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We approve the thesis ofYusuf Alagöz
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ABSTRACT

STRONGLY NONCOSINGULAR MODULES

The main purpose of this thesis is to investigate the notion of strongly noncosingular

modules. We call a rightR-moduleM strongly noncosingularif for every nonzero rightR-

moduleN and every nonzero homomorphismf : M → N , Im(f) is not a cosingular (or Rad-

small) submodule ofN in the sense of Harada. It is proven that (1) A rightR-moduleM is

strongly noncosingular if and only ifM is coatomic and noncosingular; (2) a right perfect ring

R is Artinian hereditary serial if and only if the class of injective rightR-modules coincides

with the class of (strongly) noncosingular rightR-modules; (3) a right hereditary ringR is

Max-ring if and only if absolutely coneat rightR-modules are strongly noncosingular; (4) a

commutative ringR is semisimple if and only if the class of injectiveR-modules coincides

with the class of strongly noncosingularR-modules.
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ÖZET

GÜÇLÜ DUAL TEKİL OLMAYAN MOD ÜLLER

Bu tezde, temel olarak güçlü dual tekil olmayanR-modüllerin yapısının çalışılması

amaçlanmaktadır. BirM sağR-modülünün, sıfırdan farklı herN sağR-modülü ve sıfırdan

farklı herf : M → N homomorfizması için,Gor(f) Harada anlamındaN ’nin eş-tekil sağ alt

modülü değilse,M ’ye güçlü dual tekil olmayansağR-modül denir. BirR halkası için şunlar

ispatlanmıştır: (1) BirM sağR-modülü güçlü dual tekildir ancak ve ancakM koatomik

ve dual tekil olmayan modüldür. (2) BirR sağ tam halkası Artin kalıtsal sıralıdır ancak ve

ancak injektif sağR-modüllerin sınıfı ve (güçlü) dual tekil olmayan sağR-modüllerin sınıfı

çakışır. (3) BirR sağ kalıtsal halkası Max-halka’dır ancak ve ancak mutlak eşdüzenli sağR-

modüller güçlü dual tekildir. (4) BirR değişmeli halkası yarı basittir ancak ve ancak injektif

R-modüller sınıfı ve güçlü dual tekil olmayanR-modüller sınıfı çakışır.
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CHAPTER 1

INTRODUCTION

Throughout this thesis, the rings that we consider are associative with an identity el-

ement and all modules are unitary right modules. LetM be anR-module. A submoduleN

of M is called small inM , denoted asN ≪ M , if N + K = M impliesK = M for any

submoduleK of M . Leonard defines a moduleM to be small if it is a small submodule of

someR-module and he shows thatM is small if and only ifM is small in its injective hull

(Leonard, 1966). The submodule ofM is defined by Rayar as:Z∗(M) = {m ∈ M | Rm is

a small module} (Rayar, 1971). SinceRad(M) is the union of all small submodules ofM ,

Rad(M) ⊆ Z∗(M). We see thatZ∗(M) = M ∩ Rad(E(M)) andZ∗(E) = Rad(E) for any

injective moduleE. The functorZ∗(M) also appear in (Ozcan, 2002). As the dual notion of

singular (nonsingular),M is called cosingular (noncosingular) ifZ∗(M) = M (Z∗(M) = 0).

In a series of papers,̈Ozcan developed much of the properties of the functorZ∗(M) and cosin-

gular modules. For convenience in concepts, the cosingularR-modules are called Rad-small

in this thesis.

Following (Talebi and Vanaja, 2002), a moduleM is called noncosingular if for every

nonzeroR-moduleN and every nonzero homomorphismf : M → N , Im(f) is not a small

submodule ofN . An R-module M is noncosingular if and only if every homomorphic image

of M is weakly injective (Zöschinger, 2006). Recently, there is a significant interest to

noncosingularR-modules, see (Kalati and Tütüncü, 2013), (Tribak, 2014), ( Tütüncü et al.

, 2014), (Tütüncü, Tribak, 2009), (Zöschinger, 2006).

Motivated by the noncosingular modules, in this thesis, we introduce the concept of

strongly noncosingular modules. AnR-moduleM is calledstrongly noncosingularif for

every nonzero moduleN and every nonzero homomorphismf : M → N , Im(f) is not a Rad-

small submodule ofN . Clearly, since small modules are Rad-small, strongly noncosingular

R-modules are noncosingular, but the converse is not true in general (see Example 3.1). Our

aim is to work on the concept of strongly noncosingular modules and investigate the rings and

modules that can be characterized via these modules.

In the second chapter of this dissertation, we give the definitions of some basic notions

and investigate some of their properties which are useful tools for our further studies.

In chapter 3 we present some properties of strongly noncosingularR-modules. We

also prove that anR-moduleM is strongly noncosingular if and only ifM is coatomic and

every simple homomorphic image ofM is injective if and only ifM is coatomic and non-
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cosingular. It is known that the class of projectiveR-modules coincides with the class of

nonsingularR-modules if and only ifR is Artinian hereditary serial (Chatters and Khuri,

1980). Dually, it is shown that a right perfect ringR is Artinian hereditary serial if and only

if the class of injectiveR-modules coincides with the class of (strongly) noncosingular R-

modules. A right hereditary ringR is Max-ring if and only if absolutely coneatR-modules

are strongly noncosingular. For a semilocal right Kasch ring, we show that, anR-moduleM

is strongly noncosingular if and only ifM is semisimple injective.

Chapter 4 deals with the structure of strongly noncosingular R-modules on commu-

tative rings. We show that strongly noncosingularR-modules are exactly the semisimple

injective modules on commutative noetherian rings. A commutative ringR is semisimple if

and only if the class of injective modules coincides with theclass of strongly noncosingular

R-modules.
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CHAPTER 2

RINGS AND MODULES

In this chapter, we shall give some basic notions and their properties which will be

frequently used. The basic notions and all definitions not given here can be found in any

standart text of Ring and Module theory (e.g. (Anderson and Fuller, 1992), (Wisbauer,

1991), (Clark et al., 2006) and (Lam, 1999)).

2.1. Rings and Their Homomorphisms

Definition 2.1 A ring is a set R with two binary operations+ and ., called addition and

multiplication, respectively, such that the following properties are satisfied:

(1) Addition is associative: For allr, s, t,∈ R we haver + (s+ t) = (r + s) + t.

(2) Addition is commutative: For allr, s,∈ R, r + s = s+ r

(3) There is an element denoted by0R such thatr + 0R = 0R + r = r, ∀r ∈ R. 0R is called

the zero element of the ring.

(4) Every element has an additive inverse, that is, for everyr ∈ R there is an element−r ∈ R

such thatr + (−r) = (−r) + r = 0R.

(5) Multiplication is associative: For everyr, s, t ∈ R we haver.(s.t) = (r.s).t.

(6) The left and right distributive laws hold: For allr, s, t ∈ R, r.(s + t) = r.s + r.t and

(r + s).t = r.t + s.t.

Note on notation: For simplicity, we will denotea.b by justab, as long as there is no chance

of ambiguity. Also,0R will be written as0.

Definition 2.2 A ring R is called commutative ifrs = sr for everyr, s ∈ R. Also, a ring in

which there is a multiplicative identity1R such that1Rr = r1R = r for all r ∈ R is called

a ring with identity. This multiplicative identity is called unity. We will denote the unity of a

ring by1 unless there is no ambiguity.

Some rings satisfy certain multiplicative properties. Namely, a commutative ringR is

called a field if every nonzero element has a multiplicative inverse, that is, for everyr ∈ R,

3



there existss ∈ R such thatrs = 1. Also, R is called an integral domain if it has no divisors

of zero, which means that, wheneverrs = 0 for somer, s ∈ R then eitherr = 0 or s = 0.

Throughout our work, by a ring, we will always mean a ring withidentity.

Definition 2.3 A subsetS of a ringR is called a subring if it is a ring with the operations of

R, and1R = 1S in caseR has identity.

A list of some examples of rings is:

(1) The setZ of integers is a commutative ring with usual addition and multiplication.

(2) The set of complex numbers is a field .

(3) Forn ≥ 2 the setMn(R) of all n× n matrices with coefficients in a ringR is a noncom-

mutative ring with matrix addition and multiplication.

After these definitions and examples, we give the necessary and sufficient conditions to be a

subring:

Proposition 2.1 The Subring Criterion. LetR be a ring andS be a subset ofR. ThenS is a

subring ofR if and only if for everya, b ∈ S:

(i) a− b ∈ S;

(ii) ab ∈ S.

Now we can give the definiton of a ring homomorphism:

Definition 2.4 LetR, S be rings. The mappingf : R → S is called a ring homomorphism if

it satisfies the following:

(i) f(a+ b) = f(a) + f(b) for all a, b ∈ R;

(ii) f(ab) = f(a)f(b), for all a, b ∈ R;

(iii) f(1R) = 1S.

Special names are given to homomorphisms which satisfy certain properties. An

onto homomorphism is called an epimorphism, and a one-to-one homomorphism is called

a monomorphism. A one-to-one and onto ring homomorphism is called an isomorphism. If

there is an isomorphism between two rings R and S, we say that Rand S are isomorphic and

denote it byR ∼= S.

