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Supervisor, Department of Physics
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ABSTRACT

MATHEMATICAL MODELLING OF LIGHT PROPAGATION IN
PHOTONIC CRYSTAL WAVEGUIDES

Photonic crystals are artificially engineered materials where the dielectric constant

varies periodically. A photonic band gap can be created by scattering at the dielectric inter-

faces, which forbids propagation of light in a certain frequency range of light. This property

enables us to control light, which is normally impossible with conventional optics. Moreover,

by placing a linear defect into the photonic crystal, one canconstruct a waveguide, which

keeps light inside the waveguide in the desired direction. Thus, by using photonic crystal

waveguides one can control light propagation in integratedcircuit devices.

The goal of this work is to provide a comprehensive understanding of how to bend

light using photonic crystal waveguides. The purpose is to create a 90◦ bend for line defect

photonic crystal assisted waveguides and present fully three-dimensional calculations with

optimized geometrical parameters that minimize the bending loss.

The scheme uses one-dimensional photonic crystal slab waveguides for straight sec-

tions, and a corner element that employs a square photonic crystal with a band gap at the

operating frequency..

The two different structures, with either silicon-silica or with silicon-air are used in the

guiding photonic crystal layer. Furthermore, the guiding layer is sandwiched between either

air on both top and bottom, or between air on top and silica substrate at the bottom, to serve

as the ”cladding” medium. Calculations are presented for the transmission values of TE-like

modes where the electric field is strongly transverse to the direction of propagation, with and

without the photonic crystal corner element for comparison. We find that the bending loss can

be reduced to under 2%.
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ÖZET

IŞIĞIN FOTOṄIK KRİSTAL DALGA KILAVUZUNDA YAYILIMININ
MATEMAT İKSEL MODELLEMEṠI

Fotonik kristaller, dielektrik sabitinin periyodik olarak değiştiği, yapay olarak düzen-

lenmiş malzemelerdir. Fotonik bant aralığı ise fotonik kristale gönderilen ışığın, belli bir bant

aralığındaki frekanslarda yayılımının yasaklanması anlamına gelir. Bu özellik yardımıyla, ge-

leneksel optik ile normalde mümkün olmayan ışığın kontrol altına alınmasını sağlayabiliriz.

Ayrıca, fotonik kristalin iine doğrusal bir kusur koyarakdalga kılavuzu elde edilebilinir,

böylece bir tel nasıl iinde akımı saklıyor ve onu taşıyorsa, fotonik kristal dalga kılavuzuda

dalga kılavuzunun iinde ışığı saklar ve onu istenilen yöne taşır. Bu yol ile, fotonik kristal

dalga kılavuzları sayesinde ışık iletimini entegre devrecihazlarda kontrol edebiliriz.

Bu çalışmanın amacı, fotonik kristal dalga kılavuzlarında ışığın bükülmesi konusunu

kapsamlı bir şekilde incelemektr. Amaç fotonik kristal destekli çizgisel kusurlu dalga klavuzu-

nu 90◦ açı ile bükmek ve üç boyutlu hesaplamalarla bükmeden kaynaklı kayıpları parame-

treleri optimize ederek minimuma indirmektir.

Önerilen yöntem ile ışık düz ilerlerken bir boyutta periyodik dalga kılavuzu kullanılır,

ışık döneceği zaman iki boyutta periyodik kare örgül¨ulü fotonik kristal içine girer, dönüşünü

tamamlar ve tekrar düz ilerlemek üzere bir boyutta periyodik dalga kılavuzunun içine girer.

Çalışmamızda kılavuz katmanı olarak iki farklı yapı üzerinde çalışılmıştır. Bu yapılar-

dan biri silika-silikon kullanılarak diğeri ise hava-silikon kullanılarak elde edilmiştir. Ayrıca,

kılavuz katmanını iki farklı şekilde çalışılmıştır. Birincisinde, kılavuz katmanını üstten ve

alttan hava arasına alınmıştır, ikincisinde ise kılavuz katmanını üstten hava ve alttan silika

arasına alınmıştır.

Hesaplamalar TE-benzeri modları için verilmiştir, TE-benzeri modlar tanım olarak

elektrik alanın ışığın yayılım yönününde bileşeninin değerinin0’a yakın olduğu durumdur.

Işığın virajı dönmeden önce ve döndükten sonra enerji değerleri oranlanmış, iletim bu orana

göre hesaplanmıştır.̇Iletim değeri grafiklerinde fotonik kristal dalga kılavuzu kullanılarak

tasarlanan yapılarla sadece dalga kılavuzu kullanılarak tasarlanmış yapılara ait sonuçlar karşı-

laştırmalı olarak verilmiştir. Dönmeden kaynaklanan kayıpların 2%’nin de altına indirilebilin-

iceği gösterilmiştir.
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CHAPTER 1

INTRODUCTION

We are going day by day towards miniaturization and high speed at today’s informa-

tion and communications technology. This brings to mind thequestion, what could be faster

than electrons as the information carrier. The possible answer to this question is light, since

physically the fastest thing that can be manipulated by current technology is light. Replace-

ment of electrons by light has several benefits. Light can travel faster than electrons in the

medium, it can carry larger information than electrons and since photons are not strongly

interacting particles as electrons, this helps reduce energy losses.

The next question is how to use light as the information carrier instead of electrons.

Photonic crystals are ideally suited for this task. Photonic crystals are very tempting for use

in a new generation of integrated circuit design because of their unique ability to confine light

within certain regions of space.

The history of photonic crystals starts with the early idea for electromagnetic wave

propagation in a periodic medium, which was studied by Lord Rayleigh in 1887, that corre-

sponds to 1D photonic crystals.

After 100 years, in 1987, two independent works appeared that are considered as the

starting point of the research field. One was the paper was by Yablonovitch, titled ”Inhibition

of spontaneous emission of electromagnetic radiation using a three dimensionally periodic

structure” [Yablonovitch (1987)]. Yablonovitch’s idea was to understand controlling the spon-

taneous emission by modifying the photonic density of states of the medium using periodic

dielectrics.

The second paper by Sajeev John was titled ”Strong localization of photons in cer-

tain disordered dielectric super-lattices” [John (1987)]. John’s aim was to understand how a

random refractive-index variation affects photon localization.

In 1994, Meade et al. first time studied a 2D periodic dielectric waveguide [Meade

et al. (1994)]. They showed that a linear defect mode in a photonic band gap can act as

a waveguide for electromagnetic waves. They suggested to use this modes in bends, in y

couplers, waveguide tappers and other devices, where the radiation loss causes problems. In

1996, Mekis et al. (1996) theoretically calculated sharp bends in photonic crystal waveguides.

By numerical simulations, they got complete transmission at certain frequencies, and very

high transmission(> 95%) over wide frequency ranges. They observed high transmission

even for 90 degrees bends with zero radius of curvature. The maximum transmission was98%
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as opposed to30% for analogous conventional dielectric waveguides. This was experimentally

demonstrated by Lin et al. (1998) in 1998 and the transmission efficiency is found larger than

80%.

In 1999, Johnson et al. (1999) searched the guided modes in photonic crystal slabs.

They analysed the properties of 2D periodic dielectric structures but in 3D. These structures

have a band gap for propagation in a plane and that use index guiding to confine light in the

third dimension.

In 2000, Johnson et al. (2000), also published a paper about linear waveguides in

photonic crystal slabs. Also in the same period, Lončar et al. (2000) designed and fabricated

photonic crystal planar circuits in silicon on silicon dioxide. Shinya et al. (2002) studied on

SOI-based photonic crystal line-defect waveguides. Sincethat time, there have been many

publications about the different kinds of photonic crystalwaveguides, Chutinan and Noda

(2000), Lin et al. (2000), Tokushima et al. (2000), Noda et al. (2000), Kafesaki et al. (2002),

Imada et al. (2006), Ishizaki and Noda (2009), Kawashima et al. (2010), Ishizaki et al. (2013).

1.1. Photonic Crystals

Photonic crystals are periodic artificial structures whichcontrol the motion of photons.

The periodicity is obtained by using materials with different dielectric constants.

Figure 1.1. Examples of photonic crystals; periodically in1D in a), periodically in 2D
in b) and periodically in 3D in c).

Fig. (1.1) is an illustration of photonic crystals with various dimensionalities: a) rep-

resents 1D periodic photonic crystal since it is periodic only in x direction. b) represents 2D
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periodic photonic crystal since it is periodic only in x and ydirections. c) represents 3D pe-

riodic photonic crystal since it is periodic in x, y and z directions. The different colors in the

figure represent materials with different dielectric constants.

Similar to wires that keep electrical currents, we can construct a photonic crystal to

keep light in the desired direction. This ability to controlthe direction of light is gained by

photonic band gaps [Joannopoulos et al. (1997)].

Figure 1.2. If the incoming wavelength of light is in the order of a, then light at the
specific frequencies is evanescent.

To get a better understanding let’s work through an example.In this example silicon

circles, which form a square lattice, are placed in the air. So it is an example for 2 dimen-

sionally periodic photonic crystal. light is sent through the circles as in Fig. (1.2). Herea is

the lattice constant. Ifa is of the order of the wavelength of incoming light, photoniccrystal

won’t let the light in the particular wavelength which leadsa photonic band gap.

In Fig. (1.3), the band diagram of the example structure is given. Here the yellow

region is the photonic band gap. So if the frequency of incoming wave is in the yellow region

then it will not be able to propagate in the medium.
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Figure 1.3. Photonic band gap of silicon circles are placed in the air.

As a result the photonic band gap forbids propagation of light in a certain frequency

range of light. This property ensure us to control light to a degree which is normally impossi-

ble with conventional means.

1.2. Photonic Crystal Waveguides

Where can we use the photonic band gaps? One of the applications of photonic band

gaps is photonic crystal waveguides: Meade et al. (1994), Benisty (1996), Mekis et al. (1998).

We can create a waveguide placing a line defect into the photonic crystal. This line defect will

behave like a waveguide.

To show the effect of a line defect in the photonic crystal, let’s continue with the

previous example. If we introduce a line defect into the photonic crystal in Fig. (1.2) the band

diagram in Fig. (1.3) will slightly change as in Fig. (1.4).
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Figure 1.4. When we locate a defect into the structure we see an extra mode in the band gap.

In Fig. (1.4) the mode that appears inside the photonic band gap is the line defect

mode. If one constructs a source with a frequency inside the photonic band gap, only this line

defect mode will propagate in the material.

The photonic crystal waveguides can also be used to bend light [Mekis et al. (1996)].

In the single-core waveguide, guidance relies only on totalinternal reflection so the

light propagates without loss, but when the single waveguide turns a sharp bend light is ra-

diated and lost at the bend. Hence there is a serious leakage problem to bend light using a

conventional single core waveguide.

In the photonic crystal assisted waveguide bend, since light can not escape because of

the photonic band gap at the corner, light will propagate without any loss in the waveguide.
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Figure 1.5. FDTD simulations of the single-core waveguide slab bend and the photonic
crystal assisted waveguide bend. The single-core waveguide slab is excited
with a mode source that matches the guided mode at the guided frequency
in a). The photonic crystal assisted waveguide bend is exited with a mode
source which is in the band gap inb).

In Fig. (1.5) we see snapshots from FDTD simulations of single-core waveguide bend

in a) and photonic crystal assisted waveguide bend inb). In a) there is a serious leakage at

the corner, but inb) light turns the bend without radiation.

So far we restricted our attention to purely two-dimensional systems. For the realistic

cases, one can want to examine the effects of vertical confinement in the photonic crystal

waveguides or fabricate these structures with a finite thickness. This time we call the photonic

crystal waveguides in finite thickness as photonic crystal waveguide slabs.

1.3. Photonic Crystal Waveguide Slabs

Photonic-crystal waveguide slabs are 1 dimensionally or 2 dimensionally periodic di-

electric structures with a finite thickness in vertical direction. Photonic crystal waveguide

slabs have three-dimensional simple geometry, which consist of a thin guiding layer sand-
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wiched between two bounded media Johnson et al. (1999), Johnson et al. (2000), Baba et al.

(2002), Kuchinsky et al. (2000) Loncar et al. (2000). They have a band gap in the propagation

plane and they use index-confinement in the third dimension.Their fabrication is easier than

three-dimensionally periodic photonic crystals. This is why photonic crystal waveguide slabs

have been proposed as an alternative to 3 dimensionally periodic photonic crystals Kawashima

et al. (2010), Ishizaki et al. (2013).

Photonic crystal waveguide slabs must provide some conditions to obtain perfect trans-

mission through bends in most of the integrated optical circuit designs Johnson et al. (2000):

I. The waveguide must be periodic in the propagation direction to propagate without re-

flections.

II. The waveguide must be single mode in the frequency range.

III. The guided mode must be in the band gap of a photonic crystal to prevent radiation

losses.

Figure 1.6. The proposed waveguide slab, which is a combination of 1D-LDWGS and
2D-LDWGS.

In this thesis, our aim is to design some novel corner elements using line defect pho-

tonic crystal slab waveguides for the integrated optical circuits. Basically, the studied corner

elements are a combination of 1D (1D-LDWG slab) and 2D periodic (2D-LDWG slab) pho-

tonic crystal waveguide slabs.
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The reason for this combination can be explained as follows;1D-LDWG is a good

option if light would travel straight. Therefore light willbe guided with much less loss in

such a waveguide due to lesser manufacturing imperfectionsas a result of its much simpler

geometry Taniyama et al. (2005), Sözüer and Sevim (2005).But also 1D-LDWG slab is not

useful to bend the light through a sharp turn because of it is geometry. Besides 2D-LDWG

is not a good choice for light to travel straight in it for longdistances, it is still the most

convenient geometry to bend the light through a sharp turn.

1.4. Overview of the Thesis

In chapter2 we start from fundamental concepts. Firstly we give Maxwell’s equations

in inhomogeneous media which we then write as an Hermitian eigenvalue problem with ap-

propriate boundary conditions. Secondly we introduce the periodic dielectric function, Bloch-

Floquet theorem and Brillouin zones.

In chapter3 we describe the Finite Difference Time Domain Method (FDTD)for

the 2D Yee cell. First we discretize Maxwell’s Equations and then we give the boundary

conditions and talk about PML.

In chapter4 we discuss dielectric waveguide slabs for symmetric and asymmetric

cases. We will give the formalism for TE modes and TM modes. Also we give the mode

profiles for waveguide slabs.

In chapter5 we give mathematical analysis of photonic crystal waveguide slabs (PCW-

Slab). First we define PCW-Slab as an eigenvalue problem. Then we will define a similarity

transformation. After we introduce PCW-Slab structure for1D-LDWG Slab and 2D-LDWG

Slab.

