# SEMIPERFECT AND PERFECT GROUP RINGS 

A Thesis Submitted to<br>the Graduate School of Engineering and Sciences of<br>İzmir Institute of Technology<br>in Partial Fulfillment of the Requirements for the Degree of<br>MASTER OF SCIENCE<br>in Mathematics<br>by<br>Tekgül KALAYCI

June 2014
IZMİR

## Examining Committee Members:

## Prof. Dr. Dilek PUSAT

Department of Mathematics, İzmir Institute of Technology

Assoc. Prof. Dr. Noyan Fevzi Er<br>Department of Mathematics Engineering, Yıldız Technical University

[^0]
## Prof. Dr. Dilek PUSAT

Supervisor, Department of Mathematics
İzmir Institute of Technology

Prof. Dr. Oğuz YILMAZ
Head of the Department of Mathematics

Prof. Dr. R. Tuğrul SENGER
Dean of the Graduate School of Engineering and Sciences

## ACKNOWLEDGMENTS

I would like to thank to my advisor Prof.Dr.Dilek PUSAT for her supervision, advice and guidance. I also thank to my dear friends, especially Gonca KIZILASLAN, Mehmet YEŞIL and Neslihan GİRGİN for motivating me to complete my thesis. I owe the same amount of thanks to my family for their love and being constantly proud of me without any reason. I feel their eternal love, patience and understanding in every second in my lifelong.

## ABSTRACT <br> SEMIPERFECT AND PERFECT GROUP RINGS

In this thesis, we give a survey of necessary and sufficient conditions on a group $G$ and a ring $R$ for the group ring $R G$ to be semiperfect and perfect. A ring $R$ is called semiperfect $R / \operatorname{Rad} R$ is semisimple and idempotents of $R / \operatorname{Rad} R$ can be lifted to $R$. It is given that if $R G$ is semiperfect, so is $R$. Necessary conditions on $G$ for $R G$ to be semiperfect are also given for some special type of groups. For the sufficient conditions, several types of rings and groups are considered. If $R$ is commutative and $G$ is abelian, a complete characterization is given in terms of the polynomial ring $R[X]$.

A ring $R$ is called left (respectively, right) perfect if $R / \operatorname{Rad} R$ is semisimple and $\operatorname{Rad} R$ is left (respectively, right) $T$-nilpotent. Equivalently, a ring is called left (respectively, right) perfect if $R$ satisfies the descending chain condition on principal right (respectively, left) ideals. By using these equivalent definitions of a perfect ring and results from group theory, a complete characterization of a perfect group ring $R G$ is given in terms of $R$ and $G$.

## ÖZET

## YARI MÜKEMMEL VE MÜKEMMEL GRUP HALKALARI ÜZERİNE

Bu tezde $G$ grubu ve $R$ halkası ile kurulan $R G$ grup halkasının yarımükemmel ve mükemmel olması için $R$ ve $G$ üzerinde gerek ve yeter koşullar üzerine bir inceleme yapılmıştır. Bir $R$ halkası için $R$ / Rad $R$ yarıbasit halkaysa ve $R / \operatorname{Rad} R$ halkasının eşgüçlüleri $R$ halkasına yükseltilebiliyorsa $R$ yarımükemmeldir denir. Eğer $R G$ grup halkası yarı mükemmel ise, $R$ halkası da yarımükemmeldir. $R G$ grup halkasının yarımükemmel olması için $G$ üzerinde gerekli olan koşullar da bazı özel gruplar için verilmiştir. Yeter koşullar için bazı özel halka ve gruplar göz önüne alınmıştır. Eğer $R$ değişmeli bir halka, $G$ de değişmeli bir grupsa $R[X]$ polinom halkası kullanılarak tam bir karakterizasyon verilmiştir.

Bir $R$ halkası için $R / \operatorname{Rad} R$ yarıbasit halkaysa ve $\operatorname{Rad}(R)$ sol (sırasıyla, sağ) $T$ ssfirgüçlüyse $R$ sol (sırasıyla, sağ) mükemmeldir denir. Denk olarak, bir $R$ halkası için asıl sağ (sırasıyla, sol) idealler üzerinde azalan zincir koşulunu sağlıyorsa sol (sırasıyla, sağ) mükemmeldir denir. Bu denk tanımlar ve gruplar teorisinden bazı sonuçlar kullanılarak mükemmel grup halkaları, $R$ ve $G$ 'nin özellikleri cinsinden tam olarak karakterize edilmiştir.

## TABLE OF CONTENTS

LIST OF SYMBOLS ..... vii
CHAPTER 1. INTRODUCTION ..... 1
CHAPTER 2. PRELIMINARIES ..... 2
2.1. Groups ..... 2
2.2. Semisimple Rings and Modules ..... 4
2.3. The Theory of Idempotents ..... 6
2.4. Regular Rings ..... 7
2.5. Semiperfect Rings ..... 8
2.6. Perfect Rings ..... 9
2.7. Group Rings ..... 9
2.7.1. Basic Facts ..... 9
2.7.2. Chain Conditions ..... 23
2.7.3. Regularity ..... 24
2.7.4. On the Radicals ..... 24
2.7.5. Properties of the Fundamental Ideal ..... 25
CHAPTER 3. SEMIPERFECT GROUP RINGS ..... 26
3.1. Some Necessary Conditions ..... 26
3.2. Some Sufficient Conditions ..... 29
3.3. Examples ..... 36
CHAPTER 4. PERFECT GROUP RINGS ..... 38
4.1. Sufficiency ..... 38
4.2. Necessity when $G$ is Abelian ..... 38
4.3. Reduction to the Abelian Case ..... 39
CHAPTER 5. CONCLUSION ..... 41
REFERENCES ..... 42

## LIST OF SYMBOLS

| $R$ | an associative ring with identity element unless otherwise stated |
| :---: | :---: |
| $D$ | a division ring unless otherwise stated |
| K | a field unless otherwise stated |
| $G$ | an arbitrary group unless otherwise stated |
| $\|G\|$ | order of the group $G$ |
| $R G$ | the group ring of the ring $R$ and the group $G$ |
| $p$ | an arbitrary prime integer |
| $\mathbb{Z}$ | the ring of integers |
| Q | the field of rational numbers |
| $\mathbb{R}$ | the field of real numbers |
| $\mathbb{C}$ | the field of complex numbers |
| $R[X]$ | the polynomial ring with coefficients from the ring $R$ |
| $M_{n}(R)$ | the ring of $n \times n$ matrices entries from the ring $R$ |
| $\omega G$ | the fundamental (augmentation) ideal of the group ring $R G$ |
| $R$-module | left $R$-module |
| $\operatorname{Hom}_{R}(M, N)$ | all $R$-module homomorphism from $M$ to $N$ |
| $\operatorname{Rad}(M)$ | the Jacobson radical of the $R$-module $M$ |
| $\operatorname{rad}(M)$ | the prime radical of $R$-module $M$ |
| $\mathrm{Ann}_{l}(I)$ | the left annihilator of an ideal $I$ |
| $\mathrm{Ann}_{r}(I)$ | the right annihilator of an ideal $I$ |
| $\operatorname{char}(R)$ | the characteristic of the ring $R$ |
| $\subseteq$ | subset |
| $\subset$ | proper subset |
| $\operatorname{Ker}(f)$ | the kernel of the map $f$ |
| $\operatorname{Im}(f)$ | the image of the map $f$ |
| $\operatorname{End}_{R}(M)$ | the endomorphism ring of a module M |
| $\bar{R}$ | the factor ring $R / \operatorname{Rad} R$ |

## CHAPTER 1

## INTRODUCTION

Throughout this thesis, $R$ is an associative ring with unity, $G$ is an arbitrary group and $R G$ is the group ring of $G$ over $R$. Also all modules are unitary left $R$-modules unless otherwise indicated.

A ring $R$ is called semiperfect if $R / \operatorname{Rad} R$ is semisimple and idempotents of $R / \operatorname{Rad} R$ can be lifted to $R$. A ring $R$ is called left (respectively, right) perfect if $R / \operatorname{Rad} R$ is semisimple and $\operatorname{Rad} R$ is left (respectively, right) $T$-nilpotent. If $R$ is both left and right perfect, we call $R$ a perfect ring. In this thesis, semiperfectness and perfectness of an arbitrary group $G$ over an associative ring $R$ is studied.

In Chapter 2 we mention about some well-known results about groups and rings that will be useful for our work. We also give the definition and main properties of a group ring that will be used in the following chapters. For further information and proofs we refer to (Bland, 2010), (Burnside, 1902), (Connell, 1963), (Golod \& Shafarevich, 1964), (Herstein, 2002), (Lam, 1990), (Robinson, 1991).

In Chapter 3 we give some necessary and sufficient conditions on a ring $R$ and on a group $G$ for the group ring $R G$ to be semiperfect. For this purpose, a class of groups is given such that $R G$ is not semiperfect for any ring $R$ if $G$ is in that class. If $R G$ is semiperfect, so is $R$, thus $\bar{R}$ is the direct product of matrix rings over some division rings. It is indicated that characteristics of these division rings give us a plenty of information about the group $G$. Later we mention about some special types of groups and rings that gives us a semiperfect group ring. When $R$ is commutative and $G$ is abelian, a complete characterization of a semiperfect group ring $R G$ is given in terms of the polynomial ring $R[X]$. Using this characterization, it is shown by examples that the class of groups $G$ for which $R G$ is semiperfect for an arbitrary ring $R$ is not closed under taking subgroups or direct products in the last section of this chapter.

In Chapter 4 a a complete characterization of perfect group rings is given in terms of $R$ and $G$. A ring $R$ is called left perfect if it satisfies the descending chain condition on principal right ideals. In this part, by using this definition of a left perfect ring, it is shown that for a group ring $R G$ to be semiperfect, $G$ must be torsion. Then in the abelian case, it is shown that $G$ must be finite. With the further results in this chapter, we see that the group ring $R G$ is perfect if and only if $R$ is perfect and $G$ is finite.

## CHAPTER 2

## PRELIMINARIES

In this chapter of our study we give fundamental properties of groups, rings and group rings that will be used later.

### 2.1. Groups

Firstly, we give some necessary properties of groups.
Definition 2.1 A group $G$ is an $\Omega$-group if for any non-empty finite subsets $A$ and $B$ of $G$, there exists at least one $x \in G$ which has a unique representation in the form $x=a b$ with $a \in A$ and $b \in B$.

Definition 2.2 A group $G$ is an ordered group if it has a linear ordering $<$ such that $x<y$ implies $x z<y z$ for all $z \in G$.

Example 2.1 All torsion-free abelian groups are ordered groups. In particular, $\mathbb{Z}$ is an ordered group.

Let $G$ be an ordered group. Let $A$ and $B$ be two finite subsets of $G$. If $a$ and $b$ are largest elements of $A$ and $B$, respectively, and $x=a b \in G$, then there is no other representation for $x=a^{\prime} b^{\prime}$, where $a^{\prime} \in A$ and $b^{\prime} \in B$. So, every ordered group is an $\Omega$ group.

Definition 2.3 A group $G$ is called p-group if every element of $G$ has an order a power of $p$, where $p$ is a prime.

Definition 2.4 $A$ group $G$ is called $p^{\prime}$-group if no element of $G$ has an order divisible by $p$, where $p$ is a prime.

Theorem 2.1 (First Sylow Theorem) (Robinson, 1991) Let $G$ be a finite group and let $|G|=$ $p^{n} m$, where $n \geq 1$ and $p$ does not divide $m$. Then
(i) $G$ contains a subgroup of order $p^{i}$ for each $i$, where $1 \leq i \leq n$.
(ii) Every subgroup $H$ of $G$ of order $p^{i}$ is a normal subgroup of a subgroup of order $p^{i+1}$ for $1 \leq i \leq n$.

Definition 2.5 A Sylow p-subgroup of a group $G$ is a maximal p-subgroup of $G$, that is, a p-subgroup contained in no larger subgroup.

Now, we will mention about some structural properties of finitely generated abelian groups.
Theorem 2.2 (Robinson, 1991) If $G$ is a finitely generated abelian group, then $G$ satisfies the maximal condition on subgroups.

Theorem 2.3 (Robinson, 1991) If $G$ is an abelian torsion group, then $G$ is finitely generated.

Theorem 2.4 (Robinson, 1991) An abelian group $G$ is finitely generated if and only if it is a direct sum of finitely many cyclic groups of infinite or prime-power orders.

For a group $G$, it is not always the case that finitely generated subgroups of $G$ are finite. So, the class of groups with this property is of special interest.

Definition 2.6 A group $G$ is called locally finite if every finitely generated subgroup of $G$ is finite.

Let $G$ be a locally finite group. Then every finitely generated subgroup of $G$ is finite. In particular, cyclic subgroups of $G$ are finite. This means that $G$ is a torsion group. The following proposition states when the converse holds.

Proposition 2.1 (Dixon, 1994) Let $G$ be a torsion group. If $G$ is solvable, then $G$ is locally finite.

Since an abelian group is always solvable, a torsion abelian group is always locally finite by Proposition 2.1. But for an arbitrary group, it was a problem named after Burnside, who first raised it in 1902.

Burnside's Problem: Is a torsion group necessarily locally finite?
This question was answered in the negative by Golod and Shafarevicht in 1964.

Theorem 2.5 Golod-Shafarevicht Theorem (Herstein, 2002) Let $A=K\left[x_{1}, \ldots, x_{n}\right]$ be the free algebra over a field $K$ in $n=d+1$ non-commuting variables $x_{i}$. Let $J$ be the 2 -sided ideal of $A$ generated by homogeneous elements $f_{j}$ of $A$ of degree $d_{j}$ with $2 \leq d_{1} \leq d_{2} \leq \ldots$ where $d_{j}$ tends to infinity. Let $r_{i}$ be the number of $d_{j}$ equal to $i$. Let $B=A / J$, a graded algebra. Let $b j=\operatorname{dim} B j$. Then
(i) $b_{j} \geq n b_{j-1}-\sum_{i=2}^{j} b_{j-i} r_{i}$.
(ii) if $r_{i} \leq \frac{d^{2}}{4}$ for all $i$, then $B$ is infinite-dimensional.
(iii) if $B$ is finite-dimensional, then $r_{i}>\frac{d^{2}}{4}$ for some $i$.

Using Theorem 2.5, one can obtain a finitely generated infinite group as the following theorem states.

Theorem 2.6 (Herstein, 2002) If $p$ is any prime number, then there exists an infinite group $G$ generated by three elements in which every element has finite order, a power of $p$.

Theorem 2.6 gives us a finitely generated and infinite group. With this group, one can construct an infinite dimensional nil algebra, as the following theorem states.

Theorem 2.7 (Herstein, 2002) If $K$ is a field of characteristic $p$, then there exists an infinite dimensional nil algebra over $K$ generated by three elements.

### 2.2. Semisimple Rings and Modules

Since semisimple rings play an important role in our study, we mention about them in this section.

Definition 2.7 An R-module $M$ is called left semisimple if it can be written as a direct sum of simple left $R$-submodules of $M$.

In particular, a ring $R$ is called left semisimple if it can be written as a direct sum of simple left ideals.

Proposition 2.2 (Bland, 2010) Let $M$ be an R-module with the property that every submodule of $M$ is a direct summand of $M$. Then every submodule of $M$ also has this property.

Proposition 2.3 (Bland, 2010) An $R$-module $M$ is semisimple if and only if every submodule of $M$ is a direct summand of $M$.

Now, we will give some characterizations of semisimple rings.

Proposition 2.4 (Bland, 2010) The following hold for each left semisimple ring $R$.
(i) There exist minimal left ideals $A_{1}, \ldots, A_{n}$ of $R$ such that

$$
R=A_{1} \oplus \cdots \oplus A_{n} .
$$

(ii) If $A_{1}, \ldots A_{n}$ and $B_{1}, \ldots B_{m}$ are minimal left ideals of $R$ such that

$$
R=A_{1} \oplus \cdots \oplus A_{n} \text { and } R=B_{1} \oplus \cdots \oplus B_{m}
$$

then $n=m$ and there is a permutation $\sigma:\{1, \ldots, n\} \rightarrow\{1, \ldots, n\}$ such that $A_{i} \cong$ $B_{\sigma(i)}$ for $i=1, \ldots, n$.
(iii) If $A_{1}, \ldots, A_{n}$ is a set of minimal left ideals of $R$ such that

$$
R=A_{1} \oplus \cdots \oplus A_{n}
$$

then there is a complete set of orthogonal idempotents of $R$ such that

$$
R=R e_{1} \oplus \cdots \oplus R e_{n}
$$

and $A_{i}=R e_{i}$ for some $i=1, \ldots, n$. Furthermore, the idempotents $e_{1}, \ldots, e_{n}$ are unique.

