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ABSTRACT

MATHEMATICAL MODELLING OF LIGHT PROPAGATION IN
PHOTONIC CRYSTAL WAVEGUIDES

Photonic crystals are artificially engineered materialemehthe dielectric constant
varies periodically. A photonic band gap can be created bijtexing at the dielectric inter-
faces, which forbids propagation of light in a certain freqay range of light. This property
enables us to control light, which is normally impossibléhadonventional optics. Moreover,
by placing a linear defect into the photonic crystal, one canstruct a waveguide, which
keeps light inside the waveguide in the desired directiohusT by using photonic crystal
waveguides one can control light propagation in integratemlit devices.

The goal of this work is to provide a comprehensive undedstenof how to bend
light using photonic crystal waveguides. The purpose ig¢ate a 90 bend for line defect
photonic crystal assisted waveguides and present fulgetdimensional calculations with
optimized geometrical parameters that minimize the benltiss.

The scheme uses one-dimensional photonic crystal slabgwales for straight sec-
tions, and a corner element that employs a square photoystatwith a band gap at the
operating frequency..

The two different structures, with either silicon-silicawaith silicon-air are used in the
guiding photonic crystal layer. Furthermore, the guidiagdr is sandwiched between either
air on both top and bottom, or between air on top and silicatsate at the bottom, to serve
as the "cladding” medium. Calculations are presented fertithnsmission values of TE-like
modes where the electric field is strongly transverse to itteetion of propagation, with and
without the photonic crystal corner element for comparisde find that the bending loss can
be reduced to under 2%.



OZET

ISIéIN FOTONK KRISTAL DALGA KILAVUZUNDA YAYILIMININ
MATEMAT IKSEL MODELLEMES

Fotonik kristaller, dielektrik sabitinin periyodik olékalegistigi, yapay olarak diizen-
lenmis malzemelerdir. Fotonik bant araligi ise fotonilstale gonderilen 1s1gin, belli bir bant
arahgindaki frekanslarda yayiliminin yasaklanmasamha gelir. Bu 6zellik yardimiyla, ge-
leneksel optik ile normalde mimkin olmayan 1S1gin kohaltina alinmasini saglayabiliriz.
Ayrica, fotonik kristalin iine dogrusal bir kusur koyaralalga kilavuzu elde edilebilinir,
boylece bir tel nasil iinde akimi sakliyor ve onu tasigor®tonik kristal dalga kilavuzuda
dalga kilavuzunun iinde 15191 saklar ve onu istenilemg/dasir. Bu yol ile, fotonik kristal
dalga kilavuzlari sayesinde i1sik iletimini entegre desthazlarda kontrol edebiliriz.

Bu calismanin amaci, fotonik kristal dalga kilavuzldansigin bukilmesi konusunu
kapsamli bir sekilde incelemektr. Amag fotonik kristaktiekli ¢izgisel kusurlu dalga klavuzu-
nu 90 agi ile bukmek ve U¢ boyutlu hesaplamalarla bukmedsyn&kli kayiplari parame-
treleri optimize ederek minimuma indirmektir.

Onerilen ydntem ile 1sik duiz ilerlerken bir boyutta pyerdik dalga kilavuzu kullanilir,
IStk donecegi zaman iki boyutta periyodik kare orgulfotonik kristal icine girer, doniisiini
tamamlar ve tekrar diiz ilerlemek tizere bir boyutta petikaalga kilavuzunun igine girer.

Calismamizda kilavuz katmani olarak iki farkl yapi timde calisiimistir. Bu yapilar-
dan biri silika-silikon kullanilarak digeri ise hava-ikibn kullanilarak elde edilmistir. Ayrica,
kilavuz katmanini iki farkli sekilde calisiimistir. ildcisinde, kilavuz katmanini Uistten ve
alttan hava arasina alinmistir, ikincisinde ise kilavamianini Ustten hava ve alttan silika
arasina alinmistir.

Hesaplamalar TE-benzeri modlari icin verilmistir, TEAzeri modlar tanim olarak
elektrik alanin 1s1gin yayihm yoniuninde bilesenidegerinin0’a yakin oldugu durumdur.
Is1gin viraji donmeden dnce ve dondikten sonra edegerleri oranlanmisg, iletim bu orana
gore hesaplanmlstlriletim degeri grafiklerinde fotonik kristal dalga kilawuXullanilarak
tasarlanan yapilarla sadece dalga kilavuzu kullanilasértanmis yapilara ait sonuglar karsi-
lastirmali olarak verilmistir. Donmeden kaynaklanayiplarin 2%’nin de altina indirilebilin-
ice@i gosterilmistir.
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CHAPTER 1

INTRODUCTION

We are going day by day towards miniaturization and high d@geoday’s informa-
tion and communications technology. This brings to mindgbhestion, what could be faster
than electrons as the information carrier. The possiblevan$o this question is light, since
physically the fastest thing that can be manipulated byeturtechnology is light. Replace-
ment of electrons by light has several benefits. Light cavetriaster than electrons in the
medium, it can carry larger information than electrons aimdes photons are not strongly
interacting particles as electrons, this helps reduceggriesses.

The next question is how to use light as the information eairnistead of electrons.
Photonic crystals are ideally suited for this task. Phatanystals are very tempting for use
in a new generation of integrated circuit design becausleedf tinique ability to confine light
within certain regions of space.

The history of photonic crystals starts with the early ideadlectromagnetic wave
propagation in a periodic medium, which was studied by LoaglIBigh in 1887, that corre-
sponds to 1D photonic crystals.

After 100 years, in 1987, two independent works appearehtigaconsidered as the
starting point of the research field. One was the paper wasablo¥ovitch, titled "Inhibition
of spontaneous emission of electromagnetic radiationguaithree dimensionally periodic
structure” [Yablonovitch (1987)]. Yablonovitch’s idea sv understand controlling the spon-
taneous emission by modifying the photonic density of stafethe medium using periodic
dielectrics.

The second paper by Sajeev John was titled "Strong locadizatf photons in cer-
tain disordered dielectric super-lattices” [John (1987)hn’s aim was to understand how a
random refractive-index variation affects photon locatiian.

In 1994, Meade et al. first time studied a 2D periodic dieleatraveguide [Meade
et al. (1994)]. They showed that a linear defect mode in a@tiotband gap can act as
a waveguide for electromagnetic waves. They suggestedetdghis modes in bends, in y
couplers, waveguide tappers and other devices, where diedica loss causes problems. In
1996, Mekis et al. (1996) theoretically calculated shamdsan photonic crystal waveguides.
By numerical simulations, they got complete transmissiboeatain frequencies, and very
high transmissior{> 95%) over wide frequency ranges. They observed high transnmissio
even for 90 degrees bends with zero radius of curvature. Eb@émum transmission was %



as opposed t80% for analogous conventional dielectric waveguides. This @gerimentally
demonstrated by Lin et al. (1998) in 1998 and the transmmssfiiciency is found larger than
80%.

In 1999, Johnson et al. (1999) searched the guided modesiomb crystal slabs.
They analysed the properties of 2D periodic dielectriccttrres but in 3D. These structures
have a band gap for propagation in a plane and that use indeéxguo confine light in the
third dimension.

In 2000, Johnson et al. (2000), also published a paper abwdrlwaveguides in
photonic crystal slabs. Also in the same period, Loncat.€2800) designed and fabricated
photonic crystal planar circuits in silicon on silicon did&. Shinya et al. (2002) studied on
SOl-based photonic crystal line-defect waveguides. Sihaetime, there have been many
publications about the different kinds of photonic crystaveguides, Chutinan and Noda
(2000), Lin et al. (2000), Tokushima et al. (2000), Noda e{2000), Kafesaki et al. (2002),
Imada et al. (2006), Ishizaki and Noda (2009), Kawashimé& €2@10), Ishizaki et al. (2013).

1.1. Photonic Crystals

Photonic crystals are periodic artificial structures wraohtrol the motion of photons.
The periodicity is obtained by using materials with diffiereielectric constants.

a)

g4 4

z| ¥ :
1D 2D 2D

X
Periodic in x axis Periodic in x, y axes Periodic in X, y, z axes

Figure 1.1. Examples of photonic crystals; periodicall{tinin a), periodically in 2D
in b) and periodically in 3D in c).

Fig. (1.1) is an illustration of photonic crystals with vaus dimensionalities: a) rep-
resents 1D periodic photonic crystal since it is periodityam x direction. b) represents 2D
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periodic photonic crystal since it is periodic only in x andliyections. c) represents 3D pe-
riodic photonic crystal since it is periodic in X, y and z ditiens. The different colors in the
figure represent materials with different dielectric canss.

Similar to wires that keep electrical currents, we can aoiesta photonic crystal to
keep light in the desired direction. This ability to conttbé direction of light is gained by
photonic band gaps [Joannopoulos et al. (1997)].

Figure 1.2. If the incoming wavelength of light is in the aras a, then light at the
specific frequencies is evanescent.

To get a better understanding let’s work through an exanipléiis example silicon
circles, which form a square lattice, are placed in the adr.it$s an example for 2 dimen-
sionally periodic photonic crystal. light is sent throude tcircles as in Fig. (1.2). Heteis
the lattice constant. ki is of the order of the wavelength of incoming light, photoaigstal
won't let the light in the particular wavelength which leadphotonic band gap.

In Fig. (1.3), the band diagram of the example structurevergi Here the yellow
region is the photonic band gap. So if the frequency of incgmvave is in the yellow region

then it will not be able to propagate in the medium.
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Figure 1.3. Photonic band gap of silicon circles are plaodtie air.

As a result the photonic band gap forbids propagation ot ligla certain frequency
range of light. This property ensure us to control light teegme which is normally impossi-
ble with conventional means.

1.2. Photonic Crystal Waveguides

Where can we use the photonic band gaps? One of the apptisatigghotonic band
gaps is photonic crystal waveguides: Meade et al. (1994)isBe(1996), Mekis et al. (1998).
We can create a waveguide placing a line defect into the piotoystal. This line defect will
behave like a waveguide.

To show the effect of a line defect in the photonic crystaf’sleontinue with the
previous example. If we introduce a line defect into the phat crystal in Fig. (1.2) the band
diagram in Fig. (1.3) will slightly change as in Fig. (1.4).



wa’2mnc

0 0.2 04 0.6 0.8 1
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Figure 1.4. When we locate a defect into the structure we sextaa mode in the band gap.

In Fig. (1.4) the mode that appears inside the photonic bapdigthe line defect
mode. If one constructs a source with a frequency insidellogomic band gap, only this line
defect mode will propagate in the material.

The photonic crystal waveguides can also be used to benNgkis et al. (1996)].

In the single-core waveguide, guidance relies only on tot&rnal reflection so the
light propagates without loss, but when the single wavegtidns a sharp bend light is ra-
diated and lost at the bend. Hence there is a serious leakagkem to bend light using a
conventional single core waveguide.

