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ABSTRACT

STRONGLY NONCOSINGULAR MODULES

The main purpose of this thesis is to investigate the notfatrongly noncosingular
modules. We call a righkR-moduleM strongly noncosingulaif for every nonzero rightr-
moduleN and every nonzero homomorphigm M — N, I'm(f)is not a cosingular (or Rad-
small) submodule ofV in the sense of Harada. It is proven that (1) A riglytmodule)M is
strongly noncosingular if and only i¥/ is coatomic and noncosingular; (2) a right perfect ring
R is Artinian hereditary serial if and only if the class of iof&re right R-modules coincides
with the class of (strongly) noncosingular rigRtmodules; (3) a right hereditary ring is
Max-ring if and only if absolutely coneat riglit-modules are strongly noncosingular; (4) a
commutative ringR is semisimple if and only if the class of injectivémodules coincides

with the class of strongly noncosingul&rmodules.



OZET
GUCLU DUAL TEKIL OLMAYAN MOD ULLER

Bu tezde, temel olarak gucli dual tekil olmay&amodullerin yapisinin ¢alisiimasi
amaclanmaktadir. Bil sag R-modultnin, sifirdan farkli heN sag R-modult ve sifirdan
farkh her f : M — N homomorfizmasi i¢inGzor( f) Harada anlaminda’nin es-tekil sag alt
modull degilse)M’ye gucli dual tekil olmayarsag R-modul denir. BirR halkasi icin sunlar
ispatlanmistir: (1) BirM sag R-modult gucli dual tekildir ancak ve ancadl koatomik
ve dual tekil olmayan moduldir. (2) BikR sag tam halkasi Artin kahtsal siralidir ancak ve
ancak injektif sagk-modullerin sinifi ve (guclu) dual tekil olmayan sagmodullerin sinifi
cakisir. (3) BirR sag kalitsal halkasi Max-halka'dir ancak ve ancak mutikieenli sagr-
moduller guclt dual tekildir. (4) BiR degismeli halkasi yari basittir ancak ve ancak injektif
R-moduller sinifi ve guglu dual tekil olmayag-modiller sinifi cakisir.
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CHAPTER 1

INTRODUCTION

Throughout this thesis, the rings that we consider are &tsacwith an identity el-
ement and all modules are unitary right modules. Lebe anR-module. A submoduléV
of M is called small inM/, denoted asV <« M, if N + K = M implies K = M for any
submoduleX” of M. Leonard defines a moduld to be small if it is a small submodule of
someR-module and he shows thaf is small if and only if M is small in its injective hull
(Leonard, 1966). The submodule bf is defined by Rayar asZ*(M) = {m € M | Rm is
a small modulg (Rayar, 1971). Sinc&ad(M) is the union of all small submodules 61,
Rad(M) C Z*(M). We see thal* (M) = M N Rad(E(M)) andZ*(E) = Rad(FE) for any
injective moduleFE. The functorZ* (M) also appear in (Ozcan, 2002). As the dual notion of
singular (nonsingular)}/ is called cosingular (honcosingular)4f (M) = M (Z*(M) = 0).

In a series of paper§zcan developed much of the properties of the fungtgr/) and cosin-
gular modules. For convenience in concepts, the cosingts#aodules are called Rad-small
in this thesis.

Following (Talebi and Vanaja, 2002), a moduléis called noncosingular if for every
nonzeroR-module N and every nonzero homomorphism M — N, Im(f) is not a small
submodule ofV. An R-module M is noncosingular if and only if every homomorphicige
of M is weakly injective (Zoschinger, 2006). Recently, theseaisignificant interest to
noncosingulaz-modules, see (Kalati and Tutunct, 2013), (Tribak, 20X4Tutuncu et al.

, 2014), (Tutuncu, Tribak, 2009), (Zoschinger, 2006).

Motivated by the noncosingular modules, in this thesis, mieoduce the concept of
strongly noncosingular modules. AR-module M is calledstrongly noncosingulaif for
every nonzero modul® and every nonzero homomorphigm M — N, I'm(f) is nota Rad-
small submodule ofV. Clearly, since small modules are Rad-small, strongly nemgular
R-modules are noncosingular, but the converse is not truememl (see Example 3.1). Our
aim is to work on the concept of strongly noncosingular medand investigate the rings and
modules that can be characterized via these modules.

In the second chapter of this dissertation, we give the defits of some basic notions
and investigate some of their properties which are usetistior our further studies.

In chapter 3 we present some properties of strongly nongaknR-modules. We
also prove that aR-module M is strongly noncosingular if and only i¥/ is coatomic and
every simple homomorphic image of is injective if and only if M is coatomic and non-



cosingular. 1t is known that the class of projectiitemodules coincides with the class of
nonsingularR-modules if and only ifR is Artinian hereditary serial (Chatters and Khuri,
1980). Dually, it is shown that a right perfect ridgis Artinian hereditary serial if and only
if the class of injectiveR-modules coincides with the class of (strongly) noncosiaigi-
modules. A right hereditary ring is Max-ring if and only if absolutely coned?-modules
are strongly noncosingular. For a semilocal right Kasch,nme show that, a®-module M/

is strongly noncosingular if and only ¥/ is semisimple injective.

Chapter 4 deals with the structure of strongly noncosingilnodules on commu-
tative rings. We show that strongly noncosingulsmodules are exactly the semisimple
injective modules on commutative noetherian rings. A cotative ring R is semisimple if
and only if the class of injective modules coincides with theess of strongly noncosingular
R-modules.



CHAPTER 2

RINGS AND MODULES

In this chapter, we shall give some basic notions and theipgties which will be
frequently used. The basic notions and all definitions neemihere can be found in any
standart text of Ring and Module theory (e.g. (Anderson anlief; 1992), (Wisbauer,
1991), (Clark et al., 2006) and (Lam, 1999)).

2.1. Rings and Their Homomorphisms

Definition 2.1 A ring is a set R with two binary operations and ., called addition and
multiplication, respectively, such that the following pesties are satisfied:

(1) Addition is associative: For alt, s, ¢, R we haver + (s +t) = (r + s) + t.
(2) Addition is commutative: Foralt,s,c R,r +s=s+r

(3) There is an element denoted by such that- + 0g = Ogr + r = r,Vr € R. Oy is called
the zero element of the ring.

(4) Every element has an additive inverse, that is, for evetyR there is an elementr € R
such that + (—r) = (—r) +r = Og.

(5) Multiplication is associative: For every, s, t € R we haver.(s.t) = (r.s).t.

(6) The left and right distributive laws hold: For all s,t € R,r.(s +t) = r.s + r.t and
(r+s)t=rt+s.t.

Note on notation: For simplicity, we will denoteb by justab, as long as there is no chance
of ambiguity. Also( will be written aso.

Definition 2.2 A ring R is called commutative ifs = sr for everyr, s € R. Also, aring in
which there is a multiplicative identityz such thatlzr = r1g = r for all » € R is called
a ring with identity. This multiplicative identity is catleunity. We will denote the unity of a
ring by 1 unless there is no ambiguity.

Some rings satisfy certain multiplicative properties. Ndéyna commutative ring is
called a field if every nonzero element has a multiplicatiweerse, that is, for every € R,



there exists € R such that's = 1. Also, R is called an integral domain if it has no divisors
of zero, which means that, whenever= 0 for somer, s € R then eithen = 0 or s = 0.
Throughout our work, by a ring, we will always mean a ring wihbntity.

Definition 2.3 A subsetS of a ring R is called a subring if it is a ring with the operations of
R, and1r = 15 in caseR has identity.

A list of some examples of rings is:
(1) The setZ of integers is a commutative ring with usual addition andtiplitation.
(2) The set of complex numbers is a field .

(3) Forn > 2 the setMn(R) of all n x n matrices with coefficients in a ring is a noncom-

mutative ring with matrix addition and multiplication.

After these definitions and examples, we give the necessalguafficient conditions to be a
subring:

Proposition 2.1 The Subring Criterion. L&t be a ring andS be a subset oR. ThenS is a
subring of R if and only if for everyu, b € S

(i) a—0be S,
(i) abe S.
Now we can give the definiton of a ring homomorphism:

Definition 2.4 Let R, S be rings. The mapping : R — S is called a ring homomorphism if
it satisfies the following:

(i) fla+b)= f(a)+ f(b)forall a,b € R;
(i) f(ab) = f(a)f(b),forall a,b € R;
(i) f(1g) = 1s.

Special names are given to homomorphisms which satisfyaicegroperties. An
onto homomorphism is called an epimorphism, and a one-¢ohmmomorphism is called
a monomorphism. A one-to-one and onto ring homomorphisnallead an isomorphism. If
there is an isomorphism between two rings R and S, we say thatlRs are isomorphic and
denote it byR = S.



