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ABSTRACT

POINT INTERACTIONS IN QUANTUM MECHANICS

In this thesis, the point interactions in quantum mechanics in the context of renormal-

ization are reviewed. Some spectral properties for special configuration of the centers of point

interactions are given in detail. Also, the isotropic harmonic oscillator with point interaction

in one dimension and in two dimensions are discussed shortly.
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ÖZET

KUANTUM MEKANİǦİNDE NOKTA ETKİLEŞİMLER

Bu tezde, renormalizasyon çerçevesi içerisinde kuantum mekaniğindeki noktasal etki-

leşimler gözden geçirilmiştir. Noktasal etkileşimlerin merkezlerinin özel konfigürasyonları

için, bazı spektral özellikleri detaylı biçimde verilmiştir. Ayrıca, bir ve iki boyuttaki noktasal

etkileşim içeren izotropik harmonik salınıcı kısaca tartışılmıştır.
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CHAPTER 1

INTRODUCTION

In this thesis, we present an elementary study of point interactions in quantum mechan-

ics (especially in two dimensions) from a non-perturbative renormalization point of view. The

point interactions are formally described by the following Schrödinger operator with potential

energy term (delta function) supported on discrete set of points (sometimes called centers)

− ~2

2m
4−

N∑
i=1

λiδ
(D)(x− ai) , (1.1)

where 4 is the self-adjoint Laplacian in L2(RD) and D = 1, 2, 3 is the dimension of the

underlying space, λi’s are called the coupling constant or strength of the potential (assumed

to be positive throughout the thesis unless otherwise stated), δ(D)(x − ai) is the Dirac delta

function centered at ai (δai
(.) is another notation which is also commonly used). Such point

interactions are considered to represent many physical systems quantitatively if the de-Broglie

wavelength of the particle is much larger than the range of the potential. The studies on the

applications of the above model Hamiltonian or its various modifications are well-known

in wide range of areas of physics from atomic physics, to molecular physics and nuclear

physics (Demkov & Ostrovskii, 1988) (Uncu, 2007) (Cacciapuoti, 2005). One of the most

well-known example to such models is Kronig-Penney model in solid state physics (Kronig

& Penney, 1931) (Kittel, 2005). It is essentially based on a Hamiltonian with infinitely

many periodic point interactions in one dimension, which describes a non-relativistic electron

moving in a fixed crystal lattice. What makes this model very interesting is the fact that it

explains the energy band structure of solids very well and it is exactly solvable.

The higher-dimensional extensions were first studied by Bethe and Peierls (Bethe &

Peierls, 1935) and separately by Thomas (Thomas, 1935) to describe the interaction between

proton and neutron in the nucleus by a zero range potential in three dimensions. Bethe and

Peierls gave a boundary condition on the wave function which corresponds to delta potential in

three dimensions. But it was Thomas who realized the necessity of the renormalization of the

coupling constant and he approximated the Hamiltonian (1.1) by short range scaled potentials.

Then, starting from 1930’s these two works and Fermi’s work which describes the motion of

neutrons in hydrogenous substances (Fermi, 1962) in nuclear physics stimulated tremendous

developments in this field and the extension of the many-body versions of the model started
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to develop in 1950’s. An extensive discussion on the historical development and its various

applications of the subject with a long list of references is given in the introduction to the

monograph (Albeverio & Gesztesy & Høegh-Krohn & Holden & Exner, 1988).

The generalization of Kronig-Penney model into two and three dimensions is also

possible and studied in (Maleev, 1966) (Berezin, 1986) after the above developments.

Let us first explain why the above model Hamiltonian is problematic from the physical

point of view in two dimensions by using a simple scaling argument. For simplicity, we

consider only one center and choose its center as the origin. Then, the time-independent

Schrödinger equation for the above Hamiltonian reads

− ~2

2m
4ψ(x)− λδ(2)(x)ψ(x) = Eψ(x) , (1.2)

where E = −ν2 for bound states (ν > 0). One can show that under the formal scaling

transformation x → ηx by some positive constant η, that the left hand side is scaled by

a factor 1/η2 and using the scaling properties of delta functions and wave function in two

dimensions (from the normalization). This give rises to the conclusion that we have formally

the same Schrödinger equation except for the bound state energy is scaled by a factor η2.

However, if you suppose that there exists a ground state with energy −ν2
gr, there should also

exist another ground state energy −η2ν2
gr. Since the scaling parameter η is arbitrary, the

bound state energy can be lowered as much as we like, which essentially says that the ground

state is unbounded from below, i.e., Egr → −∞. This is completely unacceptable from

physical point of view. Though one dimensional problem is completely well understood, the

two-dimensional problem becomes ill-defined in this perspective. Actually, the problem still

exists in higher dimensions as well although the nature of the problem is quite different from

its two-dimensional counterpart. In higher dimensions, if the potential term is more singular

than the kinetic term, the Hamiltonian is not self-adjoint any more and ill-defined so the formal

Hamiltonian has to be modified to make it meaningful since dynamics in quantum mechanics

is generated by the self-adjoint Hamiltonian. Therefore, point interactions in more than one

dimension that are as singular as kinetic term or more singular than that in higher dimensions

leads to infinite expressions as we shall see in the thesis. In order to be able to cure the above-

mentioned problem, one may consult the resolution of a similar problem appeared in quantum

field theory, namely renormalization.

First step to cure the above trouble is to smooth out the singularity at short distances

by assuming that the the form of the potential is only valid down to a scale which we can

not access physically. That scale is called cut-off. This part of the procedure is known as

regularization. Then we have to deduce the physics of the problem in shorter distances by

2



assuming the every physical quantity is finite or make sense from some experimentally mea-

sured quantity (e.g., bound state energy or phase shift in the scattering process). Once we have

the experimentally measured result and the long distance behavior of the problem, the short

distance behavior (or equivalently high energy behavior) can be predicted uniquely, which

makes the renormalization procedure remarkable (For example, the magnetic dipole moment

of the electron calculated from the renormalization procedure in quantum electrodynamics

confirmed the experimental result within 14 significant digits!, see (Kraus & Griffiths, 1992)

for a rather pedagogical introduction to renormalization in quantum field theory).

There are various works on the renormalization of point interactions in physics liter-

ature from the several points of view. In (Gosdzinsky & Tarrach, 1991) (Manuel & Tar-

rach, 1994) (Mead & Godines, 1991) (Perez & Coutinho, 1991), different regularization

schemes is performed in coordinate space or in momentum space (Thorn, 1979) (Huang,

1982) (Jackiw, 1991) (Philips & Beane & Cohen, 1998) (Mitra & DasGupta & Dutta-

Roy, 1998) (Henderson & Rajeev, 1998) (Nyeo, 2000) (Adhikari & Frederico, 1995). The

path integral approach of the two-dimensional case has been also discussed in (Camblong

& Ordóñez, 2002). Moreover, the two-dimensional delta potentials is an explicit example

of the dimensional transmutation and quantum mechanical symmetry breaking or anomaly.

The renormalization inserts a scale into the problem by hand (by experimentally measured

quantity), thus breaking the formal scale invariance of the Hamiltonian at the outset. This

phenomenon is known as anomaly in quantum mechanics or quantum mechanical symmetry

breaking (Holstein, 1993,J) and is an example of dimensional transmutation (Thorn, 1979)

(Huang, 1982) (Coleman & Weinberg, 1973) (Camblong & Epele & Fanchiotti & Canal,

2001) (Camblong & Epele & Fanchiotti & Canal, 2001). It occurs when a dimensionless

quantity (e.g.,coupling constant) is traded in for a quantity with a dimensional parameter (e.g.,

the experimentally measured bound state energy). A rather elementary problem in quantum

mechanics provides an explicit example for several quantum field theoretical concepts such

as regularization, renormalization, dimensional transmutation, quantum anomaly, exact non-

perturbative solutions to renormalization group equations, etc. Therefore, working out the

details of point interactions in quantum mechanics may help us to understand better the awk-

ward renormalization procedure in a more elementary context rather than field theory, hoping

to put the formalism in a mathematically rigorous setting. An another important-aspect of

point interactions is that they can be exactly solvable, that is, the resolvent can be explicitly

calculated in terms of the location and the strength of the centers (Albeverio & Gesztesy &

Høegh-Krohn & Holden & Exner, 1988).

If we go back to the historical development for the point interactions, there were an

another direction for their treatment in the rigorous mathematical setting, which was first stud-

ied by Berezin and Faddeev (Berezin & Faddeev, 1961) for three-dimensional case. In this
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approach, the Hamiltonian which represents heuristic expression (1.1) is rigorously defined

as a self-adjoint extension of Laplace operator in L2(R3) from the point of view of Krein’s

theory of self-adjoint extensions of symmetric operators (Albeverio & Kurasov, 2000), where

a relation between the resolvent of the different self-adjoint extensions of a given symmetric

operator is given. A detailed exposition of this subject from other points of view (in terms

of quadratic forms, nonstandard analysis, and Von Neumann’s approach to self-adjoint exten-

sions of symmetric operators) has been extensively discussed in the monograph (Albeverio

& Gesztesy & Høegh-Krohn & Holden & Exner, 1988). Actually, even in one dimension, the

Hamiltonian given in (1.1) is ill-defined since the expression δ(x− ai) is not even an operator

in L2(R). One proper way to define point interactions in one dimension rigorously is by con-

sidering the Hamiltonian as a perturbation of a self-adjoint Laplace operator by a quadratic

form. Then using the KLMN theorem, the meaning of − ~2

2m
4 − λiδ(x − ai) is established

(Reed & Simon, 1975). Dirac delta potential and the equivalent self-adjoint extension has

been discussed in the context of point particle dynamics in (2+1)-dimensional gravity (Ger-

bert & Jackiw, 1989) and in Chern-Simons gauge theory (Aharonov-Bohm/Ehrenberg-Siday

interaction) (Gerbert, 1989). There is yet another approach to give the expression (1.1) a well-

defined meaning by constructing the resolvent by suitable limits of the regularized resolvents

given by S.G. Rajeev (Rajeev, 1999).

S.G. Rajeev (Rajeev, 1999) developed a non-perturbative renormalization method of

point interactions which can also be applied to some simple field theories by hoping that these

ideas will work in more realistic situations and the cases where standard perturbative ap-

proaches do not work, such as in QCD. The basic idea in his work (Rajeev, 1999) is based on

finding a way for a finite expression of the resolvent in terms of a new operator, called princi-

pal operator Φ(E) (it is going to be a matrix or a function depending on the number of centers)

as a proper limit of the regularized resolvent of the regularized Hamiltonian given formally

at the beginning after the renormalization procedure. (At the end of this procedure the model

is free of divergences without any explicit expression of Hamiltonian despite the well-defined

resolvent expression.) Nevertheless, it is sufficient to know the resolvent because it contains

all the information about the spectrum. One advantage of this point of view is that there are

no subtleties in the definition of the domain of Hamiltonian as in the self-adjoint extension

method. Secondly, the renormalization is performed without actually solving the dynamics

of the problem as opposed to the standard perturbative treatment given in quantum field the-

ory. Once we have a finite expression of the principal matrix, the spectral information can

be obtained exactly or approximately. The complete information about the system is hidden

in the resolvent formula and the interaction is described by an explicit expression for Φ(E).

The eigenvalues of the bound state energies are given by the solutions to Φ(E)A = 0 and

the scattering amplitude is determined by the inverse of Φ(E). No matter how complicated
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the equation is, some approximation methods (variational principles, perturbation theory) can

be applied to the principal matrix. Actually, this formulation also admits an extension of the

model to Riemannian manifolds and even in this case, it has been proved that there exists a

densely-defined self-adjoint operator, say H , after the renormalization procedure even if we

do not know what the exact formal expression is (Dogan & Erman & Turgut, 2012).

In this thesis, we follow the Rajeev’s approach and study the point interactions from

a non-perturbative renormalization point of view without worrying about the issue of the do-

mains of the operator to find the self-adjoint extension of the free Hamiltonian. Instead of

constructing the self-adjoint extension, we are going to give an explicit expression of the re-

solvent (which corresponds to densely-defined self-adjoint Hamiltonian) after taking the suit-

able limit of the regularized resolvent associated to the given formal regularized Hamiltonian

by renormalizing the coupling constant.

We now give the content and the organization of this thesis as follows.

In Chapter 2, we first give the heuristic definition of the Dirac delta functions. Sec-

ondly, the theory of the distributions and the Fourier transform of the distributions are briefly

introduced. Lastly, the Dirac Calculus, which is very useful in our calculations, is given.

In Chapter 3, we summarize some basics notions in quantum mechanics that we need

in this thesis. Then we formally discuss one-dimensional time-independent Schrödinger equa-

tion with point interaction for bound states and scattering states by using Fourier transfor-

mation.The bound state solution for finitely many point δ-interactions are also investigated.

Two-center case is discussed in detail. Then, two-dimensional point interactions are formally

investigated by introducing the renormalization idea. We also discuss finitely many point in-

teractions in two dimensions and study the bound state spectrum. When the delta centers are

located at the vertices of a equilateral triangle and square, the bound state problem is also

analyzed and an explicit expression for the principal matrix is given.

In Chapter 4, we briefly introduce the notion of resolvent with the basic properties and

the related theorems. We find the resolvent of one-dimensional time-independent Schrödinger

equation with point interaction and find the resolvent kernel. So, we immediately have the

bound state energy and by using the Riesz integral representation, we find the corresponding

wave function. We apply this procedure to our system with point interaction and finitely

many point interactions for two-dimensional case (here we do renormalization again). We

find a lower bound for the ground state energy for finitely many Dirac delta centers in two

dimensions and show that the ground state wave function corresponding to this system is

positive and non-degenerate. We also prove that there exist at most N bound states for this

system.

In Chapter 5, we review the heat kernel in one dimension and two dimensions and

then we give the heat kernel eigenfunction expansion. In terms of this expansion, we find
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the heat kernel of the harmonic oscillator in one dimension. We solve one-dimensional time-

independent Schrödinger equation with point interaction and harmonic oscillator and examine

the spectrum case by case. We also discuss the two-dimensional version of this problem and

find the resolvent. A very short analysis of the bound state of the system is discussed.

Proofs of some theorems and formulas used in the thesis are explicitly given in Ap-

pendices.
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CHAPTER 2

DIRAC DELTA DISTRIBUTIONS

We shall first give a heuristic motivation to define Dirac delta functions and then

shortly introduce the theory of distributions.

2.1. Heuristic Way of Defining Dirac Delta Functions

Suppose that f(x) is a function defined on the real axis. We ask the following ques-

tion: Can we construct a kind of filter, say δ, such that it selects the value of the function at

any given point x0 (see Figure 2.1)? (Balakrishnan, 2003)

f HxLy =

x

y

�
∆

f Hx0Ly

xx0

Figure 2.1. δ filter

In order to answer this question, it is a good idea to start with the discrete analog of

the question. Suppose that we have a sequence {fj}∞j=1 rather than a function f(x). Then,

the above question becomes: Can we construct a kind of filter, say δ, such that it selects a
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particular member fi from the given sequence? If we define

δij =

1 if i = j ,

0 if i 6= j ,
(2.1)

then, it follows that

∞∑
j=1

δijfj = fi . (2.2)

Here the filter δij is called the Kronecker delta symbol. It has the following properties:

• The normalization property:

∞∑
j=1

δij = 1 , (2.3)

for each value of i.

• The symmetry property:

δij = δji . (2.4)

Now, we replace the discrete indices i, j by continuous variables x0, x and the summation

over j by an integral over x. The point x0 in the continuous problem is the analog of the index

i in the discrete problem. So, we are looking for a “function” δx0(x) such that

∫
R
δx0(x)f(x) dx = f(x0) , (2.5)

for a given continuous function f(x). The continuous analogs of the normalization and sym-

metry properties of Kronecker delta symbol must be

•
∫
R
δx0(x) dx = 1 . (2.6)
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and

• δx0(x) = δx(x0) . (2.7)

The above symbol δx0(x) is known as the Dirac delta function introduced by Dirac (Dirac,

1958), Kirchoff and Heaviside. (An another notation for Dirac delta function δx0(x) is also

widely used: δx0(x) = δ(x − x0).) The form of Eq. (2.5) looks like the kernel of an integral

operator and we can intuitively think that δx0(x) must almost vanish except at x0 to satisfy

(2.5). But this is not so obvious if δx0(x) is considered to be an ordinary function. The next

natural question is that how does the Dirac delta function defined above look like? Consider

a rectangular window function

W ε
x0

(x) =


1
2ε

if x0 − ε < x < x0 + ε ,

0 otherwise ,
(2.8)

which is shown in the red color in Figure 2.2. The integral of f(x) weighted with this window

function W ε
x0

(x), is simply

∫
R
W ε
x0

(x)f(x) dx =
1

2ε

∫ x0+ε

x0−ε
f(x) dx . (2.9)

Of course, this does not select f(x0) alone. But, it is going to do so as ε → 0 by using the

mean value theorem, namely

lim
ε→0

1

2ε
(2εf(ξ)) = f(x0) , (2.10)

where x0 − ε < ξ < x0 + ε. In this limit, the width of the window goes to zero and its height

becomes arbitrarily large, so as to catch all of the ordinate in the graph of f(x). Then, δx0(x)

is given by

δx0(x) =

limε→0

(
1
2ε

)
for x0 − ε < x < x0 + ε ,

0 otherwise .
(2.11)
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x0 - Ε x0 + Εx0

x

f HxL

1

2 Ε

f Hx0L

Figure 2.2. Window function

This is not a rigorous definition. If it is taken literally, then δx0(x) must be zero for

all x 6= x0 while it must be infinite at x = x0. The Dirac delta function is always to be

understood as something that only makes sense when it appears in an integral. Hence, the

Dirac delta function can be understood in the following way:

∫
R
δx0(x)f(x) dx = lim

ε→0

∫
R
W ε
x0

(x)f(x) dx = f(x0) , (2.12)

or

lim
n→∞

∫
R
W n
x0

(x)f(x) dx = f(x0) , (2.13)

for a continuous function f(x) and the sequence satisfies

∫
R
W n
x0

(x) dx = 1 , (2.14)

and each number of the sequence has a peak at x0. Also, they are symmetric about the point

x0.
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The definition of Dirac delta function, given in terms of the sequence of functions, can be

easily generalized for any dimension D:

∫
RD
δ(D)
r0

(r)f(r) dDr = lim
n→∞

∫
RD
W n

r0
(r)f(r) dDr = f(r0) , (2.15)

where dDr = dx1dx2 . . . dxD. In physics literature, the following notation is used for the

Dirac delta functions

δ(D)
r0

(r) = δ(D)(r− r0) . (2.16)

2.2. Distributions and Some Useful Properties

L. Schwartz (Schwartz, 1966) and I. Gelfand (Gelfand & Shilov, 1964) showed that

the above heuristic approach for defining the Dirac delta functions could be justified in a rig-

orous way and the theory they constructed are called the theory of distributions or generalized

functions. The idea is basically as follows. For simplicity, let us choose x0 = 0. We are going

to construct a mathematical filter “δ” acting on a continuous function f which gives its value

at x = 0. That means (Appel, 2007)

δ(f) = f(0) or 〈δ, f〉 = f(0) . (2.17)

The above rule happens to be linear as a function of f , so it is natural that the filter δ is a

mapping from a certain vector space of functions to complex numbers.

δ : space of functions −→ C

function 7−→ number . (2.18)

This object δ is called a linear functional on space of functions. To be more precise, one has to

specify the space of functions on which this functional is defined. The notation 〈δ, f〉 should

not be confused with the inner product.

Definition 2.1 The support of a function f is the closure of the set where it is non-zero
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(Gustafson & Sigal, 2011):

supp(f) := {x ∈ RD : f(x) 6= 0} . (2.19)

Definition 2.2 (Appel, 2007)

Let D ≥ 1. The test space, denoted by D(RD), is the vector space of functions ϕ from RD

into C, which are class of C∞ and have bounded support. A test function is any function

ϕ ∈ D(RD).

Example 2.1 One of the examples of a test function is given by (Debnath & Mikusiński, 2005)

ϕ(x) =

e(x2−1)−1
if |x| < 1 ,

0 otherwise .
(2.20)

-2 -1 1 2

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Figure 2.3. An example for a test function

Remark 2.1 One useful property of the above test functions is that when we perform integra-

tion by parts, the boundary terms vanish. The reason why we have restrictions in defining D
is due to the fact that the dual of D gets “bigger” in contrast to the case in finite dimensions.

The restriction C∞ regularity is necessary but the condition of bounded supportness can be

relaxed, as we will see later on.

Definition 2.3 (Debnath & Mikusiński, 2005)

A linear functional T on the space D(RD) is a rule by which we assign to every test function
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ϕ a real number denoted 〈T, ϕ〉, such that

〈T, c1ϕ1 + c2ϕ2〉 = c1〈T, ϕ1〉+ c2〈T, ϕ2〉 , (2.21)

for arbitrary test functions ϕ1 and ϕ2.

Definition 2.4 (Appel, 2007)

A sequence of test functions (ϕn)n∈N in D converges to a function ϕ ∈ D if

• the supports of the functions ϕn are contained in a fixed bounded subset, independent of n,

• all the partial derivatives of all order of the ϕn converge uniformly to the corresponding

partial derivative of ϕ.

Definition 2.5 (Kanwal, 2004)

A linear functional onD is continuous if and only if the sequence of complex numbers 〈T, ϕn〉
converges to 〈T, ϕ〉 when the sequence of test functions {ϕn} converges to the test function ϕ.

Definition 2.6 (Appel, 2007)

A distribution on RD is any continuous linear functional defined onD(RD). The distributions

form a vector space called the space of distributions and denoted by D′(RD).

Any locally integrable function defines a distribution with the help of the following

theorem.

Theorem 2.1 (Appel, 2007)

For any locally integrable function f , there is an associated distribution, also denoted by f ,

defined by

〈f, ϕ〉 :=

∫
f(x)ϕ(x) dx , (2.22)

for all ϕ ∈ D(RD). Such a distribution is called a regular distribution associated to the

locally integrable function f .

All the other distributions are called singular distributions. However, we may sym-

bolically use the formula (2.22) also for singular distributions, which are commonly used in

physics literature. As an example for singular distributions, the Dirac delta distribution is the

most well-known:

Definition 2.7 (Appel, 2007)

The Dirac delta distribution is a singular distribution which maps the test functions to the
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their values at x = 0, i.e.,

〈δ, ϕ〉 := ϕ(0) , (2.23)

for all ϕ ∈ D(R).

For r0 ∈ RD, we define similarly the Dirac delta distribution centered at r0, denoted

δ
(D)
r0 , by its action on any test function:

〈δ(D)
r0
, ϕ〉 := ϕ(r0) , (2.24)

for all ϕ ∈ D(RD). In physics literature, it is usually denoted by δ(D)(r− r0).

Definition 2.8 (Appel, 2007)

The m− th derivative of a distribution is defined by

〈T (m), ϕ〉 := (−1)(m)〈T, ϕ(m)〉 , (2.25)

for any ϕ ∈ D and any m ∈ N.

Definition 2.9 (Appel, 2007)

Let T ∈ D′(RD) be a distribution and let ψ be a function of C∞ class. The product ψT ∈
D′(RD) is defined by

〈ψT, ϕ〉 := 〈T, ψϕ〉 , (2.26)

for any ϕ ∈ D(RD).

Theorem 2.2 (Appel, 2007)

Let ψ be a function of C∞ class. Then,

ψ(x)δ(x) = ψ(0)δ(x) , (2.27)
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and in particular;

xδ(x) = 0 , (2.28)

which is also true for any dimension D.

Definition 2.10 (Appel, 2007)

Let S and T be two distributions. The direct product, or tensor product, of the distributions S

and T is the distribution S(x)T (y) defined on the space of test functions on RP × RD by

〈S(x)T (y), ϕ(x,y)〉 := 〈S(x), 〈T (y), ϕ(x,y)〉〉 . (2.29)

It is denoted by S
⊗

T or S(x)T (y). Note that tensor product is not commutative.

Example 2.2 (Appel, 2007)

The Dirac delta distribution in D dimensions can be defined as a tensor product of D Dirac

delta distributions in one dimension:

δ(D)(r) = δ(D)(x1, x2, . . . , xD) := δ(x1)δ(x2) . . . δ(xD) . (2.30)

There are different classes of Dirac delta distributions, e.g., point-like, surface and

curvilinear. The point-like Dirac delta distribution acting on a test function has been defined

by Eq. (2.24). As a physical example for point-like Dirac delta distributions, we consider:

Example 2.3 (Appel, 2007)

The electric field at any point r in R3 \ {r0} of a point-like particle with electric charge q,

placed at a point r0 in R3 is given by E(r) = q
4πε0

r−r0

‖r−r0‖3 , where ε0 is the electric permittivity

constant (Griffiths, 1999). If we have a continuous charge distribution, we usually introduce

a function ρ : R3 → R, which associates, to each point in R3, density of electric charge at this

point. Then, the total charge contained in the infinitesimal volume element dx dy dz around

r0 is given by ρ(r0) dx dy dz. Then, the electric field produced by the continuous charge

density ρ is given by

E(r) =
1

4πε0

∫
R3

ρ(r′)
r− r′

‖r− r′‖3
d3r′ , (2.31)
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and the total charge contained in a volume V ⊂ R3 is q =
∫
V
ρ(r) d3r. The point-like charge

in electrostatics must then represented by a distribution:

ρ(r) = qδ(3)(r− r0) . (2.32)

Note that the dimension of three-dimensional point-like Dirac delta distribution has the di-

mension of the inverse of a value: [δ(3)] = 1
L3 .

In order to describe a surface carrying charges, we may also use a different kind of

Dirac delta distributions:

Definition 2.11 (Appel, 2007)

Let S be a smooth surface in R3. The (normalized) Dirac delta surface distribution on S is

given by its action on any ϕ ∈ D(R3):

〈δS, ϕ〉 :=

∫
S

ϕ d2S , (2.33)

where d2S is the integration element over the surface S.

Example 2.4 (Spherical shell Dirac delta distribution:) (Appel, 2007)

In R3, the Dirac delta surface distribution δS2 is denoted by δ(‖x‖−R), for R > 0, where S2

is the two-sphere of radius R, i.e., S2 = {x ∈ R3 ; ‖x‖ = R}. From Definition 2.11, we have

〈δS2 , ϕ〉 =

∫
S2

ϕ(R, θ, φ) d2S

=

∫
V

ϕ(r, θ, φ)δ(r −R) r2 sin θ dr dθ dφ︸ ︷︷ ︸
dV

= 〈δR, ϕ〉 . (2.34)

where we have parameterized the sphere by the spherical coordinates (Arfken & Weber,

2005), i.e., d2S = R2 sin θ dR dθ dφ and use the fact that
∫
V
δ(r −R)f(r) dr = f(R).