4



2.2. Ideals and Factor Rings

We go on developing the necessary tools for our work. Usage ofideals to develop ring

theory is of great importance. In this section we will give the fundamental properties of ideals.

Definition 2.5 LetR be a ring. We say that the subsetI ofR is a left ideal ofR if the following

are satisfied:

(i) I 6= ∅;

(ii) whenevera, b,∈ I, thena+ b ∈ I;

(iii) whenevera ∈ I andr ∈ R, thenra ∈ I, also.

Similarly a right ideal of a ring can be defined by changing theleft multiplication in

the definition with right multiplication. If I is both left and right ideal, we say that I is a two

sided ideal. Clearly, for a commutative ring, left and rightideals coincide. By an ideal we will

always mean a two sided ideal.

The kernel of a homomorphismf : R → S is the set

Kerf := {r ∈ R : f(r) = 0}.

The kernel of a homomorphism is an ideal of its domain. We can tell f is a monomor-

phism if and only ifKerf = 0 (see, (Anderson and Fuller, 1992)).

Suppose thatI is a proper ideal of a ringR. The relation defined by

a ≡ b(modI) ⇔ a− b ∈ I

determines an equivalence relation onR. The congruence class of an element a is defined by

a + I = {a + x : x ∈ I} and is called a coset of the elementa, and the setR/I of all cosets

of I is a ring with operations defined by

(a+ I) + (b+ I) = (a + b) + I and (a+ I)(b+ I) = ab+ I.

Additive and multiplicative identities are0 + I and1 + I.

5



The ringR/I is called the factor ring ofR moduloI. Further, the mapσ : R → R/I

defined byr 7→ r + I is an epimorphism with kernelI, is called the natural or canonical

epimorphism.

Definition 2.6 We say that an ideal M of a ring R is a maximal ideal, if

(i) M $ R, and

(ii) M $ I ⊆ R implies thatI = R for every idealI ofR.

From now on, we give the results on modules necessary for our work. Briefly, an

R-module can be considered as the generalization of the notion of vector space in the sense

scalars are allowed to be taken from a ring R instead of a field.

2.3. Modules, Submodules, Factor Modules and Module

Homomorphisms

Although modules are in fact considered as a pair(M,λ), where M is an additive

abelian group andλ is a map fromR to the set of endomorphisms of M, we find the following

definition more common and simple:

Definition 2.7 LetR be a ring (with unity 1). A rightR-module is an additive abelian group

M together with a mappingM ×R → M , which we call a scalar multiplication, denoted by

(m, r) 7→ mr

such that the following properties hold: for allm,n ∈ M andr, s ∈ R;

(1) (m+ n)r = mr + nr,

(2) m(r + s) = mr +ms,

(3) m(rs) = (mr)s.

If, in addition, for everym ∈ M we havem1 = m, thenM is called a unitary rightR-module.

If M is a rightR-module, we denote it byMR.

Note that one can obtain the leftR-module definition by applying the scalar multipli-

cations from the left. For commutative rings, two notions ofleft and rightR-module coincide.

In our work, all modules will be unitary right(left)R-modules. To simplify terminology, the

expression ”R-module” or ”module” will mean rightR-module.

6



Example 2.1 Here is a list of some elementary examples of modules:

(1) As we indicated at the beginning, every vector space over a field F is anF -module.

(2) Every abelian group is aZ-module, whereZ is the set of integers. Hence, abelian groups

can be generalized via module theory.

(3) Every ringR is a module over itself.

A submodule of anR-moduleM is a subgroupN of M which is closed under scalar

multiplication, i.e.,nr ∈ N for all r ∈ R, n ∈ N . Clearly, the0 and the moduleM itself are

submodules ofM . They are called trivial submodules ofM . A nonzero rightR-moduleS that

has only0 andS for its submodules is said to be a simple module. The set of allsubmodules

of a rightR-moduleM is partially ordered by⊆ , that is, by inclusion. Under this ordering,

a minimal submodule ofM is just a simple submodule ofM . We call a submoduleN of M

a proper submodule ofM if N & M . A proper submoduleN of M is said to be a maximal

submodule ofM if wheneverN
′

is a submodule ofM such thatN ⊆ N
′

⊆ M , eitherN = N
′

or N
′

= M . When a ringR is considered as a right module over itself, its submodules are

precisely the right ideals ofR. Clearly,A is a minimal right ideal ofR if and only if AR is a

simpleR-module.

Given any two R-modulesM1,M2, we can always produce a new module, which we

call the sum ofM1,M2, containing bothM1 andM2. This is done by defining

M1 +M2 = {m1 +m2 : m1 ∈ M1, m2 ∈ M2}.

Also, for an infinite family{Mλ}λ∈Λ of submodules ofM , we define the sum as
∑

λ∈Λ Mλ = {
∑r

k=1mλk : r ∈ N and fork = 1, 2, ..., r, λk∈Λ, mλk
∈ Mλk

}.

This is a submodule ofM and so is the intersection
⋂

λ∈Λ Mλ. It is worth noting that
⋂

λ∈Λ Mλ

is the largest submodule ofM which is contained in allMλ, and
∑

λ∈Λ Mλ is the smallest

submodule which contains allMλ. ( (Wisbauer, 1991),§6.2).

Proposition 2.2 Modular law. ( (Wisbauer, 1991),§6.2). If H,K,L are submodules of an

R-moduleM andK ⊂ H, then

H ∩ (K + L) = K + (H ∩ L).

Now we define the module homomorphisms:

Definition 2.8 LetR be a ring andM,N R-modules. A functionf : M → N is called an

R-homomorphism if, for allm1, m2 ∈ M and for allr ∈ R,

(i) f(m1 +m2) = f(m1) + f(m2);

7



(ii) f(m1r) = f(m1)r.

We see no need to list the definitions of R-epimorphism, R-monomorphism, and R-

isomorphism since they are similar to the corresponding definitions for ring homomorphisms.

For a module homomorphismf : M → N , as one may expect,Kerf is a submodule of

M andImf is a submodule ofN . Note that we will just write homomorphism instead of

R-homomorphism. The additive group of all the homomorphism from anR-moduleM to an

R-moduleN is denoted byHomR(M,N); R-endomorphisms onM is denoted byEndR(M).

Definition 2.9 Let M be an R-module and N be a submodule of M. Then the set of cosets

M/N = {x+N : x ∈ M}.

is a right R-module if we define the addition and scalar multiplication as

(x+N) + (y +N) = (x+ y) +N, (x+N)r = xr +N .

This new module is called the factor module of M modulo N. The mapπ : M → M/N defined

bym 7→ (m+N) is an epimorphism called the natural or canonical epimorphism.

Theorem 2.1 The Factor Theorem. ( (Anderson and Fuller, 1992), Theorem 3.6) LetM,M
′

andN be R-modules and letf : M → N be anR-homomorphism. Ifg : M → M
′

is an

epimorphism withKer(g) ≤ Ker(f), then there exists a unique homomorphismh : M
′

→ N

such thatf = hg.

Moreover,Kerh = g(Ker(f)) and Im(h) = Im(f), so thath is monic if and only if

Ker(g) = Ker(f) andh is epic if and only iff is epic.

It is wise to give the isomorphism theorems now:

Theorem 2.2 Isomorphism Theorems. ( (Anderson and Fuller, 1992), Corollary 3.7) Let M

and N be R-modules.

(1) If f : M → N is an epimorphism withKerf = K, then there is a unique isomorphism

η : M/K → N such thatη(m+K) = f(m)

for all m ∈ M .

(2) If K and L are submodules of M such thatK ⊆ L, then

(M/K)/(L/K) ∼= M/L

(3) If H and K are submodules of M, then

8



(H +K)/K ∼= H/(H ∩K)

The next theorem characterizes the submodules of factor modules:

Theorem 2.3 Correspondence Theorem. ( (Anderson and Fuller, 1992), Proposition 2.9)

Let T be a submodule of anR-moduleM . Then there is an isomorphism between the set of

submodules ofM/T and the set of submodules ofM which containsT , that is, the submodules

ofM/T are precisely all factor modulesN/T , whereN is a submodule ofM which contains

T .

Let M be a leftR- module. Then for each subsetX of M , the (left) annihilator ofX

in R is

RAnn(X) = {r ∈ R | rx = 0 for all x ∈ X},

and for eachI ⊆ R, the (right) annihilator ofI in M is

AnnR(I) = {x ∈ M | rx = 0 for all r ∈ R)}.

Proposition 2.3 ( (Anderson and Fuller, 1992), Proposition 2.14) LetM be a leftR-module

andX be a subset ofM . ThenRAnn(X) is a left ideal ofR. Moreover, ifX is a submodule

of M , thenRAnn(X) is an ideal ofR.

2.4. Generating Sets, Finitely Generated Modules, and Maximal

Submodules

Let M be a leftR-module. A subsetN of M is called a generating set ofM if

M = RN = {
∑k

i=1 rini : k ∈ N, and for i = 1, 2, ..., k, ri ∈ R, ni ∈ N}.