2.2. ldeals and Factor Rings

We go on developing the necessary tools for our work. Usagieafs to develop ring
theory is of great importance. In this section we will give thndamental properties of ideals.

Definition 2.5 Let R be aring. We say that the subdedf R is a left ideal ofR if the following
are satisfied:

(i) I#0;
(i) whenevew,b, € I,thena+b € I;
(i) whenever € I andr € R, thenra € I, also.

Similarly a right ideal of a ring can be defined by changingl#gfemultiplication in
the definition with right multiplication. If | is both left ahright ideal, we say that | is a two
sided ideal. Clearly, for a commutative ring, left and riglgals coincide. By an ideal we will
always mean a two sided ideal.

The kernel of a homomorphisih: R — S is the set

Kerf:={re R: f(r) =0}

The kernel of a homomorphism is an ideal of its domain. We edrfiis a monomor-
phism if and only ifKer f = 0 (see, (Anderson and Fuller, 1992)).
Suppose that is a proper ideal of a ring. The relation defined by

a=blmodl) < a—-bel

determines an equivalence relation ®nThe congruence class of an element a is defined by
a+1={a+z:2z € l}andis called a coset of the elementnd the seR/I of all cosets
of I is a ring with operations defined by

(a+ D)+ b+1)=(a+b+1 and (a+1)(b+1)=ab+ 1.

Additive and multiplicative identities afe+ I and1 + 1.



The ringR/I is called the factor ring ok modulo!. Further, the map : R — R/I
defined byr — r + I is an epimorphism with kerndl, is called the natural or canonical
epimorphism.

Definition 2.6 We say that an ideal M of a ring R is a maximal ideal, if
(i) M S R,and
(i) M ; I C Rimplies that/ = R for every ideall of R.

From now on, we give the results on modules necessary for odk.wWBriefly, an
R-module can be considered as the generalization of themofigector space in the sense
scalars are allowed to be taken from a ring R instead of a field.

2.3. Modules, Submodules, Factor Modules and Module

Homomorphisms

Although modules are in fact considered as a {aif, \), where M is an additive
abelian group and is a map fromR to the set of endomorphisms of M, we find the following
definition more common and simple:

Definition 2.7 Let R be a ring (with unity 1). A righfz-module is an additive abelian group
M together with a mapping/ x R — M, which we call a scalar multiplication, denoted by

(m,r) — mr
such that the following properties hold: for alt, » € M andr, s € R;
(1) (m+ n)r =mr + nr,
(2) m(r +s) = mr + ms,
(3) m(rs) = (mr)s.

If, in addition, for everym € M we havenl = m, then)M is called a unitary right?-module.
If M is aright R-module, we denote it by/.

Note that one can obtain the lgétmodule definition by applying the scalar multipli-
cations from the left. For commutative rings, two notionsedifand right?-module coincide.
In our work, all modules will be unitary right(leftR-modules. To simplify terminology, the
expression R-module” or "module” will mean right?-module.



Example 2.1 Here is a list of some elementary examples of modules:
(1) As we indicated at the beginning, every vector space oveldafiés an F-module.

(2) Every abelian group is &-module, wheré, is the set of integers. Hence, abelian groups
can be generalized via module theory.

(3) EveryringR is a module over itself.

A submodule of am?-moduleM is a subgroupV of M which is closed under scalar
multiplication, i.e.,nr € N for all r € R,n € N. Clearly, thed and the modulé/ itself are
submodules of\/. They are called trivial submodules df. A nonzero rightR-moduleS that
has only0 and.S for its submodules is said to be a simple module. The set sUélinodules
of a right R-module ) is partially ordered byC , that is, by inclusion. Under this ordering,
a minimal submodule o}/ is just a simple submodule df/. We call a submodulé&/ of M
a proper submodule o¥/ if N & M. A proper submoduléy of M is said to be a maximal
submodule of\/ if wheneverN' is a submodule af/ suchthatV C N' C M, eitherN = N’
or N' = M. When a ringR is considered as a right module over itself, its submodules a
precisely the right ideals ak. Clearly, A is a minimal right ideal of? if and only if A is a
simple R-module.

Given any two R-modules/;, M,, we can always produce a new module, which we
call the sum ofM/,, M,, containing both\/; and M;. This is done by defining

M1+M2:{m1+m2:m1 EMl,mz EMQ}.

Also, for an infinite family{ M/, } »cx Of submodules oft/, we define the sum as
Yoren My ={> i ma € Nandfork = 1,2, ..., 7, Apen, mir, € M), }.
This is a submodule ot/ and so is the intersectign, ., M. Itis worth noting thaf,_, M)
is the largest submodule @ff which is contained in all/,, and) _,_, M, is the smallest
submodule which contains alll,. ( (Wisbauer, 1991%6.2).

Proposition 2.2 Modular law. ( (Wisbauer, 1991%6.2). If H, K, L are submodules of an
R-moduleM and K C H, then

HN(K+L)=K+ (HNL).
Now we define the module homomorphisms:

Definition 2.8 Let R be a ring andM, N R-modules. A functiorf : M — N is called an
R-homomorphism if, for alin,, m, € M and for allr € R,

(i) f(m1+mg) = f(mi) + f(m2);



(i) f(mar) = f(ma)r.

We see no need to list the definitions of R-epimorphism, R-enaorphism, and R-
isomorphism since they are similar to the correspondingndieins for ring homomorphisms.
For a module homomorphisth : M — N, as one may expecfierf is a submodule of
M andImf is a submodule ofV. Note that we will just write homomorphism instead of
R-homomorphism. The additive group of all the homomorphissmfanR-module)M to an
R-moduleN is denoted by om (M, N); R-endomorphisms oft/ is denoted byndr(M).

Definition 2.9 Let M be an R-module and N be a submodule of M. Then the seteiScos
M/N ={x+ N :2 € M}.
is a right R-module if we define the addition and scalar mlittgiion as
(x+N)+(y+N)=(x+y)+N,(x+N)r=ar+N.

This new module is called the factor module of M modulo N. Téwe:m M — M /N defined
bym — (m + N) is an epimorphism called the natural or canonical epimosphi

Theorem 2.1 The Factor Theorem. ( (Anderson and Fuller, 1992), Theoreénl3et M, M’

and N be R-modules and legt : M — N be anR-homomorphism. 1§ : M — M’ is an
epimorphism withi{er(g) < Ker(f), then there exists a uniqgue homomorphism\/’ — N

such thatf = hg.

Moreover, Kerh = g(Ker(f)) and Im(h) = Im(f), so thath is monic if and only if
Ker(g) = Ker(f)andh is epic if and only iff is epic.

It is wise to give the isomorphism theorems now:

Theorem 2.2 Isomorphism Theorems. ( (Anderson and Fuller, 1992), Canpl3.7) Let M
and N be R-modules.

(1) If f: M — N is an epimorphism witli(er f = K, then there is a unique isomorphism
n: M/K — N suchthaty(m + K) = f(m)

forall m € M.

(2) If Kand L are submodules of M such th&atC L, then
(M/K)/(L/K) = M/L

(3) If Hand K are submodules of M, then



(H+K)/K 2 H/(HNK)
The next theorem characterizes the submodules of factoulesd

Theorem 2.3 Correspondence Theorem. ( (Anderson and Fuller, 1992)p&siion 2.9)
Let 7" be a submodule of aR-module)M. Then there is an isomorphism between the set of
submodules ot/ /T and the set of submodulesifwhich containg’, that is, the submodules

of M /T are precisely all factor module¥ /T, whereN is a submodule af/ which contains

T.

Let M be a leftR- module. Then for each subsg&tof M, the (left) annihilator ofX
in Ris
rAnn(X)={re R|rz=0 for all x € X},
and for each C R, the (right) annihilator of/ in M is

Anng(l)={x € M |rz =0 for all r € R)}.

Proposition 2.3 ( (Anderson and Fuller, 1992), Proposition 2.14) Ltbe a leftR-module
and X be a subset o#/. ThengAnn(X) is a left ideal ofR. Moreover, ifX is a submodule
of M, thengp Ann(X) is an ideal ofR.

2.4. Generating Sets, Finitely Generated Modules, and Mamial

Submodules

Let M be aleftR-module. A subselv of M is called a generating set of if
M = RN = {Zle ring -k €Ny and fori=1,2,...k, r, € R, n; € N}.

If this is the case, we say that generates// or that)M is generated by. If M has
finite generating set, then we say thdtis finitely generated. In particular, ¥/ is generated
by a single element, thell is called cyclic. In this casel\/ = Ra for some elementi of M.