Similarly, one can also define Dirac delta distributions on a smooth curve by analogy

with Definition 2.11. However, we will only deal with the point-like Dirac delta distributions

in this thesis.

One can also define the Fourier transform of the distributions.

Definition 2.12 (Appel, 2007)

The Fourier transform of a distribution T which is defined by its action on a test function ϕ is
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given by

〈F [T ], ϕ〉 := 〈T,F [ϕ]〉 . (2.35)

One can use the notation T̂ and ϕ̂ instead of F [T ] and F [ϕ]:

〈T̂ , ϕ〉 := 〈T, ϕ̂〉 . (2.36)

Remark 2.2 (Appel, 2007)

If ϕ has compact support and is non-zero, its Fourier transform ϕ̂ cannot have compact sup-

port; then the quantity 〈T, ϕ̂〉 is not always defined. Therefore, we cannot say that all dis-

tributions have an associated Fourier transform. For this reason, the idea of the tempered

distributions is introduced.

Definition 2.13 (Appel, 2007)

The Schwartz space is a space of functions which are infinitely differentiable and rapidly

decaying (i.e. decaying faster than any polynomial as x→∞) along with all derivatives and

is denoted by S. The space of linear continuous functionals on S is denoted by S ′. A tempered

distribution is an element of S ′.

We now introduce the Fourier transform of tempered distributions. Let T be a tem-

pered distribution and ϕ ∈ S , then the Fourier transform F [ϕ] is also in the space S. There-

fore, the quantity 〈T,F [ϕ]〉 is defined and hence, it is possible to define the Fourier transform

of T .

Theorem 2.3 (Appel, 2007)

F [δ] = 1 and F [1] = δ.

Let us give very briefly the rigorous definition and some basic properties of the Dirac

calculus or Dirac’s bra-ket notation which is commonly used in physics literature.

2.3. Dirac Calculus

We want to show how to define the formal Dirac calculus by using the idea of a Gelfand

triplet or rigged Hilbert space. The motivation in defining rigged Hilbert spaces is based on

the fact that the standard Dirac’s kets such as |x〉, |p〉 and their bras do not belong to Hilbert
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spaces. They live in a more general spaces. (For the discussion of rigged Hilbert spaces, see

1.7 on (Bohm, 2001).)

2.3.1. Eigendistributions

The chain of inclusions is given by (Zeidler, 2006)

S(R) ⊂ L2(R) ⊂ S ′(R) , (2.37)

which is called a Gelfand triplet with respect to the Hilbert space L2(R).

The momentum operator in quantum mechanics is defined by

(Pϕ)(x) := −i~ d
dx
ϕ(x) , (2.38)

where P : S(R)→ S(R) and the coordinate operator is

(Xϕ)(x) := xϕ(x) , (2.39)

where X : S(R) → S(R) for all x ∈ R and all functions ϕ(x) ∈ S(R). But, these operators

do not have eigenfunctions which lie in the Hilbert space L2(R). In order to see this, let us

consider the following example:

Example 2.5 (Zeidler, 2006)

The solution to the eigenvalue problem −i~ d
dx
ϕ(x) = pϕ(x) is ϕp(x) := e

ipx
~

2π~ since

Pϕp = −i~ d
dx

(
e
ipx
~

2π~

)
= pϕp , (2.40)

for all p ∈ R. But ϕp 6∈ L2(R).

Although the eigenfunctions do not belong to L2(R), we will show that there exists a

complete system of eigendistributions.
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The momentum operator (Zeidler, 2006): Define Fp(ϕ) :=
∫
R ϕ
∗
p(x)ϕ(x) dx for all test

functions ϕ ∈ S(R). Afterwards, Fp ∈ S ′(R). The family {Fp}p∈R of tempered distributions

Fp defines a complete system of eigendistributions of the momentum operator P . Explicitly,

that means

• Eigenvalue Relation: Fp(Pϕ) = pFp(ϕ) for all p ∈ R and ϕ ∈ S(R). In the Dirac’s

notation, the above relation reads P |Fp〉 = p |Fp〉 for all p ∈ R. Physicists simply write

|p〉 instead of |Fp〉, i.e., P |p〉 = p |p〉.

• Completeness Relation: If Fp(ϕ) = 0 for all p ∈ R and fixed ϕ ∈ S(R), then ϕ = 0.

Proof For the first relation, we have

Fp(Pϕ) =

∫
R
ϕ∗p(x)[Pϕ(x)] dx = − i

2π

∫
R
e−

ipx
~ ϕ′(x) dx . (2.41)

Since ϕ ∈ S(R), integration by parts yields us

Fp(Pϕ) = p

∫
R

e−
ipx
~

2π~
ϕ(x) dx = pFp(ϕ) . (2.42)

For the second relation, let

Fp(ϕ) = 0 =

∫
R

e−
ipx
~

2π~
ϕ(x) dx , (2.43)

for all p ∈ R. Then, ϕ̂(p) = 0⇒ ϕ = 0. �

The coordinate operator (Zeidler, 2006): Similarly, we have the family {δx}x∈R of

tempered distributions δx defines a complete system of eigendistributions of the coordinate

operator X . That means

• Eigenvalue Relation: δx(Xϕ) = xδx(ϕ) for all x ∈ R and ϕ ∈ S(R). In the Dirac’s

notation, the above relation reads X |δx〉 = x |δx〉 for all x ∈ R. Physicists simply write

|x〉 instead of |δx〉, i.e., X |x〉 = x |x〉.

• Completeness Relation: If δx(ϕ) = 0 for all x ∈ R and fixed ϕ ∈ S(R), then ϕ = 0.

Proof For the first relation,

δx(Xϕ) = δx[xϕ(x)] = xϕ(x) . (2.44)
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For the second relation, if

δx(ϕ) = 0 = ϕ(x) , (2.45)

for all x ∈ R, then ϕ = 0. �

The energy operator (Zeidler, 2006): Define the Hamiltonian (the energy operator)

for the free particle on the real line

H :=
P 2

2m
, (2.46)

where H : S(R) → S(R). The family {Fp}p∈R defines a complete system of eigendistribu-

tions. Explicitly;

• Eigenvalue Relation: Fp(Hϕ) = E(p)Fp(ϕ) for all p ∈ R and ϕ ∈ S(R) where the

eigenvalue E(p) := p2

2m
is the energy of a free particle of momentum p. In the Dirac’s

notation, simply we have H |p〉 = E(p) |p〉 for all p ∈ R.

• Completeness Relation: If Fp(ϕ) = 0 for all p ∈ R and fixed ϕ ∈ S(R), then ϕ = 0.

Proof For the first relation,

Fp(Hϕ) =

∫
R
ϕ∗p(x)[Hϕ(x)] dx = − ~

4mπ

∫
R
e−

ipx
~ ϕ′′(x) dx . (2.47)

After doing integration by parts with using the property of ϕ ∈ S(R), we obtain

Fp(Hϕ) =
p2

2m

∫
R

e−
ipx
~

2π~
ϕ(x) dx = E(p)Fp(ϕ) . (2.48)

For the second relation, let Fp(ϕ) = 0 for all p ∈ R and fixed ϕ ∈ S(R), then ϕ = 0 which

we have showed it in completeness relation for the momentum operator. �

Above definitions can be generalized to the higher dimensions.
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2.4. Formal Dirac Calculus

In quantum mechanics, we formally use the above Dirac’s bra-ket notation in a more

compact way and they satisfy the following formal relations: (Zeidler, 2006)

• 〈x|y〉 = δ(D)(x− y).

• 〈x|p〉 = e
ip·x
~ .

•
∫
RD |x〉 〈x| d

Dx = I .

•
∫
RD |p〉 〈p|

dDp
(2π~)D

= I .

• P |p〉 = p |p〉.

• X |x〉 = x |x〉.

These formulae are going to be very practical in our calculations that we will use throughout

the thesis.
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CHAPTER 3

HEURISTIC APPROACH TO THE POINT

INTERACTIONS: A SIMPLE TOY MODEL OF

RENORMALIZATION

3.1. Some Basic Notions in Quantum Mechanics

We are first going to give the physical background and the basic notions of quantum

mechanics that we need in this thesis.

According to the postulate of quantum mechanics, the state of a particle is described by

a complex-valued function Ψ(r, t), where r = (x1, x2, . . . , xD) ∈ RD and t ∈ R (Gustafson

& Sigal, 2011). The function Ψ(r, t) is called the wave function or state vector. In proba-

bilistic interpretation of quantum mechanics, the quantity |Ψ(r, t)|2 represents the probability

distribution for the position of the particle. The probability that a particle is in the region

Ω ⊂ RD at time t is given by
∫

Ω
|Ψ(r, t)|2 dDr. Hence,

∫
RD
|Ψ(r, t)|2 dDr = 1 , (3.1)

is required (total probability should be one). The time evolution of the wave function is given

by the time-dependent Schrödinger equation

i~
∂Ψ(r, t)

∂t
= − ~2

2m
∆Ψ(r, t) + V (r, t)Ψ(r, t) , (3.2)

where ~ is the reduced Planck’s constant ~ = h
2π

, one of the fundamental constants in nature,

and ∆ = ΣD
j=1∂

2
j is the Laplace operator, m is the mass of the particle and V (r, t) is the

potential energy of the system. In physics literature, the Laplace operator ∆ is denoted by∇2.

If V does not depend on t explicitly, i.e., V (r, t) = V (r), we can do the separation of
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variables Ψ(r, t) = ψ(r)ϕ(t) and obtain a differential equation for ψ(r):

(Hψ)(r) = 〈r|Hψ〉 = − ~2

2m
∆ψ(r) + V (r)ψ(r) = Eψ(r) , (3.3)

whereH = − ~2

2m
∆+V is the Schrödinger operator or the Hamilton operator and the equation

is called the time-independent Schrödinger equation and the separation constant E is known

as the total energy. This equation can be also interpreted as an eigenvalue problem. The space

of all possible states of a particle at a given time is called the state space and it is assumed to

be the following Hilbert space:

L2(RD) :

{
Ψ : RD → C

∣∣∣ ∫
RD
|Ψ(r)|2 dDr <∞

}
. (3.4)

Here, the inner product is defined by

〈Ψ, φ〉 = 〈Ψ|φ〉 =

∫
RD

Ψ∗(r)φ(r) dDr , (3.5)

where ∗ denotes the complex conjugation. We are going to use either 〈Ψ, φ〉 or 〈Ψ|φ〉 (Dirac’s

bra-ket notation) as notations for the inner product interchangeably according to the context

throughout the thesis. If the state is space localized for all times, then such a state is called

the bound state. Later on we are going to study the discrete and continuous spectrum of the

Hamiltonian from the resolvent which is going to be discussed in Chapter 4 and actually the

classification of the spectrum into discrete and continuous parts (strictly speaking, absolutely

continuous parts (Reed & Simon, 1978)) corresponds to a classification of the dynamics into

bound states and scattering states, respectively (Gustafson & Sigal, 2011).

3.2. Formal Analysis of Point Interaction in One Dimension

We start with a standard quantum mechanical textbook problem, where a particle of

mass m interacts with a point interaction centered at the origin in one dimension. The time-

independent Schrödinger equation of this system is formally given by (Griffiths, 1995)

〈x|Hψ〉 = (Hψ)(x) =

[
− ~2

2m

d2

dx2
− λδ(x)

]
ψ(x) = Eψ(x) , (3.6)
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where λ > 0 is the strength of the point interaction (or sometimes called coupling constant).

(It corresponds to an attractive point interaction.)

We are interested in finding the solution of the eigenvalue problem (3.6) for bound

states.

Theorem 3.1 The bound state energy and corresponding bound state wave function of the

system (3.6) in one dimension are

E = −mλ
2

2~2
, (3.7)

and

ψ(x) =

√
mλ

~
e−

mλ
~2 |x| , (3.8)

respectively.

Proof One formal way of finding the solution is to go to the Fourier space. The Fourier

transform of ψ(x) is

F [ψ(x)] = ψ̂(p) =

∫
R
e−

ipx
~ ψ(x) dx , (3.9)

and the inverse Fourier transform is given by

ψ(x) =

∫
R
e
ipx
~ ψ̂(p) [dp] , (3.10)

where have used the notation [dp] = dp
2π~ in order to keep track of the factor 2π~ in our

calculations. In higher dimensions: [dDp] = dDp
(2π~)D

. We expect that the bound state energy is

negative because we have
∫
R V (x) dx = −λ < 0 (Schechter, 1981). So that we parameterize

the energy E = −ν2 such that ν ∈ R+. By applying formal Fourier transformation to the

Schrödinger equation and using the convolution theorem, we get

(
p2

2m
+ ν2

)
ψ̂(p) = λψ(0) , (3.11)
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which can be written as a singular integral equation:

ψ̂(p) =

∫
R

[
λ

ν2
− q2(2π~)δ(q − p)

2mν2

]
ψ̂(q) [dq] , (3.12)

where the expression inside of the bracket can be interpreted as the integral kernel.

In Eq. (3.11), if we define λψ(0) = C and apply the consistency condition (solve

ψ̂(p) from (3.11) in terms of C and then substitute it into Eq. (3.10) for x = 0), we obtain

C = λ

∫
R

C
p2

2m
+ ν2

[dp] . (3.13)

Since C 6= 0 (if C was zero, then we would have free Hamiltonian problem that is C =

λψ(0) = 0, then λδ(x)ψ(x) = λδ(x)ψ(0) = 0), we can simplify C’s in the above equation

and evaluating the integral by changing of the variable p =
√

2mν tan θ gives the bound state

energy as in (3.7). By the inverse formal Fourier transform and using the residue theorem

(Greene & Krantz, 2006) and then from the normalization condition given in (3.1), we find

the corresponding bound state wave function given in (3.8). �

Lemma 3.1 The average value of the Hamiltonian is

〈ψ|H|ψ〉 = −mλ
2

2~2
. (3.14)

Proof The average value of the free Hamiltonian is

〈ψ,H0ψ〉 = 〈ψ|H0|ψ〉 = − ~2

2m

∫
R
ψ∗(x)

[
d2

dx2
ψ(x)

]
dx

= −λ
2

∫
R
e−

mλ
~2 |x|

[
d2

dx2
e−

mλ
~2 |x|

]
dx =

mλ2

2~2
, (3.15)

where we have used d
dx
|x| = sgn(x) and d

dx
sgn(x) = 2δ(x). (The derivative here should

be understood in the distributional sense.) This tells us that the wave function for the bound

state is contained in the domain of the free Hamiltonian H0, that is, ψ ∈ D(H0). Also, if we

compute the average value of our potential energy, we have

〈ψ|V |ψ〉 = −mλ
2

~2

∫
R
e−

mλ
~2 |x|δ(x)e−

mλ
~2 |x| dx = −mλ

2

~2
. (3.16)
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Since the average value of the sum is equal to sum of the average value (Schechter, 1981),

we have (3.14) which is consistent with Eq. (3.7). �

The above formal analysis in finding the bound states of our system could be per-

formed also in the coordinate representation, which can be found in any elementary quantum

mechanics textbook (Griffiths, 1995), which we also summarize in Appendix A.

Remark 3.1 Actually, the Hamiltonian − ~2

2m
d2

dx2 − λδ(x) is just a formal expression since a

δ(x) does not correspond to an operator in L2(R). This can be seen as follows: Given any

function ψ(x) ∈ L2(R), the function δ(x)ψ(x) is not square-integrable, hence not in L2(R).

Nevertheless, it is possible to define point interactions rigorously in several ways and find a

self-adjoint operator in L2(R) such that it has the same result with the above formal analysis.

In order to construct such an operator, we first start with a symmetric Laplace operator

which does not act on the location of Dirac delta potential. Then we construct all the self-

adjoint extensions of the initial symmetric operator. After that we select one of those extension

operators which gives the same results introduced formally. The construction of self-adjoint

extensions can be achieved in two ways. First one is based on Von Neumann approach and

the second one is known as Krein’s approach. In two and three dimensions, these rigorous

constructions should be performed by renormalizing the coupling constant.

3.2.1. Point Interaction as a Sequence of Regular Potentials with Finite

Support

Actually, there is no point interaction (Dirac delta potential) in nature. It is an ideal-

ization as many other potentials used in quantum mechanics (such as square well potential,

infinite square well potential, step potential, harmonic oscillator, etc. (Eisberg & Resnick,

1985)). However, point interactions can be used in many areas of physics under the appro-

priate circumstances. For example, when the de Broglie wavelength of the particle λ = h
p

is

much larger than the range of the potential, of a given system, it is a very good approximation

to the real physical systems. The scattering of slow neutrons by heavy nuclei could be such a

system.

As we have stated in Chapter 2, Dirac delta functions can be defined by the sequence

of functions. Instead of solving the Schrödinger equation with a point interaction −λδ(x)

directly, we can pick the sequence of Dirac delta potential and solve it first and then take the

limit of these solutions at the end. This is an indirect approach to the problem which sounds

more physically since there is no point interaction in nature.
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Let us pick a simplest possible sequence of Dirac delta function such that its exact

solution is known. One such a potential is the finite square well potential (Griffiths, 1995):

Vn(x) =

0 if x 6∈
(
− 1
n
, 1
n

)
,

−λn
2

if x ∈
(
− 1
n
, 1
n

)
,

(3.17)

where λ > 0. For bound states, let us again write E = −ν2.

1

n
-

-
Λ n

2

1

n x

V HxL

Figure 3.1. Finite square well potential

Note that the area under Vn(x) is constant for all n. Then, the general solution for

bound states can be easily found as

ψ(x) =


Ae−kx if x > 1

n
,

B cos(lx) + C sin(lx) if − 1
n
< x < 1

n
,

Dekx if x < − 1
n
,

(3.18)

where k = ν
√

2m
~ is real and positive, l =

√
2m
~2

(
λn
2
− ν2

)
is also real and positive due to the

fact thatE > Vmin = −λn
2

for normalizable solution (otherwise we cannot have bound states).
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The coefficients A,B,C,D are arbitrary constants to be determined. Since the potential is

symmetric, we expect that there are either even or odd-parity solutions. Let us consider the

even-parity solutions, that is,

ψe(x) =


Ae−kx if x > 1

n
,

B cos(lx) if − 1
n
< x < 1

n
,

Aekx if x < − 1
n
.

(3.19)

From the boundary conditions
(

the continuity of ψe(x) and dψe(x)
dx

at x = − 1
n

and x = 1
n

)
,

we obtain

l tan

(
l

n

)
= k . (3.20)

A solution to the above transcendental equation expressed as a function of ν gives the al-

lowed bound state energies. In order to solve the above equation, we first make the change of

variables for simplification. Let z ≡ l
n

and z0 ≡
√

mλ
n~2 . Then, the above equation becomes

tan z =

√(z0

z

)2

− 1 . (3.21)

This transcendental equation has no exact analytical solution. Therefore, we analyze this

equation graphically and asymptotically as n→∞.

If 1
n

goes to zero, z0 is expected to be small by keeping λ fixed. When n is large, the

intersection occurs at small values of z and the right-hand side of (3.21) is dominated so that

we treat the left-hand side as a correction. Hence, as a first approximation (Olver, 1974) we

obtain

√(z0

z

)2

− 1 = tan z ' z , (3.22)

or

z2
0 − z2 ' z4 � 1 , (3.23)
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z0

z

2

- 1

tanHzL

Figure 3.2. Graph of
√(

z0
z

)2 − 1 and tan z

then, z ' z0. The expression

z2
0 − z2 =

mλ

n~2
− 2m

n2~2

(
λn

2
− ν2

)
' 2mν2

n2~2
, (3.24)

as n→∞. Also, due to Eq. (3.23) and by using the fact that z ' z0, we find

E = −ν2 ' −mλ
2

2~2
, (3.25)

which is the same result obtained directly from the point interaction in one dimension. Here,

the limiting procedure is performed in such a way that the area of the potential is fixed as its

width is getting smaller and smaller. We actually demonstrate that limiting and direct solution

procedures are commutative, that is,

One can also show that the limit of the scattering solutions of the finite well approaches

the scattering solutions of the Dirac delta potential.

Corollary 3.1 Point interactions are considered as a zero range limit of the finite well poten-

tials.

Remark 3.2 Actually, the choice for Vn(x) can be more general and it has been shown that

if Vn(x) belongs to Rollnick class, the above analysis is still true under certain circumstances

(Albeverio & Gesztesy & Høegh-Krohn & Holden & Exner, 1988).

29



VnHxL n � ¥
-Λ∆HxL

Direct solution

ΨHxL, EΨnHxL, En

� ¥n

Figure 3.3. Commutativity diagram of the solutions

3.2.2. Scattering from Point Interaction

Now, we are going to analyze the scattering problem of the point interaction. Let E =

~2k2

2m
> 0 where ~2k2

2m
is the free particle’s energy and k = p

~ is the wave vector (Merzbacher,

1961). Then, the time-independent Schrödinger equation in one dimension can be written as

(
d2

dx2
+ k2

)
ψ(x) =

2m

~2
V (x)ψ(x) = %(x) , (3.26)

where we have defined the right-hand side as %(x).

Theorem 3.2 The transmission and reflection coefficients of the system (3.26) are

T (k) =
1

1 +
(
m2λ2

~4k2

) , (3.27)

and

R(k) =
1

1 +
( ~4k2

m2λ2

) , (3.28)
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respectively.

Proof By treating the right-hand side of (3.26) as a source term, the particular solution ψ(x)

can be given in terms of Green’s function G(x, x′) (Byron & Fuller, 1992):

ψ(x) =

∫
R
G(x, x′)%(x′) dx′ =

2m

~2

∫
R
G(x, x′)V (x′)ψ(x′) dx′ , (3.29)

and it satisfies

(
d2

dx2
+ k2

)
G(x, x′) = δ(x, x′) = δ(x− x′) . (3.30)

Since the solution of the homogeneous equation
(
d2

dx2 + k2
)
ψ(x) = 0 is ψ(x) = Aeikx,

where A is a constant, we can add a particular solution (3.29) to the homogeneous solution:

(solution is not unique)

ψ(x) = Neikx +
2m

~2

∫
R
G(x− x′)V (x′)ψ(x′) dx′ , (3.31)

where G(x− x′) = G(x, x′) due to the translation symmetry of the differential operator. Let

us take the formal Fourier transform of both sides of Eq. (3.30):

∫
R
e−

ipy
~

(
d2

dy2
+ k2

)
G(y) dy = 1 , (3.32)

where we denoted G(x − x′) = G(y). From the Green’s formula (Appel, 2007) (or just

integration by parts):

∫
R
e−

ipy
~

(
d2

dy2
+ k2

)
G(y) dy =

∫
R
G(y)

(
d2

dy2
+ k2

)
e−

ipy
~ dy , (3.33)

where G(y) is chosen such that the boundary terms vanish. Hence,

∫
R
G(y)

(
d2

dy2
+ k2

)
e−

ipy
~ dy =

(
k2 − p2

~2

)
Ĝ(p) , (3.34)
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where Ĝ(p) is the formal Fourier transformed Green’s function and from Eq. (3.32), we obtain

Ĝ(p) =
1

k2 − p2

~2

. (3.35)

The formal inverse Fourier transform is then

G(y) =

∫
R

e
ipy
~

k2 − p2

~2

[dp] . (3.36)

Since the poles appear on the real axis, we should specify the contour associated with the

proper boundary conditions for the scattering problem, where we have only outgoing wave

solutions. In order to compute the contour integral, we are going to use Feynman’s trick

(Merzbacher, 1961) which is related with casual Green’s functions in quantum field theory.

The simple poles will be shifted up to ± iε
2~k where ε > 0.

+kÑ
-kÑ +¥

-¥

p
kÑ +

iΕ

2 kÑ

+¥-¥

p

-kÑ -
iΕ

2 kÑ

�

Figure 3.4. Feynman’s trick

Therefore,

G(+)
ε (x− x′) = − ~

2π

∫
R

e
ip(x−x′)

~

p2 − (~2k2 + iε)
dp , (3.37)
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Because of

√
1 +

iε

~2k2
= 1 +

iε

2~2k2
, (3.38)

by Taylor expansion near ε = 0, simple poles are at p = ±
(
~k + iε

2~k

)
. After using the residue

theorem and then taking the limit ε→ 0, we obtain

lim
ε→0

G(+)
ε (x− x′) = G(+)(x− x′) = − i

2k
eik|x−x

′| . (3.39)

Substituting this into Eq. (3.31), we obtain

ψ(+)(x) = Neikx − im

~2k

∫
R
eik|x−x

′|V (x′)ψ(+)(x′) dx′ , (3.40)

which is called the Lippmann-Schwinger equation in the coordinate representation in one

dimension (Merzbacher, 1961). By inserting the point interaction V (x) = −λδ(x) into the

above equation, we have

ψ(+)(x) = Neikx +
imλ

~2k
eik|x|ψ(+)(0) , (3.41)

The consistency check yields

ψ(+)(0) =
N

1− imλ
~2k

. (3.42)

Then,

ψ(+)(x) =

Neikx + imλN
~2k−imλe

−ikx if x < 0 ,[
N + imλN

~2k−imλ

]
eikx if x > 0 .

(3.43)
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From the above equation, we obtain transmission and reflection coefficients given in (3.27)

and (3.28) by using their definitions:

T (k) =
∣∣∣Amplitude of the transmitted wave

Amplitude of the incoming wave

∣∣∣2 , (3.44)

and

R(k) =
∣∣∣ Amplitude of the reflected wave
Amplitude of the incoming wave

∣∣∣2 . (3.45)

Moreover, note that this coefficients are independent of the sign of the strength of point inter-

action. �

Remark 3.3 For fixed value of k, R→ 1, T → 0 as λ→∞ and R→ 0, T → 1 as λ→ 0.

Remark 3.4 For fixed value of λ, R→ 1, T → 0 as k → 0 and R→ 0, T → 1 as k →∞.

These results are physically expected.

3.3. Formal Analysis of Finitely Many Point Interactions in One

Dimension

The time-independent Schrödinger equation in one dimension with N point interac-

tions (formally) is

− ~2

2m

d2ψ(x)

dx2
−

N∑
i=1

λiδ(x− ai)ψ(x) = −ν2ψ(x) , (3.46)

where ai is the location of the i-th point interaction for i = 1, . . . , N . We assume that ai 6= aj

for i 6= j and let dmin = mini,j |ai−aj| > 0. By applying the formal Fourier transform to Eq.