Lemma 2.1 (Bland, 2010) Let $M$ and $S$ be $R$-modules, and suppose that $S$ is simple.
(i) If $f: S \rightarrow M$ is a nonzero $R$-linear mapping, then $f$ is a monomorphism.
(ii) If $f: M \rightarrow S$ is a nonzero $R$-linear mapping, then $f$ is an epimorphism.
(iii) $\operatorname{End}_{R}(S)$ is a division ring.

Lemma 2.2 (Bland, 2010) If $R$ is a left semisimple ring, then there are only a finite number of isomorphism classes of simple $R$-modules.

Proposition 2.5 (Bland, 2010) If $S$ is a simple $R$-module, then for any positive integer $n$, $\operatorname{End}_{R}\left(S^{(n)}\right)$ is isomorphic to $M_{n}(D)$, where $D$ is the division ring $\operatorname{End}_{R}(S)$.

Definition 2.8 Let $R=A_{1} \oplus \cdots \oplus A_{n}$ be a decomposition of $R$, where the $A_{i}$ are minimal left ideals of $R$. Arrange the minimal left ideals $A_{i}$ into isomorphism classes and renumber with double subscripts such that

$$
\begin{gathered}
R=\left(A_{11} \oplus \cdots \oplus A_{1 n_{1}}\right) \oplus \cdots \oplus\left(A_{m 1} \oplus \cdots \oplus A_{m n_{m}}\right) . \\
\text { If } H_{i}=A_{i 1} \oplus \cdots \oplus A_{\text {in }_{i}} \text { for } i=1, \ldots, m \text {, then } n=n_{1}+\cdots+n_{m} \text { and } \\
R=H_{1} \oplus \cdots \oplus H_{m}
\end{gathered}
$$

The $H_{i}$ are said to be the homogeneous components of $R$.

Proposition 2.6 (Bland, 2010) The following hold for any left semisimple ring $R$ with decomposition $R=A_{1} \oplus \cdots \oplus A_{n}$ as a direct sum of minimal left ideals.
(i) The homogeneous components $\left\{H_{i}\right\}_{i=1}^{m}$ are ideals of $R$, and there is a complete orthogonal set $\left\{e_{1}, \ldots, e_{m}\right\}$ of central idempotents of $R$ such that $R=R e_{1} \oplus \cdots \oplus R e_{m}$ and $H_{i}=$ Re $_{i}$ for some $i=1, \ldots, m$.
(ii) $\operatorname{End}_{R}\left(H_{i}\right)$ is isomorphic to an $n_{i} \times n_{i}$ matrix ring with entries from a division ring $D_{i}$ for $i=1, \ldots, m$.

Theorem 2.8 (Wedderburn-Artin Theorem) (Bland, 2010) A ring $R$ is left semisimple if and only if there exist division rings $D_{1}, \ldots, D_{m}$ such that $R \cong M_{n_{1}}\left(D_{1}\right) \times \cdots \times M_{n_{m}}\left(D_{m}\right)$.

Theorem 2.9 (Bland, 2010) A ring $R$ is a simple left Artinian ring if and only if there is a division ring $D$ such that $R \cong M_{n}(D)$ for some integer $n \geq 1$.

Corollary 2.1 A ring $R$ is semisimple if and only if $R$ is a ring direct product of a finite number of simple Artinian rings.

Definition 2.9 Let $R$ be a ring. We say that $R$ is Jacobson semisimple (J-semisimple) if $\operatorname{Rad}(R)=0$.

Clearly, a semisimple ring is Jacobson semisimple. But the converse is not true in general.
Definition 2.10 $A$ ring $R$ is called semiprime if its prime radical is zero.

### 2.3. The Theory of Idempotents

Proposition 2.7 (Lam, 1990) Let e and é be idempotents and $M$ a left $R$-module. There is a natural additive group isomorphism $\lambda: \operatorname{Hom}_{R}(R e, M) \rightarrow e M$. In particular, there is a natural group isomorphism $\operatorname{Hom}\left(R e, R e^{\prime}\right) \cong e^{\prime} R e$.

Corollary 2.2 (Lam, 1990) For any idempotent $e \in R$, there is a natural ring isomorphism $\operatorname{End}_{R}(R e) \cong e R e$.

Proposition 2.8 (Lam, 1990)For any nonzero idempotent $e \in R$, the following statements are equivalent:
(i) Re is indecomposable as a left R-module,
(ii) $e R$ is indecomposable as a right $R$-module,
(iii) The ring eRe has no nontrivial idempotents,
(iv) e has no decomposition into $\alpha+\beta$, where $\alpha, \beta$ are nonzero orthogonal idempotents in $R$.

Definition 2.11 If a nonzero idempotent e satisfies one of the equivalent conditions in Proposition 2.8, then e is said to be a primitive idempotent of $R$.

## Proposition 2.9 (Lam, 1990)

For any idempotent $e \in R$, the following statements are equivalent:
(i) Re is strongly indecomposable as a left $R$-module,
(ii) $e R$ is strongly indecomposable as a right $R$-module,
(iii) eRe is a local ring.

Definition 2.12 If an idempotent e satisfies one of the equivalent conditions in Proposition 2.9 , then $e$ is said to be a local idempotent of $R$.

Clearly, a local idempotent is always a primitive idempotent.

Theorem 2.10 (Lam, 1990) Let e be an idempotent in $R$. Then $\operatorname{Rad}(e R e)=\operatorname{Rad} R \cap$ $(e \operatorname{Re})=e(\operatorname{Rad} R) e$. Moreover, $e \operatorname{Re} / \operatorname{Rad}(e R e) \cong \bar{e} \bar{R} \bar{e}$, where $\bar{e}$ is the image of e in $\bar{R}$.

Theorem 2.11 (Lam, 1990) Let e be an idempotent in $R$.
(i) Let I be any left ideal of eRe. Then $R I \cap e R e=I$. In particular, the map from $I \mapsto R I$ defines an injective (inclusion preserving) map from the left ideals of eRe to those of $R$.
(ii) Let I be an ideal in eRe. Then $e(R I R) e=I$. In particular, the map $I \mapsto R I R$ defines an injective (inclusion preserving) map from ideals of eRe to those of $R$. This map respects multiplication of ideals, and is surjective if e is a full idempotent, in the sense that $R e R=R$.

Corollary 2.3 (Lam, 1990) Let e be a nonzero idempotent in $R$. If $R$ is Jacobson semisimple (respectively, semisimple, simple, prime, semiprime, Noetherian, Artinian), then the same holds for eRe.

### 2.4. Regular Rings

We need the definition and properties of regular rings. So, we mention about them in this part.

Definition 2.13 A ring $R$ is said to be a (von Neumann) regular ring if for each $r \in R$ there exists $s \in R$ such that $r s r=r$.

Theorem 2.12 (Lam, 1990) The following are equivalent for a ring $R$ :
(i) $R$ is a regular ring,
(ii) Every principal left ideal is generated by an idempotent,
(iii) Every principal left ideal is a direct summand of $R$,
(iv) Every finitely generated left ideal is a direct summand of $R$,
(v) Every finitely generated left ideal is generated by an idempotent,
(vi) Every finitely generated left ideal is a direct summand of $R$.

Since the condition given in Definition 2.13 is left-right symmetric, the last four conditions are still valid if we replace the word 'left' by 'right'.

Corollary 2.4 (Lam, 1990) If $R$ is a semisimple ring, then $R$ is regular.

Corollary 2.5 (Lam, 1990) If $R$ is a regular ring, then $R$ is Jacobson semisimple.
Theorem 2.13 (Lam, 1990) Semisimple rings are exactly the left (respectively, right) Noetherian regular rings.

### 2.5. Semiperfect Rings

Definition 2.14 $A$ ring $R$ is called semiperfect if $R / R a d R$ is semisimple and idempotents of $R / \operatorname{Rad} R$ can be lifted to $R$.

Proposition 2.10 (Lam, 1990) The following are equivalent for a ring $R$ :
(i) $R$ is semiperfect,
(ii) $R$ has a complete set of orthogonal idempotents $\left\{e_{1}, \ldots, e_{n}\right\}$ such that $e_{i} R e_{i}$ is a local ring for $i=1, \ldots, n$.

Theorem 2.14 (Mueller, 1971) The following are equivalent for a ring $R$ :
(i) $R$ is semiperfect,
(ii) The unit 1 in $R$ is a sum of orthogonal local idempotents,
(iii) Every primitive idempotent is local and there is no set of orthogonal idempotents in $R$.

Lemma 2.3 (Mueller, 1971) Let $R$ be a ring, and let $\left\{e_{1}, \ldots, e_{n}\right\}$ a set of orthogonal idempotents in $R$ whose sum is 1 . Then $R$ is semiperfect if and only if $e_{i} R e_{i}$ is semiperfect for each $i$.

Theorem 2.15 (Kaye, 1967) A ring $R$ is semiperfect if and only if $M_{n}(R)$ is semiperfect.

Theorem 2.16 (Lam, 1990) A commutative ring $R$ is semiperfect if and only if it is a finite direct product of commutative local rings.

### 2.6. Perfect Rings

Definition 2.15 A subset $S$ of a ring $R$ is called left (respectively, right) $T$-nilpotent if, for any sequence of elements $\left\{a_{1}, a_{2} \ldots\right\} \subseteq S$, there exists an integer $n \geq 1$ such that $a_{1} a_{2} \ldots a_{n}=0$ (respectively, $a_{n} \ldots a_{2} a_{1}=0$ ).

Definition 2.16 $A$ ring $R$ is called left (respectively, right) perfect if $R / \operatorname{Rad} R$ is semisimple and $\operatorname{Rad} R$ is left (respectively, right) $T$-nilpotent. If $R$ is both left and right perfect, we call $R$ a perfect ring.

Proposition 2.11 (Lam, 1990) The following are equivalent for a ring $R$ :
(i) $R$ is a left perfect ring,
(ii) $R / \operatorname{Rad} R$ is semisimple and every non-zero $R$-module contains a maximal submodule.

Proposition 2.12 (Lam, 1990) The following are equivalent for a ring $R$.
(i) $R$ is a left perfect ring,
(ii) $R$ satisfies the descending chain condition on principal right ideals,
(iii) $R$ contains no infinite set of orthogonal idempotents and every non-zero right $R$-module contains a simple submodule .

Theorem 2.17 (Lam, 1990) A commutative ring $R$ is perfect if and only if it is a finite direct product of (commutative) local rings each of which has a T-nilpotent maximal ideal.

Proposition 2.13 (Lam, 1990) If a ring $R$ is perfect, then $M_{n}(R)$ is also perfect.

### 2.7. Group Rings

In this section we give the definition of a group ring and mention about basic properties of a group ring that we will use in the following chapters. We denote group identities by 1 , we also use 1 for the unit element of the ring $R$.

### 2.7.1. Basic Facts

Let $G$ be a group (not necessarily finite) and $R$ a ring. We wish to construct an $R$ module, having the elements of $G$ as a basis, and then use the operations in both $G$ and $R$ to define a ring structure on it.
To do so, we denote by $R G$, the set of all formal linear combinations of the form

$$
\alpha=\sum_{g \in G} r_{g} g,
$$

where $r_{g} \in R$ and $r_{g}=0$ almost everywhere, that is, only a finite number of coefficients are different from zero in each of these sums.

It follows from the above consideration that, given two elements

$$
\alpha=\sum_{g \in G} r_{g} g, \beta=\sum_{g \in G} s_{g} g,
$$

in $R G$, we have that $\alpha=\beta$ if and only if $r_{g}=s_{g}$, for all $g$ in $G$.
We define the sum of two elements in $R G$ componentwise:

$$
\sum_{g \in G} r_{g} g+\sum_{g \in G} s_{g} g=\sum_{g \in G}\left(r_{g}+s_{g}\right) g
$$

Also, given two elements $\alpha=\sum_{g \in G} r_{g} g$ and $\beta=\sum_{h \in G} s_{h} h$ we define their product by

$$
\alpha \beta=\sum_{g, h \in G}\left(r_{g} s_{h}\right) g h
$$

With the operations defined above, $R G$ becomes a ring, which has an identity; namely the element

$$
1=\sum_{g \in G} u_{g} g
$$

where the coefficient corresponding to the identity element of the group is equal to $1_{R}$ and $u_{g}=0$ for every other element $g$ of $G$.

Definition 2.17 The set $R G$, with the operations defined above, is called the group ring of $G$ over $R$. If $R$ is commutative, then $R G$ is called the group algebra of $G$ over $R$.

We can also give another definition of a group ring $R G$. The set of all functions $f$ : $G \rightarrow R$ such that $f(g) \neq 0$ for finitely many $g \in G$ with pointwise addition and convolution as multiplication gives us the group ring $R G$. We will use both of these equivalent definitions.

We have said that given an element $\alpha=\sum_{g \in G} r_{g} g$ in $R G$, only finitely many of the $r_{g}$ 's are different from zero. Thus, elements of $G$ that have nonzero coefficient $r_{g}$ in the expression of $\alpha=\sum_{g \in G} r_{g} g$ gives us a finite subset of $G$. This leads to the following definition.

Definition 2.18 Let $G$ be a group and $R$ a ring. Given an element $\alpha=\sum_{g \in G} r_{g} g$ in $R G$, support of $\alpha$, denoted by $\operatorname{supp}(\alpha)$, is the subset of elements in $G$ that have nonzero coefficient in the expression of $\alpha$, that is,

$$
\operatorname{supp}(\alpha)=\left\{g \in G: r_{g} \neq 0\right\} .
$$

If we look at the equivalent definition of a group ring, we see that a function $f \in R G$ satisfies $f(g) \neq 0$ for only a finitely many elements of $R G$. The subset of elements in $G$ such that $f(g) \neq 0$ is called support of the function $f$.

To say that $R G$ is an $R$-module, we can also define a product of elements in $R G$ by elements $\lambda \in R$ as

$$
\lambda\left(\sum_{g \in G} r_{g} g\right)=\sum_{g \in G}\left(\lambda r_{g}\right) g .
$$

With this scalar product, $R G$ becomes an $R$-module.
We can define an embedding $i: G \rightarrow R G$ by assigning to each element $x \in G$ the element

$$
i(x)=\sum_{g \in G} r_{g} g
$$

where $r_{x}=1$ and $r_{g}=0$ if $g$ is different from $x$. We may, thus, regard $G$ as a subset of $R G$.
We may also consider the mapping $\nu: R \rightarrow R G$ given by

$$
\nu(r)=\sum_{g \in G} r_{g} g
$$

where $r_{1_{G}}=r$ and $r_{g}=0$ if $\mathbf{g}$ is different from the identity of the group. It is clear that $\nu(r)$ is a ring monomorphism, and thus we can regard $R$ is a subring of $R G$.

Now, we give a universal property of group rings.
Proposition 2.14 (Milies \& Sehgal, 2002) Let $G$ be a group and $R$ a ring. Given any ring A such that $R \subseteq A$ and any mapping $f: G \rightarrow A$ such that $f(g h)=f(g) f(h)$ for $g, h \in G$, there exists a unique ring homomorphism $f^{*}: R G \rightarrow A$ which is $R$-linear such that $f^{*}$ oi $=f$, where $i: G \rightarrow R G$ is the inclusion given above. That is, the diagram

is commutative.
Proof Let $f: G \rightarrow A$ be a such map, consider $f^{*}: R G \rightarrow A$ defined by:

$$
\sum_{g \in G} r_{g} g \mapsto \sum_{g \in G} r_{g} f(g)
$$

The proof of the statement is a straightforward computation.

Corollary 2.6 (Milies \& Sehgal, 2002) Let $f: G \rightarrow H$ be a group homomorphism. Then there exists a unique ring homomorphism $f^{*}: R G \rightarrow R H$ such that $f^{*}(g)=f(g)$ for all $g$ in $G$. If $R$ is commutative, then $f^{*}$ is a homomorphism of $R$-algebras. Moreover, if $f$ is an epimorphism (monomorphism), then $f^{*}$ is also an epimorphism (monomorphism).

