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ABSTRACT

SEMIPERFECT AND PERFECT GROUP RINGS

In this thesis, we give a survey of necessary and sufficiamditons on a groug- and
a ring R for the group ringRG to be semiperfect and perfect. A ridgis called semiperfect
R/ Rad R is semisimple and idempotents 8f Rad R can be lifted toR. It is given that if
RG is semiperfect, so if. Necessary conditions ad for RG to be semiperfect are also
given for some special type of groups. For the sufficient @, several types of rings and
groups are considered. i is commutative and- is abelian, a complete characterization is
given in terms of the polynomial rin@[X].

A ring R is called left (respectively, right) perfect i/ Rad R is semisimple and
Rad R is left (respectively, rightY-nilpotent. Equivalently, a ring is called left (respeetly,
right) perfect if R satisfies the descending chain condition on principal rigkgpectively,
left) ideals. By using these equivalent definitions of a @etriring and results from group
theory, a complete characterization of a perfect group Rngis given in terms ofR andG.



OZET
YARI M UKEMMEL VE M UKEMMEL GRUP HALKALARI UZERiNE

Bu tezdeG grubu veR halkasi ile kurulanRG grup halkasinin yarimikemmel ve
mukemmel olmasi icii ve G tizerinde gerek ve yeter kosullar Gizerine bir incelenmiypastir.
Bir R halkasiicink?/ Rad R yaribasit halkaysa vB/ Rad R halkasinin esguclulef halkasina
yukseltilebiliyorsak yarimukemmeldir denir. EGeRG grup halkasi yar mikemmel is&,
halkasi da yarimukemmeldirRG grup halkasinin yarimukemmel olmasi igih Uizerinde
gerekli olan kosullar da bazi 6zel gruplar icin verijtnisYeter kosullar icin bazi 6zel halka
ve gruplar gdz oniuine alinmistir. EgRrdegismeli bir halka¢z de degismeli bir grups&[X]
polinom halkasi kullanilarak tam bir karakterizasyon weistir.

Bir R halkas! i¢in R/ Rad R yaribasit halkaysa v&ad(R) sol (sirasiyla, sag) -
sifirgucliyseR sol (sirasiyla, sag) mukemmeldir denir. Denk olarak, BRihalkasi icin
asll sag (siraslyla, sol) idealler Uizerinde azalan ekagulunu sagliyorsa sol (sirasiyla, sag)
mukemmeldir denir. Bu denk tanimlar ve gruplar teorismtdazi sonuclar kullanilarak
mukemmel grup halkalarRz ve G’nin 0zellikleri cinsinden tam olarak karakterize edistir.
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CHAPTER 1

INTRODUCTION

Throughout this thesisk is an associative ring with unity; is an arbitrary group
and RG is the group ring of7 over R. Also all modules are unitary lefe-modules unless
otherwise indicated.

Aring Ris called semiperfectif?/ Rad R is semisimple and idempotents®f Rad R
can be lifted toR. A ring R is called left (respectively, right) perfect#/ Rad R is semisim-
ple andRad R is left (respectively, righty -nilpotent. If R is both left and right perfect, we
call R a perfect ring. In this thesis, semiperfectness and pewsstof an arbitrary grou@
over an associative ring is studied.

In Chapter 2 we mention about some well-known results abrmutgs and rings that
will be useful for our work. We also give the definition and maroperties of a group ring
that will be used in the following chapters. For further imf@tion and proofs we refer to
(Bland, 2010), (Burnside, 1902), (Connell, 1963), (Golo&BKafarevich, 1964), (Herstein,
2002), (Lam, 1990), (Robinson, 1991).

In Chapter 3 we give some necessary and sufficient condibaresringR and on a
group for the group ringRG to be semiperfect. For this purpose, a class of groups ingive
such thatRG is not semiperfect for any ring if GG is in that class. IfRG is semiperfect, so
is R, thusR is the direct product of matrix rings over some division gng is indicated that
characteristics of these division rings give us a plentytdnmation about the grou. Later
we mention about some special types of groups and rings thed gs a semiperfect group
ring. WhenR is commutative and- is abelian, a complete characterization of a semiperfect
group ringRG is given in terms of the polynomial ring[X]. Using this characterization, it
is shown by examples that the class of groGfer which RG is semiperfect for an arbitrary
ring R is not closed under taking subgroups or direct productsatest section of this chapter.

In Chapter 4 a a complete characterization of perfect grmgs is given in terms oR
andG. Aring R is called left perfect if it satisfies the descending chainditbon on principal
right ideals. In this part, by using this definition of a le#rfect ring, it is shown that for a
group ring RG to be semiperfecty must be torsion. Then in the abelian case, it is shown
thatG must be finite. With the further results in this chapter, wetbat the group ringG is
perfect if and only ifR is perfect and= is finite.



CHAPTER 2

PRELIMINARIES

In this chapter of our study we give fundamental propertfegaups, rings and group
rings that will be used later.

2.1. Groups

Firstly, we give some necessary properties of groups.

Definition 2.1 A groupG is an€2-group if for any non-empty finite subsetsand B of G,
there exists at least one € G which has a unique representation in the fotm= ab with
a € Aandb € B.

Definition 2.2 A group( is an ordered group if it has a linear ordering such thatr < y
implieszz < yz forall z € G.

Example 2.1 All torsion-free abelian groups are ordered groups. In peautar, Z is an or-
dered group.

Let G be an ordered group. Let and B be two finite subsets ofz. If a« andb
are largest elements of and B, respectively, and: = ab € G, then there is no other
representation fox = a'b’, wherea' € A andb € B. So, every ordered group is &

group.

Definition 2.3 A groupG is calledp-group if every element @¥ has an order a power af,

wherep is a prime.

Definition 2.4 A groupG is calledp -group if no element off has an order divisible by,

wherep is a prime.

Theorem 2.1 (First Sylow Theorem) (Robinson, 1991) Let be a finite group and lgG| =
p"m, wheren > 1 andp does not dividen. Then

(i) G contains a subgroup of order for eachi, wherel < i < n.

(i) Every subgroupH of G of orderp’ is a normal subgroup of a subgroup of order!
forl <i<n.



Definition 2.5 A Sylowp-subgroup of a groug is a maximalp-subgroup ofG, that is, a
p-subgroup contained in no larger subgroup.

Now, we will mention about some structural properties oftéilyi generated abelian groups.

Theorem 2.2 (Robinson, 1991) I7 is a finitely generated abelian group, théhsatisfies
the maximal condition on subgroups.

Theorem 2.3 (Robinson, 1991) If~ is an abelian torsion group, thea is finitely generated.

Theorem 2.4 (Robinson, 1991) An abelian groupis finitely generated if and only if it is a
direct sum of finitely many cyclic groups of infinite or pripewer orders.

For a groupG, it is not always the case that finitely generated subgrotigs are finite. So,
the class of groups with this property is of special interest

Definition 2.6 A groupG is called locally finite if every finitely generated subgrafg is
finite.

Let G be a locally finite group. Then every finitely generated sobgrof G is finite. In par-
ticular, cyclic subgroups aff are finite. This means thét is a torsion group. The following
proposition states when the converse holds.

Proposition 2.1 (Dixon, 1994) Let~ be a torsion group. If7 is solvable, thert- is locally
finite.

Since an abelian group is always solvable, a torsion abelianp is always locally
finite by Proposition 2.1. But for an arbitrary group, it waprablem named after Burnside,
who first raised it in 1902.

Burnside’s Problem: Is a torsion group necessarily locally finite?
This question was answered in the negative by Golod and &vatat in 1964.

Theorem 2.5 Golod-Shafarevicht Theorem (Herstein, 2002) LetA = K|z, ..., x,] be the
free algebra over a field{ in n = d + 1 non-commuting variables;. Let.J be the 2-sided
ideal of A generated by homogeneous elemeitsf A of degreed; with2 < d; <d, < ...
whered; tends to infinity. Let; be the number of; equal toi. LetB = A/J, a graded
algebra. Leth; = dim Bj. Then

(i) b = nbj-1 — D, bj-irie
(i) if r; < % for all 7, thenB is infinite-dimensional.

(iii) if B is finite-dimensional, them; > Cﬁl—z for somei.



Using Theorem 2.5, one can obtain a finitely generated iefgribup as the following theorem
states.

Theorem 2.6 (Herstein, 2002) Ifp is any prime number, then there exists an infinite group
G generated by three elements in which every element hasdiiég a power op.

Theorem 2.6 gives us a finitely generated and infinite groufih Wis group, one can con-
struct an infinite dimensional nil algebra, as the followihgorem states.

Theorem 2.7 (Herstein, 2002) IK is a field of characteristig, then there exists an infinite
dimensional nil algebra ovek™ generated by three elements.

2.2. Semisimple Rings and Modules

Since semisimple rings play an important role in our studymention about them in
this section.

Definition 2.7 An R-module) is called left semisimple if it can be written as a direct sum
of simple leftR-submodules aol/.

In particular, a ringR is called left semisimple if it can be written as a direct sunsimple
left ideals.

Proposition 2.2 (Bland, 2010) Let\/ be anR-module with the property that every submod-
ule of M is a direct summand af/. Then every submodule df also has this property.

Proposition 2.3 (Bland, 2010) AnkR-moduleM is semisimple if and only if every submodule
of M is a direct summand a¥/.

Now, we will give some characterizations of semisimple sing

Proposition 2.4 (Bland, 2010) The following hold for each left semisimpitegriz.

(i) There exist minimal leftideald, ..., A, of R such that
R=A & - & A,
(i) If Ay,... A, and By, ... B,, are minimal left ideals of? such that

R:Al@@AnandR:Bl@@Bma



thenn = m and there is a permutatios : {1,...,n} — {1,...,n} such that4; =
Bg(i) fori = 1,...,n.

(i) If Aq,..., A, is asetof minimal left ideals @t such that
R=A & ---®A,,
then there is a complete set of orthogonal idempotenig sifich that
R=Re  @©---@ Re,

and A; = Re; for somei = 1,...,n. Furthermore, the idempotents,...,e, are
unique.

Lemma 2.1 (Bland, 2010) Let\/ and S be R-modules, and suppose thats simple.
@ If f:S — M is anonzerak-linear mapping, therf is a monomorphism.
(i) If f: M — S'is anonzeraR-linear mapping, thery is an epimorphism.
(iii) Endg(.5) is a division ring.

Lemma 2.2 (Bland, 2010) IfR is a left semisimple ring, then there are only a finite number
of isomorphism classes of simgkemodules.