(3.46), we have

(
p2

2m
+ ν2

)
ψ̂(p) =

N∑
i=1

λiψ(ai)e
− ipai~ , (3.47)
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or, it can be rewritten as the following singular integral equation:

ψ̂(p) =

∫
R

[
N∑
i=1

λie
i(q−p)ai

~

ν2
− q2(2π~)δ(q − p)

2mν2

]
ψ̂(q) [dq] , (3.48)

where the expression inside of the bracket is the integral kernel.

Let λiψ(ai) = Ai. After the consistency check, we have

[
1

λi
−
∫
R

1
p2

2m
+ ν2

[dp]

]
Ai −

∫
R

N∑
j=1
j 6=i

[
e
ip|ai−aj |

~

p2

2m
+ ν2

[dp]

]
Aj = 0 . (3.49)

These equations can be written as homogeneous system of linear equations in a matrix form:

N∑
j=1

Φij(ν)Aj = 0 or ΦA = 0 , (3.50)

where

Φij(ν) =



1

λi
−
∫
R

1
p2

2m
+ ν2

[dp] if i = j ,

−
∫
R

e
ip|ai−aj |

~

p2

2m
+ ν2

[dp] if i 6= j .

(3.51)

After solving integrals by using the residue theorem, we find

Φij(ν) =



1

λi
−
√
m

2

1

~ν
if i = j ,

−
√
m

2

e−
√

2mν|ai−aj |
~

~ν
if i 6= j .

(3.52)

which is called the principal matrix. This terminology is first introduced by S. G. Rajeev when

he discuss many-body version of these potentials (Rajeev, 1999). From (3.50), for non-trivial

solutions, we must have det Φij(ν) = 0, from which we can find the bound state energies as
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a function of λi’s. In general, det Φ is a complicated function of ν, so it is difficult to find

the solution of det Φ(ν) = 0 exactly. In other words, the linear differential equation problem

Hψ = Eψ turns out to be a non-linear transcendental algebraic problem det Φ(E) = 0.

3.3.1. Two-center Case: A Toy Model for Chemical Bonds

Theorem 3.3 For N = 2, we have at most two bound states. The critical distance to have

two bound states is

d >
~2

2m

(
1

λ1

+
1

λ2

)
= dcritical , (3.53)

where d = |a1 − a2|.

Proof For N = 2, Eq. (3.52) becomes

Φ(ν) =

 1
λ1
−
√

m
2

1
~ν −

√
m
2
e−
√

2mν|a1−a2|
~

~ν

−
√

m
2
e−
√

2mν|a1−a2|
~

~ν
1
λ2
−
√

m
2

1
~ν

 . (3.54)

We need to solve det Φ(ν) = 0 to find bound state energies. Hence,

(
1

λ1

−
√
m

2

1

~ν

)(
1

λ2

−
√
m

2

1

~ν

)
=

m

2~2ν2
e−

2
√

2mν|a1−a2|
~ . (3.55)

By multiplying both sides with λ1λ2ν
2 and putting in order, we obtain

(
ν −

√
m

2

λ1

~

)(
ν −

√
m

2

λ2

~

)
=
mλ1λ2

2~2
e−

2
√

2mν|a1−a2|
~ . (3.56)

Let us denote ν = x > 0,
√

m
2
λ1

~ = c1,
√

m
2
λ2

~ = c2 and 2
√

2m|a1−a2|
~ = β, then

(x− c1)(x− c2) = c1c2e
−βx , (3.57)

which is a transcendental equation and difficult to solve. We get help from the graphs of the
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functions to solve this equation. Without loss of generality, let us assume that c1 < c2. We

have one bound state which can be easily seen from the Figure 3.5. In this figure, there is only

one root corresponding to the bound state energy (the root x = 0 does not correspond to the

bound state energy). For particular values of c1 and c2, we may have two roots which can be

seen in Figure 3.6. We have two bound states if the following condition is satisfied:

(x− c1)(x− c2) > c1c2e
−βx near x = 0 . (3.58)

Since e−βx = 1− βx near x = 0, the above equation becomes

c1 + c2 < βc1c2 , (3.59)

and by substituting the original variables, we obtain (3.53). This equation tells us that if the

distance between the point interactions’ centers is larger than this critical distance, then we

have two bound states. Note that two-center case of the problem is a toy model for chemical

bonds (Cohen Tannoudji & Diu & Laloe, 1996).

c2c1

c1 c2e- Βx

Hx - c1L Hx - c2L

0 x

Figure 3.5. Graph of (x− c1)(x− c2) and c1c2e
−βx for c1 = 5, c2 = 20 and β = 0.1

�

Theorem 3.4 The bound state energies of the particle in the presence of two point interac-
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c1 c2 e- Βx

Hx - c1L Hx - c2L

x
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Figure 3.6. Graph of (x− c1)(x− c2) and c1c2e
−βx for c1 = 1, c2 = 1.7 and β = 2.5

tions (N = 2) for c1 = c2 = c are

E± = −
{√

m

2

λ

~
+

~√
2m|a1 − a2|

W

[
±mλ|a1 − a2|

~2
e−

mλ|a1−a2|
~2

]}2

, (3.60)

where W [z] is the Lambert W function.

Proof For c1 = c2 = c (λ1 = λ2 = λ), Eq. (3.57) becomes

(x− c)e
βx
2 = ±c . (3.61)

Let us rewrite this equation in the following form

β

2
(x− c)e

β(x−c)
2 = ±βc

2
e−

βc
2 . (3.62)

Solutions of this equation can be explicitly expressed in terms of Lambert W function. It has

many applications such as enumeration of trees in combinatorics, in the solution of iterated

exponentiation,a jet fuel problem and an enzyme kinetics problem and also in Wien’s dis-

placement law, capacitor fields and conformal mapping (Corless & Gonnet & Hare & Jeffrey

& Knuth, 1996) (Valluri & Jeffrey & Corless, 1988). The definition of the function is given
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by the solution of the following transcendental equation

y ey = z ⇒ y ≡ W [z] . (3.63)

-0.2 0.2 0.4 0.6 0.8 1.0

-1.0

-0.5

0.5

Figure 3.7. Graph of Lambert W function

So, the solution to Eq. (3.62) turns out to be

β

2
(x± − c) = W

[
±βc

2
e−

βc
2

]
, (3.64)

and then

x± = c+
2

β
W

[
±βc

2
e−

βc
2

]
. (3.65)

By substituting back to our original variables, we obtain

ν =

√
m

2

λ

~
+

~√
2m|a1 − a2|

W

[
±mλ|a1 − a2|

~2
e−

mλ|a1−a2|
~2

]
. (3.66)

Since E = −ν2, one can immediately find (3.60). �

Theorem 3.5 For N = 2 and λ1 = λ2 = λ and also a1 = −a and a2 = a, we have at most
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two bound states. The critical distance to have two bound states is

d >
~2

mλ
= dcritical . (3.67)

Proof If we choose same strengths of the point interactions: λ1 = λ2 = λ and the location

of the centers are assumed to be symmetric: a1 = −a and a2 = a in (3.56), then we obtain

±

(√
2

m

~ν
λ
− 1

)
= e−

2
√

2maν
~ . (3.68)

By choosing ν ≡ κ~√
2m

for convenience, we have

e−2aκ+ =
~2κ+

mλ
− 1 , (3.69)

and

e−2aκ− = 1− ~2κ−
mλ

, (3.70)

which correspond to the even and odd-parity solutions, respectively (Griffiths, 1995). One

can easily see that the former has definitely one (and only one) root but the latter may or may

not have a root. In order (3.70) have a root, the condition a > ~2

2mλ
should be satisfied because

of the slopes near κ− = 0. Since the distance between the point interactions is d = 2a, we

have two roots when (3.67) is satisfied. We can also check that this result is consistent with

(3.53) by writing λ1 = λ2 = λ in that equation. �

If d > dcritical, we can calculate the difference between odd and even-parity energy

levels 4E as d = 2a → ∞. When a is large, the right-hand side of Eq. (3.69) dominates.

Hence, we treat the left-hand side of this equation as a correction. In the first approximation

(a → ∞), the left-hand side of Eq. (3.69) becomes zero and we obtain κ+ = mλ
~2 . By

substituting this solution into the left-hand side of Eq. (3.69) as a second approximation by

successive approximations (Olver, 1974), we find

κ+ =
mλ

~2

(
1 + e−

2mλa
~2

)
. (3.71)
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Similarly, one can easily find that

κ− =
mλ

~2

(
1− e−

2mλa
~2

)
. (3.72)

Since E± = −ν2
± = −κ2

±~2

2m
, the difference between the energy levels is

4E = E− − E+ ∼
2mλ2

~2
e−

2mλa
~2 , (3.73)

which goes to zero exponentially as a → ∞. In other words, the energy levels become

degenerate.

3.3.2. The Case When Centers Coincide

Let us consider the case when N point interactions coincide at the origin and take

λ1 = . . . = λN = λ for simplicity. Then, the principal matrix given in (3.52) becomes

Φij(ν) =



1

λ
−
√
m

2

1

~ν
if i = j ,

−
√
m

2

1

~ν
if i 6= j .

(3.74)

To find bound state energies from the det Φij(ν) = 0, we are going to use the below formula

(Meyer, 2001):

det


α γ . . . γ

γ α . . . γ

γ γ
. . . γ

γ γ . . . α


(N×N)

= (α− γ)N
(

1 +
Nγ

α− γ

)
. (3.75)
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Hence,

det Φij(ν) =

(
1

λ

)N [
1 +

N
(
−
√

m
2

1
~ν

)
1
λ

]
= 0 . (3.76)

Then, we have 1−
√

m
2
Nλ
~ν = 0 which means that

ν =

√
m

2

Nλ

~
. (3.77)

Therefore, the bound state energy is

E = −ν2 = −mN
2λ2

2~2
. (3.78)

Remark 3.5 The result is evident because λ1δ(x) + . . . + λNδ(x) = Nλδ(x) and replacing

λ→ Nλ for one Dirac delta potential in Eq. (3.7) gives the same result.

Let us examine this problem for different values of λj . The matrix in Eq. (3.75) can

be generalized by

Φij(ν) =


α1 γ . . . γ

γ α2 . . . γ

γ γ
. . . γ

γ γ . . . αN


(N×N)

. (3.79)

This matrix can be written as

Φij(ν) = (αi − γ)δij + γeie
T
j . (3.80)
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Here, ei =



0
...

1
...

0


(N×1)

where 1 is located at the i-th row. We are going to use the formula

given by (Meyer, 2001):

det(A+ cdT ) = detA(1 + dTA−1c) , (3.81)

where A is nonsingular and c, d are N × 1 columns. Therefore,

det Φij(ν) = det[(αi − γ)I]

[
1 +

N∑
i,j=1

eTj [(αi − γ)δij]
−1γei

]
, (3.82)

then

det Φij(ν) =
N∏
i=1

(αi − γ)

[
1 + γ

N∑
j=1

eTj
1

(αj − γ)
ej

]

=
N∏
i=1

(αi − γ)

[
1 + γ

N∑
j=1

1

(αj − γ)

]
. (3.83)

We want to find the bound state energy, so det Φij(ν) = 0:

1 + γ

N∑
j=1

1

(αj − γ)
= 0 . (3.84)

By inserting the original variables, γ = −
√

m
2

1
~ν and αj = 1

λj
−
√

m
2

1
~ν , we obtain

ν =

√
m

2

1

~

N∑
j=1

λj , (3.85)
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then

E = −ν2 = − m

2~2

(
N∑
j=1

λj

)2

. (3.86)

Remark 3.6 It is also an evident answer since λ1δ(x) + . . .+λNδ(x) = (λ1 + . . .+λN)δ(x)

and replacing λ → λ1 + . . . + λN for one Dirac delta potential in Eq. (3.7) gives the same

result. But, interesting point is that to derive such simple results we need to use quite sophis-

ticated formulas from linear algebra.

3.4. Formal Analysis of Point Interaction in Two Dimensions

The time-independent Schrödinger equation in two dimensions with a point interaction

(formally), centered at the origin, is

− ~2

2m
∆ψ(x, y)− λδ(2)(x, y)ψ(x, y) = −ν2ψ(x, y) , (3.87)

where δ(2)(x, y) = δ(x)δ(y) defined in Eq. (2.30) and ∆ is the Laplace operator defined on

L2(R2). By applying the formal Fourier transform to the Schrödinger equation, we obtain

(
p2
x

2m
+

p2
y

2m
+ ν2

)
ψ̂(px, py) = λψ(0, 0) , (3.88)

or, equivalently, it can be written as a singular integral equation:

ψ̂(p) =

∫
R2

[
λ

ν2
− (q2)(2π~)2δ(2)(q− p)

2mν2

]
ψ̂(q) [d2q] , (3.89)

where the expression inside of the bracket is the integral kernel where p denotes (px, py) and

q denotes (qx, qy).
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Let us define λψ(0, 0) = C in Eq. (3.88), where C is a constant and after the consis-

tency condition, to find

1

λ
=

∫
R2

1
p2

2m
+ ν2

[d2p] . (3.90)

But, this integral is divergent, as can be easily checked in polar coordinates, namely

1

λ
=

m

π~2

∫ ∞
0

p

p2 + 2mν2
dp =

m

π~2
lim

Λ→∞

∫ Λ

0

p

p2 + 2mν2
dp

=
m

2π~2
lim

Λ→∞
ln
∣∣∣Λ2 + 2mν2

2mν2

∣∣∣ , (3.91)

where |p| = p. This happens due to the large values of momenta and it is known as ultraviolet

divergence (UV). Actually, this divergence occurs due to the scaling symmetry of the problem

(Jackiw, 1995): Suppose that the ground state energy is E = −ν2. Let us rescale x with η,

i.e., x→ ηx (x = ηx′) where η ∈ R+. Then the Schrödinger equation becomes

− ~2

2m

1

η2
∆′ψ̃(x′)− λ

η2
δ(2)(x′)ψ̃(x′) = −ν2ψ̃(x′) , (3.92)

where x = (x, y), ∆′ denotes the Laplacian with respect to the x′ variables and ψ(ηx′) =

ψ̃(x′). Also, we have used the fact that ∆ → 1
η2 ∆ and the normalization of δ(2)(x) from Eq.

(2.6) gives that δ(2)(ηx′)→ 1
η2 δ

(2)(x′). Hence,

− ~2

2m
∆ψ̃(x)− λδ(2)(x)ψ̃(x) = −η2ν2ψ̃(x) , (3.93)

where we have relabeled the variables x′ ↔ x. This means that we can always find a ground

state energy lower than −ν2, energy is unbounded from below which has no sense physically.

In the following section, we are going to show how to make sense of these infinities.

Although one-dimensional problem works very well in physical applications, what

could go wrong in its two-dimensional version? In order to cure this problem, we need to

consult a well-known procedure, called renormalization, firstly introduced in quantum field

theory.

Actually, this problem still appears in the higher-dimensional cases, as well. One

reason is: A typical Hamiltonian contains the kinetic and the potential energy operators. Al-
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though the formal expression is Hermitian (symmetric), it may not be self-adjoint in general

(that is D(H) 6= D(H†)) (Reed & Simon, 1975) and when the short-distance behavior of the

potential function is same or more singular than that of the kinetic energy part, this problem

appears and the eigenvalue problem Hψ = Eψ leads to nonphysical results and the dynamics

are not well-defined (Jackiw, 1995).

3.5. Renormalization of Point Interaction

Let us explain the basic idea of the renormalization method, which is commonly used

in quantum field theory (Zee, 2010). Then, we apply this method to our problem and show

how we can remove the divergences in the problem.

LetO1, O2, O3, . . . be measurable quantities for a given physical system (they are func-

tions of parameters in the system, e.g., coupling constant, mass, charge, etc...) (Mead &

Godines, 1991). We first modify the theory by changing the large momentum behavior of the

potential involved. The theory is assumed to be correct up to a definite momentum scale, say

Λ (called cut-off) since we expect that every theory should have a domain of validity. Next,

we make all the divergent integrals finite by restricting the upper limit of the integrals via the

cut-off parameter. Then, these quantities O1, O2, O3, . . . become functions of Λ and finite:

O1 = f1(λ,Λ)

O2 = f2(λ,Λ)
... (3.94)

However, they are divergent as Λ → ∞. This part of the procedure is called regulariza-

tion (for different regularization schemes, see Appendix B). In general, measurable quantities

O1, O2, . . . are difficult to calculate exactly so they are computed perturbatively. Then, we

solve the first equation for λ as a function ofO1 and Λ and insert the experimentally measured

value, say 〈O1〉, to get

λ(Λ) = f−1
1 (〈O1〉,Λ) . (3.95)
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After that, we substitute this value of λ(Λ) into the expressions for all other observables:

O2 = f2(f−1
1 (〈O1〉,Λ),Λ)

O3 = f3(f−1
1 (〈O1〉,Λ),Λ) , etc. , (3.96)

and we take the limit Λ → ∞ at the end. If all measurable quantities O2, O3, . . . are found

to be finite at the end of the procedure, then the procedure is completed and one can check

O2, O3, . . . with experiments for the predictability of the theory. If O2, O3, . . . are still diver-

gent, we must go back to the beginning of the procedure and repeat it for the other parameters

in the model. If we are able to find finite results for all measurable quantities at the end of

these procedures, the theory is said to be renormalizable.

Let us return now to our problem and apply this formal procedure. LetO1 be the bound

state energy of our system and O2 be the scattering cross section of the particle from the Dirac

delta-center located at x = 0. Now we are going to regularize the system by introducing the

characteristic function:

ΘΛ(p) =

0 if |p| > Λ ,

1 if |p| ≤ Λ .
(3.97)

Firstly, let us insert the characteristic function into (3.90) and solve the integral forE = −nu2,

then

O1 = E = −

(
Λ2

2m

)
(
e

2π~2

mλ − 1
) . (3.98)

Since right-hand side is not real-analytic function in terms of λ (the right hand side of (3.98)

cannot be written as a geometric sum), this shows that the bound state energies cannot be

analyzed perturbatively. Next, we solve the above equation for λ and insert the experimentally

measured bound state energy, say E = −ν2 = −µ2. Therefore,

1

λ(Λ)
=

∫
R2

ΘΛ(p)
p2

2m
+ µ2

[d2p] , (3.99)

where λ(Λ) is called the bare coupling constant. Note that as Λ → ∞, λ(Λ) → 0. This
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is called the asymptotic freedom in quantum field theory. One should then check that the

scattering cross section of this problem is finite by choosing (3.99). For this reason, let us

rewrite the time-independent Schrödinger equation in two dimensions in the following form

(Merzbacher, 1961)

(
∆ + k2

)
ψ(r) =

2m

~2
V (r)ψ(r) , (3.100)

where E = ~2k2

2m
is the energy of the incoming particle and r = (x, y). This equation is an

inhomogeneous differential equation, so the Green’s function method would be useful. After

similar calculations as we did in one-dimensional scattering problem, the Green’s function in

two dimensions associated with − ~2

2m
∆ + V can be easily found as

G(r) =

∫
R2

e
ip·r
~

k2 − p2

~2

[d2p] . (3.101)

By using the polar coordinates, the above integral turns out to be

G(r) = − 1

4π2

∫ 2π

0

∫ ∞
0

e
ipr cos θ

~

p2 − ~2k2
p dp dθ . (3.102)

Since the integral representation of the Bessel function of the first kind is (Lebedev, 1965):

J0(x) =
1

2π

∫ 2π

0

eix cos θ dθ , (3.103)

the integral over θ can be evaluated, so that

G(r) = − 1

2π

∫ ∞
0

J0(pr~ )

p2 − ~2k2
p dp . (3.104)

By using an another integral representation of J0(x) (Lebedev, 1965):

J0(x) =
2

π

∫ ∞
1

sin(xt)√
t2 − 1

dt , (3.105)
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we obtain

G(r) = − 1

π2

∫ ∞
1

[∫ ∞
0

sin(prt~ )

p2 − ~2k2
p dp

]
1√
t2 − 1

dt . (3.106)

It is clear that

I(r) =

∫ ∞
0

sin(prt~ )

p2 − ~2k2
p dp =

1

2i

∫ ∞
0

e
iprt
~ − e− iprt~

p2 − ~2k2
p dp

=
1

2i

∫
R

e
iprt
~

p2 − ~2k2
p dp . (3.107)

After Feynman’s trick, the above integral becomes

I(+)
ε (r) =

1

2i

∫
R

e
iprt
~

p2 − (~2k2 + iε)
p dp . (3.108)

From Eq. (3.38), the simple poles are at p = ±
(
~k + iε

2~k

)
. After using the residue theorem

and then taking the limit ε→ 0, we obtain

lim
ε→0

I(+)
ε (r) = I(+)(r) =

π

2
eikrt . (3.109)

Therefore, Eq. (3.106) becomes

G(+)(r) = − 1

2π

∫ ∞
1

eikrt√
t2 − 1

dt . (3.110)

By using the integral representation of the Hankel function of the first kind of order zero

(Lebedev, 1965):

H
(1)
0 (z) =

2

πi

∫ ∞
1

eizt√
t2 − 1

dt , (3.111)
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the Green’s function in two dimensions becomes

G(+)(r− r′) = − i
4
H

(1)
0 (k|r− r′|) . (3.112)

Since the general solution to the scattering problem is given by

ψ(+)(r) = Neik·r +
2m

~2

∫
R2

G(+)(r− r′)V (r′)ψ(+)(r′) d2r′ , (3.113)

called the Lippmann-Schwinger equation in the coordinate representation in two dimensions

(Merzbacher, 1961), we obtain

ψ(+)(r) = Neik·r − im

2~2

∫
R2

H
(1)
0 (k|r− r′|)V (r′)ψ(+)(r′) d2r′ . (3.114)

If we substitute V (r) = −λ(Λ)δ(2)(r) into the above equation, we get

ψ(+)(r) = Neik·r +
imλ(Λ)

2~2
H

(1)
0 (kr)ψ(+)(0) . (3.115)

As r →∞, the asymptotic expansion of the Hankel function of the first kind of order zero is

given by (Lebedev, 1965):

imλ(Λ)

2~2
H

(1)
0 (kr) ∼ imλ(Λ)

2~2

√
2

πkr
ei(kr−

π
4 ) =

mλ(Λ)

~2
√

2πkr
ei(kr+

π
4 ) . (3.116)

Therefore, asymptotically Eq. (3.115) becomes

ψ(+)(r) ∼ Neik·r +
mλ(Λ)

~2
√

2πkr
ψ(+)(0)ei(kr+

π
4 ) . (3.117)

The asymptotic behavior of the wave function in two dimensions for the scattering problem is

expected to be

ψ(+)(r) ∼ Neik·r +
fk(r)√
r
ei(kr+

π
4 ) , (3.118)
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where fk(r) is the scattering amplitude. If we compare equations (3.117) and (3.118), we get

fΛ
k (r) =

mλ(Λ)ψ(+)(0)

~2
√

2πk
. (3.119)

In order to evaluate this expression, we must find λ(Λ)ψ(+)(0). For this reason, we take

the formal Fourier transform of ψ(r) = Neik·r, where N = (2π~)2 is the normalization

constant, and Eq. (3.100) with the potential V (r) = −λ(Λ)δ(r), then after Feynman’s trick,

the distributional solution of (3.100) is

ψ̂(+)(p) = (2π~)2δ(2)
(p
~
− k

)
+

2mλ(Λ)ψ(+)(0)

p2 − (~2k2 + iε)
. (3.120)

By substituting this solution into the formal inverse Fourier transform given by

ψ(+)(0) =

∫
R2

ψ̂(+)(p) [d2p] , (3.121)

we obtain

ψ(+)(0) = 1 + 2mλ(Λ)ψ(+)(0)

∫
R2

ΘΛ(p)

p2 − (~2k2 + iε)
[d2p] . (3.122)

Let us define IΛ
ε (k) = 2m

∫
R2

ΘΛ(p)
p2−(~2k2+iε)

[d2p]. Therefore,

λ(Λ)ψ(+)(0) =

[
1

λ(Λ)
− IΛ

ε (k)

]−1

=

[
2m

∫
R2

(
ΘΛ(p)

p2 + 2mµ2
− ΘΛ(p)

p2 − (~2k2 + iε)

)
[d2p]

]−1

, (3.123)

where 1
λ(Λ)

was chosen as in (3.99). After calculating this and taking the limit Λ → ∞, we

find

lim
Λ→∞

λ(Λ)ψ(+)(0) =

[
m

2π~2
ln

(
−~2k2 + iε

2mµ2

)]−1

. (3.124)
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By taking the limit ε→ 0+ yields

lim
ε→0+

[
lim

Λ→∞
λ(Λ)ψ(+)(0)

]
=
π~2

m

[
ln

(
~k√
2mµ

)
− iπ

2

]−1

, (3.125)

where we have chosen the principal branch of the logarithm while taking the limit. By insert-

ing this value into Eq. (3.119), we get

fk(r) =

√
π

2k

[
ln

(
~k√
2mµ

)
− iπ

2

]−1

. (3.126)

Notice that the scattering amplitude does not depend on θ, that is the scattering is isotropic,

which is physically expected. Since the scattering differential cross section is given by dσ
dθ

=

|f(θ)|2, the total cross section can be easily found as

O2 = σ =
4π2~√
2mE

 1

ln2
(
E
µ2

)
+ π2

 , (3.127)

which is the second measurable quantity and it is finite and completes the renormalization

procedure. Since the parameter µ appears due to the renormalization procedure, it is an exam-

ple of dimensional transmutation. Note that total cross section decreases as the bound state

energy −µ2 increases. The generalization for multiple Dirac delta centers can be done by the

above formulation. The result for two centers is given in (Altunkaynak, 2002) if the wave

number of incoming particle is perpendicular to the distance between the centers.

Let us calculate the bound state wave function now. In order to do this, we should first

write the regularized wave function ψΛ(x) and let us assume that limΛ→∞ 2πλ(Λ)ψΛ(0) = C,

where C is some constant. Since the regularized momentum space wave function

ψ̂Λ(p) =
λ(Λ)ψΛ(0)

p2

2m
+ µ2

, (3.128)

where we have used Eq. (3.89), we obtain the bound state wave function for point interaction
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in R2 after taking the limit Λ→∞

ψ(x) =

√
2mµ

~
√
π
K0

(√
2mµ

~
|x|

)
, (3.129)

where we find C from the normalization condition. Here, we have used the integral represen-

tation of the modified Bessel function of the third kind (Lebedev, 1965)

K0(ab) =

∫ ∞
0

x

x2 + a2
J0(bx) dx , (3.130)

and the integral representation of the Bessel function of the first kind given in Eq. (3.103).