If this is the case, we say thatN generatesM or thatM is generated byN . If M has

finite generating set, then we say thatM is finitely generated. In particular, ifM is generated

by a single element, thenM is called cyclic. In this case,M = Ra for some elementa of M .

LetN be a submodule ofM . If the factor moduleM/N is finitely generated, then the

submoduleN of M is called a cofinite submodule ofM . We will use the following properties

without mentioning in our work. Proofs can be found in ( (Wisbauer, 1991),§6.6):

Lemma 2.1 Letf : M → N be a module homomorphism andL a generating set ofM . Then

(1) f(L) is a generating set ofIm(f), and

9



(2) if M is finitely generated, thenIm(f) is also finitely generated.

Every ringR is a cyclic module over itself. Recall that a proper submoduleN of a

moduleM is called maximal ifN is not contained in any proper submodule ofM . That is,

if N $ K, thenK = M . If an R moduleM is finitely generated, thenM has a maximal

submodule (see, (Anderson and Fuller, 1992),§10). Factor modules of finitely generated

modules are also finitely generated. To see this, consider the natural epimorphismδ : M →

M/N , whereM is a finitely generated module andN is a submodule ofM . Then by 2.1, it

follows thatM/N is also finitely generated.

Theorem 2.4 ( (Anderson and Fuller, 1992), Theorem 10.4.) LetM be a rightR-module.

Then,M is finitely generated if and only ifM/Rad(M) is finitely generated and the natural

epimorphismM → M/Rad(M) → 0 is small (i.e.,Rad(M) ≪ M).

2.5. Direct Products and Direct Sums

While a considerable amount of module theory deals with decomposing a module into

smaller parts, either by additive decompositions or residue class decomposition, we may also

want to construct new modules from the modules we already have. As we have mentioned

before, given any number of modules, we can create a larger module containing all of the

given modules. This is possible with the so-called notion ofproducts, and in this section we

briefly give this notion.

Let {Mi : i ∈ I} be a family of left R-modules, where I is a nonempty index set.

Consider the set theoretic cartesian product
∏

i∈I Mi of these modules. Then this product of

the family{Mi} becomes a left R-module in the following way: let(mi), (ni) ∈
∏

i∈I Mi, r ∈

R. Addition is defined componentwise by(mi) + (ni) = (mi + ni) and scalar multiplication

is defined by:r(mi) = (rmi). This componentwise addition and scalar multiplication makes

sense because eachMi is a left R-module alone.

Definition 2.10 We say that the element(mi)i∈I ∈
∏

i∈I Mi has finite support if the set{i ∈

I : mi 6= 0} is finite.

Now consider the set of all elements of
∏

i∈I Mi with finite support. This subset is

actually a submodule of
∏

i∈I Mi ( (Anderson and Fuller, 1992),§6).

Definition 2.11 Let {Mi : i ∈ I} be a family of left R-modules, where I is a nonempty index

set. Then the left R-module
∏

i∈I Mi is called the direct product of the family{Mi : i ∈ I}.

The submodule of all elements with finite support of
∏

i∈I Mi is called the external direct sum

10



of the family{Mi : i ∈ I}, denoted
∐

i∈I Mi. External direct sum of the family{Mi : i ∈ I}

is also denoted by
⊕

i∈I Mi,
⊕

I Mi, or
⊕

Mi. One can see that in case the index setI is

finite, product and coproduct of the family{Mi : i ∈ I} coincide. That is,
∏

I Mi =
∐

I Mi

when I is finite. Also, ifMi = M for all i ∈ I then we write

M (I) = ⊕IM

for the external direct sum ofcardI copies ofM .

Now, we will give the definition of internal direct sum . This notion is a little different

from that of products and coproducts. Here we deal with sums of submodules of a given

module. So, let{Mi : i ∈ I} be a family of submodules of a moduleM . M is said to be the

internal direct sum of the family{Mi : i ∈ I} if

(1) M =
∑

i∈I Mi, and

(2) Mj

⋂

(
∑

i 6=j Mi) = {0} for all j ∈ J .

In this case, we writeM =
⊕

i∈I Mi. This should not lead to any confusion that we

use the same notation for external direct sums, because as wehave said, in case of a direct

sum, we have submodules of a module as summands, while in external direct sum we have

any family of modules as summands. For simplicity, we will use the phrase direct sum for

internal direct sum.

A submodule N of a module M is called a direct summand of M if there exists a

submodule K of M such thatM = N ⊕K. Trivially, for any module M, the zero submodule

and M, itself are direct summands.

2.6. Exact Sequences

Let K,L,M beR-modules. Consider the sequenceK
f // M

g // L wheref and

g are module homomorphisms. We say that this sequence is exactat M if Imf = Kerg.

Generally, a sequence of homomorphisms

... // Mn−1
fn // Mn

fn+1 // Mn+1
// ...

is exact if it is exact at eachMi, that is, if Im(fn) = ker(fn+1) for all n. The next result

follows from the definition:
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Proposition 2.4 ( (Wisbauer, 1991),§7.14) LetM,N be modules andf : M → N a homo-

morphism. Then

(1) 0 // M
f // N is exact if and only iff is a monomorphism;

(2) M
f // N // 0 is exact if and only iff is an epimorphism;

(3) 0 // M
f // N // 0 is exact if and only iff is an isomorphism.

More generally, an exact sequence of the form

0 // K
f // M

g // N // 0

is called a short exact sequence. It can be derived from the above proposition that in such an

exact sequencef is a monomorphism andg is an epimorphism. By isomorphism theorems,

one can see thatK ∼= Imf and thatM/Imf ∼= N . Thus, in an exact sequence generallyK

is regarded as a submodule ofM andN is regarded as a factor module of M.

2.7. Injective Modules and Noetherian Rings

In this section, we will introduce injective modules and give some basic properties of

these modules.

Definition 2.12 AnR-moduleM is said to beinjective if for any monomorphismg : A → B

of R-modules and anyR-homomorphismh : A → M , there exsists anR-homomorphism

h
′

: B → M such thath = h
′

g:

0 // A
g //

h
��

B

h
′~~⑥

⑥

⑥

⑥

M

Proposition 2.5 (Anderson and Fuller, 1992)

(1) If (Ek)k∈K is a family of injective right R-modules, then
∏

k∈K Ek is also injective right

R-module;

(2) Every direct summand of an injective rightR-moduleE is injective;

(3) A finite direct sum of injective rightR-modules is injective;

12



(4) If M is an injective submodule ofR-moduleN , thenM is a direct summand ofN .

It is not true that every direct sum of injective modules is injective. Before we see that all such

direct sums are injective, we shall give the definition of noetherian ring first.

Definition 2.13 A ringR is said to be noetherian if it satisfies the following three equivalent

conditions:

(1) Every non-empty set of ideals inR has a maximal element;

(2) Every ascending chain of ideals inR is stationary;

(3) Every ideal inR is finitely generated.

Proposition 2.6 ( (Anderson and Fuller, 1992), Proposition 18.13) For a ringR, the follow-

ing are equivalent:

(1) Every direct sum of injective rightR-modules is injective;

(2) R is a right noetherian ring.

Definition 2.14 A ring R is called an artinian ring if every descending chain of ideals inR

is stationary.

Definition 2.15 Let M be an R-module. A monomorphismf : M → Q is called an injective

hull of M if Q is injective andf is an essential monomorphism, i.e.Im(f) is essential in Q.

We denote the injective hull of a module M by E(M).

2.8. Projective Modules and Perfect Rings

In this section we recall the definition of a projective module and give some basic

properties of these modules.

Definition 2.16 AnR- moduleP is said to beprojectiveif for any epimorphism ofR-modules,

say,g : B → C, and anyR-homomorphismh : P → C, there exists anR-homomorphism

h
′

: P → B such thath = gh
′

:

P
h
′

��⑦
⑦

⑦

⑦

h
��

B
g // C // 0

Proposition 2.7 ( (Lam, 1999),§2A) The following hold for a ringR.
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(1) If {Mα}△ is a family ofR- modules, then
⊕

△Mα is projective if and only if eachMα is

projective.

(2) A direct summand of a projectiveR-module is projective.

(3) The ringR is a projectiveR-module.

(4) Every freeR-module is projective.

Proposition 2.8 ( (Anderson and Fuller, 1992), Proposition 17.2) The following statements

about a rightR- moduleP are equivalent;

(1) P is projective ;

(2) Every epimorphismRM →R P → 0 splits;

(3) P is isomorphic to a direct summand of a free rightR- module.

Definition 2.17 A ringR is right hereditaryif every right ideal is projective.

Semisimple rings are easily seen to be left and right hereditary via the equivalent

definitions: all left and right ideals are summands ofR, and hence are projective. Also, the

ring R of n× n upper triangular matrices over a fieldK is both left and right hereditary.

Proposition 2.9 ( (Anderson and Fuller, 1992)) For a ringR the following are equivalent;

(1) R is right hereditary;

(2) Every factor module of an injective rightR-module is injective;

(3) Every submodule of a projective rightR-module is projective.
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2.9. Flat Modules

In this section we do not delve into the details of definitionsof every term in homolo-

jical algebra. Essentially, we accept the Hom and Tensor (
⊗

) functors are known. For more

details on homological algebra see, (Rotman, 2009). The idea of flat modules plays a special

role in many parts of ring theory. On the other hand, flat modules are natural generalizations

of projective modules and they are related to injective modules via the formation of character

modules.