Proposition 2.5 (Bland, 2010) IfS is a simpleR-module, then for any positive integer
Endg(S™) is isomorphic taV,, (D), whereD is the division ringEndz(S).

Definition 2.8 LetR = A; & --- & A,, be a decomposition ak, where theA, are minimal
left ideals of R. Arrange the minimal left ideald; into isomorphism classes and renumber
with double subscripts such that

R=(An® @A) ® & (Amn® - ® Ann,,)-
fH,=A1® - & A, fori=1,...,m,thenn =n; +--- 4+ n,, and
R=H & - -®H,
The H; are said to be the homogeneous componenis of

Proposition 2.6 (Bland, 2010) The following hold for any left semisimplegrii with de-
compositionR = A; @ - -- @ A,, as a direct sum of minimal left ideals.

(i) The homogeneous componefits; }” , are ideals of R, and there is a complete orthog-
onal set{ey, ..., e, } of central idempotents d? such thatk = Re; @ - - - @ Re,, and
H; = Re; forsomei =1,...,m.



(i) Endg(H;) is isomorphic to am; x n; matrix ring with entries from a division rin@;

fori=1,...,m.

Theorem 2.8 (Wedderburn-Artin Theorem) (Bland, 2010) A ringR is left semisimple if and
only if there exist division ring®;, . .., D,,, such thatR = M,,, (D;) x --- x M, (D).

Theorem 2.9 (Bland, 2010) A ringR is a simple left Artinian ring if and only if there is a
division ring D such that? = M,,(D) for some integen > 1.

Corollary 2.1 A ring R is semisimple if and only iR is a ring direct product of a finite

number of simple Artinian rings.

Definition 2.9 Let R be a ring. We say thaR is Jacobson semisimple/{semisimple) if
Rad(R) = 0.

Clearly, a semisimple ring is Jacobson semisimple. But tim¥@rse is not true in general.

Definition 2.10 A ring R is called semiprime if its prime radical is zero.

2.3. The Theory of Idempotents

Proposition 2.7 (Lam, 1990) Let ande’ be idempotents andl/ a left R-module. There is
a natural additive group isomorphisth : Homg(Re, M) — eM. In particular, there is a
natural group isomorphisrilom(Re, Re') = ¢ Re.

Corollary 2.2 (Lam, 1990) For any idempotentc R, there is a natural ring isomorphism
Endg(Re) = eRe.

Proposition 2.8 (Lam, 1990)For any nonzero idempotent R, the following statements

are equivalent:
(i) Reisindecomposable as a lef-module,
(i) eR isindecomposable as a rigit-module,
(i) The ring e Re has no nontrivial idempotents,

(iv) e has no decomposition int® + 3, whereq, 5 are nonzero orthogonal idempotents in
R.

Definition 2.11 If a nonzero idempotentsatisfies one of the equivalent conditions in Propo-
sition 2.8, there is said to be a primitive idempotent &f



Proposition 2.9 (Lam, 1990)
For any idempotent € R, the following statements are equivalent:

(i) Reis strongly indecomposable as a I&ftmodule,
(i) eR is strongly indecomposable as a righitmodule,
(i) eReis alocal ring.

Definition 2.12 If an idempotent satisfies one of the equivalent conditions in Proposition
2.9, there is said to be a local idempotent &.

Clearly, a local idempotent is always a primitive idempaoten

Theorem 2.10 (Lam, 1990) Lete be an idempotent ilR. ThenRad(eRe) = Rad R N
(eRe) = e(Rad R)e. MoreovereRe/ Rad(eRe) = €Re, wheree is the image of in R.

Theorem 2.11 (Lam, 1990) Let be an idempotent ik.

(i) Let/ be any leftideal oé Re. ThenRI NeRe = I. In particular, the map fromd — RI
defines an injective (inclusion preserving) map from thieidiefals ofe Re to those ofR.

(i) Let I be anideal ireRe. Thene(RIR)e = I. In particular, the map — RIR defines
an injective (inclusion preserving) map from idealsedte to those ofR. This map
respects multiplication of ideals, and is surjective i a full idempotent, in the sense
that ReR = R.

Corollary 2.3 (Lam, 1990) Let be a nonzero idempotent iR. If R is Jacobson semisimple
(respectively, semisimple, simple, prime, semiprime tido@n, Artinian), then the same
holds fore Re.

2.4. Regular Rings

We need the definition and properties of regular rings. Soamertion about them in

this part.

Definition 2.13 A ring R is said to be a (von Neumann) regular ring if for eacle R there
existss € R such thatrsr = r.

Theorem 2.12 (Lam, 1990) The following are equivalent for a rihg

(i) Risaregular ring,



(i) Every principal left ideal is generated by an idempdten
(i) Every principal left ideal is a direct summand &,

(iv) Every finitely generated left ideal is a direct summah&p

(v) Every finitely generated left ideal is generated by amigdetent,
(vi) Every finitely generated left ideal is a direct summahd&o

Since the condition given in Definition 2.13 is left-rightrsgnetric, the last four con-
ditions are still valid if we replace the word ’left’ by righ

Corollary 2.4 (Lam, 1990) IfR is a semisimple ring, theR is regular.
Corollary 2.5 (Lam, 1990) IfR is a regular ring, thenR is Jacobson semisimple.

Theorem 2.13 (Lam, 1990) Semisimple rings are exactly the left (respelstiright) Noethe-
rian regular rings.

2.5. Semiperfect Rings

Definition 2.14 Aring R is called semiperfect i/ Rad R is semisimple and idempotents of
R/ Rad R can be lifted toR.

Proposition 2.10 (Lam, 1990) The following are equivalent for a rig
() R is semiperfect,

(i) R has a complete set of orthogonal idempotdrts. . ., e, } such that; Re; is a local
ringfori=1,... n.

Theorem 2.14 (Mueller, 1971) The following are equivalent for a rirg)
(i) R is semiperfect,
(i) The unit 1 inR is a sum of orthogonal local idempotents,
(i) Every primitive idempotent is local and there is no sébrthogonal idempotents iR.

Lemma 2.3 (Mueller, 1971) LetR be aring, and lef ey, ..., e, } a set of orthogonal idempo-
tents inR whose sum is 1. TheR is semiperfect if and only i; Re; is semiperfect for each

7.



Theorem 2.15 (Kaye, 1967) A ringR is semiperfect if and only if/,,( R) is semiperfect.

Theorem 2.16 (Lam, 1990) A commutative ring is semiperfect if and only if it is a finite
direct product of commutative local rings.

2.6. Perfect Rings

Definition 2.15 A subsefS of aring R is called left (respectively, righf)-nilpotent if, for any
sequence of elemenits;, a, ...} C S, there exists an integer > 1 such thatu,a, .. .a, =0
(respectivelyy, . ..aza; = 0).

Definition 2.16 A ring R is called left (respectively, right) perfecti/ Rad R is semisimple
andRad R is left (respectively, right) -nilpotent. If R is both left and right perfect, we call
R a perfect ring.

Proposition 2.11 (Lam, 1990) The following are equivalent for a rifg

(i) Ris a left perfectring,

(i) R/Rad R is semisimple and every non-zdRemodule contains a maximal submodule.
Proposition 2.12 (Lam, 1990) The following are equivalent for a rig

(i) Risa left perfectring,

(i) R satisfies the descending chain condition on principal rigeals,

(i) R contains no infinite set of orthogonal idempotents and erenyzero right?- module
contains a simple submodule.

Theorem 2.17 (Lam, 1990) A commutative ring is perfect if and only if it is a finite direct
product of (commutative) local rings each of which hds-ailpotent maximal ideal.

Proposition 2.13 (Lam, 1990) If a ringR is perfect, then\/,,(R) is also perfect.

2.7. Group Rings

In this section we give the definition of a group ring and mamtabout basic properties
of a group ring that we will use in the following chapters. Wendte group identities by 1,
we also use 1 for the unit element of the riRg



2.7.1. Basic Facts

Let G be a group (not necessarily finite) aida ring. We wish to construct af-
module, having the elements 6fas a basis, and then use the operations in Goéimd R to
define a ring structure on it.

To do so, we denote bR, the set of all formal linear combinations of the form
=D 19,
geG
wherer, € R andr, = 0 almost everywhere, that is, only a finite number of coeffitseare
different from zero in each of these sums.
It follows from the above consideration that, given two edens
=D 19 B=2 50
geG geG
in RG, we have thaty = g if and only if r, = s, forall g in G.
We define the sum of two elementsiit; componentwise:
ngg + Z S99 = Z(Tg + 5)9
geG geG geG
Also, given two elements = > . r,g andg = 3, sxh we define their product by
aff = Z (rgsn)gh
g,heG
With the operations defined abovB(z becomes a ring, which has an identity; namely the
element
L= usg,
geG
where the coefficient corresponding to the identity elenwdérthe group is equal téy and
u, = 0 for every other elementof G.

Definition 2.17 The setRG, with the operations defined above, is called the group rinG o
over R. If R is commutative, theRG is called the group algebra @ over R.

We can also give another definition of a group riRg:. The set of all functiong :
G — R such thatf(g) # 0 for finitely manyg € G with pointwise addition and convolution
as multiplication gives us the group ritf7. We will use both of these equivalent definitions.
We have said that given an element= EQGG rq9 in RG, only finitely many of
the r,'s are different from zero. Thus, elements @fthat have nonzero coefficient, in

the expression oft = > __.r,g gives us a finite subset @f. This leads to the following

geG
definition.

10



Definition 2.18 Let G be a group and? a ring. Given an element = > _, 7,9 in RG,
support ofer, denoted byupp(«), is the subset of elementsdhthat have nonzero coefficient
in the expression af, that is,

supp(a) = {g € G : ry # 0}.

If we look at the equivalent definition of a group ring, we seatta functionf € RG
satisfiesf(g) # 0 for only a finitely many elements d?G. The subset of elements A such
that f(g) # 0 is called support of the functiof.

To say thatRG is an R-module, we can also define a product of elementB@h by
elements\ € R as

AD Sreg) =D (Arg)g.
geG geG
With this scalar productG becomes amk-module.
We can define an embedding G — RG by assigning to each elemente G the
element
i(@) = rqg
e
wherer, = 1 andr, = 0 if ¢ is different fromz. We may, thus, regar@ as a subset aRG.
We may also consider the mapping R — RG given by

v(r) = ngg7

geG

wherer,, = r andr, = 0 if g is different from the identity of the group. It is clearatv(r)
is a ring monomorphism, and thus we can regard a subring ofRG.
Now, we give a universal property of group rings.