We remark that if $H$ is the trivial subgroup, then Corollary 2.6 shows that the trivial homomorphism $G \rightarrow H$ induces a ring homomorphism $\varepsilon: R G \rightarrow R$ such that $\varepsilon\left(\sum_{g \in G} r_{g} g\right)=$ $\sum_{g \in G} r_{g}$. This homomorphism gives rise to an important ideal of a group ring.

Definition 2.19 The homomorphism $\varepsilon: R G \rightarrow R$ given by

$$
\varepsilon\left(\sum_{g \in G} r_{g} g\right)=\sum_{g \in G} r_{g}
$$

is called the augmentation mapping of $R G$ and its kernel, denoted by $\omega G$, is called the augmentation ideal of $R G$.

It can be shown that

$$
\omega G=\left\{\sum_{g \in G} r_{g}(g-1): g \in G, g \neq 1, r_{g} \in R\right\}
$$

Let $H$ be a subgroup of $G$. Then the subset of $R G$ which is generated by the set $\{h-1: h \in H\}$ is a left ideal of $R G$ and is denoted by $\omega H$.

Proposition 2.15 (Milies \& Sehgal, 2002) If $H$ is a normal subgroup of $G$, then $\omega H$ is a two sided ideal of $R G$ and

$$
R G / \omega H \cong R(G / H)
$$

Proof Suppose $H$ is a normal subgroup of $G$. Then $G / H$ is a group, and the canonical map $\Pi: G \rightarrow G / H$ is a group homomorphism. Thus, Corollary 2.6 implies that $\Pi: G \rightarrow G / H$ produces a ring homomorphism $\Pi^{*}$ from $R G$ to $R(G / H)$. Now we will show that $\operatorname{Ker}\left(\Pi^{*}\right)=$ $\omega H$.

Let $\tau=\left\{q_{i}\right\}_{i \in I}$ be a complete set of representatives of left cosets of $H$ in $G$. We can assume that the identity element of $G$ is the representative of coset $H$ in $\tau$. Thus, every element $g$ of $G$ can be written in the form $g=q_{i} h_{j}$ with $q_{i} \in \tau, h_{j} \in H$.

Let $\alpha=\sum_{g \in G} r_{g} g$ be an element of $R G$. Then by the above argument, $\alpha$ can be written in the form $\sum_{i, j} r_{i j} q_{i} h_{j}$, where $r_{i j} \in R, q_{i} \in \tau, h_{j} \in H$. Now we consider $\Pi^{*}(\alpha)=$ $\sum_{i} \sum_{j} r_{i j} q_{i} h_{j} H=\sum_{i}\left(\sum_{j} r_{i j}\right) q_{i} H$. Then $\alpha \in \operatorname{Ker}\left(\Pi^{*}\right)$ if and only if $\sum_{j} r_{i j}=0$ for each value of $i$. So, if $\alpha \in \operatorname{Ker}\left(\Pi^{*}\right)$, we can write

$$
\alpha=\sum_{i, j} r_{i j} q_{i} h_{j}=\sum_{i, j} r_{i j} q_{i} h_{j}-\sum_{i}\left(\sum_{j} r_{i j}\right) q_{i}=\sum_{i, j} r_{i j} q_{i}\left(h_{j}-1\right) \in \omega H .
$$

Thus $\operatorname{Ker}\left(\Pi^{*}\right) \subseteq \omega H$. The other containment is clear. Thus, $\operatorname{Ker}\left(\Pi^{*}\right)=\omega H$. So, $\omega H$ is a two sided ideal of $R G$. Since $\Pi$ is an epimorphism, so is $\Pi^{*}$ by Corollary 2.6. Thus by First Isomorphism Theorem, we have $R G / \omega H \cong R(G / H)$.

Since a group $G$ is always normal in $G$, by using Corollary 2.6 , we get:

$$
R G / \omega G \cong R
$$

Proposition 2.16 (Milies \& Sehgal, 2002) If I is an ideal of $R, I G$, which consists of the elements of $R G$ with coefficients in $I$, is an ideal of $R G$ and

$$
R G / I G \cong(R / I) G
$$

Proof Consider the map $f: R G \rightarrow(R / I) G$ such that $f\left(\sum_{g \in G} r_{g} g\right)=\sum_{g \in G}\left(r_{g}+I\right) g$. It can be shown that $f$ is an epimorphism with kernel $I G$, thus by First Isomorphism Theorem, the result follows.

Proposition 2.17 (Milies \& Sehgal, 2002) Let $f: R \rightarrow S$ be a homomorphism of rings and let $G$ be a group. Then the map $f^{*}: R G \rightarrow S G$ such that $f\left(\sum_{g \in G} r_{g} g\right)=\sum_{g \in G} f\left(r_{g}\right) g$ is a ring homomorphism. Furthermore, $f$ is a monomorphism (epimorphism) if and only if $f^{*}$ is a monomorphism (epimorphism).

Proposition 2.18 (Milies \& Sehgal, 2002) Let $R$ be a commutative ring and let $G, H$ be groups. Then $R(G \times H) \cong(R G) H$.

Proof Let $f:(R G) H \rightarrow R(G \times H)$ such that

$$
f\left(\sum_{h \in H}\left(\sum_{g \in G} r_{g h} g\right) h\right)=\sum_{(g, h) \in G \times H} r_{g h}(g, h) .
$$

Then $f$ is an isomorphism.

Proposition 2.19 (Milies \& Sehgal, 2002) For a ring $R$ and a group $G, M_{n}(R) G \cong M_{n}(R G)$.
Proof Let $f: M_{n}(R) G \rightarrow M_{n}(R G)$ such that,

$$
f\left(A_{1} g_{1}+\cdots+A_{s} g_{s}\right)=\left(b_{i j}\right),
$$

where $b_{i j}=a_{i j}^{1} g_{1}+\cdots+a_{i j}^{s} g_{s}$ and $a_{i j}^{m}$ is the entry in the $i^{t h}$ row and $j^{t h}$ column of $A_{m}$, $m=1, \ldots, s$. Then $f$ is an isomorphism.

Proposition 2.20 (Milies \& Sehgal, 2002) Let $\left\{R_{i}\right\}_{i \in I}$ be a family of rings and let $R=$ $\bigoplus_{i \in I} R_{i}$. Then for any group $G, R G \cong \bigoplus_{i \in I} R_{i} G$.

Proposition 2.21 (Milies \& Sehgal, 2002) Let $G$ be a group and $H$ a subgroup of $G$. Let $\left\{h_{i}\right\}_{i \in I}$ be a complete set of representatives of left cosets of $H$ in $G$. Then for any ring $R$, the group ring $R G$ is a free left $R H$-module with the basis $\left\{h_{i}\right\}_{i \in I}$.

Definition 2.20 Let $X$ be a subset of a group ring $R G$. The left annihilator of $X$ is the set

$$
\operatorname{Ann}_{l}(X)=\{\alpha \in R G: \alpha x=0 \text { for every } x \in X\} .
$$

Similarly, we define the right annihilator of $X$ by:

$$
\operatorname{Ann}_{r}(X)=\{\alpha \in R G: x \alpha=0 \text { for every } x \in X\} .
$$

Definition 2.21 Given a group ring $R G$ and a finite subset $X$ of the group $G$, we shall denote by $\widetilde{X}$ the following element of $R G$ :

$$
\widetilde{X}=\sum_{x \in X} x .
$$

Lemma 2.4 (Milies \& Sehgal, 2002) Let $H$ be a subgroup of a group $G$ and let $R$ be a ring. Then $\operatorname{Ann}_{r}(w H) \neq 0$ if and only if $H$ is finite. In this case, we have

$$
\operatorname{Ann}_{r}(w H)=\widetilde{H} \cdot R G
$$

Furthermore, if $H$ is a normal subgroup of $G$, then the element $\widetilde{H}$ is central in $R G$ and we have

$$
\operatorname{Ann}_{r}(w H)=\operatorname{Ann}_{l}(w H)=R G . \widetilde{H} .
$$

Proof Assume that $\operatorname{Ann}_{r}(w H) \neq 0$, and choose a nonzero $\alpha=\sum_{g \in G} r_{g} g$ in $\operatorname{Ann}_{r}(w H)$. For each element $h \in H$, we have that $(h-1) \alpha=0$, and hence $h \alpha=\alpha$, that is,

$$
\alpha=\sum_{g \in G} r_{g} g=\sum_{g \in G} r_{g}(h g) .
$$

Take $g_{0} \in \operatorname{supp}(\alpha)$. Then $r_{g_{0}}$ is nonzero, so, the equation above shows that $h g_{0} \in \operatorname{supp}(\alpha)$ for all $h \in H$. Since $\operatorname{supp}(\alpha)$ is finite, this clearly implies that $H$ must be finite.

Notice that the above argument shows that, whenever $g_{0} \in \operatorname{supp}(\alpha)$, then the coefficient of every element of the form $h g_{0}$ is equal to the coefficient of $g_{0}$, so we can write $\alpha$ in the form:

$$
\alpha=r_{g_{0}} \widetilde{H} g_{0}+r_{g_{1}} \widetilde{H} g_{1}+\cdots+r_{g_{t}} \widetilde{H} g_{t}=\widetilde{H} \beta, \quad \text { where } \beta \in R G
$$

This shows that if $H$ is finite, then $\operatorname{Ann}_{r}(w H) \subseteq \widetilde{H} . R G$.
The reverse inclusion follows trivially, since $h \widetilde{H}=\widetilde{H}$ implies that $(h-1) \widetilde{H}=0$ for all $h \in H$.

Finally, if $H$ is a normal subgroup of $G$, for any $g \in G$ we have that $g^{-1} H g=H$; therefore

$$
g^{-1} \widetilde{H} g=\sum_{h \in H} g^{-1} h g=\sum_{h \in H} h=\widetilde{H} .
$$

Thus, $\widetilde{H} g=g \widetilde{H}$ for all $g \in G$, which shows $\widetilde{H}$ is central in $R G$. Consequently, $R G . \widetilde{H}=$ $\widetilde{H} \cdot R G$, and the result follows.

Corollary 2.7 (Milies \& Sehgal, 2002) Let $G$ be a finite group. Then
(i) $\operatorname{Ann}_{l}(w G)=\operatorname{Ann}_{r}(w G)=R \widetilde{G}$, and
(ii) $\operatorname{Ann}_{r}(w G) \cap w G=\{r \widetilde{G}: r \in R, r|G|=0\}$.

Proof Statement (i) follows from Lemma 2.4 taking $H=G$.
For statement (ii) note that $\alpha=r \widetilde{G} \in w G$ if and only if $\varepsilon(\alpha)=r \varepsilon(\widetilde{G})=r|G|=0$.
Our next result is an elementary remark from ring theory which will be necessary for the main theorem of this section.

Lemma 2.5 (Milies \& Sehgal, 2002) Let I be a two sided ideal of of a ring R. Suppose that there exists a left ideal $J$ such that $R=I \oplus J$ as left $R$ - modules. Then $J \subseteq \operatorname{Ann}_{r}(I)$.

Lemma 2.6 (Milies \& Sehgal, 2002) If the augmentation ideal $w G$ is a direct summand of $R G$ as an $R G$ - module, then $G$ is finite and $|G|$ is invertible in $R$.

Proof Assume that $w G$ is a direct summand of $R G$. Then, Lemma 2.4 shows that $\operatorname{Ann}_{r}(w G)$ is nonzero, and thus $G$ is finite and $\operatorname{Ann}_{r}(w G)=\widetilde{G}(R G)=\widetilde{G} R$.
If $R G=w G \oplus J$ and $1=e_{1}+e_{2}$ with $e_{1} \in w G$ and $e_{2} \in J$, then $1=\varepsilon(1)=\varepsilon\left(e_{1}\right)+\varepsilon\left(e_{2}\right)$ since $e_{2}=r \widetilde{G}$ for some $r \in R$, we have that $r \varepsilon(\widetilde{G})=1$; thus $r|G|=1$. This shows that $|G|$ is invertible in $R$ and that $|G|^{-1}=r$.

The next result is the main theorem of this chapter since it characterizes semisimple group rings in terms of the properties of $R$ and $G$.

Theorem 2.18 (Maschke's Theorem) (Milies \& Sehgal, 2002) Let G be a group. Then the group ring $R G$ is semisimple if and only if the following conditions hold.
(i) $R$ is a semisimple ring.
(ii) $G$ is finite.
(iii) The order of $G$ is a unit in $R$.

Proof Assume $R G$ is semisimple. We know that $R G / w G \cong R$. Since homomorphic images of semisimple rings are semisimple, $R$ is semisimple.
Semisimplicity of $R G$ implies that $w G$ is a direct summand. By Lemma 2.6, we can say that $G$ is finite and the order of $G$ is a unit in $R$.

Conversely, assume these three conditions hold. Let $M$ be an $R G$-submodule of $R G$. Since $R$ is semisimple, it follows that $R G$ is semisimple as an $R$-module. Hence there exists an $R$-submodule $N$ of $R G$ such that $R G=M \oplus N$. Let $\Pi: R G \rightarrow M$ be the canonical projection associated to the direct sum. We define $\Pi^{*}: R G \rightarrow M$ by an averaging process, that is,

$$
\Pi^{*}(x)=\frac{1}{|G|} \sum_{g \in G} g^{-1} \Pi(g x)
$$

for all $x \in R G$. If we prove that $\Pi^{*}$ is actually an $R G$ homomorphism such that $\left(\Pi^{*}\right)^{2}=\Pi^{*}$ and $\operatorname{Im}\left(\Pi^{*}\right)=M$, then $\operatorname{Ker}\left(\Pi^{*}\right)$ will be an $R G$-submodule such that $R G=M \oplus \operatorname{Ker}\left(\Pi^{*}\right)$, and the theorem will be proved.

Since $\Pi^{*}$ is an $R$ homomorphism, in order to show that it is also an $R G$ homomorphism, it will suffice to show $\Pi^{*}(a x)=a \Pi^{*}(x)$, for all $a, x \in G$.

We have

$$
\Pi^{*}(a x)=\frac{1}{|G|} \sum_{g \in G} g^{-1} \Pi(g a x)=\frac{a}{|G|} \sum_{g \in G}(g a)^{-1} \Pi((g a) x)
$$

When $g$ runs over all elements in $G$, the product $g a$ also runs over all elements in $G$, thus

$$
\Pi^{*}(a x)=a \frac{1}{|G|} \sum_{h \in G} h^{-1} \Pi(h x)=a \Pi^{*}(x) .
$$

Since $\Pi$ is a projection on $M$, we know that $\Pi(m)=m$ for all $m \in M$. Also since $M$ is an $R G$ module, we have that $g m \in M$ for all $g \in G$. Thus,

$$
\Pi^{*}(m)=\frac{1}{|G|} \sum_{g \in G} g^{-1} \Pi(g m)=\frac{1}{|G|} \sum_{g \in G} g^{-1} g m=m
$$

Given an arbitrary element $x \in R G$, we have that $\Pi(g x) \in M$, hence $\Pi^{*}(x) \in M$. It follows that $\operatorname{Im}\left(\Pi^{*}\right) \subset M$. Consequently, $\Pi^{*}\left(\Pi^{*}(x)\right)=\Pi^{*}(x)$ for all $x \in R G$, and therefore $\left(\Pi^{*}\right)^{2}=\Pi^{*}$. Finally, the fact that $\Pi^{*}(m)=m$ also shows that $M \subset \operatorname{Im}\left(\Pi^{*}\right)$, and the theorem follows.

The case where $R=K$ is a field is of particular importance.

Corollary 2.8 (Milies \& Sehgal, 2002) Let $G$ be a finite group and $K$ a field. Then $K G$ is semisimple if and only if $\operatorname{char}(K) \nmid|G|$.

A translation of the Wedderburn-Artin Theorem will give us a plenty information about the structure of a group algebra.

Theorem 2.19 (Milies \& Sehgal, 2002) Let $G$ be a finite group and $K$ a field such that $\operatorname{char}(K) \nmid|G|$. Then
(i) $K G$ is a direct sum of finite number of two sided ideals $\left\{B_{i}\right\}_{1 \leq i \leq r}$, the simple components of $K G$. Each $B_{i}$ is a simple ring.
(ii) Any two sided ideal of $K G$ is a direct sum of some of the members of the family $B_{i}, 1 \leq$ $i \leq r$.
(iii) Each simple component $B_{i}$ is isomorphic to a full matrix ring of the form $M_{n_{i}}\left(D_{i}\right)$, where $D_{i}$ is a division ring containing an isomorphic copy of $K$ in its center, and the isomorphism

$$
K G \cong \bigoplus_{i=1}^{r} M_{n_{i}}\left(D_{i}\right)
$$

is an isomorphism of $K$ algebras.
(iv) In each matrix ring $M_{n_{i}}\left(D_{i}\right)$, the set

$$
I_{i}=\left\{\left(\begin{array}{cccc}
x_{1} & 0 & \ldots & 0 \\
x_{2} & 0 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
x_{n_{i}} & 0 & \ldots & 0
\end{array}\right): x_{1}, x_{2}, \ldots x_{n_{i}}\right\} \cong D_{i}^{n_{i}}
$$

is a minimal left ideal.
(v) $I_{i} \not \not I_{j}$, if $i \neq j$.
(vi) Any simple $K G$-module is isomorphic to some $I_{i}, 1 \leq i \leq r$.

