
NUMERICAL SOLUTIONS OF THE
REACTION-DIFFUSION EQUATIONS BY

EXPONENTIAL INTEGRATORS

A Thesis Submitted to
the Graduate School of Engineering and Sciences of

İzmir Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

in Mathematics

by
Melek SOFYALIO ĞLU

July 2014
İZM İR

We approve the thesis ofMelek SOFYALIO ĞLU

Examining Committee Members:

Prof. Dr. Gamze TANOĞLU
Department of Mathematics,İzmir Institute of Technology

Assist. Prof. Dr. H.Seçil ARTEM
Department of Mechanical Engineering,İzmir Institute of Technology

Assist. Prof. Dr. Fatih ERMAN
Department of Mathematics,İzmir Institute of Technology

11 July 2014

Prof. Dr. Gamze TANOĞLU
Supervisor, Department of Mathematics
İzmir Institute of Technology

Prof. Dr. Oğuz YILMAZ Prof. Dr. R. Tu ğrul SENGER
Head of the Department of Dean of the Graduate School of
Mathematics Engineering and Sciences

ACKNOWLEDGMENTS

This thesis is the consequence of a five-term study and now I would like to express

my gratitude to all the people supporting me from all the aspects for the period of my thesis.

Firstly, I would like to thank and express my most sincere anddeepest gratitude to my advisor

Prof. Dr. Gamze TANŎGLU, for her understanding, help, encouragement and patience during

my studies to prepare this thesis. And I would like to thank toThe Scientific and Technological

Research Council of Turkey (TÜBİTAK) for its financial support.

Finally, I am also grateful to my family and my friends Nesli¸sahİMAMO ĞLU, Barış Ç̇IÇEK,

Yeşim Ç̇IÇEK and Gizem KAFKAS for their confidence to me and for their endless supports.

ABSTRACT

NUMERICAL SOLUTIONS OF THE REACTION-DIFFUSION
EQUATIONS BY EXPONENTIAL INTEGRATORS

This thesis presents the methods for solving stiff differential equations and the conver-

gency analysis of exponential integrators, namely the exponential Euler method, exponential

second order method, exponential midpoint method for evolution equation. It is also con-

centrated on how to combine exponential integrators with the interpolation polynomials to

solve the problems which has discrete force. The discrete force is approximated by using the

Newton divided difference interpolation polynomials. The new error bounds arederived. The

performance of these new combinations are illustrated by applying to some well-known stiff

problems. In computational part, the methods are applied tolinear ODE systems and parabolic

PDEs. Finally, numerical results are obtained by using MATLAB programming language.

iv

ÖZET

REAKṠIYON DİFÜZYON DENKLEMLERİNİN ÜSTEL
İNTEGRATÖRLERLE SAYISAL ÇÖZÜMLEṘI

Bu tez stiff diferansiyel denklemleri çözmek için kullanılan yöntemleri ve üstel inte-

gratörlerin yakınsaklık analizini sunmaktadır. Ayrıca, ayrık güç içeren probremleri çözmek

için üstel integratörlerin interpolasyon polinomlarıylanasıl birleştirilecĕgine konsantre olun-

muştur. Verilen ayrık güç Newton bölünmüş farklar interpolasyon polinomu kullanılarak yak-

laşık olarak hesaplanmıştır. Yeni hata sınırları elde edilmiştir. Yapılan yeni kombinasyonların

performansı bazı iyi bilinen stiff problemlere uygulanarak açıklanmıştır. Sayısal kısımda,

yöntemler lineer adi diferansiyel denklem sistemlerine veparabolik kısmi diferansiyel den-

klemlere uygulanmıştır. Son olarak, sayısal sonuçlar MATLAB programlama dili kullanılarak

elde edilmiştir.

v

TABLE OF CONTENTS

LIST OF FIGURES. .. .viii

LIST OF TABLES .. ix

CHAPTER 1. INTRODUCTION. 1

CHAPTER 2. STIFF DIFFERENTIAL EQUATIONS. 3

2.1. History of Stiff Differential Equations. 3

2.2. Stiffness. 4

CHAPTER 3. NUMERICAL METHODS FOR STIFF DIFFERENTIAL EQUATIONS 10

3.1. Traditional Implicit Methods. .10

3.1.1. Backward Differentiation Formula. .10

3.1.2. Implicit Runge Kutta Method. .12

3.1.3. Trapezoid Method. .. . 13

3.2. Exponential Integrators. .14

3.2.1. Derivation of theφ Functions. .16

3.2.1.1. Derivation of the Methods withφ Functions. 17

3.2.2. Exponential Euler Method. .19

3.2.3. Second Order Method. .20

3.2.4. Exponential Midpoint Rule. .21

3.2.5. Exponential Rosenbrock Method. .21

3.3. Error Analysis via Richardson Extrapolation. 23

CHAPTER 4. ERROR ANALYSIS 25

4.1. Analytical Framework. .. 25

4.2. Convergence of Exponential Euler Method. .29

4.3. Convergence of the Second Order Method. .36

4.4. Convergence of the Exponential Midpoint Method. 39

CHAPTER 5. INTERPOLATION THEORY. .44

5.1. Newton Divided Differences Polynomial Approximation. 44

vi

CHAPTER 6. ERROR ANALYSIS OF EXPONENTIAL INTEGRATORS WITH

DISCRETE FORCE. 49

6.1. Error Analysis of Exponential Euler Method. 49

6.2. Error Analysis of Second Order Method. .51

6.3. Error Analysis of Exponential Midpoint Method. 52

CHAPTER 7. NUMERICAL EXPERIMENT. .56

7.1. Application of Various Exponential Integrators on theProthero-Robinson

Equation. 56

7.2. One Dimensional Example to Explain Stiffness. 59

7.3. Two Dimensional ODE Problem. .62

7.4. Example of Reaction-Diffusion Equations. .66

7.4.1. Linear Problem. 66

7.4.2. Semilinear Problem: The Fisher Equation. 68

7.4.3. Semilinear Problem: The Allen Cahn Equation. 71

CHAPTER 8. CONCLUSION. 77

REFERENCES .. 78

APPENDIX A. MATLAB CODES FOR THE APPLICATIONS OF THE

EXPONENTIAL INTEGRATORS. .80

vii

LIST OF FIGURES

Figure Page

Figure 7.1. Comparison of numerical methods with exact solution for time step∆t =

0.1. .. 58

Figure 7.2. Order plot for the exponential methods applied to the Prothero equation for

α = 2. .. 58

Figure 7.3. Order plot for the exponential methods applied to the Prothero equation for

α = 4. .. 59

Figure 7.4. Divided difference polynomial of given data points and cos(x).. 60

Figure 7.5. Comparison of different exponential integrators with exact solution for

∆x = 0.1. .. 61

Figure 7.6. Order of exponential methods.. .63

Figure 7.7. Order plot of the exponential methods with divided difference.. 64

Figure 7.8. Divided difference polynomial of given data points andet. 65

Figure 7.9. Comparison of numerical methods with exact solution for time step

∆t = 0.015. .. 65

Figure 7.10. Order graphic.. 68

Figure 7.11.Analytic and computed solutions of second order method for linear parabolic

equation∆t = 0.05 and∆x = 0.01. .69

Figure 7.12. Second order method solution for different values of time with

∆t = 0.05 and∆x = 0.01. 69

Figure 7.13. Order plot for the exponential Rosenbrock Euler method applied to Fisher

equation. .. 72

Figure 7.14. Numerical solution of Fisher equation∆t = 0.01 and∆x = 0.5. 72

Figure 7.15. Computed solutions of Fisher equation for different values of time with

∆t = 0.01 and∆x = 0.5. 73

Figure 7.16. Order plot for Allen Cahn equation.. .75

Figure 7.17. Numerical Solution of Allen Cahn equation∆t = 0.1 and∆x = 0.05. 75

Figure 7.18. Computed solutions of Allen-Cahn equation fordifferent values of time

with ∆t = 0.1 and∆x = 0.05. .76

viii

LIST OF TABLES

Table Page

Table 5.1. Format for constructing divided differences ofg(t). 46

Table 6.1. g is given as a function of time. .49

Table 6.2. g andg′ are given as a function of time. .53

Table 7.1. Comparison of errors for various exponential integrators different∆t val-

ues. .. 57

Table 7.2. Comparison of traditional methods and exponential euler method errors

with discrete force for different∆x values. .61

Table 7.3. Comparison of different exponential integrators errors with discrete force

for different∆x values. 61

Table 7.4. Given discrete data points.. 62

Table 7.5. Comparison of different methods errors for different∆t values.. 63

Table 7.6. Comparison of different exponential and traditional methods with divided

difference errors for different∆t values. .64

Table 7.7. Divided difference table ofg(t). .67

Table 7.8. Comparison of different exponential integrators with divided difference er-

rors for different∆t values when∆x = 0.01 in L∞ norm. 68

Table 7.9. Comparison of exponential Rosenbrock Euler method errors in different

norms for∆x = 0.5. 71

Table 7.10. Comparison of exponential Rosenbrock Euler method error for different

norms. .. 74

ix

CHAPTER 1

INTRODUCTION

Numerical methods for solving initial value problems have along history in mathemat-

ics. These methods can be either explicit or implicit. This thesis is concentrated on numerical

solution of the stiff problems. One of the technique to solve such problems is exponential

integrators.

Stiff systems of ordinary differential equations arise frequently while solving partialdiffer-

ential equations by spectral method. These problems are mostly solved by implicit methods.

Implicit methods are usually more costly than explicit methods but their stability properties

enable us to study for large time steps and this compensate the extra cost.

Exponential integrators are explicit methods which is considered as generalizations of the im-

plicit methods. This fact allows to use much more large time steps although explicit methods

require much smaller time steps than implicit methods. For this reason, exponential integra-

tors are suitable methods to solve stiff problems. We can find applications of exponential

integrators in applied mathematics, physics, financial mathematics and statistics. More detail

can be read from (Kandolf, 2011).

We will go on a historical background of exponential integrators. The idea behind exponential

integrators dates back to late 1950’s. The beginning of thismethods takes place in the study

of Hersch in 1958. In these years traditional integrators for ODEs can not compute the true

solution when it is compared with the exact solution. When Hersch realized that traditional

integrators have problems, he suggested a new exact integration scheme for constant coeffi-

cient linear ODEs (Michels& Sobottka & Weber, 2014). This scheme is the first exponential

integrator. In 1960, Certaine developed the first multistepmethod by using variation of con-

stants approach with an algebraic approximation of the nonlinear part. After this marks, the

research on exponential integrators heightened. In 1963, Pope proposed linearizing a nonlin-

ear differential equation, which involves exponential term, at each time step. This generates

the basis for the Rosenbrock methods. (Pope, 1963). In 1967,Lawson solved an IVP by

using a Runge-Kutta process numerically. In his article, hechanged classical coefficients of

Runge-Kutta for exponential functions. On the other words,exponential functions are used

as coefficients. This article was the first Runge-Kutta based on exponential method. (Lawson,

1967)

In 1978, Friedli proposed higher order exponential Runge-Kutta methods to solve non-stiff

differential equations. He used classical Taylor series expansion. In 1998, Hochbruck, Lubich

1

and Selhofer introduce a new integration method which uses multiplication of matrix-vectors

with the exponential of the Jacobian (Hochbruck & Lubich & Selhofer , 1998).

In 2005, Hochbruck and Ostermann derived higher order exponential Runge-Kutta methods

to solve stiff differential equations. (Hochbruck & Ostermann & Schweitzer, 2008)

In the literature, most papers use variation of constants formula to solve parabolic problems.

The initial value problems under consideration can be written as follows:

u′(t) + Au(t) = g(t, u(t)), (1.1)

u(0) = u0,

whereA ∈ Rn×n is a constant linear operator that represents higher order spatial derivatives

andg ∈ Rn is a nonlinear operator. All of papers usee−hA, which is the exponential function

of a matrix−hA in order to take a step from timet to time t + h whereh is the step size on

time.

This thesis is organized as follows: Chapter 2 introduces information about stiff differential

equations, the relevant definitions and examples about stiff ODE and PDE. We shall give a

brief information about stiff differential equations and test the stiffness of ODEs and PDEs.

Chapter 3 focuses on the numerical methods to solve stiff differential equations. This chap-

ter is formed mainly three parts. The first part is traditional implicit methods, the second

part is exponential methods and the last part is Richardson extrapolation which is well-known

error estimation. In Chapter 4, we study in detail the stability issue for general case of the

exponential methods by using the semigroup approaches. Theconvergence results for expo-

nential methods are given. Our convergence proofs are basedon a discrete type of variation

of constants formula. We will define the numerical methods with the help of the variation of

constants formula. In Chapter 5, we define Newton divided difference polynomial to approx-

imate given uniform distinct datas. In Chapter 6, we deal with exponential integrators with

discrete force. Therefore, we combine exponential integrators with Newton divided difference

interpolation polynomial. Then, we find error bounds for this new combination.In Chapter 7,

all methods, which are introduced in previous chapters, areapplied to various stiff problems,

in order to test the performance of these methods. Finally, the conclusion is given briefly in

Chapter 8.

2

CHAPTER 2

STIFF DIFFERENTIAL EQUATIONS

In this chapter, we will review the various techniques to solve stiff problems. The

classical methods do not work effectively for such problems. We will deal with firstly the

history of stiff differential equations and then the detection of stiffness in ODEs and PDEs,

respectively.

2.1. History of Stiff Differential Equations

The earliest detection of stiffness in differential equations presented by two chemists

Curtiss and Hirschfelder in 1952. They coined the term and described the existence and the

nature of stiffness. They profitted by the experience of John Tukey with the solution of ”stiff”

equations (Curtis & Hirschfelder, 1952).

In 1963, Dahlquist defined the problem and pointed out the difficulties that the classical meth-

ods with solving stiff differential equations. He dealed with the problems in stability. He

said in Aiken (1985) that ”... around 1960, thing became completely different and everyone

became aware that the world was full of stiff problems.” (Hairer & Wanner, 2000)

In 1968, Gear became one of the most important names in this area. In 1979, Gear and

Shampine wrote an article. The purpose of this article was toaid people who are interested

in the solution of stiff ordinary differential equations. They identified the problem area and

described the characteristics shared by methods for the numerical solution of stiff problems

(Shampine & Gear, 1976). In 1970, Liniger designed efficient algorithms for solving stiff

systems of ordinary differential equations (Liniger & Willoughby, 1970). In 1973, Lambert

examined critically various qualitative statements including the notion of stiffness. One of

them is ’A linear constant coefficient system is stiff if all of its eigenvalues have negative real

part and the stiffness ratio is large.’ This statement is adopted as a definition of stiffness. He

selected the most satisfactory of these statements as a ’definition’ of stiffness. This is: ’If

a numerical method with a finite region of absolute stability, applied to a system with any

initial condition, is forced to use in a certain interval of integration a step lentgh which is

excessively small in relation to the smoothness of the exactsolution in that interval, then the

system is said to be stiff in that interval’ (Lambert, 2000). Lambert thought that therate of

stiffness in real life problems would become more important year by year. In 1996, Spijker

3

defined that ’Initial value problems are stiff if they are difficult to solve by ordinary, explicit

step-by-step methods, whereas certain implicit methods perform quite well’ (Spijker, 1995).

In 2009, Brugnano , Mazzia And Trigiante rewieved the evolution of stiffness. According to

historical background the definition of stiffness can be formalized as follows:

Definition 2.1 A linear differential system

u′(t) = Au(t) + f (t), u(0) = u0,

where A∈ Rn×n and u, f , u0 ∈ R
n.

This system is said to be stiff if and only if

i) For all i, Re(λi) < 0,

ii) max|Re(λi)|
min|Re(λi)|

≫ 1, whereλi are eigenvalues of A for i= 1, 2, ..., n.

We calledmax|Re(λi)|
min|Re(λi)|

as stiffness ratio.

We will check the stiffness of given any equation the aid of this definition. Next twoexamples

are given in order to illuminate stiff differential equations.

2.2. Stiffness

In this section, we focus our attention on two examples to illustrate the stiff differential

equation. We first consider the linear ODE system:

u′1 = −u1 + et, u1(0) = 1, (2.1)

u′2 = 2u1 − 100u2, u2(0) = 0,

wheret ∈ [0, 0.3]. We can rewrite equation (2.1) following matrix form,

u′(t) =

















−1 0

2 −100

































u1

u2

















+

















et

0

















, u0 =

















1

0

















. (2.2)

4

This system is equivalent to following form

u′(t) = Au(t) + f (t), u(0) = u0, (2.3)

whereA ∈ R2×2 andu, f , u0 ∈ R2. Then, we can check the stiffness according to Definition

(2.1). We have to find eigenvalues of the coefficient matrix. The eigenvalues of the given

matrix A areλ1 = −100 andλ2 = −1. Both of the eigenvalues are negative and stiffness

ratio= |λ2|

|λ1|
= 100≫ 1. So, linear equation system (2.1) is said to be stiff.

Our next example is the detection of stiffness in PDE. Let us consider the heat equation:

∂u(x, t)
∂t

=
∂2u(x, t)
∂x2

,

with the initial condition and the boundary conditions

u(x, 0) = f (x), (2.4)

u(0, t) = u(1, t) = 0, (2.5)

wherex ∈ (0, 1], t ∈ (0,T].

We will solve the diffusion problem using the finite difference method. The basic idea of

the method is to replace the spatial derivation in partial differential equation with algebraic

approximation. We approximate the spatial partial derivative ofuxx using the central difference

formula. The approximate solution ofu(x, t) at x = xn is denoted byun(t)

∂un(t)
∂t

=
un+1(t) − 2un(t) + un−1(t)

(∆x)2
, (2.6)

u0(t) = uN(t) = 0 , t ∈ (0,T],

un(0) = f (xn) , n = 1, ...,N − 1,

5

where∆x = 1
N and xn = n∆x, n = 1, ...,N − 1. Suppose that the step size∆x = h. It is

convenient to write (2.4) in matrix form





























































u′1
u′2
...

u′N−1





























































=
1
h2













































































−2 1

1 −2 1

1 −2 1

1
. . .
. . .

. . .
. . . 1

−2 1









































































































































u1

u2

...

uN−1





























































.

This system can be written as

u′(t) = Au(t), u(0) = u0, (2.7)

whereu0 = [f (x1), ..., f (xN−1)]T is the initial condition. Here we consider the periodic bound-

ary conditions. Boundary conditions are embedded into the matrix. To examine the stiffness

of the given diffusion problem, we need to find the eigenvalues of A. These eigenvalues are

real and can be given by the following equality

λ j = −
4
h2

sin2 jπ
2N
, 1 ≤ j ≤ N − 1.

