing language for GPGPU computing are Nvidia’s 

CUDA and OpenCL. 

 

Frameworks for GPGPU programming 

Computation toolkits (frameworks) for GPGPU were at first high-level shading 

languages like Cg and HLSL. But, at present, they are modern programming languages 

based on C like Cuda and OpenCL[26]. A brief list of some notable languages for 

writing programs on GPU is shown below [19]. 

 Cg[29](C for Graphis) : Cg was used for writing shader programs for OpenGL 

and Direct X. 

 Accelerator [30]: Accelerator is a .Net assembly allowing access to the GPU 

through the Direct X interface. 

 HLSL[31](High Level Shader Language) is an application developed by 

Microsoft for developing shader programs for Direct X with a capabilitiy to run 

both on Windows and Xbox platforms. 

 Cuda(Compute Unified Device Architecture) : Cuda is a programming language 

for writing programs to Nvidia graphics devices[26]. 

 OpenCL(Open Computing Language) : OpenCL is a standard for writing 

parallel applications that can run on heterogeneous platforms with different 

devices from different vendors[25]. 

 

2.8.5. OpenCL vs CUDA 

 

At present, the two most common programing languages for writing GPGPU 

programs are CUDA and OpenCL. CUDA is a framework for developing general 

purpose parallel programs on Nvidia GPUs. CUDA was introduced in 2006 and with 

the advent of CUDA, the use of graphics APIs for writing general purpose programs on 

GPUs was eliminated [26].   

OpenCL is a framework first released in 2008 to give programmers a portable 

and efficient access to powerful processing elements(GPUs,CPUs,DSPs etc) . The APIs 

of OpenCL are not vendor specific and one can develop a single program that can run 

on a wide range of devises from different vendors. OpenCL and CUDA share many 
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core ideas and even terminologies and it is fairly easy to translate CUDA codes to 

OpenCL and vice versa.  

The portability of OpenCL is found not to affect its performance by a recent 

research[26]. The research was done using 16 bench marks composed of synthetic 

applications and real-world applications and in a fair-comparision, OpenCL programs 

were found to perform as fast as the corresponding CUDA programs. 

 

2.8.6. OpenCL 

 

OpenCL was first released in December 2008[25].It is a framework for writing 

programs which execute on parallel processing platforms [24]. It is not specifically used 

for programming GPUs only but it is also used across a range of devices including 

CPUs, DSPs and FPGAs [18]. OpenCL allows developers to have portable and efficient 

access to the capabilities of various processors from different vendors in a 

heterogeneous environment [24]. I.e. it allows writing a single program which can run 

on different types of systems from cellphones to super computers [25]. OpenCL 

programs are written using a subset of ISO C99 with some extensions and limitations 

[24] and they can be used for both data parallel and task parallel programming models. 

 

2.8.6.1. Some OpenCL Terminologies 

 

Platform: A platform refers to a host device and a collection of other devices on 

which an application can execute kernels. 

Device: A device is composed of one or more compute units. 

Compute Unit: A compute units is made up of one or more processing elements 

and one work group executes on one compute unit. 

Processing element: Processing elements are the components that the compute 

unit is made of in addition to local memory 

Kernel: A kernel is a function that will be executed in an OpenCL device. It is 

identified from other functions by its __kernel qualifier. 

Work Item: A work item is one of the many parallel executions a kernel issues 

on a device by a command i.e. it is a kernel instance. 
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Command: A command is the OpenCL operations (e.g. executing kernels, 

reading and writing memory objects) that are placed into a command queue for 

execution. 

Command queue: A command queue is used for queuing commands to a device. 

Workgroup: A workgroup is a group of work items that execute on the same 

compute unit. 

Context: A context is composed of a group of devices, the memory accessible to 

the devices , the properties of the memories(read only, write only etc) and one or more 

command queues. It is the environment in which kernels execute. 

Host: A host is a device that interacts with the context using OpenCL API and it 

coordinates the executions of kernels on devices. 

Program: An OpenCL program is made up of a set of kernels, other functions 

called by the kernels and a constant data. 

Kernel Object: A kernel object is used to encapsulate a specific __kernel 

function and its argument values. 

Global ID: A global ID can uniquely identify a work item. It is unique to the 

whole index space. 

Local ID: A local ID is a work-item id unique with in a workgroup. 

Global memory: A global memory is a region of memory accessible to all work-

items executing in a context. 

Constant memory: Constant memory is the same as global memory but it 

remains constant (not updated) while the kernel is being executed. 

Local memory: Local memory is a region of memory accessible by all work-

items in the same-workgroup but not by work items from other workgroups.  

Private memory: Private memory is a region of memory private to a work item. 
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Figure 2.16. OpenCL Platform Model 

  

  

Figure 2.17. OpenCL Execution Model 

  

 

Host 

Processing Element 

Compute Device 

Compute Unit 

P
latfo

rm
 



  

51 
   

 

 

 

 

 

 

 

 

Figure 2.18. OpenCL Memory Model 

 

2.8.6.2. Steps for Writing an Application in OpenCL for a 

Heterogeneous System 

 

To write a program in OpenCL that is capable of running on a heterogeneous 

system, first we have to discover what components the heterogeneous system is 

composed of [25]. Then, we have to get information about the properties of the 

components so that our software can make best use of the components. Then, we have 

to create blocks of instructions (kernels) which will run on the platform. Then, we will 

setup memory objects (buffers) required to do the computation. After this, we execute 

the kernels in the appropriate components. Finally, we can read the final result. 

 

2.8.7. CPU+GPU Co-processing 

 

Writing applications that execute only on a CPU or a GPU may not be efficient 

because most applications have serial part suitable for execution on a CPU and a 

parallel part that benefits from execution on GPUs [22]. The CPU+GPU co-processing 

approach is developed because CPU and GPU have complimentary attributes (i.e. CPUs 

are good for serial programs and GPUs are suitable for parallel programs). Most 

programs that use CPU+GPU co processing have been found to have better 
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performance per power consumed or die area than programs that run on CPU or GPU 

cores alone. 

 

2.9. Literature review on parallelization of optimization problems on 

GPU 

 

In [34], the authors implemented a branch and bound algorithm for a class of 

integer programming problems called Knapsack problems using GPU. The hardware 

they used in their experiment was a GTX 260 GPU and 3GHZ Xeon Quadro Intel 

Processor.  

Knapsack problems try to maximize the profit of n-items that fill a knapsack 

where each item has a weight of wi where i  ∈{1,..n}. Knapsack problems can be 

modeled as Integer Programming problem and can be solved by branch and bound. If 

the size of sub-problems in the branch and bound tree is small, the authors chose the 

computation to be done on CPU. But, for large number of sub-problems, a list of sub-

problems was selected using breadth first search strategy and transferred to GPU. 

Branching on the sub-problems was done in the GPU and using the result obtained, 

bound computation was again done on GPU. And the list of created sub-problems 

whose bound was computed was returned to CPU for pruning. For a problem size of 

500, they obtained a speed up of 9.27 

Our approach differs from theirs in that we don’t make two separate kernel calls 

from the CPU once to do the branching and another to do the bounding. Instead with 

one call to a kernel, we branch on nodes passed to the GPU and the bound of the 

resulting nodes(sub-problems) will also be computed in the GPU and then the resulting 

nodes whose bounds is computed will be returned back to the CPU. The second 

difference is that while we are solving an LP problem during bound computation they 

are solving a different formula to obtain the bound. And the third main difference of our 

approach from them is that while finding the best lower bound, we also perform partial 

(forward) pruning. And when we do full pruning, the number of nodes we prune will be 

smaller since some nodes were already pruned while doing partial pruning when the 

best lower bound is computed. Their approach instead finds the lower bound and after 

that it will prune nodes and the size of the nodes in their pruning stage will therefore be 

larger than the size of the nodes in our approach. 
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In [35], Chakroun and Melab tried to parallelize the branch and bound algorithm 

which they used for solving the Flow Shop Scheduling Problem (FSP) by performing 

parallel computation of bounds. (FSP is related to scheduling of n jobs in m machines.) 

They used Nvidia Tesla T10 GPUs each with 240 CUDA cores and 4GB global. They 

took a pool of nodes from the branch and bound tree using depth first search strategy 

and they performed the bound computations for these pool inside GPUs and then they 

performed elimination and branching on the CPU. They obtained an acceleration of x78 

for a 200x20 problem instance using a single GPU and an acceleration of x105 for the 

same problem instance using two GPUs. 

They also dynamically tuned the size of sub-problems fed into the GPU 

depending on the problem because the performance of GPU acceleration depended on 

the input problem. In the dynamic tuning, they solved the problems with progressively 

larger sizes of sub-problems until the maximum number of sub problems that the GPU 

can handle at a time was reached. And, for each sub-problem size that was used, the 

speed up per sub-problem was computed and the size that resulted in greatest speedup 

was selected. And it was verified that using such dynamic tuning heuristic, instead of 

using fixed size pool of sub problems, produces a better speedup. 

Our approach differs from theirs in that we do branching on GPU in addition to 

bound computation. And our approach uses best first search strategy (BFS) to choose 

group of unexplored nodes from the branch and bound tree while their approach uses 

depth first search (DFS). 