Proposition 2.14 (Milies & Sehgal, 2002) Let: be a group andR a ring. Given any ring
A such thatkR C A and any mapping : G — A such thatf(gh) = f(g)f(h) for g,h € G,
there exists a unique ring homomorphigin: RG — A which isR-linear such thatf*oi = f,
where: : G — RG is the inclusion given above. That is, the diagram

is commutative.

Proof Letf:G — Abeasuchmap, considér : RG — A defined by:

11



> a9 Y ref(9).

geG geG

The proof of the statement is a straightforward computation O

Corollary 2.6 (Milies & Sehgal, 2002) Lef : G — H be a group homomorphism. Then
there exists a unique ring homomorphigi: RG — RH such thatf*(g) = f(g) for all ¢

in G. If R is commutative, theri* is a homomorphism ak-algebras. Moreover, iff is an
epimorphism (monomorphism), théhis also an epimorphism (monomorphism).

We remark that if{ is the trivial subgroup, then Corollary 2.6 shows that thaatho-
momorphism& — H induces a ring homomorphise: RG — R such that(d_ ., r,9) =
dea rq. This homomorphism gives rise to an important ideal of a gnowng.

Definition 2.19 The homomorphism: RG — R given by
g(z reg) = Z g
geG geG
is called the augmentation mapping 87 and its kernel, denoted hyG, is called the aug-
mentation ideal oRRG.

It can be shown that
wG = {ng(g_ 1) ‘g€ Gvg # 17Tg = R}
geG
Let H be a subgroup ofr. Then the subset dRG which is generated by the set
{h—1:h e H}is aleftideal ofRG and is denoted by H.

Proposition 2.15 (Milies & Sehgal, 2002) If{ is a normal subgroup af7, thenwH is a two
sided ideal ofRG and

RG/wH = R(G/H).
Proof Supposédd is a normal subgroup @F. ThenGG/H is a group, and the canonical map
IT: G — G/H is a group homomorphism. Thus, Corollary 2.6 implies fhatG — G/H
produces a ring homomorphidit from RG to R(G/H). Now we will show that<er(II*) =
wH.
Let 7 = {q; }ic; be a complete set of representatives of left cosefd of G. We can assume
that the identity element df is the representative of cosgtin 7. Thus, every element of
G can be written in the formy = ¢;h; with¢; € 7, h; € H.
Leta = )
in the form>_, . ri;q;h;, wherer;; € R, ¢; € 7, h; € H. Now we considefl"(a) =
doi 2 Tl H = 32,3, mij)qiH . Thena € Ker(IT*) if and only if >, r;; = 0 for each
value ofi. So, ifa € Ker(IT*), we can write

gsec Tgg be an element oRG. Then by the above argument,can be written

12



a= Zﬁ‘jqz'hj = Zﬁ‘jqz‘hj - Z(Z rij)di = Zﬁ‘j%‘(hj —1) ewH.

1,5 1,5 % J ,J
ThusKer(IT*) C wH. The other containment is clear. Thi&r(I1*) = wH. So,wH is a
two sided ideal ofRG. Sincell is an epimorphism, so Ig* by Corollary 2.6. Thus by First
Isomorphism Theorem, we hav&~/wH = R(G/H). O

Since a groug- is always normal irtz, by using Corollary 2.6, we get:
RG/wG = R.

Proposition 2.16 (Milies & Sehgal, 2002) I is an ideal ofR, /G, which consists of the
elements oRG with coefficients inY, is an ideal ofRG and

RG/IG = (R/I)G.
Proof Consider the mag : RG — (R/I)G such thatf(}_ . re9) = > cqlrg +1)g. It
can be shown that is an epimorphism with kernél, thus by First Isomorphism Theorem,
the result follows. O

Proposition 2.17 (Milies & Sehgal, 2002) Lef : R — S be a homomorphism of rings and
let G be a group. Then the mafy : RG — SG such thatf (Y- ;r99) = >, f(rg)gisa
ring homomorphism. Furthermoré,is a monomorphism (epimorphism) if and onlyffis a

monomorphism (epimorphism).

Proposition 2.18 (Milies & Sehgal, 2002) Lef? be a commutative ring and let, H be
groups. Them(G x H) = (RG)H.
Proof Letf:(RG)H — R(G x H) such that

f(Z(ZTghg)h) = Z Tgh(gvh)'

heH gelG (9,h)eGxH

Then f is an isomorphism. O

Proposition 2.19 (Milies & Sehgal, 2002) For arind? and a group, M,,(R)G = M, (RG).
Proof Letf: M,(R)G — M,(RG) such that,

f(Algl + -+ Asgs) = (bij)’

whereb;; = aj;g1 + - - - + aj;9s andaj; is the entry in the’" row and;" column of A,,,
m=1,...,s. Thenf is an isomorphism. O
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Proposition 2.20 (Milies & Sehgal, 2002) Le{R;};c; be a family of rings and leR =
,.; Ri- Then for any grougs, RG = @, RiG.

Proposition 2.21 (Milies & Sehgal, 2002) Let be a group andH{ a subgroup ofG. Let
{hi}icr be a complete set of representatives of left cosets wf G. Then for any ringR, the
group ring RG is a free leftR H-module with the basi§h; }ic;.

Definition 2.20 Let X be a subset of a group rinGG. The left annihilator ofX is the set
Ann(X) = {a € RG : ax = 0 for everyzr € X}.

Similarly, we define the right annihilator of by:
Ann, (X) = {a € RG : za = 0 for everyz € X }.

Definition 2.21 Given a group ringkG and a finite subseX of the group’, we shall denote
by)? the following element aRG
=Y«
zeX

Lemma 2.4 (Milies & Sehgal, 2002) Letl be a subgroup of a grou@ and letR be a ring.
ThenAnn,(wH) # 0if and only if H is finite. In this case, we have

Ann,(wH) = H.RG.

Furthermore, ifH is a normal subgroup of7, then the element/ is central in RG and we

have

Ann,(wH) = Anny(wH) = RG.H.
Proof Assume that\nn,(wH) # 0, and choose a nonzero= }_ _,r,gin Ann,(wH).
For each elemerit € H, we have thath — 1)a = 0, and hencé.a = «, that is,
a= Z'r’gg = Z'r’g(hg).
gea gea
Takeg, € supp(«). Thenr,, is nonzero, so, the equation above shows tiatc supp(«)
forall h € H. Sincesupp(«) is finite, this clearly implies thal/ must be finite.
Notice that the above argument shows that, whengyer supp(«a), then the coeffi-

cient of every element of the forig, is equal to the coefficient af,, SO we can writex in
the form:

«a :rgoﬁ]go+rglﬁ]gl+---+rgtﬁ]gt = ﬁ]ﬁ, where5 € RG

14



This shows that ifff is finite, thenAnn, (wH) C H.RG.

The reverse inclusion follows trivially, sindel = H implies that(h — 1)?[ = 0 for
allh e H.

Finally, if H is a normal subgroup af, for anyg € G we have thay'Hg = H;
therefore

g Hg=> g 'hg=> h=H.
heH heH

Thus,f{lg = gf[ for all g € G, which showsH is central inRG. ConsequentlyRG.fI =
H.RG, and the result follows. O

Corollary 2.7 (Milies & Sehgal, 2002) Let/ be a finite group. Then
(i) Ann(wG) = Ann,(wG) = RG, and

(i) Ann, (wG)NwG = {rG :r € R, r|G| = 0}.
Proof Statement (i) follows from Lemma 2.4 takirig = G.
For statement (ii) note that = G € wG if and only if () = re(G) = r|G| = 0. O
Our next result is an elementary remark from ring theory Wwhidll be necessary for
the main theorem of this section.

Lemma 2.5 (Milies & Sehgal, 2002) Lef be a two sided ideal of of a rin§. Suppose that
there exists a left ideal such thatk = I & J as leftR- modules. Thed C Ann, (/).

Lemma 2.6 (Milies & Sehgal, 2002) If the augmentation idead~ is a direct summand of
RG as anRG- module, thert is finite and|G| is invertible inR.

Proof Assume thatvG is adirect summand a®G. Then, Lemma 2.4 shows thatn,. (wG)
is nonzero, and thus is finite andAnn, (wG) = G(RG) = GR.

If RG = wG ® Jandl = ey + e With e; € wG andey € J, thenl = (1) = e(ey) + e(es)
sincee, = rG for somer € R, we have thate(G) = 1; thusr|G| = 1. This shows thalG|
is invertible inRk and that G|~ = r- O

The next result is the main theorem of this chapter sinceatatterizes semisimple group
rings in terms of the properties éf andG.

Theorem 2.18 (Maschke's Theorem) (Milies & Sehgal, 2002) Le: be a group. Then the
group ring RG is semisimple if and only if the following conditions hold.

(i) Risasemisimple ring.

(i) G is finite.
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(iii) The order ofG is a unitinR.

Proof AssumeRG is semisimple. We know thaRG/wG = R. Since homomorphic
images of semisimple rings are semisimgtds semisimple.

Semisimplicity of RG implies thatwG is a direct summand. By Lemma 2.6, we can say that
G is finite and the order of7 is a unitinR.

Conversely, assume these three conditions hold M.éte anRG-submodule ofRG.
SinceR is semisimple, it follows thaRkR(G is semisimple as aR-module. Hence there exists
an R-submoduleN of RG such thatRG = M @& N. Letll : RG — M be the canonical
projection associated to the direct sum. We defiie RG — M by an averaging process,
that is,

I (x) = o 3007 (ga)
geCG
forall x € RG. If we prove thatT* is actually anRG homomorphism such that
(I1*)? = I1* andIm(I1*) = M, thenKer(IT*) will be an RG-submodule such that
RG = M & Ker(II*), and the theorem will be proved.

Sincell* is an R homomorphism, in order to show that it is also A& homomor-
phism, it will suffice to showT*(ax) = all*(x), foralla,z € G.

We have

I (a2) = 2 > g™ T(gas) = e 3 (90) T (g)e).
9eG geG
Wheng runs over all elements i@, the producya also runs over all elements (&, thus
T*(az) = aé Z h I (ha) = all*(z).
hed
Sincell is a projection onV/, we know thafill(m) = m for all m € M. Also sincelM is an
RG module, we have thatn € M for all g € G. Thus,
I (m) = é > g 'Ti(gm) = é > g lgm=m.
9eG geqG
Given an arbitrary element € RG, we have thall(gz) € M, hencell*(x) € M. It
follows thatIm (IT*) C M. ConsequentlyiI*(IT*(z)) = I1*(x) for all x € RG, and therefore
(I1*)? = I1*. Finally, the fact thafl*(m) = m also shows that/ C Im(IT*), and the theorem
follows. OJ

The case wher& = K is a field is of particular importance.