The proof can be obtained by showing a relationship between the characteristic polynomial

for A and Chebyshev polynomials

λN−1 ≤ λ j ≤ λ1, (2.8)

with the following results forλN−1 andλ1

λN−1 = −
4
h2

sin2(N − 1)π
2N

≈ −
4
h2
,

λ1 = −
4
h2

sin2 π

2N
≈ −π2,

6

with the approximations available for largerN. Let r be an eigenvector with corresponding

eigenvalueλ for A.

For a vectorr = (r1, r2, ..., rN−1) to be an eigenvector for A with corresponding eigenvalueλ

we must have

1
h2

(rn−1 − 2rn + rn+1) = λrn, n = 2, ...,N − 2, (2.9)

It is usually not easy to find eigenvalues and eigenvectors for such a matrix, but if we have a

prediction then it is very easy to check whether it fits or not.A good suggestion for r can be

to take

rn = sin(nθ), n = 1, ...,N − 1, (2.10)

we work out

rn−1 + rn+1 = sin(n− 1)θ + sin(n+ 1)θ,

= 2sin(nθ)cos(θ),

= 2rncosθ. (2.11)

When we replace (2.11) in (2.9), this gives

λ =
1
h2

(−2+ 2cos(θ)),

=
−4
h2

sin2(θ/2).

In addition to theN − 3 equations we must also have the similar relations forn = 1 and

n = N − 1:

2r1 − r2 = λr1,

−rN−2 + 2rN−1 = λrN−1.

7

These are fulfilled automatically if we can manage to haver0 = rN = 0. For rN we must

require

rN = sin(Nθ) = 0. (2.12)

Note that the roots are

Nθ j = jπ, j = 1, 2, (2.13)

We therefore define

θ j =
jπ
N
, j = 1, 2, ...,N − 1, (2.14)

and with theseN − 1 values ofθ we have a set ofN − 1 orthogonal eigenvectors and corre-

sponding eigenvalues forA:

λ j = −4sin2
(jπ
2N

)

. (2.15)

Directly examining this formula,

λN−1 ≤ λ j ≤ λ1. (2.16)

The least and the largest eigenvalues are can be obtained by using (2.15)

λN−1 =

(

−4
h2

)

sin2
((N − 1)π

2N

)

=

(

−4
h2

)

, (2.17)

λ1 =

(

−4
h2

)

sin2
(

π

2N

)

= −π2. (2.18)

Finally, the proportion of equations is obtained

λN−1

λ1
≈

4
(πh)2

, (2.19)

8

it can be seen that it is a stiff system ifh is small.

As a consequence, these two examples show that the stiffness of the differential equations can

be identified by the Definition (2.1).

9

CHAPTER 3

NUMERICAL METHODS FOR STIFF

DIFFERENTIAL EQUATIONS

In the previous chapter, we studied how to identify the stiffness of ordinary differential

equations and partial differential equations. In the present chapter, we will answer the question

’What type of method can we use for solving stiff differential equations?’. In the first section,

we define and construct traditional implicit methods. In what follows, we overview derivation

of exponential integrators.

3.1. Traditional Implicit Methods

Traditional methods include explicit methods and implicitmethods. To solve stiff

problems numerically we prefer implicit methods. In this section, we will introduce several

implicit methods. Our motivation the need for implicit methods is enlarging the stability

region. This property overcome the stiffness.

3.1.1. Backward Differentiation Formula

Consider the ordinary differential equation as follows:

y′(t) = f (t, y). (3.1)

In order to obtain a numerical solution of (3.1) by replacingthe derivative on the left hand side

of the equation. Letr(t) be a polynomial of degree≤ r. This polynomial can be expressed in

terms of interpolation of y(t) at the nodestn+1, tn, ..., tn−r+1 for r ≥ 1

r(t) =
r−1
∑

j=−1

y(tn− j)l j,n(t), (3.2)

10

where l j,n(t) are the Langrange interpolation basis functions for the nodes tn+1, tn, ..., tn−r+1.

The interpolation polynomial can be written as

l j,n(t) =
n−r+1
∑

j=n+1

t − ti
t j − ti

, n+ 1 ≤ i ≤ n− r + 1. (3.3)

Then, differentiate r(t) at the pointtn+1

r ′(tn+1) ≈ y′(tn+1) = f (tn+1, y(tn+1)).

Let r(t) be a first degree polynomial and this polynomial interpolatesy(t) at the nodestn+1, tn

r(t) = yn+1
t − tn

tn+1 − tn
+ yn

t − tn+1

tn − tn+1
, (3.4)

r ′(t) = yn+1
1
h
− yn

1
h
,

r ′(tn+1) = f (tn+1, yn+1). (3.5)

As a result,

yn+1 = yn + h f(tn+1, yn+1). (3.6)

This method is called Backward Euler Method(BDF1).

In order to obtain an other formula, let chooser(t) as a second degree polynomial. This

polynomial interpolates y(t) at the nodestn+1, tn, tn−1. We construct the method using Lagrange

interpolation basis functions:

r(t) = yn+1
(t − tn)(t − tn−1)

(tn+1 − tn)(tn+1 − tn−1)
+ yn

(t − tn+1)(t − tn−1)
(tn − tn+1)(tn − tn−1)

(3.7)

+yn−1
(t − tn+1)(t − tn)

(tn−1 − tn+1)(tn−1 − tn)
,

r ′(t) = yn+1
1

2h2
(t − tn + t − tn−1) − yn

1
h2

(t − tn+1 + t − tn−1) (3.8)

+yn−1
1

2h2
(t − tn+1 + t − tn),

r ′(tn+1) =
3
2h

yn+1 −
2
h

yn +
1
2h

yn−1 = f (tn+1, yn+1),

11

As a final result,

yn+1 =
4
3

yn −
1
3

yn−1 +
2
3

h f(tn+1, yn+1). (3.9)

This method is called BDF2 which is a multistep method.

As we see, backward differentiation formulas are implicit methods. For stiff problems, the

importance of BDF methods lies in their super stability properties which allow them to take

much larger step sizes than would be possible with explicit methods.

3.1.2. Implicit Runge Kutta Method

A simple example of an implicit 1-stage Runge-Kutta method can be obtain

yn+1 = yn + hb1 f (tn + c1h, k1), (3.10)

k1 = yn + ha11 f (tn + c1h, k1).

To determine the coefficientsa11, b1 andc1, we substitude the exact solution into (3.10) and

use Taylor expansion

y(tn+1) = y(tn) + hb1[f + c1h ft + ha11 f fy] + O(h3), (3.11)

when we compare the terms of (3.11) with the Taylor series ofy(tn+1)

y(tn+1) = y(tn) + h f +
h2

2
(ft + f fy) + O(h3), (3.12)

where f = f (tn, y(tn)). We will assume the following conditions

a11 =
1
2
, c1 =

1
2
, b1 = 1, (3.13)

12

these coefficients yields

yn+1 = yn + h f(tn + h/2, k1), (3.14)

k1 = yn +
h
2

f (tn + h/2, k1). (3.15)

This method is called implicit midpoint method. The detailed information can be found in

(Hairer & Norsett & Wanner, 1993).

3.1.3. Trapezoid Method

To achieve the formula of the trapezoidal method, we will begin with the trapezoidal

rule for numerical integration

∫ b

a
g(τ)dτ ≈

1
2

(b− a)[g(a) + g(b)] −
1
12

h3g′′′(ξ), (3.16)

for a < ξ < b. Consider the equation

y′(t) = f (t, y(t)), (3.17)

wherey ∈ R and f : R ×R→ R. We integrate the equation (3.17) fromtn to tn+1

y(tn+1) = y(tn) +
∫ tn+1

tn

f (τ, y(τ))dτ. (3.18)

Using the trapezoidal rule (3.16) to approximate the integral, we get

y(tn+1) = y(tn) +
1
2

h[f (tn, y(tn)) + f (tn+1, y(tn+1))] −
1
12

h3y′′′(ξ), (3.19)

for tn < ξ < tn + h. By dropping the error term, an approximate solutionyn at time-steptn for

(3.17) the implicit trapezoidal method approximates the solution at time-steptn+1 = tn + h by

13

solving the following nonlinear equation

yn+1 = yn +
h
2

[f (tn, yn) + f (tn+1, yn+1)]. (3.20)

This equation can be solved by both iterative solution method and Newton’s method with an

initial guess provided by the forward Euler’s method.

The combination of forward Euler method and backward Euler method generates trapezoidal

method. Although both forward Euler method and backward Euler method are first order

methods, this combination gives us a second order method.

3.2. Exponential Integrators

Exponential Integrators are a class of numerical integrators for time integration of

differential equations. They are most commonly used for stiff problems and oscillatory prob-

lems. In this thesis, we will just deal with stiff differential equations. Exponential integrators

are purposed to be used on ODEs that can be split into a stiff linear part and a non-stiff non-

linear part. We already know that if an equation is stiff then the traditional explicit methods

don’t work well. Although exponential integrators are explicit methods, they are considered

as generalizations of the implicit methods. For this reason, exponential integrators are suitable

methods to solve stiff problems.

Our motivation the need for using exponential integrators is that they overcome the problem

of stiffness taking large time steps.

To get an idea of what an Exponential Integrator looks like, we will begin with an evolution

equation of the form

u′(t) = F(t, u(t)), (3.21)

u(0) = u0.

The linearization of this equation at timet gives us following semilinear problem

u′(t) + Au(t) = g(t, u(t)), (3.22)

u(0) = u0,

14

whereA is a linear operator that represents the highest order of differential terms andg is a

nonlinear operator. The linear part of (3.22)

u′(t) + Au(t) = 0, u(0) = u0, (3.23)

can be solved exactly as

u(t) = e−tAu0. (3.24)

To get the representation of the exact solution the problem (3.22) we will begin with multi-

plying Equation (3.22) through by integrating factoretA. Then, we obtain

etAu′ + etAAu = etAg(t, u(t)),

(etAu)′ = etAg(t, u(t)).

Integrating both sides of this equation we get

∫ tn+h

tn

d
dτ

(eτAu(τ))dτ =
∫ tn+h

tn

eτAg(τ, u(τ))dτ,

e(tn+h)Au(tn + h) − etnAu(tn) =
∫ tn+h

tn

eτAg(τ, u(τ))dτ,

u(tn + h) = e−(tn+h)A
(

etnAu(tn) +
∫ tn+h

tn

eτAg(τ, u(τ))dτ
)

.

As a result,

u(tn + h) = e−hAu(tn) +
∫ tn+h

tn

e−(tn+h−τ)Ag(τ, u(τ))dτ. (3.25)

It is the required solution. Lettn+1 = tn + h andτ = tn where h is the step size. Then change

of the variables,

τ − tn = 0 = v,

dτ = dv.

15

So, the boundaries of integral change and we obtain

u(tn+1) = e−hAu(tn) +
∫ h

0
e−(h−v)Ag(tn + v, u(tn + v))dv. (3.26)

Finally, the exact solution of (3.22) can be written recursively as

u(tn+1) = e−hAu(tn) +
∫ h

0
e−(h−τ)Ag(tn + τ, u(tn + τ))dτ, (3.27)

this representation is called variation of constants formula. By approximating the integral with

various quadrature formulas, different numerical schemes can be obtained. Our convergence

proofs will be generally based on a discrete version of the variation of constants formula in

following chapters.

As their name suggests, exponential integrators use the matrix exponential in the numerical

integrator. We will call the matrix exponential asφ functions. In the following section we will

define these functions.

3.2.1. Derivation of theφ Functions

The entire functionsφk, for k ≥ 1 can be defined by the integral representation as

φ0(x) = ex, (3.28)

φk(x) =
∫ 1

0
e(1−θ)x θ

k−1

(k− 1)!
dθ. (3.29)

The argumentx can be a scalar or a matrix. Theφ functions are defined recursively by

φ0(x) = ex, (3.30)

φk+1(x) =
φk(x) − 1

k!

x
, k ≥ 0. (3.31)

16

In this case,φ0 is the matrix exponential. The first fewφ functions are

φ0(x) = ex
= 1+ x+

1
2

x2
+

1
3!

x3
+ . . . , (3.32)

φ1(x) =
ex − 1

x
= 1+

1
2

x+
1
3!

x2
+

1
4!

x3
+ . . . , (3.33)

φ2(x) =
ex − 1− x

x2
=

1
2
+

1
3!

x+
1
4!

x2
+

1
5!

x3
+ . . . , (3.34)

φ3(x) =
ex − 1− x− 1

2 x2

x3
=

1
3!
+

1
4!

x+
1
5!

x2
+

1
6!

x3
+ (3.35)

The Taylor series representation of these functions is given by (Schmelzer& Trefethen, 2007)

as

φk(x) =
∞
∑

l=k

1
l!

zl−k. (3.36)

3.2.1.1. Derivation of the Methods withφ Functions

Consider the linear problem

u′(t) = Au(t) + g(t), (3.37)

u(0) = u0.

Every stage in an exponential integrator can be expressed asa linear combination ofφ func-

tion. Firstly, we assumeg(t) as a constant

u̇ = Au+ a1, u(0) = u0, (3.38)

the solution of this equation is given by

u(t) = etAu0 +

∫ t

0
e(t−τ)Aadτ = etAu0 + etA 1

−A
e−τAa1

∣

∣

∣

∣

∣

t

0
, (3.39)

= etAu0 + etAe−tA − 1
−A

a1 = etAu0 + t
etA − 1

tA
a1. (3.40)

17

The solution in terms of theφk for k = 0, 1, ... is given by

u(t) = etAu0 + tφ1(tA)a1. (3.41)

Secondly, takeg(t) as a polynomial of first degree then the equation

u̇ = Au+ a1 + a2t, u(0) = u0, (3.42)

using the variation of constants formula

u(t) = etAu0 +

∫ t

0
e(t−τ)A(a1 + a2τ)dτ, (3.43)

= etAu0 + t
etA − 1

tA
a1 + t2etA − 1− tA

t2A2
a2. (3.44)

So, given equation has a solution of the form ofφ functions

u(t) = etAu0 + tφ1(tA)a1 + t2φ2(tA)a2. (3.45)

In general, when we takeg(t) as a polynomial equation

u̇ = Au+ a1 + a2t + a3
t2

2!
+ ... + an

tn−1

(n− 1)!
, u(0) = u0, (3.46)

whereu(t), a1, a2, a3, ..., an are vectors andA is a matrix. The solution of the equation admits

the following form

u(t) = etAu0 +

∫ t

0
e(t−τ)A

(

a1 + a2t + a3
t2

2!
+ ... + an

tn−1

(n− 1)!

)

dτ, (3.47)

= etAu0 + t
etA − 1

tA
a1 + t2etA − 1− tA

t2A2
a2 + t3

etA − 1− tA− 1
2tA2

t3A3
a3

+... +

∫ t

0
e(t−τ)Aan

tn−1

(n− 1)!
dτ, (3.48)

= etAu0 + tφ1(tA)a1 + t2φ2(tA)a2 + t3φ3(tA)a3 + + tnφn(tA)an. (3.49)

18

Finally, this identity leads to the following general solution

u(t) = etAu0 +

n
∑

i=1

tiφi(tA)ai . (3.50)

3.2.2. Exponential Euler Method

In this section, we will derive the exponential Euler method. Consider the evolution

equation

u′(t) + Au(t) = g(t, u(t)), (3.51)

u(t0) = u0.

From the variation of constants formula the exact solution of (3.51) can be written as

u(tn+1) = e−hAu(tn) +
∫ h

0
e−(h−τ)Ag(tn + τ, u(tn + τ))dτ. (3.52)

The main idea behind constructing a method is to approximatethe function g in the equation

(3.52). We will shortly denoteg(tn, u(tn)) = g(tn). Taylor expansion ofg(tn + τ) at tn leads to

g(tn + τ) = g(tn) +O(τ). (3.53)

This expansion motivates the following equation

u(tn+1) = e−hAu(tn) +
∫ h

0
e−(h−τ)Ag(tn + τ)dτ, (3.54)

= e−hAu(tn) +
∫ h

0
e−(h−τ)Ag(tn)dτ +O(h2), (3.55)

= e−hAu(tn) + h
e−hA− I
−hA

g(tn) +O(h2), (3.56)

= e−hAu(tn) + hφ1(−hA)g(tn) +O(h2). (3.57)

19

The numerical solution of (3.51) takes the form

un+1 = e−hAun + hφ1(−hA)g(tn), (3.58)

whereφ1 is given in Equation (3.32). At timetn+1 = (n+ 1)h , n ∈ 0, 1, ... the exact solution of

(3.51) is approximated by exponential Euler method whereh is the time step.

3.2.3. Second Order Method

In order to show that the previous ideas are not limited to theexponential Euler

method, a second- order exponential scheme can be constructed in a similar way. To obtain

the second order method we will use Taylor expansion ofg(tn + τ) at tn

g(tn + τ) = g(tn) + τg
′(tn) +O(τ2). (3.59)

Substitutingg′(tn) =
g(tn+1)−g(tn)

h in this expansion leads to

g(tn + τ) = g(tn) +
τ

h

(

g(tn+1) − g(tn)
)

+O(τ2). (3.60)

Inserting (3.60) into (3.52), we have

un+1 = e−hAun +

∫ h

0
e−(h−τ)A

(

g(tn) +
τ

h
(g(tn+1) − g(tn))

)

dτ,

= ehAun +

∫ h

0
e−(h−τ)Ag(tn)dτ +

1
h

∫ h

0
e−(h−τ)Aτg(tn+1)dτ −

1
h

∫ h

0
e−(h−τ)Aτg(tn)dτ.

Applying integration by parts to the integral, we get the following expression

un+1 = e−hAun + hφ1(−hA)g(tn) + hφ2(−hA)g(tn+1) − hφ2(−hA)g(tn),

= e−hAun + h(φ1(−hA) − φ2(−hA))g(tn) + hφ2(−hA)g(tn+1).

20

Replacing the functiong yields the following approximation to the exact solution attime tn+1,

un+1 = e−hAun + h
(

φ1(−hA) − φ2(−hA)
)

g(tn) + hφ2(−hA)g(tn+1). (3.61)

This exponential method is called second order method.

3.2.4. Exponential Midpoint Rule

We present here a construction for the numerical solution of(3.51) based on the exact

solution given by variation of constants formula

u(tn+1) = e−hAu(tn) +
∫ h

0
e−(h−τ)Ag(tn + τ)dτ.