In chapter6 we talk about L-shaped PCW-Slab starting form waveguide structures

in 2D and then give waveguide structures in 3D. After we will talk on mode polarization

and mode coupling. Then silica silicon waveguide slab and air silicon waveguide slab for

symmetric and asymmetric cases are given.
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CHAPTER 2

FUNDAMENTAL CONCEPTS

2.1. Maxwell’s Equations in Inhomogeneous Media

In this part we give some basic concepts about Maxwell’s equations, then we formu-

late Maxwell’s equations as a Hermitian eigenvalue problem. After we introduce the boundary

conditions for Maxwell’s equations, which are very important while solving electromagnetic

wave problems. Then we will give the formulation of energy density and the continuity the-

orem. We present also periodic dielectric function, the Bloch-Floquet theorem and Brillouin

zones.

2.1.1. Maxwell’s Equations

The behaviour of electromagnetic (EM) radiation in a material medium is described

by a set of four partial differential equations called Maxwell’s Equations and stated as follows;

∇×E(r, t) +
∂B(r, t)

∂t
= 0, (2.1)

∇×H(r, t)− ∂D(r, t)

∂t
= Jf , (2.2)

∇ ·D(r, t) = ρf , (2.3)

∇ ·B(r, t) = 0, (2.4)

whereE is electric field vector,H is magnetic field vector,D is electric displacement,B is

magnetic induction,ρf andJf are the free charge and current densities, respectively.

Equation (2.1) is called Faraday’s law of induction, which describes how an electric

field can be induced by a time-varying magnetic flux. Equation(2.2) is called Ampere’s

law, which describes the creation of an induced magnetic field due to charge flow and non-

stationary electric field. Equation (2.3) is Coulomb’s law,which describes the electric field

distribution produced by the electric charge distribution. Equation (2.4) is a statement of the

non-existence magnetic monopoles in nature.
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The equations from Eq. (2.1) to Eq. (2.4) can be considered as8 scalar equations

that relate a total of 12 variables. To find field vectors theseequations must be supplemented

by the so-called constitutive equations, which describe the effect of electromagnetic fields in

material media:

D ≡ ǫE = ǫ0E+P, (2.5)

B ≡ µH = µ0H+M, (2.6)

whereǫ andµ are the permittivity and the permeability , respectively (ε0 andµ0 are the

permittivity and the permeability of vacuum).P is the electric polarization of the medium

andM is the magnetization. We will work with linear, non-dispersive, non-lossy materials

which leads toD = ǫ0ǫE andB = µ0µH, with realǫ andµ.

Also we allowǫ andµ to vary from point to point in space, so we formulate them as

follows;

D = ǫ0ǫ(r)E, (2.7)

B = µ0µ(r)H. (2.8)

In a material medium if the medium is dielectric thenµ(r) ≈ 1. If there are no free charges

and currents, i.e., ifρf = 0 andJf = 0, then Maxwell’s equations become

∇×E(r, t) = −µ0
∂H(r, t)

∂t
, (2.9)

∇×H(r, t) = ǫ0
∂ǫ(r)E(r, t)

∂t
, (2.10)

∇ · [ǫ(r)E(r, t)] = 0, (2.11)

∇ ·H(r, t) = 0. (2.12)

From Maxwell’s equations the following wave equations forE andH can be derived;

∇× (∇× E) +
1

c2
∂2

∂t2
ǫ(r)E = 0, (2.13)

∇×
(

1

ǫ(r)
∇×H

)
+

1

c2
∂2

∂t2
H = 0. (2.14)
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wherec = 1/
√
ǫ0µ0 is the speed of light in vacuum.

2.1.2. Maxwell’s Equations and the Eigenvalue Problem

Maxwell’s equations are linear equations. This is why we canrepresent any solutions

of Maxwell’s equations in terms of a linear combination of harmonic modes in time

E(r, t) = E(r)e−iwt,

H(r, t) = H(r)e−iwt. (2.15)

In Eq. (2.15) to get physical fields we can take the real parts of the complex valued fields.

Substituting Eq. (2.15) into Eqns. (2.9)-(2.10), we get;

E(r) =
i

ωǫ0ǫ(r)
∇×H(r), (2.16)

H(r) = − i

ωµ0
∇× E(r). (2.17)

We can separateE andH. Let’s work only onH. Taking the curl of Eq. (2.16) and substituting

it to the right hand side of Eq. (2.17), we obtain an equation for H:

∇×
(

1

ǫ(r)
∇×H(r)

)
=
(ω
c

)2
H(r) (2.18)

Here the velocity of light isc = 1/
√
ǫ0µ0. If we solve the above equation and findH, we can

find E easily using Eq. (2.16).

Eq. (2.18) can be re-written as the eigenvalue equation in the next form;

ΘH(r) =
(ω
c

)2
H(r), (2.19)

where

ΘH(r) ≡ ∇×
(

1

ǫ(r)
∇×H(r)

)
, (2.20)
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The eigenvectorsH(r) are the harmonic modes, andΘ is an operator acting onH(r),
(
ω
c

)2

are the eigenvalues for corresponding eigenvectors,H(r).

The operator,Θ is a linear operator. We know that any linear combination of the

solutions is again a solution; such as ifHI andHII are both solutions of eigenvalue equation

with the same frequencyω, thenaHI + bHII is again a solution with the same frequencyω,

wherea andb are arbitrary constants.

Since all observables must be represented by the Hermitian operators, the operatorΘ

should be Hermitian as well. We define the inner product of twovector fieldsA(r) andB(r)

as

(A,B) ≡
∫

d3rA∗(r) ·B(r)

As easy to see it is bilinear form satisfying all properties of the inner product. Then the

operatorΘ is Hermitian operator if it satisfies the relation

(A,ΘB) = (ΘA,B)

The proof is as follows:

(A,ΘB) =

∫
d3rA∗ ·

[
∇×

(
1

ǫ
∇×B

)]
(2.21)

=

∫
d3r(∇×A)∗ ·

(
1

ǫ
∇×B

)
(2.22)

=

∫
d3r

[
∇×

(
1

ǫ
∇×A

)]∗
·B (2.23)

= (ΘA,B) (2.24)

Here

∇ · (A×C) = (∇×A) ·C−A · (∇×C)

and the Divergence Theorem and vanishing of the surface terms.

Properties of Hermitian operators:

12



1. Eigenvalues of a Hermitian operator are real.

Proof 2.1 To prove this we start from the eigenvalue equation;

ΘH =

(
ω2

c2

)
H, (2.25)

let’s take the inner product of the above equation withH,

(H,ΘH) =

(
ω2

c2

)
(H,H). (2.26)

If we take the complex conjugate of the above equation we get

(H,ΘH)∗ =

(
ω2

c2

)∗

(H,H). (2.27)

From the definition of the inner product we know(H,ΘH) = (ΘH,H)∗ and from the

definition of the Hermitian property we know(H,ΘH) = (ΘH,H). Combining these

informations we get the following result;

(
ω2

c2

)
=

(
ω2

c2

)∗

which meansω2 is real.

2. Non-equal eigenvectors corresponding to different eigenvalues are orthogonal.

Proof 2.2 Let’s consider two eigenvectorsHI andHII with different eigen frequencies

ωI andωII . We start with eigenvalue equation forHI;

ΘHI =
(ωI

c

)2
HI (2.28)

If take the inner product of the above equation withHII from the left, we get

(HII,ΘHI) =
(ωI

c

)2
(HII,HI). (2.29)
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Then we write eigenvalue equation forHII;

ΘHII =
(ωII

c

)2
HII, (2.30)

If take the inner product of the above equation withHI from the right we get

(HII,ΘHI) =
(ωII

c

)2
(HII,HI). (2.31)

Subtracting Eq. (2.29) from Eq. (2.31) we get;

(
ωI

2 − ωII
2
)
(HII,HI) = 0 (2.32)

This result show us ifωI 6= ωII then the eigenvectorsHI andHII are orthogonal. If

ωI = ωII then we say they are degenerate and not necessarily orthogonal.

2.1.3. Boundary Conditions

By using the divergence theorem and Stokes’s theorem the Maxwell equations can be

rewritten in integral form. These integral forms can be usedto find the relationship of normal

and tangential components of the fields between different boundary surfaces.

Firstly, we find relations between the normal components of the fields. LetV is a

finite valume in space,S is a closed surface bounding that valume,da is an area element on

the surface andn is a the unit normal vector to the surfaceda, pointing towards outward from

the enclosed surface. Applying the divergence theorem
∮
S
F ·nda =

∫
V
∇ ·FdV to Eq. (2.3)

and Eq. (2.4) yields the integral relations

∮

S

D · nda =

∫

V

ρfd
3x, (2.33)

∮

S

B · nda = 0. (2.34)

Let’s apply equations (2.33) and (2.34) to the valume of pillbox. We consider a pillbox, which

is very shallow so that the side of the surfaces does not contribute to the integrals. The left
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hand-side and right hand-side of Eq. (2.33) become

∮

S

D · nda = (D2 −D1) · n∆a (2.35)

∫

V

ρfd
3x = σ∆a (2.36)

As a result the normal components ofD andB on the above and the below of the boundary

are related to each other by

(D2 −D1) · n = σ, (2.37)

(B2 −B1) · n = 0. (2.38)

Here the normal component ofD is discontinuous by amount ofσ at any boundary. The

normal component ofB is continuous.

Secondly, we find the tangential components of the fields. LetC is a closed rectangular

contour in space,S is a surface spanning the contour,dl is a line element on the contour.

da is area element onS, n is a unit normal vector onda . Applying the Stoke’s theorem
∮
C
F · dl =

∫
S
∇× F · da to Eq. (2.1) and Eq. (2.2) yields the integral relations

∮

C

H · dl =

∫

S

[
J+

∂D

∂t

]
· nda (2.39)

∮

C

E · dl = −
∫

S

∂B

∂t
· nda (2.40)

The short arms of rectangular contourC are negligible and long arms are parallel to the surface

with length∆l. Then we can write for the left hand side of the (2.39) and (2.40);

∮

C

H · dl = (t× n) · (H2 −H1)∆l, (2.41)

∮

C

E · dl = (t× n) · (E2 − E1)∆l, (2.42)
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and for the right hand side of the (2.39) and (2.40) as follows

∫

S

[
J+

∂D

∂t

]
· tda = K · t∆l, (2.43)

−
∫

S

∂B

∂t
· nda = 0, (2.44)

whereK is surface current density flowing on the boundary surface. Here Eq. (2.43)

and second part of Eq. (2.44) are vanishing because∂D
∂t

and ∂B
∂t

are finite at the surface and

the area of the loop is zero, since the length of the short sides goes to zero. As a result the

tangential components ofH andE on each side of the boundary are related to each other as

n× (H2 −H1) = K, (2.45)

n× (E2 − E1) = 0. (2.46)

Here the difference between the tangential components ofH is equal to the surface current

densityK and tangential component ofE is continuous at the boundary surface.

In our study we will deal with situations in which the surfacecharge densityσ and

the surface current densityK, both of them vanish. In that case all normal and tangential

components ofB andD are continuous at the boundaries.

2.1.4. Energy Density and Continuity Theorem

Electromagnetic waves carry energy in the form of electromagnetic radiation. We want

to find the energy stored in electromagnetic wave and the power flow with electromagnetic

wave. Let’s start from Maxwell’s Equation, Eq. (2.2);

∇×H− ∂D

∂t
= J

The dot product of the above equation withE gives us the work done by electromag-

netic field, which is

J · E = E · (∇×H)− E · ∂D
∂t

. (2.47)
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If

∇ · (E×H) = H · (∇× E)− E · (∇×H)

and sequentially the Maxwell’s Equation, Eq. (2.1);

∇× E = −∂B

∂t
,

then we get

J · E = −∇ · (E×H)−H · ∂B
∂t

− E · ∂D
∂t

, (2.48)

or

−J · E = ∇ · S+
∂U

∂t
, (2.49)

whereS = E ×H is called the energy flux andU = 1
2
(E ·D + B ·H) is called the energy

density of electromagnetic fields. Eq. (2.49) is known as continuity equation.

If J = 0 then it states the decrease of electromagnetic energy density in a volume is a

result of outflow of electromagnetic energy through the surface of that volume.

2.2. Periodic Dielectric Function

At the previous part we worked on Maxwell’s equations, whichis basically a second

order partial differential equation and contains a periodic dielectric function in it.

In this part we will formalise the periodic dielectric function in the reciprocal space.

The periodic dielectric function is a function ofr and it is periodic with a periodR, given by

the next form:

ǫ(r) = ǫ(r+R). (2.50)
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In Eq. (2.50),R is called as the lattice vector and it is given by the next formula

R = n1a1 + n2a2 + n3a3, (2.51)

where,a1, a2, a3 are primitive vectors of the crystal lattice and not all of them are in the same

plane (a1 · (a2 × a3) 6= 0). n1, n2, n3 are integers. We can define the volume of the primitive

unit cell as a cell that contains only one lattice point and call it as Vcell, which is equal to

Vcell = a1 · (a2 × a3)

The periodic dielectric function can be expanded in terms ofthe Fourier series. Let’s

define a3D Fourier basis functioneiG·r with G = m1b1 + m2b2 + m3b3 for some basis

vectorsbi, (i = 1, 2, 3), which will find later in the calculations. Then the dielectric function

in the Fourier basis is;

ǫ(r) =
∑

G

ǫ(G)eiG·r, (2.52)

ǫ(r+R) =
∑

G

ǫ(G)eiG·(r+R). (2.53)

Eq. (2.52) is equal to Eq. (2.53) because of the periodicity condition. Then subtracting Eq.