In [36], the authors suggest parallelizing of the standard simplex method to solve 

non-sparse LP problems. Although the revised simplex method generally outperforms 

the standard simplex method, they chose the standard simplex method since for non-

sparse matrices both the standard and revised simplex methods give the same 

performance. Since most of the standard simplex method procedures are spent on 

pivoting, they suggested doing the pivoting on GPU. In their approach, the simplex 

tableau is transferred to a GPU and the minimum ratio test and pivoting are done in 

GPU where as finding the index of the entering and leaving variable are done on CPU. 

They used a GTX 260 board and for large simplex tableau instances i.e. 

7000x7000, they obtained a speed up of 12.5 over the corresponding CPU 

implementation, where as for small size problems i.e. 500x500, they obtained a speed 

up of 2.66. 
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Our approach differs from them in that we parallelize IP problems instead of LP 

problems i.e. instead of parallelizing a single simplex instance; we are parallelizing 

computations of several simplex instances to perform bound computations in parallel. 

And instead of using simplex during bound computation, we use the revised simplex 

method. 

In [37], the authors presented a GPU implementation of the revised simplex 

method to parallelize solving of linear programming problems. They used an nVidida 

GeForce 9600 GT GPU with 1.0 GB RAM and with 64 shader processors. They used as 

a bench mark randomly generated linear programming problems in canonical form. 

They compared their implementation with an open source Linear Programming solver 

called GLPK and for large problem instances they obtained up to 18x speedup over the 

corresponding CPU implementation by GLPK. 

Our approach differs from theirs’ in that instead of using graphics library to 

write programs for GPU we use OpenCL which is a general purpose programming 

language and we parallelize IP problems instead of LP problems. And another 

difference is that they use the steepest edge method to select entering variables while we 

use an approach where non-basic variables corresponding to the largest decrease in the 

objective function value are chosen as entering variable. 
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CHAPTER 3 

METHODOLOGY 

 

3.1. The Proposed IP based Itemset Hiding (Sanitization) Algorithm  

 

3.1.1. Inputs to the Proposed Itemset Hiding (Sanitization) Algorithm 

 

Before using our IP based itemset hiding algorithm to sanitize datasets, we have to 

make sure that the input datasets are represented in binary format. If not, we have to 

first convert them into binary format. For example, the sample dataset in Table 3.1 

which is not in binary format (it is expressed in market basket format) has to be 

converted into the binary format shown in Table 3.2.  

  

Table 3.1. A sample dataset in market-basket format 

TID (Transaction ID) Items making the transaction 

1 1   2 

2 3 

3 4 

4 1   2   3 

5 1   2   3   4 
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Table 3.2. A sample dataset in binary format 

dij Item 1 Item 2 Item 3 Item 4 

T1 1 1 0 0 

T2 0 0 1 0 

T3 0 0 0 1 

T4 1 1 1 0 

T4 1 1 1 1 

 

In general a dataset that is to going to be sanitized by our sanitization algorithm 

has to be first expressed in the following binary format.    

                                                        

Table 3.3. Format of an input dataset 

dij i1 i2 .... im 

T1     

T2     

. 

. 

    

Tn     

 

where the values in the cells of the above table can have only a binary value of 0 or 1 

corresponding to the absence or the presence of an item in a transaction. 

The goal of the sanitization procedure is to make sure sensitive itemsets cannot 

be mined from the sanitized database. Thus, after mining the input dataset and obtaining 

the non-singleton frequent itemsets, the frequent itemsets are split into sensitive and 

non-sensitive itemsets depending on which itemsets are sensitive so that we don’t want 

them to be shown when mining the sanitized dataset. 

The sensitive and non-sensitive itemsets are the other inputs to our sanitization 

algorithm. These itemsets, like the input dataset, also have to be expressed in binary 

format before being fed into the sanitization algorithm. In general, the sensitive and 

non-sensitive itemsets shall be expressed in the binary formats shown in Table 3.4 and 

3.5 when being used in the sanitization algorithm. The values in the cells of thebtables 

can have only a binary value of 0 or 1 corresponding to the absence or the presence of 

an item in an itemset. 
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Table 3.4. Sensitive Itemsets 

skj i1 i2 .... im 

I1     

I2     

. 

. 

    

Io     

                                           

Table 3.5. Non-Sensitive Itemsets 

nrj i1 i2 .... im 

I1     

I2     

. 

. 

    

I

p 

    

  

3.1.2. Terminologies Used To Express the Proposed Itemset Hiding 

Algorithm 

 

n :  The total number of transactions in the dataset 

m : The total number of unique items in the dataset 

 : The minimum support threshold i.e. itemsets having support above the 

minimum support threshold are called frequent where as itemsets whose support is 

below the minimum support threshold are called infrequent.  

o :  The total number of non- singleton sensitive itemsets 

p : The total number of non-singleton non-sensitive itemsets  

)( kI : The support of the kth sensitive itemset 

)( rI : The support of the rth non-sensitive itemset 
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i :  A transaction number ranging from 1 to n 

j : An item number ranging from 1 to m 

k : A sensitive itemset number ranging from 1 to o 

r : A non-sensitive itemset number ranging from 1 to p 

dij :  A binary variable used to indicate whether the jth item is present in the ith 

transaction or not where },...1{ ni and },...1{ mj . If dij is 1, it means the jth item is 

present in the ith transaction where as if it is 0, it indicates the jth item is not found in the 

ith transaction. A matrix of dij values are used to represent the input dataset in binary 

format. 

skj: A binary variable used to indicate whether the jth item is present in the kth 

sensitive itemset or not where },...1{ ok  and },...1{ mj . If skj is 1, it means the jth item 

is present in the kth sensitive itemset where as if it is 0, it indicates the jth item is not 

found in the kth sensitive itemset. A matrix of skj values are used to represent all the 

sensitive itemsets.  

nrj: A binary variable used to indicate whether the jth item is present in the rth 

non-sensitive itemset or not where },...1{ pr and },...1{ mj .If nrj is 1, it means the jth 

item is present in the rth non-sensitive itemset where as if it is 0, it indicates the jth item 

is not found in the rth non-sensitive itemset. A matrix of nrj values are used to represent 

all the non-sensitive itemsets.  

xij : A binary decision variable used to determine which items of the input 

dataset will be removed during sanitization where },...1{ ni and },...1{ mj . If xij is set 

to 1, dij will be set to 0 when sanitizing the database. But, if xij is set to 0, the original 

value of dij will not change when sanitizing the database. 

zir :  A binary decision variable used to determine whether or not the rth non-

sensitive itemset will be removed from transaction i during sanitization where 

},...1{ ni and },...1{ pr . If zir is set to 1, it means the rth non-sensitive will be removed 

from the ith transaction during sanitization. But, if zir is set to 0, it means the rth non-

sensitive itemset will not be removed from transaction i. (But note that a non-sensitive 

itemset cannot be removed from a transaction which didn’t contain the non-sensitive 

itemset in the first place. So, zir can be set to 1 in only those transactions which 
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contained the rth non-sensitive itemset. i.e. sup[i,r] must be 1 for zir to attain a value of 

1.) 

Rr: The amount by which the support of the rth non-sensitive itemset will be 

reduced below the minimum support threshold as a side effect of the sanitization 

process. Note that the maximum amount the support of the rth nonsensitive itemset can 

be reduced below the minimum support threshold( ) is  , by which point the support 

of the rth non sensitive itemset will be 0. 

Ur: A binary decision variable used to determine whether or not the rth non-

sensitive itemset will be removed from the dataset (i.e. whether or not its support will be 

reduced below the minimum support threshold  ) during sanitization. If Ur is set to 1, 

it means the rth non-sensitive will have its support reduced below the minimum support 

threshold (i.e. removed from the database) during sanitization. But, if Ur is 0, it means 

the rth non-sensitive itemset will remain frequent after sanitization. 

 

3.1.3. Objective of the Proposed Itemset Hiding Algorithm 

 

Objective 

The objectives of the proposed sanitization algorithm when sanitizing the 

database are   (i.e. minimizing the number of non-sensitive itemsets whose support 

will be reduced below the minimum support threshold as a side effect of removing 

sensitive itemsets) 

 

3.1.4 Constraints on the Proposed Itemset Hiding(Sanitization) 

Algorithm 

 

Constraint 1 

To remove the kth sensitive itemset from the dataset, the sensitive itemset must 

be removed from at least 1)(  kI number of transactions. And to remove a 

sensitive itemset from a particular transaction at least one item of the itemset must be 

removed from the transaction. Thus, to remove the kth sensitive itemset from the 

database by removing it from 1)(  kI transactions at least a total of 1)(  kI  

items of the sensitive items must be removed from the dataset. (But note that we have to 
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make sure that we are attempting to remove sensitive itemsets from transactions which 

contained the sensitive itemsets in the first place (i.e. sup[i, k] = 1) ) 

 

Constraint 2 

To remove the kth sensitive itemset from transaction i, it is sufficient to remove 

only one item of the kth sensitive itemset from transaction i. Removing just one item of 

the sensitive itemset to remove the sensitive itemset from a particular transaction 

ensures minimum disturbance to the original database during sanitization. Thus, we can 

impose the constraint that while sanitizing the database remove only one item of a 

sensitive itemset to remove the sensitive itemset from a particular transaction.( But note 

that we have to make sure that we are attempting to remove sensitive itemsets from 

transactions which contained the sensitive itemsets in the first place (i.e. sup[i, k] = 1) ) 

 

Constraint 3 

In ideal sanitization process which doesn’t have any side-effect on the non-

sensitive itemsets, the support of the rth non-sensitive itemset can be decreased by upto 

 )( rI  without making the non-sensitive itemset infrequent in the sanitized dataset. 