In the photonic crystal assisted waveguide bend, sincé ¢ not escape because of
the photonic band gap at the corner, light will propagatéeut any loss in the waveguide.
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: :
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» b4

The single waveguide bend The photonic crystal assisted
waveguide bend

Figure 1.5. FDTD simulations of the single-core waveguldb bend and the photonic
crystal assisted waveguide bend. The single-core waveglath is excited
with a mode source that matches the guided mode at the guelgaeincy
in ). The photonic crystal assisted waveguide bend is exited awhode
source which is in the band gapiin

In Fig. (1.5) we see snapshots from FDTD simulations of sxglre waveguide bend
in a) and photonic crystal assisted waveguide bent)inin a) there is a serious leakage at
the corner, but i) light turns the bend without radiation.

So far we restricted our attention to purely two-dimensi@yatems. For the realistic
cases, one can want to examine the effects of vertical canénein the photonic crystal
waveguides or fabricate these structures with a finite treésk. This time we call the photonic
crystal waveguides in finite thickness as photonic crystaleguide slabs.

1.3. Photonic Crystal Waveguide Slabs

Photonic-crystal waveguide slabs are 1 dimensionally anfedsionally periodic di-
electric structures with a finite thickness in vertical diren. Photonic crystal waveguide
slabs have three-dimensional simple geometry, which sbis$ia thin guiding layer sand-
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wiched between two bounded media Johnson et al. (1999)sdatet al. (2000), Baba et al.
(2002), Kuchinsky et al. (2000) Loncar et al. (2000). Theyehaband gap in the propagation
plane and they use index-confinement in the third dimengibeir fabrication is easier than

three-dimensionally periodic photonic crystals. This lmphotonic crystal waveguide slabs
have been proposed as an alternative to 3 dimensionallygiephotonic crystals Kawashima

et al. (2010), Ishizaki et al. (2013).
Photonic crystal waveguide slabs must provide some camdito obtain perfect trans-

mission through bends in most of the integrated opticalidiesigns Johnson et al. (2000):

I. The waveguide must be periodic in the propagation dioecto propagate without re-

flections.
II. The waveguide must be single mode in the frequency range.

lll. The guided mode must be in the band gap of a photonic akystprevent radiation

losses.

=
R
333

I

e ew:
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2D-LDWGS

Figure 1.6. The proposed waveguide slab, which is a combimat 1D-LDWGS and
2D-LDWGS.

In this thesis, our aim is to design some novel corner elesngsing line defect pho-
tonic crystal slab waveguides for the integrated opticaluits. Basically, the studied corner
elements are a combination of 1D (1D-LDWG slab) and 2D péci(@D-LDWG slab) pho-

tonic crystal waveguide slabs.



The reason for this combination can be explained as folldasL. DWG is a good
option if light would travel straight. Therefore light wile guided with much less loss in
such a waveguide due to lesser manufacturing imperfectiersresult of its much simpler
geometry Taniyama et al. (2005), Sozuer and Sevim (20B&).also 1D-LDWG slab is not
useful to bend the light through a sharp turn because of ie@rgetry. Besides 2D-LDWG
is not a good choice for light to travel straight in it for lowijstances, it is still the most
convenient geometry to bend the light through a sharp turn.

1.4. Overview of the Thesis

In chapter2 we start from fundamental concepts. Firstly we give Maxiselquations
in inhomogeneous media which we then write as an Hermitigarealue problem with ap-
propriate boundary conditions. Secondly we introduce #greogic dielectric function, Bloch-
Floguet theorem and Brillouin zones.

In chapter3 we describe the Finite Difference Time Domain Method (FDTBY)
the 2D Yee cell. First we discretize Maxwell's Equations and them give the boundary
conditions and talk about PML.

In chapter4 we discuss dielectric waveguide slabs for symmetric ananasstric
cases. We will give the formalism for TE modes and TM modessoAle give the mode
profiles for waveguide slabs.

In chaptelb we give mathematical analysis of photonic crystal wavegsldbs (PCW-
Slab). First we define PCW-Slab as an eigenvalue problemn Weewill define a similarity
transformation. After we introduce PCW-Slab structurelfdrLDWG Slab and 2D-LDWG
Slab.

In chapter6 we talk about L-shaped PCW-Slab starting form waveguidectires
in 2D and then give waveguide structures in 3D. After we walkton mode polarization
and mode coupling. Then silica silicon waveguide slab angiacon waveguide slab for
symmetric and asymmetric cases are given.



CHAPTER 2

FUNDAMENTAL CONCEPTS

2.1. Maxwell's Equations in Inhomogeneous Media

In this part we give some basic concepts about Maxwell’s gos, then we formu-
late Maxwell’'s equations as a Hermitian eigenvalue probl&fter we introduce the boundary
conditions for Maxwell’'s equations, which are very impaoittavhile solving electromagnetic
wave problems. Then we will give the formulation of energysiey and the continuity the-
orem. We present also periodic dielectric function, thecBi&loquet theorem and Brillouin

Zones.

2.1.1. Maxwell's Equations

The behaviour of electromagnetic (EM) radiation in a malemedium is described
by a set of four partial differential equations called MaXiséquations and stated as follows;

VXE(r,t)+aBéZ’t> ~ 0, 2.1)
VxH(r,t)—% ~ Iy, (2.2)
V.-D(r,t) = p (2.3)
V-B(r,t) = 0, (2.4)

wherekE is electric field vectorH is magnetic field vecto) is electric displacemenB is
magnetic inductiony; andJ¢ are the free charge and current densities, respectively.

Equation (2.1) is called Faraday’s law of induction, whigscdribes how an electric
field can be induced by a time-varying magnetic flux. Equaf@2) is called Ampere’s
law, which describes the creation of an induced magnetid fieke to charge flow and non-
stationary electric field. Equation (2.3) is Coulomb’s lavhich describes the electric field
distribution produced by the electric charge distributi&guation (2.4) is a statement of the
non-existence magnetic monopoles in nature.



The equations from Eq. (2.1) to Eg. (2.4) can be considerel slar equations
that relate a total of 12 variables. To find field vectors thexpgations must be supplemented
by the so-called constitutive equations, which descrileectifect of electromagnetic fields in
material media:

D=¢E = ¢E+P, (2.5)
B=uH = pH+M, (2.6)

wheree and . are the permittivity and the permeability , respectively &nd o are the
permittivity and the permeability of vacuumP is the electric polarization of the medium
andM is the magnetization. We will work with linear, non-dispees non-lossy materials
which leads td = ¢,¢E andB = uouH, with reale and .

Also we allowe andy to vary from point to point in space, so we formulate them as

follows;

D = ¢e(r)E, (2.7)
B = pop(r)H. (2.8)

In a material medium if the medium is dielectric thefr) ~ 1. If there are no free charges
and currents, i.e., ify = 0 andJ¢ = 0, then Maxwell's equations become

VBl = il (2.9)
V x H(r,t) = 60%, (2.10)
V- le(r)E(r,t)] = 0, (2.11)
V. -H(r,t) = 0. (2.12)
From Maxwell’s equations the following wave equations¥bandH can be derived;
Vx(xE)+ X mE = 0 (2.13)
292" - '
1 1 02
i ——H = 0. 2.14
V><(€(r)V><H)+628t2 0 ( )
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wherec = 1/, /éopuo is the speed of light in vacuum.

2.1.2. Maxwell's Equations and the Eigenvalue Problem

Maxwell's equations are linear equations. This is why we regamesent any solutions

of Maxwell’s equations in terms of a linear combination ofrthanic modes in time

H(r,t) = H(r)e ™" (2.15)

In Eq. (2.15) to get physical fields we can take the real pdrthecomplex valued fields.
Substituting Eg. (2.15) into Eqns. (2.9)-(2.10), we get;

E(r) = ——=V xH(r), (2.16)

H(r) = ——V xE(r). (2.17)

We can separaié andH. Let’'s work only onH. Taking the curl of Eq. (2.16) and substituting
it to the right hand side of Eq. (2.17), we obtain an equatari:

V x (iv X H(r)) - (E)QH(r) (2.18)

e(r) c

Here the velocity of lightis = 1/, /é10. If we solve the above equation and filj we can
find E easily using Eg. (2.16).
Eq. (2.18) can be re-written as the eigenvalue equatioreiméxt form;

OH(r) = (—)QH(r), (2.19)
where

v x H(r)) | (2.20)

11



The eigenvector$l(r) are the harmonic modes, a@lis an operator acting oH(r), (g)2
are the eigenvalues for corresponding eigenvectd(s,).

The operator® is alinear operator. We know that any linear combination of the
solutions is again a solution; such a$lf andH;; are both solutions of eigenvalue equation
with the same frequency, thenaH; + bH/; is again a solution with the same frequengy
wherea andb are arbitrary constants.

Since all observables must be represented by the Hermppiarators, the operat®
should be Hermitian as well. We define the inner product ofvextor fieldsA (r) andB(r)
as

(A,B) = /dgrA*(r) -B(r)

As easy to see it is bilinear form satisfying all propertiéste inner product. Then the
operator® is Hermitian operator if it satisfies the relation

(A,©®B) = (OA, B)

The proof is as follows:

(A,OB) = /d3rA*- [v x (%v x B)] (2.21)
- /d3r(v X A)*- Gv x B) (2.22)
_ /dBr [v v Gv x A)]* ‘B (2.23)
= (©A,B) (2.24)

Here

V- (AxC)=(VxA)-C—-A-(VxC(C)

and the Divergence Theorem and vanishing of the surfacesterm

Properties of Hermitian operators:

12



1. Eigenvalues of a Hermitian operator are real.

Proof 2.1 To prove this we start from the eigenvalue equation;

2

OH = (“—) H, (2.25)

02
let’s take the inner product of the above equation vkith

w2

(H, ©H) = (—) (H, H). (2.26)

CQ
If we take the complex conjugate of the above equation we get

w2

(H, OH)* = <—) (H, H). (2.27)

c2
From the definition of the inner product we kn¢i, ©H) = (©H, H)* and from the

definition of the Hermitian property we knai, ®©H) = (©H, H). Combining these

informations we get the following result;

which means,? is real.
2. Non-equal eigenvectors corresponding to differentreigkeies are orthogonal.

Proof 2.2 Let’s consider two eigenvectols; and Hy; with different eigen frequencies

wy; andw;;. We start with eigenvalue equation fBiy;
OH; — <%)2H1 (2.28)
If take the inner product of the above equation wiiky from the left, we get
wr

(Hy, OH) — (7)2 (i, Hy). (2.29)

13



Then we write eigenvalue equation sy
2
©Hy = (“*) Hu, (2.30)
C
If take the inner product of the above equation wiil from the right we get
w 2
(Hu, ©H) = (<) (Hu, Hy). (2.31)
Subtracting Eq. (2.29) from Eq. (2.31) we get;
2 2 —
(wf —Wwir ) (HIL HI) =0 (2-32)

This result show us ib; # w;; then the eigenvectol; and Hy; are orthogonal. If
w; = wys then we say they are degenerate and not necessarily ortlabgon

2.1.3. Boundary Conditions

By using the divergence theorem and Stokes’s theorem thevislagquations can be
rewritten in integral form. These integral forms can be usefthd the relationship of normal
and tangential components of the fields between differeah8ary surfaces.