Let N be a submodule af/. If the factor module\//N is finitely generated, then the
submoduleV of M is called a cofinite submodule af. We will use the following properties
without mentioning in our work. Proofs can be found in ( (Wasler, 1991)$6.6):

Lemma 2.1 Letf: M — N be a module homomorphism ahd generating set af/. Then

(1) f(L)is a generating set afm(f), and



(2) if M is finitely generated, thefin(f) is also finitely generated.

Every ring R is a cyclic module over itself. Recall that a proper submedulof a
moduleM is called maximal ifN is not contained in any proper submoduleldf That is,
if N & K, thenK = M. If an R module)M is finitely generated, then/ has a maximal
submodule (see, (Anderson and Fuller, 1992))). Factor modules of finitely generated
modules are also finitely generated. To see this, consiéenatural epimorphism : M —
M/N, whereM is a finitely generated module aid is a submodule of\/. Then by 2.1, it
follows thatM /N is also finitely generated.

Theorem 2.4 ( (Anderson and Fuller, 1992), Theorem 10.4.) étbe a right R-module.
Then, M is finitely generated if and only if// Rad(M) is finitely generated and the natural
epimorphism\/ — M/Rad(M) — 0is small (i.e.,Rad(M) < M).

2.5. Direct Products and Direct Sums

While a considerable amount of module theory deals with ogasing a module into
smaller parts, either by additive decompositions or residass decomposition, we may also
want to construct new modules from the modules we alreadg.hA$ we have mentioned
before, given any number of modules, we can create a largdul@a@ontaining all of the
given modules. This is possible with the so-called notiopraiducts, and in this section we
briefly give this notion.

Let {Mi : i € I} be a family of left R-modules, where | is a nonempty index set.
Consider the set theoretic cartesian prodigt, M; of these modules. Then this product of
the family { M/;} becomes a left R-module in the following way: (@t;), (n;) € [[.c; M;,r €
R. Addition is defined componentwise ;) + (n;) = (m; + n;) and scalar multiplication
is defined by (m;) = (rm;). This componentwise addition and scalar multiplicatiorkesa
sense because eath is a left R-module alone.

Definition 2.10 We say that the elemefi;);c; € [, M; has finite support if the s€t
I :m; # 0} is finite.

Now consider the set of all elements pf,_, M; with finite support. This subset is
actually a submodule df[,_; M; ( (Anderson and Fuller, 1992)6).

Definition 2.11 Let{Mi : i € I} be a family of left R-modules, where | is a nonempty index
set. Then the left R-moduld,_, //; is called the direct product of the famify/; : i € I}.
The submodule of all elements with finite suppoliftfof, //; is called the external direct sum

10



of the family{ /i : i € I}, denoted [,_, M;. External direct sum of the family\/i : i € I}
is also denoted byD,_, M;, @, M;, or @ M;. One can see that in case the index 5é$
finite, product and coproduct of the famify/: : i € I} coincide. Thatis][, M; = [[; M,
when | is finite. Also, if\f; = M for all ¢ € I then we write

MD =g, M

for the external direct sum efirdl copies ofM.

Now, we will give the definition of internal direct sum . Thistion is a little different
from that of products and coproducts. Here we deal with suhmibmodules of a given
module. So, le{M:i : i € I} be a family of submodules of a modulé. M is said to be the
internal direct sum of the familyMi : ¢ € I} if

1) M=>,,M;and

(2) M;(N(D_,z; Mi) = {0} forall j € J.

In this case, we writd/ = P, ; M,. This should not lead to any confusion that we
use the same notation for external direct sums, because haweesaid, in case of a direct
sum, we have submodules of a module as summands, while imaktirect sum we have
any family of modules as summands. For simplicity, we wik tse phrase direct sum for
internal direct sum.

A submodule N of a module M is called a direct summand of M ifr¢hexists a
submodule K of M such tha” = N @ K. Trivially, for any module M, the zero submodule
and M, itself are direct summands.

2.6. Exact Sequences

Let K, L, M be R-modules. Consider the sequenﬁ’e—f> M —~ L wheref and
g are module homomorphisms. We say that this sequence is ax&ttif Imf = Kerg.

Generally, a sequence of homomorphisms

fn fn 1
M, 4 M, > M,y — ...

is exact if it is exact at each/;, that is, if Im(f,,) = ker(f,+1) for all n. The next result
follows from the definition:

11



Proposition 2.4 ( (Wisbauer, 1991);7.14) LetM, N be modules and : M — N a homo-
morphism. Then

Q) 0—M . N isexactif and only iff is a monomorphism;

2 M S N——0 isexactifand only iff is an epimorphism;

f

3) 0 M N 0 is exact if and only iff is an isomorphism.

More generally, an exact sequence of the form

is called a short exact sequence. It can be derived from theegtroposition that in such an
exact sequencg is a monomorphism anglis an epimorphism. By isomorphism theorems,
one can see thdat = I'mf and that\//Imf = N. Thus, in an exact sequence generaly
is regarded as a submodule/dfand /N is regarded as a factor module of M.

2.7. Injective Modules and Noetherian Rings

In this section, we will introduce injective modules andeggsome basic properties of
these modules.

Definition 2.12 An R-module) is said to banjectiveif for any monomorphism: A — B
of R-modules and anyz-homomorphisnt : A — M, there exsists amk-homomorphism
h': B — M such thath = h'g:

Proposition 2.5 (Anderson and Fuller, 1992)

(1) If (Ey)rex is a family of injective right R-modules, théf, _,- £ is also injective right
R-module;

(2) Every direct summand of an injective rigRtmoduleF is injective;
(3) Afinite direct sum of injective righ®-modules is injective;
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(4) If M is an injective submodule ét-moduleN, thenM is a direct summand a¥.

Itis not true that every direct sum of injective modules jeative. Before we see that all such
direct sums are injective, we shall give the definition oftheean ring first.

Definition 2.13 A ring R is said to be noetherian if it satisfies the following threeigglent

conditions:
(1) Every non-empty set of ideals ihhas a maximal element;
(2) Every ascending chain of ideals idis stationary;

(3) Every ideal inR is finitely generated.

Proposition 2.6 ( (Anderson and Fuller, 1992), Proposition 18.13) For a riRgthe follow-

ing are equivalent:
(1) Every direct sum of injective righi-modules is injective;

(2) Ris aright noetherian ring.

Definition 2.14 A ring R is called an artinian ring if every descending chain of icead R
is stationary.

Definition 2.15 Let M be an R-module. A monomorphigm M — () is called an injective
hull of M if Q is injective andf is an essential monomorphism, i.Bn(f) is essential in Q.
We denote the injective hull of a module M by E(M).

2.8. Projective Modules and Perfect Rings

In this section we recall the definition of a projective madahd give some basic
properties of these modules.

Definition 2.16 An R- moduleP is said to beprojectiveif for any epimorphism ok-modules,
say,g : B — C, and anyR-homomorphisnk : P — C, there exists ark-homomorphism
h': P — B suchthath = gh':
P
h/ v d l
Y h
¥
B—1~(C—0

Proposition 2.7 ( (Lam, 1999)§2A) The following hold for a ring?.
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(1) If {M,}, is a family of R- modules, thegp . M, is projective if and only if eacl/, is
projective.

(2) A direct summand of a projective-module is projective.
(3) TheringR is a projectivekR-module.
(4) Every freeR-module is projective.

Proposition 2.8 ( (Anderson and Fuller, 1992), Proposition 17.2) The follogvstatements
about a rightR- moduleP are equivalent;

(1) P is projective ;
(2) Every epimorphismM — gz P — 0 splits;
(3) P isisomorphic to a direct summand of a free rigkhk module.

Definition 2.17 A ring R isright hereditaryif every right ideal is projective.

Semisimple rings are easily seen to be left and right hexaditia the equivalent
definitions: all left and right ideals are summandsifand hence are projective. Also, the
ring R of n x n upper triangular matrices over a fieldis both left and right hereditary.

Proposition 2.9 ( (Anderson and Fuller, 1992)) For a ring the following are equivalent;
(1) Risright hereditary;
(2) Every factor module of an injective rigiit-module is injective;

(3) Every submodule of a projective rightmodule is projective.
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2.9. Flat Modules

In this section we do not delve into the details of definitiohsvery term in homolo-
jical algebra. Essentially, we accept the Hom and Ten&py functors are known. For more
details on homological algebra see, (Rotman, 2009). Treafllat modules plays a special
role in many parts of ring theory. On the other hand, flat meslare natural generalizations
of projective modules and they are related to injective niegluia the formation of character
modules.