But, practically, it is usually impossible to sanitize a dataset without removing some 

non-sensitive itemsets as a side-effect. Thus the support of the rth non-sensitive itemset 

may be reduced by Rr amount below the minimum support threshold during sanitization 

thus making the non-sensitive itemset infrequent for non-zero values of Rr. Thus, we 

can impose a constraint on the sanitization process so that the number of transactions 

from which the rth non-sensitive itemset is removed must not exceed rr RI  )(

where Rr is a quantity coming from the side-effect of removing non-sensitive itemsets in 

the attempt to remove sensitive itemsets from the dataset. 

Constraint 4 

If the rth non-sensitive itemset will not be removed from transaction i during 

sanitization, then no item of the non-sensitive itemset should be removed from the 

transaction. But, if the rth non-sensitive itemset will be removed from transaction i 

during sanitization, any number of items of the non-sensitive itemset can be removed 

from transaction i. Since the rth non-sensitive itemset can have upto m items, upto m 

items of the non-sensitive itemset can be removed from transaction i, if the non-

sensitive itemset is to be removed from transaction i during sanitization. 
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Constraint 5  

If the rth non-sensitive itemset will not be removed from the dataset during 

sanitization (i.e. Ur = 0), then its support cannot be reduced below the minimum support 

threshold ( ) by any non-zero amount Rr i.e. Rr must be zero. But, if the rth sensitive 

itemset will be removed from the dataset during sanitization (i.e. Ur = 1), the support of 

the rth non-sensitive itemset will be reduced by an amount Rr not exceeding  . 

 

Constraint 6 

xij is a binary variable i.e. it can have a value of 0 and 1 only. 

 

Constraint 7 

zir is a binary variable. i.e. it can have a value of 0 and 1 only. 

 

Constraint 8 

Ur is a binary variable. i.e. it can have a value of 0 and 1 only. 

 

3.1.5. The IP Problem for Sanitizing Datasets with Minimum Side-

Effect 

 

The above constraints on the sanitization procedure and the objective of the 

sanitization process can be expressed into the following Integer Programming (IP) 

problem. 
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3.1.6 .The Standard Form of the Proposed IP Problem 

 

The above IP problem can be converted into the following standard form by the 

addition of slack and surplus variables. 
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3.2. Steps for Sanitizing an Input Dataset Using the Proposed Itemset 

Hiding (Sanitization) Algorithm 

 

The steps for sanitizing an input dataset using the proposed IP based itemset 

hiding (sanitization) algorithm are shown below. 

   



  

64 
   

 

 Figure 3.1. The procedures for sanitizing an input dataset 

 

The branch and bound algorithm was used to solve an IP problem. And within 

the branch and bound algorithm, the algorithm used for solving linear programming 

problems in order to obtain bounds was the revised simplex algorithm.  

 

3.3. Generation of the Inputs to our Itemset Hiding Algorithm 

 

In order to obtain the frequent itemsets and their supports, the Apriori algorithm 

implemented in Java by the authors shown below was used with slight modification to 

format its outputs. After an input data set is given to the code and the minimum support 

threshold is set, this code outputs the non-singleton frequent itemsets, their supports, the 

number of transactions and unique items in the dataset as well as the number of non-

singeleton frequent itemsets which are used as inputs in our sanitization algorithm. 

 * @author Martin Monperrus, University of Darmstadt, 2010 

 * @author Nathan Magnus and Su Yibin, under the supervision of Howard Hamilton, 

 *         University of Regina, June 2009. 

 * @copyright GNU General Public License v3  

 

3.4. The Proposed Architecture for Solving the Formulated IP Problem 

 

The proposed architecture for solving the formulated IP problem on a CPU-GPU 

platform is shown in Figure 3.2. 

 

Reading inputs(i.e. dataset, frequent itemsets and their supports) 

Determining sensitive itemsets and formulating an IP problem to remove the sensitive 

items 

Solving the formulated IP problem on a CPU-GPU platform using the branch and bound 

method 

Using the solution of the formulated IP problem to create a sanitized dataset 
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3.5. Summary of tasks done on CPU 

 

The tasks done on a CPU are 

 Initialization of the GPU 

 Reading the inputs(i.e. dataset, frequent item sets and their supports)  and 

formulation of an IP problem which is used to sanitize the input dataset  

 Solving the formulated IP problem with the branch and bound method or 

delegating some part of the branch and bound steps to be done on GPU if the 

search area in the branch and bound tree gets large. 

 Using the solution of the formulated IP problem to sanitize the input dataset. 

But note that in order to solve IP problems with the branch and bound  method the 

CPU uses a function called lpsolve which uses the two phase method(refer to section 

2.7.2.7) to solve LP problems that result from relaxing the integrality constraints on the 

IP problems, which will then be used to obtain the lower bounds on the objective 

function value of the sub-problems(nodes).  

lpsolve is used to obtain a solution of LP problems without being given an initial 

basic feasible solution. But lpsolve depends on a function called revisedsimplexlu 

which is used to solve LP problems only after being given an initial basic solution. 
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Figure 3.2. A CPU-GPU platform for parallelizing the branch and bound method 
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The revisedsimplexlu function needs to solve system of linear equations and for 

this purpose it uses a function call lusolve which solves linear system of equations using 

lu decomposition. So, the function lusolve in turn uses a function called lu to perform 

LU decomposition of square matrices. 

The inputs to the program are specified within a function called input_selector 

where the paths of the input and output files as well as charachterstics of the input 

dataset and frequent itemsets are specified. So, the parameters within this function must 

be set before running the program. 

More description of the components of the CPU code is shown in the tables 

below. 

 

Table 3.6. sparse_matrix structure 

sparse_matrix : A c structure used to store a sparse matrix in row major form 

Members Name Data type Description 

values float ** Non zero values in the original matrix 

col_indices int ** Column indices of the non zero values in 

the original matrix 

size_per_row Int * The number of non-zero elments per row 

in the original matrix 

 

Table 3.7. sparse-matrix2 structure 

sparse_matrix2 : A c structure used to store a sparse matrix in column major 

form 

Members Name Data 

type 

Description 

values float ** Non zero values in the original matrix 

row_indices int ** Row indices of the non zero values in the 

original matrix 

size_per_colu

mn 

int * The number of non-zero elments per column 

in the original matrix 

The following example demonstrates the above row-major and column-major 

sparse matrix representations. 
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  Assume we are given the following matrix 

  
1 0
2 3

 

Then its row-major sparse representation using sparse_matrix looks as follows. 

Values  col_indices size_per_row 

                            

And its column-major sparse representation using sparse_matrix2 looks as 

follows 

                             

 

Table 3.8. cl_node structure 

cl_node : a c structure used to store a sub-problem(node) corresponding to an IP 

or LP problem 

Name Data type Description 

A sparse_matrix2 A matrix in the constraints Ax=b 

b float * A vector in the constraints Ax=b 

c float * A vector in the objective function 

min z = cx 

num_constraints int Number of constraints 

num_vars int Number of variables 

B int * Index of the basic variables 

N int * Index of the non-basic variables 

X float * An array to hold the Xs in the 

solution of IP/LP problem of the 

form min Z=CX s.t.AX=b) 

           (cont. on next page) 
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Table3.8. (cont.) 

objVal float A variable to hold the objective 

function value(Z) in the solution of 

IP/LP problem problem of the form 

min Z=CX s.t.AX=b) 

flag int A variable to hold the state of the 

solution computed for the LP 

problem. Possible values it can be 

assigned are 0  (FEASIBLE), 1 

(FEASIBLE_INTEGRAL) ,  2 

(INFEASIBLE) and 

3(UNBOUNDED) 

branching_var_indx int A variable to hold the index of the 

most fractional variable in X if the 

slution obtained for the LP problem 

is not integral 

 

Table 3.9. A function for initialization of a GPU 

gpu_initialization() 

Purpose To setup the GPU 

Parameters None : But uses global variables 

Steps  Gets a list of OpenCL platforms and chooses a particular platform 

 Gets a GPU device from the chosen platform 

 Creates memory buffers on the GPU device to hold the inputs that 

will be passed to the GPU and to store outputs which result from 

execution of a kernel 

 Creates and builds program from the kernel source (i.e. OpenCL file 

contacting the kernel) 

 Creates a kernel object which encapsulates the kernel function and 

makes it accessible from the CPU 

 Creates  a command queue to queue a command for execution on 

the GPU 
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Table 3.10. A function for formulation of the an IP problem which helps in sanitization 

of   an input dataset 

ip_formulator (.....) 