Midpoint rule is obtained by rewritingg(tn + τ) in exact solution as

g(tn + τ) = g
(

(tn + h/2)+ (τ − h/2)
)

= g(tn + h/2)+ (τ − h/2)g′(tn + h/2). (3.62)

Taking into account (3.62), the scheme is calculated by

un+1 = e−hAun +

∫ h

0
e−(h−τ)Ag(tn + h/2)dτ,

= e−hAun + hφ1(−hA)g(tn + h/2),

= e−hAun + hφ1(−hA)g(tn) +
h2

2
φ1(−hA)g′(tn) +O(h3).

After all, the numerical method is called exponential midpoint rule

un+1 = e−hAun + hφ1(−hA)g(tn) +
h2

2
φ1(−hA)g′(tn), (3.63)

whereun+1 denote the numerical approximation to the solution at timetn+1.

21

3.2.5. Exponential Rosenbrock Method

In this section, we are concerned with the exponential Rosenbrock method for time

discretization of autonomous evolution equations of the following form

u′(t) = F(u(t)) = Au(t) + g(u(t)), (3.64)

u(t0) = u0.

From the variation of constants formula, the exact solutionof (3.64) can be written as

u(tn+1) = ehAu(tn) +
∫ h

0
e(h−τ)Ag(u(tn + τ))dτ. (3.65)

The method depends on a linearization of (3.64) at each step

u′(t) = Jnu(t) + gn(u(t)), tn ≤ t ≤ tn+1, (3.66)

where

Jn =
∂F
∂u

(un), gn(u(t)) = F(u(t)) − Jnu(t). (3.67)

Applying the exponential Euler method to linearized problem (3.66)

un+1 = ehJnun + hφ(hJn)gn(un),

= ehJnun + hφ(hJn)[F(un) − Jnun].

After regulating the equation, we obtain

un+1 = un + hφ(hJn)F(un). (3.68)

This numerical scheme is called exponential Rosenbrock-Euler method. Exponential Rosenbrock-

Euler method is explicit time stepping scheme. Its implementation is standard, apart from

22

the calculation of the exponential and related functions. This method is computationally at-

tractive since it involves just one matrix function in each step. To implement exponential

Rosenbrock-Euler method it is important to approximate theapplication of matrix functions

to vectors efficiently. More information can be found in (Caliari & Ostermann, 2009).

3.3. Error Analysis via Richardson Extrapolation

Richardson extrapolation holds on an interpretation aboutthe form of the error terms

in a numerical approximation. Our estimation depends on thestep size h. Suppose thatR(h)

is a numerical approximation to an exact resultR(0). If the exact result is achieved ash→ 0 ,

then our estimate is consistent (Burg& Erwin , 2008).

R(h) can be expanded as

R(h) = R(0)+ Khp
+ K′hp+1

+ K′′hp+2
+ ... (3.69)

We already know that the notationO(hp+1) is used for a sum of terms of orderhp+1 and higher.

Therefore, the numerical approximation can be written as

R(h) = R(0)+ Khp
+O(hp+1). (3.70)

We will use the expansion forR(h) andR(rh)

R(h) = R(0)+ Khp
+O(hp+1),

R(rh) = R(0)+ Kr php
+O(hp+1).

By multiplying R(h) by r p and subtractingR(rh), we obtain

r pR(h) − R(rh) = (r p − 1)R(0)+O(hp+1). (3.71)

Therefore, dividing this equation byr p − 1 we get desired form:

r pR(h) − R(rh)
r p − 1

= R(0)+O(hp+1). (3.72)

23

Suppose thatr = 2 andp = 1

2R(h) − R(2h) = R(0)+O(h2). (3.73)

We generated an approximation whose error is order 2. As a result, we will use Richardson

extrapolation when the exact solution is not known.

24

CHAPTER 4

ERROR ANALYSIS

In this chapter, we will derive error bounds of exponential integrators for parabolic

problem. Throughout present chapter, we will consider problems with smooth solutions.

Therefore, we can always expand the solution in a Taylor series.

4.1. Analytical Framework

We will use the same analytical framework given in (Hochbruck & Ostermann, 2010).

The detail discussion can be also found in the given work. In order to clarify our analysis,

we will give basic definitions of the semigroup theory. Consider the following semilinear

equation

u′(t) + Au(t) = g(t, u(t)), (4.1)

u(t0) = u0,

where A is time invariant operator and u is a vector function of time. The solution of (4.1) can

be written as

u(tn+1) = e−tAu(tn) +
∫ h

0
e−(h−τ)Ag(tn + τ, u(tn + τ))dτ, 0 ≤ t ≤ T. (4.2)

If A is a linear bounded operator in Banach space,u(t) still has this form. However, in many

interesting cases, it is unbounded which don’t admit this form. This is some extend shows

the richness of semigroup theory. For its application, semigroup theory uses abstract methods

of operator to treat initial boundary value problem for linear and nonlinear equations that

describe the evolution of a system. We will ground our analysis on an abstract formulation

of strongly continuous semigroups on a Banach space X with norm ‖ . ‖ where (D(A),A) is

linear unbounded operators in X andg : [0,T] × X→ X. In our proofs we will shortly denote

g(tn, u(tn)) ≈ g(tn).

25

Definition 4.1 An strongly continuous semigroup (C0-semigroup) on a real or complex Ba-

nach space X, T(t)t≥0, satisfying

T : X 7→ X

i) T(0)=I,

ii) T(t + s) = T(t)T(s), for all t, s≥ 0,

iii) ∀x ∈ X such that‖T(t)x− x‖ → 0 as t→ 0.

We usually write T(t) = e−At.

Definition 4.2 An analytic semigroup on a Banach space X, T(t)t≥0, satisfying

i) T(0)=I,

ii) T(t + s) = T(t)T(s), for all t, s≥ 0,

iii) ∀x ∈ X such that‖T(t)x− x‖ → 0 as t→ 0+,

iv) t → T(t) is real analytic on 0 < t < ∞ (Pazy, 1983).

Definition 4.3 The infinitesimal generator A of given semigroup T(t) is defined by

Ax := lim
t→0+

1
t

(

T(t)x− x
)

,

the limit exists in the domainD(A) , which consists of all x∈ X .

Proposition 4.1 Let A : D(A) → X be sectorial, A is a densely defined and closed linear

operator on X satisfying the resolvent condition

‖ (λI − A)−1 ‖≤
C

|λ −m|
, (4.3)

on the sectorλ ∈ C , v ≤ |arg(λ −m)| ≤ π , λ , m for C ≥ 1 ,m ∈ R and 0 < v < π/2.

(Hochbruck& Ostermann, 2005)

Theorem 4.1 If A is sectorial operator , then−A is the infinitesimal generator of analytic

semigroup e−tA
t≥0 .

Converse is also true, if−A generates an analytic semigroup, then A is sectorial.

26

Proof The proof can be read from (Henry, 1981). �

Theorem 4.2 Let T(t) be a semigroup. There exist constantsω ∈ R and C≥ 1 such that

‖ T(t) ‖≤ Ceωt f or t ≥ 0. (4.4)

Proof Let choose a constantC ≥ 1 such that‖ T(t) ‖≤ C for all 0 ≤ t ≤ 1. Suppose that

ω = logC . Then, for eacht > 0 andn ≤ t, where n is integer

‖ T(t) ‖=‖ T
(n
∑

k=1

t
n

)

‖ .

Using the semigroup propertyT(t + s) = T(t) + T(s) we get

‖

n
∏

k=1

(

T(
t
n

)
)

‖=‖

(

T
(t
n

)

)n

‖≤ Cn ≤ Ct+1
= Ceωt.

The proof is completed. (Sheree, 2003) �

Theorem 4.3 (Hille-Yosida Theorem) A linear unbounded operator A is thegenerator of a

C0 semigroup if and only if

i) A is a closed operator,

ii) A has a dense domainD(A),

iii) λ ∈ ρ(A) for eachλ > 0 ,whereρ(A) is the resolvent set of A,

ρ(A) = {λ ∈ C|λI − A is invertable},

iv) ‖ (λI − A)−1 ‖≤ 1
λ
.

Proof The proof can be read from (Sheree, 2003). �

Assumption 4.1 Let X be a Banach space with norm‖ . ‖. We assume that A is a linear

operator on X and that (-A) is the infinitesimal generator of astrongly continuous semigroup

(C0 semigroup) e−tA on X.

This assumption refers that there exist constantsω ∈ R andC ≥ 1 such that

‖ e−tA ‖≤ Ceωt f or t ≥ 0. (4.5)

27

Assumption 4.2 Let X be a Banach space with norm‖ . ‖. We assume that A is a linear

operator on X and that (-A) is the infinitesimal generator of an analytic semigroup e−tA on X.

Remark 4.1 The generators of analytic semigroups let us to define fractional powers of the

operator.

The assumption (4.2) means that there exist constantsC = C(γ)

‖ e−tA ‖ + ‖ tγAγe−tA ‖≤ C f or γ, t ≥ 0. (4.6)

Our proofs will be based on the substraction of the numericalsolution from the exact solution.

So, our error estimation will include bounds of terms of the following form

e−tnA(g(tn, u(tn)) − g(tn, un)). (4.7)

We can bound the difference (g(tn, u(tn)) − g(tn, un)). Firstly, multiply (4.7) withAαA−α

‖ e−tnAAαA−α(g(tn, u(tn)) − g(tn, un)) ‖=‖ e−tnAAα ‖‖ A−α(g(tn, u(tn)) − g(tn, un)) ‖ . (4.8)

Then, multiply (4.8) withtnαtn−α

tn
−α ‖ e−tnAtn

αAα ‖‖ A−α(g(tn, u(tn)) − g(tn, un)) ‖≤ Ctn
−α ‖ A−α(g(tn, u(tn)) − g(tn, un)) ‖ . (4.9)

Assumption 4.3 Let V = {v ∈ X|Aαv ∈ X} be a Banach space with norm‖ v ‖V=‖ Aαv ‖ for

0 ≤ α ≤ 1 . We assume that g: [0,T] × V → X is locally Lipshitz continuous in a strip along

the exact solution u. There exist a real number L= L(R,T) such that, for all t∈ [0,T] ,

‖ g(t, v) − g(t,w) ‖≤ L ‖ v− w ‖V, (4.10)

where max(‖ v− u(t) ‖V, ‖ w− u(t) ‖V) ≤ R.

Lemma 4.1 Let the initial value problem

u′(t) + Au(t) = g(t, u(t)), u(t0) = u0, (4.11)

28

A is an n× n matrix. The exact solution of (4.11) can be represented by

u(tn + τ) = e−τAu(tn) +
m−1
∑

i=0

τi+1φi+1(−τA)g(i)(tn) + δn(m, τ), (4.12)

δn(m, τ) =
∫ τ

0
e−(τ−σ)A

∫ σ

0

(σ − η)m−1

(m− 1)!
g(m)(tn + η)dηdσ, (4.13)

is provided when g is a sufficiently smooth function.

Proof The Taylor series expansion ofg(tn + σ) at tn leads to

g(tn + σ) =
m−1
∑

i=0

τi

i!
g(i)(tn) + γn(m, σ), (4.14)

γn(m, σ) =
∫ σ

0

(σ − η)m−1

(m− 1)!
g(m)(tn + η)dη, (4.15)

and the entire functions

φ0(z) = ez,

φi(z) =
∫ 1

0
e(1−τ)z τ

i−1

(i − 1)!
dτ, i ≥ 1. (4.16)

Substituting the expansion (4.14) andφ function definition (4.16) into the following variation

of constants formula

u(tn + τ) = e−τAu(tn) +
∫ τ

0
e−(τ−σ)Ag(tn + σ)dσ, (4.17)

we obtain the desired result. �

In the following section, we will give convergence of exponential Euler method for semilinear

parabolic problems.

The convergence proofs in this section will be based on (Hochbruck & Ostermann, 2010).

29

4.2. Convergence of Exponential Euler Method

Let the initial value problem

u′(t) + Au(t) = g(t, u(t)), (4.18)

u(0) = u0.

Our proof will be based on the representation of exact solution by the variation of constants

formula

u(tn+1) = ehAu(tn) +
∫ h

0
e(h−τ)Ag(tn + τ)dτ. (4.19)

We expandg(tn + τ) in a Taylor series with integral form of the reminder

g(tn + τ) = g(tn) +
∫ τ

0
g′(tn + σ)dσ. (4.20)

Then, we substitude (4.20) in the (4.19)

u(tn+1) = e−hAu(tn) + hφ1(−hA)g(tn) + δn+1, (4.21)

δn+1 =

∫ h

0
e−(h−τ)A

∫ τ

0
g′(tn + σ)dσdτ. (4.22)

For the reminderδn+1 we have following estimation.

Lemma 4.2 Let the initial value problem

u′(t) + Au(t) = g(t, u(t)), u(0) = u0,

satisfy Assumption (4.2). Moreover, let0 < β ≤ 1 and Aβ−1g′ ∈ L∞(0,T). Then,

‖

n−1
∑

j=0

e− jhAδn− j ‖V≤ Chsup0≤t≤tn ‖ Aβ−1g′(t, u(t)) ‖V, (4.23)

30

holds with a constant C, uniformly in0 ≤ tn ≤ T.

Proof Firstly, we represent the supremum by M, where M is

M := sup0≤t≤tn ‖ Aβ−1g′(t, u(t)) ‖V . (4.24)

Then, we will construct the expression on the left hand side of the expression (4.23). We can

write the defectδn− j as

δn− j =

∫ h

0
e−(h−τ)A

∫ τ

0
g′(tn− j−1 + σ)dσdτ. (4.25)

multiply the equation bye− jhAA1−βAβ−1

e− jhAδn− j = e− jhA

∫ h

0
e−(h−τ)AA1−β

∫ τ

0
Aβ−1g′(tn− j−1 + σ)dσdτ. (4.26)

For j = 0, the defect is

δn =

∫ h

0
e−(h−τ)AA1−β

∫ τ

0
Aβ−1g′(tn−1 + σ)dσdτ.

To use the stability bound (4.6) multiply the equation by (h− τ)1−β(h− τ)β−1

δn =

∫ h

0
(h− τ)1−β(h− τ)β−1e−(h−τ)AA1−β

∫ τ

0
Aβ−1g′(tn−1 + σ)dσdτ.

We can estimate this in V by

‖ δn ‖V≤ C
∫ h

0
(h− τ)β−1

∫ τ

0
Aβ−1g′(tn−1 + σ)dσdτ.

31

From our representation (4.24), we have

‖ δn ‖V ≤ CM
∫ h

0
(h− τ)β−1

∫ τ

0
dσdτ,

= CM
∫ h

0
τ(h− τ)β−1dτ.

We evaluate the integral using integration by parts and obtain

‖ δn ‖V ≤ CMhβ+1.

The remaining terms forj = 1, ..., n− 1 are defined as

e− jhAδn− j =

∫ h

0
e−(h−τ)Ae− jhAA1−β(jh)1−β(jh)β−1

∫ τ

0
Aβ−1g′(tn− j−1 + σ)dσdτ.

This identity can be bounded in V by

‖ e− jhAδn− j ‖V≤ CM
∫ h

0
e−(h−τ)A(jh)β−1τdτ,

by means of integration by parts we get

‖ e− jhAδn− j ‖V ≤ CM(jh)β−1φ2(−hA)h2,

≤ CM(jh)β−1h2.

Hence, the remaining sum verifies that

‖

n−1
∑

j=1

e− jhAδn− j ‖V ≤ CM
n−1
∑

j=1

h2(jh)β−1,

≤ CMh
∫ tn−1

0
tβ−1dt,

≤ CMh.

32

Finally, we get the desired estimation

‖

n−1
∑

j=0

e− jhAδn− j ‖V≤ Ch sup0≤t≤tn ‖ Aβ−1g′(t, u(t)) ‖V .

�

Theorem 4.4 Consider the initial value problem

u′(t) + Au(t) = g(t, u(t)), u(t0) = u0,

for its numerical solution the exponential Euler method

un+1 = e−hAun + hφ1(−hA)g(tn, un).

Let given IVP satisfy Assumption (4.2) and Assumption (4.3). Furthermore, g: [0,T]×X→ X

is differentiable, and Aβ−1g′ ∈ L∞(0,T), whereβ ∈ (0, 1]. Then the error bound can be written

as

‖ un − u(tn) ‖V≤ Ch sup0≤t≤tn ‖ Aβ−1g′(t, u(t)) ‖V, (4.27)

holds uniformly in0 ≤ nh≤ T. The constant C is independent of n and h.

Proof The proof will be based on the difference of numerical and exact solution. Our

numerical method is exponential Euler method

un+1 = e−hAun + hφ1(−hA)g(tn, un). (4.28)

Representation of exact solution will be given by variationof constants formula. The solution

can be written as

u(tn+1) = e−hAu(tn) + hφ1(−hA)g(tn, u(tn)) + δn+1, (4.29)

33

we define the reminder

δn+1 =

∫ h

0
e−(h−τ)A

∫ τ

0
g′(tn + σ, u(tn + σ))dσdτ.

Substract (4.29) from (4.28) and denoteen = un − u(tn), we have

en+1 = e−hAen + hφ1(−hA)(g(tn, un) − g(tn, u(tn))) − δn+1. (4.30)

Solving this recursion leads to

en =

n−1
∑

j=0

e−(n− j−1)hAhφ1(−hA)(g(t j , u j) − g(t j, u(t j))) −
n−1
∑

j=0

e− jhAδn− j . (4.31)

We now proceed to verify (4.31) by showing inductively that the formula holds true for each

n.

(Base Step) :Let G j = g(t j, u j) − g(t j, u(t j)). Whenn = 1

e1 = hφ1(−hA)G0 − δ0,

so it is true forn = 1.

(Assumption step) :Let k ∈ Z+ is given and suppose given summation is true forn = k− 1.

This yields

ek−1 =

k−2
∑

j=0

e−(k− j−2)hAhφ1(−hA)G j −

k−2
∑

j=0

e− jhAδk− j−1.

(Induction Step) : Now, we will show it is also true forn = k

ek = e−hAek−1 + hφ1(−hA)Gk−1 − δk,

=

k−2
∑

j=0

e−(k− j−1)hAhφ1(−hA)G j −

k−2
∑

j=0

e−(j+1)hAδk− j−1 + hφ1(−hA)Gk−1 − δk,

=

k−1
∑

j=0

e−(k− j−1)hAhφ1(−hA)G j −

k−1
∑

j=0

e− jhAδk− j .