Remark 3.7 We will give a more rigorous proof of the above result in Chapter 4.

Remark 3.8 The asymptotic expansion of K0 for small values of x is given by (Lebedev,

1965)

K0(x) ∼ − ln
(x

2

)
+ γ , (3.131)

where γ is the Euler’s constant. Hence, the bound state wave function (3.129) blows up near

the origin.

Lemma 3.2 The bound state wave function (3.129) is an element of L2(R2) but ∆ψ(x) 6∈
L2(R2).

Proof In polar coordinates, we have

∫
R2

|ψ(x)|2 d2x =
4mµ2

~2

∫ ∞
0

r

[
K0

(√
2mµ

~
r

)]2

dr . (3.132)

If we change the variables
√

2mµ
~ r = y, we obtain

∫
R2

|ψ(x)|2 d2x = 2

∫ ∞
0

y[K0(y)]2 dy = 1 , (3.133)
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where we have used
∫∞

0
y[K0(y)]2 dy = 1

2
(Gradshteyn & Ryzhik, 2000). This means that

the wave function is normalized and an element of L2(R2). However, consider

∫
R2

|∆ψ(x)|2 d2x =
2mµ2

~2π

∫
R2

∣∣∣∆K0

(√
2mµ

~
|x|

)∣∣∣2 d2x

=
4mµ2

~2

∫ ∞
0

[
d2

dr2
K0

(√
2mµ

~
r

)]2

r dr . (3.134)

Here, we have used polar coordinates. From recurrence relations of the Bessel functions

(Lebedev, 1965), we have

d2K0(ar)

dr2
= a2K0(ar) +

a

r
K1(ar) . (3.135)

Therefore,

∫ ∞
0

[
d2

dr2
K0

(√
2mµ

~
r

)]2

r dr =

∫ ∞
0

[2mµ2

~2
K0

(√
2mµ

~
r

)

+

√
2mµ

~r
K1

(√
2mµ

~
r

)]2

r dr . (3.136)

From the asymptotic expansion of K0 given by (3.131), we have

∫ ∞
0

K0(ar)K1(ar) dr ∼ a

∫ ∞
0

[
− ln

(ar
2

)
+ γ
] 1

r
dr , (3.137)

where a =
√

2mµ
~ and we have used K1(ar) = −adK0(ar)

dr
(Lebedev, 1965). But, one can

easily see that this integral is divergent near r = 0 because of the second term. �
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3.6. Formal Analysis of Finitely Many Point Interactions in Two

Dimensions

The time-independent Schrödinger equation in two dimensions with N point interac-

tions (formally) is

− ~2

2m
∆ψ(x)−

N∑
i=1

λiδ
(2)(x− ai)ψ(x) = −ν2ψ(x) , (3.138)

where ai is the location of the i-th point interaction for i = 1, . . . , N . Suppose that ai 6= aj

for i 6= j and let dmin = mini,j |ai − aj| > 0. By applying the formal Fourier transform, we

obtain

(
p2

2m
+ ν2

)
ψ̂(p) =

N∑
i=1

λiψ(ai)e
− ip·ai~ , (3.139)

or, it can be written as a singular integral equation:

ψ̂(p) =

∫
R2

[
N∑
i=1

λie
i(q−p)·ai

~

ν2
− q2(2π~)2δ(2)(q− p)

2mν2

]
ψ̂(q) [d2q] , (3.140)

where the expression inside of the bracket is the integral kernel.

Let us denote λiψ(ai) = Ai in Eq. (3.139). The consistency after the regularization

implies

[
1

λi
−
∫
R2

ΘΛ(p)
p2

2m
+ ν2

[d2p]

]
Ai −

∫
R2

N∑
j=1
j 6=i

[
e
ip·(ai−aj)

~ ΘΛ(p)
p2

2m
+ ν2

[d2p]

]
Aj = 0 . (3.141)

This equation can be written as a matrix equation:

N∑
j=1

ΦΛ
ij(ν)Aj = 0 , (3.142)
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where

ΦΛ
ij(ν) =



1

λi(Λ)
−
∫
R2

ΘΛ(p)
p2

2m
+ ν2

[d2p] if i = j ,

−
∫
R2

e
ip·(ai−aj)

~ ΘΛ(p)
p2

2m
+ ν2

[d2p] if i 6= j ,

(3.143)

is called the regularized principal matrix. In this problem, we may have several measurable

quantities, namely

O1 : The bound state energy of the particle to the i-th point interaction in the absence of the

other centers.

O2 : The bound state energy of the particle to the i-th and j-th point interactions in the absence

of the other centers.
...

ON : The bound state energy of the particle to the N point interactions.

ON+1 : Scattering cross section of the particle from the N point interactions.

For N = 1 sector, det ΦΛ
ij(ν) = 0 reduces to

1

λi(Λ)
=

∫
R2

ΘΛ(p)
p2

2m
+ µ2

i

[d2p] , (3.144)

where −µ2
i is the experimentally measured bound state energy of the particle to the i-th point

interaction. We then substitute this value of λi(Λ) to check whether the other measurable

quantities are finite or not. For this purpose, we take the limit Λ → ∞ after inserting this

value into Eq. (3.143), then we find the renormalized principal matrix:

Φij(ν) =



m

π~2
ln

(
ν

µi

)
if i = j ,

− m

π~2
K0

(
ν
√

2m|ai − aj|
~

)
if i 6= j ,

(3.145)

where we have used the integral representation of the Bessel function of the first kind J0 and

the modified Bessel function of the third kind K0 which were given in Eq. (3.103) and Eq.

(3.130), respectively.
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This matrix can also be written as

Φij(ν) = δij
m

π~2
ln

(
ν

µi

)
+ (1− δij)

(
− m

π~2

)
K0

(
ν
√

2m|ai − aj|
~

)
, (3.146)

where δij is the Kronecker’s delta given in (2.1).

Remark 3.9 In contrast to the one-dimensional case for N point interactions, the centers

of the point interactions here are not allowed to coincide because of the divergence in the

off-diagonal term of the renormalized principal matrix (3.145). There is a nonphysical singu-

larity.

3.6.1. Two-center Case

Theorem 3.6 For two-center case, there are at most two bound states. If d > dcritical =
√

2~eγ√
mµ1µ2

, there are exactly two bound states.

Proof For N = 2 in Eq. (3.145), we have a 2× 2 renormalized principal matrix:

Φ(ν) =
m

π~2

 ln
(
ν
µ1

)
−K0

(
ν
√

2m|a1−a2|
~

)
−K0

(
ν
√

2m|a1−a2|
~

)
ln
(
ν
µ2

)  . (3.147)

We need to solve det Φ(ν) = 0 for the purpose of finding the bound state energies. Then,

ln

(
ν

µ1

)
ln

(
ν

µ2

)
= K2

0

(
ν

µd

)
, (3.148)

where µd = ~
d
√

2m
and d = |a1 − a2|. Let us write this equation in terms of the dimensionless

variables:

ln(α1x) ln(α2x) = K2
0(x) , (3.149)

where x = ν
µd

, α1 = µd
µ1

and α2 = µd
µ2

. Since this equation is a transcendental equation, it

is difficult to find the exact solution so we are going to study the equation graphically and
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asymptotically. Let us choose α1 > α2 without loss of generality. Firstly, let us show that we

have at least one bound state energy.

K0
2HxL

lnHΑ1 xL lnHΑ2 xL

1 \ Α1 1 \ Α2 x

Figure 3.8. Graph of ln(α1x) ln(α2x) and K2
0(x) for α1 = 2 and α2 = 0.5

On the interval
(

0, 1
α1

)
, ln(α1x) ln(α2x) is monotonically decreasing and positive

function. When x > 1
α2

, the function is monotonically increasing and positive. It is easy to

see that ln(α1x) ln(α2x) has a local minimum at x = 1√
α1α2

, 1
α1
< 1√

α1α2
< 1

α2
(see Figure

3.8). Also, K2
0(x) is a monotonically decreasing function for x > 0. So, they should intersect

each other at only one point for x > 1
α2

. Then, we have at least one root.

K0
2 HxL

1 \ Α1

1 \ Α2

lnHΑ1 xL lnHΑ2 xL

x

Figure 3.9. Graph of ln(α1x) ln(α2x) and K2
0(x) for α1 = 9 and α2 = 2.5
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If α1 and α2 are properly chosen, one can see that there may exist two bound state

energies (see Figure 3.9). The necessary condition to have two roots is that

ln(α1x) ln(α2x) &
[
− ln

(x
2

)
+ γ
]2

, (3.150)

where we have used the asymptotic expansion of K0(x) near x = 0, which is given in Eq.

(3.131). The above equation can be rewritten as

ln(α1x)

[
ln(α1x) + ln

(
α2

α1

)]
&

[
− ln

(
α1x

α1

)
+ ln 2 + ln eγ

]2

. (3.151)

Hence,

ln(α1x)

[
2 ln(2α1e

γ) + ln

(
α2

α1

)]
& ln2(2α1e

γ) > 0 . (3.152)

We are interested in the region x < 1
α1

, so ln(α1x) < 0. Therefore,

ln

(
α2

α1

)
+ 2 ln (2α1e

γ) < 0 . (3.153)

After solving this, we obtain

d >

√
2~eγ

√
mµ1µ2

= dcritical , (3.154)

which is the condition for the existence of two bound states.

One also easily check that for d >
√

2~eγ√
mµ1µ2

,

∣∣∣∣ ddx [ln(α1x) ln(α2x)]

∣∣∣∣ > ∣∣∣∣ ddxK2
0(x)

∣∣∣∣ , (3.155)

near x = 0. (This condition guarantees that the function ln(α1x) ln(α2x) should blow up

faster than K2
0(x) near x = 0.)
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We can say that if the distance between the centers of point interactions is greater than

some critical distance, then we have two bound state energies. Otherwise, we have one bound

state energy. �

We are going to show also that for N point interactions, we have at most N bound states. But,

this is going to be shown in the next chapter using the resolvent formulation of the problem.

In particular, let us take µ = µ1 = µ2 in Eq. (3.148). Then,

ln

(
ν

µ

)
= ±K0

(
d
√

2m

~
ν

)
. (3.156)

We are going to find the difference between odd and even-parity energy levels4E as d→∞
as we did for N point interactions in one dimension. The asymptotic expansion of K0(x) as

x→∞ is given by (Lebedev, 1965)

K0(x) ∼
√

π

2x
e−x . (3.157)

Therefore, for the positive root ν+, Eq. (3.156) becomes

ln

(
ν+

µ

)
∼

√
π~

2d
√

2mν+

e−
2d
√

2mν+
~ . (3.158)

As d→∞, the left-hand side of the above equation dominates so that we treat the right-hand

side of this equation as a correction and it goes to zero as d→∞. So that we obtain ν+ ∼ µ

for the first order by the successive approximation (Olver, 1974). After substituting this value

of ν+ into the right-hand side of Eq. (3.158) for the second order approximation, we have

ν+ ∼ µ exp

[√
π~

2dµ
√

2m
e−

2dµ
√

2m
~

]
= µeτ , (3.159)

where τ ≡
√

π~
2dµ
√

2m
e−

2dµ
√

2m
~ for simplicity. One can similarly obtain that

ν− ∼ µe−τ . (3.160)
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Then,

4E = −ν2
− + ν2

+ ∼ 2µ2 sinh(2τ) . (3.161)

Since τ → 0 exponentially as d → ∞, 4E → 0 and that means the energy levels become

degenerate.

Finally, we must notice that the linear eigenvalue problem given at the beginning,

Hψ = Eψ, is converted to a non-linear eigenvalue algebraic problem det Φ(ν) = 0 after the

renormalization procedure.

Remark 3.10 (Point Interactions in R3)

The above analysis can be also easily extended to three dimensions and the procedure is

basically the same. Then, the regularized principle matrix is found as

ΦΛ
ij(ν) =



1

λi(Λ)
−
∫
R3

ΘΛ(p)
p2

2m
+ ν2

[d3p] if i = j ,

−
∫
R3

e
ip·(ai−aj)

~ ΘΛ(p)
p2

2m
+ ν2

[d3p] if i 6= j .

(3.162)

After choosing 1
λi(Λ)

=
∫
R3

ΘΛ(p)
p2

2m
+µ2

i

[d3p], one can apply the same procedure as we did for

two-dimensional case and obtain

lim
Λ→∞

ΦΛ
ij(ν) = Φij(ν) =



√
m

2
√

2π~3
(ν − µi) if i = j ,

− m

2π~2

e−
ν|ai−aj |

√
2m

~

|ai − aj|
if i 6= j ,

(3.163)

which is the renormalized principal matrix in three dimensions. Note that Remark 3.9 is also

consistent with this problem, namely, we have a divergence problem due to the off-diagonal

term if the centers coincide.
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Remark 3.11 (Two-center Case in R3)

From (3.163), the transcendental equation for this system can be found as

(ν − µ1)(ν − µ2) =
2m~2

d2
e−

2d
√

2mν
~ . (3.164)

By denoting ν = x, µ1 = c1, µ2 = c2, 2m~2

d2 = A and 2d
√

2m
~ = β, the above equation becomes

(x− c1)(x− c2) = Ae−βx . (3.165)

This above equation has the same form with (3.57). After the similar calculations as we did

in two dimensions, we find a

d >

√
2m

µ1µ2

~ = dcritical , (3.166)

condition for the distance between the centers of point interactions in order to have two bound

states in three dimensions. If this condition is not satisfied, then we have only one bound state.

But, we are mainly going to discuss the problem in two dimensions.

We can also determine the flows of the eigenvalues of the renormalized principal ma-

trix for two, three and four-center cases.

3.6.2. Flows of the Eigenvalues in Two-center Case in Two Dimensions

Let µ1 = µ2 = µ in (3.147). Then, the eigenvalues of the renormalized principal

matrix can be easily found as

w1(ν) =
1

π

[
ln

(
ν

µ

)
+K0(

√
2νd)

]
, (3.167)

and

w2(ν) =
1

π

[
ln

(
ν

µ

)
−K0(

√
2νd)

]
. (3.168)
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(We have chosen m = ~ = 1 for simplicity and numerical calculations.) So, w1(ν) 6= w2(ν)

(no degeneracy). The flows of the eigenvalues for different values of d = [1, 100] can be seen

in Figure 3.10.

Ν/Μ
0.5 1.0 1.5 2.0 2.5 3.0

-0.8

-0.6

-0.4

-0.2

0.2

Figure 3.10. Flows of the eigenvalues w1, w2 for d = [1, 100] in two-center case

In particular, for
√

2µd = 1, it can be seen from Figure 3.11 that there exists only one

bound state energy which is the ground state energy as well. For
√

2µd = 5, we have two

bound state energies (see Figure 3.12).

ground state energy

w2
w1

Ν/Μ
0.5 1.0 1.5 2.0 2.5 3.0

-0.6

-0.4

-0.2

0.2

Figure 3.11. Flows of the eigenvalues w1, w2 for
√

2µd = 1

Remark 3.12 We see that the above curve in Figure 3.11 does not intersect the horizontal

axis, which means that there cannot be a bound state solution associated with w1. The reason

lies in the fact that the renormalized principal matrix is not analytic at ν = 0.
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second state energy

ground state energy

w1

w2

Ν/Μ
0.5 1.0 1.5 2.0 2.5 3.0

-0.8

-0.6

-0.4

-0.2

0.2

Figure 3.12. Flows of the eigenvalues w1, w2 for
√

2µd = 5

3.6.3. Flows of the Eigenvalues in Three-center Case in Two Dimensions

Let us consider three point interactions centered at the vertices of an equilateral trian-

gle with µ1 = µ2 = µ3 = µ in two dimensions. Let d be one of the sides of the equilateral

triangle.

d d

d

Figure 3.13. Equilateral triangle with three point interactions
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Then, from Eq. (3.145), we have the following explicit form of the renormalized

principle matrix

Φ(ν) =
1

π


ln
(
ν
µ

)
−K0(

√
2νd) −K0(

√
2νd)

−K0(
√

2νd) ln
(
ν
µ

)
−K0(

√
2νd)

−K0(
√

2νd) −K0(
√

2νd) ln
(
ν
µ

)
 , (3.169)

where we have chosen units such that m = ~ = 1. The eigenvalues of the above matrix can

be calculated as

w1(ν) =
1

π

[
ln

(
ν

µ

)
+K0(

√
2νd)

]
= w2(ν) (2-fold degeneracy) , (3.170)

and

w3(ν) =
1

π

[
ln

(
ν

µ

)
− 2K0(

√
2νd)

]
. (3.171)

The flows of the eigenvalues for different values of d = [1, 500] are shown in Figure 3.14.

Ν/Μ
0.5 1.0 1.5 2.0 2.5 3.0

-0.8

-0.6

-0.4

-0.2

0.2

Figure 3.14. Flows of the eigenvalues w1, w2, w3 for d = [1, 500] in three-center case
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In particular, for
√

2µd = 1, we have only the ground state energy (see Figure 3.15)

and for
√

2µd = 5, we have two bound state energies with one of them has a 2-fold degeneracy

(see Figure 3.16).

ground state energy

Ν/Μ

w3

w1, w2

0.5 1.0 1.5 2.0 2.5 3.0

-0.4

-0.3

-0.2

-0.1

0.1

0.2

0.3

Figure 3.15. Flows of the eigenvalues w1, w2, w3 for
√

2µd = 1

2-fold degeneracy

ground state energy

Ν/Μ

w1, w2

w3

0.5 1.0 1.5 2.0 2.5 3.0

-0.8

-0.6

-0.4

-0.2

0.2

Figure 3.16. Flows of the eigenvalues w1, w2, w3 for
√

2µd = 5
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3.6.4. Flows of the Eigenvalues in Four-center Case in Two Dimensions

Let us now examine four point interactions centered at the vertices of a square with

µ1 = µ2 = µ3 = µ4 = µ and m = ~ = 1 in two dimensions. Let d be one of the sides of the

square.

d41

d12

d34

d23

Figure 3.17. Square with four point interactions

Then the renormalized matrix (3.145) becomes

Φ(ν) =
1

π


ln
(
ν
µ

)
−K0(

√
2νd12) −K0(

√
2νd13) −K0(

√
2νd14)

−K0(
√

2νd21) ln
(
ν
µ

)
−K0(

√
2νd23) −K0(

√
2νd24)

−K0(
√

2νd31) −K0(
√

2νd32) ln
(
ν
µ

)
−K0(

√
2νd34)

−K0(
√

2νd41) −K0(
√

2νd42) −K0(
√

2νd43) ln
(
ν
µ

)

 (3.172)

where we denoted dij = |ai−aj|. Since d12 = d21 = d23 = d32 = d34 = d43 = d41 = d14 = d

and d13 = d31 = d24 = d42 = d
√

2, the above matrix becomes

Φ(ν) =
1

π


ln
(
ν
µ

)
−K0(

√
2νd) −K0(2νd) −K0(

√
2νd)

−K0(
√

2νd) ln
(
ν
µ

)
−K0(

√
2νd) −K0(2νd)

−K0(2νd) −K0(
√

2νd) ln
(
ν
µ

)
−K0(

√
2νd)

−K0(
√

2νd) −K0(2νd) −K0(
√

2νd) ln
(
ν
µ

)

 , (3.173)

which is a circulant matrix (Aldrovandi, 2001). In general, N × N circulant matrices have
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this form



c0 cN−1 . . . c2 c1

c1 c0 cN−1 . . . c2

... c1 c0
. . . ...

cN−2 . . .
. . . . . . cN−1

cN−1 cN−2 . . . c1 c0


, (3.174)

and the eigenvalues of this matrix are given by (Aldrovandi, 2001)

wj = c0 + cN−1Uj + cN−2U
2
j + . . .+ c1U

N−1
j , (3.175)

where j = 0, 1, . . . , N − 1 and Uj = e
2πij
N . Therefore, the eigenvalues of the matrix (3.173)

are

w1(ν) =
1

π

[
ln

(
ν

µ

)
− 2K0(

√
2νd)−K0(2νd)

]
, (3.176)

and

w2(ν) =
1

π

[
ln

(
ν

µ

)
+K0(2νd)

]
= w3(ν) (2-fold degeneracy) , (3.177)

and

w4(ν) =
1

π

[
ln

(
ν

µ

)
+ 2K0(

√
2νd)−K0(2νd)

]
. (3.178)

For different values of d = [1, 500], the flows of the eigenvalues can be seen from Figure 3.18.

Also, we have three bound state energies with one of them has 2-fold degeneracy for
√

2µd =

1 and four bound state energies with one of them has 2-fold degeneracy for
√

2µd = 5 which

are shown in Figure 3.19 and 3.20, respectively.
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Ν/Μ
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-0.8

-0.6

-0.4

-0.2
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Figure 3.18. Flows of the eigenvalues w1, w2, w3, w4 for d = [1, 500] in four-center case

ground state energy

2-fold degeneracy

Ν/Μ

w1

w4

w3w2,

0.5 1.0 1.5 2.0 2.5 3.0

-0.4

-0.2

0.2

Figure 3.19. Flows of the eigenvalues w1, w2, w3, w4 for
√

2µd = 1
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2-fold degeneracy

ground state energy

fourth state energy

Ν/Μ

w2, w3

w1

w4

0.5 1.0 1.5 2.0 2.5 3.0

-0.8

-0.6

-0.4

-0.2

0.2

Figure 3.20. Flows of the eigenvalues w1, w2, w3, w4 for
√

2µd = 5

These ideas can be generalized for the point interactions located at the vertices of the

regular polygons because they all have a form of a circulant matrix and their eigenvalues can

be found via the formula given in (3.175). After that one can similarly plot the flows of the

eigenvalues.
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CHAPTER 4

RESOLVENT FORMULA FOR POINT

INTERACTIONS

Since the resolvent includes all the information about the spectrum of the operators

and it allows us to discuss the renormalization procedure in a more rigorous way, we will use

this approach from now on.

4.1. Resolvent

Definition 4.1 (Hislop & Sigal, 1996) (Reed & Simon, 1980)

Let H be a linear operator on a Banach space X with domain D(H) ⊂ X .

• The spectrum of H , σ(H), is the set of all points λ ∈ C for which H − λI is not

invertible.

• The resolvent set ofH , ρ(H), is the set of all points λ ∈ C for whichH−λI is invertible.

• If λ ∈ ρ(H), then the inverse of H − λ is called the resolvent of H at λ and is written

as RH(λ) := (H − λI)−1.

When the operator is defined in the context, it can be simply written as R(λ).

Definition 4.2 (Reed & Simon, 1980)

Let X be a Banach space and let D be a region in the complex plane, i.e., a connected open

subset of C. A function, T (z) defined on D and taking values in the set of all linear operators

on X to Y , namely B(X, Y ) is said to be analytic at z0 ∈ D if limh→0
T (z+h)−T (z)

h
exists in

B(X, Y ).

Theorem 4.1 (Hislop & Sigal, 1996)

The resolvent set ρ(H) is an open subset of C (and hence σ(H) is closed) and RH(λ) is an

analytic (holomorphic) operator-valued function of λ on ρ(H).

Definition 4.3 (Hislop & Sigal, 1996)

• If λ ∈ σ(H) is such thatKer(H−λI) 6= {0}, then λ is an eigenvalue ofH and any u ∈
Ker(H − λI), u 6= 0, is an eigenvector of H for λ and satisfies Hu = λu. Moreover,
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dim(Ker(H − λI)) is called the (geometric) multiplicity of λ and Ker(H − λI) is

the (geometric) eigenspace of H at λ. (Note that the kernel Ker(H − λI) is a linear

subspace of X .)

• The discrete (point) spectrum of H , σd(H), is the set of all eigenvalues of H with finite

(algebraic) multiplicity and which are isolated points of σ(H).

• The essential spectrum ofH is defined as the complement of σd(H) in σ(H): σess(H) ≡
σ(H) \ σd(H).

Remark 4.1 Space-time behavior of the wave function are related to the classification of

spectrum according to the resolvent. For instance, bound state energies are associated with

point spectrum and scattering states are associated with absolutely continuous spectrum (for

the definition of absolutely continuous spectrum, see (Reed & Simon, 1978)).

Theorem 4.2 (Hislop & Sigal, 1996)

Let X be a complex Banach space, H ∈ B(X,X) and λ, µ ∈ ρ(H) where B(X,X) is

the space of bounded linear operators. Then, the resolvent R(λ) of H satisfies the resolvent

equation or so called the first resolvent identity:

R(λ)−R(µ) = (λ− µ)R(λ)R(µ) , (4.1)

and

R(λ)R(µ) = R(µ)R(λ) . (4.2)

In addition, resolvent also satisfies the second resolvent identity:

RH(λ)−RA(λ) = RH(λ)(H − A)RA(λ)

= RH(λ)(A−H)RA(λ) , (4.3)

where A ∈ B(X,X).

Definition 4.4 (Riesz Integral Representation) (Hislop & Sigal, 1996)

LetH be a closed operator onX and z0 be an isolated point of σ(H). Then, for an admissible
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contour Γz0

Pz0 := − 1

2πi

∮
Γz0

RH(z) dz , (4.4)

is called the Riesz integral representation for H and z0, where admissible contour is a simple

closed contour Γz0 around z0, whose closure of the region bounded by the contour containing

z0 intersects σ(H) only at z0 (see Figure 4.1).

Gz0

z0

C

ΣHHL

ΣHHL

Figure 4.1. Admissible contour Γz0 for H and z0

Proposition 4.1 (Hislop & Sigal, 1996)

Let Pz0 be the Riesz integral for H and z0;

1. Pz0 is a projection.

2. Ran(Pz0) ⊃ Ker(H − z0I).

3. If X is a Hilbert space and H is self-adjoint, therefore Pz0 is the orthogonal projection

onto Ker(H − z0I).

Here, Ran denotes the range of the operator.

(For the proof, one can consult on Appendix C.1.)

We now apply the resolvent formalism to our problem.
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4.2. Resolvent of Free Hamiltonian with Point Interaction in One

Dimension

Lemma 4.1 The resolvent of point interaction Hamiltonian− ~2

2m
d2

dx2−λδ(x) in one dimension

is given by

R(p, q;E) =
(2π~)δ(p− q)

q2

2m
− E

+
1

p2

2m
− E

1

Φ(E)

1
q2

2m
− E

, (4.5)

where Φ(E) = λ−1−
∫
R

1
p2

2m
−E

[dp]. Also,R0(p, q;E) = (2π~)δ(p−q)
q2

2m
−E

is the free resolvent kernel

in the momentum representation.