(2.52) from Eq. (2.53) we get;

∑

G

ǫ(G)eiG·r[1− eiG·R] = 0 (2.54)

This equation holds wheneiG·R = 1, which meansG ·R = 2πn, wheren is an integer:

G ·R = (m1b1 +m2b2 +m3b3) · (n1a1 + n2a2 + n3a3) = 2πn (2.55)

This condition can be satisfied if we takebi · aj = 2πδij, wherei, j = 1, 2, 3,then

G ·R = 2π(m1n1 +m2n2 +m3n3) (2.56)

= 2πn. (2.57)
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Due to this conditionb1 is perpendicular to botha2 anda3. Also a2 × a3 is perpendicular

to botha2 anda3 sob1 must be parallel toa2 × a3. We can writeb1 = α(a2 × a3), where

α is a constant to be determined. We know thatb1 · a1 = 2π, writing the value ofb1 we get

[α(a2 × a3)] · a1 = 2π. Omittingα we findα = 2π/[a1 · (a2 × a3)]. Based on this, by cyclic

permutations we can calculate the values of all primitive vectors of the reciprocal lattice;

b1 = 2π
a2 × a3

a1 · (a2 × a3)
, (2.58)

b2 = 2π
a3 × a1

a2 · (a3 × a1)
, (2.59)

b3 = 2π
a1 × a2

a3 · (a1 × a2)
. (2.60)

Example: Calculation of the reciprocal lattice vectors of 2D perfectphotonic crystal

In Fig. (2.1) we see a2D perfect square lattice. The primitive vectors area1 = a1x̂ and

a2 = a2ŷ and the lattice vector isR = a1x̂+ a2ŷ.

��

��

Figure 2.1.2D perfect square lattice in real space.

If we calculate this lattice vectors in the reciprocal spacefirst we should find the vec-

tors for primitive cells of the reciprocal space:b1, b2 andb3 using (2.58)-(2.60). The prim-

itive vectors of the reciprocal space areb1 = 2π
a1
x̂ andb2 = 2π

a2
ŷ and the lattice vector is
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G = 2π
a1
x̂+ 2π

a2
ŷ. The Fig. (2.2) shows2D perfect square lattice in reciprocal space.△

��

��

Figure 2.2.2D perfect square lattice in reciprocal space.

Returning to our subject we can find the Fourier expansion of the periodic dielectric

functionǫ(r) = ǫ(r +R) in the form;

ǫ(r) =
∑

G

ǫ(G)eiG·r.

The next step is to findǫ(G). For this reason we multiply the both sides of the above

equation bye−iG′·r and integrate over the primitive cell,

∫

cell

ǫ(r)e−iG′·rd3r =
∑

G

ǫ(G)

∫

cell

ǫ(r)e−i(G−G′)·rd3r (2.61)

To evaluate the integral, let’s consider a primitive cell ofparallelepiped formed by the vectors

a1, a2, anda3. We can construct an oblique coordinate system with the coordinatesu, v,

w along thea1, a2 and a3 directions, respectively. Then any vectorr can be written as

r = xx + yy + zz = uu+ vv + ww, where

u =
a1

a1
, v =

a2

a2
, w =

a3

a3
.
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The volume elementd3r is the volume of the parallelepiped which is equal to next form;

d3r = du dv dwu · (v ×w), (2.62)

= du dv dw
Vcell

a1a2a3
. (2.63)

The argument of the exponential can be written as;

(G−G′) · r = G′′ · r (2.64)

= (m′′
1b1 +m′′

2b2 +m′′
3b3) ·

(
u
a1

a1
+ v

a2

a2
+ w

a3

a3

)
(2.65)

= 2π

(
m′′

1u

a1
+

m′′
2v

a2
+

m′′
3w

a3

)
(2.66)

Now we are ready to evaluate the integral:

∫

cell

ǫ(r)e−i(G−G′)·rd3r =
Vcell

a1a2a3

∫ a1

0

du e
(i

2πm′′

1
u

a1
)

∫ a2

0

dv e
(i

2πm′′

2
v

a2
)

∫ a3

0

dw e
(i

2πm′′

3
w

a3
)

= Vcellδm′′

1
0δm′′

2
0δm′′

3
0 (2.67)

= VcellδG′′0 (2.68)

= VcellδGG′ (2.69)

= Vcellδm1m′

1
δm2m′

2
δm3m′

3
(2.70)

Substituting to Eq. (2.61) we obtain the value ofǫ(G):

ǫ(G) =
1

Vcell

∫

cell

ǫ(r)e−iG·rd3r. (2.71)

As continuation of the earlier example we calculateǫ(G) using Eq. (2.71) for2D perfect

square lattice. Firstly we start the formulation ofǫ(r) just for a unit cell which is given in Fig.

(2.3)

21



��

��

�
���

�

��

�

���

�

�

�

Figure 2.3.ǫ(r) in a unit cell for2D perfect square lattice.Vcell = a1a2

ǫ(r) = ǫ(x, y),

= ǫb + (ǫa − ǫb)Θ(|Ra| − |r|) (2.72)

HereΘ(x) is the step function and it is defined as

Θ(x) =

{
0 if x < 0

1 otherwise

Then we can calculate the integral;

ǫ(G) =
1

Vcell

∫

cell

ǫ(r)e−iG·rd2r

=
ǫb
Vcell

∫

cell

e−iG·rd2r+
(ǫa − ǫb)

Vcell

∫

cell

Θ(|Ra| − |r|)e−iG·rd2r

=
ǫb
Vcell

∫

cell

e−i(Gxx+Gyy)dxdy +
(ǫa − ǫb)

Vcell

∫ Ra

0

∫ 2π

0

e−i(Gr cos θ)rdrdθ

= ǫbδGx0δGy0 + (ǫa − ǫb)

(
πRa

2

Vcell

)
2

(
J1(GRa)

GRa

)

22



or equivalently

ǫ(G) =





ǫb +
(

πRa
2

Vcell

)
(ǫa − ǫb) if G = 0,

(ǫa − ǫb)2
(

J1(GRa)
GRa

)(
πRa

2

Vcell

)
if G 6= 0.

(2.73)

2.2.1. Bloch-Floquet Theorem and Brillouin Zones

We present the Bloch-Floquet theorem, which was found in a one-dimensional setting

by Floquet, Floquet (1883) and later rediscovered by Bloch in Bloch (1929). The Bloch-

Floquet theorem for periodic eigenvalue problems states that the solutions of Eq. (2.18), can

be written in the form:

H(r) = eik·rHn,k(r)

with eigenvaluesωn(k), whereHn,k is a periodic function, satisfying the equation;

(∇ + ik)× 1

ǫ
(∇+ ik)×Hn,k =

(
ωn(k)

c

)2

Hn,k (2.74)

wheren = 1, 2, ...

For each chose ofk the above equation give different eigenvalue problem over the

primitive cell of the lattice. The eigenvaluesωn(k) are continuous functions ofk forming the

band structure whenk is plotted versusω.
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Figure 2.4. The first Brillouin zone is shown with red square and the irreducible Bril-
louin zone with the symmetry pointsΓ = (0, 0), X = (0, π

a
) andM =

(π
a
, π
a
). The path to calculate band structure is taken asΓ → X → M → Γ

.

For the calculation of the band structure, we need a minimum calculation cell, that will

give us all information about the lattice. This minimum cellcan be formed by a primitive re-

ciprocal lattice vector defined as the first Brillouin zone. So the solutions of the all eigenvalue

equations are the same as the solutiosn at the first Brillouinzone.

For example in Fig. (2.4) we see the square lattice of2D perfect Photonic Crystal.

Here the red square shows the Brillouin zone. But for calculation of the band diagram we will

solve the eigenvalue equation at the irreducible Brillouinzone, that is where the triangular

wedge exists. Because the rest of the Brillouin zone can be formed from the irreducible

Brillouin zone by rotational symmetry. a set ofω values which is given in Fig. (2.5) for

TM-modes and TE-modes.
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Figure 2.5. The TE and TM modes for a perfect 2D square lattice.

In Fig. (2.5) frequency is expressed as a dimensionless ratio ωa/2πc. The band struc-

ture shows that there is a band gap for the TM polarization, coloured with green, but there is

no band gap for the TE polarization.
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CHAPTER 3

FINITE DIFFERENCE TIME DOMAIN METHOD

In this chapter we will give an overview of Finite DifferenceTime Domain Method

(FDTD) , which is used as the simulation technique in this thesis.

In 1966 Yee Yee et al. (1966) described the FDTD numerical techniquefor solving

Maxwell’s curl equations by discretization of the equations in space and time on grids. Today

the FDTD method is one of the most useful methods for investigating the field distribution in

complicated photonic crystal based devices with non-uniform refractive index distribution.

The FDTD method involves discretization of the space, whichmeans replacing the

continuum by a discrete set of nodes. Then the derivatives ofMaxwell’s equations are re-

placed by finite differences. The numerical solution depends on the permittivity distribution,

which determines optical properties of the photonic crystals, and on the initial and boundary

conditions. Setting all these terms, the field distributioncan be computed beginning from the

radiation source.

3.1. Discretization of Maxwell’s Equations

We want to derive Maxwell’s equations in terms of finite differences. Maxwell’s equa-

tions for the case of no dispersion, no absorption nor any source, are

∇×E(r, t) = −1

c

∂B(r, t)

∂t
, (3.1)

∇×H(r, t) =
1

c

∂D(r, t)

∂t
. (3.2)

We will write the equations in the vector components forE(r, t) andH(r, t) as follows,

∂Ez

∂y
− ∂Ey

∂z
= −1

c

∂Bx

∂t
∂Ex

∂z
− ∂Ez

∂x
= −1

c

∂By

∂t
(3.3)

∂Ey

∂x
− ∂Ex

∂y
= −1

c

∂Bz

∂t
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∂Hz

∂y
− ∂Hy

∂z
=

1

c

∂Dx

∂t
∂Hx

∂z
− ∂Hz

∂x
=

1

c

∂Dy

∂t
(3.4)

∂Hy

∂x
− ∂Hx

∂y
=

1

c

∂Dz

∂t

In two dimensions, we must make a choice between two kinds of modes; the TM mode, which

consists ofEz, Hx, Hy or the TE mode, which consists ofHz, Ex, Ey. We will illustrate the

method using the TM mode. We will make discretization of the space so we replace all partial

derivatives by finite differences.

∂

∂x
≈ ∆

∆x
,

∂

∂y
≈ ∆

∆y
,

∂

∂z
≈ ∆

∆z
.

Now we will change the derivatives by differences in Equations (3.3) and (3.4). and use

the constitutive equations:D = ǫE andB = µH. Also for convenience we will present

calculations for the TM mode, so we letDx = Dy = Hz = 0. Thus, Eqs. (3.3) and (3.4) are

reduced to:

∆Ez

∆y
= −µ

c

∆Hx

∆t
∆Ez

∆x
=

µ

c

∆Hy

∆t
(3.5)

∆Hy

∆x
− ∆Hx

∆y
=

ǫ

c

∆Ez

∆t
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Figure 3.1. 2D computation region for TM modes

In Fig. (3.1), we show 2D computation region for TM modes. According to this

interleaving the Maxwell’s equations will be calculated ineach cell, so the fields intensity

will be found in each cell. Using the Yee cell we write;

−E
n+ 1

2

z (i, j + 1)− E
n+ 1

2

z (i, j)

∆y
=

µ(i, j + 1
2
)

c

Hn+1
x (i, j + 1

2
)−Hn

x (i, j +
1
2
)

∆t
(3.6)

E
n+ 1

2

z (i+ 1, j)− E
n+ 1

2

z (i, j)

∆x
=

µ(i+ 1
2
, j)

c

Hn+1
y (i+ 1

2
, j)−Hn

y (i+
1
2
, j)

∆t
(3.7)

ǫ(i, j)

c

E
n+ 1

2

z (i, j)− E
n− 1

2

z (i, j)

∆t
=

(
Hn

y (i+
1
2
, j)−Hn

y (i− 1
2
, j)

∆x

)

−
(
Hn

x (i, j +
1
2
)−Hn

x (i, j − 1
2
)

∆y

)
(3.8)

Here we separated timen and spacei, j in order to interleave Maxwell’s equations in space

and time. Time index isn, which meanst = n∆t andn+1 represents one time step later.∆x

and∆y are space increments in the(x, y) directions, andi, j represents the coordinate values

x = i∆x, y = j∆y. Then we take the central difference approximation for bothn andi, j
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derivatives.

Let’s derive the recursion equations forEz, Hx andHy components using the above

equations;

E
n+ 1

2

z (i, j) = E
n− 1

2

z (i, j) (3.9)

+
c

ǫ(i, j)

∆t

∆x

(
Hn

y (i+
1

2
, j)−Hn

y (i−
1

2
, j)

)

− c

ǫ(i, j)

∆t

∆y

(
Hn

x (i, j +
1

2
)−Hn

x (i, j −
1

2
)

)

Hn+1
x (i, j +

1

2
) = Hn

x (i, j +
1

2
) (3.10)

+
c

µ(i, j + 1
2
)

∆t

∆y

(
E

n+ 1

2

z (i, j)− E
n+ 1

2

z (i, j + 1)
)

Hn+1
y (i+

1

2
, j) = Hn

y (i+
1

2
, j) (3.11)

+
c

µ(i+ 1
2
, j)

∆t

∆x

(
E

n+ 1

2

z (i+ 1, j)−E
n+ 1

2

z (i, j)
)

By using (3.9)-(3.11) we can findEz, Hx andHy components for any lattice point or at any

time starting from the initial values and for the next pointsusing the previous values.

This approach can be applied to3D case. The significant point is that according to

Courant stability condition∆t can be at most∆t = ∆x/(c/n) and∆t = ∆y/(c/n), where n

is the smallest refractive index in the computational domain.
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Figure 3.2. FDTD simulation region with perfectly matched layer (PML). PML ab-
sorbs electromagnetic waves at the boundaries without reflections.

The numerical solutions can be simplified by using a finite computation domain with

suitable numerical boundary conditions. In this thesis, weuse perfectly matched layer (PML)

Berenger (1994) boundary conditions which absorbs electromagnetic waves at the boundaries

without reflections. The Fig. (3.2) shows PML layer.

In the computation domain between transition from one dielectric material to another

dielectric material we use average dielectric constant value, which takes the average of the

dielectric constants at the transitions. Of course, resolution or the number of cells in the Yee

lattice must be enough to give correct results.

FDTD is a time-domain technique. By using this method we can findE fields andH

fields in the computational domain. Also this method provides animation displays of the elec-

tromagnetic fields, which helps us to understand the designed model. In this thesis we used

the freely available MEEP software (MIT Electromagnetic Equation Propagation) for FDTD

simulations, which can be accessed from: http://ab-initio.mit.edu/wiki/index.php/Meep.
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CHAPTER 4

DIELECTRIC WAVEGUIDE SLABS

Dielectric waveguide slabs are the easiest structures to describe mathematically, be-

cause of their simple geometry. Therefore, as a preparetionto study to photonic crystal waveg-

uide slabs, we start by dielectric waveguide slabs.

Dielectric waveguide slabs consists of a thin guiding layersandwiched between two

semi-infinite bounded media. Usually, the refraction indexof the guiding layer must be

greather than the bounding media for the occurrence of totalinternal reflection. Also the

guiding layer,Rz, is at the order of a wavelength.