34

Thus, Equation (4.31) holds forn = k, and the proof of the induction step is complete.

We can estimateen in V by using the inequality (4.6), the Lipschitz condition in Assumption

(4.3) and Lemma (4.2) :

‖ en ‖V = h
n−1
∑

j=0

‖ e−(n− j−1)hA ‖V‖ φ1(−hA) ‖V‖ (g(t j , u j) − g(t j, u(t j))) ‖V

+ ‖

n−1
∑

j=0

e− jhAδn− j ‖V,

≤ hL
n−1
∑

j=0

‖ e−(n− j−1)hA ‖V‖ φ1(−hA) ‖V‖ ej ‖V +CMh,

= hL
n−2
∑

j=0

‖ e−(n− j−1)hA ‖V‖ φ1(−hA) ‖V‖ ej ‖V +hL ‖ φ1(−hA) ‖V‖ en−1 ‖V

+CMh.

We will use following remark to boundφ1.

Remark 4.2 We can find a bound forφ1 using integral representation ofφ function (3.28)

and semigroup property

‖ φ1(−hA) ‖≤ C.

With the aid of this inequality, the estimation ofen can be written as

‖ en ‖V = hL
n−2
∑

j=0

‖ e−(n− j−1)hAAα[(n− j − 1)h]α ‖ [(n− j − 1)h]−α ‖ φ1(−hA) ‖V‖ ej ‖V

+hL ‖ φ1(−hA) ‖V‖ en−1 ‖V +CMh,

≤ hLC
n−2
∑

j=0

[(n− j − 1)h]−α ‖ e−hA ‖V‖ ej ‖V +hL ‖ e(−hA)Aαhα ‖ h−α ‖ en−1 ‖V

+CMh,

≤ hLC
n−2
∑

j=0

[(n− j − 1)h]−α ‖ ej ‖V +hLCh−α ‖ en−1 ‖V

+Ch sup0≤t≤tn ‖ Aβ−1g′(t, u(t)) ‖V .

35

Finally, we obtain the desired error bound

‖ en ‖V≤ Ch
n−2
∑

j=0

t−α(n− j−1)h ‖ ej ‖V +Ch1−α ‖ en−1 ‖V +Chsup0≤t≤tn ‖ Aβ−1g′(t, u(t)) ‖V, (4.32)

with a constant C. In order to regularize inequality (4.32) we need following lemma, which is

called Discrete Gronwall Lemma.

Lemma 4.3 For h > 0 and T > 0, let 0 ≤ tn = nh ≤ T. Further assume that the sequence of

non-negative numbersµn satisfy the following inequality

µn ≤ ph
n−1
∑

v=1

t−σn−v + qt−ρn ,

for σ ≥ 0, ρ < 1 and p, q ≥ 0. Then the discrete Gronwall inequality is

µn ≤ Cqt−ρn ,

where C depends onσ, ρ, p and T.

The proof will be ended by application of Discrete Gronwall Lemma to the inequality (4.32).

‖ un − u(tn) ‖V≤ Ch sup0≤t≤tn ‖ Aβ−1g′(t, u(t)) ‖V . (4.33)

�

We used the convergence analysis of exponential Euler method presented in (Hochbruck &

Ostermann, 2010). In the next section, we will adopt the error bounds for second order method

to linear parabolic problems by following similar way.

4.3. Convergence of the Second Order Method

Consider the linear initial value problem

u′(t) + Au(t) = g(t), u(0) = u0, (4.34)

36

The solution of (4.34) at timetn+1 = tn + h, n = 0, 1, ... is given by the variation of constants

formula

u(tn+1) = e−hAu(tn) +
∫ h

0
e−(h−τ)Ag(tn + τ)dτ. (4.35)

We expandg(tn + τ) in a Taylor series with integral form of the reminder

g(tn + τ) = g(tn) +
τ

h
g(tn+1 − g(tn)) +

∫ τ

0
(τ − σ)g′′(tn + σ)dσ. (4.36)

Then, we insert (4.36) in the exact solution with integral form of the reminder yields

u(tn+1) = e−hAu(tn) + h
(

φ1(−hA) − φ2(−hA)
)

g(tn) + hφ2(−hA)g(tn+1) + δn+1 (4.37)

δn+1 =

∫ h

0
e−(h−τ)A

∫ τ

0
(τ − σ)g′′(tn + σ)dσdτ. (4.38)

For the defectδn+1 we have following lemma.

Lemma 4.4 Let the initial value problem

u′(t) + Au(t) = g(t), u(0) = u0 (4.39)

satisfy Assumption (4.2). Moreover, let0 < β ≤ 1 and Aβ−1g′′ ∈ L∞(0,T). Then,

‖

n−1
∑

j=0

e− jhAδn− j ‖V≤ Ch2sup0≤t≤tn ‖ Aβ−1g′′(t) ‖V, (4.40)

holds with a constant C, uniformly in0 ≤ tn ≤ T.

Proof Firstly, we represent the supremum by M, where M is denoted by

M := sup0≤t≤tn ‖ Aβ−1g′′(t) ‖V . (4.41)

37

We will begin with constructing the left hand side of the expression (4.40). Firstly, we will

write δn− j as follows:

δn− j =

∫ h

0
e−(h−τ)A

∫ τ

0
(τ − σ)g′′(tn− j−1 + σ)dσdτ, (4.42)

multiply the equation (4.42)bye− jhAA1−βAβ−1

e− jhAδn− j = e− jhA

∫ h

0
e−(h−τ)AA1−β

∫ τ

0
Aβ−1(τ − σ)g′′(tn− j−1 + σ)dσdτ. (4.43)

For j = 0, this equality takes the form

δn =

∫ h

0
e−(h−τ)AA1−β

∫ τ

0
Aβ−1(τ − σ)g′′(tn− j−1 + σ)dσdτ.

To use the stability bound (4.6) multiply this equation by (h− τ)1−β(h− τ)β−1

δn =

∫ h

0
(h− τ)1−β(h− τ)β−1e−(h−τ)AA1−β

∫ τ

0
Aβ−1(τ − σ)g′′(tn− j−1 + σ)dσdτ.

This expression is bounded in V by

‖ δn ‖V ≤ C
∫ h

0
(h− τ)β−1

∫ τ

0
Aβ−1(τ − σ)g′′(tn− j−1 + σ)dσdτ,

≤ CM
∫ h

0
(h− τ)β−1

∫ τ

0
(τ − σ)dσdτ,

= CM
∫ h

0

τ2

2
(h− τ)β−1dτ.

Applying integration by parts, we obtain

‖ δn ‖V≤ CMhβ+2.

38

The remaining terms forj = 1, ..., n− 1 are defined as

e− jhAδn− j =

∫ h

0
e−(h−τ)Ae− jhAA1−β(jh)1−β(jh)β−1

∫ τ

0
Aβ−1(τ − σ)g′′(tn− j−1 + σ)dσdτ.

Hence, this term can be bounded in V by

‖ e− jhAδn− j ‖V≤ CM
∫ h

0
e−(h−τ)A(jh)β−1

∫ τ

0
(τ − σ)dτ,

using integration by parts we obtain

‖ e− jhAδn− j ‖V ≤
CM

2
(jh)β−1φ3(−hA)h3,

≤
CM

2
(jh)β−1h3.

Thus, the remaining sum is obtained by

‖

n−1
∑

j=1

e− jhAδn− j ‖V ≤ CM
n−1
∑

j=1

h3(jh)β−1,

≤ CMh2

∫ tn−1

0
tβ−1dt,

≤ CMh2.

Finally, we are in the position to state the convergence result for second order method. The

error can be written as

‖

n−1
∑

j=0

e− jhAδn− j ‖V≤ Ch2 sup0≤t≤tn ‖ Aβ−1g′′(t) ‖V .

�

In the following section, we will derive the error bounds forexponential midpoint method of

linear parabolic problems.

39

4.4. Convergence of the Exponential Midpoint Method

The analysis of exponential midpoint method follows with the same ideas that were

used in previous section. Assume that the initial value problem

u′(t) + Au(t) = g(t), u(0) = u0. (4.44)

The solution of (4.44) at timetn+1 = tn + h, n = 0, 1, ... can be given by the variation of

constants formula

u(tn+1) = e−hAu(tn) +
∫ h

0
e−(h−τ)Ag(tn + τ)dτ. (4.45)

This scheme is obtained by approximating the functiong within the integral by midpoint rule.

We expand the termg(tn + τ) in the variation of constants formula in a Taylor series with

integral form of the reminder

g(tn + τ) = g
(

(tn + h/2)+ (τ − h/2)
)

,

= g(tn + h/2)+
∫ τ−h/2

0
g′(tn + h/2+ σ)dσ, (4.46)

and then we also expandg(tn + h/2)

g(tn + h/2) = g(tn) +
h
2

g′(tn) +
∫ h/2

0

h
2

g′′(tn + τ)dτ. (4.47)

Finally, we substitude (4.47) and (4.46) in the (4.45)

u(tn+1) = e−hAu(tn) + hφ1(−hA)g(tn) +
h2

2
φ1(−hA)g′(tn) + δn+1, (4.48)

where the reminderδn+1 leads to

δn+1 =

∫ h

0
e−(h−τ)A

∫ h
2

0
(
h
2
− σ)g′′(tn + σ)dσdτ +

∫ h

0
e−(h−τ)A

∫ τ− h
2

0
g′(tn +

h
2
+ σ)dσdτ.

40

For this reminder we have following estimation.

Lemma 4.5 Let the initial value problem (4.44) satisfy Assumption (4.2). Moreover, let0 <

β ≤ 1 and Aβ−1g′′ ∈ L∞(0,T). Then,

‖

n−1
∑

j=0

e− jhAδn− j ‖V≤ Ch2 sup0≤t≤tn ‖ Aβ−1g′′(t) ‖V +Ch sup0≤t≤tn ‖ Aβ−1g′(t) ‖V, (4.49)

holds with a constant C, uniformly in0 ≤ tn ≤ T.

Proof Firstly, we represent the supremum byM1 andM2 as

M1 := sup0≤t≤tn ‖ Aβ−1g′′(t) ‖V,

M2 := sup0≤t≤tn ‖ Aβ−1g′(t) ‖V .

To construct the left hand side of the expression (4.49), we may write δn− j with the help of

equation (4.49)

δn− j =

∫ h

0
e−(h−τ)A

[

∫ h
2

0
(
h
2
− σ)g′′(tn− j−1 + σ)dσ

+

∫ τ− h
2

0
g′(tn− j−1 +

h
2
+ σ)dσ

]

dτ. (4.50)

Multiply the equation (4.50) bye− jhAA1−βAβ−1

e− jhAδn− j = e− jhA

∫ h

0
e−(h−τ)AA1−βAβ−1

[

∫ h
2

0
(
h
2
− σ)g′′(tn− j−1 + σ)dσ

+

∫ τ− h
2

0
g′(tn− j−1 +

h
2
+ σ)dσ

]

dτ. (4.51)

For j = 0 and multiplying the equation by (h− τ)1−β(h− τ)β−1

δn =

∫ h

0
e−(h−τ)A(h− τ)1−βA1−β(h− τ)β−1

[

∫ h
2

0
Aβ−1(

h
2
− σ)g′′(tn−1 + σ)dσ

+

∫ τ− h
2

0
Aβ−1g′(tn−1 +

h
2
+ σ)dσ

]

dτ.

41

By using the stability bound (4.6), we take the norm of this identity in V

‖ δn ‖V≤ C
∫ h

0
(h− τ)β−1[

∫ h
2

0
Aβ−1(

h
2
− σ)g′′(tn−1 + σ)dσ +

∫ τ− h
2

0
Aβ−1g′(tn−1 +

h
2
+ σ)dσ]dτ.

We thus have

‖ δn ‖V ≤ C
∫ h

0
(h− τ)β−1

[

M1

∫ h
2

0
(
h
2
− σ)dσ + M2

∫ τ− h
2

0
dσ
]

dτ,

= C
∫ h

0
(h− τ)β−1

[

M1
h2

8
+ M2(τ −

h
2

)
]

dτ,

= CM1
h2

8

∫ h

0
(h− τ)β−1dτ +CM2

∫ h

0
(h− τ)β−1(τ −

h
2

)dτ,

and this gives us the bound

‖ δn ‖V ≤ CM1
1
8β

hβ+2
+CM2

1
(β + 1)(β + 2)

hβ+2 −CM2
1
2β

hβ+1,

≤ CMhβ+2.

The remaining terms forj = 1, ..., n− 1,

e− jhAδn− j =

∫ h

0
e−(h−τ)Ae− jhAA1−β(jh)1−β(jh)β−1

[

∫ h
2

0
Aβ−1(

h
2
− σ)g′′(tn− j−1 + σ)dσ

+

∫ τ− h
2

0
Aβ−1g′(tn− j−1 +

h
2
+ σ)dσ

]

dτ.

The stability estimate (4.6) enables us to define the boundedoperators. The bound can be

written in V as follows:

‖ e− jhAδn− j ‖V ≤ C
∫ h

0
e−(h−τ)A(jh)β−1

[

M1

∫ h
2

0
(
h
2
− σ)dσ + M2

∫ τ− h
2

0
dσ
]

dτ.

After some calculations we obtain

‖ e− jhAδn− j ‖V≤
CM1

8
(jh)β−1φ1(−hA)h3

+CM2(jh)β−1φ2(−hA)h2
+

CM2

2
(jh)β−1φ1(−hA)h2.

42

We then write the remaining sum as

‖

n−1
∑

j=1

e− jhAδn− j ‖V ≤
CM1

8
h3

n−1
∑

j=1

(jh)β−1
+CM2h

2
n−1
∑

j=1

(jh)β−1
+

CM2

2
h2

n−1
∑

j=1

(jh)β−1,

≤ CM1h
2

∫ tn−1

0
tβ−1dt+CM2h

∫ tn−1

0
tβ−1dt,

≤ CM1h
2
+CM2h

2.

Finally, we get the desired estimation

‖

n−1
∑

j=0

e− jhAδn− j ‖V≤ Ch2 sup0≤t≤tn ‖ Aβ−1g′′(t) ‖V +Ch sup0≤t≤tn ‖ Aβ−1g′(t) ‖V .

�

43

CHAPTER 5

INTERPOLATION THEORY

In this chapter, we will suppose that there is an unknown function for which its exact

values at some distinct points are given. To solve such problems we need to transform given

distinct data points to a continuous function. This is the subject of interpolation theory. Vari-

ous ways can be used to write an interpolation polynomial such as Lagrange, Newton divided

differences, etc. but the polynomial will be the same according to following theorem

Theorem 5.1 If t0, t1, ..., tn are n+1 distinct points,(t0, g(t0)), (t1, g(t1)), ..., (tn, g(tn)) are given.

There is a polynomial p(t) that interpolates g(ti) at ti , i = 0, 1, ..., n. The polynomial p(t) of

degree≤ n is unique.

Proof The proof can be read from (Atkinson, 1988). �

In present chapter, we will use Newton divided difference interpolation polynomial.

5.1. Newton Divided Differences Polynomial Approximation

In this manner, we will firstly give a brief information aboutNewton Divided Differ-

ences. Our aim is to approximate a set of distinct points by a simple polynomial function.

Consider a polynomial of degree at mostn that passes through then+ 1 points.

t t0 t1 t2 ... tn
g(t) g(t0) g(t1) g(t2) ... g(tn)

We would like to begin with developing a procedure to computed1, d2, ..., dn such that

an interpolation polynomial has the following form

pn(x) = d0 + d1(t − t0) + d2(t − t0)(t − t1) + ... + dn(t − t0)...(t − tn−1), (5.1)

= d0 +

n
∑

j=1

d j

j−1
∏

k=0

(t − tk). (5.2)

The interpolation polynomial of divided differences can be built recursively. Having a recur-

sive formula will be advantageous for us. Let degree(pn) = n and degree(pn−1) = n − 1. We

44

can write

pn(t) = pn−1(t) + K(t). (5.3)

where correction termK(t) = dn(t−t0)...(t−tn−1). At the distinct nodes,K(t) satisfies following

equalities

K(ti) = pn(ti) − pn−1(ti) = g(ti) − g(ti) = 0, i = 0, ..., n− 1.

Sincepn(tn) = g(tn), the coefficientsdn in (5.1) are given by

dn =
g(tn) − pn−1(tn)

(t − n− t0)...(tn − tn−1)
, (5.4)

= g[t0, t1, ..., tn]. (5.5)

The coefficient dn is called then-th order Newton divided difference ofg. Moreover, the

interpolation formula becomes

pn(t) = pn−1(t) + (t − t0)...(t − tn−1)g[t0, t1, ..., tn]. (5.6)

The divided differences are generated by

g[ti] = g(ti), i = 0, 1, ..., n. (5.7)

The first divided differences are defined as

g[ti , ti+1] =
g(ti+1) − g(ti)

ti+1 − ti
. (5.8)

The second divided differences can be determined by

g[ti, ti+1, ti+2] =
g[ti+1, ti+2] − g[ti, ti+1]

ti+2 − ti
. (5.9)

45

A useful formula for computingg[t0, t1, ..., tn] order of n is

g[t0, t1, ..., tn] =
g[t1, t2, ..., tn] − g[t0, t1, ..., tn−1]

tn − t0
. (5.10)

We can show the construction of divided differences in the following table From (5.6) we

ti g(ti) g[ti , ti+1] g[ti, ti+1, ti+2] g[ti, ti+1, ti+2, ti+3] g[ti , ti+1, ti+2, ti+3, ti+4]

t0 g(t0)
g[t0, t1]

t1 g(t1) g[t0, t1, t2]
g[t1, t2] g[t0, t1, t2, t3]

t2 g(t2) g[t1, t2, t3] g[t0, t1, t2, t3, t4]
g[t2, t3] g[t1, t2, t3, t4]

t3 g(t3) g[t2, t3, t4]
g[t3, t4]

t4 g(t4)

Table 5.1. Format for constructing divided differences ofg(t).

obtain following formulas

p0(t) = g(t0), (5.11)

p1(t) = g(t0) + (t − t0)g[t0, t1], (5.12)

p2(t) = g(t0) + (t − t0)g[t0, t1] + (t − t0)(t − t1)g[t0, t1, t2], (5.13)
...

pn(t) = g(t0) + (t − t0)g[t0, t1] + (t − t0)(t − t1)g[t0, t1, t2]

+... + (t − t0)...(t − tn−1)g[t0, t1, ..., tn]. (5.14)

This is called Newton’s divided difference formula for the interpolation polynomial.