Proof The time-independent Schrödinger equation in one dimension with a point interac-

tion centered at the origin was given in Eq. (3.6). In order to find the resolvent of the formal

Hamiltonian, we must solve (H − E) |ψ〉 = |ρ〉. (Since solving |ψ〉 is equivalent to finding

the resolvent, |ψ〉 = (H − E)−1 |ρ〉 = R(E) |ρ〉.) In the coordinate representation:

− ~2

2m

d2ψ(x)

dx2
− λδ(x)ψ(x)− Eψ(x) = ρ(x) , (4.6)

where ρ is a sufficiently regular function such that all the expressions below make sense and

E ∈ C. By applying the formal Fourier transform to the above equation, we can easily find

ψ̂(p) =
C

p2

2m
− E

+
ρ̂(p)

p2

2m
− E

, (4.7)

where C = λψ(0). Then, the consistency condition implies

C =

∫
R

ρ̂(p)
p2

2m
−E

[dp][
λ−1 −

∫
R

1
p2

2m
−E

[dp]

] . (4.8)

Let us substitute Eq. (4.8) into Eq. (4.7) and get

ψ̂(p) =

∫
R

[
(2π~)δ(p− q)

q2

2m
− E

+
1

p2

2m
− E

1

Φ(E)

1
q2

2m
− E

]
ρ̂(q) [dq] , (4.9)
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where Φ(E) = λ−1 −
∫
R

1
p2

2m
−E

[dp] is called the principal function (Rajeev, 1999). By

comparing (4.9) with its integral form

ψ̂(p) =

∫
R
R(p, q;E)ρ̂(q) [dq] , (4.10)

the resolvent kernel is found to be (4.5). �

Theorem 4.3 The bound state energy and corresponding wave function of the point interac-

tion in one dimension are (3.7) and (3.8), respectively.

Proof After evaluating the integral in Φ(E), we have

Φ(E) =
1

λ
−
√
m

~
1√
−2E

. (4.11)

The poles of the resolvent kernel gives the point spectrum (bound state energies) and we

expect that poles in the negative real E axis should only come from zeros of the principal

function Φ(E) due to the fact that the free resolvent kernel R0(p, q;E) has no pole in the

negative real axis. Hence, Φ(E) = 0 gives us (3.7). In order to find the bound state wave

function, we are going to use Definition 4.4. This representation can be written in this form:

1

2πi

∮
Γ

R(E) dE = − |ψ〉 〈ψ| , (4.12)

where Γ is the contour which includes the isolated pole E = −mλ2

2~2 of R(E) and |ψ〉 〈ψ| (in
the Dirac’s bra-ket notation or it can be written as (·, ψ)ψ) is the projection operator onto

the eigenspaces of the bound state energy E = −mλ2

2~2 . In the momentum representation, the

above formula becomes

1

2πi

∮
Γ

R(p, q;E) dE = −ψ̂(p)ψ̂(q) . (4.13)

Since the free resolvent kernel is analytic inside Γ (see Figure 4.2), we obtain

ψ̂(p) =

√
mλ

3
2

~
1

p2

2m
+ mλ2

2~2

. (4.14)
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E =
mΛ

2

2 Ñ
2

-

G

ReHEL

ImHEL

Figure 4.2. The contour enclosing the simple pole −mλ2

2~2

By substituting this into the formal inverse Fourier transform and using the residue theorem,

we obtain the coordinate representation of the bound state wave function (3.8). �

Proposition 4.2 The spectrum of the free HamiltonianH0 is the positive real line, i.e., σ(H0) ∈
[0,∞).

Proof

(
R0ψ̂

)
(p) = 〈p|R0(E)|ψ̂〉 =

∫
R
R0(p, q;E)ψ̂(q) [dq] =

∫
R

(2π~)δ(p− q)
q2

2m
− E

ψ̂(q) [dq]

=
ψ̂(p)
p2

2m
− E

. (4.15)

If E ∈ [0,∞), then R0ψ̂ becomes unbounded. Therefore, σ(H0) ∈ [0,∞). �

Corollary 4.1

1

2πi

∮
Γ

R0(p, q;E) dE = 0 , (4.16)
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where the contour Γ is chosen in Figure 4.2.

Proposition 4.3 The resolvent kernel in the coordinate representation is given by

R(x, y;E) =

∫
R2

e
ipx
~ R(p, q;E)e−

iqy
~ [dp][dq] . (4.17)

Proof By using Dirac’s bra-ket notation:

R(x, y;E) = 〈x|R(E)|y〉 =

∫
R2

〈x|p〉〈p|R(E)|q〉〈q|y〉 [dp][dq] , (4.18)

where we used the completeness relation
∫
R |p〉 〈p| [dp] = I . Since 〈x|p〉 = e

ipx
~ and 〈q|y〉 =

e−
iqy
~ , we immediately obtain the result. �

Corollary 4.2 The resolvent kernel in the coordinate representation for the one-dimensional

Schrödinger operator with a point interaction is

R(x, y;E) =

∫
R

e
ip(x−y)

~

p2

2m
− E

[dp] +

∫
R2

e
ipx
~

p2

2m
− E

Φ−1(E)
e−

iqy
~

q2

2m
− E

[dp][dq] , (4.19)

where Φ(E) is given in Eq. (4.11). The integral representation of the free resolvent kernel in

the coordinate representation is given by

R0(x, y;E) =

∫
R

e
ip(x−y)

~

p2

2m
− E

[dp] . (4.20)

Then, Eq. (4.19) can be written in the following form:

R(x, y;E) = R0(x, y;E) +R0(x, 0;E)Φ−1(E)R0(0, y;E) . (4.21)
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4.3. Resolvent of Free Hamiltonian with Point Interaction in Two

Dimensions

Theorem 4.4 The resolvent kernel of the Hamiltonian for point interaction in two dimensions

after the renormalization procedure is given by

R(p,q;E) =
(2π~)2δ(2)(p− q)

q2

2m
− E

+
1

p2

2m
− E

Φ−1(E)
1

q2

2m
− E

, (4.22)

where Φ(E) = m
2π~2 ln

(
− E
µ2

)
.

Proof The inhomogeneous Schrödinger equation for our problem in two dimensions is

− ~2

2m
∆ψ(x)− λδ(2)(x)ψ(x)− Eψ(x) = ρ(x) . (4.23)

The resolvent kernel can be found in analogy with the one-dimensional case except that the

expression after the formal Fourier transform must be regularized due to the divergence. The

result is

(
p2

2m
− E

)
ψ̂Λ(p)− λ(Λ)ΘΛ(p)

∫
R2

ΘΛ(q)ψ̂Λ(q) [d2q] = ρ̂Λ(p) , (4.24)

where ΘΛ(p) is inserted to preserve the symmetry in the resolvent kernel (R(x,y;E) =

R∗(y,x;E)) in the regularization procedure. Then, the solution ψ̂Λ(p) becomes

ψ̂Λ(p) =
ρ̂Λ(p)
p2

2m
− E

+
ΘΛ(p)
p2

2m
− E

λ(Λ)C(Λ) , (4.25)

where C(Λ) =
∫
R2 ΘΛ(q)ψ̂Λ(q) [d2q]. The consistency condition implies that

C(Λ) =

∫
R2

ΘΛ(q)

[
ρ̂Λ(q)
q2

2m
− E

+
ΘΛ(q)
q2

2m
− E

λ(Λ)C(Λ)

]
[d2q] , (4.26)
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or

λ(Λ)C(Λ)

[
λ−1(Λ)−

∫
R2

ΘΛ(p)
p2

2m
− E

[d2p]

]
=

∫
R2

ΘΛ(q)ρ̂Λ(q)
q2

2m
− E

[d2q] , (4.27)

where we have used Θ2
Λ(q) = ΘΛ(q). By substituting this value of λ(Λ)C(Λ) into the (4.25)

with the choice of λ−1(Λ) given in (3.99), we have

ψ̂Λ(p) =
ρ̂Λ(p)
p2

2m
− E

+
ΘΛ(p)
p2

2m
− E

1[∫
R2

ΘΛ(p)
p2

2m
+µ2

[d2p]−
∫
R2

ΘΛ(p)
p2

2m
−E

[d2p]

]
×

∫
R2

ΘΛ(q)
q2

2m
− E

ρ̂Λ(q) [d2q] . (4.28)

Now we take the limit Λ→∞ and find

ψ̂(p) =
ρ̂(p)

p2

2m
− E

+
1

p2

2m
− E

1

Φ(E)

∫
R2

ρ̂(q)
q2

2m
− E

[d2q] , (4.29)

where

Φ(E) =
m

2π~2
ln

(
−E
µ2

)
, (4.30)

is called the renormalized principal function. From the above solution, we can immediately

find the resolvent kernel in the momentum representation (4.22). �

Lemma 4.2 The bound state wave function in two dimensions is given by (3.129).

Proof By using the Riesz integral representation:

1

2πi

∮
Γ

R(p,q;E) dE = −ψ̂(p)ψ̂(q) , (4.31)
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where Γ is the contour enclosing the pole E = −µ2 which is found from Φ(E) = 0 in Eq.

(4.30), the wave function in the momentum representation is

ψ̂(p) =

√
2π

m
µ~

1
p2

2m
+ µ2

, (4.32)

after the evolution of the contour integral. By substituting this into the inverse formal Fourier

transform, the wave function in the coordinate representation can be found exactly in (3.129).

�

Theorem 4.5 The resolvent kernel in the coordinate representation is given by

R(x,y;E) = R0(x,y;E) +R0(x,0;E)Φ−1(E)R0(0,y;E) . (4.33)

Proof R(x,y;E) is related to the resolvent kernel in the momentum representation by

R(x,y;E) =

∫
R4

e
ip·x
~ R(p,q;E)e−

iq·y
~ [d2p][d2q] . (4.34)

(One can prove this also as in one-dimensional case.) Hence, after inserting R(p,q;E) found

in (4.22) into (4.34), we obtain

R(x,y;E) =

∫
R2

e
ip·(x−y)

~

p2

2m
− E

[d2p] +

∫
R4

e
ip·x
~

p2

2m
− E

Φ−1(E)
e−

iq·y
~

q2

2m
− E

[d2p][d2q] , (4.35)

which can also be written as (4.33) with using Eq. (4.20). �
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4.4. Resolvent of Free Hamiltonian with Finitely Many Point

Interactions in Two Dimensions

Theorem 4.6 The resolvent of finitely many point interactions in R2 after the renormalization

procedure is given by

R(p,q;E) =
(2π~)2δ(2)(q− p)

q2

2m
− E

+
N∑

i,j=1

e
−ip·ai

~

p2

2m
− E

[Φ−1(E)]ij
e
iq·aj

~

q2

2m
− E

, (4.36)

where Φij(E) is (3.145) for E = −ν2.

Proof The formal Fourier transform of the inhomogeneous Schrödinger equation

− ~2

2m
∆ψ(x)−

N∑
i=1

λiδ
(2)(x− ai)ψ(x)− Eψ(x) = ρ(x) (4.37)

is similarly obtained in the regularized form:

(
p2

2m
− E

)
ψ̂Λ(p)−

N∑
i=1

λi(Λ)ΘΛ(p)

∫
R2

e−
i(p−q)·ai

~ ψ̂Λ(q)ΘΛ(q) [d2q] = ρ̂Λ(p) . (4.38)

Let us define Ai(Λ) =
∫
R2 e

iq·ai
~ ψ̂Λ(q)ΘΛ(q) [d2q]. Therefore, the solution ψ̂Λ(p) in the

momentum representation is

ψ̂Λ(p) =
ρ̂Λ(p)
p2

2m
− E

+

∑N
i=1 λi(Λ)ΘΛ(p)e−

ip·ai
~ Ai(Λ)

p2

2m
− E

. (4.39)

The consistency condition yields

Ai(Λ) =

∫
R2

e
iq·ai

~

 ρ̂Λ(q)
q2

2m
− E

+

∑N
j=1 λj(Λ)ΘΛ(q)e−

iq·aj
~ Aj(Λ)

q2

2m
− E

ΘΛ(q) [d2q] . (4.40)
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If we separate the sum into two parts: i = j term and i 6= j terms, we obtain

Ai(Λ) =

∫
R2

e
iq·ai

~ ρ̂Λ(q)ΘΛ(q)
q2

2m
− E

[d2q] +

∫
R2

λi(Λ)ΘΛ(q)Ai(Λ)
q2

2m
− E

[d2q]

+
N∑
j=1
j 6=i

e
iq·(ai−aj)

~ λj(Λ)ΘΛ(q)Aj(Λ)
q2

2m
− E

[d2q] . (4.41)

Then,

λi(Λ)Ai(Λ)

[
1

λi(Λ)
−
∫
R2

ΘΛ(q)
q2

2m
− E

[d2q]

]
−

N∑
j=1
j 6=i

∫
R2

e
iq·(ai−aj)

~ λj(Λ)ΘΛ(q)Aj(Λ)
q2

2m
− E

[d2q]

=

∫
R2

e
iq·ai

~ ρ̂Λ(q)ΘΛ(q)
q2

2m
− E

[d2q] . (4.42)

Let us define λi(Λ)Ai(Λ) = Bi(Λ), then

[
1

λi
−
∫
R2

ΘΛ(q)
q2

2m
− E

[d2q]

]
Bi(Λ) −

 N∑
j=1
j 6=i

∫
R2

e
iq·(ai−aj)

~ ΘΛ(q)
q2

2m
− E

[d2q]

Bj(Λ)

=

∫
R2

e
iq·ai

~ ρ̂Λ(q)ΘΛ(q)
q2

2m
− E

[d2q] . (4.43)

If we define

ΦΛ
ij(E) =



1

λi(Λ)
−
∫
R2

ΘΛ(q)
q2

2m
− E

[d2q] if i = j ,

−
∫
R2

e
iq·(ai−aj)

~ ΘΛ(q)
q2

2m
− E

[d2q] if i 6= j ,

(4.44)

then Eq. (4.43) can be written as a matrix equation

N∑
j=1

ΦΛ
ij(E)Bj(Λ) =

∫
R2

e
iq·ai

~ ΘΛ(q)ρ̂Λ(q)
q2

2m
− E

[d2q] . (4.45)
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By choosing 1
λi(Λ)

as in (3.144) and taking the limit Λ→∞, we obtain

N∑
j=1

Φij(E)Bj =

∫
R2

e
iq·ai

~ ρ̂(q)
q2

2m
− E

[d2q] , (4.46)

or

Bi =
N∑
j=1

[Φ−1(E)]ij

∫
R2

e
iq·aj

~ ρ̂(q)
q2

2m
− E

[d2q] , (4.47)

where we have defined limΛ→∞Bj(Λ) = Bj and

Φij(E) =



m

2π~2
ln

(
−E
µ2
i

)
if i = j ,

− m

π~2
K0

(√
−2mE|ai − aj|

~

)
if i 6= j ,

(4.48)

which is the renormalized principal matrix and consistent with Eq. (3.145) for E = −ν2.

Hence, we find the wave function in the momentum representation after taking the limit

ψ̂(p) =
ρ̂(q)

p2

2m
− E

+
N∑

i,j=1

e
−ip·ai

~

p2

2m
− E

[Φ−1(E)]ij

∫
R2

e
iq·aj

~ ρ̂(q)
q2

2m
− E

[d2q]

=

∫
R2

[
(2π~)2δ(2)(q− p)

q2

2m
− E

+
N∑

i,j=1

e
−ip·ai

~

p2

2m
− E

[Φ−1(E)]ij
e
iq·aj

~

q2

2m
− E

]
ρ̂(q) [d2q] , (4.49)

from which we deduce (4.36). �

Corollary 4.3 The renormalized principal matrix (4.48) satisfies

Φ†(E) = Φ(E∗) . (4.50)

(It is just a consequence of the explicit expression of the renormalized principal matrix Φ(E)

given in (4.48).)

83



Theorem 4.7 The resolvent kernel in the coordinate representation is given by

R(x,y;E) =

∫
R2

e
ip·(x−y)

~

p2

2m
− E

[d2p]

+

∫
R4

N∑
i,j=1

e
ip·(x−ai)

~

p2

2m
− E

[Φ−1(E)]ij
e
iq·(aj−y)

~

q2

2m
− E

[d2p][d2q] , (4.51)

or in terms of the free resolvent:

R(x,y;E) = R0(x,y;E) +
N∑

i,j=1

R0(x, ai;E)[Φ−1(E)]ijR0(aj,y;E) . (4.52)

Proof The idea is the same as for one point interaction. �

4.4.1. A Lower Bound for the Ground State Energy

In this section, our goal is to find a lower bound for the ground state energy forN point

interactions in two dimensions. Actually, we have to prove this because we need to complete

the renormalization procedure so that the other measurable quantities must also be finite.

Theorem 4.8 (Geršgorin Theorem) (Roger & Charles, 1992)

All the eigenvalues w of an N ×N matrix Φ are located in the union of N discs:

N⋃
i=1

{z ∈ C : |z − Φii| ≤ R′i(Φ)} ≡ G(Φ) , (4.53)

where

R′i(Φ) =
N∑
j=1
j 6=i

|Φij| , (4.54)

is the deleted absolute value row sums and 1 ≤ i ≤ N .

(For the proof, see Appendix C.2.)
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Theorem 4.9 The lower bound for the ground state energy for N point interactions in two

dimensions is given by

E∗ = −ν2
∗ = −

{
µ+ 2µdW

[
(N − 1)e

− µ
2µd

]}2

, (4.55)

where W [z] is the Lambert W function.

Proof Since Φ−1
ij =

cij
det Φij

where cij 6= 0 is the transposed cofactor matrix of Φij , in order

to have non-trivial solutions, we must have det Φij(ν) = 0, from which we can find the bound

state energies. Then, the zero eigenvalues of the following eigenvalue problem

Φij(E)Ai(E) = wk(E)Ai(E) , (4.56)

where Ai(E) is the normalized eigenvector of our matrix corresponding to the eigenvalue

wk(E), give the bound state energies. Let E∗ be the lower bound of the ground state energy.

Then, Theorem 4.8 implies that for E < E∗, none of the Geršgorin’s discs contain the zero

eigenvalue. It means that we impose

|Φii(E)| >
N∑
j=1
j 6=i

|Φij(E)| , (4.57)

for E < E∗ and for all i = 1, 2, . . . , N . Let E = −ν2 ∈ R (ν > 0). The question is what the

critical value E∗ satisfies (4.57). Recall that

Φii(ν) =
m

π~2
ln

(
ν

µi

)
. (4.58)

Since we physically expect that ν > µi for all i, |Φii| is a monotonically increasing function

of ν. Meanwhile,

|Φij(ν)| = m

π~2
K0

(
ν

µdij

)
, (4.59)
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where µdij ≡ ~√
2mdij

, is a monotonically decreasing function of ν and so is
∑N

j=1
j 6=i
|Φij(ν)|.

This means that we are looking for a critical value of ν, say ν∗, such that (4.57) is satisfied.

Pictorially,

Ν*

Ν

 Fii¤

¡Fij¥â
j=1
j¹i

Figure 4.3. Critical value

(ν > ν∗ means E < E∗.) Now the aim is to find the critical value ν∗ or E∗. Finding

ν∗ is a difficult problem since it is a transcendental equation. Nevertheless, we can find the

critical value analytically by simplifying the expressions in the renormalized principal matrix

(3.145). Note that

|Φii(ν)| ≥ min
i
|Φii(ν)| , (4.60)

for all ν. Let µ = maxi µi, then we have

|Φii(ν)| ≥ m

π~2
ln

(
ν

µ

)
. (4.61)

Since the lower bound for lnx is given by (Abramowitz & Sitegun, 1972)

lnx >
x− 1

x
, (4.62)
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for all x > 0 and x 6= 1, then

|Φii(ν)| ≥ m

π~2

(
1− µ

ν

)
= |Φlower

ii (ν)| . (4.63)

For the right-hand side, we have also

N∑
j=1
j 6=i

|Φij(ν)| ≤ (N − 1) max
j
|Φij(ν)| = (N − 1) max

j

[
m

π~2
K0

(
ν

µdij

)]

≤ (N − 1)
m

π~2
K0

(
ν

µd

)
, (4.64)

where d = minj dij . In addition, using the upper bound of K0 (Erman, 2010):

K0(x) ≤ 2

x
e−

x
2 , (4.65)

we have

N∑
j=1
j 6=i

|Φij(ν)| ≤ m

π~2
(N − 1)

2µd
ν
e
− ν

2µd =
N∑
j=1
j 6=i

|Φupper
ij (ν)| . (4.66)

If we now impose |Φlower
ii (ν)| >

∑N
j=1
j 6=i
|Φupper

ij (ν)| for all i, it guarantees (4.57) for all ν > ν∗.

Therefore, it is sufficient to find ν ′∗ from |Φlower
ii (ν ′∗)| >

∑N
j=1
j 6=i
|Φupper

ij (ν ′∗)|, namely

1− µ

ν ′∗
= (N − 1)

2µd
ν ′∗

e
− ν′∗

2µd . (4.67)

Let us define ν′∗
µ

= x and µd
µ

= α for simplicity. Then,

(x− 1)e
x

2α = 2(N − 1)α . (4.68)
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Figure 4.4. Another critical value

The solution is given by the Lambert W function which was introduced in (3.63). Therefore,

we find

ν ′∗ = µ+ 2µdW
[
(N − 1)e

− µ
2µd

]
, (4.69)

or

E ′∗ = −
{
µ+ 2µdW

[
(N − 1)e

− µ
2µd

]}2

. (4.70)

Hence,

E ≥ E ′∗ = −
{
µ+ 2µdW

[
(N − 1)e

− µ
2µd

]}2

. (4.71)

�
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4.4.2. Spectral Properties of Bound States

Theorem 4.10 (Hellmann-Feynman Theorem) (Feynman, 1939) (Hellmann, 1937)

A non-degenerate eigenvalue of a Hermitian operator (in a finite-dimensional Hilbert space)

in a parameter dependent eigensystem varies with respect to the parameter according to the

formula

∂E(ν)

∂ν
=

〈
ψ(ν)

∣∣∣∂H(ν)

∂ν
ψ(ν)

〉
, (4.72)

where

H(ν)ψ(ν) = E(ν)ψ(ν) , (4.73)

provided that the derivatives are well-defined and the associated normalized eigenfunction,

ψ(ν), is continuous with respect to the parameter, ν.

(For the proof, see Appendix C.3. Also, the extension for the degenerate case of the theorem

above can be found in Appendix D.)

Remark 4.2 Actually, the above formula has been used in physics literature for also un-

bounded operators in infinite-dimensional Hilbert spaces. Then, one should be careful about

the domain of the operator where the domain itself may also depend on the parameter ν. In

this case, the formula (4.72) is generalized to include such cases (Esteve & Falceto & Canal,

2009). Nevertheless, we do not need this generalized version of Hellmann-Feynman theo-

rem because we are going to apply this theorem for finite-dimensional renormalized principal

matrix Φ(E).

Definition 4.5 (Kato, 1995)

IfX is an inner product space and the operator-valued function T (x) ∈ B(X) is holomorphic

in a domain D0 of the x-plane intersecting with real axis and symmetric for real x:

T †(x) = T (x) , (4.74)

the family {T(x)} is said to be symmetric.
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T †(x∗) is holomorphic for x∗ ∈ D0 (D0 is the mirror image of D0 with respect to the

real axis) and coincides with T (x) for real x. Hence, T †(x∗) = T (x) for x ∈ D0 ∩D0 by the

unique continuation property of holomorphic functions. Thus, T †(x) = T (x∗) as long as both

x and x∗ belong to D0. Then we may assume without loss of generality that D0 is symmetric

with respect to the real axis.

Theorem 4.11 (Kato, 1995)

If the holomorphic family T (x) is symmetric, the eigenvalues wk(x) and the eigenprojections

Pk(x) are holomorphic on the real axis of x.

Corollary 4.4 The renormalized principal matrix Φ(E) given explicitly in (4.48) is holomor-

phic except that it has a branch cuts along the positive real E axis. (K0 and log have branch

cut along the positive real E axis.)

Theorem 4.12 (Spectral Theorem) (Halmos, 1974)

If T is a normal (in particular self-adjoint) operator on a finite N -dimensional inner product

space, there are always corresponding real numbers w1, . . . , wr where r is a strictly positive

integer, not greater than the dimension of the space and orthogonal projections P1, . . . ,Pr
such that

1. wj are pairwise distinct for 1 ≤ j ≤ r ≤ N .

2. Pj are pairwise orthogonal and different from zero. (PiPj = 0 = PjPi for all i, j where

i 6= j.)

3.
∑r

j=1 Pj = 1.

4. Φ =
∑r

j=1wjPj .

Lemma 4.3 The eigenvalues wk of the principal matrix Φ flow according to

(
dwk(E)

dE

) ∣∣∣
E=−ν2

< 0 , (4.75)

that is, all the eigenvalues of the principal matrix strictly decreasing with respect to E ∈ R
or strictly increasing with respect to ν:

dwk(ν)

dν
> 0 , (4.76)

where E = −ν2.
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Proof Since wk(E) = 〈Ai(E),Φij(E)Aj(E)〉 from Eq. (4.56), as a consequence of the

Hellmann-Feynman theorem, we obtain

dwk(E)

dE
=

〈
Ai(E),

dΦij(E)

dE
Aj(E)

〉
=

N∑
i,j=1

A∗i (E)
dΦij(E)

dE
Aj(E) . (4.77)

From Eq. (4.44) and (4.48), it is easy to see that

dΦij(E)

dE
=



m

2π~2E
if i = j ,

−
∫
R2

e
ip·(ai−aj)

~(
p2

2m
− E

)2 [d2p] if i 6= j ,

(4.78)

from the definition of the matrix derivative dΦ(E)
dE

=
[
dΦij(E)

dE

]
(Meyer, 2001). Let us substitute

the above equation into Eq. (4.77) and then we have

dwk(E)

dE
=

m

2π~2E
|Ai(E)|2

−
∫
R2

 N∑
i,j=1
j 6=i

A∗i (E)
e
ip·(ai−aj)

~(
p2

2m
− E

)2Aj(E)

 [d2p] . (4.79)

By evaluating this at E = −ν2 and using the result:

m

2π~2ν2
=

∫
R2

1(
p2

2m
+ ν2

)2 [d2p] , (4.80)

we obtain

dwk(E)

dE

∣∣∣
E=−ν2

= −
∫
R2


∣∣∣∑N

i=1A
∗
i (−ν2)e

ip·ai
~

∣∣∣2(
p2

2m
+ ν2

)2

 [d2p] . (4.81)
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So, we end up with (4.75) or from the chain rule, we can easily see that

[
dwk(E)

dE

dE

dν

] ∣∣∣
E=−ν2

=
dwk(E)

dE

∣∣∣
E=−ν2︸ ︷︷ ︸

<0

(−2ν)︸ ︷︷ ︸
<0

> 0 , (4.82)

which means that (4.76). �

Corollary 4.5 From Lemma 4.3, the number of bound states (negative eigenvalues) are at

most N . This is the consequence of the fact that any wk(ν) can intersect ν-axis only at once.