If the two bounding media are identical then dielectric slabis called the symmetric

waveguide slab (n1 = n3). If two bounding media are not identical then waveguide called

asymmetric waveguide slab.

Figure 4.1. Dielectric waveguide slab.

The Fig. (4.1) shows a schema of dielectric waveguide slab. In the figure,Rz is

the thickness of the guiding layer,n1 is the refraction index of the upper cladding,n3 is the

refraction index of the lower cladding andn2 is the refraction index of the guiding layer. The

slab is infinitely extended in the xy-plane. Light propagates in the x-direction.

In this chapter we will give mathematical derivation of confined modes for symmetric
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and asymmetric waveguide slabs. In order to obtain these confined modes of waveguide

slabs, Maxwell’s equations must be solved. Maxwell’s equations in homogeneous media are

equation of the plane waves. So we can solve the problem writing the plane wave solutions for

each partition and matching the boundary conditions. The calculations will be derived both

transverse electric and transverse magnetic modes of the propagation.

4.1. SYMMETRIC DIELECTRIC WAVEGUIDE SLABS

The simplest optical waveguides are the symmetric dielectric slab as shown in Fig.

(4.2);

Figure 4.2. Symmetric dielectric waveguide slab.

The following equation describes the index profile of the symmetric dielectric waveg-

uide slab:

n(z) =

{
n2, −Rz < z < 0

n1, otherwise
(4.1)

whereRz is the thickness of the core,n2 is the refraction index of the core andn1 is

the refraction index of the bounding media. As mentioned above to support confined modes

the refraction index of core must be greater then the cladding (n2 > n1). Now our task is to

find these confined modes.
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To obtain these confined modes of waveguide slab, Maxwell’s equations can be written

in the form;

∇×H = iωǫ0n
2E (4.2)

∇× E = −iωµ0H (4.3)

where n is given in Equation (4.1)

The waveguide slab is homogeneous along the x-direction so we search solutions in

the form;

E = Em(z)e
[i(ωt−βx)] (4.4)

H = Hm(z)e
[i(ωt−βx)] (4.5)

whereβ is the x component of the wave-vector,Em(z) andHm(z) are wave functions andm

is the mode number.

Now we substitute (4.4) and (4.5) into (4.2) and (4.3). We accept no variation in y

direction, so that∂
∂y

= 0. After differentiating and cancelling out the exponentialfactor we

get the set of equations;

∂Ey

∂z
= iωµ0Hx (4.6)

iβEz +
∂Ex

∂z
= −iωµ0Hy (4.7)

βEy = ωµ0Hz (4.8)

−∂Hy

∂z
= iωǫ0n

2Ex (4.9)

iβHz +
∂Hx

∂z
= iωǫ0n

2Ey (4.10)

−βHy = ωǫ0n
2Ez (4.11)

From this first order coupled system of equations we can find two decoupled second order

equations
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First we use (4.6), (4.8) and (4.10), they yield

∂Ey

∂z
= iωµ0Hx (4.12)

βEy = ωµ0Hz (4.13)

iωǫ0n
2Ey = iβHz +

∂Hx

∂z
(4.14)

From these set of equations one can see that, ifEy is known, thenHx andHz can be easily

found. If we substitute (4.12) and (4.13) into (4.14) we get the wave equation forEy

∂2Ey

∂z2
+

(
w2n2

c2
− β2

)
Ey = 0 (4.15)

wherec = 1/
√
µ0ǫ0.

As a second set we use (4.7), (4.9) and (4.11),

−∂Hy

∂z
= iωǫ0n

2Ex (4.16)

−βHy = ωǫ0n
2Ez (4.17)

−iωµ0Hy = iβEz +
∂Ex

∂z
(4.18)

From this set of equations one can see that, ifHy is known, thenHx andHz can be easily

found. If we substitute (4.16) and (4.17) into (4.18) we get wave equation forHy

∂2Hy

∂z2
+

(
w2n2

c2
− β2

)
Hy = 0 (4.19)

wherec = 1/
√
µ0ǫ0.

These two sets can be classified as TE and TM modes. The first couple represents TE

modes. They have their electric field perpendicular to planeof propagation (xz-plane) that

means they have the field componentsEy, Hx andHz. The second couple represents TM

modes. They have their magnetic field perpendicular to planeof propagation with the field

componentsHy, Ex andEz.

Now for each media we will solve (4.15) and (4.19) by applyingthe boundary condi-
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tions. First we will use the following boundary condition; the tangential components of the

field vectors at each interfaces must satisfy the continuitycondition. Second we will use an-

other boundary condition for guided modes; that is the field amplitude of guided modes must

vanish atz = ±∞.

The propagation constantβ specifies whether the field varies sinusoidally or exponen-

tially and to get confined modes the field amplitude must decrease exponentially outside the

core. For these reasons the following conditions must hold

{ (
ωn2

c

)2 − β2 > 0, −Rz < z < 0,
(
ωn1

c

)2 − β2 < 0, otherwise.
(4.20)

For the rest of the section we will find the confined modes whoseβ satisfies these above

conditions for guided TE modes and TM modes.

4.1.1. Guided TE Modes

The guided TE modes can be find by solving Equation (4.15) withboundary conditions

for each interfaces of the waveguide. The solution of Eq. (4.15) has the form

Ey = Em(z)e
[i(ωt−βx)] (4.21)

where for each regionEm(z) can be written as

Em(z) =






Ae−δz , z ≥ 0

A cosκz +B sin κz, 0 ≥ z ≥ −Rz

(A cosκRz −B sin κRz)e
δ(z+Rz), z ≤ −Rz

(4.22)

The above solution given by Eq. (4.22) clearly obey the boundary condition, which

states the tangential component ofEy must be continuous at the interfaces atz = 0 and
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z = −Rz, where A,B are the constants and the parametersδ andκ are

δ =

[
β2 −

(ωn1

c

)2]1/2
, (4.23)

κ =

[(ωn2

c

)2
− β2

]1/2
. (4.24)

To complete the set, we need to findHx andHz. These components in terms ofEy are

given as follows,

Hx =
−i

µ0ω

∂Ey

∂z
, (4.25)

Hz =
β

µ0ω
Ey. (4.26)

SinceHz is a constant timesEy we don’t need to calculateHz because we already calculated

Ey. But we need to calculateHx. The solution of Eq. (4.25) has the form,

Hx = Hm(z)e
[i(ωt−βx)] (4.27)

where for each regionHm(z) can be written as

Hm(z) =





( iδ
µ0ω

)Ae−δz , z ≥ 0

( iκ
µ0ω

)(A sin κz − B cosκz), 0 ≥ z ≥ −Rz

(−iδ
µ0ω

)(A cosκRz − B sin κRz)e
δ(z+Rz), z ≤ −Rz

(4.28)

Now to satisfy the boundary condition we match the functionsat the above equation at

the interfacesz = 0 andz = −Rz. But it is not evident that the solutions obey the boundary

conditions. For this reason we have to make an extra job. We apply the boundary conditions

which lead to
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δA + κB = 0,

(κ sin κRz − δ cos κRz)A + (κ cosκRz + δ sin κRz)B = 0,

This homogeneous system has non-trivial solution only if determinant vanishes;

δ(κ cosκRz + δ sin κRz)− κ(κ sin κRz − δ cosκRz) = 0, (4.29)

or

(2δκ) cosκRz + (δ2 − κ2) sin κRz = 0, (4.30)

which leads to,

tanκRz =
2κδ

(κ2 − δ2)
. (4.31)

We can write the above equation using the double angle formula for tangent in the next form

tan (2κRz/2) =
2 tanκRz/2

1− tan2κRz/2
=

2κδ

(κ2 − δ2)
. (4.32)

which leads to the second order algebraic equation

δ

κ
tan2(κR2/2)−

(
δ2

κ2
− 1

)
tan(κR2/2)−

δ

κ
= 0 (4.33)

with the solutions

tan(κRz/2) =
δ

κ
(4.34)
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and

tan(κRz/2) = −κ

δ
. (4.35)

We can substitute for̃κ = 1
2
Rzκ and forδ̃ = 1

2
Rzδ and rewrite the above equations in

the next form;

1. For even TE modes;

tan (κ̃) =
δ̃

κ̃
(4.36)

2. For odd TE modes;

tan (κ̃) = − κ̃

δ̃
, (4.37)

Eq. (4.36) and Eq. (4.37) are the eigenvalue equations for symmetric slab waveguides

for even and odd modes respectively.

Now we have two implicit equations, (4.36) and (4.37). We will solve graphically Eq.

(4.37) to show the structure of the solution. For a given value of δ̃, the solutions of Eq. (4.37)

yields several values for̃κ. Graphical solution of the Eq. (4.37) is shown in Fig. (4.3).In the

plotted graph, the solutions are the intersections of the functionstan (κ̃) and−κ̃/δ̃.

To find the roots let’s define the next iteration

κ̃n+1 = tan−1

(
− κ̃

δ̃n

)
, (n = 0, 1, 2, 3...), (4.38)

with the initial guesses̃κ0 = nπ. By this way for each giveñδ we get set of solutions for̃κ.

To see the confined modes our aim is to calculateω andβ. ω andβ can be picked out from

the below equations;

δ̃ =
1

2
Rz

[
β2 −

(ωn1

c

)2]1/2
(4.39)
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κ̃

(
− κ̃

δ̃

)

tan(κ̃)

0 π/2 3π/2 5π/2 7π/2

Figure 4.3. For odd TE modes graphical roots.

κ̃ =
1

2
Rz

[(ωn2

c

)2
− β2

]1/2
(4.40)

ω andβ are equal to the next form;

(
ω 1

2
Rz

c

)2

=
κ̃2 + δ̃2

n2
2 − n1

2
, (4.41)

(
β 1

2
Rz

c

)2

=
n1

2κ̃2 + n2
2δ̃2

n2
2 − n1

2
. (4.42)

As a result for every giveñδ, we get the solution set for̃κ by using the iteration given

by Eq. (4.38) and use the values ofn1, n2, Rz, c, δ̃, κ̃ and (4.41) and (4.42) we can findω and

β.

The similar derivation can be done also for Eq. (4.36), for a given δ̃ yielding several
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values forκ̃. To examine this we use the next iteration for a givenδ̃ with the initial guesses

κ̃0 = nπ, (n = 0, 1, 2, 3...)

κ̃n+1 = tan−1

(
δ̃

κ̃n

)
, (4.43)

By this way for each giveñδ we get the set of solutions for̃κ. Again by using (4.41) and

(4.42) the confined modesω andβ can be found in terms of̃κ andδ̃.

4.1.2. Guided TM Modes

The guidedTM modes can be find by solving Eq. (4.19) with boundary conditions

for each interfaces of the waveguide. The solution of Eq. (4.19) has the form

Hy = Hm(z)e
[i(ωt−βx)] (4.44)

where for each regionHm(z) can be written as

Hm(z) =





Ce−δz, z ≥ 0

C cosκz +D sin κz, 0 ≥ z ≥ −Rz

(C cosκRz −D sin κRz)e
δ(z+Rz), z ≤ −Rz

(4.45)

The above solution given by Eq. (4.45) clearly obey the boundary condition, which

states the tangential component ofHy must be continuous at the interfaces atz = 0 and

z = −Rz, where C, D are the constants and the parametersδ andκ are previously defined at

Eq. (4.23) and Eq. (4.24) respectively.

To complete the set, we need to findEx andEz. These components in terms ofHy are

given as follows,

Ex =
i

ǫ0ωn2

∂Hy

∂z
(4.46)

Ez =
−β

ǫ0ωn2
Hy. (4.47)
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SinceEz is a constant timesHy we don’t need to calculateEz because we already

calculatedHy. But we need to calculateEx. The solution of Eq. (4.46) has the form

Ex = Em(z)e
[i(ωt−βx)] (4.48)

where for each regionEm(z) can be written as

Em(z) =





( −iδ
ǫ0ωn1

2 )(Ce−δz), z ≥ 0

( iκ
ǫ0ωn2

2 )(−Csin κz + D cos κz), 0 ≥ z ≥ −Rz

( iδ
ǫ0ωn1

2 )(CcosκRz − D sin κRz)e
δ(z+Rz), z ≤ −Rz

(4.49)

Now to satisfy the boundary condition we match the functionsat the above equation at

the interfacesz = 0 andz = −Rz. But it is not evident that the solutions obey the boundary

conditions. For this reason we have to make an extra job. We apply the boundary conditions

which lead to

δ

n1
2
C+

κ

n2
2
D = 0,

(
κ

n2
2
sin κRz −

δ

n1
2
cos κRz

)
C+

(
κ

n2
2
cos κRz +

δ

n1
2
sin κRz

)
D = 0.

This homogeneous linear system has non-trivial solution only if determinant vanishes;

δ

n1
2

(
κ

n2
2
cosκRz +

δ

n1
2
sin κRz

)
− κ

n2
2

(
κ

n2
2
sin κRz −

δ

n1
2
cosκRz

)
= 0, (4.50)

or

(
2δκ

n1
2n2

2

)
cosκRz +

(
δ2

n1
4
− κ2

n2
4

)
sin κRz = 0, (4.51)

which leads to,

tan κRz =
2
(

δ
n1

2

)(
κ

n2
2

)

(
κ

n2
2

)2
−
(

δ
n1

2

)2 . (4.52)
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We can write the above equation using the double angle formula for tangent and that leads a

second order algebraic equation with the solutions in the next form

1. For even TM modes;

tan (κ̃) =
δ̃n2

2

κ̃n1
2

(4.53)

2. For odd TM modes;

tan (κ̃) = − κ̃n1
2

δ̃n2
2
, (4.54)

Here we substituted for̃κ = 1
2
Rzκ and forδ̃ = 1

2
Rzδ. Then Eq. (4.53) and Eq. (4.54)

give the eigenvalue equations for symmetric slab waveguides for even and oddTM modes

respectively.

Now we have two implicit equations, (4.53) and (4.54). As mentioned previously a

result for every giveñδ yields several values for̃κ. The used iteration method to find guided

TE modes can be used to find guidedTM modes.

In the next subsection we present the mode profiles for confined modes and radiation

modes explicitly.

4.1.3. Mode Profiles of Symmetric Dielectric Waveguide Slab

We can find the band diagram for symmetric waveguide slab as inFig. (4.4). In the

figure the red line isω = c
n1

β, the green line isω = c
n2

β.