Firstly, we find relations between the normal componentseffields. Letl is a
finite valume in space§ is a closed surface bounding that valunie s an area element on
the surface and is a the unit normal vector to the surfad¢e pointing towards outward from
the enclosed surface. Applying the divergence theofgﬁ- nda = [, V-FdV to Eq. (2.3)
and Eq. (2.4) yields the integral relations

D -nda = /pfd?’x, (2.33)
1%

%B ‘nda = 0. (2.34)
s

Let’'s apply equations (2.33) and (2.34) to the valume obpil. We consider a pillbox, which
is very shallow so that the side of the surfaces does notiboidrto the integrals. The left
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hand-side and right hand-side of Eq. (2.33) become

%D -nda = (Dy — Dq) - nAa (2.35)
s

/ prd’r = oAa (2.36)
1%

As a result the normal components@fandB on the above and the below of the boundary
are related to each other by

(D2 - Dl) ‘n = o, (237)

Here the normal component &f is discontinuous by amount ef at any boundary. The
normal component dB is continuous.

Secondly, we find the tangential components of the fieldsClista closed rectangular
contour in spaceys is a surface spanning the contodt,is a line element on the contour.
da is area element o9, n is a unit normal vector o@a . Applying the Stoke’s theorem
$.F-dl= [,V xF-dato Eq. (2.1) and Eq. (2.2) yields the integral relations

oD
jiH-dl = /S[J—i—g] -nda (2.39)

%E-dl _ —/%—B~nda (2.40)
c s Ot

The short arms of rectangular cont@uare negligible and long arms are parallel to the surface
with lengthAl. Then we can write for the left hand side of the (2.39) and (2.40

7{ H-dl = (t xn)- (Hy — Hy)AL (2.41)
C

7{ E-dl=(t xn) (Ey— E;)Al (2.42)
C
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and for the right hand side of the (2.39) and (2.40) as follows

/[J#?—D] tda = K-tAl (2.43)
; ot
0B

— Sa-nda = 0, (244)

whereK is surface current density flowing on the boundary surfacaeHEq. (2.43)
. . BB . -
and second part of Eq. (2.44) are vanishing bec%@sandg are finite at the surface and
the area of the loop is zero, since the length of the shorsgides to zero. As a result the
tangential components éf andE on each side of the boundary are related to each other as

nx(Hy—Hy) = K, (2.45)

Here the difference between the tangential componenk$ f equal to the surface current
densityK and tangential component &fis continuous at the boundary surface.

In our study we will deal with situations in which the surfadearge density and
the surface current densilg, both of them vanish. In that case all normal and tangential
components oB andD are continuous at the boundaries.

2.1.4. Energy Density and Continuity Theorem

Electromagnetic waves carry energy in the form of electigme#ic radiation. We want
to find the energy stored in electromagnetic wave and the ptiawe with electromagnetic

wave. Let’s start from Maxwell’s Equation, Eq. (2.2);

oD
VXH—E—J

The dot product of the above equation wlhgives us the work done by electromag-

netic field, which is

J~E:E~(V><H)—E~aa—]:t). (2.47)
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V.- (ExH)=H.-(VxE)-E-(VxH)

and sequentially the Maxwell’'s Equation, Eq. (2.1);

0B
E=——
V x 5
then we get
0B oD
or
—J-E:V-S+%—g, (2.49)

whereS = E x H is called the energy flux and = %(E -D + B - H) is called the energy
density of electromagnetic fields. Eq. (2.49) is known agioaity equation.

If J = 0 then it states the decrease of electromagnetic energytg@msi volume is a
result of outflow of electromagnetic energy through theaefof that volume.

2.2. Periodic Dielectric Function

At the previous part we worked on Maxwell’s equations, whibasically a second
order partial differential equation and contains a pedatielectric function in it.

In this part we will formalise the periodic dielectric fura in the reciprocal space.
The periodic dielectric function is a function ofand it is periodic with a perio®, given by

the next form:

e(r) =€e(r+ R). (2.50)
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In Eqg. (2.50),R is called as the lattice vector and it is given by the next idam

R = niay + nodg + Nnsag, (251)

where,a;, as, ag are primitive vectors of the crystal lattice and not all cétihare in the same
plane @, - (az x az) # 0). ny, no, n3 are integers. We can define the volume of the primitive
unit cell as a cell that contains only one lattice point anlll icas V,.;, which is equal to
Veeu = a1 - (az x ag)

The periodic dielectric function can be expanded in termthefFourier series. Let's
define a3D Fourier basis functior’“* with G = m;b; + msbs + msbs for some basis
vectorsb;, (i = 1,2, 3), which will find later in the calculations. Then the dieléctiunction

in the Fourier basis is;

e(r) = > (G, (2.52)
G

cr+R) = ) €(G)eSTR), (2.53)
G

Eq. (2.52) is equal to Eq. (2.53) because of the periodi@tydd@ion. Then subtracting Eq.
(2.52) from Eq. (2.53) we get;

D (GG - R =0 (2.54)
G

This equation holds whe#i®® = 1, which mean< - R = 27n, wheren is an integer:
G - R = (mib; + mobs + msbs) - (n1a; + noas + nzag) = 2mn (2.55)
This condition can be satisfied if we take- a; = 2md;;, wherei, j = 1, 2, 3,then

G- R = 27(ming + maong + mang) (2.56)
— omn. (2.57)
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Due to this conditiorb, is perpendicular to both, andas. Also a; x ag is perpendicular
to botha, andas sob; must be parallel tag x az. We can writeb; = «a(az x ag), where
« is a constant to be determined. We know that a; = 27, writing the value ofb; we get
[a(ag X ag)] -a; = 27. Omittinga we finda = 27 /[a; - (az X az)]. Based on this, by cyclic
permutations we can calculate the values of all primitivet@es of the reciprocal lattice;

Ag X ag
by, = 2r—M— 2.58
! Wal‘(ag ><a3)’ ( )
ag X a1
b, = 2r——m— 2.59
2 7Ta2.(a3 Xa1>7 ( )
by — 27— 1Xd2 (2.60)

ag - (a1 X 3.2>.

Example: Calculation of the reciprocal lattice vectors of 2D perfplebtonic crystal
In Fig. (2.1) we see @D perfect square lattice. The primitive vectors ase= a;X and
a, = ay and the lattice vector IR = a;X + asy.

a1

Figure 2.12D perfect square lattice in real space.

If we calculate this lattice vectors in the reciprocal spst we should find the vec-
tors for primitive cells of the reciprocal spade;, b, andbs using (2.58)-(2.60). The prim-
itive vectors of the reciprocal space dig = i—’lffc andb, = i—gy and the lattice vector is
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G = Z_Ti + i—gy. The Fig. (2.2) show8D perfect square lattice in reciprocal spate.

([ ] ([
b2
()
b1
o o o

Figure 2.22D perfect square lattice in reciprocal space.

Returning to our subject we can find the Fourier expansioheiperiodic dielectric
functione(r) = ¢(r + R) in the form;

e(r) =) €GeS,
G

The next step is to find(G). For this reason we multiply the both sides of the above
equation bye—“S"T and integrate over the primitive cell,

/ e(r)eiG/'rd3r:Ze(G)/ e(r)e (GG gy (2.61)
cell

G cell

To evaluate the integral, let's consider a primitive celpafallelepiped formed by the vectors
a;, ag, andag. We can construct an oblique coordinate system with thedioatesu, v,
w along thea,;, a, andaz directions, respectively. Then any vectocan be written as

r =X+ yy + 2z = uu + vv + ww, where
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The volume elementr is the volume of the parallelepiped which is equal to nextrfor

d’r = dudvdwu- (v x w), (2.62)
Vce
= dudvdw—=L. (2.63)
a1aoQs

The argument of the exponential can be written as;

(G-G)r = G"-r (2.64)
o " " " ﬂ % %
= (mib1 +mibs +mzsbs) - [ u— +v— 4w (2.65)
aq Qo as
_ o miju N mhyv N miw (2.66)
aq a9 as '

Now we are ready to evaluate the integral:

‘/ al 2rm! u az 2rmv as 2rmiw
_i(G—a). i ] 1 ] 2 ] 3
/ e(r)e GGy = / due’ @ )/ dvel' )/ dwe )
cell a1a2a3 Jo 0 0

= VeeuOm00my00mzo (2.67)
= Veeudaro (2.68)
= Vewdce (2.69)
= VoetBmrot Ot (2.70)

Substituting to Eq. (2.61) we obtain the value:0&):

1

((G) = / e(r)e " CTdPr, (2.71)
Veell cell

As continuation of the earlier example we calculat€&) using Eq. (2.71) foRD perfect
square lattice. Firstly we start the formulationeGf) just for a unit cell which is given in Fig.
(2.3)
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Figure 2.3¢(r) in a unit cell for2D perfect square latticé/..;; = ajas

e(r) = e(z,y),
= e+ (ea — 6)O(Ra| — |r]) (2.72)

Here©(z) is the step function and it is defined as

0 ifz<O
O(z) =
1 otherwise

Then we can calculate the integral;

e(G)

1 / LG 2
e(r)e "™ d°r
VYCEU cell ( )

€p —iGr 12 (Ea - €b> / —iG-r 2
e d’r + ——~ O(|IR,| — |r])e d°r
Veelr /cell Veen cell (| a| | |)

Rg 2T
b / e—i(Gxx-l—G'yy)dxdy + (Ea — 65) / / e—i(Gr cos G)Tdrdﬁ
‘/cell cell ‘/cell 0 0

TR, J(GR,
€b5G105Gy0 + (€a — Eb) < V p ) 2 ( 1éR ))
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or equivalently

€ + (@i‘;j) (e, — &) fFG=0,

DT @ (B (1) w0

(2.73)

2.2.1. Bloch-Floquet Theorem and Brillouin Zones

We present the Bloch-Floguet theorem, which was found ineadimensional setting
by Floquet, Floquet (1883) and later rediscovered by BlatBloch (1929). The Bloch-
Floquet theorem for periodic eigenvalue problems statassttie solutions of Eq. (2.18), can
be written in the form:

H(r) = eik'erk(r)

with eigenvalues,, (k), whereH,, i is a periodic function, satisfying the equation;

() 5LV 4 k) x Hypo= (20 @.74)

wheren = 1,2, ...

For each chose dt the above equation give different eigenvalue problem over t
primitive cell of the lattice. The eigenvaluesg (k) are continuous functions & forming the
band structure whek is plotted versus.
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Figure 2.4. The first Brillouin zone is shown with red squand the irreducible Bril-
louin zone with the symmetry points = (0,0), X = (0,%) andM =
(%, 7). The path to calculate band structure is takefias X — M — T’

For the calculation of the band structure, we need a minimaiougtion cell, that will
give us all information about the lattice. This minimum a&h be formed by a primitive re-
ciprocal lattice vector defined as the first Brillouin zone.tBe solutions of the all eigenvalue
equations are the same as the solutiosn at the first Brilkoarme.