In order to see this more clearly, suppose all the eigenvalues of Φ are non-degenerate, that

is, we have w1(ν) < w2(ν) < . . . < wN(ν). Due to (4.76), all the eigenvalues intersect

ν-axis at once, we have N bound states. If there were degeneracies, some of the eigenvalues

would be coincided, so that the number of bound states would be less than N . The graphs for

N = 2, 3, 4 were given at the end of Chapter 3 in detail.

Remark 4.3 The integral given in (4.81) is convergent. In order to see this, we use the

Cauchy-Schwarz inequality (Debnath & Mikusiński, 2005)

∫
R2


∣∣∣∑N

i=1A
∗
i (−ν2)e

ip·ai
~

∣∣∣2(
p2

2m
+ ν2

)2

 [d2p]

≤
∫
R2


∑N

j=1 |A∗j(−ν2)|2
∑N

l=1

∣∣∣e ip·al~

∣∣∣2(
p2

2m
+ ν2

)2

 [d2p] . (4.83)

Since Aj’s are normalized eigenvectors and from (4.80), we immediately obtain

∫
R2


∣∣∣∑N

i=1A
∗
i (−ν2)e

ip·ai
~

∣∣∣2(
p2

2m
+ ν2

)2

 [d2p] ≤ N2m

2π~2ν2
, (4.84)

which is finite.

Definition 4.6 (Pazy, 1983)

Let Ω be a subset of the complex plane. A family J(E), E ∈ Ω, of bounded linear operators
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on the Hilbert spaceH under consideration which satisfies the resolvent identity

J(E1)− J(E2) = (E1 − E2)J(E1)J(E2) , (4.85)

for E1, E2 ∈ Ω is called a pseudo resolvent on Ω.

Theorem 4.13 (Pazy, 1983)

Let Ω be an unbounded subset of C and J(E) be a pseudo resolvent on Ω. If there is a

sequence Ek ∈ Ω such that |Ek| → ∞ as k →∞ and

lim
k→∞
−EkJ(Ek)x = x , (4.86)

for all x ∈ H, then J(E) is the resolvent of a unique densely defined closed operator.

Theorem 4.14 (Kato, 1995)

If the family satisfies J†(E) = J(E∗), it is a holomorphic family of type (A) in the sense of

Kato. Hence, it defines a self-adjoint operator.

Corollary 4.6 After the renormalization procedure defined above, there exists a unique densely

defined closed self-adjoint operator associated with the resolvent (4.52).

Proof Since the proof is very technical, we skip it and suggest the reader to read the refer-

ence (Dogan & Erman & Turgut, 2012). �

Theorem 4.15 The bound state wave function ψk(x) for the particle in the presence of N

point interactions in two dimensions is given by

ψk(x) = α

N∑
i=1

R0(x, ai;−ν2
k)Ai(−ν2

k)

=
m

π~2
α

N∑
i=1

K0

(
νk
√

2m|x− ai|
~

)
Ai(−ν2

k) , (4.87)

where α =

[
−
(
dwk(E)
dE

) ∣∣∣
E=−ν2

k

]− 1
2

, Ai is the eigenvector of the renormalized principal ma-

trix and Ai(−ν2
k) is the eigenvector if the renormalized principal matrix associated with the

eigenvalue w(−ν2
k) such that w(−ν2

k) = 0.
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Proof We had an eigenvalue problem given by (4.56). Since the renormalized principal

matrix Φ given in (4.48) satisfies Φ†ij(E) = Φij(E
∗) on the complex plane, that means it is

symmetric for real values of E: Φ†ij(E) = Φij(E). Then, according to Theorem 4.11, there

exists a holomorphic family of projection operators on the complex plane, so that we can

apply the spectral theorem for Φ(E),

Φij(E) =
∑
k

wk(E)[Pk(E)]ij , (4.88)

where [Pk(E)]ij = Aki (E)[A†(E)]kj is the projection operator onto the eigenspace spanned by

the eigenvectors Aki ’s. Let Γk be a closed contour enclosing the bound state energy E = −ν2
k .

We are going to apply Riesz integral (Definition 4.4) to find the wave function corresponding

to the eigenvalue −ν2
k . Due to Theorem 4.11, the spectral resolution of the inverse renormal-

ized principal matrix (4.48) is

[Φ−1(E)]ij =
∑
k

1

wk(E)
[Pk(E)]ij . (4.89)

The residue can then be found from Eq. (4.52)

Res
[
R0(x, ai;E)[Φ−1(E)]ijR0(aj,y;E),−ν2

k

]
, (4.90)

since the free resolvent kernel has no poles on the negative real axis. Because wk(E) and

Pk(E) are holomorphic on the negative E axis and due to Lemma 4.3,

Res
{

[Φ−1(E)]ij,−ν2
k

}
=

[
dwk(E)

dE

∣∣∣
E=−ν2

k

]−1

[Pk(−ν2
k)]ij , (4.91)

where the only contribution to the k-sum is coming from the k-th term and we have used

wk(E) = wk(E = −ν2
k)︸ ︷︷ ︸

0

+(E + ν2
k)
dwk(E)

dE

∣∣∣
E=−ν2

k︸ ︷︷ ︸
6=0

+ . . . . (4.92)

94



Also, from Eq. (4.12),

2πiRes
[
R(x,y;E),−ν2

k

]
=

∮
Γk

R(x,y;E) dE = −2πi ψk(x)ψ∗k(y) , (4.93)

so that

ψk(x)ψ∗k(y) = −
N∑

i,j=1

R0(x, ai;−ν2
k)Ai(−ν2

k)A∗j(−ν2
k)R0(aj,y;−ν2

k)(
dwk(E)
dE

) ∣∣∣
E=−ν2

k

. (4.94)

From Eq. (4.20) and using the relation between (4.44) and (4.48), we obtain

R0(x, ai;−ν2
k) =

m

π~2
K0

(
νk
√

2m|x− ai|
~

)
= R∗0(x, ai;−ν2

k) , (4.95)

where we have also used the fact that νk is real and positive. Hence, we end up with

ψk(x)ψ∗k(y) = − m2

π2~4

N∑
i,j=1

K0

(
νk
√

2m|x−ai|
~

)
Ai(−ν2

k)A∗j(−ν2
k)K0

(
νk
√

2m|y−aj |
~

)
(
dwk(E)
dE

) ∣∣∣
E=−ν2

k

(4.96)

from which the wave function ψk(x) in (4.87) is found. �

Corollary 4.7 The number of degeneracy of −ν2
k equals to the number of degeneracy of the

zero eigenvalue of the renormalized principal matrix (Albeverio & Gesztesy & Høegh-Krohn

& Holden & Exner, 1988).

Corollary 4.8 The bound state wave function (4.87) does not belong to the domain of H0,

i.e., ψk(x) 6∈ D(H0).

Proof By taking the average value of H0,

〈ψk|H0|ψk〉 = −~2|α|2

2m

∫
R2

[
N∑
i=1

R∗0(x, ai;−ν2
k)A∗i (−ν2

k)

×
N∑
j=1

∆R0(x, aj;−ν2
k)Aj(−ν2

k)

]
d2x . (4.97)
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From Eq. (4.95), the above equation becomes for the i = j term:

〈ψk|H0|ψk〉 = −m|α|
2

2π2~2
|Ai(−ν2

k)|2
∫
R2

[
K0

(
νk
√

2m|x− ai|
~

)

× ∆K0

(
νk
√

2m|x− ai|
~

)]
d2x . (4.98)

We use polar coordinates; |x− ai| = r and d2x = rdrdθ, then

〈ψk|H0|ψk〉 = −m|α|
2

π~2
|Ai(−ν2

k)|2
∫ ∞

0

K0(ar)
d2K0(ar)

dr2
r dr , (4.99)

where a = νk
√

2m
~ . The integral in the above equation is

∫ ∞
0

K0(ar)
d2K0(ar)

dr2
r dr =

∫ ∞
0

K0(ar)
[
a2K0(ar) +

a

r
K1(ar)

]
r dr , (4.100)

where we have used recurrence relations of Bessel functions given in (3.135). But, it has

already been proved in (3.137) that this integral is divergent, that is

〈ψk|H0|ψk〉 =∞ . (4.101)

This means that ψk(x) 6∈ D(H0). �

We have found that the bound state wave function (4.87) in L2(R2) (see Remark 4.5)

is not contained in the domain of H0 although it belongs to the domain of the Hamiltonian,

say H (its formal expression is not constructed in this approach), after the renormalization

procedure. Renormalization procedure only provides us the resolvent formula. Pictorially,

It is well-known that Hamiltonian with point interaction can be described as a free

Hamiltonian H0 on a space with one point (center of the Dirac delta potential, say origin)

deleted (R2 \{0}) and a boundary condition which specifies the behavior of the wave function

at the origin (Jackiw, 1995) (Albeverio & Kurasov, 2000).

Remark 4.4 As a consequence of Corollary 4.6 and the above observation, we may think of

our problem as a kind of self-adjoint extension since ψk ∈ D(H) whereas ψk 6∈ D(H0) which

means that the domain of H0 is extended such that the bound state wave functions ψk(x) are

included so that D(H) = D(H†).
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Figure 4.5. Domain of H and H0

Remark 4.5 We will show that ψk(x) ∈ L2(R2). From (4.87), we have

∫
R2

|ψk(x)|2 dx dy =
m2|α|2

π2~4

∫
R2

∣∣∣ N∑
i=1

K0

(
νk
√

2m|r− ai|
~

)
Ai(−ν2

k)
∣∣∣2 dx dy

≤ m2|α|2

π2~4

∫
R2

N∑
i=1

K2
0

(
νk
√

2m|r− ai|
~

)
dx dy , (4.102)

where r = (x, y). If we use polar coordinates, we find

∫
R2

K2
0

(
νk
√

2m|r− ai|
~

)
dx dy =

∫ 2π

0

∫ ∞
0

K2
0

(
νk
√

2mri
~

)
ri dri dθ , (4.103)

where ri = |r− ai|. By using a sharp bound for K0 (Erman, 2010):

K0(x) ≤ e−
x
2

[
2

1 + x
+ ln

(
1 +

1

x

)]
, (4.104)
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we obtain

∫
R2

K2
0

(
νk
√

2m|r− ai|
~

)
dx dy ≤ 2π

∫ ∞
0

e−
νk
√

2mri
~

[ 2~
~ + νk

√
2mri

+ ln

(
1 +

~
νk
√

2mri

)]2

ri dri . (4.105)

One can solve this integral and find out that it is finite for all i = 1, . . . , N , then ψk(x) ∈
L2(R2).

4.4.3. Positivity and Non-degeneracy of the Ground State

The Perron-Frobenius theorem for positive symmetric matrices is going to provide us

to determine that the ground state wave function is positive and non-degenerate. Firstly, let us

state the Perron-Frobenius theorem for symmetric and positive matrices.

Theorem 4.16 (Perron-Frobenius Theorem) (Ninio, 1976)

Let A = (aij) be an n × n symmetric matrix with elements aij > 0 and let λ be the largest

eigenvalue. Then,

1. λ > 0.

2. There exists a corresponding eigenvector (Xj) with every entry Xj > 0.

3. λ is non-degenerate.

4. If µ is any other eigenvalue, λ > |µ|.

(For the proof, one can consult on Appendix E.)

Theorem 4.17 The ground state wave function corresponding to the finitely many point in-

teractions in R2 can be chosen strictly positive and it is non-degenerate.

Proof The renormalized principal matrix given in Eq. (4.48) neither is symmetric nor

positive. However, if we restrict E to be real, then we have a symmetric matrix. From

the explicit expression of the renormalized principal matrix (3.145), we have Φii(ν) > 0

for ν > νgr > µi. The inequality νgr > µi or Egr ≤ −µ2
i is physically expected since

when we add attractive potentials, the ground state is lower. However, Φij(ν) < 0 for all
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ν. Nevertheless, we can make the renormalized principal matrix positive by subtracting a

constant diagonal matrix. First, consider the eigenvalue problem ΦA = wA:

N∑
j=1

Φij(ν)Aj(ν) = Φii(ν)Ai(ν) +
N∑
j=1
j 6=i

Φij(ν)Aj(ν) = w(ν)Ai(ν) . (4.106)

In order to make Φ positive, we subtract (1 + ε) maxν Φii(ν) from Φij(ν) where ε is a small

positive number, and multiply by −1:

Φ′ij(ν) = −
[
Φij(ν)− (1 + ε) max

ν
Φii(ν)

]
. (4.107)

Note that in this way, we have a new positive matrix whose eigenvectors are the same as the

one for the original renormalized principal matrix. (We have just shifted diagonal matrix from

the original renormalized principal matrix.) Since ν ≤ νgr from Eq. (4.71), maxν Φii(ν) =

Φii(νgr). Therefore,

N∑
j=1

Φ′ij(ν)Aj(ν) = − [w(ν)− (1 + ε)Φii(νgr)]Ai(ν) , (4.108)

or

Φ′(ν)A(ν) = − [w(ν)− (1 + ε)Φii(νgr)]A(ν) = w′(ν)A(ν) , (4.109)

where Φ′(ν) > 0 and − [w(ν)− (1 + ε)Φii(νgr)] = w′(ν) is our shifted eigenvalue corre-

sponding to the same eigenvector A(ν) as before. From now on we have a symmetric and

positive new matrix Φ′(ν), then from the Perron-Frobenius theorem applied to Φ′(ν):

1. Largest eigenvalue w′max > 0.

2. There exists a corresponding eigenvector (Aj) with every entry Aj > 0.

3. w′max is non-degenerate.

4. If Ω is any other eigenvalue, then w′max > |Ω|.

From the first case we have w′max(ν) = − [wmax(ν)− (1 + ε)Φii(νgr)] > 0. That means

wmax(ν) < (1 + ε)Φii(νgr). The third case means that we have one and only one eigenvector
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Amax(ν) corresponding to the eigenvalue w′max(ν). Then,

Φ′(ν)Amax(ν) = w′max(ν)Amax(ν)

= − [wmax(ν)− (1 + ε)Φii(νgr)]A
max(ν) , (4.110)

or it can be written as

Φ′ii(ν)Amaxi (ν) +
N∑
j=1
j 6=i

Φ′ij(ν)Amaxj (ν) = −wmax(ν)Amaxi (ν)

+ (1 + ε)Φii(νgr)A
max
i (ν) . (4.111)

On the other hand, from Eq. (4.107), we have

Φ′ii(ν)Amaxi (ν) +
N∑
j=1
j 6=i

Φ′ij(ν)Amaxj (ν) = −
N∑
j=1

ΦijA
max
j (ν)

+ (1 + ε)Φii(νgr)A
max
i (ν) . (4.112)

By comparing the above equations, we find

Φ(ν)Amax(ν) = wmax(ν)Amax(ν) , (4.113)

which means that Amax(ν) is also an eigenvector of Φ(ν). It is easy to see that for a given

ν, only wmax(ν) flows to the point νgr (associated with Egr). From Eq. (4.87), (4.20) and

Lemma 4.3, we have

ψgr(x) = α︸︷︷︸
>0

N∑
i=1

R0(x, ai;Egr)︸ ︷︷ ︸
>0

Amaxi (Egr)︸ ︷︷ ︸
>0

> 0 , (4.114)

which means that the ground state wave function corresponding finitely many point interac-

tions can be chosen positive and from non-degeneracy of Amaxi (Egr) and Corollary 4.7, it is

non-degenerate. �
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CHAPTER 5

SIMPLE HARMONIC OSCILLATOR POTENTIAL

SUPPORTED BY A POINT INTERACTION IN R AND

R2

One way to understand the spectrum of this problem in a better way is to use heat

kernel which is very useful and elegant. Let us first define the heat kernel:

5.1. The Heat Equation and Heat Kernel

The solution to the initial value problem (IVP) of the heat equation in RD (Calin &

Chang & Furutani & Iwasaki, 2011)

∂u(x, t)

∂t
= Lu(x, t) , (5.1)

u(x, 0) = f(x) , (5.2)

where L is a second order linear self-adjoint elliptic operator (in particular, it could be Lapla-

cian), is given by

u(x, t) =

∫
RD
Kt(x,y)f(y) dy . (5.3)

Here, Kt(x,y) is called the fundamental solution of the heat operator or heat kernel if it

satisfies

1. ∂
∂t
Kt(x,y) = LKt(x,y),

2. limt→0Kt(x,y) = δ(x,y) = δ(x− y) in the sense of distributions.
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Lemma 5.1 The solution to the above initial value problem for L = ∆ in one dimension is

given by

u(x, t) =

∫
R

e−
(x−y)2

4t

√
4πt

f(y) dy . (5.4)

Proof Consider the Fourier integral transform of φ(k, t) with respect to the variable k:

u(x, t) =

∫
R
eikxφ(k, t) [dk] , (5.5)

where [dk] = dk
2π

. When t = 0,

u(x, 0) =

∫
R
eikxφ(k, 0) [dk] = f(x) . (5.6)

By the inverse Fourier transform,

φ(k, 0) =

∫
R
e−ikxf(x) dx . (5.7)

The goal is to find u(x, t) in terms of f(x). Let us write ut = ∆u explicitly in Eq. (5.5),

∫
R

[
∂φ(k, t)

∂t
+ k2φ(k, t)

]
eikx [dk] = 0 , (5.8)

then ∂φ(k,t)
∂t

= −k2φ(k, t). Separation of variables, φ(k, t) = φ1(k)φ2(t), yields φ2(t) =

Ae−k
2t where A is some constant and since φ(k, 0) = Aφ1(k), we have

φ(k, t) = φ(k, 0)e−k
2t . (5.9)

From Eq. (5.7), the above equation becomes

φ(k, t) = e−k
2t

∫
R
e−ikyf(y) dy . (5.10)

102



By substituting the above equation into (5.5), we obtain

u(x, t) =
1

2π

∫
R

[∫
R
eik(x−y)e−k

2t dk

]
f(y) dy . (5.11)

The second integral looks like Gaussian integral. Let us write k = k′ + c where c is some

constant and try to find this c in order to make the integral Gaussian. Then,

u(x, t) =
1

2π

∫
R

[
eic(x−y)−c2t

∫
R
eik(x−y+2ict)e−k

2t dk

]
f(y) dy . (5.12)

To make the interior integral Gaussian, x− y + 2ict should be zero. Hence, one can immedi-

ately obtain the result (5.4). �

Corollary 5.1 From Lemma 5.1, the heat kernel in one dimension is given by

Kt(x, y) =
e−

(x−y)2

4t

√
4πt

, (5.13)

due to Eq. (5.3).

Lemma 5.2 The solution to the initial value problem for L = ∆ in two dimensions is given

by

u(x, t) =

∫
R2

e−
|x−y|2

4t

4πt
f(y) d2y . (5.14)

Proof We are now going to consider the Fourier integral transform in two dimensions:

u(x, t) =

∫
R2

eik·xφ(k, t) [d2k] , (5.15)

where [d2k] = d2k
(2π)2 . When t = 0,

u(x, 0) =

∫
R2

eik·xφ(k, 0) [d2k] = f(x) . (5.16)
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After applying the same procedure as we did for one dimension, we obtain

u(x, t) =
1

(2π)2

∫
R2

[∫
R2

eik·(x−y)e−k
2t d2k

]
f(y) d2y . (5.17)

We use polar coordinates for the interior integral, then

∫
R2

eik·(x−y)e−k
2t d2k =

∫ ∞
0

∫ 2π

0

ke−k
2teik|x−y| cos θ dk dθ , (5.18)

and using the Bessel function of the first kind as we did for Eq. (3.129), we have

∫
R2

eik·(x−y)e−k
2t d2k = 2π

∫ ∞
0

ke−k
2tJ0(k|x− y|) dk

=
πe−

|x−y|2
4t

t
, (5.19)

where we have used the formula given by (Gradshteyn & Ryzhik, 2000)

∫ ∞
0

xµe−αx
2

Jν(βx) dx =
βνΓ

(
1
2
ν + 1

2
µ+ 1

2

)
2ν+1α

1
2

(ν+µ+1)Γ(ν + 1)

× 1F1

(
ν + µ+ 1

2
; ν + 1;−β

2

4α

)
. (5.20)

Here, functions of the form 1F1(a; b; c) are called the confluent hypergeometric functions of

the first kind and introduced by (Gradshteyn & Ryzhik, 2000)

1F1(a; b; c) =
∞∑
k=0

(a)k
(b)k

ck

k!
, (5.21)

where

(a)k =

1 if k = 0 ,

a(a+ 1) . . . (a+ k − 1) if k > 0 .
(5.22)

By inserting (5.19) into (5.17), we obtain (5.14). �
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Corollary 5.2 Due to Lemma 5.2, the heat kernel in two dimensions reads

Kt(x,y) =
e−
|x−y|2

4t

4πt
. (5.23)

Also, the heat kernel inD dimensions satisfies the following property (Calin & Chang

& Furutani & Iwasaki, 2011):

∫
RD
Kt(x,y) dDx = 1 , (5.24)

for all y ∈ RD.

5.2. Eigenfunction Expansion of Heat Kernel and Mehler’s Formula

Consider the self-adjoint differential operator L defined on the interval I and let fi be

its eigenfunctions (Calin & Chang & Furutani & Iwasaki, 2011)

Lfi = λifi , (5.25)

where i = 0, 1, . . . and λi ∈ R are eigenvalues of L. We are going to assume that {fi}i≥0 is a

complete orthogonal system of L2(I) = {f : I → C;
∫
I
|f |2 < ∞}. Then, for any function

ϕ ∈ L2(I) we have

ϕ(x) =
∑
i≥0

〈fi, ϕ〉fi(x) , (5.26)

where 〈fi, ϕ〉 =
∫
I
fi(x)ϕ(x) dx. The next result provides a formal expansion for the heat

kernel.

Proposition 5.1 (Calin & Chang & Furutani & Iwasaki, 2011) Let {fi}i≥0 be a complete

orthogonal system of L2(I) of real eigenfunctions of operator L. Then, the heat kernel of L is
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given by

Kt(x0, x) =
∑
i≥0

eλitfi(x0)fi(x) . (5.27)

In general, there is a complex conjugate of fi(x).

Proof The proof is trivial by checking whether it satisfies the definition of the heat kernel

given above. �

Lemma 5.3 (Calin & Chang & Furutani & Iwasaki, 2011) If Hn(x) is the n-th Hermite

polynomial, then Mehler’s formula is given by

e−(x2+y2)

∞∑
n=0

zn

2nn!
Hn(x)Hn(y) =

e
− (x2+y2−2xyz)

1−z2

√
1− z2

, (5.28)

where x, y, z are dimensionless variables.

Proof There are many different ways to prove this formula. One simple way is given in

Appendix F.1. �

Theorem 5.1 The heat kernel associated with the simple harmonic oscillator Hamiltonian in

one dimension is given by

Kt(x, y) =

√
mω

π~
e−

mω
2~ coth(ωt)(x2+y2)+ mω

~ sinh(ωt)
xy√

2 sinh(ωt)
. (5.29)

Proof We have the Hamiltonian

H = − ~2

2m
∆ +

1

2
mω2x2 , (5.30)

then the heat equation for simple harmonic oscillator Hamiltonian given above is

∂

∂t
u(x, t) = Lu(x, t) = −Hu(x, t) . (5.31)
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Since the eigenfunctions of simple harmonic oscillator in one dimension are given by (Merzbacher,

1961)

fn(x) = φn(x) =
(mω
π~

) 1
4 1√

2nn!
Hn

(√
mω

~
x

)
e−

mω
2~ x

2

, (5.32)

where Hn is the n-th Hermite polynomial and eigenvalues are

λn =

(
n+

1

2

)
~ω , (5.33)

by Proposition 5.1 and scaling t→ t
~ because of the dimensional consistency, the heat kernel

reads

Kt(x, y) =

√
mω

π~
e−

ωt
2 e−

mω
2~ (x2+y2)

∞∑
n=0

(e−ωt)
n

2nn!
Hn

(√
mω

~
x

)
Hn

(√
mω

~
y

)
. (5.34)

(For finding the eigenfunctions and eigenvalues of simple harmonic oscillator in one dimen-

sion, one can also consult on Appendix G.) Due to Lemma 5.3, the above equation becomes

Kt(x, y) =

√
mω

π~
e−

ωt
2 e−

mω
2~ (x2+y2)

emω~ (x2+y2) e
−
mω
~ (x2+y2−2xye−ωt)

1−e−2ωt

√
1− e−2ωt

 . (5.35)

By arranging this equation, we obtain the desired result (5.29). �

Corollary 5.3 In particular, if we choose x, y = 0 in (5.29), we obtain

Kt(0, 0) =

√
mω

π~
1√

2 sinh(ωt)
, (5.36)

which is going to be very useful for our calculations later on.
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5.3. Spectrum of Isotropic Simple Harmonic Oscillator Supported by A

Point Interaction in One Dimension

Theorem 5.2 Consider the Hamiltonian

H = − ~2

2m

d2

dx2
+

1

2
mω2x2 − λδ(x) . (5.37)

Then, the simple harmonic oscillator’s odd-parity eigenfunctions φ2n+1(x) are eigenfunctions

of H with eigenvalues E2n+1 =
(
2n+ 1 + 1

2

)
~ω for n = 0, 1, . . .. The eigenvalues corre-

sponding to even-parity eigenfunctions are the solutions of the below transcendental equation:

1

λ
=

1

2~ 3
2

√
m

ω

Γ
(

1
4
− E

2~ω

)
Γ
(

3
4
− E

2~ω

) . (5.38)

Proof The time-independent Schrödinger equation in one dimension with a point interac-

tion (formally), centered at the origin, and a simple harmonic oscillator potential is given

by

− ~2

2m

d2ψ(x)

dx2
+

1

2
mω2x2ψ(x)− λδ(x)ψ(x) = Eψ(x) . (5.39)

Also, due to the parity invariance of the Hamiltonian of simple Harmonic oscillator, the eigen-

functions ψ(x) are even function if n is even and odd function if n is odd from Eq. (5.32).

(Due to Hn(−x) = (−1)nHn(x).) For odd-parity solutions ψo(x): ψo(−x) = −ψo(x).