Definition 2.18 ( (Lam, 1999), Definition 4.0) A right moduld, is called flat if0 — M ®z
A — M ®pg B is exact in the category of abelian groups whendves A — B is an exact
sequence of lefR-modules.

We note that any projective-module is flat, and the converse is false, in general.

Definition 2.19 (Anderson and Fuller, 1992) A paii®, 7) is a projective cover of the module
Mpg in caseP is a projective rightR-module andr : P — M is a small epimorphism i.e.
Ker(r) < P. Aring R is right perfect in case each of its right modules has a pribjec

cover.

Theorem 2.5 Let R be a ring with jacobson radical. Then the following statements are
equivalent:

(1) Risright perfect;
(2) R/J is semisimple and for every rigiit-moduleM, M J < M
(3) Every flat rightkR-module is projective.

While flat modules are related to projective modules, themdso an interesting rela-
tionship between flat modules and injective modules, disgayvby J. Lambek. This relation-
ship is formulated by using the notion of character modulkes. any rightR-module P, the
character module aP is defined to be

P’ := Homy(P,Q/Z).

This is a leftR module via the actiofv, f) — rf, where(r f)(z) = f(zr)forr € R, f € P/,
andz € P.

Theorem 2.6 (Lambek) ( (Lam, 1999), Theorem 4.9) A rigtimoduleP is flat if and only if
its character modulé’ is injective.
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Definition 2.20 ( (Lam, 1999), Definition 4.25) A modul; is said to be finitely presented if
there exists an exact sequerice» K — F — P — 0 whereF is free of finite rank, and{
is finitely generated. Equivalently, there exists an exaquenceR™ — R" — P — 0 with

m,n € N.

Proposition 2.10 ( (Lam, 1999), Proposition 4.29) A ring is right noetherian if and only if
all finitely generated (cyclic) righiz-modules are finitely presented.

Theorem 2.7 ( (Lam, 1999), Theorem 4.30) L&%; be a finitely presented module over any
ring R. ThenP is flat if and only if it is projective.

2.10. Socle and Radical of a Module

Definition 2.21 A submoduleV of an R-module M is said to be aressential (or a large)
submodule oft/, written N < M, if N 1 N’ #£ 0 for each nonzero submodul of M. If N
is an essential submodule df, then) is referred to as amssential extensioof V.

Definition 2.22 Let M be anR- module. The submodule
Z(Mg) ={xz € M|zl =0 for some I < Rgp}

is called the singular submodule 6f. An R-module) is said to be singular (nonsingular)
if Z(M) =M (Z(M) = 0).

We observe that the ring is a nonsingular righz module if and only ifZ(Rg) =
0, and in this caseR is called a right nonsingular ring. Likewise, we say tliais a left
nonsingular ring ifZ(rR) = 0. Right and left nonsingular rings are not equivalent (see,
(Goodearl, 1976)).

Let M be anR-module andN < M. M/N is singular wheneveN < M. The
converse of this can easily fail; for example, Mt= 7Z/2Z and N = 0. M/N is a singulaZ
module, butV is not an essential submodule af.

In the following definition, dual definitions for essentiallBnodules and essential

extension are introduced.

Definition 2.23 N is called superfluousor smallin M, written N < M, if, for every sub-
moduleL C M, the equalityN + L = M impliesL = M. A moduleN is a small cover of a
module) if there exists an epimorphisyh: N — M such thatKer(f) < N.

Let M be anR-module. Thgacobson radicabf M is defined by
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Rad(M) = (\{K € M | K is a mazximal submodule in M}
=Y {LC M| Lisasmall submodule in M}

and thesocleof M is defined by

Soc(M) => {K C M | K is a minimal submodule in M}
=({L C M| L is an essential submodule in M}.

If M has no simple submodule, then we $gic(M) = 0. Also, if M has no maximal
submodule we seRad(M) = M. The jacobson radical of a ring is denoted by/(R). The
right socle of a ring isS = Soc(Rr) and left socle isS” = Soc(rR), and they are ideals of
R. They need not to be equal for examplefifis the ring of2 x 2 upper triangular matrices
over a field, thert £ 5'.

Corollary 2.1 ( (Anderson and Fuller, 1992), Corollary 15.4) K is a ring, then
Rad(RR) = Rad(RR)
The Jacobson radical of a ringJj$R) = Rad(Rgr) and it is an ideal.

Corollary 2.2 ( (Anderson and Fuller, 1992), Corollary 15.5)Kis a ring, thenJ(R) is the
annihilator in R of the class of simple right (leffy-modules.

Corollary 2.3 ( (Anderson and Fuller, 1992), Corollary 15.6)1fis an ideal of aring R, and
if J(R/I)=0,thenJ(R) C I.

Proof If J(R/I) = 0, then the intersection of the maximal right ideals/do€ontaining! is
exactlyR. It follows that.J(R), the intersection of the maximal right ideals®f is contained
inI. O

Corollary 2.4 ( (Anderson and Fuller, 1992), Corollary 15.8) R and R’ are rings and
if ¢ : R — R'is a surjective ring homomorphism, theit.J(R)) € J(R'). Moreover, if
ker¢ C J(R),theng(J(R)) = J(R'). In particular, J(R/J(R)) = 0.
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2.11. Semisimple Modules and Rings

Recall that ank-module) is called simple ifA/ # 0 and it has no non-trivial sub-
modules.

Proposition 2.11 ( (Anderson and Fuller, 1992), Theorem 9.6.) A righhtmoduleT’ is simple
if and only if7" = R/I for some maximal right ideal of R.

Let (7., )aca be an indexed set of simple submodules\6f If M is the direct sum of
this set, then

M=,T,

is a semisimple decomposition 8f. A moduleM is said to besemisimplen case it has a
semisimple decomposition.

Theorem 2.8 ( (Anderson and Fuller, 1992), Theorem 9.6) For a rigtimodule)M the fol-
lowing statements are equivalent:

(1) M is semisimple;

(2) M is generated by simple modules;

(3) M is the sum of some set of simple submodules;
(4) M is the sum of its simple submodules;

(5) Every submodule oY/ is a direct summand;

(6) Every short exact sequence
0K —->M-—=>N—=0

of right R-modules splits.
Corollary 2.5 ((Lam, 1991)§2) For a right R-module)/, the following hold.
(1) Every submodule of a semisimple modudgs semisimple.
(2) Every epimorphic image of a semisimple modulaes semisimple.
Theorem 2.9 ((Lam, 1991), Theorem 2.5) For a ring, the following are equivalent:
(1) Risright semisimple;
(2) All short exact sequences of rigRtmodules split;

18



(3) Allfinitely generated righfz-modules are semisimple;
(4) All cyclic right R-modules are semisimple;

(5) Allright R-modules are semisimple.

Corollary 2.6 ( (Lam, 1991), Corollary 2.6) A right semisimple rirdgis both right noethe-
rian and right artinian.

Theorem 2.10 ( (Lam, 1991), Theorem 2.8 and 2.9) The following conditmma ring i are
equivalent:

(1) Ris right semisimple;

(2) Allright R-modules are projective;

(3) Allright R-modules are injective;

(4) Allfinitely generated right modules are injective;

(5) All cyclic right R modules are injective.

2.12. Weakly Injective Modules

Dualizing essential extensions and submodules, we arepléuktfollowing notion,

which is called coessential extension.

Definition 2.24 ((Clark et al., 2006), Definition 3.1) Suppose that A C B C N. Then, of
course,A is an essential submodule Bfif A/0< B/0. Dually, we say that! is a coessential
submodule o3 in N (denoted byd —“¢ Bin N) if B/A < N/A.

Note that this is equivalent to saying th& A is a small cover ofV/B and that,
trivially, B < N if and only if 0 < B. Itis easy to see that —“ B in N if and only if
B+ X = NimpliesA+ X = N.

Definition 2.25 ( (Clark et al., 2006), Definition 3.6) A submoduleof N is said to be
coclosed inV (denoted byd << N) if it has no proper coessential submoduleNn

Definition 2.26 (Zoschinger, 2006) A modul¥ is called weakly injective if for every exten-
sion N of M, M is coclosed inV.
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Definition 2.27 (Oshiro, 1984) Ank-module)/ is said to be lifting module if, for any sub-
moduleA of M, there exist a direct summariglof M such thatB is a coessential submodule
of Ain M.

These are the final results of this chapter. We close thistenhpre, because we have
developed enough terminology and theory to follow the tleindpter of our work. We will

give new terminology and theory as we proceed in chapteethre
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CHAPTER 3

STRONGLY NONCOSINGULAR MODULES

In this chapter, we introduce the concept of strongly nomgpgar modules and deal
with their relations with some other modules. We start witlaracteristics of Rad-small
modules.