Corollary 2.8 (Milies & Sehgal, 2002) Let: be a finite group ands a field. ThenK'G is
semisimple if and only tthar(K) 1 |G|.
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A translation of the Wedderburn-Artin Theorem will give ugpkenty information
about the structure of a group algebra.

Theorem 2.19 (Milies & Sehgal, 2002) Let: be a finite group andx a field such that
char(K) 1 |G|. Then

(i) KG is a direct sum of finite number of two sided idefls; },<;<,, the simple compo-
nents ofK'G. EachB; is a simple ring.

(i) Any two sided ideal of{ GG is a direct sum of some of the members of the family <
1 <.

(iii) Each simple componenB; is isomorphic to a full matrix ring of the form/,,, (D;),
where D; is a division ring containing an isomorphic copy &f in its center, and the
isomorphism

is an isomorphism oK™ algebras.

(iv) In each matrix ringM,,, (D;), the set

I 0 0

) 0 0 )
I ={ _ DX, Xy Ty, = DY

Tp, O 0

is a minimal left ideal.
V) I; 2 L, ifi # j.
(vi) Any simple/G- module is isomorphic to sonig 1 < i < r.

Corollary 2.9 (Milies & Sehgal, 2002) Let’ be a finite group and lek” be an algebraically
closed field such thahar(K) { |G|. Then

KG = @::1 Mm(K)

and (n1)* + (n2)* + -+ + (n,)* = |G].
Proof Sincechar(K) t |G|, we have that

KG = @::1 Mm‘(Di)v
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whereD; is a division ring containing an isomorphic copy &fin its center. If we compute
dimensions oveK on both sides of the equation we have that

Gl =) ni[Di: K],
i=1

and it follows that each division ring is finite dimensionako K. As K is algebraically
closed, we have thdd;, = K, 1 < i < r, and the result follows. O

Now we give a complete description of the group ring of a fiaibelian groug over
a field K such thathar(K) 1 |G|. But first we will state some results from field theory which

will be useful for us.

Definition 2.22 A nonzero polynomiaf (z) € K[X] is called separable when it has distinct
roots in a splitting field overs, that is, each root off (x) has multiplicity 1. Iff(z) has a
multiple root, thenf(x) is called inseparable.

Definition 2.23 If « is algebraic overK, it is called separable oveK when its minimal
polynomial inK[X] is separable, that is, the minimal polynomial@in K[X] has distinct
roots in a splitting field over<. If the minimal polynomial ofv in K[X] is inseparable, then
« is called inseparable ovek'.

Theorem 2.20 (Lang, 2000) A nonzero polynomial ii[X ]| is separable if and only if it is
relatively prime to its derivative ik [ X].

Theorem 2.21 (Primitive Element Theorem) (Lang, 2000) Le¥ be a finite separable exten-
sion of a fieldK'. Then there exists € £ such thatk’ = K(«).

Theorem 2.22 (Chinese Remainder Theorem) (Lang, 2000) Letk be a principal ideal do-

main. Ifuy, ..., u, are elements oR which are pairwise coprime and = ujus . .. u, then
R/Ru= R/Ruy X --- X R/Ru,.

Definition 2.24 For any fieldK, a field K (¢,,) where(, is a root of unity of order is called
a cyclotomic extension df.

We shall begin with the case whetgis cyclic, so we assum@ =< a : " = 1 > and that
K is afield such thathar(K) 1 |G|. Consider the map : K[X]| — KG givenbyf — f(a)
forall f € K[X]. Itis easily seen that is a ring epimorphism. Hence,

_ K[X]
RE= Rae)
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SinceK[X] is a principal ideal domairier(¢) is the ideal generated by the monic polynomial
fo of least degree such th#(a) = 0. Sincea™ = 1, it follows that
z" — 1 € Ker(¢). Note thatif f = >"'_, k;a" is a polynomial of degree < n, we have that
fla) =>""_ kia' # 0 because the element$, a,a?, ..., a"} are linearly independent over
K. ThusKer(¢) =< 2™ — 1 > so that
ko= KX

Letz" —1 = f, f>... f; be the decomposition af* — 1 as a product of irreducible polynomials
in K[X]. Since we assume thdltar(K) t n, this polynomial is separable by Theorem 2.20
and thusf; # f; if i # j. Using Chinese Remainder Theorem, we can write

T

Under this isomorphism, the generatois mapped to the elemefit+ < f; >,... 2+ <
KX

fi >). Then we have tha% =~ K(¢;). Consequently,
KG=K(G)DK(G) @ - ®K(G).

Since all the elements (1 < i < t), are roots of™ —1, we have shown that GG is isomorphic
to a direct sum of cyclotomic extensions &8t Under this isomorphism, the elementaps
to the element(y, G, ..., ()

Example 2.2 LetG =< a: a” =1 > and K = Q. In this case the decomposition:of — 1
in Q[X] is

T —1l=@-Da+2+a2t + 23+ 22+ 2+ 1).
Hence if( denotes a primitive root of unity of order 7, we have
QG = Q& Q(¢)-

Example 2.3 LetG =< a : a® = 1 > and K = Q. The decomposition af — 1 as a product
of irreducible polynomials if) is

—1=@@-DE+)@*+zx+1)(a?—x+1)

Thus

QG = Qo Q& Q(T1E3) @ Q(H),

Here =113 is root of 22 + z + 1 and Y2 is a root of 2> — = + 1. Note that the last two

summands are equal.

19



We wish to give a more precise description/ot> in the general case. In order to
do this we shall try to calculate all the direct summands adbcomposition o G. We
recall that, for a positive integef, the cyclotomic polynomial of ordef, denoted byd,, is
the productb, = [[;(z — (;), whereg; runs over all the primitivel’” root of unity. Also, we
know thatz” — 1 = Hd|n ®,, the product of all cyclotomic polynomiai, in K[X]|, where
d is a divisor ofn. For eachl, let®, = [[}¢, f4, be the decomposition @, as a product of
irreducible polynomials in<[X]. Then the decomposition df' G can actually be written in
the form:

,1<f

where(,, denotes a root of,;,, 1 < ¢ < a,4. For a fixedd, all the elementg,, are primitive

KIX] _ T
KG=@,, @2~ = =P K@)
v i=1

d™ roots of unity. Therefore, all the fields of the form((,,), 1 < i < a4 are equal to one
another, and we may write

KG= Echn adK(Cd)’

where(, is a primitive root of unity of order/ anda,K ((,;) denotes the direct sum af;
different fields, all of which are isomorphic & (¢,). Also, sincedeg(f4,) = [K () : K],

we see that all the polynomials,, wherel < ¢ < a4, have the same degree. Thus taking
degrees in the decomposition®f, we get

®(d) = aq[K(Ca) : K],
where® denotes Euler’s totient function, namely
O(d)={neZ:1>n>dged(n,d) =1}.

Since( is a cyclic group of orden, for each divisokl of n, the number of elements of order
d in G, which we denote by, is precisely®(d). Hence, we can write

4d = [RCyK]"

Example 2.4 LetG =< a : a" = 1 > be a cyclic group of orden and takeK = Q. It
is well-known that the polynomial® — 1 decomposes if@[X| as a product of cyclotomic
polynomials

v —1 =[] ®al2),
dln
and these are irreducible. Hence, in this case, the decoitiposfQ < g > is

Q< g>=PHQ).

din
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Notice that as before in this isomorphism the generataorresponds to the tuple whose
entries are the primitive® roots of unity, wherel runs over all divisors of..

The description obtained above can be extended to groug oh@rbitrary finite abelian
groups.

Theorem 2.23 (Milies & Sehgal, 2002) Let: be a finite abelian group of order, let K be
a field such thathar(K) { n. Then
KG = @ CLdK(Cd),
dln

where(,; denotes a primitive root of unity of orderanda, = In this formula,n,

denotes the number of elements of order G.

Proof We proceed by induction on. Suppose the result holds for all abelian groups of
order less tham. Let G be a finite group of order. If G is cyclic, we have already shown
that the theorem is valid. Otherwise, we can use the streith@orem of finite abelian groups
to write G = G x H, whereH is cyclic and|G1| = n; < n. By the induction hypothesis,
we can writeK Gy = @, ,, aa, K (Ca, ), Whereag, = m andn,, denotes the number

1)

of elements of orded; in G;. Therefore, we have
KG = K(Gyx H)= (KG)H = (P a4, K(Ca,))) H = €P a4, K (Cay) H
d1|n1 dllnl

Now, decomposing each direct summand, we get

KG = @ @ adlad2 Cd1>Cd2)

di|n1 d2||H|

nd2

wherea,, = R o B G] andn,, denotes the number of elements of ordein H. If we
setd = lem(dy, ds), we have thai(((y,, (4,) = K((4). Thus,

KG#= @ adK(Cd)

din

with ag = > aq,aq,, where the sum is taken over all paits d, such thalcm(dy, ds) = d.
Since[K ((y) : K] = [K ({4, Ca,) : K(Cay)][K(Cay) : K], we have that

[ Cdl . Z ad1ad2 Cdl? Cd2) : (Cdl)” Cdl : Z Ny My -

d1 d2 dl d2
Finally, we notice that sinc&' = (G, x H, each element can be written in the form
g = q1h, with g; € Gy andh € H. Also, it is easy to see thaig) = lem(o(g1),0(h)).
Hence,z ng, , Na, = Ng, the number of elements of ordéin G, so that we have

[K(Ca) : KT

and the result follows. O

aqg =

21



Corollary 2.10 (Milies & Sehgal, 2002) Let: be an abelian group of ordet and K be a
field such thathar(K') 1 n. If K contains a primitive root of unity of order, then KG is
isomorphic to direct sum of copies ofK. That is,

KG=2K®- - DK,

where the sum occurs— 1 times.

Proof If K contains a primitive root of unity of order, then K((;) = K, for all d

n,
and the corollary follows directly from Theorem 2.23 (to $leat there must occur exactly
summands it suffices to compute the dimensions éven both sides of the equation). [J

If G and H are isomorphic groups, universal property gives that tlegringsRG
and RH are isomorphic. However, the converse is not true. We cam @isounter example
using this Corollary 2.10.