Corollary 2.9 (Milies \& Sehgal, 2002) Let $G$ be a finite group and let $K$ be an algebraically closed field such that $\operatorname{char}(K) \nmid|G|$. Then

$$
K G \cong \bigoplus_{i=1}^{r} M_{n_{i}}(K)
$$

and $\left(n_{1}\right)^{2}+\left(n_{2}\right)^{2}+\cdots+\left(n_{r}\right)^{2}=|G|$.
Proof Since char $(K) \nmid|G|$, we have that

$$
K G \cong \bigoplus_{i=1}^{r} M_{n_{i}}\left(D_{i}\right),
$$

where $D_{i}$ is a division ring containing an isomorphic copy of $K$ in its center. If we compute dimensions over $K$ on both sides of the equation we have that

$$
|G|=\sum_{i=1}^{r} n_{i}^{2}\left[D_{i}: K\right],
$$

and it follows that each division ring is finite dimensional over $K$. As $K$ is algebraically closed, we have that $D_{i}=K, 1 \leq i \leq r$, and the result follows.

Now we give a complete description of the group ring of a finite abelian group $G$ over a field $K$ such that char $(K) \nmid|G|$. But first we will state some results from field theory which will be useful for us.

Definition 2.22 A nonzero polynomial $f(x) \in K[X]$ is called separable when it has distinct roots in a splitting field over $K$, that is, each root of $f(x)$ has multiplicity 1. If $f(x)$ has a multiple root, then $f(x)$ is called inseparable.

Definition 2.23 If $\alpha$ is algebraic over $K$, it is called separable over $K$ when its minimal polynomial in $K[X]$ is separable, that is, the minimal polynomial of $\alpha$ in $K[X]$ has distinct roots in a splitting field over $K$. If the minimal polynomial of $\alpha$ in $K[X]$ is inseparable, then $\alpha$ is called inseparable over $K$.

Theorem 2.20 (Lang, 2000) A nonzero polynomial in $K[X]$ is separable if and only if it is relatively prime to its derivative in $K[X]$.

Theorem 2.21 (Primitive Element Theorem) (Lang, 2000) Let E be a finite separable extension of a field $K$. Then there exists $\alpha \in E$ such that $K=K(\alpha)$.

Theorem 2.22 (Chinese Remainder Theorem) (Lang, 2000) Let $R$ be a principal ideal domain. If $u_{1}, \ldots, u_{n}$ are elements of $R$ which are pairwise coprime and $u=u_{1} u_{2} \ldots u_{n}$ then

$$
R / R u \cong R / R u_{1} \times \cdots \times R / R u_{n} .
$$

Definition 2.24 For any field $K$, a field $K\left(\zeta_{n}\right)$ where $\zeta_{n}$ is a root of unity of order $n$ is called a cyclotomic extension of $K$.

We shall begin with the case where $G$ is cyclic, so we assume $G=<a: a^{n}=1>$ and that $K$ is a field such that $\operatorname{char}(K) \nmid|G|$. Consider the map $\phi: K[X] \rightarrow K G$ given by $f \mapsto f(a)$ for all $f \in K[X]$. It is easily seen that $\phi$ is a ring epimorphism. Hence,

$$
K G \cong \frac{K[X]}{\operatorname{Ker}(\phi)}
$$

Since $K[X]$ is a principal ideal domain, $\operatorname{Ker}(\phi)$ is the ideal generated by the monic polynomial $f_{0}$ of least degree such that $f_{0}(a)=0$. Since $a^{n}=1$, it follows that $x^{n}-1 \in \operatorname{Ker}(\phi)$. Note that if $f=\sum_{i=1}^{r} k_{i} x^{i}$ is a polynomial of degree $r<n$, we have that $f(a)=\sum_{i=1}^{r} k_{i} a^{i} \neq 0$ because the elements $\left\{1, a, a^{2}, \ldots, a^{r}\right\}$ are linearly independent over $K$. Thus $\operatorname{Ker}(\phi)=<x^{n}-1>$ so that

$$
K G \cong \frac{K[X]}{\left\langle x^{n}-1\right\rangle} .
$$

Let $x^{n}-1=f_{1} f_{2} \ldots f_{t}$ be the decomposition of $x^{n}-1$ as a product of irreducible polynomials in $K[X]$. Since we assume that $\operatorname{char}(K) \nmid n$, this polynomial is separable by Theorem 2.20 and thus, $f_{i} \neq f_{j}$ if $i \neq j$. Using Chinese Remainder Theorem, we can write

$$
K G \cong \frac{K[X]}{\left\langle f_{1}\right\rangle} \oplus \frac{K[X]}{\left\langle f_{2}\right\rangle} \oplus \cdots \oplus \frac{K[X]}{\left\langle f_{t}\right\rangle}
$$

Under this isomorphism, the generator $a$ is mapped to the element $\left(x+<f_{1}>, \ldots, x+<\right.$ $\left.f_{t}>\right)$. Then we have that $\frac{K[X]}{\left\langle f_{i}\right\rangle} \cong K\left(\zeta_{i}\right)$. Consequently,

$$
K G \cong K\left(\zeta_{1}\right) \oplus K\left(\zeta_{2}\right) \oplus \cdots \oplus K\left(\zeta_{t}\right) .
$$

Since all the elements $\zeta_{i}(1 \leq i \leq t)$, are roots of $x^{n}-1$, we have shown that $K G$ is isomorphic to a direct sum of cyclotomic extensions of $K$. Under this isomorphism, the element $a$ maps to the element $\left(\zeta_{1}, \zeta_{2}, \ldots, \zeta_{t}\right.$.)

Example 2.2 Let $G=<a: a^{7}=1>$ and $K=\mathbb{Q}$. In this case the decomposition of $x^{7}-1$ in $\mathbb{Q}[X]$ is

$$
x^{7}-1=(x-1)\left(x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x+1\right) .
$$

Hence if $\zeta$ denotes a primitive root of unity of order 7, we have

$$
\mathbb{Q} G \cong \mathbb{Q} \oplus \mathbb{Q}(\zeta) .
$$

Example 2.3 Let $G=<a: a^{6}=1>$ and $K=\mathbb{Q}$. The decomposition of $x^{6}-1$ as a product of irreducible polynomials in $\mathbb{Q}$ is

$$
x^{6}-1=(x-1)(x+1)\left(x^{2}+x+1\right)\left(x^{2}-x+1\right)
$$

Thus

$$
\mathbb{Q} G \cong \mathbb{Q} \oplus \mathbb{Q} \oplus \mathbb{Q}\left(\frac{-1+i \sqrt{3}}{2}\right) \oplus \mathbb{Q}\left(\frac{1+i \sqrt{3}}{2}\right) .
$$

Here $\frac{-1+i \sqrt{3}}{2}$ is root of $x^{2}+x+1$ and $\frac{1+i \sqrt{3}}{2}$ is a root of $x^{2}-x+1$. Note that the last two summands are equal.

We wish to give a more precise description of $K G$ in the general case. In order to do this we shall try to calculate all the direct summands in the decomposition of $K G$. We recall that, for a positive integer $d$, the cyclotomic polynomial of order $d$, denoted by $\Phi_{d}$, is the product $\Phi_{d}=\prod_{j}\left(x-\zeta_{i}\right)$, where $\zeta_{i}$ runs over all the primitive $d^{t h}$ root of unity. Also, we know that $x^{n}-1=\prod_{d \mid n} \Phi_{d}$, the product of all cyclotomic polynomials $\Phi_{d}$ in $K[X]$, where $d$ is a divisor of $n$. For each $d$, let $\Phi_{d}=\prod_{i=1}^{a_{d}} f_{d_{i}}$ be the decomposition of $\Phi_{d}$ as a product of irreducible polynomials in $K[X]$. Then the decomposition of $K G$ can actually be written in the form:

$$
K G \cong \bigoplus_{d \mid n} \bigoplus_{i=1}^{a_{d}} \frac{K[X]}{<f_{d_{i}}>} \cong \bigoplus_{i=1}^{a_{d}} K\left(\zeta_{d_{i}}\right)
$$

where $\zeta_{d_{i}}$ denotes a root of $f_{d_{i}}, 1 \leq i \leq a_{d}$. For a fixed $d$, all the elements $\zeta_{d_{i}}$ are primitive $d^{t h}$ roots of unity. Therefore, all the fields of the form $K\left(\zeta_{d_{i}}\right), 1 \leq i \leq a_{d}$ are equal to one another, and we may write

$$
K G \cong \bigoplus_{d \mid n} a_{d} K\left(\zeta_{d}\right)
$$

where $\zeta_{d}$ is a primitive root of unity of order $d$ and $a_{d} K\left(\zeta_{d}\right)$ denotes the direct sum of $a_{d}$ different fields, all of which are isomorphic to $K\left(\zeta_{d}\right)$. Also, since $\operatorname{deg}\left(f_{d_{i}}\right)=\left[K\left(\zeta_{d}\right): K\right]$, we see that all the polynomials $f_{d_{i}}$, where $1 \leq i \leq a_{d}$, have the same degree. Thus taking degrees in the decomposition of $\Phi_{d}$, we get

$$
\Phi(d)=a_{d}\left[K\left(\zeta_{d}\right): K\right],
$$

where $\Phi$ denotes Euler's totient function, namely

$$
\Phi(d)=\{n \in \mathbb{Z}: 1 \geq n \geq d, \operatorname{gcd}(n, d)=1\} .
$$

Since $G$ is a cyclic group of order $n$, for each divisor $d$ of $n$, the number of elements of order $d$ in $G$, which we denote by $n_{d}$, is precisely $\Phi(d)$. Hence, we can write $a_{d}=\frac{n_{d}}{\left[K\left(\zeta_{d}\right): K\right]}$.

Example 2.4 Let $G=<a: a^{n}=1>$ be a cyclic group of order $n$ and take $K=\mathbb{Q}$. It is well-known that the polynomial $x^{n}-1$ decomposes in $\mathbb{Q}[X]$ as a product of cyclotomic polynomials

$$
x^{n}-1=\prod_{d \mid n} \Phi_{d}(x)
$$

and these are irreducible. Hence, in this case, the decomposition of $\mathbb{Q}<g>$ is

$$
\mathbb{Q}<g>\cong \bigoplus_{d \mid n} \mathbb{Q}\left(\zeta_{d}\right)
$$

Notice that as before in this isomorphism the generator a corresponds to the tuple whose entries are the primitive d ${ }^{\text {th }}$ roots of unity, where $d$ runs over all divisors of $n$.

The description obtained above can be extended to group rings of arbitrary finite abelian groups.

Theorem 2.23 (Milies \& Sehgal, 2002) Let $G$ be a finite abelian group of order $n$, let $K$ be a field such that $\operatorname{char}(K) \nmid n$. Then

$$
K G \cong \bigoplus_{d \mid n} a_{d} K\left(\zeta_{d}\right)
$$

where $\zeta_{d}$ denotes a primitive root of unity of order $d$ and $a_{d}=\frac{n_{d}}{\left[K\left(\zeta_{d}\right): K\right]}$. In this formula, $n_{d}$ denotes the number of elements of order $d$ in $G$.

Proof We proceed by induction on $n$. Suppose the result holds for all abelian groups of order less than $n$. Let $G$ be a finite group of order $n$. If $G$ is cyclic, we have already shown that the theorem is valid. Otherwise, we can use the structure theorem of finite abelian groups to write $G \cong G_{1} \times H$, where $H$ is cyclic and $\left|G_{1}\right|=n_{1}<n$. By the induction hypothesis, we can write $K G_{1} \cong \bigoplus_{d_{1} \mid n_{1}} a_{d_{1}} K\left(\zeta_{d_{1}}\right)$, where $a_{d_{1}}=\frac{n_{d_{1}}}{\left[K\left(\zeta_{d_{1}}\right): K\right]}$ and $n_{d_{1}}$ denotes the number of elements of order $d_{1}$ in $G_{1}$. Therefore, we have

$$
K G=K\left(G_{1} \times H\right) \cong\left(K G_{1}\right) H \cong\left(\bigoplus_{d_{1} \mid n_{1}} a_{d_{1}} K\left(\zeta_{d_{1}}\right)\right) H \cong \bigoplus_{d_{1} \mid n_{1}} a_{d_{1}} K\left(\zeta_{d_{1}}\right) H .
$$

Now, decomposing each direct summand, we get

$$
K G \cong \bigoplus_{d_{1} \mid n_{1}} \bigoplus_{d_{2}| | H \mid} a_{d_{1}} a_{d_{2}} K\left(\zeta_{d_{1}}, \zeta_{d_{2}}\right)
$$

where $a_{d_{2}}=\frac{n_{d_{2}}}{\left[K\left(\zeta_{d_{1}}, \zeta_{d_{2}}: K\left(\zeta_{d_{1}}\right)\right]\right.}$ and $n_{d_{2}}$ denotes the number of elements of order $d_{2}$ in $H$. If we set $d=\operatorname{lcm}\left(d_{1}, d_{2}\right)$, we have that $K\left(\zeta_{d_{1}}, \zeta_{d_{2}}\right)=K\left(\zeta_{d}\right)$. Thus,

$$
K G \cong \bigoplus_{d \mid n} a_{d} K\left(\zeta_{d}\right)
$$

with $a_{d}=\sum a_{d_{1}} a_{d_{2}}$, where the sum is taken over all pairs $d_{1}, d_{2}$ such that $\operatorname{lcm}\left(d_{1}, d_{2}\right)=d$. Since $\left[K\left(\zeta_{d}\right): K\right]=\left[K\left(\zeta_{d_{1}}, \zeta_{d_{2}}\right): K\left(\zeta_{d_{1}}\right)\right]\left[K\left(\zeta_{d_{1}}\right): K\right]$, we have that

$$
a_{d}\left[K\left(\zeta_{d_{1}}\right): K\right]=\sum_{d_{1}, d_{2}} a_{d_{1}} a_{d_{2}}\left[K\left(\zeta_{d_{1}}, \zeta_{d_{2}}\right): K\left(\zeta_{d_{1}}\right)\right]\left[K\left(\zeta_{d_{1}}\right): K\right]=\sum_{d_{1}, d_{2}} n_{d_{1}} n_{d_{2}} .
$$

Finally, we notice that since $G \cong G_{1} \times H$, each element can be written in the form $g=g_{1} h$, with $g_{1} \in G_{1}$ and $h \in H$. Also, it is easy to see that $o(g)=\operatorname{lcm}\left(o\left(g_{1}\right), o(h)\right)$. Hence, $\sum_{d_{1}, d_{2}} n_{d_{1}}, n_{d_{2}}=n_{d}$, the number of elements of order $d$ in $G$, so that we have

$$
a_{d}=\frac{n_{d}}{\left[K\left(\zeta_{d}\right): K\right]},
$$

and the result follows.

Corollary 2.10 (Milies \& Sehgal, 2002) Let $G$ be an abelian group of order $n$ and $K$ be a field such that $\operatorname{char}(K) \nmid n$. If $K$ contains a primitive root of unity of order $n$, then $K G$ is isomorphic to direct sum of $n$ copies of $K$. That is,

$$
K G \cong K \oplus \cdots \oplus K
$$

where the sum occurs $n-1$ times.
Proof If $K$ contains a primitive root of unity of order $n$, then $K\left(\zeta_{d}\right)=K$, for all $d \mid n$, and the corollary follows directly from Theorem 2.23 (to see that there must occur exactly $n$ summands it suffices to compute the dimensions over $K$ on both sides of the equation).