3.1. Cosingular (Rad-small) and Noncosingular Modules

Before giving the definitions, let us talk about the motimgtidea for the Rad-small
modules. Leonard defines a modulé to be small if it is a small submodule of sonte
module, and he shows that is small if and only ifM is small in its injective hull (Leonard,
1966).

Theorem 3.1 ( (Leonard, 1966), Theorem 2) Submodules, quotient modmniéginite direct
sums of small modules are small.

Proposition 3.1 ( (Clark et al., 2006), Proposition 8.2(3)) Any simple malid either small

or injective.

Now, we can give the fundamental properties of the fungtar) that was defined by
(Rayar, 1971) first. Led/ be anR module. The submodule @f is then defined as:

Z*(M)={m e M | mR is a small modulg.

SinceRad(M ) is the union of all small submodules 81, Rad(M) C Z*(M). We see that
Z*(E) = Rad(E) for any injective module?, andZ* (M) = M N Rad(E(M)).

Definition 3.1 Let R be a ring andM an R-module.Z*(M) is called cosingular submodule
of M. As the dual notion of singular (nonsingular){ is called cosingular (noncosingular)
if Z*(M) = M (Z*(M) = 0). R is called right cosingular if the (right)z-moduleR is
cosingular.

For convenience in concepts, the cosingutamodules are called Rad-small in this
thesis. Clearly, small modules are Rad-small.

Note that if M is a vector space over the rational numb@rshen/ is a semisimple
injectiveQ-module; hence’*(Mg) = Rad(Mg) = 0. However,M is also a module over the
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integersZ, and as such is torsion-free injective, so tHatMy) = M. Thus,Z*(M) depends
on which ringR one is considering.

Lemma 3.1 ( (Ozcan, 2002), Lemma 2.1) LBAtbe a ring and letf : M — N be a homo-
morphism ofR-modulesV/,N. Thenf(Z*(M)) C Z*(N).

Lemma 3.2 ( (Ozcan, 2002), Lemma 2.2) Lat be a submodule of aR-module)M. Then
Z*(N) = NnZ*(M).

Lemma 3.3 ((Ozcan, 2002), Lemma 2.3) L&f;(: € I) be any collection o2-modules, and
let M = @iEIMi- ThenZ*(M) = @zEIZ*(Mz)

Lemma 3.4 ( (Ozcan, 2002), Lemma 2.4) LBtbe a right Artinian ring with Jacobson radi-
cal J and letM be anR-module. TherZ*(M) = {m € M : mrg(J) = 0}.

Lemma 3.5 ( (Ozcan, 2002), Lemma 2.6) For any riig the class of Rad-smalt-modules

is closed under submodules, homomorphic images and direts but not (in general) under
essential extensions or extensions.

Proof The class of Rad-smaR-modules is closed under submodules by Lemma 3.2, under
homomorphic images by Lemma 3.1 and under direct sums by laegg

b
Let F' be a field, and leRR = {( ¢ ) :a,b € F}. ThenR is a commutative Artinian
0 a
: : : 0 F : :
ring with Jacobson radical = . Note thatrg(J) = J and that/ is an essential
0 0

ideal of R. By Lemma 3.4, thé? module/ is Rad-small but its essential extensiBp is not.
Moreover,J andR/.J are both Rad-small by Lemma 3.4, but tRemoduleR is not. O

Definition 3.2 (Talebi and Vanaja, 2002) A modul¢ is called noncosingular if for every
nonzero moduléV and every nonzero homomorphigm M — N, Im(f) is not a small
submodule ofV.

Proposition 3.2 ( (Talebi and Vanaja, 2002), Proposition 2.4) The class dhahcosingu-
lar modules is closed under homomorphic images, direct sertensions, small covers and
coclosed submodules.

3.2. Strongly Noncosingular Modules

Motivated by the noncosingular modules, we introduce theept of strongly non-
cosingularR-module. We start with the following definition.
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Definition 3.3 An R-module M is called strongly noncosingulaif for every nonzerokR-
moduleN and every nonzero homomorphigm M — N, Im(f) is not a Rad-small sub-
module of/V, i.e. M has no nonzero Rad-small homomorphic image.

After this definition, we will give some remarks for stronglgncosingular modules,
and we will see an example of a module which is noncosingulanbt strongly noncosingu-

lar, so our definition will make sense.

Remark 3.1 (1) Simple injectivé?-modules are obviously strongly noncosingular.

(2) LetR be a division ring (e.g. the rational numbe@. An R-module)M is a vector space,
and so it is a semisimple injectivémodule. Therefore, it is strongly noncosingular.

(3) Let R be a right hereditary ring. Finitely generated injectivémodules are strongly
noncosingular. LetV/ be a finitely generated injectivB-module. Suppose that* (M /N)
=M /N for a submoduléV of M. SinceR is a right hereditary ring, by Proposition 2.9/ /N

is injective, henc&ad(M/N) = Z*(M/N) = M/N. SinceM /N is finitely generated, by
Theorem 2.4Rad(M/N) < M/N, a contradiction. Thus, finitely generated injectike
modules are strongly noncosingular.

(4) Strongly noncosingulaik-modules are noncosingular since small modules are Radksma
However, there exists a noncosinguld&rmodule which is not strongly noncosingular (see
Example 3.1).

We have the following proposition as we had for noncosinguadules.

Proposition 3.3 The class of all strongly noncosingul&-modules is closed under homo-
morphic images, direct sums, direct summand, extensiora| sovers.

Proof (1) Let M be a strongly noncosinguld-module andV a submodule ofi/. Sup-
pose that\//N is not a strongly noncosingul&-module. Then there is a nonzero homomor-
phismg from M /N to someR-moduleT’ with Im(g) C Rad(T). ThenIm(gn) C Rad(T),
wherer is the canonical epimorphisi/ — M/N. SinceM is strongly noncosingular,
Im(gm) = 0. Theng = 0, a contradiction.

(2) Assume thatM;),c; is a class of strongly noncosingul&rmodules. Letf be a
homomorphism frongp,_, M; to someR-moduleN with I'm f C Rad(N). ThenIm(f;) C
Rad(N) for the inclusion maps; : M; — @, ., M; for everyi € I. Sincel; is strongly
noncosingula?-module,/m(fi;) = 0 for everyi € I. Thenf = 0, and@,., M, is strongly
noncosingular.

(3) Let N C M be a direct summand a¥/ andp : M — N the projection map.
Let f be a homomorphism fromV to someR-module?” with Im(f) C Rad(T). Then
Im(fp) € Rad(T) and, by the hypothesigp(M) = 0. Hence,f = 0, andN is strongly

noncosingular.
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(4) Leto - A 5 B % ¢ = 0 be a short exact sequence, and supposeAhat
and C' strongly noncosingulaRR-modules. Assume that there is a homomorphjsifinom
B to someR-moduleT" with Im(f) C Rad(T). ThenIm(fa) C Rad(T). SinceA is
strongly noncosingulak-module,/m(f«) = 0. Then there is a homomorphispfrom C to
T such thatf = gg by Theorem 2.1. Thereforém(g) C Rad(T') and, since’' is strongly
noncosingulak-module,/m(g) = 0. Thus,f = 0 and so,B is strongly noncosingular.

(5) Let B be a strongly noncosingul&-module, and lef : A — B be a small cover,
l.e. fis an epimorphism an&erf < A. Suppose thatl is not a strongly noncosingular
R-module. Then there is a submodweof A such thatd/X is Rad-small.B/f(X) is Rad-
small since it is homomorphic image df/ X. But B/ f(X) is strongly noncosingular by (1),
henceB/f(X) = 0,andB = f(X). Thenf~}(B) = X + Kerf = A, and soX = A since
Kerf < A. HenceA is strongly noncosingular. O

Before giving the following corollary, let us mention thepplements. A submodule
N of M is called asupplemenof K in M if N is minimal with respect to the property
M = K + N, equivalentlyM = K + N andK " N < N ((Wisbauer, 1991), p. 348).

Corollary 3.1 Let M be a module and andV submodules a¥/ such thatl” is a supplement
of U. ThenV is a strongly noncosingular if and only M /U is strongly noncosingular.

Proof By the hypothesis)/ = U+V,UNV < VandM /U = V/(UNV). Suppose that

Is strongly noncosingular. Since strongly noncosingéidanodules closed under homomor-
phic image by Proposition 3.3//U = V/(U N V) is strongly noncosingular. Conversely,
assume thal//U = V/(U N V) is strongly noncosingular. Since strongly noncosingular
R-modules closed under small cover by Proposition 3.3@ndV < V, V' is strongly non-
cosingular. O

General properties of strongly noncosingular modulesaddhowing:

Proposition 3.4 Let M be a strongly noncosingulaR-module. The following properties
hold:

(1) Every Rad-small submodule &f is small inM.