Suppos&s and H are non-isomorphic abelian groups of the same ordand K is a field
such thathar(K) 1 n and contains a primitive root of unity of order Then Corollary 2.10
shows that

KG=K&---&d K=KH,

where the sum occurs— 1 times.
For example ifC; andC), denote the cyclic groups of order 2 and 4, respectively, tbethe
complex group algebras we have:

C(Cyx Cy) 2 CaCaCaoCCC,.

Information about the idempotents in a group ring will bepifigll for our aim, so we
mention about them in the next part of this section.

Lemma 2.7 (Milies & Sehgal, 2002) LeR be a ring andH be a subgroup of a groug.
If |H| is invertible inR, theney = % is an idempotent okRG. Moreover, ifH is a normal
subgroup of7, theney is central.

Proof First we prove:y is an idempotent.

1 ~~ 1 ~
=——HH = h)H

_ “;'2 S (hil)

heH
1 -
- |H|? Z H
heH
1

22



O

We already know from Lemma 2.4 that# is a normal subgroup af, thenH is central.
So, centrality ok follows immediately. Our next result will tell us what theatenposition
obtained from one of these idempotents looks like.

Proposition 2.22 (Milies & Sehgal, 2002) LeR be a ring, andH a normal subgroup of a

groupG. If |H|is invertible inR, settingey = ﬁf[ we have a direct sum of rings

RG = RGey @ RG(1 — ep),
whereRGey = R(G/H)andRG(1 — ey) = wH.
Proof We have shown that; is a central idempotent. Thus,
RG = RGey @ RG(1 — ep).

is a valid decomposition. To see th&{G//H) = RGey, we shall first show that/ / H =
Gey as groups. The map: G — Gey such thay — gey is a group epimorphism. Clearly,
Ker(¢) = H. As Gey is a basis 0ofRGey over R, we already hav&Gey =~ R(G/H).

Finally, it follows from Lemma 2.4 thaRG (1 — ey ) is an annihilator oRRGey and it
can be easily shown thatnn(RGey) = wH. O

Definition 2.25 Let R be a ring andG a finite group such thafG| is invertible in R. The

idempotent; = |—(1;‘C~? is called the principal idempotent ¢iG.

For a group ringkG, we can use the principal idempotent/ef; and obtain a decom-
position given in the next theorem by Proposition 2.22.

Corollary 2.11 (Milies & Sehgal, 2002) LeR be a ring andG a finite group such thaiG|
is invertible inR. Then we can writd?G as a direct sum of rings

RG =2 R wdG.

2.7.2. Chain Conditions

In this part of our study, we give necessary and sufficienttens onR andG for
the group ringRG to have some chain conditions.

Theorem 2.24 (Connell, 1963)RG is Artinian if and only ifR is Artinian anddG is finite.

Theorem 2.25 (Connell, 1963) IfR is Noetherian and- is finite, thenRG is Noetherian.
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Theorem 2.26 (Connell, 1963) IfRG is Noetherian, therR is Noetherian and~ has the
maximum condition on subgroups.

2.7.3. Regularity

The following theorem completely characterizes regulaugrrings.
Theorem 2.27 (Connell, 1963)RG is regular if and only if
(i) Risaregular ring.
(i) G is locally finite.

(i) The order of every subgroup @f is a unitin R.

2.7.4. Onthe Radicals

This part of this section contains some special cases abeutacobson radical and
the prime ideal of a group ringG.

Proposition 2.23 (Connell, 1963) Letd be a subgroup ofs. ThenRH N Rad(RG) C
Rad(RH).

If we let H to be the trivial subgroup af, we have the following corollary.

Corollary 2.12 (Connell, 1963) Le#{ be the trivial subgroup off. Thenk N Rad(RG) C
Rad(R) with equality if R is Artinian or G is locally finite.

Proposition 2.24 (Connell, 1963) LeRk be a commutative ring and artelan abelian group.
If Rad(R) = 0 and the order of every elemept G is regular in R, thenRad(RG) = 0.

Proposition 2.25 (Connell, 1963)RG is semiprime if and only iR is semiprime and- has
no finite normal subgroups whose orders are zero divisors.in
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2.7.5. Properties of the Fundamental Ideal

This part of this section contains some special cases abedtihdamental ideal of a
group ring RG that will be useful.

Proposition 2.26 (Connell, 1963) IfvG C Rad(RG), thenG is ap-group andp € Rad R.
Proposition 2.27 (Connell, 1963) ItuG is nil, thenG is ap-group andp € rad R.

Theorem 2.28 (Connell, 1963)uG is nilpotent if and only it is a finitep-group andp is
nilpotentinR.

Corollary 2.13 (Connell, 1963} is locally nilpotent if and only ilG is a locally finite
p-group andp is nilpotent inR.

Proposition 2.28 (Connell, 1963) ItwG is a nil ideal, thenG' is ap-group andp is nilpotent
in R.

Proposition 2.29 (Connell, 1963) I{= is a locally finitep-group andp is nilpotent inR, then
wG is a nil ideal.

Proposition 2.30 (Connell, 1963) IRad(RG) = wG, thenG is ap-group,Rad(R) = 0 and
p=0inR.

Proposition 2.31 (Connell, 1963) IfG is a locally finitep-group,Rad R = 0 andp = 0 in
R, thenRad(RG) = wG.
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CHAPTER 3

SEMIPERFECT GROUP RINGS

In this chapter we give some necessary and sufficient conditon a ringk and a
groupG for the group ringRG to be semiperfect.

3.1. Some Necessary Conditions

Proposition 3.1 (Burgess, 1969) IRG is semiperfect, so iB, and so isDG for each division
ring D appearing in the factors QR/ Rad R.

Proof SupposeRG is semiperfect. Then sincBG/wG = R, we haveR is semiper-
fect. R is semiperfect means th&t/ Rad(R) is semisimple. By Wedderburn-Artin Theorem,
R/ Rad(R) is a direct product of matrix rings over division rings. Thet

R/Rad(R) = M, (Dy) X M,(Ds) x -+ x M,(Dy),

whereDy, ..., D, are division rings. We know that homomorphic images of semiiget rings
are semiperfect. Thus, heié,(D;)G is semiperfect since
RG
(M, (D1) X -+ x My(D;_1) X My(Diy1) X -+ x M, (Dy))G
By Proposition 2.19),,(R)G = M, (RG). ThusM,, (RG) is semiperfect fol < i < k. By
Theorem 2.15DG is semiperfect fol < i < k. O

> (M,(D)G

The following definition helps us to give an example of a groung which is not
semiperfect.

Definition 3.1 A group( is called an ID group (integral domain group) if for each rirfg
with no zero divisors except zerB(= has no zero divisors except zero.

Proposition 3.2 (Rudin & Schneider, 1963) Evefy group is an ID group.

Proof Let G be anQ)-group andR a ring with no non-zero zero divisors. Let 5 be non-
zero elements oRG. Thensupp(a) andsupp(f) are non-empty, and finite subsets@®f
SinceG is anQ-group, for an arbitrary. € supp(«) andb € supp(S), there exists € G
such thatr = ab is the unique representation of= a'b’, wherea' andb’ in supp(p3). Let
aff = Y o If ry andr, are the coefficients af andb in the expression ofi and 3
respectively;, = r,ry if © = ab. SinceR has no non-zero zero divisors and # 0 and
ry # 0,7, # 0. Thus, the product is non-zero as desired. OJ
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Proposition 3.3 (Rudin & Schneider, 1963) Every ID group is torsion free.

Proof LetG be an ID group. Suppose for the contrary thabas a finite non-trivial sub-
groupH. Leta = ), ., rh. Herer isanon-zero fixed element & Let0 # 3 = 3", ., muh
such thaty r, = 0. SinceH is a finite groupps = 0. So RH has non-zero zero divisors.
That is, RG has non-zero zero divisors. $6is not an ID group, which is a contradiction.
This contradiction shows th&t does not have a finite non-trivial subgroéf that is,G is
torsion-free. OJ

Proposition 3.4 (Burgess, 1969) I+ is a non-trivial I D group, thenRG is not semiperfect
for any ring R.

Proof If RG is semiperfect, then by Proposition 372¢ is semiperfect for some division
ring D. SinceG is anID group,(D/Rad D)G = DG/ Rad(DG) has no non-trivial idem-
potents. Hence, if+ Rad(DG) is an idempotent oDG / Rad(DG), eithere € Rad(DG) or

1 — e € Rad(DG). SinceDG is semiperfectDG / Rad(DG) is semisimple. It follows that
DG/ Rad(DQ@) is a division ring. ThusRad(DG) is a maximal ideal. AlsoDG /wG = D,
sow(@ is a maximal ideal, too, that iRad(DG) = wG. By Proposition 2.30¢ is ap-group
for some primep. This contradicts with the fact that drD group is torsion free. O

Corollary 3.1 (Burgess, 1969) it- is an extension of a group by a nontriviaD group, then
RG is not semiperfect for any ring.

Proof Let G be an extension of a group by a nontrivial ID group. That isyeéhexists an
exact sequence

0—H—-G—-N-=0

such thatV is an ID group. Since the sequence is exdct G/H. Itis seen thaRG/RH =
R(G/H) >~ RN. SinceN is an ID group,RN is not semiperfect by Proposition 3.4. Thus,
RG can not be semiperfect. O

Now let G be a non-torsion abelian group. Then it is possible to whie éxact
sequence

0 — Tor(G) — G — G/ Tor(G) — 0.

G/ Tor(G) is nontrivial sinceG is not a torsion group. It is also torsion-free and abelian.
Thus,G/ Tor(G) is a nontrivial ID group. By Corollary 3.1RG cannot be semiperfect. So,
as a special case, @ is abelian andRG is semiperfect, then we can say tlgatis torsion.

Furthermore, a more general statement can be made.

Proposition 3.5 (Burgess, 1969) IRG is semiperfect and is abelian, then eithef is finite
or G = G, x H, whereG, is an infinitep-group, # finite, p does not divide the order ¢f and
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each of the division rings associated with the semisimpig R/ Rad R is of characteristic
p-
Proof As we have seen, iRG is semiperfect, so I®G, whereD is a division ring associ-
ated with the semisimple rin@/ Rad(R). If D has characteristic zero, théiG is regular by
Theorem 2.27, hendead(DG) = 0. This means thaDG is semisimple, and by Maschke’s
Theorem( is finite.