For example in Fig. (2.4) we see the square lattic@ Rfperfect Photonic Crystal.
Here the red square shows the Brillouin zone. But for catmnaof the band diagram we will
solve the eigenvalue equation at the irreducible Brillozome, that is where the triangular
wedge exists. Because the rest of the Brillouin zone can bae from the irreducible
Brillouin zone by rotational symmetry. a set ofvalues which is given in Fig. (2.5) for
TM-modes and TE-modes.
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Figure 2.5. The TE and TM modes for a perfect 2D square lattice

In Fig. (2.5) frequency is expressed as a dimensionlesswali2rc. The band struc-
ture shows that there is a band gap for the TM polarizatiolouced with green, but there is
no band gap for the TE polarization.
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CHAPTER 3

FINITE DIFFERENCE TIME DOMAIN METHOD

In this chapter we will give an overview of Finite Differend&@me Domain Method
(FDTD) , which is used as the simulation technique in thisithe

In 1966 Yee Yee et al. (1966) described the FDTD numerical technfqusolving
Maxwell’s curl equations by discretization of the equatiamspace and time on grids. Today
the FDTD method is one of the most useful methods for invastig the field distribution in
complicated photonic crystal based devices with non-umifeefractive index distribution.

The FDTD method involves discretization of the space, whiakans replacing the
continuum by a discrete set of nodes. Then the derivativéddaxwell’s equations are re-
placed by finite differences. The numerical solution degestdthe permittivity distribution,
which determines optical properties of the photonic cigst&@nd on the initial and boundary
conditions. Setting all these terms, the field distributtan be computed beginning from the

radiation source.

3.1. Discretization of Maxwell’'s Equations

We want to derive Maxwell’s equations in terms of finite diieces. Maxwell’s equa-

tions for the case of no dispersion, no absorption nor anycggare

V x E(r,t) — —%aBé;"’t), (3.1)
V x H(r,t) — %aDé;’t). (3.2)

We will write the equations in the vector componentsigr, ¢) andH(r, ¢) as follows,

O£, O0E,  10B,
y oz ¢ ot
oF, OF, 10B,
— = ——— 3.3
0z Ox c Ot (3-3)
0E, 0E, _  10B,
ox dy ¢ ot
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OH, 9H, 19D,

oy 0z c Ot
0H, OH, 10D,
0z or  cor (3.4)
OH, O0H, _ 10D,
ox oy ¢ ot

In two dimensions, we must make a choice between two kindooes; the TM mode, which
consists of,, H, Hy, or the TE mode, which consists Hf,, E, E,.. We will illustrate the
method using the TM mode. We will make discretization of thace so we replace all partial

derivatives by finite differences.

Now we will change the derivatives by differences in Equadid¢3.3) and (3.4). and use
the constitutive equationd) = ¢E andB = pH. Also for convenience we will present
calculations for the TM mode, so we &%, = D, = H, = 0. Thus, Egs. (3.3) and (3.4) are
reduced to:

AE, HAH:E
Ay c At
AFE, nwAH,
= = 3.5
Ax c At (3:5)
AH, AH, _ €AEL,
Ax Ay ¢ At
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Figure 3.1. 2D computation region for TM modes

In Fig. (3.1), we show 2D computation region for TM modes. @&mwling to this
interleaving the Maxwell's equations will be calculatedeach cell, so the fields intensity
will be found in each cell. Using the Yee cell we write;

BN+ V) = BN ) plig ) Hi (it g) — Hp (i + 5)
Ay c At
(3.6)
mn l . . mn l . . . . n . . n(.: .
B4 1)~ B i g ) Hy T4 5) — Hyi45.5)
Az c At
(3.7)
E(%])EZ (Z7.]>_EZ (Zaj) — y(l+2’j) y(Z 2’])
c At Az
Hr(i, 5+ 1) — Hi, 5 — 1)
. v v 3.8
( ~ (3.8)

Here we separated timeand space, ;j in order to interleave Maxwell’s equations in space
and time. Time index i, which means$ = nAt andn + 1 represents one time step latér:
andAy are space increments in the y) directions, and, j represents the coordinate values
x = iAx, y = jAy. Then we take the central difference approximation for botndi, j
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derivatives.

Let’s derive the recursion equations fbt, /, and H, components using the above
equations;

BN g) = B, ) (3:9)
_ 6(5]) 2_; <Hg(z’,j + ) = Hy(i, 5 — %))
HM (6,5 + %) = HI(i,j+ %) (3.10)
* M(Z,]C—i— %) i?j (E:Jr%(i’j) - L %(i’j + 1)>
Hy ik, 0) = H(i+ 5, 9) (3.1
F e (e - )

By using (3.9)-(3.11) we can find’,, 4, and H,, components for any lattice point or at any
time starting from the initial values and for the next poinssng the previous values.

This approach can be applied3® case. The significant point is that according to
Courant stability conditior\¢ can be at mosi\t = Az/(c/n) andAt = Ay/(c/n), where n
is the smallest refractive index in the computational domai
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BOUNDARY OF THE REGION

ML

% % ¥ X

No reflection will appear

PML

L4

PML
PML

Figure 3.2. FDTD simulation region with perfectly matchegdr (PML). PML ab-
sorbs electromagnetic waves at the boundaries withouttiefhes.

The numerical solutions can be simplified by using a finite potation domain with
suitable numerical boundary conditions. In this thesispse perfectly matched layer (PML)
Berenger (1994) boundary conditions which absorbs elezigmetic waves at the boundaries
without reflections. The Fig. (3.2) shows PML layer.

In the computation domain between transition from one dtalematerial to another
dielectric material we use average dielectric constaniejalvhich takes the average of the
dielectric constants at the transitions. Of course, resmiwr the number of cells in the Yee
lattice must be enough to give correct results.

FDTD is a time-domain technique. By using this method we cadhH fields andH
fields in the computational domain. Also this method prosideimation displays of the elec-
tromagnetic fields, which helps us to understand the dedigrmael. In this thesis we used
the freely available MEEP software (MIT ElectromagnetiaiBtion Propagation) for FDTD
simulations, which can be accessed from: http://ab-imtibedu/wiki/index.php/Meep.
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CHAPTER 4

DIELECTRIC WAVEGUIDE SLABS

Dielectric waveguide slabs are the easiest structuresderitbe mathematically, be-
cause of their simple geometry. Therefore, as a prepargtistdy to photonic crystal waveg-
uide slabs, we start by dielectric waveguide slabs.

Dielectric waveguide slabs consists of a thin guiding lssendwiched between two
semi-infinite bounded media. Usually, the refraction indéxhe guiding layer must be
greather than the bounding media for the occurrence of iotafnal reflection. Also the
guiding layer,R., is at the order of a wavelength.

If the two bounding media are identical then dielectric Sklballed the symmetric
waveguide slabr(; = n3). If two bounding media are not identical then waveguidéechl

asymmetric waveguide slab.

Figure 4.1. Dielectric waveguide slab.

The Fig. (4.1) shows a schema of dielectric waveguide slabthé figure, R, is
the thickness of the guiding layet; is the refraction index of the upper cladding, is the
refraction index of the lower cladding amd is the refraction index of the guiding layer. The
slab is infinitely extended in the xy-plane. Light propagdtethe x-direction.

In this chapter we will give mathematical derivation of coefi modes for symmetric
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and asymmetric waveguide slabs. In order to obtain thesénemhmodes of waveguide
slabs, Maxwell’s equations must be solved. Maxwell's emguetin homogeneous media are
equation of the plane waves. So we can solve the problemmgytitie plane wave solutions for
each partition and matching the boundary conditions. Theutations will be derived both
transverse electric and transverse magnetic modes of dipagation.

4.1. SYMMETRIC DIELECTRIC WAVEGUIDE SLABS

The simplest optical waveguides are the symmetric dietestab as shown in Fig.
(4.2);

Figure 4.2. Symmetric dielectric waveguide slab.

The following equation describes the index profile of the syeatric dielectric waveg-

uide slab:

, —R.<2z<0
n(z)={ " N (4.1)
ny, otherwise

whereR, is the thickness of the core, is the refraction index of the core and is
the refraction index of the bounding media. As mentionedralio support confined modes
the refraction index of core must be greater then the clag@lin > »;). Now our task is to
find these confined modes.
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To obtain these confined modes of waveguide slab, Maxwejlisgons can be written

in the form;

VxH = iwen’E (4.2)
VxE = —iwuH (4.3)

where n is given in Equation (4.1)
The waveguide slab is homogeneous along the x-directionessearch solutions in
the form;

E = E,(z)el«t=5 (4.4)
H = H,(z)el=5) (4.5)

whereg is the x component of the wave-vectér, (z) andH,,(z) are wave functions and
is the mode number.

Now we substitute (4.4) and (4.5) into (4.2) and (4.3). Weeatao variation in y
direction, so that(f—y = 0. After differentiating and cancelling out the exponenteadtor we
get the set of equations;

E
OB, _ iwpoH, (4.6)
0z
oF, ,
ZBEZ—F@ = —Z(,U,LL()Hy (47)
ﬁEy = WMOHZ (48)
H
—b = iwen’E, (4.9)
0z
H
iﬁHﬁ% = iwen’E, (4.10)
z
—BH, = wen’E, (4.11)

From this first order coupled system of equations we can firmdecoupled second order
equations
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First we use (4.6), (4.8) and (4.10), they yield

OF
— = dwpgH, (4.12)
0z
BE, = wpoH, (4.13)
0H,
iween*E, = iBH, + 5 (4.14)
z

From these set of equations one can see thdt, is known, then/, and /., can be easily
found. If we substitute (4.12) and (4.13) into (4.14) we detwave equation faF,

O*E, N w?n?
022

— 52) E,=0 (4.15)

wherec = 1/, /foéo.

As a second set we use (4.7), (4.9) and (4.11),

0H
——Y = jwen’E, (4.16)
0z
—BH, = wen’E, (4.17)
OF,

—iwpoH, = iE, +

= (4.18)

From this set of equations one can see that/ jfis known, thenH, and /1, can be easily
found. If we substitute (4.16) and (4.17) into (4.18) we gav@equation fofi,

0’H w?n?
y+< . _52)Hy=0 (4.19)

022 c

wherec = 1/, /1oéo.

These two sets can be classified as TE and TM modes. The figsiec@presents TE
modes. They have their electric field perpendicular to plaineropagation (xz-plane) that
means they have the field componefis H, and H.. The second couple represents TM
modes. They have their magnetic field perpendicular to ptdrropagation with the field
componentsi,, £, andE,.

Now for each media we will solve (4.15) and (4.19) by applyiihg boundary condi-
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tions. First we will use the following boundary conditiohgttangential components of the
field vectors at each interfaces must satisfy the contireatydition. Second we will use an-
other boundary condition for guided modes; that is the fietglude of guided modes must
vanish atz: = +o0.

The propagation constaftspecifies whether the field varies sinusoidally or exponen-
tially and to get confined modes the field amplitude must degreexponentially outside the
core. For these reasons the following conditions must hold

n2 2 _ —
{ (22)" — 32 >0, —R,<z<0, (4.20)

(ﬂ)2 — 3% <0, otherwise

c

For the rest of the section we will find the confined modes whosatisfies these above
conditions for guided TE modes and TM modes.