Purpose To formulate the IP problem whose solution is used to sanitize the input 

dataset 

Paramete

rs 

Name Data type Parameter 

type 

Description 

Dataset String input Path to the input dataset 

file where the input 

dataset must be in 

market-basket format 

binaryDataset String input Path to a file where the 

binary version of the 

input dataset will be 

stored 

frequentItemsets String input Path to a file containing 

the frequent itemsets in 

the the dataset where 

the frequent itemsets 

must be  in market-

basket format 

frequentItemsets

Supports 

String Input Path to a file containing 

the support of the 

frequent itemsetts 

N Int input The number of 

transactions in the input 

dataset 

M Int Input The number of different 

items in the input datset 

                     (cont. on next page) 
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Table 3.10. (cont.) 

 minItem Int Input The minimum item in the dataset 

(allowed values are 0 or 1) 

Psi Int Input The minimum support threshold 

Q Int Input The number of non-singleton 

frequent itemsets 

Node cl_node* output A structure to store the formulated 

IP problem 

AA String Input Path to a file where the A in the 

formulated IP problem will be stored 

for debugging purposes( A where 

min z= cx s.t. Ax=b, x>=0) 

Bb String Input Path to a  where the b in the 

formulated IP problem will be stored 

for debugging purposes 

Cc String input Path to a file where the c in the 

formulated IP problem will be stored 

for debugging purposes 

Steps  Reads the input dataset which must be in market basket format and 

converts it into binary format 

 Also reads the frequent itemsets and their supports from a file 

 Asks the user which itemsets are sensitive and splits the frequent 

itemsets and their supports into sensitive and non-sensitive parts 

 Determines A, b and c of the sanitization IP problem whose solution 

indicates the items that need to be removed from the original dataset 

to sanitize it with a minimum side-effect. 
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Table 3.11. A function for solving IP problems using the branch and bound method 

best_first_branch_and_bound (...) 

Purpose To obtain the solution of the formulated IP problem 

Paramete

rs 

Name Data 

Type 

Parameter 

Type 

Description 

RootNode Cl_node* Input/output A structure which holds the IP 

problem which is going to be 

solved and also which stores the 

solution of the IP problem 

Steps  Solves the IP problem without the integrality constraints 

 If the solution of the above relaxed solution is infeasible or 

unbounded, it STOPS without returning a solution as the IP 

problem doesn’t have a solution  

 Otherwise, if  the relaxed solution of the IP is integral, it STOPS 

since an integral solution has been found 

 Otherwise, it PUSHES the problem whose relaxed solution is 

already obtained into a priority queue where the lower bound of 

the problem is the objective function value in the relaxed 

solution 

 Initializes the upperbound to INFINITY 

 While the priority queue is not empty 

             { 

 If the size of the priority queue is less than the threshold for 

using GPU   (gpuThreshold), it does the following 

computations on CPU 

{ 

 Removes a single sub-problem from the priority queue 

 Checks whether the removed sub-problem is promising 

i.e. whether it has a lower bound below the upper 

bound. If not, it PRUNES the sub-problem as non-

promising and it proceeds to another sub-problem 

                              (cont. on next page)  
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Table 3.11. (cont.) 

  Branches from the first fractional variable in the sub-

problem’s relaxed solution to create two sub-problems 

which we call the left and right sub-problems (nodes) 

 Solves the left and right sub-problems (nodes) without 

the integrality constraints. 

 Sets the lower bounds of the left and right sub-problems 

to their relaxed solutions’ objective function values 

 If the left or right nodes are infeasible or non-promising 

(with a lower bound above the upper bound), it 

PRUNES them. 

 If the left or right nodes have feasible and integral 

solution , it UPDATES the upperbound to their lower 

bound in its way and PRUNES them after making them 

as the current best integral solution  

 Otherwise it means the left or right nodes have feasible 

relaxed solution which is not integral but promising with 

a possibility of giving better integral solution. So, it 

PUSHES them to the priority queue.    } 

 On the other hand, if the size of the priority queue is equal or 

greater than the threshold for using GPU(gpuThreshold), it 

does the following computations.    

{  

 It removes nodes from the priority queue upto the 

threshold for using GPU(gpuThrehsold). 

 Checks if all of the removed nodes are still promising. If 

not, it PRUNES the non-promising nodes and removes 

additional nodes from the priority queue until the 

number of removed and not-pruned nodes reaches the 

gpuThreshold. 

 If the number of nodes removed but not-pruned is below 

the threshold for using GPU(gpuThreshold), it returns 

the 

              (cont. on next page) 
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Table 3.11. (cont.) 

  removed nodes back into the priority queue so that they 

can be processed with CPU and it GOES to the 

beginning of the while loop by escaping the 

computations below. 

 If the number of removed and not-pruned reaches 

gpuThreshold, it transfers the removed nodes to GPU 

where they are branched into left and right nodes and 

their bounds is computed by solving them without the 

integrality constraints. 

 Then, it transfers the nodes(sub-problems) 

(2*gpuThreshold number of them)  whose bound is 

already computed to CPU 

 If any of these nodes are infeasible or non-promising 

(with a lower bound above the upper bound), it 

PRUNES them. 

 If it encounters a node with a feasible and integral 

relaxed solution while traversing the retrieved nodes, it 

UPDATES the upper bound to its lower bound and it 

prunes it after making it the current best integral solution 

 Otherwise it means the unpruned nodes have feasible  

 relaxed solutions which are not integral but promising 

with a possibility of giving better integral solution. So, it 

PUSHES them to the priority queue. 

 

} 

             } 

It returns the solution marked as the current best integral solution as the 

solution  of the IP 
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Table 3.12. A function for solving LP problems using the revised simplex method 

without being given an initial basic feasible solution 

lpsolve (...) 

Purpose To solve LP problems (It solves IP problems without the integrality 

constraints i.e. it solves relaxed IPs which are basically LPs) 

Parameters Name Data Type Parameter 

Type 

Description 

phase2 Cl_node* Input/output A structure 

which holds 

an LP 

problem 

which is 

going to be 

solved and 

also which 

stores the 

solution of 

the LP 

problem 

Steps  It considers the given LP problem as an LP problem in phase 2 

of the two phase simplex method 

 It creates the LP problem of phase 1 by the addition of artificial 

variables to the given LP problem and by setting the objective 

function coefficients in the given LP problem to zero 

 It solves the LP problem of phase 1 by the revised simplex 

method using the artificial variables as basic variables 

 If the solution of the LP problem in phase 1 is infeasible, it 

means the original LP problem in phase 2(the relaxed IP 

problem) is also infeasible. So, it EXITS without returning a 

solution 

 Otherwsie,it uses the basic variables in the solution of phase 1 as 

the basic variables for the original LP problem in phase 2 

                       (cont. on next page) 
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Table 3.12. (cont.) 

  If the basic variables in the solution of phase 1 contain artificial 

variables, it applies pivoting to exchange the basic artificial 

variables with the appropriate non-basic variables which are not 

artificial 

 It solves the LP problem in phase 2 using the revised simplex 

method and using the basic variables obtained from the solution of 

the phase 1 LP problem 

 

Table 3.13. A function for solving LP problem if given an initial basic feasible solution 

revisedsimplexlu () 

Purpose To solve an LP problem given the index of the basic variables 

corresponding to  an initial basic feasible solution 

Parameters Name Data 

Type 

Parameter 

Type 

Description 

 node cl_node* Input/output A structure which holds an LP 

problem which is going to be 

solved and also which stores the 

solution of the LP problem given 

an initial basic feasible solution to 

the LP problem 

Steps  It calculates the index of non-basic variables from the index of 

basic variables 

 It splits A and C of the given LP problem into basic and non-

basic parts (i.e. AB,AN,CB,CN) 

 Computes the current basic variable values as  𝑏𝐵𝑎𝑟 = 𝑥𝐵 =

 𝐴𝐵−1𝑏 

 Initializes the  negative reduced cost(negRedCost) to a –

negative value e.g. -1 

                             (cont. on next page) 
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Table 3.13.(cont. ) 

  While negRedCost is less than zeron it does the following 

  { 

 Selects the entering variable. To do this 

 It selects as a pivot column the non-basic column of the 

simplex tableau corresponding to the least negative 

negative-reduced-cost( negRedCost). To do this 

 It first computes the negative reduced cost of all non-

basic variables as 𝑤𝑁 =  𝐶𝑁′ − (𝐶𝐵 ∗

𝐴𝐵−1)𝐴𝑁 𝑜𝑟 𝑤𝑁 =  𝐶𝑁′ − 𝑢′`
𝐴𝑁 𝑤ℎ𝑒𝑟𝑒 𝑢 =

 (𝐴𝐵′)−1𝐶𝐵   

 Then it determines the index of the column of the 

simplex tableau that gives the least negative negative-

reduced-cost value of negRedCost and then it computes 

the entries in the pivot column of the simplex tablue as 

𝑎𝐵𝑎𝑟 =  𝐴𝐵−1𝐴𝑁𝑝𝑖𝑣𝑜𝑡𝐶𝑜𝑙𝑢𝑚𝑛𝐼𝑛𝑑𝑒𝑥 

 If there is no non basic variable (column of the simplex 

tableau) with negative reduced cost, then an optimal 

solution has been found and no entering non-basic 

variable can improve the solution, so it RETURNS the 

current solution. 

 Selects the leaving variable. To do this 

 Applies minimum ratio test to determine the leaving 

variable 

 If a minimum ratio value can’t be found, it means the 

LP problem is unbounded (i.e. it is possible to increase 

the value of the entering variable to infinity without 

making any of the basic variables negative). So, it 

RETURNS without a solution by indicating the LP 

problem is unbounded 

 If the minimum ratio is obtained by more than one 

            (cont. on next page) 
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Table 3.13.(cont. ) 

  rows(or basic variables), it applies Charne’s 

perturbation to determine which basic variable leaves 

the basis 

 Applies pivoting to exchange the entering and leaving 

variables 

 Updates AB,AN,CB,CN and index of the basic and non-

basic variables B and N 

 Computes the current solution i.e. compute 𝑥𝐵 =

𝑏𝐵𝑎𝑟 𝑥𝑁 = 0 𝑎𝑛𝑑 𝑜𝑏𝑗𝑉𝑎𝑙 =  𝑐𝐵𝑥𝐵 

           } 

 Determines whether the current solution is feasible and integral. 