The confined modes appear in the area between the red and the green lines. The modes

above the red line are radiation modes. The dashed lines areTE modes. The first dashed line

is evenTE mode and the second dashed line is oddTE mode. The continuous solid lines

areTM modes. The first continuous line is evenTM mode and the second continuous line is

oddTM mode.

Now, we want to show same examples of the mode profiles. To do this we chose a

point on the x-axisβa/2π = 0.6 and we put a blue line along this point. The modes profiles

of the examples chosen on the points which ones are intersections of this blue lines and modes.

As previously indicated the confined modes are under the red line. There are only

5 TE confined modes, shown with dashed lines and5 TM confined modes, shown with
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Figure 4.4. Band diagram of Symmetric Dielectric WaveguideSlab. Refraction in-
dexes aren1 = 1, n2 = 3.6,Rz = a, a is a period of the cell, all cell is41a.
The cell is taken in z-direction and light propagates in x-direction. The
structure of the band diagram is shown in Fig. (4.2). The banddiagram is
calculated by using MPB program.

continuous solid lines. The mode profiles of the first4 TE andTM confined modes are

shown in Fig. (4.5) and Fig. (4.6), respectively. The vertical dashed lines onz = −Rz and

z = 0 represent the limits of the guiding layer. Here as mentionedbefore all confined modes

are well confined in the guiding layer, but decrease exponentially outside the guiding layer,

which is obvious in the both figures.

The radiation modes are above the red line. There areTE radiation modes andTM

radiation modes. The mode profiles of the someTE andTM radiation modes are shown in

Fig. (4.7) and Fig. (4.8), respectively. Again the verticaldashed lines onz = −Rz andz = 0

represent the limits of the guiding layer. In this zone, radiation modes are not well confined

in the guiding layer because they are not decreasing exponentially outside the guiding layer.

Contrarily outside of the guiding layer modes exist, and dueto the symmetrical structure,

mode is symmetrical in the upper and lower slabs.
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Figure 4.5.TE Confined Modes for Symmetric Dielectric Waveguide Slab. Y-axis
shows Ey component of the electric field, and x-axis shows thez direction
of the waveguide slab.
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Figure 4.6.TM Confined Modes for Symmetric Dielectric Waveguide Slab. Y-axis
shows Hy component of the magnetic field, and x-axis shows thez direc-
tion of the waveguide slab.
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Figure 4.7.TE Radiation Modes for Symmetric Dielectric Waveguide Slab. Y-axis
shows Ey component of the electric field, and x-axis shows thez direction
of the waveguide slab.
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Figure 4.8.TM Radiation Modes for Symmetric Dielectric Waveguide Slab. Y-axis
shows Hy component of the magnetic field, and x-axis shows thez direc-
tion of the waveguide slab.
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4.2. ASYMMETRIC DIELECTRIC WAVEGUIDE SLABS

In integrated optic design, mostly waveguides are not symmetric. Therefore, to con-

sider this case, we will study propagation of confined modes of asymmetric slab waveguide

shown in Fig. (4.9)

Figure 4.9. Asymmetric waveguide slab.

The index profile of the asymmetric slab waveguide is given by

n(z) =






n1, 0 < z

n2, −Rz < z < 0

n3, z < −Rz

(4.55)

whereRz is the thickness of the core,n2 is the refraction index of the core andn1 andn3 are

the refraction indexes of the upper and lower bounds respectively. To get guided modes, the

refraction index of core must be greater then claddings. Forour case we taken2 > n3 > n1.

Now our task is to find these guided modes.

The modes of the waveguide slab can be classified as TE and TM modes. TE modes

have their electric field perpendicular to plane of propagation (xz-plane) with only have the

field componentsEy, Hx andHz while TM modes have the field componentsHy, Ex andEz
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4.2.1. Guided TE Modes

The guided TE modes can be find by solving Eq. (4.15) forEy component. Since we

can getHx andHz interns ofEy component using (4.2) and (4.3) (for the case∂/∂y = 0,

Hy = 0, Ex = 0 andEz = 0), we can determine all TE modes. The solution of Eq. (4.15) for

Ey component is in the form of

Ey = Em(z)e
[i(ωt−βx)] (4.56)

where for each regionEm(z) can be written as

Em(z) =





Ae−δz , z ≥ 0

A cosκz + B sin κz, 0 ≥ z ≥ −Rz

(A cosκRz − B sin κRz)e
δ(z+Rz), z ≤ −Rz

(4.57)

where A,B are the constants and the parametersκ, δ andγ are

δ =

[
β2 −

(n1ω

c

)2]1/2
(4.58)

κ =

[(n2ω

c

)2
− β2

]1/2
(4.59)

γ =

[
β2 −

(n3ω

c

)2]1/2
(4.60)

Hx andHz components in terms ofEy as follows,

Hx =
−i

µ0ω

∂Ey

∂z
and Hz =

β

µ0ω
Ey. (4.61)

To get solutions the tangential component ofEy andHx must be continuous at the interfaces,

whereHm for the solution of the equationHx = Hm(z)e
[i(ωt−βx)] is given below;

Hm(z) =





( iδ
µ0ω

)Ae−δz, z ≥ 0

( iκ
µ0ω

)(A sin κz − B cos κz), 0 ≥ z ≥ −Rz

(−iγ
µ0ω

)(A cos κRz − B sin κRz)e
γ(z+Rz), z ≤ −Rz

(4.62)
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Now we match the magnitude and derivatives of the TE mode functions at the interfacesz = 0

andz = −Rz, which leads to

δA + κB = 0,

(κ sin κRz − γ cos κRz)A + (κ cosκRz + γ sin κRz)B = 0,

This homogeneous system has solution only if determinant vanishes;

δ(κ cosκRz + γ sin κRz)− κ(κ sin κRz − γ cosκRz) = 0, (4.63)

or

cosκRz(δκ+ κγ) + sin κRz(δγ − κ2) = 0, (4.64)

which leads to,

tan κRz =
κ(δ + γ)

(κ2 − δγ)
. (4.65)

The right hand side of the equation can be written as;

κ(δ + γ)

(κ2 − δγ)
=

(κRz)(δRz + γRz)

(κRz)2 − (δRz)(γRz)
(4.66)

whereδ, κ andγ given in (4.58), (4.59) and (4.60). This equation is the modecondition

equation for TE modes, for a given set of refractive indices,n1, n2 andn3 andRz. The same

iteration method can be followed as the symmetric waveguidecase to get (ω, β).
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4.2.2. Guided TM Modes

The guided TM modes can be calculated by a similar analysis. TM modes have the

field componentsHy, Ex andEz.

Hy = Hm(z)e
[i(ωt−βx)] (4.67)

where for each region the continuity condition ofHy leads forHm(z)

Hm(z) =






Ce−δz, z ≥ 0

Ccos κz + D sin κz, 0 ≥ z ≥ −Rz

(Ccos κRz − D sin κRz)e
γ(z+Rz), z ≤ −Rz

(4.68)

where C,D are the constants and the parametersδ, κ andγ are given in (4.58), (4.59) and

(4.60). AlsoEx andEz can be written interns ofHy as follows

Ex =
i

ǫ0n2ω

∂Hy

∂z
, and Ez =

−β

ǫ0n2ω
Hy. (4.69)

Ex = Em(z)e
[i(ωt−βx)] at the two interfaces can be written as

Em(z) =





−iδ
ǫ0n1

2ω
Ce−δz , z ≥ 0

iκ
ǫ0n2

2ω
(-Csin κz + D cosκz, 0 ≥ z ≥ −Rz

iγ
ǫ0n3

2ω
(CcosκRz − D sin κRz)e

γ(z+Rz), z ≤ −Rz

(4.70)

Now we match the magnitude and derivatives of the TM mode functions at the interfaces

z = 0 andz = −Rz, which leads to

(
δ

n1
2

)
C+

(
κ

n2
2

)
D = 0,

(
κ

n2
2
sin κRz −

γ

n3
2
cos κRz

)
C+

(
κ

n2
2
cos κRz +

γ

n3
2
sin κRz

)
D = 0 (4.71)
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This homogeneous system has solution only if determinant vanishes;

[
δ

n1
2

(
κ

n2
2
cosκRz +

γ

n3
2
sin κRz

)]
−
(

κ

n2
2

(
(
κ

n2
2
sin κRz −

γ

n3
2
cosκRz

)]
= 0(4.72)

or dividing tocosκRz we get,

tanκRz =
κn2

2(δn3
2 + γn1

2)

(κ2n1
2n3

2 − δγn2
4)
. (4.73)

The right hand side of the equation can be written as;

κ(δ + γ)

(κ2 − δγ)
=

(κRz)(δRz + γRz)

(κRz)2 − (δRz)(γRz)
(4.74)

whereκ, δ andγ given in (4.58), (4.59), (4.60). This equation is the mode condition equation

for TM modes, for a given set of refractive indices,n1, n2 andn3 andRz. The same iteration

method can be followed as the symmetric waveguide case to get(ω, β).

4.2.3. Mode Profiles of Asymmetric Dielectric Waveguide Slab

We can find the band diagram for asymmetric waveguide slab as in Fig. (4.10). In the

figure the red line isω = c
n1

β, the yellow line isω = c
n3

β and the green line isω = c
n2

β.

The band diagram in the figure divided to three parts. Radiation modes, slab modes

and finite number confined modes.
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Figure 4.10. Band Diagram for Asymmetric Dielectric Waveguide Slab. Refraction in-
dexes aren1 = 1, n2 = 3.61, n3 = 1.58 Rz = a, a is a period of the
cell. The length of the cell is41a. The cell is taken in z-direction and light
propagates in x-direction.

Now, we want to show same examples of the mode profiles. To do this we chose a

point on the x-axisβa/2π = 0.6 and we put a blue line along this point. The modes profiles

of the examples chosen on the points which ones are intersections of this blue lines and modes.

The confined modes appear in the area between the green and theyellow lines. There

are only3 TE confined modes, shown with dashed lines and3 TM confined modes, shown

with continuous solid lines. The first dashed line is even TE mode and the second dashed line

is odd TE mode. The continuous solid lines are TM modes. The first continuous line is even

TM mode and the second continuous line is odd TM mode. The modeprofiles of the first3

TE andTM confined modes are shown in Fig. (4.11) and (4.12), respectively. The vertical

dashed lines onz = Rz andz = 0 represent the limits of the guiding layer. Here as mentioned

before all confined modes are well confined in the guiding layer, but decrease exponentially

outside the guiding layer, which is obvious in the both figures
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Figure 4.11.TE Confined Modes for Asymmetric Dielectric Waveguide Slab. Y-axis
shows Ey component of the electric field, and x-axis shows thez direction
of the waveguide slab.
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Figure 4.12.TM Confined Modes for Asymmetric Dielectric Waveguide Slab. Y-axis
shows Hy component of the magnetic field, and x-axis shows thez direc-
tion of the waveguide slab.

The slab modes between the yellow and red lines. There areTE slab modes andTM

slab modes. The mode profiles of the someTE andTM radiation modes are shown in Fig.

(4.13) and (4.14), respectively. Again the vertical dashedlines onz = Rz andz = 0 represent

the limits of the guiding layer. In this zone, slab modes are not well confined in the guiding

because these modes are decaying in the slab with refractionindexn1 but radiating in the slab

with refraction indexn3.
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Figure 4.13.TE Slab Modes for Asymmetric Dielectric Waveguide Slab. Y-axis shows
Ey component of the electric field and x-axis shows the z direction of the
waveguide slab.
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Figure 4.14.TM Slab Modes for Asymmetric Dielectric Waveguide Slab. Y-axis shows
Hy component of the magnetic field and x-axis shows the z direction of the
waveguide slab.

The radiation modes are above the red line. There areTE radiation modes andTM

radiation modes. The mode profiles of the someTE andTM radiation modes are shown in

Fig. (4.15) and (4.16), respectively. Again the vertical dashed lines onz = Rz andz = 0

represent the limits of the guiding layer. In this zone, radiation modes are not well confined

in the guiding layer because they are not decreasing exponentially outside the guiding layer.

Contrarily outside of the guiding layer modes exist, and dueto the asymmetrical structure,

mode is asymmetric in the upper and lower slabs.
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Figure 4.15.TE Radiation Modes for Asymmetric Dielectric Waveguide Slab.Y-axis
shows Ey of the electric field, and x-axis shows the z direction of the
waveguide slab.
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Figure 4.16.TM Radiation Modes for Asymmetric Dielectric Waveguide Slab.Y-axis
shows Hy components of the magnetic field, and x-axis shows the z direc-
tion of the waveguide slab.
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CHAPTER 5

PHOTONIC CRYSTAL WAVEGUIDE SLAB

(PCW-SLAB)

Photonic crystal waveguides allow only certain electromagnetic wave modes to prop-

agate inside the structure. Because of this characteristic, photonic crystal waveguides can be

used to control light propagation in the integrated circuitdesign. But such integrated circuit

designs can be realized in the three-dimensional system. This suggest us to use the PCW-

slabs.

PCW-slabs are 1 dimensional or 2 dimensional periodic structures with a finite thick-

ness in vertical z-direction. They achieve light confinement by using the effect of 2D-photonic

crystal in the x-y plane and in the vertical direction by refractive index contrast.

Figure 5.1. PCW-slab

In general the PCWG-slab consists of a guiding layer sandwiched between two finite

bounded media as shown in Fig. (5.1). If two bounding media isidentical then it is called

symmetric PCW-slab (ǫup = ǫdown) . If two bounding media is not identical then waveguide

called asymmetric PCW-slab (ǫup 6= ǫdown). So we can say that symmetric waveguides are a

special case of the asymmetric ones. For light confinement, the refractive index of the guiding
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layer must be greater than that of the surrounding medium andthe thickness of the guiding

layer is typically of the order of a wavelength.

The outline of this chapter is as follows; firstly we will givea general mathematical

formulation of PCW-slabs as eigenvalue problem forE andH respectively. The formulations

are (3NX3N) problems. Then by using a similarity transformation we willdecrease the

dimension from(3NX3N) to (2NX2N). These discussed formalisms are the same for both

symmetric PCW-slabs and asymmetric PCW-slabs. The only difference is calculations of

structure factors (dielectric permittivity),ǫ, so at the last section, we will give the calculation

of ǫ for PCW-slab.

5.1. PCW-Slab as an Eigenvalue Problem

In this section our aim is formalize Maxwell equation forE andH in Eq. (4.10) and

Eq. (5.2) in the form of an eigenvalue problem. The result of these formalisms are the same

in both of the symmetric and asymmetric PCW slabs.