4.1.1. Guided TE Modes

The guided TE modes can be find by solving Equation (4.15) botindary conditions
for each interfaces of the waveguide. The solution of EqQL5¢has the form

B, = B, (2)el@t=5 (4.21)

where for each regioR,,,(z) can be written as

Ae™%, z>0
E.(z) =< Acoskz+ Bsinkz, 0>z2>—R, (4.22)
(AcoskR, — BsinkR,)edC+R:) 2 < R,

The above solution given by Eqg. (4.22) clearly obey the bampdondition, which
states the tangential component 8f must be continuous at the interfaceszat= 0 and
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z = —R., where A,B are the constants and the paramétargdx are

5 = {ﬁQ—(%)] , (4.23)

K = {(—)Q—ﬁQ] . (4.24)

To complete the set, we need to filld and .. These components in termsBf are

given as follows,

—1i OF
H-"p, (4.26)
frow” "’

SinceH, is a constant time&), we don’t need to calculatd, because we already calculated
E,. But we need to calculatd,. The solution of Eq. (4.25) has the form,

H, = H,,(z)el“t=5)] (4.27)

where for each regioH.,, (z) can be written as

(Pi)—‘sw)Ae*‘sz, z2>0
H,(z)= (li)—”w)(A sin kz — Bcos k2), 0>z>-R, (4.28)
(l:()—ii)(A coskR, — BsinkR,)edCHR) 2 < R,

Now to satisfy the boundary condition we match the functiatrthie above equation at
the interfaces = 0 andz = —R,. But it is not evident that the solutions obey the boundary
conditions. For this reason we have to make an extra job. \ply épe boundary conditions
which lead to
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SA+KB = 0,
(ksinkR, —0cos kR,)A + (kcoskR, +0sinkR,)B = 0,

This homogeneous system has non-trivial solution only iédrinant vanishes;

d(kcoskR, + dsinkR,) — k(ksinkR, —dcoskR,) =0, (4.29)

or

(20K) cos kR, + (6% — K*)sin kR, = 0, (4.30)

which leads to,

2Kk0

_ 4.31
- (4.31)

tan kR, =

We can write the above equation using the double angle fafounltangent in the next form

2tan kR, /2 2K0
2 2) = = ) 4.32
tan (2£R./2) 1 —tan?kR,/2  (K? —§?) (4.32)
which leads to the second order algebraic equation
) 9 52 )
—tan®(kRy/2) — | — — 1| tan(kR2/2) — — =0 (4.33)
K K K
with the solutions
0
tan(kR./2) = — (4.34)
K
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and

R

tan(kR./2) = -5 (4.35)

We can substitute fot = %sz and ford = %de and rewrite the above equations in
the next form;

1. For even TE modes;

tan (R) =

(4.36)

| o

2. For odd TE modes;

tan (k) = — (4.37)

S| I

Eq. (4.36) and Eq. (4.37) are the eigenvalue equations fansstric slab waveguides
for even and odd modes respectively.

Now we have two implicit equations, (4.36) and (4.37). Wd sallve graphically Eq.
(4.37) to show the structure of the solution. For a givenealis, the solutions of Eq. (4.37)
yields several values for. Graphical solution of the Eq. (4.37) is shown in Fig. (418)the
plotted graph, the solutions are the intersections of thetfanstan (%) and—# /4.

To find the roots let’s define the next iteration

Fini1 = tan™! <—T), (n=0,1,2,3...), (4.38)

n

with the initial guesses, = nr. By this way for each gived we get set of solutions fot.

To see the confined modes our aim is to calculasnd 3. w and/ can be picked out from
the below equations;

5:%%[2—(@ﬁf} (4.39)
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tan(k)

R

0 /2 3 /2 57/2 /2

/l-\
S
N~—

Figure 4.3. For odd TE modes graphical roots.

1 9 1/2
g () - (10
w andg are equal to the next form;
1 2 =2 | 52
(/UERZ K +5

(4.42)

As a result for every given, we get the solution set far by using the iteration given
by Eq. (4.38) and use the valuesraf ., R., ¢, 4, & and (4.41) and (4.42) we can findand

B.

The similar derivation can be done also for Eq. (4.36), foivems yielding several
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values forz. To examine this we use the next iteration for a givenith the initial guesses
Ro =nm, (n=0,1,2,3...)

Finp1 = tan ™! <i> (4.43)

By this way for each givel we get the set of solutions far. Again by using (4.41) and
(4.42) the confined modesand3 can be found in terms of ands.

4.1.2. Guided TM Modes

The guidedl’ M modes can be find by solving Eq. (4.19) with boundary conaigio
for each interfaces of the waveguide. The solution of EqQL9¥has the form

H

Y

= H,,(2)eliwt=52)] (4.44)

where for each regioH.,, (z) can be written as

Ce%%, z>0
H,(2) =< Ccoskz+ Dsinkz, 0>z2>—R. (4.45)
(CcoskR, — Dsin kR,)e®* ) » < —R,

The above solution given by Eq. (4.45) clearly obey the bampdondition, which
states the tangential componentdf must be continuous at the interfaceszat= 0 and
z = —R,, where C, D are the constants and the parametarslx are previously defined at
EqQ. (4.23) and Eq. (4.24) respectively.

To complete the set, we need to fikgd and £.. These components in terms &f, are

given as follows,

i OH,
E, = o 02 (4.46)
—5
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Since E, is a constant timeg$/, we don’t need to calculat&, because we already
calculatedH,. But we need to calculaté,. The solution of Eq. (4.46) has the form

E, = E,,(z)el@t=5)] (4.48)

where for each regioR,,,(z) can be written as

(o) (Ce™*),

z
En(z) = ¢ (=%5)(—Csinkz + D cos kz2), 0>

egwna

z 2
(=% )(Ccos kR, — DsinkR,)e®tH) 2 < —R,

egwni

~R, (4.49)

Now to satisfy the boundary condition we match the functiatritthe above equation at
the interfaces = 0 andz = —R,. But it is not evident that the solutions obey the boundary
conditions. For this reason we have to make an extra job. \W &éipe boundary conditions
which lead to

)
)

C+—-D = 0
m

ng

TL22 TL12 7122

) 4]
(i sinkR, — — cos /@Rz) C+ (i cos kR, + — sin /{RZ> D = 0.
ni
This homogeneous linear system has non-trivial solutidy ibdeterminant vanishes;

) ) )
— (i coskR, + — sin HRZ) -5 (iz sin kR, — — coS mRZ) =0, (4.50)
1

7112 7122 7112 n22 T

or

2 2 2
(iQ) cos kR, + (5—4 — %) sinkR, = 0, (4.51)

n12n2

which leads to,

(4.52)
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We can write the above equation using the double angle fafioultangent and that leads a
second order algebraic equation with the solutions in tix¢ floem

1. For even TM modes;

- ng
t = 4.53
an (f) = =% (4.53)
2. For odd TM modes;
- 71”12
tan (k) = —=——, (4.54)
57122

Here we substituted fot = 1 R.x and foré = 1 R.5. Then Eq. (4.53) and Eq. (4.54)
give the eigenvalue equations for symmetric slab waveguideeven and odd’M modes
respectively.

Now we have two implicit equations, (4.53) and (4.54). As tmred previously a
result for every given yields several values fot. The used iteration method to find guided
T E modes can be used to find guidéd/ modes.

In the next subsection we present the mode profiles for cahfimedes and radiation
modes explicitly.

4.1.3. Mode Profiles of Symmetric Dielectric Waveguide Slab

We can find the band diagram for symmetric waveguide slab &gjin(4.4). In the
figure the red line is» = .= 3, the green line is) = .= 5.

The confined modes appear in the area between the red an@#religies. The modes
above the red line are radiation modes. The dashed linéslamodes. The first dashed line
is evenT' E mode and the second dashed line is ddd mode. The continuous solid lines
areT' M modes. The first continuous line is eVER/ mode and the second continuous line is
oddT' M mode.

Now, we want to show same examples of the mode profiles. Toidowd chose a
point on the x-axisia/2m = 0.6 and we put a blue line along this point. The modes profiles
of the examples chosen on the points which ones are inteysedf this blue lines and modes.

As previously indicated the confined modes are under theined [There are only
5 TE confined modes, shown with dashed lines &nd M/ confined modes, shown with
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Ba/2m

Figure 4.4. Band diagram of Symmetric Dielectric Waveguglab. Refraction in-
dexes arer, = 1,n, = 3.6, R, = a, a is a period of the cell, all cell i$1a.
The cell is taken in z-direction and light propagates in pediion. The
structure of the band diagram is shown in Fig. (4.2). The lzhadgram is
calculated by using MPB program.

continuous solid lines. The mode profiles of the fisi’E’ andT'M confined modes are
shown in Fig. (4.5) and Fig. (4.6), respectively. The vaititashed lines on = —R, and
z = 0 represent the limits of the guiding layer. Here as mentidrefdre all confined modes
are well confined in the guiding layer, but decrease expaagnoutside the guiding layer,
which is obvious in the both figures.

The radiation modes are above the red line. Therd @eadiation modes and' M
radiation modes. The mode profiles of the sdife andT" M radiation modes are shown in
Fig. (4.7) and Fig. (4.8), respectively. Again the vertidathed lineson = —R, andz = 0
represent the limits of the guiding layer. In this zone, aidn modes are not well confined
in the guiding layer because they are not decreasing expatgmoutside the guiding layer.
Contrarily outside of the guiding layer modes exist, and tluéhe symmetrical structure,
mode is symmetrical in the upper and lower slabs.
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Ey

Figure 4.5.I'FE Confined Modes for Symmetric Dielectric Waveguide Slab. x¥a
shows Ey component of the electric field, and x-axis showg ttieection
of the waveguide slab.

Hy

Figure 4.6.1'M Confined Modes for Symmetric Dielectric Waveguide Slab. x¥a
shows Hy component of the magnetic field, and x-axis showg tfieec-
tion of the waveguide slab.
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Ey

Figure 4.7.'F Radiation Modes for Symmetric Dielectric Waveguide Slabaxys
shows Ey component of the electric field, and x-axis showg ttieection
of the waveguide slab.

Hy

-Rz0

Figure 4.8.1'M Radiation Modes for Symmetric Dielectric Waveguide Slabaxys
shows Hy component of the magnetic field, and x-axis showg tfieec-
tion of the waveguide slab.
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4.2. ASYMMETRIC DIELECTRIC WAVEGUIDE SLABS

In integrated optic design, mostly waveguides are not sytmemerl herefore, to con-

sider this case, we will study propagation of confined modessgmmetric slab waveguide
shown in Fig. (4.9)

Figure 4.9. Asymmetric waveguide slab.

The index profile of the asymmetric slab waveguide is given by

ny, 0<z
n(z) =4 no, —R,<2<0 (4.55)
ng, z<-—R,

whereR, is the thickness of the core, is the refraction index of the core ang andn; are
the refraction indexes of the upper and lower bounds resgéct To get guided modes, the
refraction index of core must be greater then claddings.obocase we take, > n3 > n;.
Now our task is to find these guided modes.