If not, it means the current solution is only feasible but not 

integral and thus determines the index of the fractional 

variable(which will be used to perform branching  in B&B 

Returns the solution 

 

Table 3.14. A function for solving linear system of equations using LU decomposition 

lu_solve (...) 

Purpose  To solve linear system of equations that arise in the 

revisedsimplexlu function(It is used to compute 𝑏𝐵𝑎𝑟 = 𝑥𝐵 =

 𝐴𝐵−1𝑏 , 𝑢 =  𝐴𝐵−1𝐶𝐵 and 𝑎𝐵𝑎𝑟 =  𝐴𝐵−1𝐴𝑁𝑝𝑖𝑣𝑜𝑡𝐶𝑜𝑙𝑢𝑚𝑛𝐼𝑛𝑑𝑒𝑥) 

 

Parameters Name Data 

Type 

Paramete

r Type 

Description 

node cl_node

* 

Input A structure which holds the 

A matrix of an LP 

problem(i.e. A where min 

z=cx s.t. Ax=b) 

(cont. on next page) 
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Table 3.14.(cont. ) 

 b  float * input An array which holds the b 

vector  of an a system of 

linear equations(i.e. b s.t. 

Ax=b) 

x float * output An array which holds the x 

vector  of an a system of 

linear equations(i.e.  the 

solution vector x  s.t. Ax=b) 

size int  input The dimension of the basic 

matrix(AB) formed from A 

of the LP problem, which is 

the same as the number of 

constraints in the LP 

problem 

useTranspose int input If set to 1, it means lusolve 

will solve AB’*x=b other 

wise it solves AB*x=b 

where AB is the basic part 

of the A matrix in the LP 

problem 

Steps  Given a system Ax=b , it finds L,U and P such that PAx = 

LUx = Pb 

 Then it lets Ux=y and forward solves Ly=Pb to obtain y 

 Then backward solves Ux=y to obtain x 
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Table 3.15. A function that performs the LU decomposition of a square matrix 

lu() 

Purpose  To find the LU decomposition of a given matrix A( It is used in 

particular to compute the LU decomposition of AB). 

 

Parameters Name Data type Parameter type Description 

Node cl_node* input A structure which holds 

the A matrix of an LP 

problem(i.e. A where 

min z=cx s.t. Ax=b) 

L 

 

sparse_matrix 

* 

output A row-major sparse 

matrix used to hold L in 

the LU decomposition 

the basic part of A, i.e. 

AB, of an LP problem 

U sparse_matrix 

* 

output A row-major sparse 

matrix used to hold U in 

the LU decomposition 

the basic part of A, i.e. 

AB, of an LP problem 

P sparse_matrix 

* 

output A row-major sparse 

matrix used to hold P in 

the LU decomposition 

the basic part of A, i.e. 

AB, of an LP problem 

size int input The dimension of the 

basic matrix(AB) 

formed from A of the 

LP problem, which is 

the same as the number 

of constraints in the LP 

problem 

(cont. on next page) 
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Table 3.15. (cont.) 

 useTranspose int  If set to 1, it means 

lu will find the LU 

decomposition of 

AB’*. Otherwise, it 

finds the LU 

decomposition of  

AB, where AB is the 

basic part of the A 

matrix in the LP 

problem AB 

originates 

Steps  It returns L,U and P such that PA=LU 

 

 

 

 

 

 

 

 

 

Figure 3.3. Summary of Function calls on the CPU code 

  

3.6. Summary of All Tasks Done on GPU 

 

The tasks done on GPU are  

 To branch on sub-problems (nodes) those were passed to the GPU 

 To compute the bounds of the new sub-problems (nodes) produced by 

the branching. 

The description of the functions that make up the GPU code is shown below 

inputSelector 
Ip_formulator 

best_first_branch_and

_bound 

createSanitizedDatabase 

lpsolve 

revisedsimplexlu 

free_sparsematrix 

lu lusolve 

free_sparsematrix2 

main 

IPSolverAndSanitizer.cpp 

branch_and_bound

_kernel 
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          Table 3.16. A function to branch on several IP nodes and compute their bounds in 

parallel 

branch_and_bound_kernel (...) 

Purpose To solve a list of LP sub-problems in parallel on GPU 

Parameters Name Data 

type 

qualifier Parameter 

type 

Description 

nAP2L cl_node 

* 

__global Input/output nAP2L  is a buffer 

which refers to node 

array of phase 2 LP 

problems  in the two 

phase method(refer 

section 2.7.2.7) which 

initially holds input LP 

problems and which 

finally stores the new 

nodes corresponding to 

left branches on the 

input LP problems by 

replacing the input LP 

problems, where the 

new nodes have their 

bounds computed 

nAP2R cl_node 

* 

__global output nAP2L is a buffer 

which refers to node 

array of phase 2 LP 

problems  in the two 

phase method(refer 

section 2.7.2.7) is used 

to hold the new nodes 

corresponding to right 

branches of the input 

LP problems, where the 

new nodes have their 

bounds computed 

(cont. on next page) 
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Table 3.16. (cont.) 

      

size Size __global input The number of LP 

problems in nAP2L 

which were passed to 

the GPU to be 

processed in parallel, 

which is the same as 

the number of right 

nodes in nAP2R which 

result from branching 

on the LP problems 

which were initially 

stored in nAP2L.  

Steps  It performs branching on the sub-problems(nodes) that were 

passed to the GPU 

 It computes the bounds of the new sub-problems produced by 

branching 

 

Table 3.17. A function for branching on several IP nodes in parallel 

branch (...) 

Purpose To branch on the fractional variables of the sub-problems that were 

passed to it 

Parameters Name Data 

type 

qualifier Paramet 

type 

Description 

(cont. on next page) 
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Table 3.17. (cont.) 

 L cl_node* __global Input/output L  is a buffer which 

refers to node array of 

phase 2 LP problems  in 

the two phase 

method(refer section 

2.7.2.7) which initially 

holds input LP problems 

and which finally stores 

the new nodes 

corresponding to left 

branches on the input 

LP problems by 

replacing the input LP 

problems 

R cl_node* __global output R is a buffer which 

refers to node array of 

phase 2 LP problems  in 

the two phase 

method(refer section 

2.7.2.7) which is used to 

hold the new nodes 

corresponding to right 

branches of the input LP 

problems 

Steps  Given a list of sub-problems(L), it branches on them and 

stores half of the new sub-problems in the original buffer(L) 

which is used to hold the input sub-problems and stores the 

other half of the new sub-problems into another buffer. 
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The GPU code also has functions called lpsolve, revisedsimplexlu, lusolve and 

lu with similar purposes as the corresponding functions in the CPU. 

  

 

 

 

 

 

  Figure 3.4. Summary of function calls on the GPU code 

 

3.7. Sample Interactions with the Itemset Hiding(Sanitization) 

Program 

 

Assume we are given the given a small dataset of 5 transactions and 4 itemsets 

as shown in the figure 3.5 below which is then mined at minimum support threshold of 

2 to give the frequent non-singleton itemsets in the figure 3.6 where the support of the 

frequent itemsets is shown in the figure 3.7. 

If we choose  the itemset {1,3}in figure 3.6 as sensitive, which is found at row 2 

in the figure, then a user’s interaction with our program for sanitizing an input dataset 

looks as shown in the Figure 3.8. 

 

 

Figure 3.5. An input data set in market-basket format 

 

 

lusolve branch_and_bound_

kernel 

revisedsimplexlu2 lpsolve 

revisedsimplexlu 

lu 
branch 

Branchandbound.cl 
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Figure 3.6. Frequent itemsets                            Figure 3.7. Support of the frequent 

itemsets 

 

 

Figure 3.8. Snapshot of the command window during sanitization of a small dataset 

 

At the end of the program, we will find the input dataset in binary format as well 

as a sanitized version of the input dataset also in binary format as shown in Figure 3.9 

and Figure 3.10. 
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Figure 3.9. The binary form of the input dataset which was in market-basket format 

 

 

Figure 3.10. The sanitized dataset in binary format 

  

3.8. Hardware Used 

 

The computer used to write the sanitization program had an Intel® Core™ i5-

3230M CPU @ 2.60GHz. The computer’s RAM was 8GHz. The GPU used was 

NVIDIA GeForce GT 635M which has 90 cores @ 675 MHz and with 2048 MB of 

memory. 

 

3.9. Software Used 

 

The Integrated Development Environment (IDE) used to write the programs was 

Visual Studio 2012. The CPU side code was written using C++. And the GPU side code 

was written using OpenCL.  



  

88 
   

CHAPTER 4 

RESULTS  

  

4.1. Formulation of the Sanitization IP problem 

  

As discussed in section 3.1, we have come up with a new IP based sanitization 

algorithm whose solution is used for sanitization of datasets. Before we try to solve the 

formulated IP problem and use its solution to sanitize datasets, it was important to first 

verify whether the IP problem formulated by the program we wrote matches with our 

proposed sanitization IP problem shown in section 3.1.6. So, different small sample 

datasets with their corresponding frequent itemsets and sensitive itemsets were given to 

the part of our program that formulates the sanitization IP problem and this formulation 

was compared with the IP formulation that can be obtained manually by using the input 

datasets, frequent itemsets, sensitive itemsets and using the equations in section 3.1.6. 