Hence, when x = 0, ψo(0) = 0. Then, Eq. (5.39) becomes

− ~2

2m

d2ψo(x)

dx2
+

1

2
mω2x2ψo(x) = Eψo(x) , (5.40)

because of the property: δ(x)ψ(x) = δ(x)ψ(0) which was given in Eq. (2.27). Then, ψo(x) =

φ2n+1(x) and eigenvalues are En =
(
2n+ 3

2

)
~ω from (5.32) and (5.33), respectively. That

means adding a point interaction to the simple harmonic oscillator potential does not change

odd-parity spectrum of the simple harmonic oscillator which should be intuitively clear. For
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even-parity solutions, we have

− ~2

2m

d2ψe(x)

dx2
+

1

2
mω2x2ψe(x)− λδ(x)ψe(x) = Eψe(x) . (5.41)

Let us expand ψe(x) in terms of the even-parity eigenfunctions φ2n(x) of simple harmonic

oscillator (complete orthonormal system)

ψe(x) =
∞∑
n=0

Cnφ2n(x) . (5.42)

By substituting this into Eq. (5.41) and using the property (2.27), we find

∞∑
n=0

Cn

[
− ~2

2m

d2φ2n(x)

dx2
+

1

2
mω2x2φ2n(x)− Eφ2n(x)

]
= λδ(x)

∞∑
n=0

Cnφ2n(0) . (5.43)

Since

− ~2

2m

d2φ2n(x)

dx2
+

1

2
mω2x2φ2n(x) =

(
2n+

1

2

)
~ωφ2n(x) , (5.44)

where we have used the fact given in (5.33). Afterwards, Eq. (5.43) becomes

∞∑
n=0

Cn

[(
2n+

1

2

)
~ω − E

]
φ2n(x) = λδ(x)

∞∑
n=0

Cnφ2n(0) . (5.45)

After multiplying both sides with φ2l(x) and integrating over x, we obtain

Cl

[(
2l +

1

2

)
~ω − E

]
= λφ2l(0)

∞∑
n=0

Cnφ2n(0) = λφ2l(0)ψe(0) , (5.46)

so that

Cn =
λφ2n(0)ψe(0)[(

2n+ 1
2

)
~ω − E

] , (5.47)
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where we relabeled l with n. Let us insert this quantity into Eq. (5.42) and writing x = 0, we

have

1

λ
=
∞∑
n=0

[φ2n(0)]2[(
2n+ 1

2

)
~ω − E

] . (5.48)

From Eq. (5.32), we have

φ2n(0) =
(mω
π~

) 1
4 1

2n
√

(2n)!
H2n(0) . (5.49)

By using H2n(0) = (−1)n(2n)!
n!

(Byron & Fuller, 1992), the above equation becomes

φ2n(0) =
(mω
π~

) 1
4

(−1)n
√

(2n)!

2nn!
. (5.50)

Let us substitute this into Eq. (5.48) to get

1

λ
=

√
mω

π~

∞∑
n=0

(2n)!

4n(n!)2

1[(
2n+ 1

2

)
~ω − E

] . (5.51)

By using this formula (proof is given in Appendix F.2),

∞∑
n=0

(2n)!

4n(n!)2

1

(2n+ 1− x)
= −

√
π

(x− 1)

Γ
(

3
2
− x

2

)
Γ
(
1− x

2

) , (5.52)

Eq. (5.51) becomes

1

λ
= −2

√
mω

~
1

(2E − ~ω)

Γ
(

5
4
− E

2~ω

)
Γ
(

3
4
− E

2~ω

) . (5.53)

Also, using the property Γ(x+ 1) = xΓ(x) (Lebedev, 1965), we finally obtain (5.38). �

Since this is a transcendental equation, it is not so easy to solve exactly. We are going

to analyze the solution case by case graphically and asymptotically.

Case A: For λ > 0 (attractive point interaction):
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Λ
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5 ÑΩ
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2
3 ÑΩ

2

Figure 5.1. Attractive point interaction

Lemma 5.4 (Lebedev, 1965) The Gamma function Γ(z) has poles at negative integers.

Due to Lemma 5.4, the right-hand side of Eq. (5.38) has poles at 1
4
− E

2~ω = −n,

where n = 0, 1, 2, . . ., i.e., at E =
(
2n+ 1

2

)
~ω and has zeros at 3

4
− E

2~ω = −n, where

n = 0, 1, 2, . . ., i.e., at E =
(
2n+ 3

2

)
~ω which correspond to the even and odd-parity solu-

tions of the simple harmonic oscillator, respectively.

As can be seen from Figure 5.1, all the eigenvalues corresponding to the even states are low-

ered than the even-parity eigenvalues of the simple harmonic oscillator (even eigenvalues of

simple harmonic oscillator are shifted backward). Also, all the even-parity eigenvalues are

sandwiched between adjacent poles of the right-hand side of Eq. (5.38) except ground state

energy.

• From Figure 5.1, as λ increases
(

1
λ

decreases
)
, the root associated with the minimum eigen-

value (ground state) appears in the negative E axis so we have negative ground state energy.

The critical value for λ in order to have a negative ground state energy can be found from the

transcendental equation (5.38) for E = 0. This gives us

λcritical = 2~
3
2

√
ω

m

Γ(3
4
)

Γ(1
4
)
. (5.54)

If λ > λcritical, then we have a negative ground state energy.

• As λ → ∞, the roots of Eq. (5.38) approach to the eigenvalues of the odd-parity solutions

of simple harmonic oscillator, so that the spectrum is going to become doubly degenerate.

• As λ → 0, the roots of Eq. (5.38) approach to the eigenvalues of even-parity solutions of
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simple harmonic oscillator. This means that the spectrum of simple harmonic oscillator sup-

ported by an attractive point interaction coincides with the spectrum of the simple harmonic

oscillator Hamiltonian, which is physically expected because if we take the limit λ → 0 in

Eq. (5.39), we would have just simple harmonic oscillator Hamiltonian.

• Let us consider the situation as ω → 0. Therefore, we have a negative ground state energy,

E = −|E|. Then, Eq. (5.38) becomes

1

λ
=

√
m

2~ 3
2

lim
ω→0

 1√
ω

Γ
(

1
4

+ |E|
2~ω

)
Γ
(

3
4

+ |E|
2~ω

)
 . (5.55)

Due to the asymptotic expansion of the ratios of Gamma functions (Lebedev, 1965),

Γ(α + z)

Γ(β + z)
= zα−β

[
1 +

(α− β)(α + β − 1)

2z
+O(|z|−2)

]
, (5.56)

where | arg(z)| ≤ π − δ, we have

Γ
(

1
4

+ |E|
2~ω

)
Γ
(

3
4

+ |E|
2~ω

) =

√
2~ω
|E|

, (5.57)

as ω → 0. Hence, Eq. (5.38) in the asymptotic limit ω → 0 gives (3.7) which is also an

expected result. Because, if we consider the limit ω → 0 in Eq. (5.39), we would have not

a simple harmonic oscillator, instead have just a point interaction and this is nothing but the

ground state energy of point interaction.

Case B: For λ < 0 (repulsive point interaction):

It is clear from Figure 5.2 that the ground state energy> ~ω
2

. Similar to the case A, we have

the following results:

• Even-parity eigenvalues of simple harmonic oscillator are shifted forward.

• There are no negative energy eigenvalues.

• As λ → 0, energy eigenvalues approach to the even-parity eigenvalues of simple har-

monic oscillator and spectrum coincides with the simple harmonic oscillator’s spectrum.

• As λ → ∞, energy eigenvalues approach to the odd-parity eigenvalues of simple har-

monic oscillator. The spectrum becomes doubly degenerate.
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• As ω → 0, there is no bound state energy which can be easily seen from the graph, as

expected.

1

Λ

ÑΩ

2

5 ÑΩ

2

3 ÑΩ

2
7 ÑΩ

2

E

Figure 5.2. Repulsive point interaction

5.3.1. Resolvent and Heat Kernel

The point interaction term in one dimension can be written as

δ(x− a)ψ(x) = δ(x− a)ψ(a) , (5.58)

from the property given in (2.27). If we take the point interaction centered at the origin, the

above equation reads

δ(x)ψ(x) = 〈x, 0〉〈0, ψ〉 , (5.59)

where |0〉〈0| is the Dirac delta representation as a projection operator point of view. As a

consequence of this, the Hamiltonian of Eq. (5.39) can be written in terms of operators:

H0 − λ|0〉〈0| = H , (5.60)
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where H0 = P 2

2m
+ 1

2
mω2X2 and |0〉 = |x = 0〉. By doing the same procedure as we did in

the Section 4.2,

(H0 − E)|ψ〉 − λ|0〉〈0|ψ〉 = |ρ〉 . (5.61)

By multiplying both sides with (H0 − E)−1 from left, we obtain

|ψ〉 − λ(H0 − E)−1|0〉ψ(0) = (H0 − E)−1|ρ〉 , (5.62)

and also multiplying both sides with 〈0| from left yields

ψ(0)− λ〈0|(H0 − E)−1|0〉ψ(0) = 〈0|(H0 − E)−1|ρ〉 . (5.63)

Hence,

ψ(0) =
〈0|(H0 − E)−1|ρ〉

1− λ〈0|(H0 − E)−1|0〉
, (5.64)

and substituting this into Eq. (5.62), we obtain

|ψ〉 − (H0 − E)−1|0〉 〈0|(H0 − E)−1|ρ〉[
1
λ
− 〈0|(H0 − E)−1|0〉

] = (H0 − E)−1|ρ〉 . (5.65)

Let us define

Φ(E) =
1

λ
− 〈0|(H0 − E)−1|0〉 , (5.66)

which is the principal function, then Eq. (5.65) becomes

|ψ〉 =
[
(H0 − E)−1 + (H0 − E)−1|0〉Φ−1(E)〈0|(H0 − E)−1

]
|ρ〉 . (5.67)
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Since the expression inside of the bracket is equal to

R(E) = (H − E)−1 = (H0 − E)−1 + (H0 − E)−1|0〉Φ−1(E)〈0|(H0 − E)−1 , (5.68)

this equation can be written in that form:

R(E) = R0(E) +R0(E)|0〉Φ−1(E)〈0|R0(E) , (5.69)

and then

R(x, y;E) = R0(x, y;E) +R0(x, 0;E)Φ−1(E)R0(0, y;E) , (5.70)

where

Φ−1(E) =
1

1
λ
−R0(0, 0;E)

. (5.71)

Lemma 5.5 The integral representation of the free resolvent kernel in coordinate representa-

tion is given by

R0(x, y;E) =

∫ ∞
0

Kt(x, y)e
Et
~
dt

~
. (5.72)

Proof

R0(x, y;E) = 〈x|R0(E)|y〉 = 〈x|(H0 − E)−1|y〉

=
〈
x
∣∣∣ ∫ ∞

0

e−
(H0−E)t

~
dt

~

∣∣∣y〉
=

∫ ∞
0

Kt(x, y)e
Et
~
dt

~
, (5.73)

where Kt(x, y) =
〈
x
∣∣∣e−H0t

~

∣∣∣y〉 and (H0 − E)−1 =
∫∞

0
e−

(H0−E)t
~ dt

~ for Re(E) < 0 (Fock,

1937) (Schwinger, 1951). �
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Due to Lemma 5.5, we have

R0(0, 0;E) =

∫ ∞
0

Kt(0, 0)e
Et
~
dt

~
. (5.74)

By substituting Eq. (5.36) into the above equation, we obtain

R0(0, 0;E) =

√
mω

2π~3

∫ ∞
0

e
Et
~√

sinh(ωt)
dt =

√
mω

π~3

∫ ∞
0

e
Et
~ −

ωt
2

(
1− e−2ωt

)− 1
2 dt . (5.75)

By changing the variable e−2ωt = u and using the integral representation of the beta function

(Lebedev, 1965):

B(x, y) =

∫ 1

0

ux−1(1− u)y−1 du , (5.76)

where Re(x), Re(y) > 0, we obtain

R0(0, 0;E) =
1

2~ 3
2

√
m

ωπ
B

(
1

4
− E

2ω~
,
1

2

)
=

1

2~ 3
2

√
m

ω

Γ
(

1
4
− E

2~ω

)
Γ
(

3
4
− E

2~ω

) , (5.77)

where the conditions are justified by Re(y) = 1
2
> 0 and Re(x) = 1

4
− E

2ω~ > 0. (This

condition holds true because E < ~ω
2

should be satisfied to stay in the resolvent set.) We also

used the fact that Beta function satisfies (Lebedev, 1965)

B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
, (5.78)

for x, y > 0.

Theorem 5.3 The odd-parity eigenvalues only comes from the poles of the resolvent for the

simple Harmonic oscillator whereas the even-parity eigenvalues comes from the zeros of the

principal function given in (5.66).

Proof If H0 was the free Hamiltonian, then the poles would come from zeros of the princi-

pal function, as shown before. However, in this case we have poles coming from the resolvent

for the simple harmonic oscillator so that the pole structure of the full resolvent (5.70) is
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much more complicated. Let us use the Riesz integral by using the contour Γk enclosing the

odd-parity eigenvalue, say Ek:

ψk(x)ψ∗k(y) = − 1

2πi

∮
Γk

[
R0(x, y;E) +R0(x, 0;E)Φ−1(E)R0(0, y;E)

]
dE , (5.79)

where Φ−1(E) is given in (5.71). By choosing x = y = 0, we have

|ψk(0)|2 = − 1

2πi

∮
Γk

1[
1

R0(0,0;E)
− λ
] dE . (5.80)

Since ψk(x) is the odd-parity eigenfunction, above equation must vanish. This means that
1

R0(0,0;E)
− λ can not have zeros or 1

λ
− R0(0, 0;E) = Φ(E) 6= 0. Therefore, the poles of

R(x, y;E) corresponding to the odd-parity eigenstates must come from the poles of R0, not

from Φ−1(E).

Let us multiply the formal resolvent given in (5.68) with 〈φ2k| from left and with |φ2k〉
from right where φ2k are even eigenfunctions of simple harmonic oscillator. Then, we have

〈φ2k|(H − E)−1|φ2k〉 = 〈φ2k|(H0 − E)−1|φ2k〉+ 〈φ2k|(H0 − E)−1|0〉〈0|(H0 − E)−1|φ2k〉
Φ(E)

=

∫
R2

φ∗2k(x)R0(x, y;E)φ2k(y) dx dy

+

∫
R φ
∗
2k(x)R0(x, 0;E) dx

∫
RR0(0, y;E)φ2k(y) dy

1
λ
−R0(0, 0;E)

, (5.81)

where we have used completeness relations.

Theorem 5.4 Let φn(x) be the eigenfunctions of simple harmonic oscillator, then

R0(x, y;E) =
∑
n

φn(x)φ∗n(y)

En − E
, (5.82)

where En =
(
n+ 1

2

)
~ω.
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Due to above theorem, Eq. (5.81) turns out to be

〈φ2k|(H − E)−1|φ2k〉 =

∫
R2

φ∗2k(x)
∑
n

φn(x)φ∗n(y)

En − E
φ2k(y) dx dy

+

∫
R φ
∗
2k(x)

∑
n
φn(x)φ∗n(0)
En−E dx

∫
R
∑

n
φn(0)φ∗n(y)
En−E φ2k(y) dy

1
λ
−
∑

r
|φ2r(0)|2
E2r−E

=
1

E2k − E
+

|φ2k(0)|2
(E2k−E)2

1
λ
−
∑

r
|φ2r(0)|2
E2r−E

. (5.83)

Here, we used orthonormality conditions:
∫
R φn(x)φ∗m(y) dx = δnm and

∫
R |φ2k(x)|2 dx = 1.

By arranging the above equation, we obtain

〈φ2k|(H − E)−1|φ2k〉 =

1
λ
−
∑

r
|φ2r(0)|2
E2r−E + |φ2k(0)|2

(E2k−E)

(E2k − E)
[

1
λ
−
∑

r
|φ2r(0)|2
E2r−E

]
=

1
λ
−
∑

r 6=k
|φ2r(0)|2
E2r−E

E2k−E
λ
− (E2k − E)

∑
r 6=k

|φ2r(0)|2
E2r−E − |φ2k(0)|2

=
1

E2k − E − |φ2k(0)|2
χ

, (5.84)

where we have denoted χ = 1
λ
−
∑

r 6=k
|φ2r(0)|2
E2r−E . Note that E = E2k is not a pole anymore.

Poles are come from

1

λ
−
∑
r 6=k

|φ2r(0)|2

E2r − E
=
|φ2k(0)|2

E2k − E
, (5.85)

or it can be written

1

λ
=
∑
r

|φ2r(0)|2

E2r − E
= R0(0, 0;E) . (5.86)

Hence, for the even-parity eigenvalues, they must come from the poles of Φ−1(E) which gives

Eq. (5.38). From this approach, one can also see that

〈φ2k+1|(H − E)−1|φ2k+1〉 =
1

E2k+1 − E
+

|φ2k+1(0)|2
(E2k+1−E)2

1
λ
−
∑

r
|φr(0)|2
Er−E

, (5.87)
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where φ2k+1 are odd eigenfunctions of simple harmonic oscillator. Since φ2k+1(0) = 0, we

have poles only come from E = E2k+1 which is the same result that we found before. �

5.4. Spectrum of Isotropic Simple Harmonic Oscillator Supported by A

Point Interaction in Two Dimensions

Lemma 5.6 (Merzbacher, 1961) The two-dimensional simple harmonic oscillator potential

− ~2

2m
∆φn(x) +

1

2
mω2x2φn(x) = Enφn(x) . (5.88)

has the eigenvalues

En = (n+ 1)~ω , (5.89)

where n = n1 + n2 and n1, n2 = 0, 1, . . . and the eigenfunctions

φn(x) =

√
mω

π~
e−

mω
2~ |x|

2
2∏
j=1

1√
2njnj!

Hnj

(√
mω

~
xj

)
, (5.90)

where x = (x1, x2), and the degeneracy of the n-th energy is n+ 1.

Lemma 5.7 The heat kernel of the two-dimensional simple harmonic oscillator is given by

Kt(x,y) =
(mω
π~

) e−mω2~ coth(ωt)(|x|2+|y|2)+ mω
~ sinh(ωt)

(x·y)

2 sinh(ωt)
. (5.91)

Proof From Eq. (5.27) and writing t
~ instead of t because of dimensional consistency, we

find

Kt(x,y) =
∞∑

n1,n2=0

e−(n1+n2+1)ωtφn1,n2(x)φn1,n2(y) . (5.92)
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Then, from Eq. (5.90), we obtain

Kt(x,y) =
(mω
π~

) 2∏
j=1

[ ∞∑
nj=0

e−
mω
2~ (x2

j+x
′2
j )eωt(nj+

1
2)

×
Hnj

(√
mω
~ xj

)
Hnj

(√
mω
~ x
′
j

)
2njnj!

]
, (5.93)

where y = (x′1, x
′
2). By the help of Lemma 5.3, we obtain the desired result (5.91). �

Corollary 5.4 In particular, by choosing x,y = 0 in Eq. (5.91), we obtain

Kt(0,0) =
(mω
π~

) 1

2 sinh(ωt)
, (5.94)

which is going to be very useful in our calculations later on.

Theorem 5.5 Let H0 be the Hamiltonian of the two-dimensional simple harmonic oscillator

and H = H0 − λδ(2)(x). Then, the resolvent of the formal operator H after the renormaliza-

tion is given by

R(x,y;E) = R0(x,y;E) +R0(x,0;E)Φ−1(E)R0(0,y;E) , (5.95)

where

Φ(E) =
m

2π~2

[
Ψ

(
1

2
− E

2~ω

)
−Ψ

(
1

2
+

µ2

2~ω

)]
, (5.96)

and Ψ(x) is the digamma function and−µ2 is the experimentally measured bound state energy

for the system.

Proof This problem is still divergent because divergence appears due to the singular behav-

ior of the potential at x = 0. If we follow the same steps formally as we did in one-dimensional

case, we end up with Eq. (5.95) where

Φ(E) =
1

λ
−R0(0,0;E) . (5.97)
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But, now the free resolvent R0(0,0;E):

R0(0,0;E) =

∫ ∞
0

Kt(0,0)e
Et
~
dt

~
=
mω

2π~

∫ ∞
0

e
Et
~

sinh(ωt)

dt

~
, (5.98)

is divergent due to the short “time” behavior of the integrand, i.e., as t→ 0+ the denominator

behaves like t so that the integral blows up near t = 0. First, we regularize the integral by

introducing a new cut-off parameter ε for “time”, namely

Rε
0(0,0;E) =

mω

2π~

∫ ∞
ε

e
Et
~

sinh(ωt)

dt

~
, (5.99)

then choosing

1

λ(ε)
=
mω

2π~

∫ ∞
ε

e−
µ2t
~

sinh(ωt)

dt

~
, (5.100)

where −µ2 is the experimentally measured bound state energy, Eq. (5.97) becomes

Φ(E) =
mω

π~2

∫ ∞
0

e−ωt
∞∑
n=0

(
e−2ωt

)n [
e−

µ2t
~ − e

Et
~

]
dt

=
m

2π~2

∞∑
n=0

[
1(

n+ 1
2

)
+ µ2

2~ω

− 1(
n+ 1

2

)
− E

2ω~

]

=
m

2π~2

[
Ψ

(
1

2
− E

2~ω

)
−Ψ

(
1

2
+

µ2

2~ω

)]
, (5.101)

where we have used the infinite series representation of the difference of the digamma func-

tions given by (Gradshteyn & Ryzhik, 2000)

Ψ(x)−Ψ(y) =
∞∑
k=0

[
1

y + k
− 1

x+ k

]
. (5.102)

�

Due to the same reason with the discussion in one dimension, states belonging to odd-

parity are not affected by the perturbation of Dirac delta potential. For the even states, the

situation is more complicated (see the discussion in the three dimensions (Fassari & Inglese,
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1996)). For this reason, let us discuss the particular case, where n = n1 + n2 = 2 (first

excited even state) whose energy E2 = (2 + 1)~ω = 3~ω. The degeneracy of this state

is 2 + 1 = 3. Hence the state (1, 1) is not affected due to the same reason. However, the

energies corresponding to the states (2, 0) and (0, 2) will be lowered according to zeros of the

renormalized principal matrix (5.101).
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CHAPTER 6

CONCLUSION

In this thesis, we have review the basic results of the spectrum of point interactions in

one dimension and two dimensions. It has been shown that two-dimensional problem requires

a regularization and renormalization procedure. The bound state spectrum for finitely many

point interactions is investigated in detail. In particular, we discussed the case when the centers

of point interactions are located at the vertices of a regular polygon. The positivity and non-

degeneracy of the ground state has been proved. Finally, the bound state spectrum of the point

interaction with harmonic oscillator has been examined using heat kernel in one dimension

and two dimensions.
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University.

Rajeev, S. G. (1999) Bound States in Models of Asymptotic Freedom The Royal Swedish
Academy of Sciences, arXiv:hep-th/9902025 v1.

Griffiths D. J. (1995) Introduction to Quantum Mechanics Prentice-Hall, INC.

Mead R. L. & Godines J. (1991) An analytical example of renormalization in two-
dimensional quantum mechanics Am. J. Phys. 59 (10)39406-5046.

Gradshteyn I. S. & Ryzhik I. M. (2000) Table of Integrals, Series, and Products Academic
Press.

Lebedev N. N. (1965) Special Functions and Their Applications Prentice-Hall, INC.

Appel W. (2007) Mathematics for Physics and Physicists Princeton University Press

Zeidler E. (2006) Quantum Field Theory I: Basics in Mathematics and Physics Springer.

Hislop P. D. & Sigal I. M. (1996) Introduction to Spectral Theory with Applications to
Schödinger Operators Springer.

Greene R. E. & Krantz S. G. (2006) Function Theory of One Complex Variable American
Mathematical Society.

Halmos P. R. (1974) Finite-Dimensional Vector Spaces Springer.

Vatsya S. R. (2004) Comment on “Breakdown of the Hellmann-Feynman Theorem: De-
generacy is the Key” Physical Review B 69, 037102.

Ninio F. (1976) A Simple Proof of the Perron-Frobenius Theorem for Positive Symmetric

124



Matrices J. Phys. A: Math. Gen., Vol. 9, No. 8.

Calin O. & Chang D-C. & Furutani K. & Iwasaki C. (2011) Heat Kernels for Elliptic and
Sub-elliptic Operators Methods and Techniques Birkhäuser.
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APPENDIX A

POINT INTERACTION IN THE COORDINATE

REPRESENTATION IN ONE DIMENSION

We are going to consider three regions separately to solve Schrödinger equation given

in (3.6) for bound state energies and bound state wave function (Griffiths, 1995). In the region

x < 0, −λδ(x) = V (x) = 0. Hence,

− ~2

2m

d2ψ(x)

dx2
= Eψ(x) . (A.1)

Therefore, the general solution to this equation is

ψ(x) = Ae−kx +Bekx , (A.2)

where k =
√
−2mE
~ and A,B are constants. Since E is real and negative, k is real and positive.

Since we stay in the region x < 0, the first term blows up as x → ∞ and we must take

A = 0. Hence, the solution is ψ(x) = Bekx for x < 0. Similarly, it can be easily found that

in the region x > 0, we have a solution ψ(x) = Ce−kx where C is a constant. It remains to

examine the third region: x = 0. Since the wave function is always continuous, the boundary

conditions yields us

ψ(x) =

Bekx if x ≤ 0 ,

Be−kx if x ≥ 0 .
(A.3)

Because the derivative of the wave function is not continuous, we are going to search the

solution in a different way. The idea is to integrate the Schrödinger equation given in (3.6)

from −ε to +ε, then

− ~2

2m

(
dψ(x)

dx

) ∣∣∣+ε
−ε
− λ

∫ +ε

−ε
δ(x)ψ(x) dx = E

∫ +ε

−ε
ψ(x) dx , (A.4)
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where we integrate both sides formally since ψ(x) does not have to belong to the test space

or Schwartz space. Now, using the property of the Dirac delta function given in (2.15), we

obtain

− ~2

2m

(
dψ(x)

dx

) ∣∣∣+ε
−ε
− λψ(0) = E

∫ +ε

−ε
ψ(x) dx . (A.5)

If we take the limit as ε→ 0, we obtain

k =
mλ

~2
. (A.6)

But, we had E = −~2k2

2m
at the beginning. Then, we obtain the same result which was given

in (3.7) and from the normalization condition of the wave function, we have (3.8).
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APPENDIX B

DIFFERENT REGULARIZATION SCHEMES

B.1. Dimensional Regularization

The integral given in Eq. (3.143) which is divergent can also be made sensible from

another approach called the dimensional regularization (Mitra & DasGupta & Dutta-Roy,

1998). Let us consider that we have

∫
RD

1
p2

2m
+ ν2

dDp

(2π~)D
. (B.1)

We give a formula now:

∫
RD

1

k2 + a2

dDk

(2π)D
=

Γ
(
1− D

2

)
(4π)

D
2

1

(a2)1−D
2

. (B.2)

Therefore, our integral becomes

∫
RD

1
p2

2m
+ ν2

dDp

(2π~)D
=

Γ
(
1− D

2

)
(4π~2)

D
2

2m

(2mν2)1−D
2

. (B.3)

Let us write D = 2− ε, where ε > 0, into the above equation, then

∫
R2−ε

1
p2

2m
+ ν2

d2−εp

(2π~)2−ε =
Γ
(
ε
2

)
(4π~2)1− ε

2

2m

(2mν2)
ε
2

. (B.4)

We use this formula now:

Γ(−n+ ε) =
(−1)n

n!