If $G$ and $H$ are isomorphic groups, universal property gives that the group rings $R G$ and $R H$ are isomorphic. However, the converse is not true. We can give a counter example using this Corollary 2.10.
Suppose $G$ and $H$ are non-isomorphic abelian groups of the same order $n$ and $K$ is a field such that char $(K) \nmid n$ and contains a primitive root of unity of order $n$. Then Corollary 2.10 shows that

$$
K G \cong K \oplus \cdots \oplus K \cong K H,
$$

where the sum occurs $n-1$ times.
For example if $C_{2}$ and $C_{4}$ denote the cyclic groups of order 2 and 4 , respectively, then for the complex group algebras we have:

$$
\mathbb{C}\left(C_{2} \times C_{2}\right) \cong \mathbb{C} \oplus \mathbb{C} \oplus \mathbb{C} \oplus \mathbb{C} \cong \mathbb{C} C_{4} .
$$

Information about the idempotents in a group ring will be helpful for our aim, so we mention about them in the next part of this section.

Lemma 2.7 (Milies \& Sehgal, 2002) Let $R$ be a ring and $H$ be a subgroup of a group $G$. If $|H|$ is invertible in $R$, then $e_{H}=\frac{1}{\widetilde{H}}$ is an idempotent of $R G$. Moreover, if $H$ is a normal subgroup of $G$, then $e_{H}$ is central.

Proof First we prove $e_{H}$ is an idempotent.

$$
\begin{aligned}
e_{H} e_{H}=\frac{1}{|H|^{2}} \widetilde{H} \widetilde{H} & =\frac{1}{|H|^{2}}\left(\sum_{h \in H} h\right) \widetilde{H} \\
& =\frac{1}{|H|^{2}} \sum_{h \in H}(h \widetilde{H}) \\
& =\frac{1}{|H|^{2}} \sum_{h \in H} \widetilde{H} \\
& =\frac{1}{|H|^{2}}|H| \widetilde{H}=e_{H} .
\end{aligned}
$$

We already know from Lemma 2.4 that if $H$ is a normal subgroup of $G$, then $\widetilde{H}$ is central. So, centrality of $e_{H}$ follows immediately. Our next result will tell us what the decomposition obtained from one of these idempotents looks like.

Proposition 2.22 (Milies \& Sehgal, 2002) Let $R$ be a ring, and $H$ a normal subgroup of a group $G$. If $|H|$ is invertible in $R$, setting $e_{H}=\frac{1}{|H|} \widetilde{H}$, we have a direct sum of rings

$$
R G=R G e_{H} \oplus R G\left(1-e_{H}\right),
$$

where $R G e_{H} \cong R(G / H)$ and $R G\left(1-e_{H}\right)=\omega H$.
Proof We have shown that $e_{H}$ is a central idempotent. Thus,

$$
R G=R G e_{H} \oplus R G\left(1-e_{H}\right)
$$

is a valid decomposition. To see that $R(G / H) \cong R G e_{H}$, we shall first show that $G / H \cong$ $G e_{H}$ as groups. The map $\phi: G \rightarrow G e_{H}$ such that $g \mapsto g e_{H}$ is a group epimorphism. Clearly, $\operatorname{Ker}(\phi)=H$. As $G e_{H}$ is a basis of $R G e_{H}$ over $R$, we already have $R G e_{H} \cong R(G / H)$.

Finally, it follows from Lemma 2.4 that $R G\left(1-e_{H}\right)$ is an annihilator of $R G e_{H}$ and it can be easily shown that $\operatorname{Ann}\left(R G e_{H}\right)=\omega H$.

Definition 2.25 Let $R$ be a ring and $G$ a finite group such that $|G|$ is invertible in $R$. The idempotent $e_{G}=\frac{1}{|G|} \widetilde{G}$ is called the principal idempotent of $R G$.

For a group ring $R G$, we can use the principal idempotent of $R G$ and obtain a decomposition given in the next theorem by Proposition 2.22.

Corollary 2.11 (Milies \& Sehgal, 2002) Let $R$ be a ring and $G$ a finite group such that $|G|$ is invertible in $R$. Then we can write $R G$ as a direct sum of rings

$$
R G \cong R \oplus \omega G
$$

### 2.7.2. Chain Conditions

In this part of our study, we give necessary and sufficient conditions on $R$ and $G$ for the group ring $R G$ to have some chain conditions.

Theorem 2.24 (Connell, 1963) $R G$ is Artinian if and only if $R$ is Artinian and $G$ is finite.

Theorem 2.25 (Connell, 1963) If $R$ is Noetherian and $G$ is finite, then $R G$ is Noetherian.

Theorem 2.26 (Connell, 1963) If $R G$ is Noetherian, then $R$ is Noetherian and $G$ has the maximum condition on subgroups.

### 2.7.3. Regularity

The following theorem completely characterizes regular group rings.

Theorem 2.27 (Connell, 1963) $R G$ is regular if and only if
(i) $R$ is a regular ring.
(ii) $G$ is locally finite.
(iii) The order of every subgroup of $G$ is a unit in $R$.

### 2.7.4. On the Radicals

This part of this section contains some special cases about the Jacobson radical and the prime ideal of a group ring $R G$.

Proposition 2.23 (Connell, 1963) Let $H$ be a subgroup of $G$. Then $R H \cap \operatorname{Rad}(R G) \subseteq$ $\operatorname{Rad}(R H)$.

If we let $H$ to be the trivial subgroup of $G$, we have the following corollary.
Corollary 2.12 (Connell, 1963) Let $H$ be the trivial subgroup of $G$. Then $R \cap \operatorname{Rad}(R G) \subseteq$ $\operatorname{Rad}(R)$ with equality if $R$ is Artinian or $G$ is locally finite.

Proposition 2.24 (Connell, 1963) Let $R$ be a commutative ring and and $G$ an abelian group. If $\operatorname{Rad}(R)=0$ and the order of every element $g \in G$ is regular in $R$, then $\operatorname{Rad}(R G)=0$.

Proposition 2.25 (Connell, 1963) $R G$ is semiprime if and only if $R$ is semiprime and $G$ has no finite normal subgroups whose orders are zero divisors in $R$.

### 2.7.5. Properties of the Fundamental Ideal

This part of this section contains some special cases about the fundamental ideal of a group ring $R G$ that will be useful.

Proposition 2.26 (Connell, 1963) If $\omega G \subseteq \operatorname{Rad}(R G)$, then $G$ is a $p$-group and $p \in \operatorname{Rad} R$.

Proposition 2.27 (Connell, 1963) If $\omega G$ is nil, then $G$ is a $p$-group and $p \in \operatorname{rad} R$.

Theorem 2.28 (Connell, 1963) $\omega G$ is nilpotent if and only if $G$ is a finite $p$-group and $p$ is nilpotent in $R$.

Corollary 2.13 (Connell, 1963) $\omega G$ is locally nilpotent if and only if $G$ is a locally finite p-group and $p$ is nilpotent in $R$.

Proposition 2.28 (Connell, 1963) If $\omega G$ is a nil ideal, then $G$ is a $p$-group and $p$ is nilpotent in $R$.

Proposition 2.29 (Connell, 1963) If $G$ is a locally finite $p$-group and $p$ is nilpotent in $R$, then $\omega G$ is a nil ideal.

Proposition 2.30 (Connell, 1963) If $\operatorname{Rad}(R G)=\omega G$, then $G$ is a $p$-group, $\operatorname{Rad}(R)=0$ and $p=0$ in $R$.

Proposition 2.31 (Connell, 1963) If $G$ is a locally finite $p$-group, $\operatorname{Rad} R=0$ and $p=0$ in $R$, then $\operatorname{Rad}(R G)=\omega G$.

## CHAPTER 3

## SEMIPERFECT GROUP RINGS

In this chapter we give some necessary and sufficient conditions on a ring $R$ and a group $G$ for the group ring $R G$ to be semiperfect.

### 3.1. Some Necessary Conditions

Proposition 3.1 (Burgess, 1969) If $R G$ is semiperfect, so is $R$, and so is $D G$ for each division ring $D$ appearing in the factors of $R / \operatorname{Rad} R$.

Proof Suppose $R G$ is semiperfect. Then since $R G / \omega G \cong R$, we have $R$ is semiperfect. $R$ is semiperfect means that $R / \operatorname{Rad}(R)$ is semisimple. By Wedderburn-Artin Theorem, $R / \operatorname{Rad}(R)$ is a direct product of matrix rings over division rings. That is,

$$
R / \operatorname{Rad}(R) \cong M_{n}\left(D_{1}\right) \times M_{n}\left(D_{2}\right) \times \cdots \times M_{n}\left(D_{k}\right),
$$

where $D_{1}, \ldots, D_{k}$ are division rings. We know that homomorphic images of semiperfect rings are semiperfect. Thus, here $M_{n}\left(D_{i}\right) G$ is semiperfect since

$$
\frac{\bar{R} G}{\left(M_{n}\left(D_{1}\right) \times \cdots \times M_{n}\left(D_{i-1}\right) \times M_{n}\left(D_{i+1}\right) \times \cdots \times M_{n}\left(D_{k}\right)\right) G} \cong\left(M_{n}\left(D_{i}\right)\right) G
$$

By Proposition 2.19, $M_{n}(R) G \cong M_{n}(R G)$. Thus $M_{n}(R G)$ is semiperfect for $1 \leq i \leq k$. By Theorem 2.15, $D G$ is semiperfect for $1 \leq i \leq k$.

The following definition helps us to give an example of a group ring which is not semiperfect.

Definition 3.1 $A$ group $G$ is called an ID group (integral domain group) if for each ring $R$ with no zero divisors except zero, $R G$ has no zero divisors except zero.

Proposition 3.2 (Rudin \& Schneider, 1963) Every $\Omega$ - group is an ID group.
Proof Let $G$ be an $\Omega$-group and $R$ a ring with no non-zero zero divisors. Let $\alpha, \beta$ be nonzero elements of $R G$. Then $\operatorname{supp}(\alpha)$ and $\operatorname{supp}(\beta)$ are non-empty, and finite subsets of $G$. Since $G$ is an $\Omega$-group, for an arbitrary $a \in \operatorname{supp}(\alpha)$ and $b \in \operatorname{supp}(\beta)$, there exists $x \in G$ such that $x=a b$ is the unique representation of $x=a^{\prime} b^{\prime}$, where $a^{\prime}$ and $b^{\prime}$ in $\operatorname{supp}(\beta)$. Let $\alpha \beta=\sum_{x \in G} r_{x} x$. If $r_{a}$ and $r_{b}$ are the coefficients of $a$ and $b$ in the expression of $\alpha$ and $\beta$ respectively, $r_{x}=r_{a} r_{b}$ if $x=a b$. Since $R$ has no non-zero zero divisors and $r_{a} \neq 0$ and $r_{b} \neq 0, r_{x} \neq 0$. Thus, the product $\alpha \beta$ is non-zero as desired.

Proposition 3.3 (Rudin \& Schneider, 1963) Every ID group is torsion free.
Proof Let $G$ be an ID group. Suppose for the contrary that $G$ has a finite non-trivial subgroup $H$. Let $\alpha=\sum_{h \in H} r h$. Here $r$ is a non-zero fixed element of $R$. Let $0 \neq \beta=\sum_{h \in H} r_{h} h$ such that $\sum r_{h}=0$. Since $H$ is a finite group, $\alpha \beta=0$. So $R H$ has non-zero zero divisors. That is, $R G$ has non-zero zero divisors. So $G$ is not an ID group, which is a contradiction. This contradiction shows that $G$ does not have a finite non-trivial subgroup $H$, that is, $G$ is torsion-free.

Proposition 3.4 (Burgess, 1969) If $G$ is a non-trivial ID group, then $R G$ is not semiperfect for any ring $R$.

Proof If $R G$ is semiperfect, then by Proposition 3.1, $D G$ is semiperfect for some division ring $D$. Since $G$ is an $I D$ group, $(D / \operatorname{Rad} D) G \cong D G / \operatorname{Rad}(D G)$ has no non-trivial idempotents. Hence, if $e+\operatorname{Rad}(D G)$ is an idempotent of $D G / \operatorname{Rad}(D G)$, either $e \in \operatorname{Rad}(D G)$ or $1-e \in \operatorname{Rad}(D G)$. Since $D G$ is semiperfect, $D G / \operatorname{Rad}(D G)$ is semisimple. It follows that $D G / \operatorname{Rad}(D G)$ is a division ring. Thus, $\operatorname{Rad}(D G)$ is a maximal ideal. Also, $D G / \omega G \cong D$, so $\omega G$ is a maximal ideal, too, that is, $\operatorname{Rad}(D G)=\omega G$. By Proposition 2.30, $G$ is a $p$-group for some prime $p$. This contradicts with the fact that an $I D$ group is torsion free.

Corollary 3.1 (Burgess, 1969) If $G$ is an extension of a group by a nontrivial ID group, then $R G$ is not semiperfect for any ring $R$.

Proof Let $G$ be an extension of a group by a nontrivial ID group. That is, there exists an exact sequence

$$
0 \rightarrow H \rightarrow G \rightarrow N \rightarrow 0
$$

such that $N$ is an ID group. Since the sequence is exact $N \cong G / H$. It is seen that $R G / R H \cong$ $R(G / H) \cong R N$. Since $N$ is an ID group, $R N$ is not semiperfect by Proposition 3.4. Thus, $R G$ can not be semiperfect.

Now let $G$ be a non-torsion abelian group. Then it is possible to write the exact sequence

$$
0 \rightarrow \operatorname{Tor}(G) \rightarrow G \rightarrow G / \operatorname{Tor}(G) \rightarrow 0
$$

$G / \operatorname{Tor}(G)$ is nontrivial since $G$ is not a torsion group. It is also torsion-free and abelian. Thus, $G / \operatorname{Tor}(G)$ is a nontrivial ID group. By Corollary 3.1, $R G$ cannot be semiperfect. So, as a special case, if $G$ is abelian and $R G$ is semiperfect, then we can say that $G$ is torsion. Furthermore, a more general statement can be made.

Proposition 3.5 (Burgess, 1969) If $R G$ is semiperfect and $G$ is abelian, then either $G$ is finite or $G \cong G_{p} \times H$, where $G_{p}$ is an infinite $p$-group, $H$ finite, $p$ does not divide the order of $H$ and
each of the division rings associated with the semisimple ring $R / \operatorname{Rad} R$ is of characteristic $p$.

Proof As we have seen, if $R G$ is semiperfect, so is $D G$, where $D$ is a division ring associated with the semisimple ring $R / \operatorname{Rad}(R)$. If $D$ has characteristic zero, then $D G$ is regular by Theorem 2.27, hence $\operatorname{Rad}(D G)=0$. This means that $D G$ is semisimple, and by Maschke's Theorem, $G$ is finite.

Suppose $D$ has characteristic $p$. Since $G$ is an abelian and must be torsion by the above observation, we can write $G \cong G_{p} \times H$, where $G_{p}$ is the Sylow $p$-subgroup of $G$, and $H$ has no elements of order $p$. Then $D H \cong D\left(G / G_{p}\right) \cong D G / \omega G_{p}$ is semiperfect. $D H$ is regular since $H$ is locally finite and $H$ has no elements of order $p$. Thus, as above $H$ is finite.

Corollary 3.1 and Proposition 3.5 lead to a conjecture that $R G$ is semiperfect implies $G$ is torsion. But it is not known whether $R G$ is semiperfect implies that $G$ is locally finite. If $K$ is a field of characteristic $p>0$ and $G$ is a $p$-group which is not locally finite, then $K G$ will be local, hence semiperfect if $\operatorname{Rad}(K G)=\omega G$.

Lemma 3.1 (Woods, 1974) Let $R$ be a ring such that $R / \operatorname{Rad}(R)$ is Artinian, and let $x \in R$. Let $\left\{x_{n}\right\}$ be the sequence $x_{0}=x, x_{i+1}=x_{i}-\left(x_{i}\right)^{2}$ for $i \geq 0$. Then for some $n, 1-x_{n}$ has a right inverse in $R$.

Proof Consider the chain $R x_{1} \supseteq R x_{2} \supseteq \cdots$ of left ideals in $R$. Using this chain, we can obtain a chain

$$
\frac{R x_{1}+\operatorname{Rad} R}{\operatorname{Rad} R} \supseteq \frac{R x_{2}+\operatorname{Rad} R}{\operatorname{Rad} R} \supseteq \cdots
$$

of right ideals in $R / \operatorname{Rad} R$. Since $R / \operatorname{Rad} R$ is Artinian, there exists a positive integer $n$ such that $\frac{R x_{n}+\operatorname{Rad} R}{\operatorname{Rad} R}=\frac{R x_{n+1}+\operatorname{Rad} R}{\operatorname{Rad} R}$ and $x_{n} \in R x_{n+1}+\operatorname{Rad} R$. For some $r \in R$ and $y \in \operatorname{Rad} R$, $x_{n}=r\left(x_{n}-x_{n}^{2}\right)+y$. Now $1-y=\left(1-x_{n}\right)\left(1+r x_{n}\right)$ has a left inverse in $R$, and so $1-x_{n}$ has a left inverse in $R$.