Here for demonstration purposes we will  use a sample dataset of only 3 transactions 

and 3 items and show that the sanitization IP problem that was formulated by our 

program is as expected and as can be manually derived using the equations in section 

3.1.6. 

First, the following dataset was given as input to an implementation of the 

Apriori algorithm to determine the non-singleton frequent itemsets. 

 

  

Figure 4.1. A dataset to verify the IP formulation 

 

When the above data set was mined using a minimum support threshold ( ) of 

2, the following frequent itemsets were found and they were then fed as input to the IP 

formulator together with the input dataset. 
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Figure 4.2. Frequent itemsets                       Figure 4.3. Support of the frequent itemsets  

 

Out of the two frequent itemsets shown above, the first itemset i.e. {1,2} was 

chosen as sensitive. 

So, from the above inputs, we had 

 number of transactions in the dataset(n) = 3; 

 number of unique items in the dataset(m) = 3; 

 number of sensitive itemsets(o) = 1; 

 number of non-sensitive itemsets(p) = 1; 

 The sum of the support of sensitive itemsets(sensSupSum) = 2; 

 The sum of the support of the non-sensitive itemsets(nonSensSupSum) = 2; 

Then, when our sanitization IP problem of section 3.1.6 is formulated by our 

program using the above inputs, the sanitization IP problem that is obtained looked as 

shown in the Figure 4.4.  The IP problem had 34 variables and 20 constraints which was 

as expected and which was verified by manually formulating the IP problem using the 

equations in section 3.1.6 and comparing it with the above IP problem.  

The 34 variables in the figure represent the different variables found in the IP 

problem of section 3.1.6. Note that in the sanitization IP problem of section 3.1.6, the 

variables of the sanitization IP problem are composed of (n*m) number of xij variables, 

and similarly (n*p) zir, (p) Ur, (p) Rr, (o) s1k, (sensSupSum) s2ik, (p) s3r, 

(nonSensSupSumn*p) s4ir, (p) s5r and (n*m) number of s6ij variables. So, the 34 

variables shown in Figure 4.4 represent (3*3) number of xij variables, and similarly 

(3*1) zir, (1) Ur, (1) Rr, (1) s1k, (2) s2ik, (1) s3r, (2) s4ir, (1) s5r and (3*3) number of 

s6ij variables.  
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Figure 4.4. The formulated IP problem for sanitization of the dataset 

 

By referring to the equations in the sanitization IP problem of  section 3.1.6 we can see 

that, o number of constraints come from equation (3.9), and similarly sensSupSum 

constraints from (3.10),  p from (3.11), nonSensSupSum  from (3.12),  p  from (3.x), 

(n*m)  from (3.14),  (n*p) from (3.15) and p constraints from equation (3.16). So, out of 

the 20 constraints in the figure above, 1 constraints comes from equation (3.9) and 

similarly 2 constraints from (3.10),  1 from (3.11), 2  from (3.12),  1  from (3.13), 

(3*3=9)  from (3.14),  (3*1=3) from (3.15) and 1 constraints from equation (3.16). 

Also note that although we demonstrated the working of the sanitization IP 

formulation using a small IP problem of 34 variables and 20 constraints, its correctness 

was also verified for IP problems of over 2000 variables and over 1000 constraints 

because sanitizations done using such large sanitization IP problems were also observed 

to remove the sensitive item sets successfully. 

 

4.2. Solving of Linear Programming (LP) Problems 

 

As discussed in section 3, the algorithm that was used for solving the formulated 

sanitization IP problems was the branch and bound algorithm. And in order to compute 

bounds in the branch and bound algorithm the revised simplex algorithm was used, 

since bounds are obtained by solving Linear Programming (LP) problems (see section 

2.7.2 for more information about the simplex method).So, our implementation of the 

revised simplex algorithm was tested with different sample LP problems to verify if it 
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solves LP problems correctly. For example, we will show below the result obtained 

when solving a sample Linear Programming problem using our implementation of the 

revised simplex method. 

The standard form of the following Linear Programming problem was given to 

our implementation of revised simplex algorithm. 

min 2𝑥1 − 3𝑥2 

s.t.  𝑥2  ≤ 1 

𝑥1 +  𝑥2  ≤ 2 

−0.5𝑥1 +  𝑥2  ≥ 8 

−𝑥1 +  𝑥2  ≥ 6 

And the solution that was obtained is shown in the figure below 

 

 

Figure 4.5. Screenshot of the solution obtained when solving the LP problem 

 

, where x1 = 4, x2 = 10 with an objective function value of -22.  x3, x4, x5 and x6 were 

slack and surplus variables which were used to convert the inequalities in the constraints 

of the LP problem to equalities. We can verify that any other combination of x1 and x2 

values won’t give solution with lesser objective function value while meeting all the 

four constraints. 

But note that the above LP problem was only used for demonstration purposes 

and it wasn’t the only one which was used to verify the correctness of our 

implementation of the revised simplex method. For instance, linear Programming 

problems containing over 2000 variables and 1000 constraints were also correctly 

solved by our implementation. The verifications were done by comparing the result of 

our implementation with the result of open source linear programming solver libraries 

like lpsolve (http://sourceforge.net/projects/lpsolve/). 

One may ask why didn’t use already existing libraries like lpsolve in our 

implementation. This is because in our project we use two platforms: CPU and GPU 

depending on the size of the problem (i.e. depending on the number of active nodes in 

the branch and bound tree). While it is possible to use already available libraries when 

http://sourceforge.net/projects/lpsolve/
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the program runs on CPU, it is not possible to use similar libraries when the program 

runs on GPU. This is because the OpenCL library which was used to write programs for 

the GPU doesn’t support the use of libraries, which need dlls(dynamically linked 

libraries). 

 

4.3. Solving of Integer Programming (IP) Problems 

 

In order to solve the sanitization IP problems that were formulated the algorithm 

that was used was the branch and bound algorithm. Like the revised simplex algorithm, 

our implementation of the branch and bound algorithm was also tested with different 

sample IP problems to verify if it solves IP problems correctly. For example, we will 

show below the result obtained when solving a sample Integer Programming problem 

using our implementation of the branch and bound method which in turn uses the 

revised simplex method to compute bounds. 

The standard form of the following Integer Programming problem was given to 

our implementation of the branch and bound method. 

min z = 2x1 − 3x2  

s.t.  −10x1 + 2x2  ≤ 5 

3x1 + 2x2 ≤ 9 

        x1, x2  ≥ 0 , x1, x2 ∈ N 

And the solution that was obtained is shown in the figure below 

 

 

Figure 4.6. Screenshot of the solution obtained when solving the IP problem 

 

, where x1 = 1, x2 = 3 with an objective function value of -7.  x3 and x4 were slack 

variables which were used to convert the inequalities in the constraints of the IP 

problem to equalities. We can verify that any other integral combination of x1 and x2 

values won’t give solution with lesser objective function value while meeting all the 

two constraints. 
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Like in the LP case, while there are Open Source libraries that can solve IP 

problems, we can’t use such libraries in our project because our program not only runs 

on CPU but it also runs on GPU. And the OpenCL library which we used to write our 

GPU code doesn’t support the incorporation of external libraries because every code 

that is written for the GPU is required to be compiled in order to run on the GPU which 

is not possible for libraries. 

 

4.4. Sanitization of Datasets 

 

The result of experiments done on different sample datasets using our proposed 

sanitization algorithm show that it is possible to remove sensitive item-sets from input 

datasets with minimal impact on non-sensitive item-sets. Since our proposed 

sanitization algorithm is an exact algorithm (Integer Programming based) its 

sanitization output is always guaranteed to remove all sensitive item sets while also 

meeting constraints that ensure minimal impact on the non-sensitive itemsets. 

For instance, the results of sanitization of two sample datasets using our 

proposed sanitization algorithm are shown in the following two experiments and the 

observations from the experiments are also discussed. 

 

4.4.1. Experiment 1 

 

Sanitization Inputs 

In this experiment, the dataset used was a sample dataset with 5 transactions and 

4 unique items. This dataset is shown in the figure below both in market-basket-format 

and binary format. 

 

               or              

Figure 4.7. Sample dataset called small2 
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When the above dataset was mined using the implementation of the Apriori 

algorithm using a minimum support threshold ( ) of 2, the following non-singleton 

frequent itemsets were obtained. 

 

        

Figure 4.8. Frequent itemsets in small2              Figure 4.9. Support of the frequent 

itemsets 

  

In this experiment, out of the four frequent itemsets shown above, the itemset 

{1, 3} which is found at row 2 of  figure 4.8  was chosen as sensitive. 

 

Sanitization Outputs 

A sanitization IP problem was then formulated by our sanitization program 

according to the equations shown in section 3.1.6. The formulated IP problem had 99 

variables (including slack or surplus variables) and 58 constraints. This IP problem was 

then solved by our program using a branch and bound algorithm and its solution gave a 

5x4 matrix of xij values, which were then used to determine which items of the input 

dataset should be removed to sanitize the input dataset. The 5x4 matrix of xij values 

obtained by the solution of the formulated IP problem indicated that the items shown 

underlined in the figure below had to be removed in order to sanitize the input dataset.  

 

 

Figure 4.10. Items identified for removal to sanitize small2 

  

The sanitized dataset obtained by removing the above underlined items from the 

input dataset is shown in Figure 4.11 both in market-basket format and binary 
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format.And When the sanitized dataset was mined using the implementation of the 

Apriori algorithm and using the same minimum support threshold ( ) of 2, the non-

singleton frequent itemsets  shown in Figure 4.12 were obtained. 