Definition 2.18 ( (Lam, 1999), Definition 4.0) A right moduleMR is called flat if0 → M ⊗R

A → M ⊗R B is exact in the category of abelian groups whenever0 → A → B is an exact

sequence of leftR-modules.

We note that any projectiveR-module is flat, and the converse is false, in general.

Definition 2.19 (Anderson and Fuller, 1992) A pair(P, π) is a projective cover of the module

MR in caseP is a projective rightR-module andπ : P → M is a small epimorphism i.e.

Ker(π) ≪ P . A ring R is right perfect in case each of its right modules has a projective

cover.

Theorem 2.5 Let R be a ring with jacobson radicalJ . Then the following statements are

equivalent:

(1) R is right perfect;

(2) R/J is semisimple and for every rightR-moduleM , MJ ≪ M

(3) Every flat rightR-module is projective.

While flat modules are related to projective modules, there is also an interesting rela-

tionship between flat modules and injective modules, discovered by J. Lambek. This relation-

ship is formulated by using the notion of character modules.For any rightR-moduleP , the

character module ofP is defined to be

P
′

:= HomZ(P,Q/Z).

This is a leftR module via the action(r, f) 7→ rf , where(rf)(x) = f(xr) for r ∈ R, f ∈ P
′

,

andx ∈ P .

Theorem 2.6 (Lambek) ( (Lam, 1999), Theorem 4.9) A rightR-moduleP is flat if and only if

its character moduleP
′

is injective.
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Definition 2.20 ( (Lam, 1999), Definition 4.25) A modulePR is said to be finitely presented if

there exists an exact sequence0 → K → F → P → 0 whereF is free of finite rank, andK

is finitely generated. Equivalently, there exists an exact sequenceRm → Rn → P → 0 with

m,n ∈ N.

Proposition 2.10 ( (Lam, 1999), Proposition 4.29) A ringR is right noetherian if and only if

all finitely generated (cyclic) rightR-modules are finitely presented.

Theorem 2.7 ( (Lam, 1999), Theorem 4.30) LetPR be a finitely presented module over any

ring R. ThenP is flat if and only if it is projective.

2.10. Socle and Radical of a Module

Definition 2.21 A submoduleN of anR-moduleM is said to be anessential (or a large)

submodule ofM , writtenN ✂M , if N ∩N ′ 6= 0 for each nonzero submoduleN ′ of M . If N

is an essential submodule ofM , thenM is referred to as anessential extensionof N .

Definition 2.22 LetM be anR- module. The submodule

Z(MR) = {x ∈ M | xI = 0 for some I E RR}

is called the singular submodule ofM . AnR-moduleM is said to be singular (nonsingular)

if Z(M) = M (Z(M) = 0).

We observe that the ringR is a nonsingular rightR module if and only ifZ(RR) =

0, and in this caseR is called a right nonsingular ring. Likewise, we say thatR is a left

nonsingular ring ifZ(RR) = 0. Right and left nonsingular rings are not equivalent (see,

(Goodearl, 1976)).

Let M be anR-module andN ≤ M . M/N is singular wheneverN ✂ M . The

converse of this can easily fail; for example, letM = Z/2Z andN = 0. M/N is a singularZ

module, butN is not an essential submodule ofM .

In the following definition, dual definitions for essential submodules and essential

extension are introduced.

Definition 2.23 N is calledsuperfluousor small in M, writtenN ≪ M , if, for every sub-

moduleL ⊆ M , the equalityN + L = M impliesL = M . A moduleN is a small cover of a

moduleM if there exists an epimorphismf : N → M such thatKer(f) ≪ N .

Let M be anR-module. Thejacobson radicalof M is defined by
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Rad(M) =
⋂

{K ⊆ M | K is a maximal submodule in M}

=
∑

{L ⊆ M | L is a small submodule in M}

and thesocleof M is defined by

Soc(M) =
∑

{K ⊆ M | K is a minimal submodule in M}

=
⋂

{L ⊆ M | L is an essential submodule in M}.

If M has no simple submodule, then we setSoc(M) = 0. Also, if M has no maximal

submodule we setRad(M) = M . The jacobson radical of a ringR is denoted byJ(R). The

right socle of a ring isS = Soc(RR) and left socle isS ′ = Soc(RR), and they are ideals of

R. They need not to be equal for example; ifR is the ring of2 × 2 upper triangular matrices

over a field, thenS 6= S ′.

Corollary 2.1 ( (Anderson and Fuller, 1992), Corollary 15.4) IfR is a ring, then

Rad(RR) = Rad(RR).

The Jacobson radical of a ring isJ(R) = Rad(RR) and it is an ideal.

Corollary 2.2 ( (Anderson and Fuller, 1992), Corollary 15.5) IfR is a ring, thenJ(R) is the

annihilator inR of the class of simple right (left)R-modules.

Corollary 2.3 ( (Anderson and Fuller, 1992), Corollary 15.6) IfI is an ideal of a ring R, and

if J(R/I) = 0, thenJ(R) ⊆ I.

Proof If J(R/I) = 0, then the intersection of the maximal right ideals ofR containingI is

exactlyR. It follows thatJ(R), the intersection of the maximal right ideals ofR , is contained

in I. �

Corollary 2.4 ( (Anderson and Fuller, 1992), Corollary 15.8) IfR and R′ are rings and

if φ : R → R′ is a surjective ring homomorphism, thenφ(J(R)) ⊆ J(R′). Moreover, if

kerφ ⊆ J(R), thenφ(J(R)) = J(R′). In particular,J(R/J(R)) = 0.
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2.11. Semisimple Modules and Rings

Recall that anR-moduleM is called simple ifM 6= 0 and it has no non-trivial sub-

modules.

Proposition 2.11 ( (Anderson and Fuller, 1992), Theorem 9.6.) A rightR-moduleT is simple

if and only ifT ∼= R/I for some maximal right idealI of R.

Let (Tα)α∈A be an indexed set of simple submodules ofM . If M is the direct sum of

this set, then

M =
⊕

A Tα

is a semisimple decomposition ofM . A moduleM is said to besemisimplein case it has a

semisimple decomposition.

Theorem 2.8 ( (Anderson and Fuller, 1992), Theorem 9.6) For a rightR-moduleM the fol-

lowing statements are equivalent:

(1) M is semisimple;

(2) M is generated by simple modules;

(3) M is the sum of some set of simple submodules;

(4) M is the sum of its simple submodules;

(5) Every submodule ofM is a direct summand;

(6) Every short exact sequence

0 → K → M → N → 0

of rightR-modules splits.

Corollary 2.5 ( (Lam, 1991),§2) For a rightR-moduleM, the following hold.

(1) Every submodule of a semisimple moduleM is semisimple.

(2) Every epimorphic image of a semisimple moduleM is semisimple.

Theorem 2.9 ( (Lam, 1991), Theorem 2.5) For a ringR, the following are equivalent:

(1) R is right semisimple;

(2) All short exact sequences of rightR-modules split;
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(3) All finitely generated rightR-modules are semisimple;

(4) All cyclic rightR-modules are semisimple;

(5) All right R-modules are semisimple.

Corollary 2.6 ( (Lam, 1991), Corollary 2.6) A right semisimple ringR is both right noethe-

rian and right artinian.

Theorem 2.10 ( (Lam, 1991), Theorem 2.8 and 2.9) The following conditionson a ringR are

equivalent:

(1) R is right semisimple;

(2) All right R-modules are projective;

(3) All right R-modules are injective;

(4) All finitely generated rightR modules are injective;

(5) All cyclic rightR modules are injective.

2.12. Weakly Injective Modules

Dualizing essential extensions and submodules, we are led to the following notion,

which is called coessential extension.

Definition 2.24 ( (Clark et al., 2006), Definition 3.1) Suppose that0 ⊆ A ⊆ B ⊆ N . Then, of

course,A is an essential submodule ofB if A/0✂B/0. Dually, we say thatA is a coessential

submodule ofB in N (denoted byA →֒ce B in N) if B/A ≪ N/A.

Note that this is equivalent to saying thatN/A is a small cover ofN/B and that,

trivially, B ≪ N if and only if 0 →֒ce B. It is easy to see thatA →֒ce B in N if and only if

B +X = N impliesA+X = N .

Definition 2.25 ( (Clark et al., 2006), Definition 3.6) A submoduleA of N is said to be

coclosed inN (denoted byA →֒cc N) if it has no proper coessential submodule inN .

Definition 2.26 (Zöschinger, 2006) A moduleM is called weakly injective if for every exten-

sionN ofM , M is coclosed inN .
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Definition 2.27 (Oshiro, 1984) AnR-moduleM is said to be lifting module if, for any sub-

moduleA ofM , there exist a direct summandB ofM such thatB is a coessential submodule

of A in M .