Theorem 3.1 (Woods, 1974) Let $D$ be a division ring of characteristic $p \geq 0$ and $G$ a group. If $D G$ is semiperfect, then $G$ is a torsion group and there is a positive integer $n$ such that no chain of finite $p^{\prime}$-subgroups of $G$ has length greater than $n$.

Proof Suppose $x \in G$ has infinite order. Let $\left\{x_{n}\right\}$ be the sequence in $D G$ such that $x_{0}=x$, $x_{i+1}=x_{i}-x_{i}^{2}$ for $i \geq 0$. By Lemma 3.1, $1-x_{m}$ has a left inverse in $D G$ for some $m$. Clearly, $1-x_{m} \in K H$, where $K$ is the prime subfield of $D$ and $H$ is the subgroup generated by $x$. Since $K H$ is a direct summand of $D G$ as left $K H$ - modules, $1-x_{m}$ has a left inverse in $K H$, that is $h(x)\left(1-x_{m}\right)=1$ for some $h(x)=\sum_{i=-r}^{r^{\prime}} a_{i} x^{i} \in K H$. Multiplying by $x^{r}$, we obtain the factorization

$$
x^{r}=x^{r} h(x)\left(1-x^{m}\right)=\sum_{i=0}^{r+r^{\prime}} d_{i-r} x^{r}\left(1-x_{m}\right)
$$

in the polynomial ring $K[X]$. This is impossible since $x^{r}$ is a monomial. Thus, $G$ must be a torsion group.

If $H=\left\{h_{1}, \ldots, h_{r}\right\}$ is a finite $p^{\prime}$-subgroup of $G$, then $r=r .1$ is a unit in $D$ and by Lemma 2.7, $e_{H}=\frac{1}{r}\left(h_{1}+\cdots+h_{r}\right)$ is an idempotent in $D G$. Moreover, if $N \leq H$, then $e_{H} e_{N}=e_{N} e_{H}=e_{H}$. Since $D G$ is semiperfect, $\overline{D G}$-module $\overline{D G}$ has finite length. Let $n$ be the length of a composition series for the left $\overline{D G}$-module $\overline{D G}$, and suppose

$$
\{1\} \subset H_{1} \subset \cdots \subset H_{n+1}
$$

is a strictly increasing chain of $n+1$ finite $p^{\prime}$-subgroups of $G$. Let $e_{i}=e_{H_{i}}, i=1, \ldots, n+1$. Then

$$
D G \supseteq D G e_{1} \supseteq \cdots \supseteq D G e_{n+1}
$$

Reducing modulo $\operatorname{Rad}(D G)$ we obtain

$$
\begin{aligned}
D G / \operatorname{Rad}(D G) & \supseteq\left(e_{1}+\operatorname{Rad}(D G)\right) D G / \operatorname{Rad}(D G) \\
& \vdots \\
& \supseteq\left(e_{n+1}+\operatorname{Rad}(D G)\right) D G / \operatorname{Rad}(D G)
\end{aligned}
$$

Thus, for some $i,\left(e_{i}+\operatorname{Rad}(D G)\right) D G / \operatorname{Rad}(D G)=\left(e_{i+1}+\operatorname{Rad}(D G)\right) D G / \operatorname{Rad}(D G)$. Then $e_{i}-e_{i+1}$ is an idempotent in $\operatorname{Rad}(D G)$ and so $e_{i}=e_{i+1}$. This implies $H_{i}=H_{i+1}$, a contradiction.

The following result is a direct consequence of Theorem 3.1.
Corollary 3.2 (Woods, 1974) Let D be a division ring of characteristic $p \geq 0$ and $G$ a locally finite group. If $D G$ is semiperfect then every ${ }^{\prime}$-subgroup of $G$ is finite.

### 3.2. Some Sufficient Conditions

Theorem 3.2 (Burgess, 1969) If $G$ is an abelian p-group and $R$ is a finite direct product of commutative local rings whose factor fields are of characteristic $p$, then $R G$ is semiperfect.

Proof Let $R=L_{1} \times \cdots \times L_{n}$ where $L_{i}$ is local and $L_{i} / \operatorname{Rad}\left(L_{i}\right) \cong K_{i}$, where $K_{i}$ is a field of characteristic $p, i=1, \ldots, n$.

Then $R G \cong L_{1} G \times \cdots \times L_{n} G$ and for each $i$,

$$
\begin{aligned}
L_{i} G / \operatorname{Rad}\left(L_{i} G\right) & \cong \frac{L_{i} G / \operatorname{Rad}\left(L_{i}\right) G}{\operatorname{Rad}\left(L_{i} G\right) / \operatorname{Rad}\left(L_{i}\right) G} \\
& \cong \frac{\left(L_{i} / \operatorname{Rad}\left(L_{i}\right)\right) G}{\operatorname{Rad}\left(L_{i} G / \operatorname{Rad}\left(L_{i}\right) G\right)} \cong K_{i} G / \operatorname{Rad}\left(K_{i} G\right)
\end{aligned}
$$

Here $G$ is an abelian $p$-group, thus $G$ is locally finite. And each $K_{i}$ is a field of characteristic $p$, thus $\operatorname{Rad}\left(K_{i} G\right)=\omega G$ by Proposition 2.31, that is,

$$
L_{i} G / \operatorname{Rad}\left(L_{i} G\right) \cong K_{i} G / \operatorname{Rad}\left(K_{i} G\right) \cong K_{i} G / \omega G \cong K_{i} .
$$

Hence, each $L_{i} G$ is local. Thus, $R G$ is a finite direct product of commutative local rings. By Theorem 2.16, $R G$ is semiperfect.

Corollary 3.3 (Burgess, 1969) If $R$ is commutative and $G \cong G_{p} \times H$, where $G_{p}$ is a p-group, $H$ is finite and $p$ does not divide the order of $H, R G$ is semiperfect if $R H$ is a finite direct product of local rings whose factor fields are of characteristic p.

Proof Since $G \cong G_{p} \times H, R G \cong R\left(G_{p} \times H\right) \cong R H(G)$ by Proposition 2.18, the result follows directly from Theorem 3.2.

Proposition 3.6 (Woods, 1974) Let $R$ be semiperfect, and let $\left\{e_{1}, \ldots, e_{n}\right\}$ a set of orthogonal local idempotents in $R$ whose sum is 1 . Let $G$ be any group. Then $R G$ is semiperfect if and only if $\left(e_{i} R e_{i}\right) G$ is semiperfect for each $i$.

Proof We have $\left(e_{i} R e_{i}\right) G \cong e_{i} R G e_{i}$, and the result follows from Lemma 2.3.

Lemma 3.2 (Woods, 1974) Let $R$ be a ring, $G$ a group, and $N$ a normal subgroup of $G$ such that $G / N$ is locally finite. Then $\operatorname{Rad}(R N) \subseteq \operatorname{Rad}(R G)$.

Proof Let $x \in \operatorname{Rad}(R N), r \in R G$. To show that $x \in \operatorname{Rad}(R G)$, we will show that $1-r x$ has a left inverse in $R G$. Let $G^{\prime}$ be the subgroup generated by $N$ and $\operatorname{supp}(r)$. We know that $\operatorname{supp}(r)$ is always finite for an arbitrary element of $R G$. So, the group $G^{\prime} / N$ is finitely generated. Since $G / N$ is locally finite and $G^{\prime} / N$ is finitely generated, we have $G^{\prime} / N$ is finite. Let $G^{\prime} / N=\left\{g_{1} N, g_{2} N, \ldots, g_{n} N\right\}$, where $g_{1}$ is the identity element of the group. Then $\left\{g_{1}, g_{2}, \ldots, g_{n}\right\}$ is a basis for the free left $R N$-module $R G^{\prime}$. Thus, the endomorphism ring of $R G^{\prime}$ as a module is the matrix ring $M_{n}(R N)$. For each $y \in R G^{\prime}$, let $\lambda_{y}$ be the matrix corresponding to left multiplication by $y$. Then $\lambda: R G^{\prime} \rightarrow M_{n}(R N)$ is a ring homomorphism. In particular,

$$
\lambda_{x}=\left(\begin{array}{cccc}
x & 0 & \cdots & 0 \\
0 & g_{2}^{-1} x g_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & g_{n}^{-1} x g_{n}
\end{array}\right)
$$

The entries are in $\operatorname{Rad}(R N)$ because $\operatorname{Rad}(R N)$ is invariant under automorphisms of $R N$. Thus $\lambda_{x} \in M_{n}(\operatorname{Rad}(R N))=\operatorname{Rad}\left(M_{n}(R N)\right)$. This implies that for every $\lambda_{x} \in M_{n}(\operatorname{Rad}(R N))=$ $\operatorname{Rad}\left(M_{n}(R N)\right)$, there exists $f \in M_{n}(R N)$ such that $f\left(1-\lambda_{r} \lambda_{x}\right)=1$. We can regard them as endomorphisms, and if we evaluate them at $1 \in R G^{\prime}$, we get $f(1)(1-r x)=1$. Then $f(1) \in R G^{\prime} \subseteq R G$ is the left inverse of $1-r x$.

Proposition 3.7 (Woods, 1974) Let $R$ be a local ring with $\operatorname{char}(\bar{R})=p>0$ and $G$ a locally finite group. Let $N$ be a normal p-subgroup of $G$ such that $N H=G$. If $R H$ is semiperfect, then so is $R G$.

Proof Let $\pi: R G \rightarrow \overline{R G}$ be the canonical epimorphism. Let $g \in G$. By assumption, $g=n h$, where $n \in N$ and $h \in H$. Thus we can write $g=n h=(n-1) h+h \in \omega N+R H$. The other containment is clear, so we have $R G=\omega N+R H$. Since $\operatorname{Rad}(R) G \subseteq \operatorname{Rad}(R G)$, $\pi$ may be factored into

$$
R G \xrightarrow{\pi_{1}} \bar{R} G \xrightarrow{\pi_{2}} \overline{R G},
$$

where $\operatorname{Ker}\left(\pi_{2}\right)=\operatorname{Rad}(\bar{R} G)$. Since $N$ is a $p$-group and $\operatorname{char}(\bar{R})=p, \omega N$ in the group ring $\bar{R} N$ is a nil ideal by Theorem 2.28, hence $\omega_{\bar{R}} N \subseteq \operatorname{Rad}(\bar{R} N)$. Since $G / N \cong H$ is a locally finite group, it follows by Lemma 3.2 that $\operatorname{Rad}(\bar{R} N) \subseteq \operatorname{Rad}(\bar{R} G)$. Thus

$$
\omega_{R N} N \subseteq \pi_{1}^{-1}\left(\omega_{\bar{R} N} N\right) \subseteq \pi_{1}^{-1}(\operatorname{Rad}(\bar{R} G))=\operatorname{Rad}(R G)
$$

and $\omega_{R G} N \subseteq \operatorname{Rad}(R G)$. It follows that $R G=\operatorname{Rad}(R G)+R H$ and $\pi(R H)=\overline{R G}$. By Proposition 2.23 $R H \cap \operatorname{Rad}(R G) \subseteq \operatorname{Rad}(R H)$. Thus,

$$
\frac{R H}{\operatorname{Rad}(R H)} \cong \frac{R H /(\operatorname{Rad}(R G) \cap R H)}{\operatorname{Rad}(R H) /(\operatorname{Rad}(R G) \cap R H)}
$$

by Third Isomorphism Theorem. Since $R H$ is semiperfect, $\overline{R H}$ is semisimple. This gives us $\frac{R H}{R H \cap \operatorname{Rad}(R G)}$ is semisimple. Thus, $\operatorname{Rad}(R H)=R H \cap \operatorname{Rad}(R G)$. In addition,

$$
\frac{R G}{\operatorname{Rad}(R G)}=\frac{R H+\operatorname{Rad}(R G)}{\operatorname{Rad}(R G)} \cong \frac{R H}{R H \cap \operatorname{Rad}(R G)}
$$

by Second Isomorphism Theorem. Thus, $\overline{R H} \cong \overline{R G}$ and $\overline{R G}$ is semisimple.
If $R H$ is semiperfect, then $\overline{R G}$ is artinian. Let $\bar{x}^{2}=\bar{x} \in \overline{R G}$. Then $\bar{x}=\pi(e)$ for some idempotent $e$ in $R H \subseteq R G$. Thus $R G$ is semiperfect.

The next result is a consequence of Proposition 3.7.
Corollary 3.4 (Woods, 1974) Let $R$ be a local perfect ring with $\operatorname{char}(\bar{R})=p \geq 0$ and $G$ be a locally finite group. If $G$ has a p-subgroup of finite index, then $R G$ is semiperfect.

Proof By assumption, $G$ has a normal $p$-subgroup $N$ of finite index and a finite subgroup $F$ such that $N F=G$. Then $R F$ is perfect (See Theorem 4.1), hence semiperfect and so $R G$ is semiperfect.

Proposition 3.8 Let $R$ be a local ring with $\operatorname{char}(\bar{R})=p>0$. Let $G$ be an abelian group and $G_{p}$ be the Sylow $p$-subgroup of $G$. Then $R G$ is semiperfect if and only if $R\left(G / G_{p}\right)$ is semiperfect, and in this case $G / G_{p}$ is finite.

Proof Follows directly from Proposition 3.7 and Corollary 3.4.
We now show that if $G$ is a finite group of exponent $n$ and if $C_{n}$ is the cyclic group of order $n$, then $R G$ is semiperfect if and only if $R C_{n}$ is semiperfect. Then necessary and sufficient conditions for $R C_{n}$ to be semiperfect are given when $R$ is commutative, in terms of the polynomial ring $R[X]$.

Without loss of generality, we may assume that $R$ is semiperfect and $n$ is a unit in $R$. Since $G$ is a finite group, $\operatorname{Rad}(R G)=(\operatorname{Rad} R) G$ by Corollary 2.12 and $R G / \operatorname{Rad}(R G)=$ $R G /(\operatorname{Rad} R) G \cong(R / \operatorname{Rad}(R)) G$ is an Artinian ring by Theorem 2.24. To prove that $R G$ is semiperfect it is sufficient to prove that either idempotents lift from $(R / \operatorname{Rad} R) G$ to $R G$ or that every primitive idempotent in $R G$ is local. If $e$ is any idempotent in $R G$, then $n e$ is a unit in $e R G e$ since we have assumed $n$ is a unit in $R$. Also $\overline{e R G e}=\bar{e} \overline{R G} \bar{e}$ holds by Theorem 2.10.

Let $g$ be an element of order $n$ in an abelian group $G, K$ an algebraically closed field such that $\operatorname{char}(K) \nmid n$, and $z$ a primitive $n^{\text {th }}$ root of unity in $K$. For $i=0, \ldots, n-1$, let

$$
k_{j}=\frac{1}{n} \sum_{j=0}^{n-1} z^{i j} g^{j} .
$$

We show that $k_{i}$ are orthogonal idempotents whose sum is 1 and that if $z^{i}$ is a primitive $m^{\text {th }}$ root of unity, then $g k_{i}$ is a primitive $m^{\text {th }}$ root of $k_{i}$. Since $z^{i} g k_{i}=k_{i}, k_{i}^{2}=k_{i}$. If $i \neq j$, let $k_{i} k_{j}=\frac{1}{n^{2}} \sum_{t=0}^{n-1} a_{t} g^{t}$. Then

$$
z^{i j} a_{t}=\sum_{k=0}^{n-1} z^{i k} z^{j(t-k)}=z^{j t} z^{i-j} \sum_{k=0}^{n-1} z^{(i-j) k}=a_{t} .
$$

Since $z^{i-j} \neq 1, a_{t}=0$, and hence $k_{i} k_{j}=0$.
Let $\sum_{i=0}^{n-1} k_{i}=\frac{1}{n} \sum_{t=0}^{n-1} b_{t} g^{t}$. Then $z^{t} b_{t}=z^{t} \sum_{i=0}^{n-1} z^{i t}=b_{t}$. If $0<t<n, z^{t} \neq 1$ and hence $b^{t}=0$. Thus,

$$
\sum_{i=0}^{n-1} k_{i}=\frac{1}{n} \cdot n \cdot 1=1 .
$$

If $z^{i}$ is a primitive $m^{t h}$ root of 1 , then $g^{m} k_{i}=g^{m} z^{i m} k_{i}=k_{i}$, but if $0<r<m$, then $k_{i}=g^{r} z^{i r} k_{i} \neq g^{r} k_{i}$ since $z^{i r} \neq 1$ and $k_{i} \neq 0$.