Supposé) has characteristie. SinceG is an abelian and must be torsion by the above
observation, we can writé' = G/, x H, whereG), is the Sylowp-subgroup of, andH has
no elements of order. ThenDH = D(G/G,) = DG /wG, is semiperfectDH is regular
sinceH is locally finite andH has no elements of ordgr Thus, as abové is finite. O

Corollary 3.1 and Proposition 3.5 lead to a conjecture ft@tis semiperfect implies
G is torsion. But it is not known whethekG is semiperfect implies that is locally finite.
If K is a field of characteristip > 0 andG is ap-group which is not locally finite, thek G
will be local, hence semiperfectifad( KG) = wG.

Lemma 3.1 (Woods, 1974) LeR be a ring such thafz/ Rad(R) is Artinian, and letz € R.
Let{z,} be the sequence, = x, z;,, = x; — (z;)* for i > 0. Then for some, 1 — z,, has a
right inverse inR.
Proof Consider the chaiRz; O Rz, O --- of left ideals inR. Using this chain, we can
obtain a chain
Rxi +Rad R 5 Rxs + Rad R
RadR  — Rad R

of rightideals inR/ Rad R. SinceR/ Rad R is Artinian, there exists a positive integesuch

Rrn,+Rad R _ Rxzpnt1+RadR
that #a et — =222 andx, € Rrn4q + Rad R. For somer € R andy € Rad R,

z, =r(z, —22) +y. Nowl —y = (1 — z,,)(1 + rz,,) has a left inverse i, and sol — z,,

has a left inverse iR. O

Theorem 3.1 (Woods, 1974) Leb be a division ring of characteristig > 0 andG a group.
If DG is semiperfect, the@' is a torsion group and there is a positive integesuch that no
chain of finitep’-subgroups of7 has length greater than.

Proof Suppose: € G has infinite order. Le{x, } be the sequence iRG such that:y = z,
Ty = x; — 2? fori > 0. By Lemma 3.1,1 — z,, has a left inverse ifDG for somem.
Clearly,1 — z,, € KH, whereK is the prime subfield ob andH is the subgroup generated
by z. SinceK H is a direct summand adDG as left K H- modules,l — z,, has a left inverse
in KH, thatish(z)(1 — z,,,) = 1 for someh(z) = ZT/

t=—T

a;x* € KH. Multiplying by 27,
we obtain the factorization
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7"+r,
" =a2"h(x)(1 —a™) = Z di_rx" (1 — z)
=0

in the polynomial ringK[X]. This is impossible since” is a monomial. Thus; must be a
torsion group.

If I = {hy,...,h}is afinitep’-subgroup ofG, thenr = .1 is a unit inD and by
Lemma 2.7ey = %(hl + -+ + h,) is an idempotent ilDG. Moreover, if N < H, then
enen = exey = ey. SinceDG is semiperfectDG-module DG has finite length. Let be
the length of a composition series for the [Bf&-module DG, and suppose

{1} CH, C---CH,

is a strictly increasing chain of + 1 finite p'-subgroups of7. Lete; = ey, i = 1,...,n+ 1.
Then

DG 2 DG€1 2 s 2 DGenH.

Reducing modul®ad(DG) we obtain
DG /Rad(DG) 2 (e +Rad(DG))DG/Rad(DG)
O (€41 + Rad(DG))DG/ Rad(DG).

Thus, for some, (e¢; + Rad(DG))DG/Rad(DG) = (ei41 + Rad(DG)) DG/ Rad(DG).
Thene; — e;,; is an idempotent iRad(DG) and soe; = e;,1. This impliesH; = H;,4, a
contradiction. O

The following result is a direct consequence of Theorem 3.1.

Corollary 3.2 (Woods, 1974) Leb be a division ring of characteristic > 0 andG a locally
finite group. IfDG is semiperfect then evepy-subgroup of7 is finite.

3.2. Some Sufficient Conditions

Theorem 3.2 (Burgess, 1969) I+ is an abelianp-group andR is a finite direct product of
commutative local rings whose factor fields are of charasterp, thenRG is semiperfect.

Proof LetR=1L; x---x L, whereL; is local andLl-/ Rad(L;) = K;, whereK; is a field
of characteristip, i = 1, ..., n.
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ThenRG = LG x --- x L,G and for each,

L,G/Rad(L;)G
Rad(L;G)/ Rad(L;)G

(L;/ Rad(Ly))G
Rad(L;G/ Rad(Ll)G)

1%

Here(G is an abeliamp-group, thug= is locally finite. And eachk; is a field of characteristic
p, thusRad(K;G) = wG by Proposition 2.31, that is,

L;G/Rad(L;G) = K;G/ Rad(K;G) = K,G JwG = K,.

Hence, eacli;G is local. Thus,RG is a finite direct product of commutative local rings. By
Theorem 2.16RG is semiperfect. OJ

Corollary 3.3 (Burgess, 1969) IR is commutative and' = G, x H, whereG,, is ap-group,
H is finite andp does not divide the order df, RG is semiperfect ifRH is a finite direct
product of local rings whose factor fields are of charactecig.

Proof SinceG = G, x H, RG = R(G, x H) = RH(G) by Proposition 2.18, the result
follows directly from Theorem 3.2. O

Proposition 3.6 (Woods, 1974) Lek be semiperfect, and I€t,, .. ., ¢, } a set of orthogonal
local idempotents iR whose sum is 1. L&t be any group. The®G is semiperfect if and

only if (e; Re;)G is semiperfect for each

Proof We have(e;Re;)G = e; RGe;, and the result follows from Lemma 2.3. O

Lemma 3.2 (Woods, 1974) Lek be aring,G a group, andV a normal subgroup aoff such
thatG /N is locally finite. TherRad(RN) C Rad(RG).

Proof Letz € Rad(RN), r € RG. To show thatr € Rad(RG), we will show that
1 — rz has a left inverse itRG. Let G’ be the subgroup generated Byandsupp(r). We
know thatsupp(r) is always finite for an arbitrary element ¢#G. So, the groups’ /N
is finitely generated. Sinc@/N is locally finite andG’/N is finitely generated, we have
G'/N is finite. LetG'/N = {giN,gN,...,g,N}, whereg; is the identity element of
the group. Then{gi, g, ...,g,} is a basis for the free lefR N-module RG'. Thus, the
endomorphism ring oRG" as a module is the matrix rindy/,,(RN). For eachy € RG', let
), be the matrix corresponding to left multiplication py Then\ : RG' — M, (RN) is a
ring homomorphism. In particular,
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0 0 - g lag,
The entries are iRad(RN) becauseRad(RN) is invariant under automorphisms &fN.
Thus)\, € M,,(Rad(RN)) = Rad(M, (RN)). Thisimplies that for every, € M, (Rad(RN)) =
Rad(M,(RN)), there existsf € M,,(RN) such thatf(1 — A\, \,) = 1. We can regard them
as endomorphisms, and if we evaluate ther a RG', we getf(1)(1 — rx) = 1. Then
f(1) € RG" C RG is the left inverse of — ra. O

Proposition 3.7 (Woods, 1974) LeR be a local ring withchar(R) = p > 0 andG a locally
finite group. LetV be a normalp-subgroup ofG such thatVH = G. If RH is semiperfect,
then so isRG.

Proof Letw : RG — RG be the canonical epimorphism. Letc G. By assumption,
g = nh, wheren € N andh € H. Thus we can writg = nh = (n —1)h+h € wN + RH.
The other containment is clear, so we h#®@ = wN + RH. SinceRad(R)G C Rad(RG),
7w may be factored into

whereKer(m;) = Rad(RG). SinceN is ap-group andchar(R) = p, wN in the group ring
RN is a nil ideal by Theorem 2.28, heneg;N C Rad(RN). SinceG/N = H is a locally
finite group, it follows by Lemma 3.2 th&ad(RN) C Rad(RG). Thus

wrn N C 717 HwgyN) € 7 (Rad(RG)) = Rad(RG)

andwrgN C Rad(RG). It follows that RG = Rad(RG) + RH andn(RH) = RG. By
Proposition 2.2RH N Rad(RG) C Rad(RH). Thus,
RH _  RH/(Rad(RG)N RH)
Rad(RH)  Rad(RH)/(Rad(RG)N RH)

by Third Isomorphism Theorem. Sind& is semiperfectRH is semisimple. This gives us

Rt 1S semisimple. ThuRRad(RH) = RH N Rad(RG). In addition,

RG  RH + Rad(RG) RH

Rad(RG) Rad(RG) RH N Rad(RG)’

12

by Second Isomorphism Theorem. Thi&d] = RG andRG is semisimple.
If RH is semiperfect, the®G is artinian. Letz? = ¥ € RG. Thenz = r(e) for
some idempotentin RH C RG. ThusRG is semiperfect. 0J
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The next result is a consequence of Proposition 3.7.

Corollary 3.4 (Woods, 1974) LeR be a local perfect ring witkthar(R) = p > 0 andG be
a locally finite group. IfG has ap-subgroup of finite index, theRG is semiperfect.

Proof By assumption{z has a nhormap-subgroup/V of finite index and a finite subgroup
F suchthatVF = G. ThenRF is perfect (See Theorem 4.1), hence semiperfect a0
is semiperfect. O

Proposition 3.8 Let R be a local ring withchar(R) = p > 0. LetG be an abelian group
and G, be the Sylow-subgroup ofG. ThenRG is semiperfect if and only iR(G/Gp) IS
semiperfect, and in this cage/G, is finite.

Proof Follows directly from Proposition 3.7 and Corollary 3.4. O

We now show that if7 is a finite group of exponent and if C, is the cyclic group
of ordern, then RG is semiperfect if and only ii2C,, is semiperfect. Then necessary and
sufficient conditions folRC,, to be semiperfect are given whéhis commutative, in terms of
the polynomial ringR[X].

Without loss of generality, we may assume thais semiperfect and is a unit inR.
SinceG is a finite groupRad(RG) = (Rad R)G by Corollary 2.12 and?G / Rad(RG) =
RG/(Rad R)G = (R/Rad(R))G is an Artinian ring by Theorem 2.24. To prove thaf/
Is semiperfect it is sufficient to prove that either idempeddift from (R/ Rad R)G to RG
or that every primitive idempotent iRG is local. If e is any idempotent irRG, thenne is a
unit in e RGe since we have assumeds a unit inR. Also eRGe = eRGe holds by Theorem
2.10.