These are the final results of this chapter. We close this chapter here, because we have

developed enough terminology and theory to follow the thirdchapter of our work. We will

give new terminology and theory as we proceed in chapter three.
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CHAPTER 3

STRONGLY NONCOSINGULAR MODULES

In this chapter, we introduce the concept of strongly noncosingular modules and deal

with their relations with some other modules. We start with characteristics of Rad-small

modules.

3.1. Cosingular (Rad-small) and Noncosingular Modules

Before giving the definitions, let us talk about the motivating idea for the Rad-small

modules. Leonard defines a moduleM to be small if it is a small submodule of someR-

module, and he shows thatM is small if and only ifM is small in its injective hull (Leonard,

1966).

Theorem 3.1 ( (Leonard, 1966), Theorem 2) Submodules, quotient modulesand finite direct

sums of small modules are small.

Proposition 3.1 ( (Clark et al., 2006), Proposition 8.2(3)) Any simple module is either small

or injective.

Now, we can give the fundamental properties of the functorZ∗(.) that was defined by

(Rayar, 1971) first. LetM be anR module. The submodule ofM is then defined as:

Z∗(M) = {m ∈ M | mR is a small module}.

SinceRad(M) is the union of all small submodules ofM , Rad(M) ⊆ Z∗(M). We see that

Z∗(E) = Rad(E) for any injective moduleE, andZ∗(M) = M ∩ Rad(E(M)).

Definition 3.1 LetR be a ring andM anR-module.Z∗(M) is called cosingular submodule

of M . As the dual notion of singular (nonsingular),M is called cosingular (noncosingular)

if Z∗(M) = M (Z∗(M) = 0). R is called right cosingular if the (right)R-moduleR is

cosingular.

For convenience in concepts, the cosingularR-modules are called Rad-small in this

thesis. Clearly, small modules are Rad-small.

Note that ifM is a vector space over the rational numbersQ, thenM is a semisimple

injectiveQ-module; henceZ∗(MQ) = Rad(MQ) = 0. However,M is also a module over the
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integersZ, and as such is torsion-free injective, so thatZ∗(MZ) = M . Thus,Z∗(M) depends

on which ringR one is considering.

Lemma 3.1 ( (Ozcan, 2002), Lemma 2.1) LetR be a ring and letf : M → N be a homo-

morphism ofR-modulesM ,N . Thenf(Z∗(M)) ⊆ Z∗(N).

Lemma 3.2 ( (Ozcan, 2002), Lemma 2.2) LetN be a submodule of anR-moduleM . Then

Z∗(N) = N ∩ Z∗(M).

Lemma 3.3 ( (Ozcan, 2002), Lemma 2.3) LetMi(i ∈ I) be any collection ofR-modules, and

let M = ⊕i∈IMi. ThenZ∗(M) = ⊕i∈IZ
∗(Mi).

Lemma 3.4 ( (Ozcan, 2002), Lemma 2.4) LetR be a right Artinian ring with Jacobson radi-

cal J and letM be anR-module. ThenZ∗(M) = {m ∈ M : mrR(J) = 0}.

Lemma 3.5 ( (Ozcan, 2002), Lemma 2.6) For any ringR, the class of Rad-smallR-modules

is closed under submodules, homomorphic images and direct sums but not (in general) under

essential extensions or extensions.

Proof The class of Rad-smallR-modules is closed under submodules by Lemma 3.2, under

homomorphic images by Lemma 3.1 and under direct sums by Lemma 3.3.

Let F be a field, and letR = {

(

a b

0 a

)

: a, b ∈ F}. ThenR is a commutative Artinian

ring with Jacobson radicalJ =

(

0 F

0 0

)

. Note thatrR(J) = J and thatJ is an essential

ideal ofR. By Lemma 3.4, theR moduleJ is Rad-small but its essential extensionRR is not.

Moreover,J andR/J are both Rad-small by Lemma 3.4, but theR-moduleR is not. �

Definition 3.2 (Talebi and Vanaja, 2002) A moduleM is called noncosingular if for every

nonzero moduleN and every nonzero homomorphismf : M → N , Im(f) is not a small

submodule ofN .

Proposition 3.2 ( (Talebi and Vanaja, 2002), Proposition 2.4) The class of all noncosingu-

lar modules is closed under homomorphic images, direct sums, extensions, small covers and

coclosed submodules.

3.2. Strongly Noncosingular Modules

Motivated by the noncosingular modules, we introduce the concept of strongly non-

cosingularR-module. We start with the following definition.
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Definition 3.3 An R-moduleM is called strongly noncosingularif for every nonzeroR-

moduleN and every nonzero homomorphismf : M → N , Im(f) is not a Rad-small sub-

module ofN , i.e.M has no nonzero Rad-small homomorphic image.

After this definition, we will give some remarks for stronglynoncosingular modules,

and we will see an example of a module which is noncosingular but not strongly noncosingu-

lar, so our definition will make sense.

Remark 3.1 (1) Simple injectiveR-modules are obviously strongly noncosingular.

(2) LetR be a division ring (e.g. the rational numbersQ). AnR-moduleM is a vector space,

and so it is a semisimple injectiveR-module. Therefore, it is strongly noncosingular.

(3) Let R be a right hereditary ring. Finitely generated injectiveR-modules are strongly

noncosingular. LetM be a finitely generated injectiveR-module. Suppose thatZ∗(M/N)

=M/N for a submoduleN ofM . SinceR is a right hereditary ring, by Proposition 2.9,M/N

is injective, henceRad(M/N) = Z∗(M/N) = M/N . SinceM/N is finitely generated, by

Theorem 2.4,Rad(M/N) ≪ M/N , a contradiction. Thus, finitely generated injectiveR-

modules are strongly noncosingular.

(4) Strongly noncosingularR-modules are noncosingular since small modules are Rad-small.

However, there exists a noncosingularR-module which is not strongly noncosingular (see

Example 3.1).

We have the following proposition as we had for noncosingular modules.

Proposition 3.3 The class of all strongly noncosingularR-modules is closed under homo-

morphic images, direct sums, direct summand, extensions, small covers.

Proof (1) LetM be a strongly noncosingularR-module andN a submodule ofM . Sup-

pose thatM/N is not a strongly noncosingularR-module. Then there is a nonzero homomor-

phismg from M/N to someR-moduleT with Im(g) ⊆ Rad(T ). ThenIm(gπ) ⊆ Rad(T ),

whereπ is the canonical epimorphismM → M/N . SinceM is strongly noncosingular,

Im(gπ) = 0. Theng = 0, a contradiction.

(2) Assume that(Mi)i∈I is a class of strongly noncosingularR-modules. Letf be a

homomorphism from
⊕

i∈I Mi to someR-moduleN with Imf ⊆ Rad(N). ThenIm(fιi) ⊆

Rad(N) for the inclusion mapsιi : Mi →
⊕

i∈I Mi for everyi ∈ I. SinceMi is strongly

noncosingularR-module,Im(fιi) = 0 for everyi ∈ I. Thenf = 0, and
⊕

i∈I Mi is strongly

noncosingular.

(3) Let N ⊆ M be a direct summand ofM andp : M → N the projection map.

Let f be a homomorphism fromN to someR-moduleT with Im(f) ⊆ Rad(T ). Then

Im(fp) ⊆ Rad(T ) and, by the hypothesis,fp(M) = 0. Hence,f = 0, andN is strongly

noncosingular.
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(4) Let 0 → A
α
→ B

β
→ C → 0 be a short exact sequence, and suppose thatA

andC strongly noncosingularR-modules. Assume that there is a homomorphismf from

B to someR-moduleT with Im(f) ⊆ Rad(T ). ThenIm(fα) ⊆ Rad(T ). SinceA is

strongly noncosingularR-module,Im(fα) = 0. Then there is a homomorphismg from C to

T such thatf = gβ by Theorem 2.1. Therefore,Im(g) ⊆ Rad(T ) and, sinceC is strongly

noncosingularR-module,Im(g) = 0. Thus,f = 0 and so,B is strongly noncosingular.

(5) LetB be a strongly noncosingularR-module, and letf : A → B be a small cover,

i.e. f is an epimorphism andKerf ≪ A. Suppose thatA is not a strongly noncosingular

R-module. Then there is a submoduleX of A such thatA/X is Rad-small.B/f(X) is Rad-

small since it is homomorphic image ofA/X. ButB/f(X) is strongly noncosingular by (1),

henceB/f(X) = 0, andB = f(X). Thenf−1(B) = X +Kerf = A, and soX = A since

Kerf ≪ A. HenceA is strongly noncosingular. �

Before giving the following corollary, let us mention the supplements. A submodule

N of M is called asupplementof K in M if N is minimal with respect to the property

M = K +N , equivalently,M = K +N andK ∩N ≪ N ( (Wisbauer, 1991), p. 348).

Corollary 3.1 LetM be a module andU andV submodules ofM such thatV is a supplement

of U . ThenV is a strongly noncosingular if and only ifM/U is strongly noncosingular.