[
1

ε
+ Ψ(n+ 1) +O(ε)

]
, (B.5)
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and also the Taylor expansion of Aε (treating ε is a variable)

Aε = 1 + ε lnA+O(ε2) . (B.6)

Therefore, Eq. (B.4) becomes

∫
R2−ε

1
p2

2m
+ ν2

d2−εp

(2π~)2−ε =
m

2π~2

[
2

ε
+ Ψ(1) + ln

(
2π~2

mν2

)
+O(ε)

]
. (B.7)

Also, we write

1

λi
=

∫
RD

µ2−D

p2

2m
+ µ2

i

dDp

(2π~)D
, (B.8)

where µ2−D was chosen because of dimensional reasons. By using the same formulae for

D = 2− ε, we obtain

1

λi(ε)
=

m

2π~2

[
2

ε
+ Ψ(1) + ln

(
2π~2

mµ2
i

)
+ 2 lnµ+O(ε)

]
. (B.9)

As ε→ 0, it is concluded that

Φii(ν) =
1

λi
−
∫
R2

1
p2

2m
+ ν2

d2p

(2π~)2
=

m

π~2
ln

(
µν

µi

)
, (B.10)

which is consistent with the result obtained from the cut-off regularization by redefining µi =

µµi.

B.2. Pauli-Villars Regularization

We can replace (Mitra & DasGupta & Dutta-Roy, 1998)

1
p2

2m
+ ν2

−→ 1
p2

2m
+ ν2

− 1
p2

2m
+ ξ2

, (B.11)
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as ξ →∞. Then, our integral turns out to be

∫
R2

(
1

p2

2m
+ ν2

− 1
p2

2m
+ ξ2

)
d2p

(2π~)2
=

m

π~2
ln

(
ξ

ν

)
, (B.12)

where we have used the polar coordinates. Also, we can write

1

λi(ξ)
=

∫
R2

(
1

p2

2m
+ µ2

i

− 1
p2

2m
+ ξ2

)
d2p

(2π~)2
=

m

π~2
ln

(
ξ

µi

)
, (B.13)

then, as ξ →∞, we find

1

λi
−
∫
R2

1
p2

2m
+ ν2

[d2p] =
m

π~2
ln

(
ν

µi

)
, (B.14)

which is consistent with the result obtained from the cut-off regularization and also from the

dimensional regularization.
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APPENDIX C

PROOFS OF IMPORTANT THEOREMS

C.1. Proof of Riesz Integral Representation Theorem

Proof For the first case, let Γz0 and Γz0 be two admissible contours for defining Pz0 . Sup-

pose that Γz0 contains the region Γz0 . Hence,

P2
z0

= − 1

4π2

∮
Γz0

[∮
Γz0

RH(E1)RH(E2) dE2

]
dE1 . (C.1)

We use the first resolvent identity which was given in Eq. (4.1). Then,

P2
z0

= − 1

4π2

[∮
Γz0

R(E1)

(∮
Γz0

1

E1 − E2

dE2

)
dE1

−
∮

Γz0

1

E1 − E2

dE1

∮
Γz0

R(E2) dE2

]
. (C.2)

Without loss of the generality, we can choose |E1| > |E2| that means |E1 − z0| > |E2 − z0|.
Then,

∮
Γz0

1
E1−E2

dE2 = 0. Because, E1 lies outside of the region Γz0 . But, since E2 lies

inside of the region Γz0 , from the residue theorem,
∮

Γz0

1
E1−E2

dE1 = 2πi. Therefore, we

obtain

P2
z0

= − 1

2πi

∮
Γz0

R(E) dE . (C.3)

One can see that Pz0 is independent of the contour provided that the contour is admissible for

z0 and H . Hence,

P2
z0

= − 1

2πi

∮
Γz0

R(E) dE = Pz0 . (C.4)
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For the second case, we need to show that if f ∈ Ker(H − z0) then f ∈ Ran(Pz0).

Let us assume that f ∈ Ker(H − z0). Then, for E 6= z0,

(H − E)f = (z0 − E)f ⇒ (z0 − E)−1f = (H − E)−1f . (C.5)

So,

Pz0f = − 1

2πi

∮
Γz0

R(E)f dE = − 1

2πi

∮
Γz0

f(E)

z0 − E
dE , (C.6)

and from the residue theorem,

Pz0f(E) = f(z0) , (C.7)

which means that f ∈ Ran(Pz0).

For the third case, let X be a Hilbert space and H = H†. Is Pz0 self-adjoint? Let us

write z = reiθ + z0 in Eq. (4.4). Then,

Pz0 = − r

2π

∫ π

−π
eiθR(reiθ + z0) dθ . (C.8)

Adjoint of this is

P†z0 = − r

2π

∫ π

−π
e−iθR†(reiθ + z0) dθ . (C.9)

We can show that R†(E) = R(E∗). In order to do this,

〈(H − E)f1, f2〉 = 〈f1, (H − E∗)f2〉 , (C.10)

because of H = H†. Define g1 = (H − E)f1 and g2 = (H − E∗)f2. Therefore,

〈g1, (H − E∗)−1g2〉 = 〈(H − E)−1g1, g2〉 . (C.11)
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That means

[
(H − E)−1

]†
= (H − E∗)−1 ⇒ R†(E) = R(E∗) . (C.12)

By substituting this into Eq. (C.9) and using the z0 = z∗0 because of H = H†, we find

P†z0 = − r

2π

∫ π

−π
e−iθR(re−iθ + z0) dθ . (C.13)

If we write −θ instead of θ, we obtain

P†z0 = − r

2π

∫ π

−π
eiθR(reiθ + z0) dθ = Pz0 . (C.14)

Our next aim is to show thatRan(Pz0) = Ker(H−z0). We have already proved Ran(Pz0) ⊃
Ker(H − z0). If we can show that Ran(Pz0) ⊂ Ker(H − z0), then proof is going to be

completed. So,

(H − z0)Pz0 = − 1

2πi

∮
Γz0

(H − z0)(H − E)−1 dE

= − 1

2πi

∮
Γz0

[
1 + (E − z0)(H − E)−1

]
dE , (C.15)

because of (H − z0)(H −E)−1 = [(H − E) + (E − z0)] [(H − E)−1] = 1 + (E − z0)(H −
E)−1. Therefore,

(H − z0)Pz0 = − 1

2πi

[∮
Γz0

dE +

∮
Γz0

(E − z0)(H − E)−1 dE

]
. (C.16)

Since the first integral is analytic in that domain, it is zero. Then, we have

(H − z0)Pz0 = − 1

2πi

∮
Γz0

(E − z0)(H − E)−1 dE . (C.17)

We are going to use the Riemann removable singularities theorem (Greene & Krantz, 2006).
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Theorem C.1 Let f : D(P, r) \ {P} → C be holomorphic and bounded. Then,

1. limz→P f(z) exists.

2. The function f̃ : D(P, r)→ C defined by

f̃(z) =


f(z) if z 6= P ,

lim
ξ→P

f(ξ) if z = P ,

(C.18)

is holomorphic on D(P, r).

In our case; for Uz0 \ {z0}, the operator (E − z0)(H −E)−1 is holomorphic operator-

valued function where Uz0 is the interior of the contour Γz0 and also uniformly bounded.

Because,

‖(E − z0)(H − E)−1‖ = |(E − z0)|‖R(E)‖ < |(E − z0)|
d(E, ξ)

, (C.19)

where ξ ∈ σ(H). Also, since it is allowed to choose Γz0 arbitrarily, we can take |(E − z0)| <
d(z, ξ). Hence,

‖(E − z0)(H − E)−1‖ < 1 . (C.20)

Then, from the theorem we have f̃ : Uz0 → C defined by

f̃(E) =


(E − z0)(H − E)−1 if E 6= z0 ,

lim
ξ→z0

(ξ − z0)(H − ξ)−1 if E = z0 ,

(C.21)

is holomorphic on Uz0 . By Cauchy’s theorem,
∮
Uz0

f̃(E) dE = 0. Therefore,

(H − z0)Pz0 = 0 . (C.22)
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If y = Pz0x, then y ∈ Ran(Pz0). However, from the above equation, we have y ∈ Ker(H −
z0). So, it is concluded that Ran(Pz0) ⊂ Ker(H − z0). �

C.2. Proof of Geršgorin Theorem

Proof Let w be an eigenvalue of Φ, then suppose Φx = wx where x is a column vector and

Φ is a N ×N matrix. There is an element of x that has largest absolute value, say |xp| ≥ |xi|
for all i = 1, 2, . . . , N and xp 6= 0. Then,

wxp = (wx)p = (Φx)p =
N∑
j=1

Φpjxj = Φppxp +
N∑

i,j=1
j 6=p

Φpjxj , (C.23)

and by taking the absolute value of both sides and from the triangle inequality, we obtain

|w − Φpp||xp| ≤
N∑

i,j=1
j 6=p

|Φpj||xj| . (C.24)

Since |xp| ≥ |xj|, it can be written

|w − Φpp||xp| ≤
N∑

i,j=1
j 6=p

|Φpj||xp| , (C.25)

and then we conclude that

|w − Φii| ≤
N∑

i,j=1
j 6=i

|Φij| . (C.26)
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C.3. Proof of Hellmann-Feynman Theorem

Proof It can be written that E(ν) = 〈ψ(ν)|H(ν)|ψ(ν)〉. Then, (Erman, 2010)

∂E(ν)

∂ν
=

∂

∂ν

∫
R
ψ∗(ν)H(ν)ψ(ν) dν =

∫
R

∂ψ∗(ν)

∂ν
H(ν)ψ(ν) dν

+

∫
R
ψ∗(ν)

∂H(ν)

∂ν
ψ(ν) dν

+

∫
R
ψ∗(ν)H(ν)

∂ψ(ν)

∂ν
dν . (C.27)

Therefore,

∂E(ν)

∂ν
=

∫
R

[
∂ψ∗(ν)

∂ν
ψ(ν) + ψ∗(ν)

∂ψ(ν)

∂ν

]
H(ν) dν

+

∫
R
ψ∗(ν)

∂H(ν)

∂ν
ψ(ν) dν , (C.28)

and since ψ(ν) is a normalized eigenfunction, ∂
∂ν
〈ψ(ν)|ψ(ν)〉 = 0, the first integral is zero.

Hence,

∂E(ν)

∂ν
=

∫
R
ψ∗(ν)

∂H(ν)

∂ν
ψ(ν) dν =

〈
ψ(ν)

∣∣∣∂H(ν)

∂ν
ψ(ν)

〉
. (C.29)
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APPENDIX D

DEGENERATE CASE

Let us now examine the degenerate case. LetE(ν0) be aN -fold degenerate eigenvalue.

The non-degenerate case was given by N = 1. In a small neighborhood of ν0, the eigenvalue

equation which is given in (4.73) can be written as (Vatsya, 2004)

H(ν0 + ε)φn(ν0 + ε) = En(ν0 + ε)φn(ν0 + ε) , (D.1)

where n = 1, . . . , N and ε is a small parameter or it can be written in that form

H(ν)φn(ν) = En(ν)φn(ν) , (D.2)

where ν = ν0 + ε. As En(ν0) = E(ν0) for each n, some of the eigenvalues En(ν0 + ε)

may be distinct for all non-zero values of ε close to zero, which is the only case of inter-

est here. For convenience, it is going to be assumed that each of En(ν0 + ε) is an isolated,

non-degenerate eigenvalue, except for ε = 0, and therefore all the corresponding normalized

eigenvectors φn(ν0 + ε) are uniquely defined. If some of En(ν0 + ε) are identical, we can

approach it similarly. For a continuously differentiable H(ν), each of En(ν) defines a contin-

uously differentiable curve. For a N -fold degenerate eigenvalue E(ν0), N of the curves cross

at ν0.

For φn(ν) to be differentiable at ν = ν0, it is necessary that φn(ν0 + ε) → φn(ν0)

as ε → 0. For a differentiable H(ν), this is also sufficient. The eigenvectors φn(ν0) can be

calculated by the method of degenerate perturbation theory, which is indicated in the sequel

below. So, it follows from Eq. (D.1) that

lim
ε→0

[
H(ν0 + ε)φn(ν0 + ε)−H(ν0)φn(ν0)

ε

]
= lim

ε→0

[
En(ν0 + ε)φn(ν0 + ε)− En(ν0)φn(ν0)

ε

]
, (D.3)

where limit operation is taken with respect to the norm in Hilbert space. Then, the left-hand
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side can be written as

lim
ε→0

[
H(ν0 + ε)[φn(ν0 + ε)− φn(ν0)]

ε
+

[H(ν0 + ε)−H(ν0)]φn(ν0)

ε

]
. (D.4)

Since the limits exist, the above equation implies

H(ν0)
∂φn(ν)

∂ν
+
∂H(ν)

∂ν
φn(ν0) , (D.5)

for all the derivatives are evaluated at ν = ν0 which is going to be assumed without further

mention. After doing similar calculation for the right-hand side, we obtain

∂H(ν)

∂ν
φn(ν0) +H(ν0)

∂φn(ν)

∂ν
=
∂En(ν)

∂ν
φn(ν0) + En(ν0)

∂φn(ν)

∂ν
. (D.6)

By taking the scalar product of this with φn(ν0) yields

〈
φn(ν0)

∣∣∣∂H(ν)

∂ν
φn(ν0)

〉
+

〈
φn(ν0)

∣∣∣H(ν0)
∂φn(ν)

∂ν

〉
=

〈
φn(ν0)

∣∣∣∂En(ν)

∂ν
φn(ν0)

〉
+

〈
φn(ν0)

∣∣∣En(ν0)
∂φn(ν)

∂ν

〉
,

Because of E is real and H = H†, the right-hand side becomes

∂En(ν)

∂ν
+

〈
φn(ν0)

∣∣∣H(ν0)
∂φn(ν)

∂ν

〉
.

Therefore,

∂En(ν)

∂ν
=

〈
φn(ν0)

∣∣∣∂H(ν)

∂ν

∣∣∣φn(ν0)

〉
, (D.7)

where n = 1, . . . , N .

Remark D.1 Note that φn(ν0) is not any normalized eigenvector. In the beginning, this rela-
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tion was used in Eq. (4.72);

∂En(ν)

∂ν
=

〈
ψ(ν0)

∣∣∣∂H(ν)

∂ν
ψ(ν0)

〉
, (D.8)

where ψ(ν0) is an arbitrary normalized vector in the N -dimensional eigenspace of H(ν0).

But, this result is invalid. Because, each such ψ(ν) is not differentiable except for N = 1.

We can also use the following form of the degenerate Hellmann-Feynman theorem

from projections point of view which can be more convenient for some applications. Consider

Eq. (D.2) in that way

H(ν)|φn(ν)〉 = E(ν)|φn(ν)〉 , (D.9)

with n solutions for the eigenvalues En(ν). By multiplying both sides of this with 〈φn(ν)|
from the right, we have

H(ν)PN(ν) = En(ν)PN(ν) , (D.10)

where PN(ν) is the orthoprojection on the respective eigenspace of H(ν) defined by

PN(ν)u =
N∑
n=1

φn(ν)〈φn(ν)|u〉 , (D.11)

for each u in Hilbert space. If we take ν = ν0, the above equation reduces to

PN(ν0)u =
N∑
n=1

ϕn(ν0)〈ϕn(ν0)|u〉 , (D.12)

where ϕn(ν0) is an arbitrary orthonormal basis in the N -dimensional eigenspace of H(ν0)

corresponding to the degenerate eigenvalue. The projection PN(ν) admits the represantation

which we have already known

PN(ν) = − 1

2πi

∮
C

[H(ν)− E]−1 dE , (D.13)
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where C is a positively oriented closed contour in the complex E-plane enclosing the N

eigenvalues En(ν). With the help of this representation, it follows by direct differentiation

that for a continuously differentiable H(ν), PN(ν) is also continuously differentiable with

respect to ν. Let us differentiate Eq. (D.10) and operate with PN(ν0) from left, we possess

PN(ν0)
∂H(ν)

∂ν
PN(ν0) + PN(ν0)H(ν0)

∂PN(ν)

∂ν

= PN(ν0)
∂E(ν)

∂ν
PN(ν0)

+ PN(ν0)E(ν0)
∂PN(ν)

∂ν
. (D.14)

The right-hand side of the above equation can be reduced to

∂E(ν)

∂ν
PN(ν0) + PN(ν0)H(ν0)

∂PN(ν)

∂ν
, (D.15)

by means of P2 = P and E(ν0)PN(ν0) = H(ν0)PN(ν0) = PN(ν0)H(ν0) because of H = H†.

Therefore, Eq. (D.14) becomes

ON(ν0) = PN(ν0)
∂H(ν)

∂ν
PN(ν0) =

∂E(ν)

∂ν
PN(ν0) . (D.16)

It can be easily seen that if we apply 〈φn(ν0)| from left, we have Eq. (D.7).

In our problem, if we have a degeneracy, Eq. (4.4) can be written

Pk = − 1

2πi

∮
Γk

R(E) dE , (D.17)

where Pk =
∑Ml

l=1 |ψk,l〉〈ψk,l| and l is the label of the degeneracy. Also, in Eq. (4.89), we

have degenerate projections such as

Pk =
Ms∑
s=1

|Ak,si 〉〈A
k,s
j | . (D.18)
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By applying the same procedure as in the non-degenerate case, we have

Ml∑
l=1

ψk,l(x)ψ∗k,l(y) = −
N∑

i,j=1

Ms∑
s=1

R0(x, ai;−ν2
k)As

∗
i (−ν2

k)Asj(−ν2
k)R0(aj,y;−ν2

k)(
∂wk(E)
∂E

) ∣∣∣
E=−ν2

k

(D.19)

We cannot explicitly find the wave function from here. But, one can diagonalize the degen-

erate eigenstates and find the wave function by a unitary transformation and by doing same

calculations, one can see that the non-degenerate case also satisfies Eq. (4.75).
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APPENDIX E

PROOF OF PERRON-FROBENIUS THEOREM

Proof 1) Because the eigenvalues of A are real and their sum equals to the TrA > 0, it

ensures λ > 0.

2) Let (Uj) be any real normalized eigenvector belonging to λ, then

AUi = λUi =
∑
j

aijUj , (E.1)

for i = 1, . . . , n and set Xj = |Uj|. Hence,

0 < λ =
∑
ij

aijUiUj =
∣∣∣∑

ij

aijUiUj

∣∣∣ , (E.2)

and

λ ≤
∑
ij

|aij||Ui||Uj| =
∑
ij

aijXiXj . (E.3)

By means of the variational theorem,

λ =
∑
ij

aijXiXj , (E.4)

then,

λXi =
∑
j

aijXj , (E.5)

for i = 1, . . . , n and that means (Xj) is an eigenvector belonging to λ. Therefore, if Xi = 0

for some i, then because of aij > 0 for all j, Xj = 0 which cannot be true. Thus, every

Xj > 0.
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3) Let us assume that λ is degenerate. Hence, we can find two real orthonormal eigenvectors

(Uj) and (Vj) belonging to λ. Suppose that Ui < 0 for some i. From the addition of Eq. (E.1)

and (E.5), we have

λ(Ui +Xi) =
∑
j

aij(Uj +Xj)⇒ λ(Ui + |Ui|) =
∑
j

aij(Uj + |Uj|) . (E.6)

Then, Uj = −|Uj| for every j. If we assume that Ui > 0 for some i and subtracting Eq.

(E.5) from (E.1), we obtain Uj = |Uj|. That means Uj = ±|Uj| and by applying the same

procedure, we also have Vj = ±|Vj|. Therefore,

∑
j

VjUj = ±
∑
j

|VjUj| . (E.7)

Since |Uj|, |Vj| 6= 0 for all j, |VjUj| 6= 0 which means that U and V cannot be orthogonal.

Because of the contradiction with the first assumption, λ is non-degenerate.

4) Let (Wj) be a normalized eigenvector belonging to µ < λ,

∑
j

aijWj = µWi . (E.8)

From the variational property, we have

λ =
∑
ij

aijUiUj ≥
∑
ij

aijYiYj . (E.9)

Let us choose Yi = |Wi| and from the non-degeneracy of λ,

λ >
∣∣∣∑

ij

aijWiWj

∣∣∣ = |µ| . (E.10)
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APPENDIX F

THE PROOF OF MEHLER’S FORMULA AND

FORMULA (5.52)

F.1. Proof of Mehler’s Formula: (5.28)

Let us substitute the integral representation of the Hermite polynomials (Lebedev,

1965):

Hn(x) =
(−2i)nex

2

√
π

∫
R
une−u

2+2ixu du , (F.1)

into the left-hand side of the Eq. (5.28) and try to find the right-hand side of this equation. So,

e−(x2+y2)

∞∑
n=0

zn

2nn!
Hn(x)Hn(y) =

1

π

∫
R2

[
∞∑
n=0

(−2zuv)n

n!
e−u

2−v2+2ixu+2iyv

]
du dv

=
1

π

∫
R
e−v

2+2iyv

[∫
R
e−u

2+2iu(x− vz2 ) du

]
dv . (F.2)

From Eq. (G.10):

∫
R
e−u

2+2iu(x− vz2 ) du =
√
πe−(x− vzi )

2

. (F.3)

Therefore, Eq. (F.2) turns out to be

e−(x2+y2)

∞∑
n=0

zn

2nn!
Hn(x)Hn(y) =

e−x
2

√
π

∫
R
e−v

2(1−z2)+v(2iy−2ixz) dv . (F.4)
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Since the above integral is similar to the Gaussian integral, we can apply the same procedure

as we did for (5.11), then

e−x
2

√
π

∫
R
e−v

2(1−z2)+v(2iy−2ixz) dv =
e
− (x2+y2−2xyz)

1−z2

√
1− z2

, (F.5)

which is consistent with Eq. (5.28).

F.2. Proof of the Formula (5.52)

Proof Since
√
π = Γ

(
1
2

)
and from the property Γ(x+ 1) = xΓ(x) ,

√
π

(1− x)

Γ
(

3
2
− x

2

)
Γ
(
1− x

2

) =
1

2

Γ
(

1
2

)
Γ
(

1−x
2

)
Γ
(
1− x

2

) . (F.6)

Also, from Eq. (5.78), the above equation becomes

√
π

(1− x)

Γ
(

3
2
− x

2

)
Γ
(
1− x

2

) =
1

2
B

(
1− x

2
,
1

2

)
. (F.7)

There is a useful formula (Gradshteyn & Ryzhik, 2000):

B

(
z,

1

2

)
=
∞∑
k=1

(2k − 1)!!

2kk!

1

(z + k)
+

1

z
, (F.8)

and that is also satisfied:

B

(
z,

1

2

)
=
∞∑
k=1

(2k + 1)!!

(2k + 1)2kk!

1

(z + k)
+

1

z
. (F.9)

Since (2k + 1)!! = (2k+1)!
2kk!

from (Gradshteyn & Ryzhik, 2000), the above equation holds

B

(
z,

1

2

)
=
∞∑
k=1

(2k)!

4k(k!)2

1

(z + k)
+

1

z
. (F.10)
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By using this formula, Eq. (F.7) turns out to be

√
π

(1− x)

Γ
(

3
2
− x

2

)
Γ
(
1− x

2

) =
∞∑
n=0

(2n)!

4n(n!)2

1

(2n+ 1− x)
, (F.11)

where we have relabeled k → n. �
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APPENDIX G

ONE-DIMENSIONAL SIMPLE HARMONIC

OSCILLATOR IN FOURIER SPACE

The Fourier approach to quantum harmonic oscillator problem has been given in

(Ponomarenko, 2004). The time-independent Schrödinger equation in one dimension with

a simple harmonic oscillator is

− ~2

2m

d2ψ(x)

dx2
− 1

2
mω2x2ψ(x) = Eψ(x) . (G.1)

If we define dimensionless variables y =
√

mω
~ x and ε = E

~ω , the above equation turns out to

be

d2ψ

dy2
+ (2ε− y2)ψ = 0 . (G.2)

If y is too large, then we expect 2ε− y2 ∼ −y2 asymptotically. Hence,

d2ψ

dy2
− y2ψ = 0 , (G.3)

which has a solution ψ(y) = φ(y)e
y2

2 . Let us substitute this into Eq. (G.2),

φ′′(y) + 2yφ′(y) + (2ε+ 1)φ(y) = 0 . (G.4)

By taking formal Fourier transform of both sides of the above equation, we obtain

φ̂(k) = Ce
k2

4 k−
(2ε+3)

2 (G.5)
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where C is a constant. Then,

ψ(y) = Ce
y2

2

∫
R
eikyk(ε− 1

2)e−
k2

4
dk

2π
. (G.6)

This should be satisfied: ψ(y) = ±ψ(−y) because of the symmetry of the potential. After

calculations, we find

(−1)ε−
1
2 = ±1 , (G.7)

which means ε− 1
2

= n where n is an integer. So

E =

(
n+

1

2

)
~ω . (G.8)

To find the wave function, we return to the Eq. (G.6):

ψ(y) = Ce
y2

2

∫
R
eikykne−

k2

4
dk

2π

= Ce
y2

2
dn

d(iy)n

∫
R
eikye−

k2

4
dk

2π
, (G.9)

which looks like a Gaussian integral. We are going to apply the same procedure as we did for

the integral given in (5.11). Then,

∫
R
eikye−

k2

4
dk

2π
=
e−y

2

√
π
. (G.10)

So, Eq. (G.9) becomes

ψn(y) = Dne
− y

2

2 Hn(y) , (G.11)
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where Dn is a constant. By substituting y =
√

mω
~ x and doing the normalization of the wave

function, we obtain

ψn(x) =
(mω
~π

) 1
4 1√

2nn!
e−

mω
2~ x

2

Hn

(√
mω

~
x

)
. (G.12)
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