(2) Coclosed submodules df are strongly noncosingular.
(3) RadM < M.

(4) RadM = RadN N M for every extensiotV of M.

(5) Rad(M) = Z*(M).
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Proof (1) Suppose thak is a Rad-small submodule 8f andK + L = M for a submodule
L of M. Since;; is a homomorphic image df, itis Rad-small by Proposition 3.5. Bof
is strongly noncosingular, and % = 0 by Proposition 3.3. TheA N L = K andL = M.
SoK <« M, as desired.
(2) Let A be a coclosed submodule df. Suppose thatl/ X is a Rad-smalR-module for a
submoduleX of A. SinceM is strongly noncosingulai// X is also strongly noncosingular
by Proposition 3.3. Then, by (11/X <« M/X. But A is coclosed submodule df/, so
X = A by Definition 2.25. This implies! is a strongly noncosinguld-module.

(3) and(4) follow by (1).

(5) RadM C Z*(M) is clear. Conversely, letv € Z*(M). ThenmR is a small
module and, by (1)nR < M. Thusm € RadM. O

Now we will give a nice characterization of strongly noneagilar modules. First we
need characteristics of coatomic modules.

Definition 3.4 (Zoschinger, 1980) Let/ be ank-module. We say that/ is a coatomic mod-
ule if every proper submodule 8f is contained in a maximal submodule/df, equivalently
, for every submodul®’ of M, Rad(M/N) = M/N impliesM /N = 0.

Finitely generated and semisimple modules are coatomic.

Theorem 3.2 Let M be anR-module. Then the following statements are equivalent:
(1) M is strongly noncosingular;
(2) M is coatomic and every simple homomorphic imagé/oik injective;

(3) M is coatomic and noncosingular.

Proof Note that any simple module is either small or injective bygersition 3.1.

(1) = (2) Let N be a proper submodule @f/. SupposeV is not contained in a
maximal submodule of/. ThenM /N = Rad(M/N), and this implies\//N is Rad-small.
But M is strongly noncosingular, and sd/N = 0, a contradiction. By the given above,
simple homomorphic image of a strongly noncosingétanodule is injective.

(2) = (3) Let N be a proper submodule 8f with A//N small module. IfN is max-
imal submodule of\/, thenM /N is injective. Suppose tha¥ is not a maximal submodule
of M. By the assumption}/ is coatomic, and hence there exists a maximal submaduwé
M which containsV. Since small modules closed under homomorphic image by réheo
31, M/K = AI?T/JJJ is small. ButM/K is injective by the assumption, hengé/K = 0, a
contradiction . Therd/ has no small homomorphic image, i#. is noncosingular.

(3) = (1) Let N be a proper submodule 8f with M /N a Rad-smallR-module. By

the assumption)/ is coatomic, and hence there exists a maximal submadudé M/ which
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containsN. M/K is injective since) is noncosingular. Rad-small modules closed under
homomorphic image by Proposition 3.5, 8/ K = % is Rad-small. TheRad(M/K) =
M/ K, and this contradicts the fact thaf is coatomic. Hence)! is strongly noncosingular.

O

It is clear that, by Theorem 3.2, a strongly noncosingélanodule exists if and only
if there is a simple injective module.

Definition 3.5 Let M be anR-module over a domai®. If r € R andm € M, then we say
thatm is divisible byr if there is somen’ € M with m = m'r. We say thadl/ is a divisible
module if eachn € M is divisible by every nonzeroc R.

If Risadomain, then every injectivé-moduleF is a divisible module (see, (Rotman,
2009), Lemma 3.33).

Proposition 3.5 Let R be a domain which is not a division ring. Then there does nist ex
strongly noncosingulaRz-module.

Proof Itis enough to show that there is no simple injectirenodule. Assume that there
exists a simple injectiv&2-module, says. ThenS is divisible. SincesS is simple, there exists
a nonzero maximal idedl of R such thatS = R/I. Then(R/I)r = 0 for eachr € I. But
this contradicts with the divisibility ob. Hence, there is no simple injectivémodule. [

We give an example for a noncosingufgimodule that fails to be strongly noncosin-
gular.

b
Example 3.1 Consider the ringR = {< g ) la,c € Z,b € Q} and theR-moduleg M =

C

0
( Q ) . The leftR-module structure o/ is completely determined by the |&fmodule
0 0

structure ofQ. ThenM is not coatomic sinceQ is not coatomic. Buf\/ is noncosingular
since every nonzero homomorphic image ofZh@oduleQ is not small.

Definition 3.6 (Tuganbaev, 2003) A rin& is called a right Max-ring ifRad(M) # M for
everyR-module)M . Equivalently,R is a right Max-ring if and only if every nonzei®-module

is coatomic.

A perfect ringR is a right Max-ring, and the converse is trudif J( R) is semisimple
as a rightR-module ( (Anderson and Fuller, 1992), Theorem 28.4).
Theorem 3.2 yields the following.

Corollary 3.2 Let R be a right Max-ring. AnR-module) is strongly noncosingular if and

only if it is noncosingular.
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Recall that an?-module) is calledweakly injectivef, for every extensionV of M,
M is coclosed inV.

Proposition 3.6 Strongly noncosingulak-modules are weakly injective.

Proof Let M be a strongly noncosinguld-module andM C N any extension of\/.
Let L be a proper submodule @ff. SinceM /L is not Rad-small} /L cannot be a small
submodule ofN/L. Hence,L is not coessential submodule &f in N, and by Definition
2.25,M is coclosed inV. So, M is weakly injective. O

The converse of Proposition 3.6 is not true, in general. bngxe 3.1, the?-module
rM is injective, so weakly injective, but not strongly nonaagilar.
Proposition 3.3, Theorem 3.2 and Proposition 3.6 yield dhlewing corollary.

Corollary 3.3 Let M be a coatomic module. Then the following statements arevalgunt:
(1) M is strongly noncosingular;
(2) Every homomorphic image 61 is weakly injective;
(3) Every finitely generated quotient df is weakly injective;
(4) Every cyclic quotient ab/ is weakly injective;
(5) Every simple quotient a¥/ is injective.

Now, we shall present a standart result on simple injectigdutes and briefly discuss
the notion of right V-rings.

An elemeta in a ring R is calledvon Neumann regulaf a € aRa. The ringR itself
is calledvon Neumann regulaif every a € R is von Neumann regular. A ring is called
aright V-ring if every simpleR-module is injective. In the category of commutative rings,
the V-rings are exactly the (commutative) von Neumann regutaysi For noncommutative
rings, the situation is quite a bit more subtle. In the geineaiae, rightl’-rings need not be
von Neumann regular; also they need not bellefings.

Theorem 3.3 ((Lam, 1999), Theorem 3.75) For any rirg) the following are equivalent:
(1) RisarightV-ring;
(2) For any right R-moduleM, Rad(M) = 0.

Any right semisimple ring is & -ring. By the above theorem clearly, evaiymodule
is coatomic ifR is a rightV/-ring. Theorem 3.2 and Corollary 3.3 yield the following.

Corollary 3.4 Let R be aring. The following statements are equivalent:
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(1) Rgp is strongly noncosingular.
(2) RisarightV-ring.
(3) Every quotient of: is weakly injective.

(4) EveryR-module is strongly noncosingular.

Proposition 3.7 Injective modules are strongly noncosingular if and onlywéakly injective

modules are strongly noncosingular.

Proof Let M be a weakly injective module. By the assumpti@#{,}/) is strongly non-
cosingular. ThenV/ is strongly noncosingular by Proposition 3.4(2). The cosedollows
from the fact that injective modules are weakly injective. O

It is well known that a ringR is a right hereditary ring if and only if every homomor-
phic image of an injectivé&-module is injective (see Proposition 2.9). Semisimplgsiare
left and right hereditary.

Lemma 3.6 Let R be a right hereditary ring. The following statements areieglent:
(1) Every weakly injectivé&z-module is strongly noncosingular;
(2) Every injectiveR-module is strongly noncosingular;
(3) Every injectivekR-module is coatomic;

(4) Every weakly injectiv&?-module is coatomic.
Proof (1) < (2)is by Proposition 3.7(1) = (4) is by Theorem 3.2 and!) = (3) is clear.
(3) = (2) Let M be an injective module. SincR is right hereditary, every homomorphic
image ofM is injective, andV/ is strongly noncosingular by Theorem 3.2. O
It is clear that injective modules are noncosingular on thiésey rings. Corollary 3.2

and Lemma 3.6 yield the following.