For each $m$ with $m \mid n$, let $e_{m}=\sum k_{i}$ where the sum is taken over all $i$ such that $z^{i}$ is a primitive $m^{t h}$ root of 1 , and let $e_{m}^{\prime}=\sum k_{i}$ where the sum is taken over all $i$ such that $z^{i m}=1$. Then $\left\{e_{m}: m \mid n\right\}$ is an orthogonal set of idempotents whose sum is 1 . Since $e_{m} k_{i}=k_{i}$ whenever $z^{i}$ is a primitive $m^{t h}$ root of unity, $g e_{m}$ is a primitive $m^{t h}$ root of $e_{m}$. Clearly $e_{m}^{\prime}=\sum_{d \mid m} e_{d}$. Since $z^{i m}=1$ if and only if $s \mid i$, where $s=\frac{n}{m}, e_{m}^{\prime}=\sum_{j=0}^{m-1} k_{s j}$. Let

$$
e_{m}^{\prime}=\frac{1}{n} \sum_{t=0}^{n-1} c_{t} g^{t}
$$

Then $c_{t}=\sum_{j=0}^{m-1} z^{s j t}$. If $m \mid t, z^{s j t}=1$ and $c_{t}=m$. If $m \nmid t$, then, since $z^{s t} c_{t}=c_{t}$ and $z^{s t} \neq 1, c_{t}=0$. Thus,

$$
e_{m}^{\prime}=\frac{m}{n}\left(1+g^{m}+\cdots+g^{n-m}\right) .
$$

If $K=\mathbb{C}$, the complex numbers, then for each $m \mid n$, $n e_{m}^{\prime} \in \mathbb{Z} G$, where $\mathbb{Z}$ denotes the integers. Since $e_{m}=e_{m}^{\prime}-\sum e_{d}$ where the sum is taken over all $d \mid m, d<m$, we see by induction that $n e_{m} \in \mathbb{Z} G$.

Let $R$ be any ring which $n$ is a unit, and let $R^{\prime}$ be the subring $\{t .1: t \in \mathbb{Z}\}$. Then $R^{\prime} \cong \mathbb{Z}$ or $R^{\prime} \cong \mathbb{Z} /<r>$ for some $r$ relatively prime to $n$. In either case, for some $p \nmid n$ there are homomorphisms

$$
\mathbb{Z} \rightarrow R^{\prime} \rightarrow \mathbb{Z} /<p>\rightarrow K
$$

where $K$ is the algebraic closure of $\mathbb{Z} /\langle p\rangle$, which extend to homomorphisms

$$
\mathbb{Z} G \rightarrow R^{\prime} G \rightarrow K G
$$

In $R G$, we may define inductively for each $m \mid n, e_{m}^{\prime}=\frac{m}{n}\left(1+g^{m}+\cdots+g^{n-m}\right)$ and $e_{m}=e_{m}^{\prime}-$ $\sum e_{d}$, where the sum is taken over all $d \mid m, d<m$. Then $n e_{m} \in R^{\prime} G$ for each $m \mid n$. Using the homomorphisms defined above, $\left(n e_{m}\right)^{2}=n\left(n e_{m}\right),\left(n e_{m}\right)\left(n e_{d}\right)=0$ if $m \neq d, \sum_{m \mid n} e_{m}=1$ and $g^{m} e_{m}=e_{m}$. If $g^{r} e_{m}=e_{m}$ in $R G$ for some $r, 0<r<m$ then $g^{r}\left(n e_{m}\right)=n e_{m}$ in $R^{\prime} G$, hence in $K G$. Thus $g^{r} e_{m}=e_{m}$ in $K G$, a contradiction. It follows that $g e_{m}$ is a primitive $m^{t h}$ root of unity in $R G e_{m}$.

Lemma 3.3 (Woods, 1974) Let e be a nonzero primitive idempotent in $R G$, and let $m \mid n$. Then ge is a primitive $m^{\text {th }}$ root of unity in $e R G e$ if and only if $e=e_{m} e$. In this case, $\overline{g e}$ is a primitive $m^{\text {th }}$ root of unity in $\overline{e R G e}$.

Proof Since $(g e)^{n}=g^{n} e=e$, $g e$ is a primitive $d^{t h}$ root of unity in $e R G e$ for a unique $d \mid n$. Since $e$ is primitive and $e=\sum_{m \mid n} e_{m} e, e=e_{m} e$ for a unique $m \mid n$. We will show that $d=m$.

Since $\left(g e_{m}\right)^{m}=e_{m},(g e)^{m}=\left(g e_{m} e\right)^{m}=e_{m} e=e$. Thus $d \mid m$. Since $g^{d} e=e$, $e_{d}^{\prime} e=e$. If $d<m$, then $e=e_{d}^{\prime} e_{m} e=0$, a contradiction. Thus, $d=m$.

In this case, $\overline{e R G e}=\bar{e} \overline{R G} \bar{e}$ and $\overline{g e}=g \bar{e}$ in $\bar{R} G$. Then $\bar{e}=\overline{e_{m} e}$, and the above argument applied in $\bar{R} G$ shows that $g \bar{e}$ is a primitive $m^{\text {th }}$ root of unity in $\bar{e} \bar{R} G \bar{e}$.

Lemma 3.4 (Woods, 1974) Let $R$ be a local ring, $G$ a group and e an idempotent in $R G$ such that $e R G e \subseteq e R \cap$ Re and $e(1)$ is central and not a zero divisor in $R$. Let $R^{\prime}=\{r \in$ $R: e r=r e\}$. Then $e R G e \cong R^{\prime}$ as rings and $R^{\prime}$ is local.

Proof If $x \in e R G e$, then $x=r e$ for a unique $r \in R$. Define $f: e R G e \rightarrow R$ by $f(r e)=r$. Clearly, $f$ preserves sums, and $\operatorname{Ker} f=0$. If $r e \in e R G e$, then $e r e=r e$. Thus $f($ rese $)=f(r s e)=r s=f(r e) f(r s)$. This proves that $e R G e \cong \operatorname{Im} f$ by First Isomorphism Theorem.

Clearly, $R^{\prime} \subseteq \operatorname{Im} f$. Let $r \in \operatorname{Im} f$. Then $r e \in e R G e \subseteq e R \cap R e$, and so $r e=e r^{\prime}$ for some $r^{\prime} \in R$. Thus, $r e(1)=e(1) r^{\prime}=e(1) r^{\prime}$, so by assumption $r=r^{\prime} \in R^{\prime}$. This completes the proof that $e R G e \cong R^{\prime}$.

Finally if $r^{\prime} \in R^{\prime}$ is a unit in $R$, then $r^{\prime}$ is a unit in $R^{\prime}$. Thus, the set of non-units in $R^{\prime}$ is precisely $R^{\prime} \cap \operatorname{Rad} R$, an ideal of $R^{\prime}$. It follows that $R^{\prime}$ is local.

Lemma 3.5 (Woods, 1974) Let $R$ be a local ring with $\operatorname{char}(\bar{R})=p \geq 0$, and let $G=<g>$ be a cyclic group of order $n$, $p \nmid n$. Let $m \mid n$, and suppose $R$ has a primitive $m^{\text {th }}$ root of unity $r$ such that $\bar{r}$ is a primitive $m^{\text {th }}$ root of unity in $\bar{R}$. Then $R G e_{m}$ is semiperfect.
Proof Since $R G e_{m^{\prime}}=R G e_{m} \oplus R G\left(e_{m}^{\prime}-e_{m}\right)$, it is sufficient to show that $R G e_{m}^{\prime}$ is semiperfect.

For $i=1, \ldots, m$, let

$$
f_{i}=\frac{1}{m} \sum_{j=0}^{m-1} r^{i j} g^{j} e_{m}^{\prime}
$$

Since $r^{i} g f_{i}=f_{i}, f_{i}^{2}=f_{i}$. If $i \neq k$, then $0<|i-k|<m$. Thus $\bar{r}^{i-k} \neq \overline{1}$ in $\bar{R}$ and $r^{i-k}-1$ is a unit in $R$. Now

$$
\begin{aligned}
f_{j} f_{k} & =\frac{1}{m^{2}} \sum_{j=0}^{m-1} \sum_{t=0}^{m-1} r^{i j} r^{k(t-j)} g^{j} g^{t-j} e_{m}^{\prime} \\
& =\frac{1}{m^{2}} \sum_{t=0}^{m-1} r^{k t} x g^{t} e_{m}^{\prime}
\end{aligned}
$$

where $x=\sum_{j=0}^{m-1} r^{(i-k) j}$. But $r^{i-k} x=x$, and so $x=0$. Thus, $f_{i} f_{k}=0$. Moreover,

$$
\sum_{i=1}^{m} f_{i}=\frac{1}{m} \sum_{j=0}^{m-1}\left(\sum_{i=1}^{m} r^{i j}\right) g^{j} e_{m}^{\prime}=1 e_{m}^{\prime},
$$

the unity of $R G e_{m}^{\prime}$.
Finally, $f_{i} R G e_{m}^{\prime} f_{i}=f_{i} R G f_{i}$. Since $r^{i} g f_{i}=f_{i}, g f_{i}=r^{-i} f_{i} \in R f_{i}$. Thus, $R G f_{i}=$ $R f_{i}$. Similarly, $f_{i} R G=f_{i} R$, and so $f_{i} R G f_{i} \subseteq f_{i} R \cap R f_{i}$. Moreover, $f_{i}(1)=\frac{1}{m} \frac{m}{n} r^{0}=\frac{1}{n}$, a central unit in $R$. By Lemma 3.4, $f_{i} R G f_{i}$ is local. Thus, $R G e_{m}^{\prime}$ is semiperfect.

Lemma 3.6 (Woods, 1974) Let $g$ and h be commuting elements in a group $G$ of orders s and $t$ respectively, and $u=\operatorname{lcm}(s, t)$. Then for some integer $r, g h^{r}$ has order $u$.

Proof The group $<g, h>$ is a finite abelian group of exponent $u$. Hence, $\langle g, h\rangle=Y \times Z$, where $Y=<y>$ is a cyclic group of order $u$, and $z^{u}=1$ for all $z \in Z$. Let $g=\left(y^{a}, z_{1}\right)$ and $h=\left(y^{b}, z_{2}\right)$. Since $g$ and $h$ generate $Y \times Z, y^{a}$ and $y^{b}$ generate $Y$. Thus, $\operatorname{gcd}(a, b, u)=1$. If $u \mid a$, let $r=1$. Otherwise, let $r$ be the product of all primes which divide $u$ but not $a$. A check of possible prime factors gives that $\operatorname{gcd}(a+b r, u)=1$. Thus, $g h^{r}=\left(y^{a+b r}, z_{1} z_{2}^{r}\right)$ has order $u$.

Lemma 3.7 (Woods, 1974) Let $R$ be a ring, and let $G=C_{n}$. If $R G$ is semiperfect, then so is $R(G \times G)$.

Proof Without loss of generality we may assume $R$ is local and $n$ is a unit in $R$. Let $g$ generate $G$, and $H=<h>$ denote the second copy of $G$. For each $m$ with $m \mid n$, define $e_{m} \in R G$ as in the beginning of this section, and define $f_{m} \in R H$ in a corresponding way using $h$ in place of $g$.

Let $e$ be a primitive idempotent in $R(G \times H)$. We show that $e$ is local. Now $e=e e_{s} f_{t}$ for a unique $s$ with $t \mid n$. Thus, by Lemma 3.6, in the multiplicative group $<g e, h e>, g e$ has order $s$ and he has order $t$. Let $u=\operatorname{lcm}(s, t)$, and let $r$ be an integer such that $g h^{r} e$ has order $u$. The automorphism of $G \times H$ which sends $g h^{r}$ to $g$ and $h$ to $h$ extends to an automorphism $\theta$ of $R(G \times H)$. Since $\theta(e) R(G \times H) \theta(e) \cong e R(G \times H) e$, it is sufficient to show that $\theta(e)$ is local idempotent.

Since $e$ is a primitive idempotent, so is $\theta(e)$. In $<g \theta(e), h \theta(e)>, g \theta(e)=\theta\left(g h^{r} e\right)$ has order $u$, and $h \theta(e)=\theta(h e)$ has order $t$. By Lemma 3.6, $\theta(e)=\theta(e) e_{u} f_{t}$. Now $R(G \times$ $H) e_{u} f_{t} \cong\left(R G e_{u}\right) H f_{t}$ in a natural way. Since $R G e_{u}$ is semiperfect, the unit element $e_{u}$ is sum of orthogonal local idempotents. If $f$ is a local idempotent in $R G e_{u}$, then $f\left(R G e_{u}\right) H f_{t} f \cong$ $\left(f R G e_{u} f\right) H f_{t}$ is semiperfect by Lemmas 3.3 and 3.5. Thus, $R G e_{u} H f_{t}$ is semiperfect by Lemma 2.3. It follows that

$$
\theta(e) R(G \times H) \theta(e)=\theta(e) R(G \times H) e_{u} f_{t} \theta(e)
$$

is a local ring and $R(G \times H)$ is semiperfect.

Proposition 3.9 (Woods, 1974) Let $R$ be a ring and $G$ be a finite group of exponent $n$. Then $R G$ is semiperfect if and only if $R C_{n}$ is semiperfect.

Proof Since $R C_{n}$ is a homomorphic image of $R G$, if $R G$ is semiperfect, then so is $R C_{n}$. Conversely, suppose $R C_{n}$ is semiperfect. If $r \geq 2$, then $R C_{n}^{r} \cong\left(R C_{n}^{r-2}\right)\left(C_{n} \times C_{n}\right)$ and $R C_{n}^{r-1} \cong\left(R C_{n}^{r-2}\right) C_{n}$. By Lemma 3.7 and induction, $R C_{n}^{r}$ is semiperfect for all $r>0$. But $R G$ is a homomorphic image of $R C_{n}^{r}$ for some $r$. Thus, $R G$ is semiperfect.

Before giving the main theorem of this chapter, we need the following definition and theorem.
Definition 3.2 Let $R$ be a commutative local ring and $f(x) \in R[X]$ a monic polynomial. We say that Hensel Lemma holds for $f(x)$ in $R[X]$ if for every factorization $\bar{f}(x)=g(x) h(x)$ of $\bar{f}(x)$ in $\bar{R}[X]$ such that $g(x)$ is monic and $g(x)$ and $h(x)$ are relatively prime, there exists monic polynomials $g^{*}(x)$ and $h^{*}(x)$ in $R[X]$ such that $f(x)=g^{*}(x) h^{*}(x), \overline{g^{*}(x)}=$ $g(x), \overline{h^{*}(x)}=h(x)$.

Theorem 3.3 (Azumaya, 1950) Let $K$ be a commutative local ring and $f(x)$ be a monic polynomial in $K[X]$. Then Hensel Lemma holds for $f(x)$ if and only if idempotents of $\bar{K}[X] /<\bar{f}(x)>$ can be lifted to an idempotent of $K[X] /<f(x)>$.

Theorem 3.4 (Woods, 1974) Let $R$ be a commutative local ring with $\operatorname{char}(\bar{R})=p \geq 0$ and $G$ an abelian group with Sylow p-subgroup $G_{p}$. Then $R G$ is semiperfect if and only if $G / G_{p}$ is a finite group of exponent $n$ and every monic factor of $x^{n}-1$ in $\bar{R}[X]$ can be lifted to a monic factor of $x^{n}-1$ in $R[X]$.

Proof By Proposition 3.8 and Proposition 3.9, we may assume $G=C_{n}$ and $n$ is a unit in $R$. Then $R G \cong R[X] /<x^{n}-1>$ and since $G$ is a finite group, by Corollary 2.12, $\overline{R G}=\bar{R} G \cong \bar{R}[X] /<x^{n}-1>$. Since $n$ is a unit in $\bar{R}, x^{n}-1$ has no multiple roots in any extension of $\bar{R}$ by Theorem 2.20. Thus, if $x^{n}-1=f(x) g(x)$ in $\bar{R}[X]$, then $f(x)$ and $g(x)$ are relatively prime. By Theorem 3.3, idempotents in $\bar{R}[X] /<x^{n}-1>$ lift to idempotents in $R[X] /<x^{n}-1>$ if and only if every monic factor of $x^{n}-1$ in $\bar{R}[X]$ lifts to a monic factor of $x^{n}-1$ in $R[X]$.