The modes of the waveguide slab can be classified as TE and Tddsnd@ E modes
have their electric field perpendicular to plane of propagaxz-plane) with only have the
field componentdr,, H, andH, while TM modes have the field componettfs, £, andE,
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4.2.1. Guided TE Modes

The guided TE modes can be find by solving Eq. (4.15)Hpcomponent. Since we
can getH, and H, interns of E,, component using (4.2) and (4.3) (for the cag@y = 0,
H, =0, E, =0andL, = 0), we can determine all TE modes. The solution of Eq. (4.16) fo
E, component is in the form of

E, = Ep,(z)elit=5) (4.56)

where for each regioR,,,(z) can be written as

Ae %% z>0
E,(2) =< Acoskz+ Bsinkz, 0>2>—-R, (4.57)
(AcoskR, — BsinkR,)e® ) 2 < —R,
where A,B are the constants and the parametgfsand~y are
- 971/2
5= |g- (M) (4.58)
C
- 9 11/2
P (”2_“’) _ g (4.59)
C
- 971/2
v = |g— (”3_“’) (4.60)
C
H, andH, components in terms df, as follows,
—i OF
H,——%2% and H, — iEy. (4.61)
pow 0z fow

To get solutions the tangential componentgfand /7, must be continuous at the interfaces,
whereH,, for the solution of the equatiofl, = Hm(z)e[i(wt—ﬂx” is given below;

(Li)—‘sw)Ae*‘sz, z2>0
H,(z) = (PZ()—"‘W)(A sin kz — B cos k2), 0>z2>—-R, (4.62)
(;TZZ)(A cos kR, — BsinkR,)e'CHE) 2 < —R,
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Now we match the magnitude and derivatives of the TE moddiumeat the interfaces= 0
andz = —R., which leads to

0A+kB = 0,
(ksinkR, —ycos kR,)A + (kcos kR, +ysinkR,)B = 0,
This homogeneous system has solution only if determinanishias;
d(kcoskR, +vysinkR,) — k(ksin kR, —ycoskR,) =0, (4.63)
or
cos kR, (0K + k7y) +sin kR, (6 — k?) = 0, (4.64)

which leads to,

k(0 +7)
= —". 4.
tan kR, (2 =57 (4.65)
The right hand side of the equation can be written as;
k(6 +7) _ (kR,)(0R. +YR.)
(k% = 07) (kR.)? — (0R.)(VR>)
(4.66)

whered, x and~ given in (4.58), (4.59) and (4.60). This equation is the modedition
equation for TE modes, for a given set of refractive indiegsy, andns andR,. The same
iteration method can be followed as the symmetric wavegcase to gety, 5).
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4.2.2. Guided TM Modes

The guided TM modes can be calculated by a similar analydis.mbdes have the
field componentdi,, £, andL..

H, = H,,(z)elit=F)] (4.67)

where for each region the continuity condition/éf leads forH,,, (=)

Ce %%, 2>0
H,,(z) =< Ccoskz+ Dsinkz, 0>2>—-R, (4.68)
(Ccos kR, — DsinkR,)e?CHE) 2 < R,

where C,D are the constants and the parameétersand~ are given in (4.58), (4.59) and
(4.60). AlsoE, andE, can be written interns aff,, as follows

B, o _iHy. (4.69)

y
eonw 0z’

E, = E,,(2)el«=52)] at the two interfaces can be written as

e();igw Ce_éz’ zz 0
E,.(z) = i (-Csin kz + D cos Kz, 0>z>—-R, (4.70)
60@2 w
1 (Ccos kR, — Dsin kR,)e"* 1) 2 < —R,

eonz?w

Now we match the magnitude and derivatives of the TM modetions at the interfaces
z =0andz = —R,, which leads to

(LQ sinkR, — lz cos HRZ) C+ (% cos kR, +
n3 n

N2

sinmRz)D = 0 (4.71)
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This homogeneous system has solution only if determinarishias;

i P cos kR, + 7 _sin kR, || — i (i sin kR, — T cos kR, || =0(4.72)
2 \ng? g2 2 2

Mo %) TL32
or dividing tocos kR, we get,

kno%(onz® + yny?)

t = . 4.73
ankR, (2n17n? — 0yt ( )
The right hand side of the equation can be written as;
k(6 +7) _ (kR,)(0R. +YR.)
(k% = 07) (kR.)? — (0R.)(VR>)
(4.74)

wherex, 0 and~ given in (4.58), (4.59), (4.60). This equation is the modeditoon equation
for TM modes, for a given set of refractive indices, n, andnz andR.. The same iteration
method can be followed as the symmetric waveguide case {@g#j}.

4.2.3. Mode Profiles of Asymmetric Dielectric Waveguide Sla

We can find the band diagram for asymmetric waveguide slab &gi (4.10). In the
figure the red line i) = .= 3, the yellow line isv = .= and the green line is = .= 5.

The band diagram in the figure divided to three parts. Raiatiodes, slab modes
and finite number confined modes.
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Figure 4.10. Band Diagram for Asymmetric Dielectric WavielguSlab. Refraction in-
dexes arer; = 1, ny = 3.61, n3 = 1.58 R, = a, a is a period of the
cell. The length of the cell ig1a. The cell is taken in z-direction and light
propagates in x-direction.

Now, we want to show same examples of the mode profiles. Toidowd chose a
point on the x-axigia/2m = 0.6 and we put a blue line along this point. The modes profiles
of the examples chosen on the points which ones are intemssdf this blue lines and modes.

The confined modes appear in the area between the green ayelltvelines. There
are only3 T'E confined modes, shown with dashed lines arid)/ confined modes, shown
with continuous solid lines. The first dashed line is even Tdtlenand the second dashed line
is odd TE mode. The continuous solid lines are TM modes. Thedantinuous line is even
TM mode and the second continuous line is odd TM mode. The rpoafées of the first3
TE andT M confined modes are shown in Fig. (4.11) and (4.12), respdgtiThe vertical
dashed lines on = R, andz = 0 represent the limits of the guiding layer. Here as mentioned
before all confined modes are well confined in the guidingrdyet decrease exponentially
outside the guiding layer, which is obvious in the both figure
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-Rz 0

Figure 4.11T FE Confined Modes for Asymmetric Dielectric Waveguide Slabaxts
shows Ey component of the electric field, and x-axis showg ttieection
of the waveguide slab.

Hy

Figure 4.121°' M Confined Modes for Asymmetric Dielectric Waveguide Slabaxts
shows Hy component of the magnetic field, and x-axis showg tfieec-
tion of the waveguide slab.

The slab modes between the yellow and red lines. Ther& Arslab modes and' M
slab modes. The mode profiles of the sof& and7'M radiation modes are shown in Fig.
(4.13) and (4.14), respectively. Again the vertical dadivexs onz = R, andz = 0 represent
the limits of the guiding layer. In this zone, slab modes aewell confined in the guiding
because these modes are decaying in the slab with refractiern; but radiating in the slab

with refraction indexus.
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Ey

-Rz 0

Figure 4.13T1T F Slab Modes for Asymmetric Dielectric Waveguide Slab. Ysasthows
Ey component of the electric field and x-axis shows the z doe®f the
waveguide slab.

Hy

-Rz 0

Figure 4.141 M Slab Modes for Asymmetric Dielectric Waveguide Slab. Ysastiows
Hy component of the magnetic field and x-axis shows the z timeof the
waveguide slab.

The radiation modes are above the red line. Therd'@eaadiation modes and M
radiation modes. The mode profiles of the sdfifé and7'M radiation modes are shown in
Fig. (4.15) and (4.16), respectively. Again the verticaslted lines onr = R, andz = 0
represent the limits of the guiding layer. In this zone, atidh modes are not well confined
in the guiding layer because they are not decreasing expiatgmoutside the guiding layer.
Contrarily outside of the guiding layer modes exist, and ttuthe asymmetrical structure,
mode is asymmetric in the upper and lower slabs.
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TE32

TE33

Ey

TE42

Figure 4.157 F Radiation Modes for Asymmetric Dielectric Waveguide Slakaxis
shows Ey of the electric field, and x-axis shows the z directb the
waveguide slab.

TM32

TM33

Hy

TM42

Figure 4.167 M Radiation Modes for Asymmetric Dielectric Waveguide Slakaxis
shows Hy components of the magnetic field, and x-axis shoez threc-
tion of the waveguide slab.
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CHAPTER 5

PHOTONIC CRYSTAL WAVEGUIDE SLAB
(PCW-SLAB)

Photonic crystal waveguides allow only certain electrongdig wave modes to prop-
agate inside the structure. Because of this charactenstatonic crystal waveguides can be
used to control light propagation in the integrated circ@sign. But such integrated circuit
designs can be realized in the three-dimensional systens sliggest us to use the PCW-
slabs.

PCW-slabs are 1 dimensional or 2 dimensional periodic &tras with a finite thick-
ness in vertical z-direction. They achieve light confinetigrusing the effect of 2D-photonic

crystal in the x-y plane and in the vertical direction by aetive index contrast.

Eup

waveguide

Photonic Crystal
Cylinders

Guiding Layer
€down z
X

y

Figure 5.1. PCW-slab

In general the PCWG-slab consists of a guiding layer sarfteddetween two finite
bounded media as shown in Fig. (5.1). If two bounding medidastical then it is called
symmetric PCW-slabe(, = €4,.,) - If two bounding media is not identical then waveguide
called asymmetric PCW-slab,{, # €4.,n). SO We can say that symmetric waveguides are a
special case of the asymmetric ones. For light confinemeatgefractive index of the guiding
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layer must be greater than that of the surrounding mediumtaathickness of the guiding
layer is typically of the order of a wavelength.

The outline of this chapter is as follows; firstly we will gigegeneral mathematical
formulation of PCW-slabs as eigenvalue problemBEandH respectively. The formulations
are (3NX3N) problems. Then by using a similarity transformation we widicrease the
dimension from3NX3N) to (2N X2N). These discussed formalisms are the same for both
symmetric PCW-slabs and asymmetric PCW-slabs. The onfgrdiice is calculations of
structure factors (dielectric permittivityd, so at the last section, we will give the calculation
of e for PCW-slab.

5.1. PCW-Slab as an Eigenvalue Problem

In this section our aim is formalize Maxwell equation t6randH in Eq. (4.10) and
Eq. (5.2) in the form of an eigenvalue problem. The resulhese formalisms are the same
in both of the symmetric and asymmetric PCW slabs.