Maxwell’s equations in a macroscopic medium were previously written as

▽×
[

1

µ(r)
▽×E

]
+

1

c2
∂2

∂t2
ǫ(r)E = 0 (5.1)

▽×
[

1

ǫ(r)
▽×H

]
+

1

c2
∂2

∂t2
µ(r)H = 0 (5.2)

where the fields depend onr = r = xx̂ + yŷ + zẑ. Let’s write Fourier transformation forE

andH

E(r, t) = E(r, t) =

∫ ∞

−∞

dωE(r, ω)e−iωt (5.3)

H(r, t) = H(r, t) =

∫ ∞

−∞

dωH(r, ω)e−iωt (5.4)

Plugging Eq. (5.3) into Eq. (5.1) and Eq. (5.4) into Eq. (5.2)we obtain

∫ ∞

−∞

dωe−iωt

{
∇×

(
1

µ(r)
∇×E(r, ω)

)
− ω2

c2
ǫ(r)E(r, ω)

}
= 0 (5.5)

∫ ∞

−∞

dωe−iωt

{
∇×

(
1

ǫ(r)
∇×H(r, ω)

)
− ω2

c2
µ(r)H(r, ω)

}
= 0 (5.6)
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Considering the above equations since the Fourier transform of each term in curly braces

vanishes, the terms in curly braces must vanish too;

∇×
(

1

µ(r)
∇× E(r)

)
− ω2

c2
ǫ(r)E(r) = 0 (5.7)

∇×
(

1

ǫ(r)
∇×H(r)

)
− ω2

c2
µ(r)H(r) = 0 (5.8)

to simplify the notation of the fields we suppress theω dependence of the fields. We now

write the fields in the next form;

E(r) =

∫

allq
d3qE(q)eiq·r (5.9)

H(r) =

∫

allq
d3qH(q)eiq·r (5.10)

whereq = k + G, k = kx + ky + kz (herekx = βx̂ is in the propagation direction) and

G = Gxx̂+Gyŷ+Gzẑ. If we substitute Eq. (5.9) and Eq. (5.10) into Eq. (5.7) and Eq. (5.8)

respectively, we get

∇×
(

1

µ(r)
∇×

∫

allq
d3qE(q)eiq·r

)
− ω2

c2
ǫ(r)

∫

allq
d3qE(q)eiq·r = 0 (5.11)

∇×
(

1

ǫ(r)
∇×

∫

allq
d3qH(q)eiq·r

)
− ω2

c2
µ(r)

∫

allq
d3qH(q)eiq·r = 0 (5.12)

We can use the next vector identity to evaluate∇×
∫

allq d
3qE(q)eiq·r

∇× (gA) = g(∇×A)−A× (∇g) (5.13)
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recalling that∇ does not operate onq only operates onr we get

∇×
∫

allq
d3qE(q)eiq·r =

∫

allq
d3q ∇× [eiq·rE(q)]

=

∫

allq
d3q [eiq·r(∇× E(q))−E(q)× (∇eiq·r)]

=

∫

allq
d3q [0− E(q)× (∇eiq·r)]

=

∫

allq
d3q iq× E(q)eiq·r (5.14)

Since waveguide slab structure is periodic in yz-plane we can expandǫ(r), µ(r) and their

inverses as follows,

ǫ(r) = ǫ(r) =
∑

G

ǫ(G)eiG·r (5.15)

1

ǫ(r)
= η(r) = η(r) =

∑

G

η(G)eiG·r (5.16)

µ(r) = µ(r) =
∑

G

µ(G)eiG·r (5.17)

1

µ(r)
= ς(r) = ς(r) =

∑

G

ς(G)eiG·r (5.18)

The integral in Eq. (5.11) overq is over the entire reciprocal space. Now we broke the

reciprocal space into cells and reformulate it as in the nextform;

∫

allq
d3q g(q) −→

∫

cell
d3k

∑

G

g(k+G). (5.19)

Substituting Eq. (5.14) and Eq. (5.16) into Eq. (5.11) and using the new formalism in Eq.

(5.19) we get

∇×
[(
∑

G
′′

ς(G
′′

)eiG
′′

·r

)(∫

cell
d3k

∑

G
′

i(k+G
′

)× E(k+G
′

)ei(k+G
′

)·r

)]

−ω2

c2

(
∑

G
′′

ǫ(G
′′

)eiG
′′

·r

)(∫

cell
d3k

∑

G
′

E(k+G
′

)ei(k+G
′

)·r

)
= 0
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∫

cell
d3k

∑

G
′′

∑

G
′

ς(G
′′

)∇×
[
i(k+G

′

)×E(k+G
′

)ei(k+G
′

+G
′′

)·r

]

−ω2

c2

∫

cell
d3k

∑

G
′′

∑

G
′

ǫ(G
′′

)E(k+G
′

)ei(k+G
′

+G
′′

)·r = 0

taking the integral sign to the left calculating∇ we get;

∫

cell
d3k

∑

G
′′

∑

G
′

ei(k+G
′

+G
′′

)·r

[
ς(G

′′

)(k+G
′

+G
′′

)× [(k+G
′

)×E(k+G
′

)] +
ω2

c2
ǫ(G

′′

)E(k+G
′

)

]
= 0

LettingG ≡ G
′

+G
′′

and rearranging the equation we get,

∫

cell
d3k

∑

G

ei(k+G)·r

[
∑

G
′

ς(G−G
′

)(k+G)× [(k +G
′

)×E(k+G
′

)] +
ω2

c2

∑

G
′

ǫ(G−G
′

)E(k+G
′

)

]
= 0.

Now we will use Eq. (5.19)

∫

allq
d3qeiq·r

[
∑

G
′

ς(G−G
′

)(k+G)× [(k +G
′

)×E(k+G
′

)] +
ω2

c2

∑

G
′

ǫ(G−G
′

)E(k+G
′

)

]
= 0.

Since the Fourier transform of the term in braces vanishes, inside it is equal to0;

∑

G
′

ς(G−G
′

)(k +G)× [(k +G
′

)× E(k+G
′

)] +
ω2

c2

∑

G
′

ǫ(G−G
′

)E(k+G
′

) = 0.
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If we substituteE → H, ǫ → µ andς → η, we can obtain a similar equation forH

∑

G
′

η(G−G
′

)(k+G)× [(k+G
′

)×H(k+G
′

)] +
ω2

c2

∑

G
′

µ(G−G
′

)H(k+G
′

) = 0.

As a result now we have the last two equations are in the form ofeigenvalue equation

∑

G

ς(G−G
′

)(k+G)×
[
(k+G

′

)× E(k+G
′

)
]

︸ ︷︷ ︸
Ax

=

= −ω2

c2

∑

G
′

ǫ(G−G
′

)E(k+G
′

)

︸ ︷︷ ︸
λBx

, (5.20)

∑

G

η(G−G
′

)(k+G)×
[
(k+G

′

)×H(k+G
′

+ βx̂)
]

︸ ︷︷ ︸
Ax

=

= −ω2

c2

∑

G
′

µ(G−G
′

)H(k+G
′

)

︸ ︷︷ ︸
λBx

. (5.21)

5.1.1. Similarity Transformation

The equations (5.20) and (5.21) are3N×3N generalized eigenvalue problems, whiches

can be solved to findω for the given values ofk. The dimensions of the problem can be re-

duced by using a similarity transformation from3N × 3N to 2N × 2N .

From now on we will make calculations only forH and then at the end of the section,

we will pass fromH to E.

Let’s define

ê3 ≡ q

|q′| , ê2 ≡ ê3 × x̂

|ê3 × x̂| , ê1 ≡ ê2 × ê3 (5.22)
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whereq = k+G = (kx+Gx, ky +Gy, kz +Gz) andq′ = k+G′ = (kx+G′
x, ky +G′

y, kz +

G′
z). Only the direction of̂e3 is significant, becauseH mustn’t have any component at the

direction ofê3 since∇ ·H = 0. However̂e2 andê1 can be any orthogonal vectors such that

perpendicular tôe3. We can redefine components ofH in Cartesian basis(x̂1, x̂2, x̂3) and in

the defined basis (ê1, ê2, ê3) as,

{
Hi ≡ x̂i ·H in the cartesian basis

H̃i ≡ êi ·H in the defined basis

wherei = 1, 2, 3. Introducing a transition matrixsij by relating the two basis as the following

way

H =
3∑

i=1

êi(êi ·H) =
3∑

i=1

êi

[
êi ·
(

3∑

j=1

x̂jHj

)]
=

3∑

i=1

êi

[
3∑

j=1

(êi · x̂j)Hj

]

=

3∑

i=1

êi

(
3∑

j=1

sijHj

)
=

3∑

i=1

êiH̃i (5.23)

we getH̃i =
∑3

j=1 sijHj wheresij = (êi · x̂j) is an orthogonal matrix, in the next form, We

find the orthogonals matrix using our new basis, in the next form,

s =




q2y+q2z

|q|
√

q2y+q2z

−qxqy

|q|
√

q2y+q2z

−qxqz

|q|
√

q2y+q2z

0 qz√
q2y+q2z

−qy√
q2y+q2z

qx
|q|

qy
|q|

qz
|q|


 (5.24)

Let’s define an orthogonal3N × 3N matrixS, which is anN × N block dioganal matrix of

s matrix,SG,G′ ≡ δG,G′sG

S =




[
s
]
3x3

0 · · · 0

0
[

s
]
3x3

· · · 0

...
...

. . .
...

0 0 · · ·
[

s
]

3x3




NxN

.

By using similarity transformation with the help of theS matrix,SS† = S†S = 1, we rewrite
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Eq. (5.21) as,

Ax = λBx

SAS†Sx = λSBS†Sx

(SAS†)(Sx) = λ(SBS†)(Sx)

Ãx̃ = λB̃x̃. (5.25)

Now we evaluate the matrices̃A andB̃, bearing in mind thatA andB matrices areN × N

block matrices with3× 3 blocks. Firstly we start from̃A;

Ã = [SAS†]G,G′ =
∑

G′′

∑

G′′′

SG,G′′AG′′G′′′S†
G′′′G′

=
∑

G′′

∑

G′′′

δGG′′sGAG′′G′′′δG′′′G′s†G′

= sGAGG′s†G′ (5.26)

After some calculations we get̃A

Ã = η(G−G
′

)




− |q||q′|(qyq′y+qzq′z)√
q2y+q2z

√
q′2y +q′2z

− q′x|q|(−q′yqz+qyq′z)√
q2y+q2z

√
q′2y +q′2z

0

qx|q′|(q′yqz−qyq′z)√
q2y+q2z

√
q′2y +q′2z

− qxq′x(qyq
′

y+qzq′z)+(q2y+q2z)(q
′2
y +q′2z )√

q2y+q2z
√

q′2y +q′2z
0

0 0 0


 . (5.27)

If we restrict our work for a class of materials which have weak magnetic susceptibilities, and

assumeµ(r) = 1, thenµ(G − G′) = δGG′. That followsSBS† = I and we get the next

result;

∑

G′

η(G−G
′

)




− |q||q′|(qyq′y+qzq′z)√
q2y+q2z

√
q′2y +q′2z

− q′x|q|(−q′yqz+qyq′z)√
q2y+q2z

√
q′2y +q′2z

qx|q′|(q′yqz−qyq′z)√
q2y+q2z

√
q′2y +q′2z

− qxq′x(qyq
′

y+qzq′z)+(q2y+q2z)(q
′2
y +q′2z )√

q2y+q2z
√

q′2y +q′2z



[
H̃x

H̃y

]
=

ω2

c2

[
H̃x

H̃y

]

Once calculating̃H we can calculateH = S−1H̃ and then using the Maxwell equation

62



∇×H = ǫ0ǫ(r)∂E/∂t we can calculateE in the next form;

E(q
′

) = − 1

ωǫ0

[∑

G
′

ǫ(G−G
′

)

]−1

(q×H(q)).

As mentioned earlier, until now, all calculations are the same for symmetric and asym-

metric PCW-slabs. The only thing that creates the change is the dielectric permittivity,ǫ, so

at the next section we give some examples about the calculation of ǫ.

5.2. PCW-Slab Structure

We want to calculate the structure factors, which is called dielectric permittivity (ǫ).

The calculations will be hold for two different PCW-slabs, one of them is called 1D-LDWG

slab and the other is called 2D-LDWG slab. We will use these calculations at next chapter.

5.2.1. 1D-LDWG Slab Structure

In this example, we consider a 2D array of slabs with length2R sandwiched between

two dielectric mediumǫupper andǫlower respectively, as shown in Fig. (5.2). The length of the

middle part is2Rz. The slabs have a dielectric constantǫa and the background medium has a

dielectric constant ofǫb. The length of the waveguide is2Rd with a dielectric constant ofǫd.

The distance of the half of the defect slab to the half of the nearest slab isR1.

1D-LDWG slab structure is periodic in yz-plane so we only calculate over theyz

cooinates. The reciprocal lattice vectors areG = (2π
a
)(nyŷ + nzẑ). The Fourier coefficients
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ǫ(G) are calculated as

ǫ(G) =
1

Vcell

∫

cell

ǫ(r)e−i(G·r)d2r

=
1

Vcell
ǫup

∫ Ay

2

−Ay
2

e−iGyydy

∫ Az
2

−Az
2

e−iGzzdz

+
1

Vcell

(ǫb − ǫup)

∫ Ay
2

−Ay
2

e−iGyydy

∫ Rz

−Rz

e−iGzzdz

+
1

Vcell
(ǫa − ǫb)

MSCy∑

j=1

2 cos(G · bj)

∫ R

−R

e−iGyydy

∫ Rz

−Rz

e−iGzzdz (5.28)

+
1

Vcell

(ǫd − ǫb)

∫ Rd

−Rd

e−iGyydy

∫ Rz

−Rz

e−iGzzdz

+
1

Vcell

(ǫdown − ǫup)e
−i(Gz·bzb)

∫ Ay
2

−Ay
2

e−iGyydy

∫ Rzb

−Rzb

e−iGzzdz

where,Rzb = ((Az/2)− Rz)/2, bj = R1 + (j − 1)a , bzb = Rz +Rzb, MSCy = 5.

5.2.2. 2D-LDWG Slab Structure

In this example, we consider a 3D array of circular cylindrical rods of radiusR sand-

wiched between two dielectric mediumǫupper andǫlower respectively, as shown in Fig. (5.3).

The length of the middle part is2Rz. The circular cylindrical rods have a dielectric constant

ǫa and the background medium has a dielectric constant ofǫb. The length of the waveguide is

2Rd with a dielectric constant ofǫd. The distance of the half of the defect slab to the half of

the nearest circular cylindrical rod isR1.