Proof By the hypothesis,M = U+V ,U∩V ≪ V andM/U ∼= V/(U∩V ). Suppose thatV

is strongly noncosingular. Since strongly noncosingularR-modules closed under homomor-

phic image by Proposition 3.3,M/U ∼= V/(U ∩ V ) is strongly noncosingular. Conversely,

assume thatM/U ∼= V/(U ∩ V ) is strongly noncosingular. Since strongly noncosingular

R-modules closed under small cover by Proposition 3.3 andU ∩ V ≪ V , V is strongly non-

cosingular. �

General properties of strongly noncosingular modules is the following:

Proposition 3.4 Let M be a strongly noncosingularR-module. The following properties

hold:

(1) Every Rad-small submodule ofM is small inM .

(2) Coclosed submodules ofM are strongly noncosingular.

(3) RadM ≪ M .

(4) RadM = RadN ∩M for every extensionN ofM .

(5) Rad(M) = Z∗(M).
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Proof (1) Suppose thatK is a Rad-small submodule ofM andK+L = M for a submodule

L of M . Since K
K∩L

is a homomorphic image ofK, it is Rad-small by Proposition 3.5. ButM

is strongly noncosingular, and soK
K∩L

= 0 by Proposition 3.3. ThenK ∩L = K andL = M .

SoK ≪ M , as desired.

(2) LetA be a coclosed submodule ofM . Suppose thatA/X is a Rad-smallR-module for a

submoduleX of A. SinceM is strongly noncosingular,M/X is also strongly noncosingular

by Proposition 3.3. Then, by (1),A/X ≪ M/X. But A is coclosed submodule ofM , so

X = A by Definition 2.25. This impliesA is a strongly noncosingularR-module.

(3) and(4) follow by (1).

(5) RadM ⊆ Z∗(M) is clear. Conversely, letm ∈ Z∗(M). ThenmR is a small

module and, by (1),mR ≪ M . Thusm ∈ RadM . �

Now we will give a nice characterization of strongly noncosingular modules. First we

need characteristics of coatomic modules.

Definition 3.4 (Zöschinger, 1980) LetM be anR-module. We say thatM is a coatomic mod-

ule if every proper submodule ofM is contained in a maximal submodule ofM , equivalently

, for every submoduleN of M , Rad(M/N) = M/N impliesM/N = 0.

Finitely generated and semisimple modules are coatomic.

Theorem 3.2 LetM be anR-module. Then the following statements are equivalent:

(1) M is strongly noncosingular;

(2) M is coatomic and every simple homomorphic image ofM is injective;

(3) M is coatomic and noncosingular.

Proof Note that any simple module is either small or injective by Proposition 3.1.

(1) ⇒ (2) Let N be a proper submodule ofM . SupposeN is not contained in a

maximal submodule ofM . ThenM/N = Rad(M/N), and this impliesM/N is Rad-small.

But M is strongly noncosingular, and soM/N = 0, a contradiction. By the given above,

simple homomorphic image of a strongly noncosingularR-module is injective.

(2) ⇒ (3) LetN be a proper submodule ofM with M/N small module. IfN is max-

imal submodule ofM , thenM/N is injective. Suppose thatN is not a maximal submodule

of M . By the assumption,M is coatomic, and hence there exists a maximal submoduleK of

M which containsN . Since small modules closed under homomorphic image by Theorem

3.1,M/K ∼=
M/N
K/N

is small. ButM/K is injective by the assumption, henceM/K = 0, a

contradiction . ThenM has no small homomorphic image, i.e.M is noncosingular.

(3) ⇒ (1) LetN be a proper submodule ofM with M/N a Rad-smallR-module. By

the assumption,M is coatomic, and hence there exists a maximal submoduleK of M which
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containsN . M/K is injective sinceM is noncosingular. Rad-small modules closed under

homomorphic image by Proposition 3.5, soM/K ∼=
M/N
K/N

is Rad-small. ThenRad(M/K) =

M/K, and this contradicts the fact thatM is coatomic. Hence,M is strongly noncosingular.

�

It is clear that, by Theorem 3.2, a strongly noncosingularR-module exists if and only

if there is a simple injective module.

Definition 3.5 LetM be anR-module over a domainR. If r ∈ R andm ∈ M , then we say

thatm is divisible byr if there is somem
′

∈ M with m = m
′

r. We say thatM is a divisible

module if eachm ∈ M is divisible by every nonzeror ∈ R.

If R is a domain, then every injectiveR-moduleE is a divisible module (see, (Rotman,

2009), Lemma 3.33).

Proposition 3.5 LetR be a domain which is not a division ring. Then there does not exist a

strongly noncosingularR-module.

Proof It is enough to show that there is no simple injectiveR-module. Assume that there

exists a simple injectiveR-module, sayS. ThenS is divisible. SinceS is simple, there exists

a nonzero maximal idealI of R such thatS ∼= R/I. Then(R/I)r = 0 for eachr ∈ I. But

this contradicts with the divisibility ofS. Hence, there is no simple injectiveR-module. �

We give an example for a noncosingularR-module that fails to be strongly noncosin-

gular.

Example 3.1 Consider the ringR = {

(

a b

0 c

)

|a, c ∈ Z, b ∈ Q} and theR-moduleRM =

(

0 Q

0 0

)

. The leftR-module structure ofM is completely determined by the leftZ-module

structure ofQ. ThenM is not coatomic sinceZQ is not coatomic. ButM is noncosingular

since every nonzero homomorphic image of theZ-moduleQ is not small.

Definition 3.6 (Tuganbaev, 2003) A ringR is called a right Max-ring ifRad(M) 6= M for

everyR-moduleM . Equivalently,R is a right Max-ring if and only if every nonzeroR-module

is coatomic.

A perfect ringR is a right Max-ring, and the converse is true ifR/J(R) is semisimple

as a rightR-module ( (Anderson and Fuller, 1992), Theorem 28.4).

Theorem 3.2 yields the following.

Corollary 3.2 LetR be a right Max-ring. AnR-moduleM is strongly noncosingular if and

only if it is noncosingular.
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Recall that anR-moduleM is calledweakly injectiveif, for every extensionN of M ,

M is coclosed inN .

Proposition 3.6 Strongly noncosingularR-modules are weakly injective.

Proof Let M be a strongly noncosingularR-module andM ⊆ N any extension ofM .

Let L be a proper submodule ofM . SinceM/L is not Rad-small,M/L cannot be a small

submodule ofN/L. Hence,L is not coessential submodule ofM in N , and by Definition

2.25,M is coclosed inN . So,M is weakly injective. �

The converse of Proposition 3.6 is not true, in general. In example 3.1, theR-module

RM is injective, so weakly injective, but not strongly noncosingular.

Proposition 3.3, Theorem 3.2 and Proposition 3.6 yield the following corollary.

Corollary 3.3 LetM be a coatomic module. Then the following statements are equivalent:

(1) M is strongly noncosingular;

(2) Every homomorphic image ofM is weakly injective;

(3) Every finitely generated quotient ofM is weakly injective;

(4) Every cyclic quotient ofM is weakly injective;

(5) Every simple quotient ofM is injective.

Now, we shall present a standart result on simple injective modules and briefly discuss

the notion of right V-rings.

An elemeta in a ringR is calledvon Neumann regularif a ∈ aRa. The ringR itself

is calledvon Neumann regularif every a ∈ R is von Neumann regular. A ringR is called

a right V -ring if every simpleR-module is injective. In the category of commutative rings,

theV -rings are exactly the (commutative) von Neumann regular rings. For noncommutative

rings, the situation is quite a bit more subtle. In the general case, rightV -rings need not be

von Neumann regular; also they need not be leftV -rings.

Theorem 3.3 ( (Lam, 1999), Theorem 3.75) For any ringR, the following are equivalent:

(1) R is a rightV -ring;

(2) For any rightR-moduleM,Rad(M) = 0.

Any right semisimple ring is aV -ring. By the above theorem clearly, everyR-module

is coatomic ifR is a rightV -ring. Theorem 3.2 and Corollary 3.3 yield the following.

Corollary 3.4 LetR be a ring. The following statements are equivalent:
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(1) RR is strongly noncosingular.

(2) R is a rightV -ring.

(3) Every quotient ofR is weakly injective.

(4) EveryR-module is strongly noncosingular.

Proposition 3.7 Injective modules are strongly noncosingular if and only ifweakly injective

modules are strongly noncosingular.

Proof Let M be a weakly injective module. By the assumption,E(M) is strongly non-

cosingular. ThenM is strongly noncosingular by Proposition 3.4(2). The converse follows

from the fact that injective modules are weakly injective. �

It is well known that a ringR is a right hereditary ring if and only if every homomor-

phic image of an injectiveR-module is injective (see Proposition 2.9). Semisimple rings are

left and right hereditary.

Lemma 3.6 LetR be a right hereditary ring. The following statements are equivalent:

(1) Every weakly injectiveR-module is strongly noncosingular;

(2) Every injectiveR-module is strongly noncosingular;

(3) Every injectiveR-module is coatomic;

(4) Every weakly injectiveR-module is coatomic.

Proof (1) ⇔ (2) is by Proposition 3.7,(1) ⇒ (4) is by Theorem 3.2 and(4) ⇒ (3) is clear.