Maxwell's equations in a macroscopic medium were previpusltten as

92
v X {ﬁv X E} + éﬁe(r)E = 0 (5.1)
v X [?lr)v X H] + ég—;u(r)H = 0 (5.2)

where the fields depend an=r = xx + yy + 2Z. Let's write Fourier transformation fdt
andH

E(r,t) =E(r,t) = /00 dwE(r, w)e ™! (5.3)

—00

H(r,t) = H(r,t) = /00 dwH(r,w)e™ ™" (5.4)

—00

i o L r,w —w—zer r,w =
[mwe {VX(MﬂVXH,)> @()H,)} 0 (5.5)

/00 dwe ™! {V X (%V X H(r,w)) — i—ju(r)H(r,w)} =0 (5.6)
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Considering the above equations since the Fourier trams@dreach term in curly braces

vanishes, the terms in curly braces must vanish too;

1 w?
V x (mv X E(r)) - ge(r)E(r) =0 (5.7)
V x (%V X H(r)) — C;}—2211(1')H(r) =0 (5.8)

to simplify the notation of the fields we suppress thelependence of the fields. We now
write the fields in the next form;

Bw) = | daB@e (5.9)

H(r) = /” d*qH(q)e™ " (5.10)

whereq = k + G, k = ki + k, + k, (herek, = % is in the propagation direction) and
G = G, x+ G,y + G.z. If we substitute Eq. (5.9) and Eq. (5.10) into Eq. (5.7) and &B)
respectively, we get

2

1 iqr | w_ r wqr
V x (mv X /allqd3qE(q)e ) 2 e( )/a”qd?’qE(q)e = 0 (5.11)

1 . 2 .
V|V [ daB@et) - Zu) [ daH@er = 0 (612
E(I') allqg c a
We can use the next vector identity to evalugte fan d*qE(q)e’ar

V x(gA)=¢g(VxA)—A x (Vg) (5.13)
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recalling thatV does not operate aponly operates om we get

v x / PBqE(q)esT = / Fq ¥ x "B (q)
- /all d’q [V (V x E(q)) — E(q) x (Ve'T)]
_ / dq [0~ B(q) x (V)

— / d*q iq x E(q)e™” (5.14)
allq

Since waveguide slab structure is periodic in yz-plane weegande(r), p(r) and their

inverses as follows,

e(r) = e(r) = €(G)e'®” (5.15)
% =n(r) =n(r) =D n(G)e'®” (5.16)
p(r) = p(r) = p(G)e'S™ (5.17)
G
1 .
= () = s() = Y s(G)eC (5.18)
a ~ W =S =

The integral in Eg. (5.11) ovey is over the entire reciprocal space. Now we broke the
reciprocal space into cells and reformulate it as in the foxh;

/ Pagla) — [ kY gk +G). (5.19)
allq cell IS

Substituting Eqg. (5.14) and Eg. (5.16) into Eq. (5.11) andgishe new formalism in Eq.
(5.19) we get

V x [(ZG(GN)(BZ‘G”) (/ d3k2i(k+ G) x E(k + G’)ez‘(k+c;’).r>]

G/

/ dgk Z E(k + G’)ei(k-f—G/)r =0
cell a’

I
], | EN
PN Q
O\
BUR
Q
w
Q\
o
N———
Y
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k—i-G)XE(k-'-G) k+G+G)

OB

G" G

_w_z dBkZZ k—'—G) k+G+G) -0

cell c' o

taking the integral sign to the left calculatifgwe get;

/ APk Z Z ei(k+G/+GII)-P
cell G// G/
2

lc(G”)(k +G +G ) x[(k+G)xEk+G)]+ —=e(GHEk+G)| =0

C2

LettingG = G’ + G and rearranging the equation we get,

dgk 6i(k—i—G)r
/c?ll g

[Zc(G—G’)(k+G)x[(k+G)xE(k+G ‘;’—226 k+G)]

G’ G/

Now we will use Eq. (5.19)

/ d3qezq-r
allq
w2

[Z (G-G)k+G) x[k+G)xEk+G)] + —2 G- GHEk+G)

=0.

Since the Fourier transform of the term in braces vanishegje it is equal t®;

Y (G-G)k+G)x[k+G)xEk+G) + t’—j > «(G-G)Ek+G)=0.
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If we substitutéd — H, ¢ — 1 and¢ — 7, we can obtain a similar equation fbr

> G -G)k+G)x[k+G)xHk+G) + t’—j > wG-GHHk+G) =0,

As a result now we have the last two equations are in the foreiggnvalue equation

Z<(G ~ Gk +G) x [(k+G/) x E(k+G/)] _
G

(. J
v~

Ax
2
- —“2—2 Y (G- GEK+G), (5.20)
G/

J

v~

ABz

Y9G - G)(k+G) x [(k+G’) x Hk+ G + 8%)| =
G

=5 ) mG-G)Hk+G). (5.21)

5.1.1. Similarity Transformation

The equations (5.20) and (5.21) a8 x 3N generalized eigenvalue problems, whiches
can be solved to find for the given values ok. The dimensions of the problem can be re-
duced by using a similarity transformation fraZw x 3N to 2V x 2N.

From now on we will make calculations only féf and then at the end of the section,
we will pass fromH to E.

Let’s define

él = éz X é3 (522)
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whereq = k+ G = (ky + Gy, by + Gy, k. +G.) andq = k+ G’ = (k, + G, by + G k. +
G’). Only the direction o#j is significant, becausH mustn’t have any component at the
direction oféz sinceV - H = 0. Howeveré, andé, can be any orthogonal vectors such that

perpendicular tés;. We can redefine componentsHfin Cartesian basi&k,, X2, %3) and in
the defined basis(, &2, €3) as,

—
s
[l

X; - H inthe cartesian basis
é; - H inthe defined basis

where: = 1, 2, 3. Introducing a transition matrix;; by relating the two basis as the following
way

we getH; = E?:l s;jH; wheres;; = (&; - X;) is an orthogonal matrix, in the next form, We
find the orthogonat matrix using our new basis, in the next form,

Q2+q? —qady —qsq:
lal/a2+a2  lal\/a2+a2  lal\/a3+a2
5 = 0 9= —qy (524)
Vai+a? i+
4z 4y 4z
|l lal lal

Let’s define an orthogondINV x 3N matrix S, which is anN x N block dioganal matrix of
s matrix, SG,G’ = 5G,G’5G

_[ s] 0 0 ]
3x3

S = 0 [ ‘S.]sx:s 0

]
L 33 4 NaN

By using similarity transformation with the help of tisematrix, S.ST = STS = 1, we rewrite
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Eq. (5.21) as,

A, = ABz
SAS'Sz = ASBS'Sz
(SASH(Sz) = MSBSH(Sz)
A7 = \BE. (5.25)

Now we evaluate the matrice$ and B, bearing in mind thatl and B matrices areV x N
block matrices witl8 x 3 blocks. Firstly we start froml;

A= [SASTga = Z Z SG,G”AG”G”’SE’”G’

G// G///
—= Z Z 5GG// SGAG”G”IéG”’G/SE/
G// G///
= SGAGG/STG/ (526)
After some calculations we get
_ lalld'[(ayay+4=a2) _ plal(—aya-+ayasl) 0
~ / / _ / ' / / 2 2 12 /2
A= 77(G _ G/) 9219 1(9y92—4yq%) 9295 (9y 9y +9-92) (g5 +a7) (g5 +47) ol. (5.27)
VG +E\ aF+a? VG +E a3 +a?
0 0 0

If we restrict our work for a class of materials which have Wwesgnetic susceptibilities, and
assumeu(r) = 1, thenu(G — G') = dggr. That followsSBST = I and we get the next

result;
_ lalle'[(ayay+g-4%) _ Glal(—aya=tayql) ~ o[ &
> n(G-G) NN Vit \Ja+az Hy | W' | He
U | (gya=—avdl) aeas(ayayta-42)+H(ag+ad) (g +a7) Ve | g
!
G VaG+E 4 +a? V@i +aE /a3 +a? Y Y

Once calculatingﬁ we can calculatél = S—'H and then using the Maxwell equation
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V x H = ¢¢e(r)0E /0t we can calculat& in the next form;
1 -1
B@) =~ | DG~ @)| (axH)

As mentioned earlier, until now, all calculations are th@edor symmetric and asym-
metric PCW-slabs. The only thing that creates the chandeeislielectric permittivityg, so
at the next section we give some examples about the caloolafk.

5.2. PCW-Slab Structure

We want to calculate the structure factors, which is calliededtric permittivity €).
The calculations will be hold for two different PCW-slabseoof them is called 1D-LDWG
slab and the other is called 2D-LDWG slab. We will use theseutations at next chapter.

5.2.1. 1D-LDWG Slab Structure

In this example, we consider a 2D array of slabs with lerdgthsandwiched between
two dielectric mediung,,,., ande;,,.., respectively, as shown in Fig. (5.2). The length of the
middle part i2R.. The slabs have a dielectric constagnaind the background medium has a
dielectric constant of,. The length of the waveguide 2%, with a dielectric constant af;.
The distance of the half of the defect slab to the half of therest slab i, .

1D-LDWG slab structure is periodic in yz-plane so we onlycodédte over theyz
cooinates. The reciprocal lattice vectors @e= (2)(n,y + n.z). The Fourier coefficients
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¢(G) are calculated as

€«(G)

1 / —i(Gr) 12
e(r)e " dr
VYCGU cell ( )

Az

1 Ay Ay
2 . 2 .
——eup / eszyydy / eszzde
—_A _A
‘/cell _2y 2 z

1 + B
—iG -Gz
v (ep — Eup) /_A e yydy/ e~ 1G=2 1,
cell T’/ —R,

MSCy

1 R
v (€4 — €) ]Zl 2cos(G - b;) /

1 Rd ) R, )
(€4 — eb)/ e_ZG-”ydy/ e~y
Veen ~Rd ~R.

1 Ay

R.p
) 2 ) % .
(Edown o 6up)e—z(Gz-bzb) : e—szydy/ e—zG'zde
Veell ] —R.,

R,
e_inydy/ e G2y
7RZ

(5.28)

where, R., = ((A./2) — R.)/2, by = Ry + (j — 1)a, bzb = R. + R, MSCy=5.

5.2.2. 2D-LDWG Slab Structure

In this example, we consider a 3D array of circular cylindriods of radiusk? sand-

wiched between two dielectric mediu),,., ande;q,., respectively, as shown in Fig. (5.3).

The length of the middle part i5R,. The circular cylindrical rods have a dielectric constant

e, and the background medium has a dielectric constant dfhe length of the waveguide is
2Rd with a dielectric constant af;. The distance of the half of the defect slab to the half of

the nearest circular cylindrical rod 13, .

The structure is periodic in 3D. The reciprocal lattice vestareG = (

2

a

) (nLx +
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n,y + n.z). The Fourier coefficients(G) are calculated as

€«(G)

1 )
e(r)e "G Py
Vee cell
1 E & ¥
2 . 2 . .
—V €up/ eZszd.T/A eZnydy/ eilGZZdZ
—A - —A
cell =z —2y 5=
1 5 3 R
(€r — €up) e_iG”dx/ e_inydy/ ey
Veell e e R,
1 MSCy 2 R A R )
(€a — €p) E 2cos(G - b;) re 'S drdf e C2dz  (5.29)
Veell s o Jo ~R.
1 T A R
(€4 — €) e "ty e "“vidy e " Rdz
Vet e =g ~R.
1 5 5 R
(edown . 6up)efz((}z-bzb) / eszzmdx / eszyydy / eszzzdz
Veeu =4e —dy ~R.

where, R, = ((A./2) — R.)/2, bj=R1 + (j —1)a, bzb= R, + R, MSCy =5.

65



€Edown

1lla

Figure 5.2. 1D-LDWG slab.
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Figure 5.3. 2D-LDWG slab.
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CHAPTER 6

L-SHAPED PHOTONIC CRYSTAL WAVEGUIDE SLAB

In this chapter we present photonic crystal line defect \gaide slabs to bend light.
The structures are combination of 1 dimensionally periodigeguide slab (1D-LDWG slab)
and 2 dimensionally periodic line defect waveguide slab-(ZZIWG slab).

1D-LDWG slab is not periodic in the direction of propagatidierefore light will be
guided with much less loss in such a waveguide due to lesseufanauring imperfections as
a result of its much simpler geometry Taniyama et al. (20®&3tier and Sevim (2005). So
1D-LDWG slab is a good option if light would travel straight.