Let ¢ be an element of orderin an abelian grou-, K an algebraically closed field

such thathar(K) t n, andz a primitiven'" root of unity inK. Fori =0,...,n — 1, let
n—1
1
kj = — 2" g’
n
7=0

We show that; are orthogonal idempotents whose sum is 1 and thatig a primitivem!”
root of unity, thengk; is a primitivem!”" root of k;. Sincezigk; = k;, k? = k;. If i # j, let
kikj = 5 S agt. Then

n—1 n—1
2Ma, = E 2k I=k) — it pimg E =Dk — g,
k=0 k=0

Sincez"7 # 1, a; = 0, and hencé;k; = 0.
Let Z;:ol ki = %Z?;ol b.gt. Thenztb, = ¢ Z;:ol 2 =10 1f0<t<mn,2t#1and
hence)' = 0. Thus,
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If 2 is a primitivem'" root of 1, theng™k; = ¢g™z™k; = k;, butif 0 < r < m, then
ki = g"2"k; # g"k; sincez” # 1 andk; # 0.

For eachm with m|n, lete,, = >_ k; where the sum is taken over alsuch that*

is a primitivemm®™ root of 1, and let,, = > k; where the sum is taken over alsuch that

z'm = 1. Then{e,, : m|n} is an orthogonal set of idempotents whose sum is 1. Since
emk; = k; whenever: is a primitivem!” root of unity, ge,, is a primitivem!”* root of e,,,.

i, wheres = 2, ¢, ="l k,;. Let

m?

Clearlye,, = > ,,, ¢a- Sincez"" = 1 if and only if s

m—1

Thenc, = 7700 2% If m|t, 27" = 1 andc¢; = m. If m 1 ¢, then, since:*c; = ¢; and
25t £ 1,¢, = 0. Thus,

’ m
en = (L g™ 4 g™ ).

If K = C, the complex numbers, then for eaahin, ne,, € ZG, whereZ denotes
the integers. Since,, = ¢,, — >_ e, where the sum is taken over &lim, d < m, we see by
induction thatre,, € ZG.

Let R be any ring whichn is a unit, and let? be the subrindt.1 : ¢t € Z}. Then
R ~ZorR = Z/ < r > for somer relatively prime ton. In either case, for somef n
there are homomorphisms

Z—R =7/ <p>—K,
whereK is the algebraic closure &/ < p >, which extend to homomorphisms
7ZG — RG — KG.

In RG, we may define inductively for each|n, e,, = Z(1+¢™+---+¢"~™) ande,, = ¢,, —

3" eq, Where the sum is taken over dlin, d < m. Thenne,, € R G for eachm|n. Using the

homomorphisms defined abovee,,)* = n(ne,,), (ne,)(neqg) = 0if m # d, D mjn €m =1
andg™e,, = en. If g"en = e, IN RG for somer, 0 < r < m theng’(ne,,) = ne,, in R'G,
hence inKG. Thusg’e,, = e,, in KG, a contradiction. It follows thaje,,, is a primitivem"
root of unity in RGe,,.

Lemma 3.3 (Woods, 1974) Let be a nonzero primitive idempotent iG, and letm/|n.
Thenge is a primitivem root of unity ineRGe if and only ife = e,,e. In this casege is a
primitive m' root of unity ineRGe.
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Proof Since(ge)” = g"e = e, ge is a primitived™ root of unity ine RGe for a uniqued|n.

Sincee is primitive ande = > e.e, e = ee for a uniqguem|n. We will show thatd = m.

m|n

Since(ge,)™ = em, (ge)™ = (geme)™ = enme = e. Thusd|m. Sincegle = e,
e, e = e. If d < m, thene = e,e,,e = 0, a contradiction. Thus] = m.

In this casecRGe = eRGe andge = ge in RG. Thene = &,,¢, and the above

argument applied iRG shows thae is a primitivem! root of unity ine RGe. O

Lemma 3.4 (Woods, 1974) LeR be a local ring,G a group ande an idempotent ilRG
such thateRGe C eR N Re ande(1) is central and not a zero divisor iR. LetR = {r ¢
R:er =re}. TheneRGe = R’ as rings andR’ is local.

Proof If x € eRGe, thenz = re for a uniquer € R. Definef : eRGe — R by
f(re) = r. Clearly, f preserves sums, aricer f = 0. If re € eRGe, thenere = re. Thus
f(rese) = f(rse) =rs = f(re)f(rs). This proves that RGe = Im f by First Isomorphism
Theorem.

Clearly, R C Im f. Letr € Im f. Thenre € eRGe C eR N Re, and sore = er’ for
somer € R. Thus,re(1) = e(1)r" = e(1)r', so by assumption = ' € R'. This completes
the proof thae RGe = R'.

Finally if »' € R isaunitinR, thenr’ is a unitinR’. Thus, the set of non-units iR’
is preciselyR’ N Rad R, an ideal ofR’. It follows that R’ is local. O

Lemma 3.5 (Woods, 1974) Lek be a local ring withchar(R) = p > 0, and letG =< g >
be a cyclic group of orden, p { n. Letm|n, and supposé& has a primitivem!” root of unity
r such that is a primitivem®™ root of unity inR. ThenRGe,, is semiperfect.

Proof ~Since RGe,, = RGe,, ® RG(e,, — e,), it is sufficient to show thaRRGe,, is
semiperfect.

Fori=1,...,m,let

Sincer’yfi = fi, f7 = fi- 1f i # k, then0 < |i — k| < m. Thus7~* # Tin Randr* — 1
isaunitinR. Now

fife = = It gigtie

wherezr = Z;jol r@=ki Butr~*z = z, and sar = 0. Thus,f; fi, = 0. Moreover,
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the unity of RGe, .

Finally, f;RGe,, fi = fiRGf;. Sincer'gfi = fi, gf; = r~'f; € Rfi. Thus,RGf; =
Rf;. Similarly, f;RG = f;R, and sof;RGf; C f;RN Rf;. Moreover,f;(1) = L 270 = 1 3
central unitinR. By Lemma 3.4,f;RG f; is local. Thus,RGe, is semiperfect. O

Lemma 3.6 (Woods, 1974) Lej andh be commuting elements in a groGjpof orderss and
t respectively, and = lem(s, t). Then for some integet, gh" has orderu.

Proof The group< g, h > is afinite abelian group of exponentHence< g, h >=Y x 7,
whereY =< y > is a cyclic group of ordet, andz* = 1 forall z € Z. Letg = (y*, 2;) and
h = (3°, 25). Sinceg andh generat&” x Z, y* andy® generat&”. Thus,ged(a, b, u) = 1. If
ula, letr = 1. Otherwise, let be the product of all primes which dividebut nota. A check
of possible prime factors gives thatd(a + br,u) = 1. Thus,gh” = (y**"", 2,23) has order
U. [

Lemma 3.7 (Woods, 1974) Lek be aring, and let; = C,,. If RG is semiperfect, then so is
R(G x G).

Proof  Without loss of generality we may assumieis local andn is a unit inR. Letg
generate7, and H =< h > denote the second copy 6f. For eachm with m/|n, define
em € RG as in the beginning of this section, and defifige € RH in a corresponding way
usingh in place ofg.

Let e be a primitive idempotent iR(G x H). We show that is local. Nowe = ee; f;
for a uniques with ¢|n. Thus, by Lemma 3.6, in the multiplicative grokpge, he >, ge has
orders andhe has ordet. Letu = lem(s, t), and letr be an integer such that"e has order
u. The automorphism aff x H which sendgh" to g andh to h extends to an automorphism
0 of R(G x H). Sincef(e)R(G x H)f(e) = eR(G x H)e, itis sufficient to show thad(e) is
local idempotent.

Sincee is a primitive idempotent, so &(e). In < gf(e), h(e) >, gb(e) = O(gh™e)
has orden, andhf(e) = 0(he) has ordert. By Lemma 3.60(e) = 0(e)e, fi. Now R(G x
H)e, f; = (RGe,)H f, in anatural way. Sinc&Ge, is semiperfect, the unit elementis sum
of orthogonal local idempotents. [fis a local idempotent iRGe,,, thenf(RGe,)H f,f =
(fRGe,f)H f; is semiperfect by Lemmas 3.3 and 3.5. Thi¥§se, H f; is semiperfect by
Lemma 2.3. It follows that

0(e)R(G x H)0(e) = 0(e)R(G x H)e,fb(e)
is alocal ring and?(G x H) is semiperfect. O
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Proposition 3.9 (Woods, 1974) LeR be a ring and be a finite group of exponent Then
RG is semiperfect if and only IRC,, is semiperfect.

Proof SinceRC),, is a homomorphic image akG, if RG is semiperfect, then so BC,,.
Conversely, supposBC,, is semiperfect. If- > 2, thenRC" = (RC"?)(C, x C,) and
RCr—! =~ (RC"2)C,,. By Lemma 3.7 and inductiom?C" is semiperfect for alt > 0. But
RG is a homomorphic image a®C] for somer. Thus,RG is semiperfect. O

Before giving the main theorem of this chapter, we need theviing definition and theorem.

Definition 3.2 Let R be a commutative local ring anf{x) € R[X] a monic polynomial. We
say that Hensel Lemma holds fé(z) in R[X] if for every factorizationf(z) = g(x)h(z)
of f(x) in R[X] such thatg(x) is monic andg(z) and h(z) are relatively prime, there ex-
ists monic polynomialg*(z) and h*(x) in R[X] such thatf(z) = g¢*(z)h*(z), g*(z) =
g(x), *(2) = h(z).

Theorem 3.3 (Azumaya, 1950) Lek” be a commutative local ring andl(z) be a monic
polynomial in K[X]. Then Hensel Lemma holds fgi(z) if and only if idempotents of
K[X]/ < f(z) > can be lifted to an idempotent &f[X]/ < f(z) >.

Theorem 3.4 (Woods, 1974) LeR be a commutative local ring witthar(R) = p > 0 and

G an abelian group with Sylow-subgroup’,. ThenRG is semiperfect if and only '(‘fl/Gp

is a finite group of exponent and every monic factor of* — 1 in R[X] can be lifted to a
monic factor oiz™ — 1 in R[X].