The structure is periodic in 3D. The reciprocal lattice vectors areG = (2π
a
)(nxx̂ +
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nyŷ + nzẑ). The Fourier coefficientsǫ(G) are calculated as

ǫ(G) =
1

Vcell

∫

cell

ǫ(r)e−i(G·r)d3r

=
1

Vcell
ǫup

∫ Ax
2

−Ax
2

e−iGxxdx

∫ Ay

2

−Ay
2

e−iGyydy

∫ Az
2

−Az
2

e−iGzzdz

+
1

Vcell

(ǫb − ǫup)

∫ Ax
2

−Ax
2

e−iGxxdx

∫ Ay
2

−Ay
2

e−iGyydy

∫ Rz

−Rz

e−iGzzdz

+
1

Vcell
(ǫa − ǫb)

MSCy∑

j=1

2 cos(G · bj)

∫ 2π

0

∫ R

0

re−iG·rdrdθ

∫ Rz

−Rz

e−iGzzdz (5.29)

+
1

Vcell
(ǫd − ǫb)

∫ Ax
2

−Ax
2

e−iGxxdx

∫ Rd
2

−Rd
2

e−iGyydy

∫ Rz

−Rz

e−iGzzdz

+
1

Vcell

(ǫdown − ǫup)e
−i(Gz·bzb)

∫ Ax
2

−Ax
2

e−iGxxdx

∫ Ay
2

−Ay
2

e−iGyydy

∫ Rzb

−Rzb

e−iGzzdz

where,Rzb = ((Az/2)− Rz)/2, bj = R1 + (j − 1)a , bzb = Rz +Rzb, MSCy = 5.
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Figure 5.2. 1D-LDWG slab.
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Figure 5.3. 2D-LDWG slab.
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CHAPTER 6

L-SHAPED PHOTONIC CRYSTAL WAVEGUIDE SLAB

In this chapter we present photonic crystal line defect waveguide slabs to bend light.

The structures are combination of 1 dimensionally periodicwaveguide slab (1D-LDWG slab)

and 2 dimensionally periodic line defect waveguide slab (2D-LDWG slab).

1D-LDWG slab is not periodic in the direction of propagation. Therefore light will be

guided with much less loss in such a waveguide due to lesser manufacturing imperfections as

a result of its much simpler geometry Taniyama et al. (2005)-Sözüer and Sevim (2005). So

1D-LDWG slab is a good option if light would travel straight.

On the other hand 2D-LDWG slab is periodic into two dimensions, thus it has sensi-

tivity to imperfections during manufacturing, that causesto high losses and limits their usage

to guide light over long distances Hughes et al. (2005), Kuramochi et al. (2005). Besides,

the high dispersion of 2D-LDWG slab limits their used bandwidth. So although 2D-LDWG

slab is not a good choice for light to travel straight in it forlong distances, it is still the most

convenient geometry to bend the light through a90◦ turn Chutinan et al. (2003).

We will use the 1D-LDWG slab for the straight sections and usea 2D-LDWG slab for

the corners. By this way, the wave travels with little loss through the straight sections, turns

through sharp corner with little bending loss and then re-enters the 1D-LDWG slab region to

travel for another long straight segment.

L-shaped photonic crystal line defect waveguide structurein 2D was previously worked

in the article Sami Sözüer and DUYGU ŞENGÜN (2011). The obtained transmission result

is nearly%100 for (βa/2π, ωa/2π) = (0.68, 0.2667). We examine the3D version of this

approach in terms of transmission.

In this chapter we briefly discuss the waveguide structures in 2D and3D, then we

give information about mode polarization and mode couplingof the band diagrams. After we

show band diagrams for silica silicon waveguide slab and airsilicon waveguide slab for each

one symmetric and asymmetric cases and discuss on transmission results.
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6.1. Waveguide Structures in 2D

In order to understand thoroughly the3D structure we start from analogous2D struc-

ture. The3D structures can be converted to2D by consideringz = 0 plane of view. In two

dimensions we will work on two forms. We will call them as ”silica silicon waveguide” and

”air silicon waveguide”. The only difference between the forms are background materials. In

the ”silica silicon waveguide” we use silica as a backgroundwhile in the ”air silicon waveg-

uide” we use air. In Fig. (6.2) we see the2D version of the forms which is common for both

of the structures.
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Figure 6.2. L-shaped photonic crystal line defect waveguide in 2D on the top, geomet-
rical details of line defect waveguide on the bottom.
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In Fig. (6.2) we see that, the silicon slabs with thicknessda = 0.179a, where a is

lattice constant, and with dielectric constant ofǫa = 13 (color in black) immersed in the

silica background withǫb = 2.25 for the ”silica silicon waveguide” and for the ”air silicon

waveguide” air background withǫb = 1 is used (color in gray). Here, we formed the defect by

removing one row of dielectric slabs and by placing a dielectric slab of thicknessd = 0.3184a

and with dielectric constant ofǫd = 13. The corner element designed from square lattice of

silicon rods of radiusR = 0.2387a and immersed in a silica background. The line defect is

formed by removing one row of dielectric rods and by extending the core of the 1D-LDWG.

Rbend is2d and dsepar is0.2a.
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Figure 6.3. ”Silica silicon waveguide”. The overlapped band diagrams of 1D-LDWG
in green color and 2D-LDWG in black color.

The corresponding band diagrams of the structures for transverse electric (TE) modes

with Ex = 0, Ey = 0, Ez 6= 0 are given in Fig. (6.3) and in Fig. (6.4) for the ”silica silicon

waveguide” and for the ”air silicon waveguide”, respectively.

69



 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0  0.2  0.4  0.6  0.8  1

ω
a/

2π
c

βa/2π

  

Figure 6.4. ”Air silicon waveguide.” The overlapped band diagrams of 1D-LDWG in
green color and 2D-LDWG in black color.

The green bands show the propagation modes for 1D-LDWG. The black bands show

the propagation modes for 2D-LDWG. Since our proposed structures are combinations of 1D-

LDWG and 2D-LDWG light should be able to propagate in the both. This is why we give the

overlapped graphs for structures. When the ”silica siliconwaveguide” in Fig. (6.3) is com-

pared with the ”air silicon waveguide” in Fig. (6.4), we see that the band gap is bigger at ”air

silicon waveguide” because of the high contrast in the dielectric constants.

The band diagrams in the figures are modelled using the supercell method with a

supercell size ofAx × Ay. We usedAx = a andAy = 11a for 1D-LDWG, and for 2D-

LDWG, we usedAx = 11a andAy = 11a. The supercell sizes are adjusted to ensure that the

guided mode is well contained within the supercell.

6.2. Waveguide Structures in 3D

At the previous section we presented ”silica silicon waveguide” and ”air silicon waveg-

uide” in 2D. Now we give the structures the third dimension by giving them a height,”Rz”,

and sandwiching them into the two slabs. We will name them according to the above and

below slabs, symmetric or asymmetric. If the waveguide is surrounded by air from above and
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below, that gives it a symmetrical feature, so we will call itsymmetric. If the waveguide is

surrounded by air from above and silica from below, that gives it a asymmetrical feature, so

we will call it asymmetric. In this way we can designate the structures as fallows; symmetric

silica silicon waveguide slab (sss-wgs), asymmetric silica silicon waveguide slab (ass-wgs),

symmetric air silicon waveguide slab (sas-wgs) and asymmetric air silicon waveguide slab

(aas-wgs) as shown the below.

Silica silicon waveguide slab

{
Symmetric silica silicon waveguide slab (sss-wgs)

Asymmetric silica silicon waveguide slab (ass-wgs)

Air silicon waveguide slab

{
Symmetric air silicon waveguide slab (sas-wgs)

Asymmetric air silicon waveguide slab (aas-wgs)

No matter what the name is all of the structures are a combination of 1D-LDWG slab and 2D-

LDWG slab. At the figures (5.2) and (5.3) we define the names of the values for 1D-LDWG

slab and 2D-LDWG slab respectively.

The table (6.1) give the dielectric values for the each variations. In this table the

structures are given by their shortened names. Since the dielectric constants are the same for

1D-LDWG slab and 2D-LDWG slab we have not specified separately.

Dielectric Constants sss-wgs ass-wgs sas-wgs aas-wgs

ǫa 13 13 13 13
ǫb 2.25 2.25 1 1
ǫd 13 13 13 13
ǫup 1 1 1 1
ǫdown 1 2.25 1 2.25

Table 6.1. Dielectric values for each variations.
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6.3. Mode Polarization

For photonic crystals in 1D and 2D, the fields are divided intotwo polarizations by

symmetry: transverse electric (TE) modes, in which no electric field in the direction of propa-

gation (in our caseEx = 0) and transverse magnetic (TM) modes, in which no magnetic field

in the direction of propagation (in our caseHx = 0).

We can see 2D-LDWG band diagrams of ”silica silicon waveguide” and ”air silicon

waveguide” in Fig. (6.6) and in Fig. (6.8) respectively. TE modes are shown in Fig. (6.6a)

and Fig. (6.8a), TM modes are shown in Fig. (6.6b) and Fig. (6.8b), and mixed modes are

shown in Fig. (6.6c) and Fig. (6.8c).
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Figure 6.6. 2D-LDWG band diagrams of ”silica silicon waveguide” for TE modes, TM
modes and for mixed modes.
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Figure 6.8. 2D-LDWG band diagrams of ”air silicon waveguide” for TE modes, TM
modes and for mixed modes.

But for the photonic crystal slab modes in 3D, they can not be divided into two po-

larizations. They are included all the modes. That means onecan not get band structures for

slab modes separately as Fig. (6.6a) or Fig. (6.6b), but one gets only graphic as Fig. (6.6c).

This is because of the lack of translational symmetry in the vertical direction. Therefore the

slab modes are classified in terms of transverse electric like (TE-like) modes and transverse

magnetic like (TM-like) modes.

Looking the field components of the modes, we can understand if the mode is TE-like

or TM-like. The modes and corresponding field components areshown in the table (6.2), the

propagating wave assumed in thex̂− direction.
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Mode Ey Ez Ex Hy Hz Hx

TE 6= 0 6= 0 0 6= 0 6= 0 6= 0
TE-like 6= 0 6= 0 ≈ 0 6= 0 6= 0 6= 0

TM 6= 0 6= 0 6= 0 6= 0 6= 0 0
TM-like 6= 0 6= 0 6= 0 6= 0 6= 0 ≈ 0

Table 6.2. Mode polarizations.

In the rest of the work, we study on TE-like modes. The table shows the difference

between TE mode and TE-like modes for electric field components. The difference is while

Ex component in TE mode equal to0, for TE-like modesEx component is close to0.

6.4. Mode Coupling

After mode polarization another important issue for our designs is the mode coupling.

For the guidance of light, the proposed system has two important elements:

1) The guided modes of 1D-LDWG slabs and 2D-LDWG slabs must be coupled. So we want

to find the guided mode which will propagate in these structures in the same time. On account

of this it is important to see matched band diagram to decide at which values it is possible to

work.

2) The chosen coupled frequency must be in the 2D-LDWG slabs band gap to prevent loss for

90◦ turning.

By providing these two items we will design silica silicon waveguide slab and air

silicon waveguide slab.

6.5. Silica Silicon Waveguide Slab

In this section we will present silica silicon waveguide slab for symmetric and asym-

metric cases. For each case we will show the band diagrams, mode coupling of the structures.
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6.5.1. Symmetric Silica Silicon Waveguide Slab

We show the symmetric silica silicon waveguide slab in Fig. (6.9). Here the waveg-

uide is surrounded by air from above and below. At the middle of the structure, silica is used

as a background material and silicon rods and slabs are immersed in the silica background.

Figure 6.9. Symmetric silica silicon waveguide slab.

The band diagram of the symmetric silica silicon waveguide slab are studied for 1D-

LDWG slab and 2D-LDWG slab, both for symmetric case.

The Figs. (6.10) and (6.11) show band diagrams of 1D-LDWG in Fig. (6.10) and

1D-LDWG slab in Fig. (6.11). Here simultaneously two figuresare shown together. The

reason is that we want to do comparison between the two. The Fig. (6.10) shows silica silicon

waveguide for TE modes, in this figure the first fundamental TEmode is the guided mode in

the line defect. The Fig. (6.11) shows silica silicon waveguide slab for TE-like modes, in this

figure the first fundamental TE-like mode is the guided mode inthe line defect. If we compare

the two figures, we see that Fig. (6.11) has extra modes because of the 3 dimensionality of the

structure and also represents a mixture of TE-like and TM-like modes.
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Figure 6.10. Band diagrams of silica silicon waveguide (1D-LDWG)
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Figure 6.11. Band diagrams of symmetric silica silicon waveguide slab (1D-LDWG Slab).

The Figs. (6.12) and (6.13) show band diagrams of 2D-LDWG in Fig. (6.12) and

2D-LDWG slab in Fig. (6.13). The Fig. (6.12) shows silica silicon waveguide for mixed

modes. The Fig. (6.13) shows silica silicon waveguide slab for mixed modes. When we

compare the band diagrams of 2D-LDWG and 2D-LDWG slab, we seewhile the band gap

(for mixed modes) for 2D-LDWG in Fig. (6.12) is wide, the bandgap for symmetric 2D-

LDWG slab gets narrow. Also if we compare the two figures, we see that Fig. (6.13) has extra

modes because of the 3 dimensionality of the structure. Nevertheless the shapes of the curves

preserved similar in 2D and 3D cases.
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Figure 6.12. Band diagrams of silica silicon waveguide (2D-LDWG)
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Figure 6.13. Band diagrams of symmetric silica silicon waveguide slab (2D-LDWG Slab).

As stated previously for the guidance of light, the guided modes of 1D-LDWG slabs

and 2D-LDWG slabs must be coupled. Because we want to find the guided mode which will

propagate in these structures in the same time. On account ofthis we show in Fig. (6.14)

the band diagrams of 1D-LDWG slab is with green color and 2D-LDWG slab is with black

color. The red dashed lines show matched line defect modes that is guided in the line defect,

and also guided in this defect even in the absence of photoniccrystal. As mentioned earlier,

there exist band gaps for TE-like modes between horizontal yellow lines. Consequently, the

red dashed lines through the band gap give us the TE-like mode, which will be guided in the
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line defect and won’t be reflected during the90◦ turning.
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Figure 6.14. Matched band diagrams of symmetric silica silicon waveguide slab.

6.5.2. Asymmetric Silica Silicon Saveguide Slab

Figure 6.15. Asymmetric silica silicon waveguide slab.