 

or      

Figure 4.11. The sanitized version of small2 

 

 

Figure 4.12. Frequent itemsets in the sanitized version of small2 

 

In conclusion, we can observe from Experiment 1 that the chosen sensitive 

itemset {1, 3} was successfully hidden from the sanitized dataset. I.e. the sensitive 

itemset was not frequent when the sanitized dataset was mined at the same minimum 

support threshold ( ) of 2.  Moreover, the sanitized dataset was obtained from the 

input dataset while the following side-effects of sanitization were kept minimal (see 

section 3.1) i) number of items removed from the input dataset ii) the number of non-

sensitive itemsets removed from transactions, and iii) the number of non-sensitive 

itemsets that were made infrequent. 

The following table summarizes the performance of the implementation of the 

proposed sanitization algorithm for the inputs used in Experiment 1. 
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Table 4.1. Performance of our sanitization algorithm for Experiment 1 

Sensitive Itemsets Not Removed None 

Number of items removed during 

sanitization 

2 which accounts for 15.4% of all items 

found in the original transactions. 

Number of transactions affected by 

sanitization 

2 which accounts for 40% of the 

transactions 

Number of non-sesnsitive itemsets hidden 

as side effect 

1   which account for 33.3% of the non-

sensitive itemsets. 

Sanitization time(in milli seconds) 18 with lpsolve library 

  

 

Figure 4.13. Performance of our sanitization algorithm for Experiment 1 
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4.4.2. Experiment 2 

 

Sanitization Inputs 

In this experiment, the dataset used was a randomly generated sample dataset 

with 100 transactions and 20 unique items. This dataset is shown in the figure below in 

market-basket-format. 

 

3 5 7 8 9 11 14 15 16 17 19 20 

1 2 4 5 6 7 11 12 13 14 15 16 20 

1 7 13 17 19 20 

1 2 3 4 8 9 11 13 14 15 18 19 20 

2 4 6 9 11 13 14 15 16 17 19 20 

1 4 5 6 7 13 14 15 17 18 

3 6 8 9 10 11 13 15 20 

1 2 3 6 8 9 10 11 12 13 15 17 18 

1 4 5 7 8 10 12 16 

3 4 6 7 10 11 12 13 15 18 19 

3 6 7 9 12 14 15 16 

1 4 5 6 7 9 10 13 14 17 18 19 

4 5 6 12 16 17 18 19 20 

2 3 7 8 11 12 14 15 16 19 20 

1 4 5 6 7 8 9 10 11 12 14 16 17 

6 7 9 10 11 15 16 17 18 

1 6 7 8 9 11 12 13 19 

1 2 3 4 5 10 11 13 14 16 

1 3 4 7 8 9 10 11 15 17 19 

1 2 6 7 9 11 13 17 

1 4 5 7 8 9 12 13 14 15 17 19 20 

3 5 8 11 12 13 14 16 18 19 

1 5 6 7 8 10  

2 3 6 10 13 14 15 18 

1 2 7 9 13 15 18 20 

1 9 10 12 13 15 16 17 20 

1 2 5 10 11 14 15 19 20 

2 6 7 8 9 11 12 13 14 15 17 18 19 20 

2 6 9 12 15 16 17 20 

1 2 5 6 7 8 9 10 13 14 15 16 18 20 

1 2 3 4 6 7 8 10 11 13 14 16 17 18 

1 5 8 12 13 17 18 19 20 

1 3 4 5 8 9 12 14 15 19 20  

 

Figure 4.14. A sample dataset for experiment 2 

       (cont. on next page) 
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3 5 9 11 13 14 16 17 18 19 

3 5 7 11 13 16 19 20 

2 3 5 6 8 14 15 16 17 19 

5 6 7 8 9 10 12 15 17 

4 6 7 13 17 18 19 

3 6 7 8 9 11 12 15 18 

1 2 3 4 6 7 9 11 14 16 18 20 

3 4 5 6 8 10 11 13 16 17 18 19 20 

4 5 13 16 

2 4 6 7 8 10 11 12 13 18 19 

2 3 4 7 9 12 17 18 

4 5 9 11 14 17 20 

1 3 4 6 9 11 12 14 15 17 19 20 

3 4 6 7 8 10 12 13 14 15 16 

2 3 9 12 13 14 16 18 19 

3 7 9 10 12 13 16 17 18 20 

2 4 6 8 11 16 17 19 20 

1 4 6 8 14 16 18 19 20 

1 2 7 9 10 13 14 16 18 

2 4 5 7 9 12 14 16 18 20 

1 3 7 8 9 10 11 13 17 20 

2 3 8 10 11 12 13 16 17 19 

1 5 7 10 11 13 15 

1 2 5 8 10 12 15 16 17 18 20 

1 2 3 6 7 9 10 12 13 14 15 17 18 

7 11 15 19 

1 7 12 13 15 16 20 

2 3 4 6 10 11 14 17 19 20 

2 4 5 6 7 9 12 15 16 20 

1 3 4 7 10 13 15 16 17 18 20 

1 5 7 9 10 14 15 17 18 19 20 

2 5 6 9 10 11 14 16 

1 3 4 5 8 9 10 11 14 15 18 19 

1 2 3 4 5 6 7 8 9 11 13 16 18 

2 3 4 5 6 12 14 15 16 17 18 

1 3 4 5 6 9 10 12 15 19 20 

2 4 5 7 8 9 10 13 14 18 19 

2 4 7 9 10 14 15 17 19 

2 3 4 6 7 9 10 11 12 14 17 18 

1 4 6 7 8 9 10 11 12 13 20 

3 4 5 9 10 11 13 16 17 18 19 20 

2 3 4 6 8 10 11 12 18 19 20 

1 2 5 7 12 13 14 16 20 

2 3 5 6 10 11 12 13 15 18 20 

1 2 4 5 6 7 8 12 15 16 19 20 

1 3 5 6 8 10 11 13 14 15 19 

1 2 3 5 7 9 11 13 15 16 17 19 20 

Figure 4.14. (cont) 
 

      (cont. on next page) 
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    1 2 6 8 10 11 12 13 14 15 16 18 20 

2 3 4 8 13 14 15 16 17 18 

2 3 5 6 7 13 14 15 17 19 

1 4 7 8 9 10 11 13 15 16 17 20 

1 2 3 4 8 9 10 11 12 15 16 17 19 20 

3 6 8 10 11 12 14 15 16 17 18 

1 2 3 5 7 10 11 12 18 20 

1 2 3 5 6 7 9 10 11 12 14 15 17 19 20 

1 2 4 5 6 9 10 11 12 13 14 16 17 18 

1 2 4 6 9 10 11 14 15 19 

1 2 3 5 7 8 9 10 12 13 14 15 17 19 

1 2 5 9 10 11 12 14 15 17 18 

3 4 9 10 14 16 17 18 

3 4 5 13 14 16 18 

1 3 4 6 8 9 10 11 13 14 17 

4 5 7 13 15 16 17 19 20 

1 5 6 8 9 10 11 15 16 19 

3 4 6 7 9 16 

1 4 9 11 13 14 16 17 

2 3 5 6 10 15 16 17 18 

Figure 4.14. (cont) 

 
When the above dataset was mined using the implementation of the Apriori 

algorithm using a minimum support threshold ( ) of 30, the following 26 non-

singleton frequent itemsets were obtained 

 

6 11 

7 13 

6 10 

10 15 

3 10 

9 17 

1 15 

1 13 

11 13 

14 15 

9 14 

9 10 

7 9 

1 9 

Figure 4.15. The frequent itemsets in the dataset of experiment 2 

 (cont. on next page) 
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3 11 

2 14 

6 15 

10 11 

1 11 

7 15 

15 17 

1 10 

9 15 

1 7 

9 11 

10 17 

                             Figure 4.15. (cont.) 

 
In this experiment, out of the four frequent itemsets shown above, the itemset 

{6, 11},{14 15},{7,15}  which are found at rows 1,10 and 20 of figure 4.15  were 

chosen as sensitive. 

 

Sanitization Outputs 

A sanitization IP problem was then formulated by our sanitization program 

according to the equations shown in section 3.1.6. The formulated IP problem had 9538 

variables (including slack or surplus variables) and 5192 constraints. This IP problem 

was then solved by our program using a branch and bound algorithm and its solution 

gave a 100x20 matrix of xij values, which were then used to determine which items of 

the input dataset should be removed to sanitize the input dataset. Once the sanitized 

dataset is obtained, it was mined again to determine its frequent itemsets and to check 

whether the sensitive itemsets were hidden and the following 23 frequent itemsets were 

obtained by mining the sanitized dataset where none of the 3 sensitive itemses were 

freuqent. 

7 13 

6 10 

10 15 

3 10 

9 17 

1 15 

1 13 

Figure 4.16. The frequent itemsets in the sanitized version of the dataset of experiment2 

                 (cont. on next page) 
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11 13 

 9 14 

 9 10 

7 9 

1 9 

3 11 

2 14 

6 15 

10 11 

1 11 

15 17 

1 10 

9 15 

1 7 

9 11 

10 17  

                                Figure 4.16. (cont.) 

 

Table 4.2 and Figure 4.17 summarize the performance of the implementation of 

the proposed sanitization algorithm for the inputs used in Experiment 1. 