(3) ⇒ (2) Let M be an injective module. SinceR is right hereditary, every homomorphic

image ofM is injective, andM is strongly noncosingular by Theorem 3.2. �

It is clear that injective modules are noncosingular on hereditary rings. Corollary 3.2

and Lemma 3.6 yield the following.

Corollary 3.5 LetR be a right hereditary Max-ring. Then every injective moduleis strongly

noncosingular.

Now we give an example to show that the converse of Corollary 3.5 is not true, in

general.

Example 3.2 LetK be any field, and letR be the commutative ring which is the direct product

of a countably infinite number of copies ofK, that is,R =
∏∞

i=1Ki, whereKi = K for all

i ≥ 1. First, we show thatR is a Von Neumann regular ring: By means of componentwise

defined addition and similarly defined multiplication(ki)(k
′

i) = (kik
′

i), R becomes a ring.
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For anyki ∈ R, definek
′

i = k−1
i if ki 6= 0, andk

′

i = 0 if ki = 0. Thenk
′

i ∈ R andkik
′

iki = ki.

Therefore,R is Von Neumann regular, and soR is aV -ring. Hence everyR-module is strongly

noncosingular, so injectiveR-modules are strongly noncosingular. Now, we will show thatR

is not a semisimple ring. As we easily verify thatA :=
∐∞

i=1Ki is a proper two-sided ideal

in R =
∏∞

i=1Ki which is essential both inRR andRR. Consequently,A cannot be a direct

summand inRR (or in RR). Hence,R is not semisimple. Also, sinceR is any direct product

of fields,R is right and left self injective by Proposition 2.5. It is enough to show thatR is not

hereditary. SupposeR is right hereditary. SinceRR is injective, Proposition 2.9 implies that

any quotient ofRR is also injective. This means that any cyclic rightR module is injective, so

by Theorem 2.9,R is semisimple, a contradiction. Consequently,R is not hereditary.

Definition 3.7 (Fuchs, 2012) A submoduleN of anR-moduleM is called coneat inM if for

every simpleR-moduleS, any homomorphismϕ : N → S can be extended to a homomor-

phismθ : M → S.

Definition 3.8 (Crivei, 2014) AnR moduleM is called absolutely coneat ifM is coneat

submodule of any module containing it.

Proposition 3.8 (Büyükaşık and Dur̆gun, 2013) For a submoduleN ⊆ M , the following are

equivalent:

(1) N is a coneat submodule ofM ;

(2) If K ⊆ N with N/K finitely generated andN/K ≪ M/K, thenK = N ;

(3) For any maximal submoduleK of N , N/K is a direct summand ofM/K;

(4) If K is a maximal submodule ofN , then there exists a maximal submoduleL ofM such

thatK = N ∩ L.

Recall that a submoduleN of anR-moduleM is said to becoclosedin M if it has no

proper coessential submodule inM , i.e. if for anyK ⊆ N , N/K ≪ M/K, thenK = N .

Then by Proposition 3.8, coclosed submodules are coneat. Thus, we may say that weakly

injective modules are absolutely coneat. We have the following implications among the our

concepts:

strongly noncosingular=⇒noncosingular=⇒weakly injective=⇒absolutely coneat

injective

KS
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Proposition 3.9 Let R be a right Max-ring. Then absolutely coneat modules are weakly

injective.

Proof Let A be an absolutely coneat module andM any extension ofA. SupposeA is not

coclosed submodule ofM . Then for some submoduleB of A , A/B ≪ M/B. SinceR is a

right Max-ring,A is coatomic. ThusB is contained in a maximal submodule, sayK, of A.

ThenA/K ≪ M/K, and this contradicts with the fact thatA is coneat inM . Hence,A is

weakly injective. �

Proposition 3.10 LetR be a ring. If absolutely coneat modules are strongly noncosingular,

thenR is a right Max-ring.

Proof Let M be anR-module withRad(M) = M . It is easy to see thatHom(M,S) = 0

for each simple moduleS. Hence,M is absolutely coneat and, by the assumption,M is

strongly noncosingular. But,M is Rad-small, and soM = 0. Then,R is a right Max-ring.�

Corollary 3.6 LetR be a right hereditary ring.R is right Max-ring if and only if absolutely

coneat modules are strongly noncosingular.

Proof By Proposition 3.9, absolutely coneat modules are weakly injective. Therefore, ab-

solutely coneat modules are strongly noncosingular by Corollary 3.5 and Proposition 3.7. The

converse follows by Proposition 3.10. �

Recall that AnR-moduleM is said to be anextending moduleif, for any submodule

A of M , there exists a direct summandB of M such thatB is an essential extension ofA.

Dually, anR-moduleM is said to be alifting moduleif, for any submoduleA of M , there

exists a direct summandB of M such thatB is a coessential submodule ofA in M . A ring R

is called aright co-H-ring if every projectiveR-module is an extending module. A ringR is

called aright H-ring if every injective rightR-module is lifting (see, (Oshiro, 1984)).

Theorem 3.4 ( (Oshiro, 1984), Theorem I) The following conditions are equivalent for a ring

R:

(1) Every injectiveR-module is a lifting module;

(2) R is a right Artinian ring, and every non-smallR-module contains a non-zero injective

submodule;

(3) R is a right perfect ring, and the family of all injectiveR-modules is closed under taking

small covers;

(4) EveryR-module is expressed as a direct sum of an injective module and a small module.
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Theorem 3.5 ( (Oshiro, 1984), Theorem 4.6) IfR is a right nonsingular ring, then the fol-

lowing conditions are equivalent :

(1) R is a rightH-ring;

(2) R is a right co-H-ring.

Corollary 3.7 (Oshiro, 1984) LetR be a ring. IfR is a right co-H-ring, then every nonsin-

gular R-module is projective. The converse also holds whenR is a right nonsingular right

co-H-ring.

Theorem 3.6 ( (Chatters and Khuri, 1980), Theorem 4.2) LetR be a right nonsingular ring.

Then the following are equivalent:

(1) Every nonsingular rightR-module is projective;

(2) R is Artinian hereditary serial.

Right nonsingular rings are a very broad class, including right (semi)hereditary rings,

von Neumann regular rings, domains and semisimple rings.

Artinian hereditary serial rings are right (left)H-rings by (Theorem 3.6, Corollary 3.7 and

Theorem 3.5).

Theorem 3.7 LetR be a right perfect ring. The following statements are equivalent:

(1) The class of injective modules coincides with the class of (strongly) noncosingularR-

modules.

(2) R is Artinian hereditary serial.

Proof (1) ⇒ (2) Since strongly noncosingularR-modules closed under homomorphic

images, every homomorphic image of an injective module is injective by the assumption.R

is right hereditary ring by Proposition 2.9. Under the assumption, injectiveR-modules are

closed under small covers by Proposition 3.3. ThenR is rightH-ring by Theorem 3.4. Since

R is a right hereditary ring,R is right nonsingular. So,R is right co-H-ring by Theorem

3.5. Hence, every nonsingularR-module is projective by Corollary 3.7. Hence,R is Artinian

serial by Theorem 3.6.

(2) ⇒ (1) By Corollary 3.5, injective modules are strongly noncosingular. Let M be a

strongly noncosingularR-module. Since Artinian hereditary serial ringR is rightH-ring by

(Oshiro, 1984),M has a decompositionM = M1 ⊕ M2, whereM1 is injective andM2 is

small by Theorem 3.4. By Proposition 3.3,M1 andM2 are strongly noncosingular. ButM2 is

small module, and soM2 = 0 . Therefore,M1 = M is injective. �
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Definition 3.9 ( (Lam, 1999), 8.26) A ringR is called right Kasch ring if every simple right

R-moduleS can be embedded inRR. ”Left Kasch ring” is defined similarly. As usual,R is

called a Kasch ring if it is both right and left Kasch.

We note that any commutative Artinian ring is both right and left Kasch.

Lemma 3.7 LetR be a right Kasch ring. AnR-moduleM is strongly noncosingular if and

only ifM is semisimple and every simple submodule ofM is injective.

Proof SupposeM is not semisimple, i.e.Soc(M) 6= M . SinceM is strongly noncosin-

gular,M is coatomic by Theorem 3.2. Then the proper submoduleSoc(M) is contained in a

maximal submodule ofM , sayK. SinceM is strongly noncosingular,M/K is injective by

Theorem 3.2. By the hypothesis,M/K embeds inR. ButM/K is injective, and so it is direct

summand ofR by Proposition 2.5(4). Hence,M/K is projective by Proposition 2.7. ThenK

is a direct summand ofM by Proposition 2.8. So,M = K
⊕

S for some submodulesS of

M such thatS ∼= M/K simple. ThenS ⊆ Soc(M), andS ⊆ Soc(M) ∩ S ⊆ K ∩ S = 0,

a contradiction. Thus we must haveM = Soc(M). ThereforeM is semisimple. SinceM is

semisimple, every simple submoduleN of M is isomorphic to a simple homomorphic image

of M . So,N is injective by Theorem 3.2. The converse follows from Theorem 3.2, since

semisimple modules are coatomic. �

In general, rings do not have any semisimple factor rings. However, ringsR for which

R/J(R) is semisimple are of considerable interest. A ringR is said to besemilocalif R/J(R)

is a semisimple ring (see (Lam, 1999),§20). Any right or left Artinian ring, any serial ring,

and any semiperfect ring is semilocal.