The Newton interpolating polynomial passing through the uniformly spaced (n+1) data points

has degree≤ n. This polynomial is the same as the Lagrange interpolating polynomial. There-

fore, the error of Newton interpolation will be also the sameas the error of the Lagrange in-

terpolation. The difference between divided differences and Lagrange interpolation depends

only on the computational appearance. The advantage of using Newton interpolation is the

efficiency of the use of nested multiplication and the easiness to add more data points for

higher-order interpolating polynomials. For instance, wecan have interpolation polynomial

46

of f at the nodest0, t1, ..., tn ,

pn(t) = g(t0) + (t − t0)g[t0, t1] + ... + (t − t0)...(t − tn−1)g[t0, t1, ..., tn],

if we want to add a discrete point (tn+1, g(tn+1)) to our interpolation, we can do it by using

pn+1(t) = pn(t) + (t − t0)...(t − tn)g[t0, t1, ..., tn+1],

in just one step.

When Newton divided difference polynomialspn(t) are used for interpolation to compute

values of a functiong(t), we expect a difference between the approximation valuepn(t) and

exact function valueg(t). In other words, we wish to know how accurately is our interpolating

polynomial approximates tog(t).

En(t) = g(t) − pn(t). (5.15)

We shouldn’t expect to apply (5.15) wheng(t) is not known. In such a case we can use the

Next Term Rule. According to this rule,pn+1(t) is thought as exact function

En(t) = pn+1(t) − pn(t). (5.16)

The interpolation error formula of divided differences can be defined as follows:

Supposet0, t1,, tn are distinct nodes in the interval [a, b] andt is a real number in this interval

which is different from node points. Construction of the interpolation polynomialg(t) at these

points can be written as

pn+1(t) = g(t0) + (t − t0)g[t0, t1] + ... (5.17)

+(t − t0)...(t − tn)g[t0, t1, ..., tn]

+(t − t0)...(t − tn)g[t0, t1, ..., tn, t],

= pn(t) + (t − t0)(t − t1)...(t − tn)g[t0, t1, ..., tn, t]. (5.18)

47

Sincepn+1(t) = g(t) from the Next Term Rule

g(t) − pn(t) = (t − t0)(t − t1)...(t − tn)g[t0, t1, ..., tn, t]. (5.19)

This gives us error formulaEn(t) = g(t) − pn(t). According to Theorem (5.1), the error of

divided difference interpolation is equal to the error of Lagrange polynomial which is given

by

g(t) − pn(t) = (t − t0)(t − t1)...(t − tn)
gn+1(ξ)
(n+ 1)!

, (5.20)

for someξ ∈ {t0, t1, ..., tn, t}.(More information about Lagrange interpolation polynomial can

be read from (Atkinson, 1988)). Comparing these two error formulas we get

g[t0, t1, ..., tn, t] =
gn+1(ξ)
(n+ 1)!

. (5.21)

The error bound forEn(t) can be written as

||En(t)|| = ||(t − t0)(t − t1)...(t − tn)|| ||g[t0, t1, ..., tn, t]||. (5.22)

From (5.4) we havedn+1 = g[t0, t1, ..., tn, t] is a constant. In the following chapter we will

combine Newton divided difference polynomial with exponential integrators.

48

CHAPTER 6

ERROR ANALYSIS OF EXPONENTIAL

INTEGRATORS WITH DISCRETE FORCE

In this chapter, we will assume that there is an unknown function for which its exact

values at some distinct points are given. To solve such problems we need to transform given

distinct data points to a continuous function. This polynomial function is constructed by using

Newton divided difference interpolation polynomial. Consider the initial value problem

u′(t) + Au(t) = g(t), u(t0) = u0, (6.1)

where we do not know continuous functiong(t), we just known + 1 distinct points given in

the following table

t t0 t1 ... tn
g(t) g(t0) g(t1) ... g(tn)

Table 6.1.g is given as a function of time

pn(t) denotes the Newton divided difference interpolation polynomial of degree≤ n

that passes through distinct points. To simplify the notation, we will use notational convention

aspn(t) = p(t) and interpolation errorEn of degree≤ n, En(t) = E(t).

6.1. Error Analysis of Exponential Euler Method

Theorem 6.1 Numerical solution of the equation (6.1) with exponential Euler method is

un+1 = e−hAun + hφ1(−hA)p(tn). (6.2)

49

Let given initial value problem satisfy Assumption (4.2). Furthermore, g: [0,T] → X is

differentiable, and Aβ−1g′ ∈ L∞(0,T) whereβ ∈ (0, 1]. Then we can bound the error‖ un −

u(tn) ‖V uniformly in0 ≤ nh≤ T.

Proof The proof will be based on the differences of the numerical and the exact solutions.

Our numerical method is exponential Euler method

un+1 = e−hAun + hφ1(−hA)p(tn). (6.3)

The exact solution will be given by variation of constants formula

u(tn+1) = e−hAu(tn) + hφ1(−hA)g(tn) + δn+1, (6.4)

we define the reminder term in integral form

δn+1 =

∫ h

0
e−(h−τ)A

∫ τ

0
g′(tn + σ)dσdτ. (6.5)

We shortly denoteen = un − u(tn). Substracting (6.4) from (6.3) leads to

en+1 = e−hAen + hφ1(−hA)(p(tn) − g(tn)) − δn+1. (6.6)

SubstituteEn(t) = g(t) − pn(t) in the equation (6.6) then we have

en+1 = e−hAen + hφ1(−hA)(−E(tn)) − δn+1, (6.7)

= e−hAen − hφ1(−hA)E(tn) − δn+1, (6.8)

whereEn(t) = (t − t0)(t − t1)...(t − tn)g[t0, t1, ..., tn, t]. For short we can write

en+1 = e−hAen − hφ1(−hA)En − δn+1. (6.9)

50

Solving this recursion gives

en = −

n−1
∑

j=0

e−(n− j−1)hAhφ1(−hA)E j −

n−1
∑

j=0

e− jhAδn− j .

We can estimate and find a bound foren in V as we did in Chapter 4. We have an extra term
∑n−1

j=0 e−(n− j−1)hAhφ1(−hA)E j which comes from the interpolation error. It is also possible to

boundEn as follows:

Max|En| ≤
cn+1

(n+ 1)!
Max|γn(t)|,

wherecn+1 = Max|gn+1(t)| andγn(t) = (t − t0)(t − t1)...(t − tn). �

6.2. Error Analysis of Second Order Method

Theorem 6.2 Consider the initial value problem (6.1). Numerical solution of this equation

with the second order method is given by

un+1 = e−hAun + h
(

φ1(−hA) − φ2(−hA)
)

p(tn) + hφ2(−hA)p(tn+1). (6.10)

Let Assumption (4.2) be fulfilled. Furthermore, g: [0,T] → X is differentiable, and Aβ−1g′′ ∈

L∞(0,T) whereβ ∈ (0, 1]. Then we can bound the error‖ un−u(tn) ‖V uniformly in0 ≤ nh≤ T.

Proof The proof will follow the same argumentation as in the proof of Theorem (6.1). We

will deal with the differences of the numerical and the exact solutions. Our numerical method

is exponential second order method

un+1 = e−hAun + h
(

φ1(−hA) − φ2(−hA)
)

p(tn) + hφ2(−hA)p(tn+1). (6.11)

Exact solution of given IVP (6.1) is represented by

u(tn+1) = e−hAu(tn) + h
(

φ1(−hA) − φ2(−hA)
)

g(tn) + hφ2(−hA)g(tn+1) + δn+1, (6.12)

51

the reminder termδn+1 in integral form leads to

δn+1 =

∫ h

0
e−(h−τ)A

∫ τ

0
(τ − σ)g′′(tn + σ)dσdτ. (6.13)

The representation of the errorsen+1 can be written by substracting (6.12) from (6.11). We

then obtain

en+1 = e−hAen + h
(

φ1(−hA) − φ2(−hA)
)(

p(tn) − g(tn)
)

+ hφ2(−hA)
(

p(tn+1) − g(tn+1)
)

−δn+1. (6.14)

SubstitutingEn(t) = g(t) − pn(t) in the equation (6.14)

en+1 = e−hAen − h
(

φ1(−hA) − φ2(−hA)
)

E(tn) + hφ2(−hA)(−E(tn+1)) − δn+1, (6.15)

= −h
(

φ1(−hA) − φ2(−hA)
)

En − hφ2(−hA)En+1 − δn+1, (6.16)

whereEn(t) = (t − t0)(t − t1)...(t − tn)g[t0, t1, ..., tn, t]. As a solution of this recursion we get

en = −

n−1
∑

j=0

e−(n− j−1)hAh
(

φ1(−hA) − φ2(−hA)
)

E j + hφ2(−hA)E j+1 −

n−1
∑

j=0

e− jhAδn− j .

We can estimate and find a bound foren as we did before. An important consequence of the

discrete force, we have an extra term

n−1
∑

j=0

e−(n− j−1)hAh
(

φ1(−hA) − φ2(−hA)
)

E j + hφ2(−hA)E j+1),

which comes from the interpolation error. We can boundEn as follows:

Max|En| ≤
cn+1

(n+ 1)!
Max|γn(t)|,

wherecn+1 = Max|gn+1(t)| andγn(t) = (t − t0)(t − t1)...(t − tn). �

52

6.3. Error Analysis of Exponential Midpoint Method

t t0 t1 ... tn
g(t) g(t0) g(t1) ... g(tn)
g′(t) g′(t0) g′(t1) ... g′(tn)

Table 6.2.g andg′ are given as a function of time

p(t) is a polynomial that interpolatesg(ti) andq(t) is a polynomial that interpolates

g′(ti) at ti, i = 0, 1, ..., n.

Theorem 6.3 Let Assumption (4.2) be fulfilled for the initial value problem (6.1). Numerical

solution of this equation with exponential midpoint methodis given by

un+1 = e−hAun + hφ1(−hA)p(tn) +
h2

2
φ1(−hA)q(tn). (6.17)

Moreover, g: [0,T] → X is differentiable, and Aβ−1g′,Aβ−1g′′ ∈ L∞(0,T) whereβ ∈ (0, 1].

Then we can bound the error‖ un − u(tn) ‖V uniformly in0 ≤ nh≤ T.

Proof The proof will follow the same pattern as previous theorems.Our numerical method

is exponential midpoint method for this theorem. We will findbounds for the differences of

the numerical and the exact solutions. Exponential midpoint method can be written as

un+1 = e−hAun + hφ1(−hA)p(tn) +
h2

2
φ1(−hA)q(tn), (6.18)

whereq(t) denotes divided difference polynomial that passes through distinct points ofg′(t).

Exact solution of given IVP (6.1) is represented by variation of constants formula and given

by

u(tn+1) = e−hAu(tn) + hφ1(−hA)g(tn) +
h2

2
φ1(−hA)g′(tn) + δn+1, (6.19)

53

we define the reminder term in integral form

δn+1 =

∫ h

0
e−(h−τ)A

∫ h
2

0
(
h
2
− σ)g′′(tn + σ)dσdτ +

∫ h

0
e−(h−τ)A

∫ τ− h
2

0
g′(tn +

h
2
+ σ)dσdτ.

Then, we briefly denote the error asen = un − u(tn). In order to obtain error, we substract

(6.19) from (6.18)

en+1 = e−hAen + hφ1(−hA)(p(tn) − g(tn)) +
h2

2
φ1(−hA)(q(tn) − g′(tn)) − δn+1. (6.20)

SubstitutingEn(t) = g(t) − pn(t) andRn(t) = g′(t) − qn(t) in the equation (6.20) we obtain

en+1 = e−hAen + hφ1(−hA)(−E(tn)) +
h2

2
φ1(−hA)(−R(tn)) − δn+1, (6.21)

whereEn(t) = (t − t0)(t − t1)...(t − tn)g[t0, t1, ..., tn, t] and

Rn(t) = (t − t0)(t − t1)...(t − tn)g′[t0, t1, ..., tn, t].

Shortly, we can denote the recursion as

en+1 = −hφ1(−hA)En −
h2

2
φ1(−hA)Rn − δn+1. (6.22)

The solution of this recursion leads to

en = −

n−1
∑

j=0

e−(n− j−1)hAhφ1(−hA)E j −
h2

2
φ1(−hA)Rj −

n−1
∑

j=0

e− jhAδn− j .

We can estimate and find a bound foren. We have an extra term

n−1
∑

j=0

e−(n− j−1)hAhφ1(−hA)E j −
h2

2
φ1(−hA)Rj ,

54

which comes from the interpolation error. It is also possible to boundEn andRn as follows:

Max|En| ≤
cn+1

(n+ 1)!
Max|γn(t)|, Max|Rn| ≤

dn+1

(n+ 1)!
Max|γn(t)|,

wherecn+1 = Max|gn+1(t)|, dn+1 = Max|gn+2(t)| andγn(t) = (t − t0)(t − t1)...(t − tn). �

55

CHAPTER 7

NUMERICAL EXPERIMENT

In this chapter, we illustrate the performance of different exponential integrators. For

this purpose we solved numerically some class of ODE and PDE problems. We will work

with a uniform mesh in time. This chapter includes mainly three parts. Firstly, we will solve

Prothero-Robinson equation by using exponential integrators. Secondly, we will deal with the

solution of one dimensional and two dimensional problems with discrete force. Finally, our

last examples will be Reaction-Diffusion equations. Krylov subspace methods are used for

approximating the product of the matrix functions with the corresponding vectors. Last, all

simulations will be obtained by running the problems which are written in Matlab program-

ming language.

7.1. Application of Various Exponential Integrators on the

Prothero-Robinson Equation

Our first problem is the Prothero-Robinson equation. This equation is a model problem

for stiff equations.

u′ = P(u− h(t)) + h′(t). (7.1)

Let we supposeh(t) =

















cos(t)

cos(2t)

















andP =

















1 0

−10α −10α

















with the initial condition

u(0) =

















1

1

















andt ∈ [0, 1].

The exact solution for this problem is given byuex(t) =

















cos(t)

cos(2t)

















. The initial condition and

exact solution is barrowed from (El-Azab, 2012).

||P|| ⋍ 10α, and the eigenvalues are−10α and 1, then the stiffness of the problem depends on

theα.

56

To solve this problem numerically, we may organize the giveninformations of (7.1) forα = 2.

u′ =

















1 0

−102 −102

















u−

















1 0

−102 −102

































cos(t)

cos(2t)

















+

















−sin(t)

−2sin(2t)

















,

u(0) =

















1

1

















.

Finally, we obtain

u′ =

















1 0

−102 −102

















u−

















−cost− sint

102(cos(t) + cos(2t)) − 2sin(2t)

















. (7.2)

We will solve this equation using various exponential methods. These methods are exponen-

tial Euler method, second order method and exponential midpoint method, respectively. The

errors of these methods, which are listed in the following Table 7.1., are measured in the max-

imum norm. Comparison of numerical methods and exact solution is plotted in Figure 7.1.

Moreover, all orders of these methods are confirmed by the results illustrated forα = 2 in

Figure 7.2.

∆t u errorExponentialEuler errorS econdOrder errorMidpointRule

0.1 u1 0.04309863013 0.00181544973 0.00429585398

u2 0.20569922274 0.00209595990 0.11316444546

0.01 u1 0.00421840195 0.00001814987 0.00004327682

u2 0.01220267611 0.00004116969 0.00227224660

0.001 u1 0.00042084677 0.00000018149 0.00000043308

u2 0.00102237666 0.00000041825 0.00002308565

0.0001 u1 0.00004207466 0.00000000181 0.00000000433

u2 0.00010022378 0.00000000418 0.00000023089

Table 7.1. Comparison of errors for various exponential integrators different∆t values.

As a result, we can see clearly that the second order method works more effectively than the

other methods.

57

0 0.5 1
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

t

N
um

er
ic

al
 S

ol
ut

io
ns

 o
f u

1

Comparison of solutions

0 0.5 1
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

t

N
um

er
ic

al
 S

ol
ut

io
ns

 o
f u

2

Comparison of solutions

Exact Solution
Exp.Euler
Exp.SecondOrder
Exp.Midpoint

Figure 7.1. Comparison of numerical methods with exact solution for time step∆t = 0.1.

1 2 3 4
−9

−8

−7

−6

−5

−4

−3

−2

−1

LOG(N.EVAL)

LO
G

(E
R

R
O

R
)

Accuracy of u1 for three schemes

1

2

2

1 2 3 4
−9

−8

−7

−6

−5

−4

−3

−2

−1

0

LOG(N.EVAL)

LO
G

(E
R

R
O

R
)

Accuracy of u2 for three schemes

1

2

2

Exp.Euler
Exp.SecondOrder
Exp.Midpoint

Figure 7.2. Order plot for the exponential methods applied to the Prothero equation for
α = 2.

58

When we takeα = 4, the stiffness ratio of the problem increases. This increase causes

order reduction for the equation which is presented in Figure 7.3.

1 2 3 4
−9

−8

−7

−6

−5

−4

−3

−2

−1

LOG(N.EVAL)

LO
G

(E
R

R
O

R
)

Accuracy of u1 for three schemes

2

2

1

1 2 3 4
−9

−8

−7

−6

−5

−4

−3

−2

−1

0

LOG(N.EVAL)
LO

G
(E

R
R

O
R

)

Accuracy of u2 for three schemes

2

2

1

Exp.Euler
Exp.SecondOrder
Exp.Midpoint

Figure 7.3. Order plot for the exponential methods applied to the Prothero equation for
α = 4.

7.2. One Dimensional Example to Explain Stiffness

Consider the one dimensional problem

y′ = −50y+ 50f (x), x ∈ (0, π), (7.3)

with initial conditiony(0) = 0. We will use f (x) as a interpolation polynomial of following

data points:

x 0 π/3 2π/3 π

f (x) 1 0.5 -0.5 -1

Discretize in space

xj = j∆x, j = 1, 2, ...,N, (7.4)

59

where∆x = xN−x0
N =

π
N is the space between the node points. We divided (0, π) into N parts of

equal length. In order to test the efficiency of the divided difference interpolation polynomial,

we construct this problem choosing the distinct values fromcontinuous trigonometric function

cos(x). In other words,f (x) = cos(x). Therefore, the exact solution may be written as

y(x) = −
2500
2501

e−50x
+

2500
2501

cos(x) +
50

2501
sin(x). (7.5)

Figure 7.4. shows Newton the divided difference approximation polynomial of given discrete

points andcos(x).