Corollary 3.5 Let R be a right hereditary Max-ring. Then every injective modslstrongly

noncosingular.

Now we give an example to show that the converse of CorolldyiSnot true, in

general.

Example 3.2 Let K be any field, and lek be the commutative ring which is the direct product
of a countably infinite number of copies &f that is, R = [[;-, K;, whereK; = K for all

i > 1. First, we show thaf? is a Von Neumann regular ring: By means of componentwise
defined addition and similarly defined multiplicatiok;)(k;) = (k;k;), R becomes a ring.
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Foranyk; € R, definek, = k; ' if k; # 0, andk; = 0if k; = 0. Thenk, € R andk;k;k; = k;.
Therefore,R is Von Neumann regular, and gois aV/-ring. Hence every:-module is strongly
noncosingular, so injectiv&-modules are strongly noncosingular. Now, we will show tRat
is not a semisimple ring. As we easily verify that= [[.°, K; is a proper two-sided ideal
in R = [[;2, K; which is essential both iz and pR. ConsequentlyA cannot be a direct
summand inky (or in pR). Hence,R is not semisimple. Also, sindeis any direct product
of fields, R is right and left self injective by Proposition 2.5. It is ergh to show thakR is not
hereditary. Supposg is right hereditary. Sincdiy, is injective, Proposition 2.9 implies that
any quotient of? is also injective. This means that any cyclic rightmodule is injective, so
by Theorem 2.9R is semisimple, a contradiction. ConsequenRys not hereditary.

Definition 3.7 (Fuchs, 2012) A submodulé of an R-module)M is called coneat inV/ if for
every simplek-moduleS, any homomorphism : N — S can be extended to a homomor-
phismd : M — S.

Definition 3.8 (Crivei, 2014) AnR moduleM is called absolutely coneat i/ is coneat

submodule of any module containing it.

Proposition 3.8 (Buyikasik and Dugun, 2013) For a submodul® C M, the following are

equivalent:
(1) N is a coneat submodule 6f;
(2) If K C N with N/K finitely generated andV// K < M/K, thenK = N,
(3) For any maximal submodul€ of N, N/K is a direct summand af// K;;

(4) If K is amaximal submodule @f, then there exists a maximal submodalef M such
that K = NN L.

Recall that a submodul® of an R-module)M is said to becoclosedn M if it has no
proper coessential submoduled, i.e. if forany X' C N, N/K <« M/K, thenK = N.
Then by Proposition 3.8, coclosed submodules are coneais, We may say that weakly
injective modules are absolutely coneat. We have the faligwumplications among the our

concepts:

strongly noncosingulat=- noncosingular=- weakly injective—>- absolutely coneat

ﬂ

injective
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Proposition 3.9 Let R be a right Max-ring. Then absolutely coneat modules are Vyeak
injective.

Proof Let A be an absolutely coneat module aldany extension ofi. Supposed is not
coclosed submodule dff. Then for some submodul® of A, A/B <« M/B. SinceR is a
right Max-ring, A is coatomic. Thus3 is contained in a maximal submodule, s&y of A.
ThenA/K < M/K, and this contradicts with the fact thatis coneat inM/. Hence,A is
weakly injective. O

Proposition 3.10 Let R be a ring. If absolutely coneat modules are strongly nonupsiar,
thenR is a right Max-ring.

Proof Let M be anR-module withRad(M) = M. Itis easy to see thaiom(M,S) =0

for each simple modulé. Hence,M is absolutely coneat and, by the assumptidh,is
strongly noncosingular. Buf\/ is Rad-small, and sé/ = 0. Then,R is a right Max-ring.[]

Corollary 3.6 Let R be a right hereditary ring.R is right Max-ring if and only if absolutely
coneat modules are strongly noncosingular.

Proof By Proposition 3.9, absolutely coneat modules are wealctive. Therefore, ab-
solutely coneat modules are strongly noncosingular by &oya3.5 and Proposition 3.7. The
converse follows by Proposition 3.10. O
Recall that AnR-module)M is said to be amxtending moduld, for any submodule
A of M, there exists a direct summaitiof M such thatB is an essential extension df.
Dually, an R-module M is said to be difting moduleif, for any submoduled of M, there
exists a direct summan@ of M such thatB is a coessential submoduleéfin M. Aring R
is called aright co-H-ring if every projectiveR-module is an extending module. A rirgis
called aright H-ring if every injective rightR-module is lifting (see, (Oshiro, 1984)).

Theorem 3.4 ((Oshiro, 1984), Theorem I) The following conditions areieglent for a ring
R:

(1) Every injectivekR-module is a lifting module;

(2) Ris aright Artinian ring, and every non-smalt-module contains a non-zero injective
submodule;

(3) Risaright perfectring, and the family of all injectivé&modules is closed under taking

small covers;

(4) EveryR-module is expressed as a direct sum of an injective modul@amall module.
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Theorem 3.5 ( (Oshiro, 1984), Theorem 4.6) R is a right nonsingular ring, then the fol-

lowing conditions are equivalent :
(1) Ris aright H-ring;
(2) Ris aright co-H-ring.

Corollary 3.7 (Oshiro, 1984) LetR be aring. If R is a right co-H-ring, then every nonsin-
gular R-module is projective. The converse also holds wRes a right nonsingular right

co-H-ring.

Theorem 3.6 ( (Chatters and Khuri, 1980), Theorem 4.2) Li2be a right nonsingular ring.
Then the following are equivalent:

(1) Every nonsingular righfz-module is projective;
(2) R is Artinian hereditary serial.

Right nonsingular rings are a very broad class, includigbtrisemi)hereditary rings,
von Neumann regular rings, domains and semisimple rings.
Artinian hereditary serial rings are right (lefj-rings by (Theorem 3.6, Corollary 3.7 and
Theorem 3.5).

Theorem 3.7 Let R be a right perfect ring. The following statements are eqlaina

(1) The class of injective modules coincides with the clégstmngly) noncosingulark-
modules.

(2) Ris Artinian hereditary serial.

Proof (1) = (2) Since strongly noncosingula®-modules closed under homomorphic
images, every homomorphic image of an injective modulejective by the assumption?
is right hereditary ring by Proposition 2.9. Under the asgtiom, injective R-modules are
closed under small covers by Proposition 3.3. ThReis right H-ring by Theorem 3.4. Since
R is a right hereditary ring is right nonsingular. SoR is right co-H-ring by Theorem
3.5. Hence, every nonsingul&module is projective by Corollary 3.7. Hende,is Artinian
serial by Theorem 3.6.

(2) = (1) By Corollary 3.5, injective modules are strongly noncosilag Let M be a
strongly noncosingulakR-module. Since Artinian hereditary serial ridgis right H-ring by
(Oshiro, 1984),M has a decomposition/ = M; & M,, whereM; is injective and)M, is
small by Theorem 3.4. By Proposition 38; and M, are strongly noncosingular. Bit, is
small module, and s&/, = 0 . Therefore M; = M is injective. O

31



Definition 3.9 ( (Lam, 1999), 8.26) A ringr is called right Kasch ring if every simple right
R-moduleS can be embedded iRg. "Left Kasch ring” is defined similarly. As usuali is
called a Kasch ring if it is both right and left Kasch.

We note that any commutative Artinian ring is both right aefi Kasch.

Lemma 3.7 Let R be a right Kasch ring. Ark-module) is strongly noncosingular if and
only if M is semisimple and every simple submodul&/of injective.

Proof SupposeV/ is not semisimple, i.eSoc(M) # M. SinceM is strongly noncosin-
gular, M is coatomic by Theorem 3.2. Then the proper submodut¢ /) is contained in a
maximal submodule of/, say K. SinceM is strongly noncosingulad// K is injective by
Theorem 3.2. By the hypothesi¥,/ K embeds inR. But M/ K is injective, and so it is direct
summand of? by Proposition 2.5(4). Hencé{// K is projective by Proposition 2.7. Thex
is a direct summand af/ by Proposition 2.8. Sa)/ = K @ S for some submoduleS of
M such thatS = M/K simple. ThenS C Soc(M), andS C Soc(M)nNS C KNS =0,
a contradiction. Thus we must halt¢ = Soc(M). ThereforeM is semisimple. Sincé/ is
semisimple, every simple submoduleof M is isomorphic to a simple homomorphic image
of M. So, N is injective by Theorem 3.2. The converse follows from Tle@or3.2, since
semisimple modules are coatomic. O

In general, rings do not have any semisimple factor ringsvéder, ringsk for which
R/J(R) is semisimple are of considerable interest. A ridgs said to besemilocalf R/J(R)
is a semisimple ring (see (Lam, 199920). Any right or left Artinian ring, any serial ring,
and any semiperfect ring is semilocal.