Proposition 3.11 ( (Anderson and Fuller, 1992), Proposition 15.17) For a ringR with radical

J(R) the following statements are equivalent:

(1) R/J(R) is semisimple;

(2) R/J(R) is right Artinian;

(3) Every product of simple rightR modules is semisimple;

(4) Every product of semisimple rightR modules is semisimple.

Lemma 3.8 LetR be a semilocal ring. AnR-moduleM is strongly noncosingular and every

maximal submodule ofM is direct summand if and only if M is semisimple injective.

Proof Suppose for the contrary thatSoc(M) 6= M . SinceM is stongly noncosingular,M

is coatomic, and so the proper submoduleSoc(M) is contained in a maximal submodule of

M , sayK. By the assumption, every maximal submodule ofM is a direct summand ofM .

So,M = K
⊕

S for some submoduleS of M . SinceK is maximal inM , M/K is simple.
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Thus,S ∼= M/K is simple such thatS ⊆ Soc(M) , soS ⊆ Soc(M) ∩ S ⊆ K ∩ S = 0,

a contradiction. Thus we must haveM = Soc(M). Therefore,M is semisimple, andM =
⊕

λ∈Λ Sλ for some index setΛ and simple submodulesSλ of M . ThenM ⊆ N :=
∏

λ∈Λ Sλ.

SinceR is semilocal, by Proposition 3.11, the right sideN is also a semisimpleR-module.

Every simple summand (Sλ, λ ∈ Λ) of M is injective sinceM is strongly noncosingular.

Thus,N =
∏

λ∈Λ Sλ is injective. Then the direct summandM of N is injective. So,M is

semisimple injective. The converse is clear. �

Lemma 3.7 and Lemma 3.8 yield the following.

Corollary 3.8 Let R be a semilocal right Kasch ring. AnR-moduleM is strongly noncosin-

gular if and only ifM is semisimple injective.
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CHAPTER 4

STRONGLY NONCOSINGULAR MODULES OVER

COMMUTATIVE RINGS

In this chapter we investigate strongly noncosingularR-modules over commutative

rings.

For a ringR let Z(R) = {r ∈ R | rs = sr, for eachs ∈ R} be the center ofR. It is easy to

check thatZ(R) is a subring ofR. Of course,Z(R) is commutative andR is commutative if

and only ifR = Z(R).

Corollary 4.1 ( (Anderson and Fuller, 1992), Corollary 15.18) LetR be a ring with radical

J = J(R). Then for every leftR module M,J(R).M ⊆ Rad(M). If R is semisimple modulo

its radical, then for every leftR-module M,J(R).M = Rad(M) andM/JM is semisimple.

Proposition 4.1 LetR be a ring andM a strongly noncosingularR-module. ThenZ∗(R) ∩

Z(R) ⊆ Ann(M).

Proof Let r ∈ Z∗(R) ∩ Z(R). Sincer ∈ Z(R), the mapf : M → M , defined by

f(m) = mr for eachm ∈ M is anR-homomorphism. On the other hand,r ∈ Z∗(R) implies

that Im(f) = Mr ⊆ Rad(E(M)). Therefore,f = 0 and soMr = 0 by the hypothesis.

Hence,r ∈ Ann(M). �

Corollary 4.2 Let R be a ring andM a strongly noncosingularR-module. ThenJ(R) ∩

Z(R) ⊆ Ann(M).

Corollary 4.3 LetR be a commutative ring andM a strongly noncosingularR-module. Then

Z∗(R).M = J(R).M = 0.

Corollary 4.4 Let R be a commutative semilocal ring andM an R-module. Then,M is

strongly noncosingular if and only ifM is a semisimple injective module.

Proof If R is semilocal, then, by Corollaries 4.1 and 4.3,Rad(M) = J(R)M = 0. So,

M/JM = M is semisimple by Corollary 4.1. The injectivity ofM follows by the proof of

Lemma 3.8. The converse is clear. �
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Proposition 4.2 Let R be a commutative ring andM a strongly noncosingularR-module.

ThenAnn(M/Rad(M)) = Ann(M).

Proof Let r ∈ Ann(M/Rad(M)). ThenrM ⊆ Rad(M), and so from the proof of Propo-

sition 4.1 we getrM = 0. Therefore,r ∈ Ann(M) andAnn(M/Rad(M)) ⊆ Ann(M). On

the other hand, we always haveAnn(M) ⊆ Ann(M/Rad(M)). This completes the proof.�

Lemma 4.1 ( (Anderson and Fuller, 1992), Exercises 15.(5)) LetR be a commutative ring

andΩ the set of all maximal ideals ofR. ThenRad(M) =
⋂

P∈Ω PM for eachR-moduleM .

Proposition 4.3 Let R be a commutative ring andM an R-module with a unique maximal

submodule. ThenM is strongly noncosingular if and only ifM is simple injective.

Proof We first claim thatM is a simpleR-module. By the hypothesisRad(M) is a maximal

submodule ofM , i.e. M/Rad(M) is simple. ThenM/Rad(M) ∼= R/P for some maximal

idealP of R by Proposition 2.11.

SinceM is strongly noncosingular,Ann(M) = Ann(M/Rad(M)) = P by Proposition 4.2.

ThenP.M = 0, and soRad(M) = 0 by Lemma 4.1. Therefore,M is a simpleR-module

and, by the hypothesis,M is injective. The converse is clear. �

Lemma 4.2 ( (Ware, 1971), Lemma 2.6) SupposeR is a commutative ring andS is a simple

R-module. ThenS is flat if and only ifS is injective.

Lemma 4.3 Let R be a commutative noetherian ring andM an R-module. Then, M is

strongly noncosingular if and only if M is semisimple injective.

Proof Suppose for the contrary thatSoc(M) 6= M . SinceM is strongly noncosingular,

the proper submoduleSoc(M) is contained in a maximal submoduleK of M such thatM/K

is injective. So,M/K is flat by Lemma 4.2. SinceM/K is finitely generated, it is finitely

presented by Proposition 2.10. Therefore,M/K is projective by Theorem 2.7. ThenK is

a direct summand ofM i.e. M = K
⊕

S for some simple submoduleS of M . But S ⊆

Soc(M) ∩ S ⊆ (K ∩ S) = 0, a contradiction. Hence,M is semisimple. ThenM =
⊕

i∈I Si

, whereSi is simple module for eachi ∈ I. SinceM is strongly noncosingular, every simple

summand ofM is strongly noncosingular by Proposition 3.3, and so they are injective by

Theorem 3.2. ThenM is injective since direct sums of injective modules are injective by

Proposition 2.6. The converse is clear. �

Lemma 4.3 is not true in noncommutative case, in general. Now, we will give an

example of a module over a noncommutative noetherian ring which is strongly noncosingular

but not semisimple.
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Example 4.1 Let R =

[

F F

0 F

]

be upper triangular matrices over a field F.R is a right

hereditary Artinian ring , and so it is noetherian (see (Lam,1999)). The socle ofRR is

Soc(RR) =

[

0 F

0 F

]

. Let A =

[

F F

0 0

]

andB =

[

0 0

0 F

]

be the right ideals ofRR

such thatRR = A ⊕ B. A is injective by (Goodearl, 1976) Exercise 3B 20-21. SinceR is

right hereditary Artinian ring,A is a strongly noncosingular by Corollary 3.5. HoweverA is

not a semisimpleR module, otherwiseSoc(RR) = RR , a contradiction .

Theorem 4.1 LetR be a commutative ring. Then the following statements are equivalent:

(1) The class of injectiveR-modules coincides with the class of strongly noncosingular

R-modules.

(2) R is semisimple.

Proof (1) ⇒ (2) Since strongly noncosingularR-modules closed under direct sums by

Proposition 3.3, direct sums of injectiveR-modules are injective by the assumption. ThenR

is Noetherian ring by Proposition 2.6. By (1) and by Lemma 4.3, every injectiveR-module

is semisimple, and so everyR-module is semisimple. ThenR is semisimple by Theorem 3.3.

(2) ⇒ (1) is obvious. �
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CHAPTER 5

CONCLUSIONS

Motivated by the noncosingular modules, in this thesis, we introduced the concept

of strongly noncosingular modules. AnR-moduleM is calledstrongly noncosingularif for

every nonzero moduleN and every nonzero homomorphismf : M → N , Im(f) is not a

Rad-small submodule ofN . The aim of this study is to work on the concept of strongly non-

cosingular modules and investigate the rings and modules that can be characterized via these

modules. We proved that (1) A rightR-moduleM is strongly noncosingular if and only if

M is coatomic and noncosingular; (2) a right perfect ringR is Artinian hereditary serial if

and only if the class of injective rightR-modules coincides with the class of (strongly) non-

cosingular rightR-modules; (3) a right hereditary ringR is Max-ring if and only if absolutely

coneat rightR-modules are strongly noncosingular; (4) a commutative ringR is semisimple if

and only if the class of injectiveR-modules coincides with the class of strongly noncosingular

R-modules.
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