0 0.5 1 1.5 2 2.5 3 3.5
−1.5

−1

−0.5

0

0.5

1

1.5

 Space

 S
ol

ut
io

ns

Divided difference of f(x)
cos(x)

Figure 7.4. Divided difference polynomial of given data points and cos(x).

The errors of explicit Euler, implicit Euler, Runge-Kutta and exponential Euler meth-

ods are listed in the following Table 7.2. In Table 7.3., we compare the error of exponential

methods. These errors are measured in the maximum norm.

60

∆x ExplicitEuler RK4 ImplicitEuler ExponentialEuler

0.1 4.6081.1018 1.7150.1035 0.1565 0.0806

0.01 0.1183 0.0182 0.0765 0.0128

0.001 0.0109 0.0116 0.0112 0.0111

0.0001 0.0109 0.0110 0.0110 0.0109

Table 7.2. Comparison of traditional methods and exponential euler method errors
with discrete force for different∆x values.

∆x ExponentialEuler S econdOrderMethod MidpointRule

0.1 0.0806 0.0102 0.0319

0.01 0.0128 0.0109 0.0110

0.001 0.0111 0.0109 0.0109

0.0001 0.0109 0.0109 0.0109

Table 7.3. Comparison of different exponential integrators errors with discrete force
for different∆x values.

0 0.5 1 1.5 2 2.5 3 3.5
−1.5

−1

−0.5

0

0.5

1

1.5

 Space

 S
ol

ut
io

ns

Comparison of numerical solutions with exact solution

Exact Solution
Exp.Euler
Exp.SecondOrder
Exp.Midpoint

Figure 7.5. Comparison of different exponential integrators with exact solution for∆x = 0.1.

61

Figure 7.5. indicates the exact solution and exponential numerical solutions for con-

sidered problem for∆x = 0.1. As a consequence, we can see clearly that the second order

method works more effectively than the other methods.

7.3. Two Dimensional ODE Problem

Consider a linear initial value problem

y′1 = −y1 + f (t), y1(0) = 1,

y′2 = 2y1 − 100y2, y2(0) = 0,

f (t) is the discrete force which is appliedt ∈ [0, 0.3]. Suppose that we have four distinct

values of force at timet.

t 0 0.1 0.2 0.3

f (t) 1 1.1052 1.2214 1.3499

Table 7.4. Given discrete data points.

In order to solve the problem, firstly we illustrate interpolation polynomial using the Newton

divided differences. This system is equivalent to following form

















y′1
y′2

















=

















−1 0

2 −100

































y1

y2

















+

















f (t)

0

















, u0 =

















1

0

















. (7.6)

Discretize in time

t j = j∆t, j = 1, 2, ...,N, (7.7)

where∆t = tN−t0
N =

0.3
N is the space between the node points. We divided [0, 0.3] into N

parts of equal length. To test the efficiency of the interpolation polynomial, we construct this

problem choosing the distinct values from continuous exponential functionet. In other words,

62

f (t) = et. So, the exact solution can be given by

y1(t) =
1
2

(e−t
+ et),

y2(t) = −
200
9999

e−100t
+

1
990e−t

+
1

101
et.

∆t y ExpEuler ExpS econd ExpMidpoint ExplicitEuler ImpEuler

0.06 y1 0.0091 9.1323.10−5 2.7125.10−4 0.0081 0.0101

y2 1.7128.10−4 1.7913.10−6 3.2474.10−6 62.5063 0.0028

0.03 y1 0.0046 2.2837.10−5 6.8169.10−5 0.0040 0.0051

y2 8.6503.10−5 4.4370.10−7 1.1758.10−6 20.4822 0.0040

0.015 y1 0.0023 5.7096.10−6 1.7086.10−5 0.0020 0.0026

y2 4.3635.10−5 1.1047.10−7 3.3047.10−7 0.0145 0.0035

Table 7.5. Comparison of different methods errors for different∆t values.

0.8 1 1.2 1.4
−5.5

−5

−4.5

−4

−3.5

−3

−2.5

−2

LOG(N.EVAL)

LO
G

(E
R

R
O

R
)

Accuracy of y1 for three schemes

2 2

1

0.8 1 1.2 1.4
−7

−6.5

−6

−5.5

−5

−4.5

−4

−3.5

LOG(N.EVAL)

LO
G

(E
R

R
O

R
)

Accuracy of y2 for three schemes

2

2

1

Exp.Euler
Exp.SecondOrder
Exp.Midpoint

Figure 7.6. Order of exponential methods.

Table 7.5. shows the errors of the exponential Euler method,second order method,

exponential midpoint method, traditional explicit and implicit Euler method inL∞ norm for

63

different time steps. Figure 7.6. indicates the numerical convergence rate of the exponential

methods.

In the following Table 7.6., we will deal with the errors of methods wheref (t) is con-

structed applying Newton divided difference approximation to the distinct values of force.

The errors at the endpointt = 0.3 are computed in a discreteL∞ norm.

∆t y ExpEuler ExpS econd ExpMidpoint ExplicitEuler ImpEuler

0.06 y1 0.0091 9.5455.10−5 2.6815.10−4 0.0081 0.0101

y2 1.7122.10−4 1.8678.10−6 3.2474.10−6 62.5063 0.0028

0.03 y1 0.0046 2.6977.10−5 6.4534.10−5 0.0040 0.0051

y2 8.6434.10−5 5.2063.10−7 1.1758.10−6 20.4822 0.0040

0.015 y1 0.0023 9.8524.10−6 1.3193.10−5 0.0020 0.0026

y2 4.3562.10−5 1.8756.10−7 3.3951.10−7 0.0145 0.0035

Table 7.6. Comparison of different exponential and traditional methods with divided
difference errors for different∆t values.

0.8 1 1.2 1.4
−5.5

−5

−4.5

−4

−3.5

−3

−2.5

−2

LOG(N.EVAL)

LO
G

(E
R

R
O

R
)

Accuracy of y1 for three schemes

2

2

1

0.8 1 1.2 1.4
−7

−6.5

−6

−5.5

−5

−4.5

−4

−3.5

LOG(N.EVAL)

LO
G

(E
R

R
O

R
)

Accuracy of y2 for three schemes

1

22

Exp.Euler
Exp.SecondOrder
Exp.Midpoint

Figure 7.7. Order plot of the exponential methods with divided difference.

Figure 7.7. displays the numerical convergence rate of the exponential methods with discrete

force. Divided difference polynomial of given data points andet are plotted in Figure 7.8.

64

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

time

f(
t)

Divided difference of f(t) and exp(t)

f(t)
exp(t)

Figure 7.8. Divided difference polynomial of given data points andet.

0 0.1 0.2 0.3 0.4
1

1.01

1.02

1.03

1.04

1.05

1.06

t

N
um

er
ic

al
 S

ol
ut

io
ns

 o
f y

1

Comparison of solutions

0 0.1 0.2 0.3 0.4
0

0.005

0.01

0.015

0.02

0.025

t

N
um

er
ic

al
 S

ol
ut

io
ns

 o
f y

2

Comparison of solutions

Exact Solution
Exp.Euler
Exp.SecondOrder
Exp.Midpoint

Figure 7.9. Comparison of numerical methods with exact solution for time step
∆t = 0.015.

65

The comparison of first componenty1 and second componenty2 with exact solution and ex-

ponential methods are illustrated in Figure 7.9. As we see, second order method works more

efficiently both continuous formet and divided difference polynomialf (t) of given discrete

data points. There is an order reduction which proceeds fromdiscrete force.

7.4. Example of Reaction-Diffusion Equations

Let us consider how to simulate the reaction diffusion equation by exponential inte-

grators. We will use finite difference approximations for reaction term. In finite difference

method, the space is divided into appropriately sized elements. The differential equation is

expressed in a matrix equation by representing a discrete set of space points. In this section,

we will present the results from numerical experiments on the linear problem and semi-linear

problems Fisher and Allen Cahn equations. To solve linear problem we will use exponential

Euler, second order and exponential midpoint methods and for solving semilinear problems,

we will use the exponential Rosenbrock-Euler method.

7.4.1. Linear Problem

Our first example in this section is,

ut − uxx = (2+ x(1− x))g(t), t, x ∈ [0, 1], (7.8)

with initial condition and boundary conditions

u(0, x) = x(1− x), (7.9)

u(t, 0) = u(t, 1) = 0. (7.10)

Table 7.7. shows the Newton divided difference polynomial coefficients.

66

t et
= g(ti) g[ti, ti+1] g[ti, ti+1, ti+2] g[ti, ti+1, ti+2, ti+3] g[ti, ti+1, ti+2, ti+3, ti+4]

0 1 1.1360 0.6456 0.1374 0.0390
0.25 1.2840 1.4588 0.8288 0.1764
0.5 1.6487 1.8732 1.0640
0.75 2.1170 2.4052

1 2.7183

Table 7.7. Divided difference table ofg(t).

We will solve this equation numerically by using exponential Euler, second order and

exponential midpoint methods. We begin using central finitedifference quotient approxima-

tion for uxx

uxx

∣

∣

∣

∣

∣

(t,xi)
≈

u(t, xi+1) − 2u(t, xi) + u(t, xi−1)
(∆x)2

, (7.11)

we obtain the following semi-discrete differential equation

u′(t) =
1

∆x2
Au(t) + (2+ x(1− x))g(t), (7.12)

whereu(t) in equation (7.12) is in the form ofu(t) =
(

u(t, x1), u(t, x2), ..., u(t, xN−1)
)T and A

is (N − 1)× (N − 1) tridiagonal matrix.u(0) =
(

u(0, x1), u(0, x1), ..., u(0, xN−1)
)T is the initial

condition and the boundary conditionsu(0, x0) andu(0, xN) are embedded into the matrix.

Then, the space interval [0, 1] is discretized

xi = x0 + i∆x, i = 0, 1, ...,N, (7.13)

where∆x = xN−x0
N =

1
N is the space between the node points. To test the efficiency of the inter-

polation polynomial, we construct this problem choosing the distinct values from continuous

exponential functionet. Therefore, the exact solution of (7.8) is given by

u(t, x) = x(1− x)et. (7.14)

Table 7.8 shows the errors of the exponential methods inL∞ norm for the different time steps

67

when∆x is fixed at 0.01. The numerical convergence rate of the exponential methods is plot-

ted in Figure 7.10.

∆t ExponentialEuler S econdOrder MidpointRule

0.2 0.08318 0.00212 0.02355

0.1 0.03800 0.00057 0.00592

0.05 0.01795 0.00015 0.00141

Table 7.8. Comparison of different exponential integrators with divided difference er-
rors for different∆t values when∆x = 0.01 in L∞ norm.

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4
−4

−3.5

−3

−2.5

−2

−1.5

−1

LOG(N.EVAL)

LO
G

(E
R

R
O

R
)

Accuracy of u for three schemes

2

2

1

Exp.Euler
Exp.SecondOrder
Exp.Midpoint

Figure 7.10. Order graphic.

The numerical solutions and the analytic solution of given linear parabolic equation is dis-

played in Figure 7.11. Figure 7.12 shows the second order method solution for different

values of time.

68

Figure 7.11. Analytic and computed solutions of second order method for linear
parabolic equation∆t = 0.05 and∆x = 0.01.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

x−axis

C
om

pu
te

d
S

ol
ut

io
ns

Computed solutions of given linear problem for different values of time

t=0.25
t=0.5
t=0.75
t=1

Figure 7.12. Second order method solution for different values of time with
∆t = 0.05 and∆x = 0.01.

69

7.4.2. Semilinear Problem: The Fisher Equation

The first example of semilinear parabolic problems is the Fisher’s reaction diffusion

equation. This equation is in the form

ut = Duxx + ru(1− u), x ∈ [−10, 10], 0 ≤ t ≤ 1, (7.15)

where ru(1 − u) is called Fisher’s potential. This equation describes theeffects of linear

diffusion termuxx and nonlinear reaction termu(1− u). We will takeD = 0.1 andr = 1 with

initial and boundary conditions

u(0, x) = sech2(x), (7.16)

u(t,−10) = 0, (7.17)

u(t, 10) = 0. (7.18)

We will solve this equation numerically by using exponential Rosenbrock-Euler method. We

begin with using central finite difference quotient approximation for Equation (7.15) instead

of the differential term of spaceuxx

uxx

∣

∣

∣

∣

∣

(t,xi)
≈

u(t, xi+1) − 2u(t, xi) + u(t, xi−1)
(∆x)2

, (7.19)

we obtain the following semi-discrete differential equation

u′(t) = D
1

∆x2
Au(t) + ru(t)(1− u(t)), (7.20)

whereu(t) in equation (7.20) is in the form ofu(t) =
(

u(t, x1), u(t, x2), ..., u(t, xN−1)
)T and A

is (N − 1)× (N − 1) tridiagonal matrix.u(0) =
(

u(0, x1), u(0, x1), ..., u(0, xN−1)
)T is the initial

condition and the boundary conditionsu(0, x0) andu(0, xN) are embedded into the matrix.

Then, the space interval [−10, 10] is discretized

xi = x0 + i∆x, i = 0, 1, ...,N, (7.21)

70

where∆x = xN−x0
N =

20
N is the space between the node points. We now turn to the time

discretization of Equation (7.15). Exponential Rosenbrock Euler method is based on contin-

uous linearization of Fisher equation along the numerical solution. For a given pointun this

linearization is

u′(t) = Jnu(t) + gn(u(t)), (7.22)

Jn =
∂

∂u

(DA

∆x2
u(t) + ru(t)

(

1− u(t)
)

)

∣

∣

∣

∣

∣

un

, (7.23)

gn(u(t)) =
DA

∆x2
u(t) + ru(t)

(

1− u(t)
)

− Jnu(t), (7.24)

whereJn denotes the Jacobian andgn denotes the nonlinear reminder term evaluated atun.

Therefore, the exponential Rosenbrock-Euler method for considered problem is given by

un+1 = ehJnun + hφ(hJn)gn(un), u0 = u(0, x). (7.25)

We will use (7.25) in order to solve Fisher equation numerically. Also, we will use Richardson

extrapolation to calculate the errors. At the beginning, around thex = 0 diffusion term has a

large absolute value, but the reaction term is quite small. In other words, the effect of diffusion

dominates over the effect of reaction, so the peak goes down quickly and gets flatter. After the

peak arrives at the lowest level, the reaction term dominates the diffusion. Table 7.9. shows

the errors of the exponential Rosenbrock-Euler method inL1, L2 andL∞ norm for the different

time steps and fixed∆x = 0.5. Figure 7.13 shows the accuracy of the method for these norms.

∆t L1norm L2norm L∞norm

0.05 8.4532e-004 3.0527e-004 1.5319e-004

0.025 2.1241e-004 7.6486e-005 3.8432e-005

0.0125 5.3253e-005 1.9148e-005 9.6270-006

0.01 3.4102e-005 1.2258e-005 6.1638e-006

Table 7.9. Comparison of exponential Rosenbrock Euler method errors in different
norms for∆x = 0.5.

Figure 7.14. shows the exponential Rosenbrock Euler solution of the Fisher equation. Finally,

Figure 7.15. displays the layer behaviour of the Fisher equation for different values of timet.

71

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
−5.5

−5

−4.5

−4

−3.5

−3

LOG(N.EVAL)

LO
G

(E
R

R
O

R
)

Accuracy of u for exponential Rosenbrock scheme

2 2

2

L−1 norm
L−2 norm
L−inf norm

Figure 7.13. Order plot for the exponential Rosenbrock Euler method applied to Fisher
equation.

0
0.2

0.4
0.6

0.8
1

−10

−5

0

5

10
0

0.2

0.4

0.6

0.8

1

t

Rosenbrock Euler Method Solution of Fisher Equation

x

N
um

er
ic

al
 S

ol
ut

io
n

Figure 7.14. Numerical solution of Fisher equation∆t = 0.01 and∆x = 0.5.

72

−10 −5 0 5 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x−axis

C
om

pu
te

d
S

ol
ut

io
ns

Computed solutions of Fisher equation for different values of time

t=0.1
t=0.5
t=1

Figure 7.15. Computed solutions of Fisher equation for different values of time with
∆t = 0.01 and∆x = 0.5.

7.4.3. Semilinear Problem: The Allen Cahn Equation

The second semilinear example is Allen-Cahn equation, which is a well-known equa-

tion from the area of reaction diffusion systems :

ut = Duxx + u(1− u2), x ∈ [−1, 1], (7.26)

whereD = 0.01 with initial and boundary conditions barrowed from (Trefethen & Kassam)

u(0, x) = 0.53x+ 0.47sin(−1.5πx), (7.27)

u(t,−1) = −1,

u(t, 1) = 1.

This equation has a stable equilibria atu = 1 andu = −1 also has an unstable equilibrium

at u = 0. One of the interesting features of this equation is the phonomenon of metastability.

Regions of the solution that are near 1,−1 will be flat, and the interface between such areas

can remain unchanged over a very long timescale before changing suddenly. (Trefethen &

73

Kassam)

In order to solve the equation numerically, we performed a special discretization with grid

length parameter∆x that is get by dividing the interval intoN parts of equal length. As we

defined before, the spatial derivative ofuxx is approximated with the central finite difference

scheme is

uxx

∣

∣

∣

∣

∣

(t,xi)
≈

u(t, xi+1) − 2u(t, xi) + u(t, xi−1)
(∆x)2

, (7.28)

where∆x is the spatial stepping in space andi = 1, ...,N + 1. We will solve this equation

by exponential Rosenbrock-Euler method numerically. The exponential Rosenbrock-Euler

method for considered autonomous problem is given by

un+1 = ehJnun + hφ(hJn)gn(un), u0 = u(0, x), (7.29)

whereJn denotes the Jacobian andgn denotes the nonlinear reminder term evaluated atun. We

calculate the errors by using Richardson extrapolation method at timet = 1, which are listed

in Table 7.10. Then, order graphic is presented in Figure 7.16.

∆x ∆t L1norm L2norm L∞norm

0.05 0.1 1.8283e-005 7.4222e-006 4.0037e-006

0.05 4.7878e-006 1.9433e-006 1.0446e-006

0.025 1.2247e-006 4.9704e-007 2.6671e-007

Table 7.10. Comparison of exponential Rosenbrock Euler method error for different norms.

Moreover, Figure 7.17 displays the exponential RosenbrockEuler solution of the Allen

Cahn equation. Finally, Figure 7.18. shows the layer behaviour of the Allen Cahn equation

for different values of timet.