Proof By Proposition 3.8 and Proposition 3.9, we may assudime: C,, andn is a unit
in R. ThenRG =~ R[X]/ < 2™ — 1 > and sinceG is a finite group, by Corollary 2.12,
RG = RG = R[X]/ < z" — 1 >. Sincen is a unitinR, 2" — 1 has no multiple roots in any
extension ofR? by Theorem 2.20. Thus, if* — 1 = f(x)g(z) in R[X], thenf(z) andg(x)
are relatively prime. By Theorem 3.3, idempotentsl_%i[d(]/ < z" — 1 > lift to idempotents
in R[X]/ < 2™ — 1 > if and only if every monic factor of" — 1 in R[X] lifts to a monic
factor ofz™ — 1in R[X]. O

3.3. Examples

In this section it is shown that for a given rifgy the class of group& for which RG
is semiperfect is not closed under taking direct productubgroups.

Let g generate’,, the 2-element group. IR is a local ring ancthar(R) # 2, then
”Tg andl’Tg are local idempotents iRC> whose sum is 1. ThusRCs is semiperfect. If

char(R) = 2, thenRC, is semiperfect by Proposition 3.7.
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Lemma 3.8 If R is semiperfect and; is the symmetric group of degree 3, th&b; is

semiperfect.

Proof We may assume is local. Ifchar(R) = 3, let N be the subgroup of order 3, and let
H be a subgroup of order 2 ity. ThenS; = N H andR.S; is semiperfect by Proposition 3.6.

If char(R) # 3, let g generateN andh generate/, and lete = % a central
idempotent. Then

RSg = RSge ) RS3(1 — 6).

SinceRS3(1 — e) = wN by Proposition 2.22RSse = RS; /wN = R(S5/N) = RC5. Thus,
RSse is semiperfect.

Let f; = w and letf, = (1 —e) — f1. Then f; and f, are orthogonal
idempotents whose sumis— e. Also, fori = 1,2, f;RS3(1 —e)f; = fiRSsf; C fiRN Rf;
andf; = é By Lemma 3.4 ,f; RSs f; is local. Thus,RS5(1 — e) is semiperfect. OJ

Now we exhibit a local ringz such thatzC'; is not semiperfect. Lek = {7 : a,b €
Z and ged(7,b) = 1}, a subring of the rationals. TheRis a field with 7 elements. I&[X],

—1=(x—-1)(z—2)(x—4).
Butin R[X],
—1=(x—-1)(*+x+1).

Sincez? + x + 1 isirreducible over?, RCs is not semiperfect.
For our second example, we let

R={j:zyc Z[i) and(2 + 7)1 y in Z[i]},
a subring of the complex numbers. Th&ns a field with 5 elements. IR X],
P—1=(x-1)(a*+1z+1)
and
28 —1=(x—1D(x+1)(x—i)(x+1i)(z* - i) (2 +1),

and the quadratic factors are irreducible. Since theseriaeations can be lifted t®[ X ], RC;
and RCy are semiperfect.

Now C5 x Cg = Cyy. In R[X], 2** — 1 has the irreducible factar* — iz? — 1, but in
R[X],

ot =i —1=2"+222+9 = (2? + 22 + 3) (2% — 22 + 3).
ThusRC,, is not semiperfect.
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CHAPTER 4

PERFECT GROUP RINGS

4.1. Sufficiency

In this section we assume thatis perfect and~ is finite and show thaRad(RG) is
left 7'- nilpotent andRG/ Rad(RG) is Artinian.

Lemma 4.1 (Woods, 1971) It is a finite group of order, then there is a ring embedding
of RG into M,,(R) which sendRad(R)G into Rad(M,,(R)).

Proof SinceRG = R™ as leftR-modules, the endomorphism rifigyd z( RG) = M,,(R).
Right multiplication by an element akG is a left R-homomorphism ofRG into itself, and
this correspondence is clearly an embedding of the Raginto the ringEndz( RG).

Since elements o2 commute with elements af7, an element- of R is mapped
onto the matrix withr’s on the diagonal and 0’s elsewhere. ThBad(R) is mapped into
M, (Rad(R)) = Rad(M,(R)), an ideal. The result follows. O

Proposition 4.1 (Woods, 1971) IR is perfect and~ is finite, thenRG is perfect.

Proof ~ SinceR is perfect,?/ Rad R is Artinian. ThusRG is Artinian by Theorem 2.24.
We know thatRad(R)G C Rad(RG) by Corollary 2.12. TherRG = RG/Rad(R)G maps
onto RG/ Rad(RG) and RG/ Rad(RG) is Artinian.

The canonical epimorphism diG onto RG takesRad(RG) into Rad(RG), that s,
Rad(RG)/Rad(R)G C Rad(R)G. SinceRG is Artinian, Rad(RG) is nilpotent. But, by
Lemma 4.1 Rad(R)G C Rad(M,(R)), which is left T-nilpotent since)M,,(R) is perfect.
Thus,Rad(RG) is left T-nilpotent. O

4.2. Necessity wherds is Abelian

Lemma 4.2 (Woods, 1971) IRG is perfect, thertr is a torsion group.

Proof If ¢ € G does not have finite order, then the cyclic subgroups gesetiatg?” for
n > 0 form an infinite descending chain. Applyingyields an infinite descending chain of
right ideals of Rz, which are principal. O
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Proposition 4.2 (Woods, 1971) IRG is perfect, then so i&. If in addition, G is abelian,
thend is finite.

Proof If RG is perfect then so iRG/wG >~ R. To show that5 is finite, we may assume
without loss of generality thak = M, (D), whereD is a division ring, since? / Rad(R) is
a direct sum of rings of this type. Sinceis an abelian torsion groug; may be written as
G, x H, wherep is the characteristic ab, G,, is ap-group, and the order of every element of
H is prime top, and H must be finite.

Suppose thaty, is infinite. ThenRG, = RG/wH is perfect. Ifg € G,, then
(1 — g)*" = 0, wherep is the order ofy. Sincel — g is in the center] — g € Rad(RG),).
Construct a sequende; } in G, so thaty; # 1 andg, is notin the (finite) subgroup generated
by {g1,...,9.—1}. The product is never 0 since the teffj_, (1 — ¢;) does not cancel. This
contradicts to th@-nilpotence ofRad(RG)). O

4.3. Reduction to the Abelian Case

In this section it is shown that iRG is perfect and> is infinite thenG has an infi-
nite abelian subgroufl and RH is perfect, a contradiction. Without loss of generality, we
continue our assumption th&= M, (D), whereD is a division ring.

Lemma 4.3 (Woods, 1971) IRG is perfect andH is a subgroup of~, thenRH is perfect.

Proof By Proposition 2.21RG = @, RH g;, where they; run over a set of coset represen-
tatives forG/H. If I is a principal right ideal o[, then/G = €, 1 g; is a principal right
ideal of RG. Thus, a descending chain of principal right idealsifH gives rise to a similar
chain inRG. OJ

Lemma 4.4 (Woods, 1971) If is a left T-nilpotent ideal of a ringR, then! C rad(R).
Hence, ifR is perfect, theRad(R) = rad(R).

Lemma 4.5 (Woods, 1971) A grou@, which has infinitely many normal subgroups, has an

infinite abelian subgroup.

Proof Without loss of generality, we may assume thais the union of a countable chain
of finite normal subgroup#;. It is clear that an infinite set of commuting elements getesra
an infinite abelian subgroup. Thusdaf does not contain an infinite abelian subgroup, then
there exists a finite sdy, . . ., g,, } of commuting elements which cannot be enlarged. Since
G=U;z2,H;, S CU., H; = H, for somen. SinceH,, is finite, the index of its centralizer

C'in G is finite. SinceG is infinite, C'is infinite, and so there existgse C such thay is not
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in S. Sinceg commutes with every element 6f ¢ may be added t6 and we have reached
a contradiction. O

Proposition 4.3 (Woods, 1971) IRG is perfect, then eithefr is finite or G has an infinite
abelian subgroup.
Proof Let R = M, (D). If D has characteristic 0, theRG is semiprime by Proposition
2.25 hence Jacobson semisimple by Lemma 4.4. TRGs® RG/ Rad(RG) is Artinian and
G is finite.

SupposeD has characteristig > 0. Let

S = {n : G has a normal subgroup of ordetm for somem}.

If S is finite, letn be maximal, and let/,, be a normal subgroup whose order is divisible by
p". By the maximality ofn, G/Hn has no finite normal subgroup whose order is divisible by
p. Therefore,R(G/H,) is semiprime. Sinc&k(G/H,,) is perfect,G / H,, is finite. Sincefd,
is finite, so isG.

If S is infinite, thenG has infinitely many finite normal subgroups. By Lemma 45,
contains an infinite abelian subgroup. This completes thefff the following theorem.

Theorem 4.1 (Woods, 1971) The group rinGG is perfect if and only ifR is perfect and~

is finite.
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CHAPTER 5

CONCLUSION

In this thesis, we gave a survey of some properties of growgsriand some character-
ization of semiperfect and perfect group rings. For thigpse, firstly we mentioned about
some properties of groups, rings and group rings. We coratexdton which conditions oR
andG are necessary and sufficient @and( for the group ringRG to be semiperfect and
perfect.

We studied the papers (Burgess, 1969) and (Woods, 1974).aWehat semiper-
fectness ofRG implies semiperfectness &f. Thus,R is the direct product product of matrix
rings over some division rings. When we look at the necessamgitions on’z for RG to be
semiperfect, we saw that, ¢ is an ID group, therRG cannot be semiperfect for any ring
R. Since a non-torsion abelian group is an extension of a gbyug non-trivial ID group,
this gave us thatz must be torsion ifRG is semiperfect and- is abelian. For an arbitrary
group G, it is not known whetheRG is semiperfect impliegs is locally finite. Again for
an arbitrary group, it is seen that that the characterigtaivasion rings which are related to
the semisimple ring?/ Rad R gives some characteristic properties about the g@ug-or
the sufficient conditions, firstly commutative semiperfieegs are considered. Commutative
semiperfect rings are exactly finite direct products of cartative local rings. By these char-
acterization, it is seen that when we have a finite direct pcbdf commutative local rings
whose factor fields are of characteristiove get a semiperfect group ringdf is an abelian
p-group. Later, the results that are obtained by considdoicgjly finite groups are reviewed.
For semiperfectness @tG, there is not a full characterization for an arbitrary riRgnd an
arbitrary group=. If we have a commutative ring and an abelian grou, a characterization
is given in terms of the polynomial ring[X].

For perfectness, we studied the paper (Woods, 1971). ihstlsufficient conditions
on R andG are obtained. Then it is observed thatifis abelian, therd is finite. Later it is
seen that we can reduce all cases to the abelian case. Fimakge thaRG is semiperfect if
and only if R is perfect and- is finite.
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