Proposition 3.11 ( (Anderson and Fuller, 1992), Proposition 15.17) For a riRgvith radical
J(R) the following statements are equivalent:

(1) R/J(R) is semisimple;
(2) R/J(R) is right Artinian;
(3) Every product of simple righ® modules is semisimple;

(4) Every product of semisimple rigit modules is semisimple.

Lemma 3.8 Let i be a semilocal ring. AiR-module)M is strongly noncosingular and every
maximal submodule al/ is direct summand if and only if M is semisimple injective.

Proof Suppose for the contrary th&be(M) # M. SincelM is stongly noncosingulad/

is coatomic, and so the proper submodsite:( /) is contained in a maximal submodule of
M , sayK. By the assumption, every maximal submodule\bfis a direct summand af/.
So,M = K € S for some submodul§ of M. SinceK is maximal inM, M/K is simple.
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Thus,S = M/K is simple such that C Soc(M),soS C Soc(M)NS C KNS =0,
a contradiction. Thus we must ha¢ = Soc(M). Therefore, M is semisimple, and/ =
D e Sx for some index set and simple submodules, of M. ThenM C N :=[],_, Sh.
SinceR is semilocal, by Proposition 3.11, the right siffeis also a semisimpl&-module.
Every simple summandS{, A\ € A) of M is injective sinceM is strongly noncosingular.
Thus,N = [],., S\ is injective. Then the direct summand of N is injective. So,M is

semisimple injective. The converse is clear. OJ

Lemma 3.7 and Lemma 3.8 yield the following.

Corollary 3.8 Let R be a semilocal right Kasch ring. A&rmodule) is strongly noncosin-
gular if and only if M is semisimple injective.
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CHAPTER 4

STRONGLY NONCOSINGULAR MODULES OVER
COMMUTATIVE RINGS

In this chapter we investigate strongly noncosingutamodules over commutative
rings.
ForaringR let Z(R) = {r € R | rs = sr, for eachs € R} be the center oR. It is easy to
check thatZ(R) is a subring ofR. Of course Z(R) is commutative and is commutative if
andonly if R = Z(R).

Corollary 4.1 ( (Anderson and Fuller, 1992), Corollary 15.18) LRtbe a ring with radical
J = J(R). Then for every lefR module M,J(R).M C Rad(M). If R is semisimple modulo
its radical, then for every lefR-module M,J(R).M = Rad(M) and M /JM is semisimple.

Proposition 4.1 Let R be a ring andM a strongly noncosingulak-module. TherZ*(R) N
Z(R) C Ann(M).

Proof Letr € Z*(R) N Z(R). Sincer € Z(R), the mapf : M — M, defined by
f(m) = mr for eachm € M is an R-homomorphism. On the other hand¢ Z*(R) implies
that Im(f) = Mr C Rad(FE(M)). Therefore,f = 0 and soMr = 0 by the hypothesis.
Hence, € Ann(M). O

Corollary 4.2 Let R be a ring andM a strongly noncosingulaR-module. Then/(R) N
Z(R) C Ann(M).

Corollary 4.3 Let R be a commutative ring antl/ a strongly noncosingulakR-module. Then
Z*(R).M = J(R).M = 0.

Corollary 4.4 Let R be a commutative semilocal ring and an R-module. ThenM is
strongly noncosingular if and only i¥/ is a semisimple injective module.

Proof If R is semilocal, then, by Corollaries 4.1 and 4i&d(M) = J(R)M = 0. So,
M/JM = M is semisimple by Corollary 4.1. The injectivity af follows by the proof of
Lemma 3.8. The converse is clear. O
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Proposition 4.2 Let R be a commutative ring and/ a strongly noncosingulafz-module.
ThenAnn(M/Rad(M)) = Ann(M).

Proof Letr € Ann(M/Rad(M)). ThenrM C Rad(M ), and so from the proof of Propo-
sition 4.1 we get'M = 0. Thereforey € Ann(M) andAnn(M/Rad(M)) C Ann(M). On
the other hand, we always haven (M) C Ann(M/Rad(M)). This completes the prodi]

Lemma 4.1 ( (Anderson and Fuller, 1992), Exercises 15.(5)) lkebe a commutative ring
and(2 the set of all maximal ideals @t. ThenRad(M) = () p., PM for eachR-module).

Proposition 4.3 Let R be a commutative ring and/ an R-module with a unique maximal
submodule. Then/ is strongly noncosingular if and only i/ is simple injective.

Proof We first claim thatV/ is a simpleR-module. By the hypothesigad()M ) is a maximal
submodule ofV, i.e. M/Rad(M) is simple. ThenM//Rad(M) = R/P for some maximal
ideal P of R by Proposition 2.11.

SinceM is strongly noncosinguladnn(M) = Ann(M/Rad(M)) = P by Proposition 4.2.
ThenP.M = 0, and soRad(M) = 0 by Lemma 4.1. Thereforel/ is a simpleR-module
and, by the hypothesid/ is injective. The converse is clear. O

Lemma 4.2 ( (Ware, 1971), Lemma 2.6) Suppdsés a commutative ring and is a simple
R-module. Thert is flat if and only ifS is injective.

Lemma 4.3 Let R be a commutative noetherian ring and an R-module. Then, M is
strongly noncosingular if and only if M is semisimple injeet

Proof Suppose for the contrary th&bc(M) # M. SinceM is strongly noncosingular,
the proper submodulgoc(M) is contained in a maximal submoduléof M such thatV// K

is injective. So,M /K is flat by Lemma 4.2. Sincé//K is finitely generated, it is finitely
presented by Proposition 2.10. Therefoké/ K is projective by Theorem 2.7. The is

a direct summand of/ i.e. M = K& S for some simple submodulg of M. But S C
Soc(M) NS C (K NS)=0,acontradiction. Hence/ is semisimple. Thed! = @,_, S

, WheresS; is simple module for eache I. SinceM is strongly noncosingular, every simple
summand of)M is strongly noncosingular by Proposition 3.3, and so theyiajective by
Theorem 3.2. Ther/ is injective since direct sums of injective modules aredtye by
Proposition 2.6. The converse is clear. O

Lemma 4.3 is not true in noncommutative case, in general. ,Neavwill give an
example of a module over a noncommutative noetherian ringhwh strongly noncosingular

but not semisimple.
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Example 4.1 LetR =

] be upper triangular matrices over a field R is a right
hereditary Artinian ring , and so it is noetherian (see (Lab®999)). The socle oRy is

.LetA = be the right ideals oy

SOC(RR) =
F 0 O 0 F

such thatkRr = A @ B. Aisinjective by (Goodearl, 1976) Exercise 3B 20-21. SiRas
right hereditary Artinian ring,A is a strongly noncosingular by Corollary 3.5. Howewéis

F
] and B =

not a semisimplé: module, otherwis&oc(Rr) = Rg , a contradiction .

Theorem 4.1 Let R be a commutative ring. Then the following statements arévatgnt:

(1) The class of injectivé-modules coincides with the class of strongly noncosingula

R-modules.

(2) Rissemisimple.

Proof (1) = (2) Since strongly noncosingula@-modules closed under direct sums by

Proposition 3.3, direct sums of injectivémodules are injective by the assumption. Then

is Noetherian ring by Proposition 2.6. By (1) and by Lemma &\&ry injectiveR-module

is semisimple, and so eveR-module is semisimple. TheR is semisimple by Theorem 3
(2) = (1) is obvious. O

3.
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CHAPTER 5

CONCLUSIONS

Motivated by the noncosingular modules, in this thesis, mteoduced the concept
of strongly noncosingular modules. Attmodule M is calledstrongly noncosingulaif for
every nonzero modulé&’ and every nonzero homomorphistin: M — N, Im(f) is not a
Rad-small submodule d¥. The aim of this study is to work on the concept of strongly-non
cosingular modules and investigate the rings and moduss<#n be characterized via these
modules. We proved that (1) A rigli-module M is strongly noncosingular if and only if
M is coatomic and noncosingular; (2) a right perfect rings Artinian hereditary serial if
and only if the class of injective righR-modules coincides with the class of (strongly) non-
cosingular rightR-modules; (3) a right hereditary ring is Max-ring if and only if absolutely
coneat rightR-modules are strongly noncosingular; (4) a commutativg Rris semisimple if
and only if the class of injectiv&-modules coincides with the class of strongly noncosingula
R-modules.
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