74

2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8
−6.6

−6.4

−6.2

−6

−5.8

−5.6

−5.4

−5.2

−5

−4.8

−4.6

LOG(N.EVAL)

LO
G

(E
R

R
O

R
)

Accuracy of u for exponential Rosenbrock scheme

2

2

2

L−1 norm
L−2 norm
L−inf norm

Figure 7.16. Order plot for Allen Cahn equation.

Figure 7.17. Numerical Solution of Allen Cahn equation∆t = 0.1 and∆x = 0.05.

75

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x−axis

C
om

pu
te

d
S

ol
ut

io
ns

Computed solutions of Allen equation for different values of time

t=1
t=2
t=6
t=10

Figure 7.18. Computed solutions of Allen-Cahn equation fordifferent values of time
with ∆t = 0.1 and∆x = 0.05.

76

CHAPTER 8

CONCLUSION

In this thesis, we studied various types of exponential integrators, namely, expo-

nential Euler method, second order method, exponential midpoint method and exponential

Rosenbrock-Euler method. We overviewed the derivation of these integrators and the error

analysis for exponential Euler method. We derived error bound for second order method and

exponential midpoint method. In these proofs, we follow similar way with (Hochbruck & Os-

termann, 2010). We also consider some class of stiff ODE and PDE problems with a discrete

force. In such problems, we approximate given data points byusing Newton divided differ-

ence polynomials. We embedded the approximated polynomialinto the differential equation.

We obtained the error bounds for these problems. Several examples are illustrated in order to

confirm our theoretical results.

77

REFERENCES

Atkinson, K. 1988: An introduction to Numerical Analysis.John Wiley& Sons,Second
Edition .

Burg, C. and Erwin, T. 2008: Application of Richardson Extrapolation to the Numerical
Solution of Partial Differential Equations.Wiley,25(4)810-832.

Caliari, M. and Ostermann, A. 2009: Implementation of Exponential Rosenbrock-Type
Integrators.Elsevier Applied Numerical Mathematics,59(3),568-581.

Curtis, C.F. and Hirschfelder, J.O. 1952: Integration of Stiff Equations.Proc. Natl. Acad.
Sci. USA,38(3),235-243.

El-Azab, T.M.A. 2012: Exponential Peer Methods.Martin-Luther-Universität Halle-
Wittenberg.

Hairer, E., Norsett,S.P. and Wanner,G. 1993: Solving Ordinary Differential Equations I:
Nonstiff Problems.Springer,Second Edition.

Hairer, E. and Wanner,G. 2000: Solving Ordinary Differential Equations II.Springer,Sec-
ond Edition.

Henry, D. 1981: Geometric Theory of Semilinear Parabolic Equations.Springer-Verlag.

Hochbruck, M. and Ostermann, A. 2010: Exponential Integrators. Applied Numerical
Mathematics,Cambridge University Press,209-286.

Hochbruck, M., Ostermann, A. and Schweitzer,J. 2008: Explicit Exponential Runge-Kutta
Methods for Semilinear Parabolic Problems.SIAM Journal on Numerical Analysis,
47(1),786-803.

Hochbruck, M. and Ostermann, A. 2005: Exponential Runge-Kutta Methods for Parabolic
Problems.Applied Numerical Mathematics,53(2-4),323-339.

Hochbruck, M., Lubich, C. and Selhofer, H. 1998: Exponential Integrators for Large Sys-
tems of Differential Equations.SIAM J. Sci. Comput.,19(5),1552-1574.

Kandolf, P. 2011: Exponential Integrators.McMaster University.

Lambert, J.D 1991: Numerical Methods for Ordinary Differential Systems.John Wiley&
Sons.

Lawson, J.D. 1967: Generalized Runge-Kutta Processes for Stable Systems with Large
Lipschitz Constants.SIAM Journal on Numerical Analysis,4(3),372-380.

78

Liniger, W. and Willoughby, R.A. 1970: Efficient Integration Methods for Stiff Systems of
Ordinary Differential Equations.SIAM Journal on Numerical Analysis,7(1).

Michels,D.L., Sobottka,G.A., Weber,A.G. 2014: Exponential Integrators for Stiff Elasto-
dynamic Problems.ACM Transactions on Graphics33(1).

Minchev,B.V., Wright,W.M. ,2005: A review of exponential integrators for first order semi-
linear problems.NTNU2005(2).

Pazy, A. 1983: Semigroups of Linear Operators and Applications to Partial Differential
Equations.Springer-Verlag.

Pope, D.A. 1963: An Exponential Method of Numerical Integration of Ordinary Differen-
tial Equations.Communications of the ACM,6(8),491-493.

Schmelzer,T., Trefethen,L.N. 2007: Evaluating Matrix Functions for Exponential Integra-
tors via Caratheodory-Fejer Approximation and Contour Integrals.Electronic Transac-
tions on Numerical Analysis29,1-18.

Shampine, L.F. and Gear, C.W. 1976: A User’s View of Solving Ordinary Differential
Equations.Department of Computer Science University of Illinois at Urbana.

Sheree, L.L. 2003: Semigroup of Linear Operators.

Spijker, M.N 1995: Stiffness in numerical initial-value problems.Journal of Computa-
tional and Applied Mathematics,72(1996),393-406.

Trefethen, L.N. and Kassam, A.K. 2005: Fourth-order time stepping for stiff PDEs .SIAM
J. Sci. Comput.,26(4),1214-1233.

79

APPENDIX A

MATLAB CODES FOR THE APPLICATIONS OF THE

EXPONENTIAL INTEGRATORS

%%EXPONENTIAL METHODS FOR PROTHERO ROBINSON EQUATION

clc clear all close all

format long tic

for e=1:4

A=[1 0; -10^2 -10^2]; N=10^e; h=1/N; step(e)=N;

t=0:h:1;

f1 = [-cos(t)-sin(t);(10^2)*(cos(t)+cos(2*t))-2*sin(2*t)]

[V,D]=eig(h*A); d=diag(D);

IT(1:2,1)=[1;1]; IT1(1:2,1)=[1;1]; IT2(1:2,1)=[1;1];

for i=1:N

IT(:,i+1)=expm(A*h)*IT(:,i)+h*V*diag(phi1(d,h,1))*inv(V)

[-cos(t(i))-sin(t(i));(10^2)(cos(t(i))+cos(2*t(i)))

-2*sin(2*t(i))]%exp.euler

IT1(:,i+1)=expm(A*h)*IT1(:,i)

+h*V*diag(phi1(d,h,1)-phi2(d,h,1))*inv(V)

[-cos(t(i))-sin(t(i));(10^2)(cos(t(i))+cos(2*t(i)))

-2*sin(2*t(i))]+h*V*diag(phi2(d,h,1))*inv(V)*[-cos(t(i+1))

-sin(t(i+1));(10^2)*(cos(t(i+1))+cos(2*t(i+1)))

-2*sin(2*t(i+1))];%2nd order

IT2(:,i+1)=expm(A*h)*IT2(:,i)+h*V*diag(phi1(d,h,1))*inv(V)

[-cos(t(i))-sin(t(i));(10^2)(cos(t(i))+cos(2*t(i)))

-2*sin(2*t(i))]+0.5*(h^2)*V*diag(phi1(d,h,1))*inv(V)*

[sin(t(i))-cos(t(i));(10^2)*(-sin(t(i))-2*sin(2*t(i)))

-4*cos(2*t(i))];%midpoint

end

for i=1:N+1

ITex(:,i)=[cos(t(i)) cos(2*t(i))];

end

ITex

80

for i=1:N+1

errorex(i)=max(abs(IT(1,1:i)-ITex(1,1:i)));

errorex1(i)=max(abs(IT1(1,1:i)-ITex(1,1:i)));

errorex2(i)=max(abs(IT2(1,1:i)-ITex(1,1:i)));

end

errore=errorex(N+1);

errore1=errorex1(N+1);

errore2=errorex2(N+1);

u11(e)=norm(errore,inf) %%u1 için max. error

u21(e)=norm(errore1,inf)

u31(e)=norm(errore2,inf)

for i=1:N+1

errorex(i)=max(abs(IT(2,1:i)-ITex(2,1:i)));

errorex1(i)=max(abs(IT1(2,1:i)-ITex(2,1:i)));

errorex2(i)=max(abs(IT2(2,1:i)-ITex(2,1:i)));

end

errore=errorex(N+1);

errore1=errorex1(N+1);

errore2=errorex2(N+1);

u12(e)=norm(errore,inf) %%u2 için max. error

u22(e)=norm(errore1,inf)

u32(e)=norm(errore2,inf)

IT(1,:); IT(2,:); dt(e)=h;

if e>1

order11(e)=abs((log(u11(e)/u11(e-1)))/(log(dt(e)/dt(e-1))));

order21(e)=abs((log(u21(e)/u21(e-1)))/(log(dt(e)/dt(e-1))));

order31(e)=abs((log(u31(e)/u31(e-1)))/(log(dt(e)/dt(e-1))));

order12(e)=abs((log(u12(e)/u12(e-1)))/(log(dt(e)/dt(e-1))));

order22(e)=abs((log(u22(e)/u22(e-1)))/(log(dt(e)/dt(e-1))));

order32(e)=abs((log(u32(e)/u32(e-1)))/(log(dt(e)/dt(e-1))));

else

order11(e)=0; order21(e)=0; order31(e)=0;

order12(e)=0; order22(e)=0; order32(e)=0;

end

end

norm(A)

ordereuler=[order11;order12]

81

ordersecond=[order21;order22]

ordermidpoint=[order31;order32]

erroreuler=[(u11);(u12)]

errorsecond=[(u21);(u22)]

errormidpoint=[(u31);(u32)]

figure

subplot(1,2,1) ;plot(log10(step),log10(u11),’-r’,

...’LineWidth’,2)

hold all

plot(log10(step),log10(u21),’-m’,...’LineWidth’,2)

hold all

plot(log10(step),log10(u31),’-y’,...’LineWidth’,2)

hold all

xlabel(’LOG(N.EVAL)’)

ylabel(’LOG(ERROR)’)

title(’Accuracy of u1 for three schemes’)

hold off

subplot(1,2,2) ;

plot(log10(step),log10(u12),’-r’,...’LineWidth’,2)

hold all

plot(log10(step),log10(u22),’-m’,...’LineWidth’,2)

hold all

plot(log10(step),log10(u32),’-y’,...’LineWidth’,2)

hold all

xlabel(’LOG(N.EVAL)’)

ylabel(’LOG(ERROR)’)

title(’Accuracy of u2 for three schemes’)

hold off

legend(’Exp.Euler’,’Exp.SecondOrder’,’Exp.Midpoint’)

figure

subplot(1,2,1) ;plot(t,ITex(1,:),’-.r*’,

...’LineWidth’,2)

hold all

plot(t,IT(1,:),’--go’,...’LineWidth’,2)

hold all

plot(t,IT1(1,:),’-bs’,...’LineWidth’,2)

hold all

82

plot(t,IT2(1,:),’-.m+’,...’LineWidth’,2)

xlabel(’t’)

ylabel(’Numerical Solutions of u1’)

title(’Comparison of solutions’)

hold off

subplot(1,2,2) ;plot(t,ITex(2,:),’-.r*’,

...’LineWidth’,2)

hold all

plot(t,IT(2,:),’--go’,...’LineWidth’,2)

hold all

plot(t,IT1(2,:),’-bs’,...’LineWidth’,2)

hold all

plot(t,IT2(2,:),’-.m+’,...’LineWidth’,2)

xlabel(’t’)

ylabel(’Numerical Solutions of u2’)

title(’Comparison of solutions’)

hold off

legend(’Exact’,’Exp.Euler’,’Exp.SecondOrder’,’Exp.Midpoint’)

toc

%%%

%%ONE DIMENSIONAL EXAMPLE

%y’=-50y+50cosx

clc clear all close all

x0=0; X=pi; N=10*pi;

h=(X-x0)/N;

x=x0:h:X;

X1=[0 pi/3 2*(pi/3) pi];

Y1=[1 0.5 -0.5 -1];

x1=0:h:pi;

X2=[0 pi/3 2*(pi/3) pi];

Y2=[0 -0.8660 -0.8660 0];

f1 = new_div_diff(X1, Y1, x1);

f2 = new_div_diff(X2, Y2, x1);

A=-50;

[V,D]=eig(h*A);

d=diag(D);

y(1)=0; y1(1)=0; y2(1)=0; y3(1)=0;

83

for i=1:N

y(i+1)=(1-h*(-50))\(y(i)+h*50*f1(i));%%imlicit euler

%y1(i+1)=y1(i)+h*((expm(-50*h)-1)/(-50*h))*

(50*cos(x(i))-50*y1(i));%%exp eu

y1(i+1)=y1(i)+h*phi1(A*h)*(50*f1(i)-50*y1(i));

%%expeuler with div. diff

%y2(i+1)=expm(A*h)*y2(i)+h*(phi1(d,h,1)-phi2(d,h,1))

*50*cos(x(i))

+h*(phi2(d,h,1)*50*cos(x(i+1)));%%2nd order

y2(i+1)=expm(A*h)*y2(i)+h*(phi1(d,h,1)-phi2(d,h,1))*50*f1(i)

+h*(phi2(d,h,1)*50*f1(i+1));%%2nd order with div.dif

%y3(i+1)=expm(A*h)*y3(i)+h*V*diag(phi1(A*h))*inv(V)*50*cos(x(i))

-0.5*(h^2)*(phi1(A*h)*50*sin(x(i+1)));%%midpoint

y3(i+1)=expm(A*h)*y3(i)+h*V*diag(phi1(A*h))*inv(V)*50*f1(i)

+0.5*(h^2)*(phi1(A*h)*50*f2(i));%%midpoint with div. difference

end

y; y1; y2; y3;

for i=1:N+1

yex(i)=-(2500/2501)*exp(-50*x(i))+(2500/2501)*cos(x(i))

+(50/2501)*sin(x(i));

end

yex;

for i=1:N+1

error1(i)=norm(abs(y1(i)-yex(i)),inf); %%%Linf - norm

error2(i)=norm(abs(y2(i)-yex(i)),inf); %%%Linf - norm

error3(i)=norm(abs(y3(i)-yex(i)),inf); %%%Linf - norm

error4(i)=norm(abs(y(i)-yex(i)),inf); %%%Linf - norm

end

u1=max(error1); u2=max(error2);

u3=max(error3); u4=max(error4);

plot(x,yex,’-.r*’,...

’LineWidth’,2)%%% exact and numerical solution

hold all %%%% y1:exponential euler

plot(x,y1,’--go’,... %y2:exponential second order m.

’LineWidth’,2)

hold all

plot(x,y2,’-bs’,...

84

’LineWidth’,2)

hold all

plot(x,y3,’-.m+’,...

’LineWidth’,2) %%y3:exponential midpoint

hold all

plot(x,y,’-y*’) %%y:implicit euler

xlabel(’ x ’)

ylabel(’ Solutions ’)

title(’Comparison of numerical solutions with exact solution’)

hold off

legend(’Exact Solution’,’Exp.Euler’,

’Exp.Ostermann’,’Exp.Midpoint’,

’Implicit.Euler’)

%%Explicit Euler

eu(1)=0;

for i=1:N

eu(i+1)=eu(i)+h*(-50*eu(i)+50*f1(i));

end

eu;

%%Runge Kutta

rk(1)=0;

for j=1:N

a=h*(-50*rk(j)+50*f1(j));

b=h*(-50*(rk(j)+a/2)+50*(f1(j)+h/2));

c=h*(-50*(rk(j)+b/2)+50*(f1(j)+h/2));

d=h*(-50*(rk(j)+c)+50*(f1(j)+h)) ;

s=(a+2*(b+c)+d)/6;

rk(j+1)=rk(j)+s;

end

rk;

for i=1:N+1

erroreu(i)=norm(abs(eu(i)-yex(i)),inf);

errorrk(i)=norm(abs(rk(i)-yex(i)),inf);%Linf- norm

end

ereu=max(erroreu)

errk=max(errorrk)

figure

85

y=cos(x1);Divided Difference and cos

plot(x1,f1,’y’)

hold all

plot(x1,y,’r’)

legend(’Divided difference of cos(x)’,’cos(x)’)

%%%

%%Divided Difference Code

function y = new_div_diff(X, Y, x)

n = length(X);

if n ~= length(Y)

error(’X and Y must be the same length.’);

end

y = Y(1);

p = 1;

for i = 1:(n-1)

for j = 1:(n-i)

Y(j) = (Y(j+1) - Y(j))/(X(j+i) - X(j));

end

for k = i

p = p.*(x-X(i));

end

y = y + p.*Y(1)

end

%%%

%%TWO DIMENSIONAL EXAMPLE

for e=1:3

A=[-1 0; 2 -100];

N=5*2^(e-1) h=0.3/N; step(e)=N;

t=0:h:0.3;

X1=[0 0.1 0.2 0.3];

Y1=[1 1.1052 1.2214 1.3499];

x1=0:h:0.3;

f1 = new_div_diff(X1, Y1, x1);

[V,D]=eig(h*A);

d=diag(D);

IT(1:2,1)=[1;0];

IT1(1:2,1)=[1;0];

86

IT2(1:2,1)=[1;0];

for i=1:N

% IT(:,i+1)=expm(A*h)*IT(:,i)+h*V*diag(phi1(d,h,1))

% *inv(V)*([f1(i);0])%%exp.euler with div. dif.

% IT1(:,i+1)=expm(A*h)*IT1(:,i)+h*V*diag(phi1(d,h,1)-phi2(d,h,1))

% *inv(V)*[f1(i);0]+h*V*diag(phi2(d,h,1))*inv(V)*[f1(i+1);0];

% %%second order with div. dif.

% IT2(:,i+1)=expm(A*h)*IT2(:,i)+h*V*diag(phi1(d,h,1))*inv(V)*

% [f1(i);0]+0.5*(h^2)*V*diag(phi1(d,h,1))*inv(V)*[f1(i);0];

% %%midpoint with div. dif.