### 3.3. Examples

In this section it is shown that for a given ring $R$, the class of groups $G$ for which $R G$ is semiperfect is not closed under taking direct products or subgroups.

Let $g$ generate $C_{2}$, the 2 -element group. If $R$ is a local ring and $\operatorname{char}(\bar{R}) \neq 2$, then $\frac{1+g}{2}$ and $\frac{1-g}{2}$ are local idempotents in $R C_{2}$ whose sum is 1 . Thus, $R C_{2}$ is semiperfect. If $\operatorname{char}(\bar{R})=2$, then $R C_{2}$ is semiperfect by Proposition 3.7.

Lemma 3.8 If $R$ is semiperfect and $S_{3}$ is the symmetric group of degree 3, then $R S_{3}$ is semiperfect.

Proof We may assume $R$ is local. If $\operatorname{char}(\bar{R})=3$, let $N$ be the subgroup of order 3, and let $H$ be a subgroup of order 2 in $S_{3}$. Then $S_{3}=N H$ and $R S_{3}$ is semiperfect by Proposition 3.6.

If $\operatorname{char}(\bar{R}) \neq 3$, let $g$ generate $N$ and $h$ generate $H$, and let $e=\frac{1+g+g^{2}}{3}$, a central idempotent. Then

$$
R S_{3}=R S_{3} e \oplus R S_{3}(1-e)
$$

Since $R S_{3}(1-e)=\omega N$ by Proposition 2.22, $R S_{3} e \cong R S_{3} / \omega N \cong R\left(S_{3} / N\right)=R C_{2}$. Thus, $R S_{3} e$ is semiperfect.

Let $f_{1}=\frac{(1-g)(1+h)}{3}$, and let $f_{2}=(1-e)-f_{1}$. Then $f_{1}$ and $f_{2}$ are orthogonal idempotents whose sum is $1-e$. Also, for $i=1,2, f_{i} R S_{3}(1-e) f_{i}=f_{i} R S_{3} f_{i} \subseteq f_{i} R \cap R f_{i}$ and $f_{i}=\frac{1}{3}$. By Lemma 3.4, $f_{i} R S_{3} f_{i}$ is local. Thus, $R S_{3}(1-e)$ is semiperfect.

Now we exhibit a local ring $R$ such that $R C_{3}$ is not semiperfect. Let $R=\left\{\frac{a}{b}: a, b \in\right.$ $\mathbb{Z}$ and $\operatorname{gcd}(7, b)=1\}$, a subring of the rationals. Then $\bar{R}$ is a field with 7 elements. In $\bar{R}[X]$,

$$
x^{3}-1=(x-\overline{1})(x-\overline{2})(x-\overline{4}) .
$$

But in $R[X]$,

$$
x^{3}-1=(x-1)\left(x^{2}+x+1\right) .
$$

Since $x^{2}+x+1$ is irreducible over $R, R C_{3}$ is not semiperfect.
For our second example, we let

$$
R=\left\{\frac{x}{y}: x, y \in \mathbb{Z}[i] \text { and }(2+i) \nmid y \text { in } \mathbb{Z}[i]\right\},
$$

a subring of the complex numbers. Then $\bar{R}$ is a field with 5 elements. In $\bar{R}[X]$,

$$
x^{3}-1=(x-\overline{1})\left(x^{2}+\overline{1} x+\overline{1}\right)
$$

and

$$
x^{8}-1=(x-\overline{1})(x+\overline{1})(x-\bar{i})(x+\bar{i})\left(x^{2}-\bar{i}\right)\left(x^{2}+\bar{i}\right),
$$

and the quadratic factors are irreducible. Since these factorizations can be lifted to $R[X], R C_{3}$ and $R C_{8}$ are semiperfect.

Now $C_{3} \times C_{8}=C_{24}$. In $R[X], x^{24}-1$ has the irreducible factor $x^{4}-i x^{2}-1$, but in $\bar{R}[X]$,

$$
x^{4}-\bar{i} x^{2}-\overline{1}=x^{4}+\overline{2} x^{2}+\overline{9}=\left(x^{2}+\overline{2} x+\overline{3}\right)\left(x^{2}-\overline{2} x+\overline{3}\right) .
$$

Thus $R C_{24}$ is not semiperfect.

## CHAPTER 4

## PERFECT GROUP RINGS

### 4.1. Sufficiency

In this section we assume that $R$ is perfect and $G$ is finite and show that $\operatorname{Rad}(R G)$ is left $T$ - nilpotent and $R G / \operatorname{Rad}(R G)$ is Artinian.

Lemma 4.1 (Woods, 1971) If $G$ is a finite group of order $n$, then there is a ring embedding of $R G$ into $M_{n}(R)$ which sends $\operatorname{Rad}(R) G$ into $\operatorname{Rad}\left(M_{n}(R)\right)$.

Proof Since $R G \cong R^{(n)}$ as left $R$-modules, the endomorphism ring $\operatorname{End}_{R}(R G) \cong M_{n}(R)$. Right multiplication by an element of $R G$ is a left $R$-homomorphism of $R G$ into itself, and this correspondence is clearly an embedding of the ring $R G$ into the ring $\operatorname{End}_{R}(R G)$.

Since elements of $R$ commute with elements of $G$, an element $r$ of $R$ is mapped onto the matrix with $r$ 's on the diagonal and 0's elsewhere. Thus, $\operatorname{Rad}(R)$ is mapped into $M_{n}(\operatorname{Rad}(R))=\operatorname{Rad}\left(M_{n}(R)\right)$, an ideal. The result follows.

Proposition 4.1 (Woods, 1971) If $R$ is perfect and $G$ is finite, then $R G$ is perfect.
Proof Since $R$ is perfect, $R / \operatorname{Rad} R$ is Artinian. Thus $\bar{R} G$ is Artinian by Theorem 2.24. We know that $\operatorname{Rad}(R) G \subseteq \operatorname{Rad}(R G)$ by Corollary 2.12. Then $\bar{R} G \cong R G / \operatorname{Rad}(R) G$ maps onto $R G / \operatorname{Rad}(R G)$ and $R G / \operatorname{Rad}(R G)$ is Artinian.

The canonical epimorphism of $R G$ onto $\bar{R} G$ takes $\operatorname{Rad}(R G)$ into $\operatorname{Rad}(\bar{R} G)$, that is, $\operatorname{Rad}(R G) / \operatorname{Rad}(R) G \subseteq \operatorname{Rad}(\bar{R}) G$. Since $\bar{R} G$ is $\operatorname{Artinian}, \operatorname{Rad}(\bar{R} G)$ is nilpotent. But, by Lemma 4.1, $\operatorname{Rad}(R) G \subseteq \operatorname{Rad}\left(M_{n}(R)\right.$, which is left $T$-nilpotent since $M_{n}(R)$ is perfect. Thus, $\operatorname{Rad}(R G)$ is left $T$-nilpotent.

### 4.2. Necessity when $G$ is Abelian

Lemma 4.2 (Woods, 1971) If $R G$ is perfect, then $G$ is a torsion group.
Proof If $g \in G$ does not have finite order, then the cyclic subgroups generated by $g^{2^{n}}$ for $n \geq 0$ form an infinite descending chain. Applying $\omega$ yields an infinite descending chain of right ideals of $R G$, which are principal.

Proposition 4.2 (Woods, 1971) If $R G$ is perfect, then so is $R$. If in addition, $G$ is abelian, then $G$ is finite.

Proof If $R G$ is perfect then so is $R G / \omega G \cong R$. To show that $G$ is finite, we may assume without loss of generality that $R=M_{n}(D)$, where $D$ is a division ring, since $R / \operatorname{Rad}(R)$ is a direct sum of rings of this type. Since $G$ is an abelian torsion group, $G$ may be written as $G_{p} \times H$, where $p$ is the characteristic of $D, G_{p}$ is a $p$-group, and the order of every element of $H$ is prime to $p$, and $H$ must be finite.

Suppose that $G_{p}$ is infinite. Then $R G_{p} \cong R G / \omega H$ is perfect. If $g \in G_{p}$, then $(1-g)^{p^{n}}=0$, where $p^{n}$ is the order of $g$. Since $1-g$ is in the center, $1-g \in \operatorname{Rad}\left(R G_{p}\right)$. Construct a sequence $\left\{g_{i}\right\}$ in $G_{p}$ so that $g_{1} \neq 1$ and $g_{n}$ is not in the (finite) subgroup generated by $\left\{g_{1}, \ldots, g_{n-1}\right\}$. The product is never 0 since the term $\prod_{i=1}^{n}\left(1-g_{i}\right)$ does not cancel. This contradicts to the $T$-nilpotence of $\operatorname{Rad}\left(R G_{p}\right)$.

### 4.3. Reduction to the Abelian Case

In this section it is shown that if $R G$ is perfect and $G$ is infinite then $G$ has an infinite abelian subgroup $H$ and $R H$ is perfect, a contradiction. Without loss of generality, we continue our assumption that $R=M_{n}(D)$, where $D$ is a division ring.

Lemma 4.3 (Woods, 1971) If $R G$ is perfect and $H$ is a subgroup of $G$, then $R H$ is perfect.
Proof By Proposition 2.21, $R G=\bigoplus_{i} R H g_{i}$, where the $g_{i}$ run over a set of coset representatives for $G / H$. If $I$ is a principal right ideal of $R H$, then $I G=\bigoplus_{i} I g_{i}$ is a principal right ideal of $R G$. Thus, a descending chain of principal right ideals in $R H$ gives rise to a similar chain in $R G$.

Lemma 4.4 (Woods, 1971) If $I$ is a left $T$-nilpotent ideal of a ring $R$, then $I \subseteq \operatorname{rad}(R)$. Hence, if $R$ is perfect, then $\operatorname{Rad}(R)=\operatorname{rad}(R)$.

Lemma 4.5 (Woods, 1971) A group $G$, which has infinitely many normal subgroups, has an infinite abelian subgroup.

Proof Without loss of generality, we may assume that $G$ is the union of a countable chain of finite normal subgroups $H_{i}$. It is clear that an infinite set of commuting elements generates an infinite abelian subgroup. Thus if $G$ does not contain an infinite abelian subgroup, then there exists a finite set $\left\{g_{1}, \ldots, g_{m}\right\}$ of commuting elements which cannot be enlarged. Since $G=\bigcup_{i=1}^{\infty} H_{i}, S \subseteq \bigcup_{i=1}^{n} H_{i}=H_{n}$ for some $n$. Since $H_{n}$ is finite, the index of its centralizer $C$ in $G$ is finite. Since $G$ is infinite, $C$ is infinite, and so there exists $g \in C$ such that $g$ is not
in $S$. Since $g$ commutes with every element of $S, g$ may be added to $S$ and we have reached a contradiction.

Proposition 4.3 (Woods, 1971) If $R G$ is perfect, then either $G$ is finite or $G$ has an infinite abelian subgroup.

Proof Let $R=M_{n}(D)$. If $D$ has characteristic 0 , then $R G$ is semiprime by Proposition 2.25 hence Jacobson semisimple by Lemma 4.4. Thus, $R G \cong R G / \operatorname{Rad}(R G)$ is Artinian and $G$ is finite.

Suppose $D$ has characteristic $p>0$. Let

$$
S=\left\{n: G \text { has a normal subgroup of order } p^{n} m \text { for some } m\right\}
$$

If $S$ is finite, let $n$ be maximal, and let $H_{n}$ be a normal subgroup whose order is divisible by $p^{n}$. By the maximality of $n, G / H_{n}$ has no finite normal subgroup whose order is divisible by $p$. Therefore, $R\left(G / H_{n}\right)$ is semiprime. Since $R\left(G / H_{n}\right)$ is perfect, $G / H_{n}$ is finite. Since $H_{n}$ is finite, so is $G$.

If $S$ is infinite, then $G$ has infinitely many finite normal subgroups. By Lemma 4.5, $G$ contains an infinite abelian subgroup. This completes the proof of the following theorem.

Theorem 4.1 (Woods, 1971) The group ring $R G$ is perfect if and only if $R$ is perfect and $G$ is finite.

## CHAPTER 5

## CONCLUSION

In this thesis, we gave a survey of some properties of group rings, and some characterization of semiperfect and perfect group rings. For this purpose, firstly we mentioned about some properties of groups, rings and group rings. We concentrated on which conditions on $R$ and $G$ are necessary and sufficient on $R$ and $G$ for the group ring $R G$ to be semiperfect and perfect.

We studied the papers (Burgess, 1969) and (Woods, 1974). We saw that semiperfectness of $R G$ implies semiperfectness of $R$. Thus, $R$ is the direct product product of matrix rings over some division rings. When we look at the necessary conditions on $G$ for $R G$ to be semiperfect, we saw that, if $G$ is an ID group, then $R G$ cannot be semiperfect for any ring $R$. Since a non-torsion abelian group is an extension of a group by a non-trivial ID group, this gave us that $G$ must be torsion if $R G$ is semiperfect and $G$ is abelian. For an arbitrary group $G$, it is not known whether $R G$ is semiperfect implies $G$ is locally finite. Again for an arbitrary group, it is seen that that the characteristic of division rings which are related to the semisimple ring $R / \operatorname{Rad} R$ gives some characteristic properties about the group $G$. For the sufficient conditions, firstly commutative semiperfect rings are considered. Commutative semiperfect rings are exactly finite direct products of commutative local rings. By these characterization, it is seen that when we have a finite direct product of commutative local rings whose factor fields are of characteristic $p$, we get a semiperfect group ring if $G$ is an abelian $p$-group. Later, the results that are obtained by considering locally finite groups are reviewed. For semiperfectness of $R G$, there is not a full characterization for an arbitrary ring $R$ and an arbitrary group $G$. If we have a commutative ring $R$ and an abelian group $G$, a characterization is given in terms of the polynomial ring $R[X]$.

For perfectness, we studied the paper (Woods, 1971). Firstly the sufficient conditions on $R$ and $G$ are obtained. Then it is observed that if $G$ is abelian, then $G$ is finite. Later it is seen that we can reduce all cases to the abelian case. Finally, we see that $R G$ is semiperfect if and only if $R$ is perfect and $G$ is finite.

## REFERENCES

Azumaya, Gorô (1950) On Maximally Central Algebras Mathematical Institute, Nagoya University

Bland, Paul E. (2010) Rings and Their Modules De Gruyter
Burgess, W.D. (1969) On Semiperfect Group Rings Canadian Mathematical Bulletin, 12: 645-652.

Burnside, W. (1902) On an Unsettled Question in the Theory of Discontinuous Groups Quart. J. Pure Appl. Math. 33: 230-238

Connell, I. (1962) On the Group Ring Canadian Journal of Mathematics, 15: 650-685.

Dixon, M. R. (1994) Sylow Theory, Formations and Fitting Classes in Locally Finite Groups Series in Algebra 2, River Edge, NJ: World Scientific Publishing Co. Inc.

Golod, E.S. \& Shafarevich, I.R. (1964) On the Class Field Tower Izv. Akad. Nauk SSSSR 28:261-272

Herstein, I.N. (1968) Noncommutative Rings The Mathematical Association of America

Kaye, S.M. (1967) Ring Theoretic Properties of Matrix Rings Illionis Journal of Mathematics, 10: 365-374

Lam, T.Y. 199O A First Course in Noncommutative Rings Springer
Lang, S. (2000) Undergraduate Algebra Springer
Milies, C.P. \& Sehgal, S.K. (2002) An Introduction to Group Rings Kluwer Academic Publishers, Dordrecht

Mueller, B.J. (1970) On Semi-perfect Rings Illionis Journal of Mathematics, 14: 464-467
Robinson, D.J.S. (1991) A Course in the Theory of Groups Springer

Rudin W., Schneider H. (1963) Idempotents in Group Rings Mathematics Research Center, University of Wisconsin

Woods, S.M. (1974)Some Results on Semiperfect Group Rings Canadian Journal of Mathematics, 16: 121-129.

Woods, S.M. (1971)On Perfect Group Rings Proceedings of the American Mathematical Society, 27: 49-52


[^0]:    Assist. Prof. Dr. Başak AY SAYLAM
    Department of Mathematics, İzmir Institute of Technology