 

Table 4.2.Performance of our sanitization algorithm for Experiment 1 

Sensitive Itemsets Not Removed None 

Number of items removed during sanitization 4  

Number of transactions affected by sanitization 4 

Number of non-sesnsitive itemsets hidden as side 

effect 

0 

Sanitization time(in milli seconds) 4340 with lpsolve library 
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Figure 4.17. Performance of our sanitization algorithm for Experiment 2 

 

Comparing the output of experiment 2 with the outputs of experiment 1 may 

suggest that as the sanitization problem (the inputs datasets) gets larger the performance 

of our sanitization algorithm increases in terms of accuracy but this has to be confirmed 

by carrying out experiments with even larger datasets. 

 

4.5. Implementation on a CPU-GPU platform 

 

Writing a code that only runs on CPU differs from writing code that runs on 

both CPU and GPU and which works by switching platforms depending on the problem 

size. While the experiments and results shown before in sections 4.1 through 4.4 were 

done using a program that was optimized for a CPU platform by using dynamic 

memory allocation and sparse matrices, it is difficult to create such efficient program for 

a program that will run on both CPU and GPU platforms. This is because in order to 

represent IP problems we use a c structure and the way this structure is written must be 

the same on both the CPU and the GPU codes of the program, when we use OpenCL to 

write codes for GPU. Unfortunately, we can’t use c structures whose array members’ 

sizes vary dynamically in the GPU code while this is possible on the CPU code [38]. 

Thus we are forced not to use arrays with varying sizes  as member of structures in the 

CPU  in order to make the CPU structure the same as the GPU’s , which means the 
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GPU becomes a bottleneck in the way we write the c-structure for representing an IP 

problem.   

Here we will compare the performances that are obtained when doing all the 

computations on CPU, on GPU and on the combination of CPU and GPU using the 

versions of our codes that don’t use sparse matrix representations in accordance to the 

limitation that the GPU creates as discussed above. The sanitization inputs used for all 

the three cases are as shown below. 

 

Common Sanitization Inputs for the Three Cases 

 

                                               

Figure 4.18. A sample dataset used to compare the performance of Implementation of 

the sanitization algorithm on different platforms(CPU,GPU,CPU-GPU) 

called small 

 

    

Figure 4.19. Frequent itemsets in small       Figure 4.20. Support of the frequent itemsets  

 

Where {1,3} was chosen as sensitive itemset. 

 

Sanitization Ouptus 

 

The CPU case 

The following outputs were obtained when doing all the computations on CPU. 
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Figure 4.21. Screen shot of command window while trying sanitize sanitize the dataset  

                     shown above using CPU only 

 

 

Figure 4.22. The item identified for removal by our sanitization algorithm 

 

            

Figure 4.23. The sanitized version of the dataset 
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  Figure 4.24. Frequent itmestes in the sanitized version of ‘small’ dataset 

 

Table 4.3. Performance of the implementation of the sanitization algorithm using CPU  

platform only 

Sensitive Itemsets Not Removed None 

Number of items removed during 

sanitization 

1 which accounts for 9.1% of all items 

found in the original transactions. 

Number of transactions affected by 

sanitization 

1 which accounts for 20% of the 

transactions 

Number of non-sesnsitive itemsets 

hidden as side effect 

1   which account for 33.3% of the non-

sensitive itemsets. 

Sanitization time(in milli seconds) 60659 with our cpu-gpu code, with no 

sparse matrix representation 

 

 

The GPU-case 

The same outputs as the CPU case were obtained when doing all the 

computations on GPU as shown below with the exception of the running time. 



  

106 
   

 

Figure 4.25. Screen shot of the command window during sanitization of the dataset 

using GPU only 

 

Table 4.4. Performance of the implementation of the sanitization algorithm using GPU 

platform only 

Sensitive Itemsets Not Removed None 

Number of items removed during 

sanitization 

1 which accounts for 9.1% of all items 

found in the original transactions. 

Number of transactions affected by 

sanitization 

1 which accounts for 20% of the 

transactions 

Number of non-sesnsitive itemsets 

hidden as side effect 

1   which account for 33.3% of the non-

sensitive itemsets. 

Sanitization time(in milli seconds) 80343 with our cpu-gpu code, with no 

sparse matrix representation 
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The CPU-GPU Case 

And again the same outputs were obtained as in the CPU and GPU cases with 

the exception of the running time when doing the computations on CPU-GPU platform 

using a Threshold of 5 which makes computations to be done on CPU when the number 

of active nodes in the priority queue is below 5 and computations to be done on GPU 

when the number of active nodes in the priority queue is at least 5. The use of a CPU-

GPU platform showed a remarkable speedup over the corresponding computations done 

using CPU and GPU alone. 

 

 

Figure 4.26. Screen shot of the command window during sanitization of the dataset 

using  CPU-GPU platoform 
 

  



  

108 
   

Table 4.5. Performance of the implementation of the sanitization algorithm using CPU- 

                 GPU platform combination 

Sensitive Itemsets Not Removed None 

Number of items removed during 

sanitization 

1  

Number of transactions affected by 

sanitization 

1  

Number of non-sesnsitive itemsets hidden 

as side effect 

1   which account for 33.3% of the 

non-sensitive itemsets. 

Sanitization time(in milli seconds) 18988 with our cpu-gpu code, with no 

sparse matrix representation 

  

The following figure summarizes the running times that were required by using 

different platforms (i.e. cpu only, gpu only and cpu-gpu combination) when sanitizing a 

sample dataset whose sanitization IP problem contains 95 variables and 54 constraints. 

 

 

Figure 4.27. Performance comparison of implementing the sanitization algorithm on  

                     different platforms using the same sample dataset 
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CHAPTER 5 

DISCUSSION AND CONCLUSION 

   

The goal of our thesis was coming up with a new integer programming based 

itemset hiding algorithm and parallelization of its implementation with the use of GPU 

since solving of integer programming problems is NP hard. The algorithm that we 

proposed is exact which means it removes all sensitive itemsets with the least impact on 

the non-sensitive itemsets. The correctness of its outputs was verified by using it to 

sanitize some sample datasets. 

Since sanitization using our approach requires solving of an integer 

programming (IP) problem, the branch and bound method was used to solve a 

sanitization IP problem. The performance of the branch and bound method largely 

depends on how efficiently the bound is computed since it involves large number of 

bound computations. The algorithm that we used for bound computation was the revised 

simplex algorithm. 

Since solving of IP problems is NP hard, we proposed a CPU-GPU architecture 

to parallelize solving of the sanitization integer programming problem. The codes on the 

CPU side were written in c++ using visual studio IDE while the codes on the GPU side 

were writing using OpenCL. The platforms used were a computer with 8GHz of 

memory and with Intel® Core™ i5-3230M CPU @ 2.60GHz. The GPU used was 

NVIDIA GeForce GT 635M which has 90 cores @ 675 MHz and with 2048 MB of 

memory 

In the CPU-GPU architecture, when the number of active nodes in the branch 

and bound tree exceeds a certain threshold, several nodes are transferred to the GPU to 

perform branching on them and then bound computation on their children. And when 

the number of active nodes in the branch and bound tree is below the specified 

threshold, computations are done on CPU since the speed up that could be obtained by 

using GPU will be offset by the time it takes to transfer nodes between CPU and GPU. 

Implementation of our sanitization algorithm on a CPU-GPU platform shows that the 

CPU-GPU architecture provides speedup over using CPU or GPU alone. 
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Limitations and Future Work 

At the time of working on this thesis there was no dynamic memory allocation 

support in OpenCL which prevented us from using sparse matrix representations [38]. 

And without sparse matrix representations computations will be slow and the GPU’s 

memory will quickly get full and the program will run out of memory. This limitation 

can be eliminated if support for dynamic memory allocation (like malloc of c) is 

incorporated in future releases of OpenCL. In an article published on March 2014, the 

authors of [38] have designed a memory manager called KMA that provides generic 

malloc() and free()  APIs. So, this limitation will probably be overcome in the near 

future by using such APIs. 

While our implementation of the proposed sanitization algorithm shows that it 

can successfully remove sensitive itemsets while meeting all constraints specified in the 

proposed IP based sanitization algorithm, our implementation of an integer 

programming problem solver was found to be not as fast as open source 

implementations. Our investigation of why this difference aroused showed that we need 

to use a number of tricks to speed up the revised simplex algorithm that is used for 

bound computations. One technique we used to speed up our implementation was the 

use of sparse representation for large matrices and this resulted in a significant speedup. 

Other techniques that can be used to speed up our implementation are suggested below. 

Since degeneracy (see section 2.7.2.7) was observed to frequently occur in the 

linear programming problems that are solved by the simplex method during bound 

computations, we tried applying Charnes perturbation method to reduce the effect of 

degeneracy in the simplex method[16]. But, it didn’t result in performance improvement 

as expected. So, if other degeneracy handling algorithms are used, a better speed up of 

the simplex method might be obtained. In addition, the following technique that can 

speed up the simplex method was found from our literature review. Since the 

implementation of the revised simplex method involves LU factorization of the basis 

AB and its transpose AB’ after each iteration when solving for AB ∗ u = CB and AB′ ∗

aBar = ANpivotColumnIndex as shown in Table 3.13, it would be time consuming if the 

LU factorization of AB and AB’ is done after each iteration. Thus, updating of the basis 

AB and its transpose after each iteration rather re-factorizing them can increase the 

performance of simplex implementation. So, in the future the Bartels-Golub-Reid 

update [39] or similar basis update techniques can be tried to speed up the 

implementation of the revised simplex method. 
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