IT(:,i+1)=expm(A*h)*IT(:,i)

+h*V*diag(phi1(d,h,1))*inv(V)*([exp(t(i));0]);%%euler

IT1(:,i+1)=expm(A*h)*IT1(:,i)+h*V*diag(phi1(d,h,1)-phi2(d,h,1))

inv(V)[exp(t(i));0]

+h*V*diag(phi2(d,h,1))*inv(V)*[exp(t(i+1));0];%%2nd order

IT2(:,i+1)=expm(A*h)*IT2(:,i)

+h*V*diag(phi1(d,h,1))*inv(V)*[exp(t(i));0]

+0.5*(h^2)*V*diag(phi1(d,h,1))*inv(V)*[exp(t(i));0];

%%midpoint

end

for i=1:N+1

ITex(:,i)=[0.5*exp(-t(i))+0.5*exp(t(i))(-200/(99*101))

*exp(-100*t(i))+(1/99)*exp(-t(i))+(1/101)*exp(t(i))];

end

ITex

for i=1:N+1

errorex(i)=max(abs(IT(1,1:i)-ITex(1,1:i)));

errorex1(i)=max(abs(IT1(1,1:i)-ITex(1,1:i)));

errorex2(i)=max(abs(IT2(1,1:i)-ITex(1,1:i)));

end

errore=errorex(N+1);

errore1=errorex1(N+1);

errore2=errorex2(N+1);

u11(e)=norm(errore,inf)%%for u1 max. error

u21(e)=norm(errore1,inf)

u31(e)=norm(errore2,inf)

for i=1:N+1

87

errorex(i)=max(abs(IT(2,1:i)-ITex(2,1:i)));

errorex1(i)=max(abs(IT1(2,1:i)-ITex(2,1:i)));

errorex2(i)=max(abs(IT2(2,1:i)-ITex(2,1:i)));

end

errore=errorex(N+1); errore1=errorex1(N+1);

errore2=errorex2(N+1);

u12(e)=norm(errore,inf) %%for u2 max. error

u22(e)=norm(errore1,inf) u32(e)=norm(errore2,inf)

IT(1,:); IT(2,:); dt(e)=h;

if e>1

order11(e)=abs((log(u11(e)/u11(e-1)))/(log(dt(e)/dt(e-1))));

order21(e)=abs((log(u21(e)/u21(e-1)))/(log(dt(e)/dt(e-1))));

order31(e)=abs((log(u31(e)/u31(e-1)))/(log(dt(e)/dt(e-1))));

order12(e)=abs((log(u12(e)/u12(e-1)))/(log(dt(e)/dt(e-1))));

order22(e)=abs((log(u22(e)/u22(e-1)))/(log(dt(e)/dt(e-1))));

order32(e)=abs((log(u32(e)/u32(e-1)))/(log(dt(e)/dt(e-1))));

else

order11(e)=0; order21(e)=0; order31(e)=0;

order12(e)=0; order22(e)=0; order32(e)=0;

end

end

norm(A)

ordereuler=[order11;order12]

ordersecond=[order21;order22]

ordermidpoint=[order31;order32]

erroreuler=[(u11);(u12)]

errorsecond=[(u21);(u22)]

errormidpoint=[(u31);(u32)]

figure

subplot(1,2,1) ;plot(log10(step),log10(u11),’-r’,...

’LineWidth’,2)

hold all

plot(log10(step),log10(u21),’-m’,...

’LineWidth’,2)

hold all

plot(log10(step),log10(u31),’-y’,...

’LineWidth’,2)

88

hold all

xlabel(’LOG(N.EVAL)’) ylabel(’LOG(ERROR)’)

title(’Accuracy of y1 for three schemes’)

grid on hold off

subplot(1,2,2) ;

plot(log10(step),log10(u12),’-r’,...’LineWidth’,2)

hold all

plot(log10(step),log10(u22),’-m’,...’LineWidth’,2)

hold all

plot(log10(step),log10(u32),’-y’,...’LineWidth’,2)

hold all

xlabel(’LOG(N.EVAL)’) ylabel(’LOG(ERROR)’)

title(’Accuracy of y2 for three schemes’)

grid on hold off

legend(’Exp.Euler’,’Exp.SecondOrder’,’Exp.Midpoint’)

figure

subplot(1,2,1) ;plot(t,ITex(1,:),’-.r*’,...

’LineWidth’,2) %%exact and numerical solutions

hold all

plot(t,IT(1,:),’--go’,...’LineWidth’,2)

hold all

plot(t,IT1(1,:),’-bs’,...’LineWidth’,2)

hold all

plot(t,IT2(1,:),’-.m+’,...’LineWidth’,2)

xlabel(’t’)

ylabel(’Numerical Solutions of y1’)

title(’Comparison of solutions’)

hold off

subplot(1,2,2) ;plot(t,ITex(2,:),’-.r*’,...

’LineWidth’,2) %%exact and numerical solutions

hold all

plot(t,IT(2,:),’--go’,...’LineWidth’,2)

hold all

plot(t,IT1(2,:),’-bs’,...’LineWidth’,2)

hold all

plot(t,IT2(2,:),’-.m+’,...’LineWidth’,2)

xlabel(’t’)

89

ylabel(’Numerical Solutions of y2’)

title(’Comparison of solutions’)

hold off

legend(’Exact’,’Exp.Euler’,’Exp.SecondOrder’,’Exp.Midpoint’)

%%%

REACTION-DIFFUSION EQUATIONS

%%LINEAR PROBLEM

for e=1:3

hx=0.01; x1=0; x2=1;

N=(x2-x1)/hx;

x=x1:hx:x2;

t1=0; t2=1; Nt=5*(2^(e-1)); ht=(t2-t1)/Nt;

step(e)=Nt;

t=t1:ht:t2;

X1=[0 0.25 0.5 0.75 1];

Y1=[1 1.2840 1.6487 2.117 2.7183];

divd = new_div_diff(X1, Y1,t)

g(1,1:N+1)=x.*(1-x); %%initial value

u(1:N-1,1)=(g(1,2:N))’;

u2f(1:N-1,1)=(g(1,2:N))’;

A=fin(N) %%u_xx in finite difference açılımı

AA=((1/hx)^2)*A;

m(1,1:N+1)=(2+x.*(1-x))

f(1:N-1,1)=(m(1,2:N))’

[V,D]=eig(ht*AA);

d=diag(D);

for i=1:Nt

u(:,i+1)=expm(AA*ht)*u(:,i)+ht*V*diag(phi1(d,ht,1))*inv(V)

*f(1:N-1,1)*divd(i);%%exp.euler divided diff

u11(:,i+1)=expm(AA*ht)*u11(:,i)+ht*V*diag(phi1(d,ht,1)

-phi2(d,ht,1))*inv(V)*f(1:N-1,1)*divd(i)

+ht*V*diag(phi2(d,ht,1))*inv(V)*f(1:N-1,1)*divd(i+1);%%2nd order

u22(:,i+1)=expm(AA*ht)*u22(:,i)+ht*V*diag(phi1(d,ht,1))*inv(V)

*f(1:N-1,1)*divd(i)+0.5*(ht^2)*V*diag(phi1(d,ht,1))

*inv(V)*f(1:N-1,1)*divd(i); %%midpoint

end

u; u11; u22;

90

for i=1:N+1

for j=1:Nt+1

y(i,j)=x(i)*(1-x(i))*exp(t(j));%%exact

end

end

y;

s=y(:,Nt+1)’; v1(:,1:Nt+1)=0; v2(:,1:Nt+1)=0;

k1=vertcat(v1,u,v2) as1=k1(:,Nt+1)’

k2=vertcat(v1,u11,v2) as2=k2(:,Nt+1)’

k3=vertcat(v1,u22,v2) as3=k3(:,Nt+1)’

errorinf1=norm(s-as1,inf); errorinf2=norm(s-as2,inf);’

errorinf3=norm(s-as3,inf); ’

u1(e)=max(errorinf1); u2(e)=max(errorinf2);’

u3(e)=max(errorinf3); dt(e)=ht;’

if e>1’

order1(e)=abs((log(u1(e)/u1(e-1)))/(log(dt(e)/dt(e-1))));’

order2(e)=abs((log(u2(e)/u2(e-1)))/(log(dt(e)/dt(e-1))));’

order3(e)=abs((log(u3(e)/u3(e-1)))/(log(dt(e)/dt(e-1))));’

else’

order1(e)=0; order2(e)=0; order3(e)=0;’

end’

ht’

end’

erroreuler=u1 errorsecond=u2 errormidpoint=u3’

ordereuler=order1 ordersecond=order2 ordermidpoint=order3’

figure’

plot(log10(step),log10(u1),’-.m*’,...’

’LineWidth’,2)’

hold all’

plot(log10(step),log10(u2),’-go’,...’

’LineWidth’,2)’

hold all’

plot(log10(step),log10(u3),’-bs’,...’

’LineWidth’,2)’

hold all’

grid on’

xlabel(’LOG(N.EVAL)’)’

91

ylabel(’LOG(ERROR)’)’

title(’Accuracy of u for three schemes’)’

hold off’

legend(’Exp.Euler’,’Exp.SecondOrder’,’Exp.Midpoint’)’

figure’

surf(x, t, k1’, ... ’FaceColor’,’interp’,...

’EdgeColor’,’none’,... ’FaceLighting’,’phong’)

axis tight

view(-50,30) camlight left alpha(0.6);

xlabel(’space’); ylabel(’time’); zlabel(’u(t,x)’);

title(’Exponential Method Solution’)

figure ; mesh(x,t,y’)’ xlabel(’x’);

ylabel(’time’); zlabel(’u(t,x)’);’

title(’ Solution of linear parabolic equation’) ’

s=y(:,Nt+1)’;’

error1=norm(s-as1,1);’

error2=norm(s-as1,2);’

errorinf=norm(s-as1,inf);’

%%%

%%u_xx in finite difference açılımı

function A=fin(N)

%A=zeros(N-1,N-1);

for i=1:N-1

for j=1:N-1

if i==j

A(i,j)=-2;

end

if (i-j)==1

A(i,j)=1;

end

if (i-j)==-1

A(i,j)=1;

end

end

end

A;

%%%

92

%%SEMILINEAR PROBLEMS-FISHER EQUATION

clear all close all clc tic

for e=1:5

N=40; hx=20/N; x=-10:hx:10; Nt=20*e;

step(e)=Nt; ht=1/Nt; t=0:ht:1;

A=((1/hx)^2)*fin(N); a=0.1; b=1;

f(1,:)=(sech(x)).^2;%%initial condition

u(1:N-1,1)=(f(1,2:N))’; u2(1:N-1,1)=u(1:N-1,1);

for i=1:Nt

J=a*A+b*eye(N-1)-2*b*diag(u(1:N-1,i));

[V,D]=eig(ht*J); d=diag(D);

gb(:,i)=a*A*u(1:N-1,i)+b*(u(:,i)-(u(:,i)).^2)-(a*A*u(1:N-1,i)

+b*eye(N-1)*u(1:N-1,i)-2*b*u(1:N-1,i).^2)

u(1:N-1,i+1)=expm(J*ht)*u(:,i)

+ht*V*diag(phi1(d,ht,1))*inv(V)*gb(:,i);%%exp.euler

end

v1(:,1:Nt+1)=0; v2(:,1:Nt+1)=0; k3=vertcat(v1,u,v2);

figure ;

mesh(t,x,k3);

xlabel(’t’) ylabel(’x’)

zlabel(’Numerical Solution’)

title(’Rosenbrock Euler Method Solution of Fisher Equation’)

for i=1:Nt/2

u2(1:N-1,i+1)=u(1:N-1,2*i+1);

end

N1=Nt/2; v3(:,1:Nt/2+1)=0; v4(:,1:Nt/2+1)=0;

k1=vertcat(v3,u2,v4);

t=0:2*ht:1; f1(1,1:N+1)=(sech(x)).^2;

u1(:,1)=(f1(1,2:N))’;

A=((1/(hx))^2)*fin(N);

for i=1:N1

J=a*A+b*eye(N-1)-2*b*diag(u1(1:N-1,i));

[V,D]=eig(2*ht*J);

d=diag(D);

g1(:,i)=a*A*u1(1:N-1,i)+b*(u1(:,i)-(u1(:,i)).^2)-

(a*A*u1(1:N-1,i)+b*eye(N-1)*u1(1:N-1,i)-2*b*u1(1:N-1,i).^2)

u1(1:N-1,i+1)=expm(J*2*ht)*u1(:,i)+

93

2*ht*V*diag(phi1(d,2*ht,1))*inv(V)*g1(:,i);%%exp.euler

end

k2=vertcat(v3,u1,v4);

ref=(2*k1-k2);

er1=norm(abs(ref(:,N1+1)-k1(:,N1+1)),1)

er2=norm(abs(ref(:,N1+1)-k1(:,N1+1)),2)

erinf=norm(abs(ref(:,N1+1)-k1(:,N1+1)),inf)

u11(e)=max(er1); u22(e)=max(er2); u33(e)=max(erinf);

dt(e)=ht; if e>1

order1(e)=abs((log(u11(e)/u11(e-1)))/(log(dt(e)/dt(e-1))));

order2(e)=abs((log(u22(e)/u22(e-1)))/(log(dt(e)/dt(e-1))));

order3(e)=abs((log(u33(e)/u33(e-1)))/(log(dt(e)/dt(e-1))));

else

order1(e)=0; order2(e)=0; order3(e)=0;

end ht

end

figure

plot(log10(step),log10(u11),’-.m*’,...’LineWidth’,2)

hold all

plot(log10(step),log10(u22),’-.g*’,...’LineWidth’,2)

hold all

plot(log10(step),log10(u33),’-.r*’,...’LineWidth’,2)

grid on

xlabel(’LOG(N.EVAL)’) ylabel(’LOG(ERROR)’)

legend(’L-1 norm’,’L-2 norm’,’L-inf norm’)

title(’Accuracy of u for exponential Rosenbrock scheme ’)

figure

plot(x,k3(:,11),’-.m’,...’LineWidth’,2)

hold all

plot(x,k3(:,51),’-.g’,...’LineWidth’,2)

hold all

plot(x,k3(:,end),’-.r’,...’LineWidth’,2)

xlabel(’x-axis ’)

ylabel(’Computed Solutions’)

title(’Computed solutions of Fisher equation

for different values of time’)

hold off

94

legend(’t=0.1’,’t=0.5’,’t=1’)

erroreuler1=u11 erroreuler2=u22 erroreuler3=u33

ordereuler1=order1 ordereuler2=order2 ordereuler3=order3

toc

%%%

%%ALLEN CAHN EQUATION

clear all close all clc

for e=1:3

N=40; hx=(2)/N; x=-1:hx:1; Nt=100*2^(e-1);

step(e)=Nt; ht=10/Nt; t=0:ht:10;

A=((1/hx)^2)*fin(N); a=0.001; b=1;

f(1,1:N+1)=0.53*x+0.47*sin(-1.5*pi*x);%%I.C.

u(1:N-1,1)=(f(1,2:N))’;

for i=1:Nt

J=a*A+eye(N-1)-3*diag(u(1:N-1,i).^2)

[V,D]=eig(ht*J); d=diag(D);

g(:,i)=a*A*u(:,i)+(u(:,i)-(u(:,i)).^3)-(J*u(:,i));

u(1:N-1,i+1)=expm(J*ht)*u(:,i)

+ht*V*diag(phi1(d,ht,1))*inv(V)*g(:,i);%%exp.euler

end

v1(:,1:Nt+1)=-1; v2(:,1:Nt+1)=1; k3=vertcat(v1,u,v2)

figure

surf(x, t, k3’, ...’FaceColor’,’interp’,...

’EdgeColor’,’none’,...’FaceLighting’,’phong’)

axis tight view(-50,30) camlight left alpha(0.6);

xlabel(’x’); ylabel(’time’); zlabel(’u(x,t)’);

title(’Rosenbrock Euler Method Solution of Allen Cahn Equation’)

u2(1:N-1,1)=u(1:N-1,1);

for i=1:Nt/2

u2(1:N-1,i+1)=u(1:N-1,2*i+1);

end

v3(:,1:Nt/2+1)=-1; v4(:,1:Nt/2+1)=1;

k1=vertcat(v3,u2,v4) N1=Nt/2; t=0:2*ht:1;

f1(1,1:N+1)=0.53*x+0.47*sin(-1.5*pi*x);

u1(:,1)=(f1(1,2:N))’; A=((1/(hx))^2)*fin(N)

for i=1:N1

J=a*A+eye(N-1)-3*diag(u1(1:N-1,i).^2)

95

[V,D]=eig(2*ht*J); d=diag(D);

g1(:,i)=a*A*u1(:,i)+u1(:,i)-(u1(:,i)).^3-J*u1(:,i);

u1(1:N-1,i+1)=expm(J*2*ht)*u1(:,i)

+2*ht*V*diag(phi1(d,2*ht,1))*inv(V)*g1(:,i);%%exp.euler

end

v3(:,1:Nt/2+1)=-1; v4(:,1:Nt/2+1)=1;

k2=vertcat(v3,u1,v4) ref=(2*k1-k2)

er1=norm(abs(ref(:,N1+1)-k1(:,N1+1)),1)

er2=norm(abs(ref(:,N1+1)-k1(:,N1+1)),2)

erinf=norm(abs(ref(:,N1+1)-k1(:,N1+1)),inf)

u11(e)=max(er1); u22(e)=max(er2); u33(e)=max(erinf);

dt(e)=ht;

if e>1

order1(e)=abs((log(u11(e)/u11(e-1)))/(log(dt(e)/dt(e-1))));

order2(e)=abs((log(u22(e)/u22(e-1)))/(log(dt(e)/dt(e-1))));

order3(e)=abs((log(u33(e)/u33(e-1)))/(log(dt(e)/dt(e-1))));

else

order1(e)=0; order2(e)=0; order3(e)=0;

end

ht

end

figure

plot(log10(step),log10(u11),’-.m*’,...’LineWidth’,2)

hold all

plot(log10(step),log10(u22),’-.g*’,...’LineWidth’,2)

hold all

plot(log10(step),log10(u33),’-.r*’,...’LineWidth’,2)

grid on

xlabel(’LOG(N.EVAL)’) ylabel(’LOG(ERROR)’)

legend(’L-1 norm’,’L-2 norm’,’L-inf norm’)

title(’Accuracy of u for exponential Rosenbrock scheme ’)

figure

plot(x,k3(:,11),’-.m’,...’LineWidth’,2)

hold all

plot(x,k3(:,21),’-.g’,...’LineWidth’,2)

hold all

plot(x,k3(:,61),’-.b’,...’LineWidth’,2)

96

hold all

plot(x,k3(:,end),’-.r’,...’LineWidth’,2)

xlabel(’x-axis ’)

ylabel(’Computed Solutions’)

title(’Computed solutions of Allen equation

for different values of time’)

hold off

legend(’t=1’,’t=2’,’t=6’,’t=10’)

erroreuler1=u11 erroreuler2=u22 erroreuler3=u33

ordereuler1=order1 ordereuler2=order2 ordereuler3=order3

97