We present the asymmetric silica silicon waveguide slab in Fig. (6.15). It lies on

a silica substrate, that breaks the mirror symmetry in the vertical direction because of the

different dielectric constants of air and silica.

The band diagram of the asymmetric silica silicon waveguideslab are studied for 1D-

LDWG slab and 2D-LDWG slab, both for asymmetric case.
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The Fig. (6.16) shows silica silicon waveguide slab for TE-like modes, in this figure

the first fundamental TE-like mode is the guided mode in the line defect. The Fig. (6.17)

shows band diagrams of asymmetric silica silicon waveguideslab for mixed modes.
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Figure 6.16. Band diagram of asymmetric silica silicon waveguide, 1D-LDWG Slab,
mixed modes.

For the guidance of light,the guided modes of 1D-LDWG slabs and 2D-LDWG slabs

must be coupled. Because we want to find the guided mode which will propagate in these

structures in the same time. On account of this we show in Fig.(6.18) the band diagrams of

1D-LDWG slab is with green color and 2D-LDWG slab is with black color. The red dashed

lines show matched line defect modes that is guided in the line defect, and also guided in this

defect even in the absence of photonic crystal. As mentionedearlier, there exist band gaps for

TE-like modes between horizontal yellow lines. Consequently, the red dashed lines through

the band gap give us the TE-like mode, which will be guided in the line defect and won’t be

reflected during the90◦ turning.
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Figure 6.17. Band diagram of asymmetric silica silicon waveguide slab (2D-LDWG Slab).
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Figure 6.18. Matched band diagrams of asymmetric silica silicon waveguide slab.
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6.6. Air Silicon Waveguide Slab

In this section we will present air silicon waveguide slab for symmetric and asymmet-

ric cases. For each case we will show the band diagrams, mode coupling for the structures.

6.6.1. Symmetric Air Silicon Waveguide Slab

We show the symmetric air silicon waveguide slab in Fig. (6.19). Here the waveguide

is surrounded by air from above and below. At the middle of thestructure, air is used as a

background material and silicon rods and slabs are immersedin the air background.

Figure 6.19. Symmetric air silicon waveguide slab.

The band diagram of the symmetric air silicon waveguide slabare studied for 1D-

LDWG slab and 2D-LDWG slab, both for symmetric case.

The Fig. (6.21) shows band diagrams of 1D-LDWG in Fig. (6.21a) and 1D-LDWG

slab in Fig. (6.21b). Here simultaneously two figures are shown together. The reason is that

we want to do comparison between the two. The Fig. (6.21a) shows silica silicon waveguide

for TE modes, in this figure the first fundamental TE mode is theguided mode in the line

defect. The Fig. (6.21b) shows silica silicon waveguide slab for TE-like modes, in this figure

the first fundamental TE-like mode is the guided mode in the line defect. If we compare the

two figures, we see that Fig. (6.21b) has extra modes because of the 3 dimensionality of the

structure and also represents a mixture of TE-like and TM-like modes.
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Figure 6.21. Band diagrams of air silicon waveguide (1D-LDWG) and symmetric air
silicon waveguide slab (1D-LDWG Slab).
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The Fig. (6.23) shows band diagrams of 2D-LDWG in Fig. (6.23a) and 2D-LDWG

slab in Fig. (6.23b). The Fig. ( 6.23a) shows air silicon waveguide for mixed modes. The

Fig. (6.23b) shows air silicon waveguide slab for mixed modes. When we compare the band

diagrams of 2D-LDWG and 2D-LDWG slab, we see while the band gap (for mixed modes) for

2D-LDWG in Fig. (6.23a) is wide, the band gap for symmetric 2D-LDWG slab gets narrow.

Also if we compare the two figures, we see that Fig. (6.23b) hasextra modes because of the 3

dimensionality of the structure. Nevertheless the shapes of the curves preserved similar in 2D

and 3D cases.

83



 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0  0.2  0.4  0.6  0.8  1

ω
a/

2π
c

βa/2π

a

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0  0.2  0.4  0.6  0.8  1

ω
a/

2π
c

βa/2π

b

Figure 6.23. Band diagrams of air silicon waveguide (2D-LDWG) and symmetric air
silicon waveguide slab (2D-LDWG Slab).
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As stated previously for the guidance of light,the guided modes of 1D-LDWG slabs

and 2D-LDWG slabs must be coupled. Because we want to find the guided mode which will

propagate in these structures in the same time. On account ofthis we show in Fig. (6.24)

the band diagrams of 1D-LDWG slab is with green color and 2D-LDWG slab is with black

color. The red dashed lines show matched line defect modes that is guided in the line defect,

and also guided in this defect even in the absence of photoniccrystal. As mentioned earlier,

there exist band gaps for TE-like modes between horizontal yellow lines. Consequently, the

red dashed lines through the band gap give us the TE-like mode, which will be guided in the

line defect and won’t be reflected during the90◦ turning.
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Figure 6.24. Matched band diagrams of symmetric air siliconwaveguide slab.
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6.6.2. Asymmetric Air Silicon Waveguide Slab

We present the asymmetric air silicon waveguide slab in Fig.(6.25). It lies on a silica

substrate, that breaks the mirror symmetry in the vertical direction because of the different

dielectric constants of air and silica.

Figure 6.25. Asymmetric air silicon waveguide slab.

The band diagram of the asymmetric air silicon waveguide slab are studied for 1D-

LDWG slab and 2D-LDWG slab, both for asymmetric case.

The Fig. (6.26) shows air silicon waveguide slab for TE-likemodes, in this figure the

first fundamental TE-like mode is the guided mode in the line defect. The Fig. (6.27) shows

band diagrams of asymmetric air silicon waveguide slab for mixed modes.
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Figure 6.26. Band diagram of asymmetric air silicon waveguide, 1D-LDWG Slab,
mixed modes.
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Figure 6.27. Band diagram of asymmetric air silicon waveguide slab (2D-LDWG Slab).
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For the guidance of light,the guided modes of 1D-LDWG slabs and 2D-LDWG slabs

must be coupled. Because we want to find the guided mode which will propagate in these

structures in the same time. On account of this we show in Fig.(6.28) the band diagrams of

1D-LDWG slab is with green color and 2D-LDWG slab is with black color. The red dashed

lines show matched line defect modes that is guided in the line defect, and also guided in this

defect even in the absence of photonic crystal. As mentionedearlier, there exist band gaps for

TE-like modes between horizontal yellow lines. Consequently, the red dashed lines through

the band gap give us the TE-like mode, which will be guided in the line defect and won’t be

reflected during the90◦ turning.
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Figure 6.28. Matched band diagrams of asymmetric air silicon waveguide slab.
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6.7. Transmission Results

The next step is time domain simulation to prove if the designs works. Above, we give

the parameters for our proposed structure and also we shown the band diagrams for each of

the structures. Now we want to understand how much power turns the bend. To know this

we need to find transmission. Transmission of the bend can be defined as the ratio of the total

output flux measured after bend,Po, to total input flux for the corresponding 1D-LDWG slab,

Pi, which is given by

T = Po/Pi.

Therefore we calculated flux on yz-plane of the waveguide once for the straight 1D-LDWG

slab, and on xz-plane of the waveguide once for after the bendfor each of the structures.

The FDTD simulations have been performed using MEEP [22], which gives conve-

nience in using custom sources. We used a current source in the next form

Jm(r, t) = δ(x− xs)H(y, z, ω)exp

[−(t− t0)

2σ2

]
exp(−iωt)

whereJm(r, t) is a monochromatic source located atx = xs of frequencyω. It is enveloped

in a Gaussian packet with width△ω = 1/σ, whereσ is wavelength, in the frequency do-

main. H(y, z, ω) is the guided mode of the 1D-LDWG slab at the center frequencyω. We

useHx(y, z, ω), Hy(y, z, ω), Hz(y, z, ω) to generate a current source is in yz-plane in order to

excite TE-like modes. We call this source as “mode source”. The mode source excites only

itself, by this way the initial straight segment can be made very short, so considerably re-

ducing the simulation time, additionally yielding much more correct results for transmission.

Gaussian source is adjusted for the flux calculations until well after the fields have decayed to

1/10.000th of their peak values at the end of the waveguide where the flux-regions have been

placed.

We analysed the role of the interface between 1D-LDWG slab and 2D-LDWG slab,

which is previously defined as dsepar. That’s why while calculating the flux we take flux once

for the straight 1D-LDWG slab, and once for the structure in the Fig. (6.29). For each case

calculation dimensions are identical and locations of the flux regions are in the same place.

The transmission is taken as the ratio of the fluxes and measured from−0.4a to 1a increasing

in 0.1a steps. We observed that the transmission results averagelychanged only one percent.

Therefore we worked with the same dsepar value for all structures, it isdsepar = 0.2a.

In Fig. (6.30), we present the snapshots from our simulations of ”silica silicon waveg-

uide”, symmetric slab. The figure on the left is a snapshot when the frequencyωa/2πc =
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Figure 6.29.z = 0 slice from 3D slab is shown withdsepar = 0.2a. All parameters are
the same described for 3 dimensional system.
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Figure 6.30. FDTD simulations ofz = 0 slice from ”silica silicon waveguide” symmet-
ric slab. On the left the slab is at the frequency ofωa/2πc = 0.2967 which
is in the band gap. a, b and c show different plane sections forthe figure on
the left. On the right the slab is at the frequency ofωa/2πc = 0.2633which
is below the band gap. The wave is gaussian with width△(ωa/2πc) = 0.1.
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0.2967 is in the band gap0.2745 < ωa/2πc < 0.3077 of the 2D-LDWG structure. Therefore

there is no visible penetration into the corner element. Thetransmission is nearly lossless (%

97.23) as it is clear from the plane sectionsa, b andc of the structure. In contrast the figure on

the right is a snapshot when the frequencyωa/2πc = 0.2633, which is below the band gap of

the 2D-LDWG structure. This time the radiation penetrates visibly into the photonic crystal

and corner element so there is large leakage and transmission is low (% 57.06).

Figure 6.31.z = 0 slice from 3D single slab is shown. Single slab is a waveguide
without photonic crystal assistance.
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Fig. (6.32) shows the transmission for the ”silica silicon waveguide” as function of

frequency. The results are given for through the symmetric photonic crystal (red filled circles),

symmetric single slab (green blank circles), asymmetric photonic crystal (blue filled squares)

and asymmetric single slab (pink blank squares). Here single slab means a slab waveguide

without photonic crystal assistance as shown in Fig. (6.31). The transmission of the symmetric

photonic crystal is largest for frequencies inside the 2D-LDWG slab bandgap which lies in

the range0.2745 < ωa/2πc < 0.3077. On the other hand the transmission of the asymmetric

photonic crystal is smaller comparing the symmetric photonic crystal for frequencies inside

the 2D-LDWG slab bandgap which lies in the range0.2740 < ωa/2πc < 0.3018.
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Figure 6.32. Transmission result of MEEP according to different values ofωa/2πc for
the ”silica silicon waveguide”. All parameters are the samedescribed for
3D system.

Fig. (6.33) shows the transmission for the ”air silicon waveguide” as function of fre-

quency. The results are given for through the symmetric photonic crystal (red filled circles),

symmetric single slab (green blank circles), asymmetric photonic crystal (blue filled squares)

and asymmetric single slab (pink blank squares). Like the previous transmission results the

symmetric photonic crystal is largest for the frequencies inside the 2D-LDWG slab bandgap
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which lies in the range0.2985 < ωa/2πc < 0.3790. The transmission of the asymmetric

photonic crystal is smaller comparing the symmetric photonic crystal for frequencies inside

the 2D-LDWG slab bandgap which lies in the range0.3035 < ωa/2πc < 0.3683.

Let’s show the FDTD simulations of the symmetric silicon silica waveguide slab at a

frequency out of the photonic band gapω̃ = 0.2633 in Fig. (6.34) and at a frequency in the

photonic band gap,̃ω = 0.2966 in Fig. (6.35). Here we can see the effect of the photonic

band gap to bend light.
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Figure 6.33. Transmission result of MEEP according to different values ofωa/2πc for
the ”air silicon waveguide”. All parameters are the same described for 3D
system.

As a result we worked for TE modes in 1D-LDWG for the straight sections and for TE-

like modes in 2D-LDWG for the corner element. Here we presentthe maximum values of the

transmission results for worked examples in the Table (6.3). The best transmission is obtained

for symmetric air silicon waveguide slab is%98.32 but since in the real world this design is

not possible this data just given for theoretical realization. The second best transmission is

obtained for asymmetric air silicon waveguide slab is%97.43. If one examines where the

losses arise, they occur in two places.≈ %0.44 is dispersed at the transition between the
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Figure 6.34. FDTD simulations of the symmetric silicon silica waveguide slab at a fre-
quency out of the photonic band gap,ω̃ = 0.2633.
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Figure 6.35. FDTD simulations of the symmetric silicon silica waveguide slab at a fre-
quency in the photonic band gap,ω̃ = 0.2966.
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Structure
types

Frequency
(ωa/2πc)

Obtained
best trans-
mission
(%)

Lost in the transi-
tion between 1D-
LDWS and 2D-
LDWGS (%)

Lost
during
90°bend
(%)

sss-wgs
0.2967 97.23 1 1.77

ass-wgs
0.2907 94.96 1.16 3.88

sas-wgs
0.3685 98.32 0.45 1.23

aas-wgs
0.3522 97.43 0.44 2.13

Table 6.3. The best transmission results.

structures and≈ %2.13 is reflected at the moment of turning. The maximum transmission

is obtained for symmetric silica silicon waveguide slab is%97.23. ≈ %1 is dispersed at the

transition between the structures and≈ %1.77 is reflected at the moment of turning. The

maximum transmission is obtained for asymmetric silica silicon waveguide slab is%94.96.

≈ %1.16 is dispersed at the transition between the structures and≈ %3.88 is reflected at the

moment of turning.
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CHAPTER 7

CONCLUSION

We analyzed mathematical modeling of light propagation in Photonic Crystal Waveg-

uide Slab. We described Maxwell’s equations in periodic media with proper boundary con-

ditions as generalized eigenvalue problem for Hermitian operators. Two types of periodic

media we modeled; 1D-LDWGS and 2D-LDWS. Using unitary transformation we reduced

problem to block diagonal Hermitian eigenvalue problem. Bycombination of basic geometri-

cal photonic crystal slabs in 1D and 2D, we constructed some waveguides in silica substrates.

Solving the problem using the computer simulations we foundthe maximum transmission of

light propagation. Obtained the best transmission resultsare given in the previous chapter.
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