On the other hand 2D-LDWG slab is periodic into two dimensjdhus it has sensi-
tivity to imperfections during manufacturing, that causehigh losses and limits their usage
to guide light over long distances Hughes et al. (2005), Kehi et al. (2005). Besides,
the high dispersion of 2D-LDWG slab limits their used bandivi So although 2D-LDWG
slab is not a good choice for light to travel straight in it fong distances, it is still the most
convenient geometry to bend the light througbdaturn Chutinan et al. (2003).

We will use the 1D-LDWG slab for the straight sections andai2®-LDWG slab for
the corners. By this way, the wave travels with little lostigh the straight sections, turns
through sharp corner with little bending loss and then rersrthe 1D-LDWG slab region to
travel for another long straight segment.

L-shaped photonic crystal line defect waveguide struatu2® was previously worked
in the article Sami Soziler and DUYGU SENG (2011). The obtained transmission result
is nearly%100 for (fa/2m, wa/2m) = (0.68,0.2667). We examine th&D version of this
approach in terms of transmission.

In this chapter we briefly discuss the waveguide structured and 3D, then we
give information about mode polarization and mode couptihthe band diagrams. After we
show band diagrams for silica silicon waveguide slab andiiion waveguide slab for each

one symmetric and asymmetric cases and discuss on transmmesults.
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6.1. Waveguide Structures in 2D

In order to understand thoroughly tB® structure we start from analogo® struc-
ture. The3D structures can be converted2® by considering: = 0 plane of view. In two
dimensions we will work on two forms. We will call them as 7sd silicon waveguide” and
"air silicon waveguide”. The only difference between thenis are background materials. In
the "silica silicon waveguide” we use silica as a backgrowmde in the "air silicon waveg-
uide” we use air. In Fig. (6.2) we see th® version of the forms which is common for both
of the structures.

Figure 6.2. L-shaped photonic crystal line defect wavegudD on the top, geomet-
rical details of line defect waveguide on the bottom.
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In Fig. (6.2) we see that, the silicon slabs with thicknéss= 0.179a, where a is
lattice constant, and with dielectric constantepf = 13 (color in black) immersed in the
silica background withy, = 2.25 for the "silica silicon waveguide” and for the "air silicon
waveguide” air background witfy = 1 is used (color in gray). Here, we formed the defect by
removing one row of dielectric slabs and by placing a dielestab of thicknesd = 0.3184a
and with dielectric constant ef, = 13. The corner element designed from square lattice of
silicon rods of radiusg? = 0.2387a and immersed in a silica background. The line defect is
formed by removing one row of dielectric rods and by extegdhre core of the 1D-LDWG.
Rbend is2d and dsepar i8.2a.

0.4

0.35

0.3

0.25

0.2

wa/21Cc

0.15

0.1

0.05

Figure 6.3. "Silica silicon waveguide”. The overlapped taiagrams of 1D-LDWG
in green color and 2D-LDWG in black color.

The corresponding band diagrams of the structures forveass electric (TE) modes
with £, = 0, E, = 0, E, # 0 are given in Fig. (6.3) and in Fig. (6.4) for the "silica sdit
waveguide” and for the "air silicon waveguide”, respediyve
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Figure 6.4. "Air silicon waveguide.” The overlapped bandgtams of 1D-LDWG in
green color and 2D-LDWG in black color.

The green bands show the propagation modes for 1D-LDWG. Teok bbands show
the propagation modes for 2D-LDWG. Since our proposed &iras are combinations of 1D-
LDWG and 2D-LDWG light should be able to propagate in the badtis is why we give the
overlapped graphs for structures. When the "silica silis@veguide” in Fig. (6.3) is com-
pared with the "air silicon waveguide” in Fig. (6.4), we skattthe band gap is bigger at "air
silicon waveguide” because of the high contrast in the dtgleconstants.

The band diagrams in the figures are modelled using the selpenethod with a
supercell size of4, x A,. We used4, = a and A, = 11a for 1D-LDWG, and for 2D-
LDWG, we usedd, = 11a andA, = 11a. The supercell sizes are adjusted to ensure that the
guided mode is well contained within the supercell.

6.2. Waveguide Structures in 3D

At the previous section we presented "silica silicon waveguand "air silicon waveg-
uide” in 2D. Now we give the structures the third dimension by givinguheeheight,” R.”,
and sandwiching them into the two slabs. We will name thenomicg to the above and
below slabs, symmetric or asymmetric. If the waveguide isosuinded by air from above and
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below, that gives it a symmetrical feature, so we will cabymmetric. If the waveguide is

surrounded by air from above and silica from below, that give asymmetrical feature, so
we will call it asymmetric. In this way we can designate thestures as fallows; symmetric
silica silicon waveguide slab (sss-wgs), asymmetric aifiticon waveguide slab (ass-wgs),
symmetric air silicon waveguide slab (sas-wgs) and asymicnait silicon waveguide slab

(aas-wgs) as shown the below.

. . _ Symmetric silica silicon waveguide slab (sss-wgs)
Silica silicon waveguide sla

Asymmetric silica silicon waveguide slab (ass-wgs)

- _ Symmetric air silicon waveguide slab (sas-wgs)
Air silicon waveguide slab

Asymmetric air silicon waveguide slab (aas-wgs)

No matter what the name is all of the structures are a combmat 1D-LDWG slab and 2D-
LDWG slab. At the figures (5.2) and (5.3) we define the nameb@eWalues for 1D-LDWG
slab and 2D-LDWG slab respectively.

The table (6.1) give the dielectric values for the each vans. In this table the
structures are given by their shortened names. Since theettie constants are the same for
1D-LDWG slab and 2D-LDWG slab we have not specified separatel

Dielectric Constants sss-wgs ass-wgs sas-wgs aas-wgs

€a 13 13 13 13
& 225 225 1 1
€a 13 13 13 13
€up 1 1 1 1
€down 1 2.25 1 2.25

Table 6.1. Dielectric values for each variations.
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6.3. Mode Polarization

For photonic crystals in 1D and 2D, the fields are divided tmio polarizations by
symmetry: transverse electric (TE) modes, in which no gkefield in the direction of propa-
gation (in our casé’, = 0) and transverse magnetic (TM) modes, in which no magnetat fie
in the direction of propagation (in our case = 0).

We can see 2D-LDWG band diagrams of "silica silicon waveguighd "air silicon
waveguide” in Fig. (6.6) and in Fig. (6.8) respectively. TiBaes are shown in Fig. (6.6a)
and Fig. (6.8a), TM modes are shown in Fig. (6.6b) and Fig8h(6.and mixed modes are
shown in Fig. (6.6¢) and Fig. (6.8c).

wa/21c
wa/21c

Bas2m Bas2m

0.4
0.35
0.3
0.25 -

0.2

wa/21Cc

0.15

0.1 E
0.05 ﬂ
‘ ‘

Bas2m

Figure 6.6. 2D-LDWG band diagrams of "silica silicon wavetgi for TE modes, TM
modes and for mixed modes.
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Figure 6.8. 2D-LDWG band diagrams of "air silicon waveguiifter TE modes, TM
modes and for mixed modes.

But for the photonic crystal slab modes in 3D, they can notikiled into two po-
larizations. They are included all the modes. That meansananot get band structures for
slab modes separately as Fig. (6.6a) or Fig. (6.6b), but etseeanly graphic as Fig. (6.6c).
This is because of the lack of translational symmetry in tical direction. Therefore the
slab modes are classified in terms of transverse electe(TlE-like) modes and transverse
magnetic like (TM-like) modes.

Looking the field components of the modes, we can understane mode is TE-like
or TM-like. The modes and corresponding field componentsiaog/n in the table (6.2), the
propagating wave assumed in the direction.
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Mode | E, | E. | B, | H, | H. | H,
TE | Z0|Z0] 0 |Z0|#£0]|#£0
TElke | Z0 | Z0 |~0 ] Z0]| Z0| £0
TM | Z£0|£0| Z0| £0|£0] 0
TM-like | £0 | £0 | £0 | £0| £0 | ~0

Table 6.2. Mode polarizations.

In the rest of the work, we study on TE-like modes. The tabeashthe difference
between TE mode and TE-like modes for electric field comptmenhe difference is while
E, component in TE mode equal tofor TE-like modest, component is close to.

6.4. Mode Coupling

After mode polarization another important issue for oungiesis the mode coupling.
For the guidance of light, the proposed system has two impbalements:
1) The guided modes of 1D-LDWG slabs and 2D-LDWG slabs must beled. So we want
to find the guided mode which will propagate in these strgstim the same time. On account
of this it is important to see matched band diagram to dedi@éhech values it is possible to
work.
2) The chosen coupled frequency must be in the 2D-LDWG slabd bap to prevent loss for
90° turning.

By providing these two items we will design silica silicon weguide slab and air
silicon waveguide slab.

6.5. Silica Silicon Waveguide Slab

In this section we will present silica silicon waveguidebstar symmetric and asym-
metric cases. For each case we will show the band diagrante coupling of the structures.
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6.5.1. Symmetric Silica Silicon Waveguide Slab

We show the symmetric silica silicon waveguide slab in F§9). Here the waveg-
uide is surrounded by air from above and below. At the midde structure, silica is used
as a background material and silicon rods and slabs are isethé@n the silica background.

Figure 6.9. Symmetric silica silicon waveguide slab.

The band diagram of the symmetric silica silicon waveguidb are studied for 1D-
LDWG slab and 2D-LDWG slab, both for symmetric case.

The Figs. (6.10) and (6.11) show band diagrams of 1D-LDWGim K6.10) and
1D-LDWG slab in Fig. (6.11). Here simultaneously two figuese shown together. The
reason is that we want to do comparison between the two. Thd6=1L0) shows silica silicon
waveguide for TE modes, in this figure the first fundamentaiidle is the guided mode in
the line defect. The Fig. (6.11) shows silica silicon wavdgtslab for TE-like modes, in this
figure the first fundamental TE-like mode is the guided modaériine defect. If we compare
the two figures, we see that Fig. (6.11) has extra modes becétise 3 dimensionality of the

structure and also represents a mixture of TE-like and TWd+odes.
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Figure 6.10. Band diagrams of silica silicon waveguide (IDA/G)
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Figure 6.11. Band diagrams of symmetric silica silicon vgaude slab (1D-LDWG Slab).

The Figs. (6.12) and (6.13) show band diagrams of 2D-LDWGim K6.12) and
2D-LDWG slab in Fig. (6.13). The Fig. (6.12) shows silicach waveguide for mixed
modes. The Fig. (6.13) shows silica silicon waveguide statnfixed modes. When we
compare the band diagrams of 2D-LDWG and 2D-LDWG slab, wevdgke the band gap
(for mixed modes) for 2D-LDWG in Fig. (6.12) is wide, the bagdp for symmetric 2D-
LDWG slab gets narrow. Also if we compare the two figures, weethat Fig. (6.13) has extra
modes because of the 3 dimensionality of the structure. itesless the shapes of the curves
preserved similar in 2D and 3D cases.
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Figure 6.13. Band diagrams of symmetric silica silicon vgaude slab (2D-LDWG Slab).

As stated previously for the guidance of light, the guidediewof 1D-LDWG slabs
and 2D-LDWG slabs must be coupled. Because we want to finduitded mode which will
propagate in these structures in the same time. On accouhisofve show in Fig. (6.14)
the band diagrams of 1D-LDWG slab is with green color and ZDAIG slab is with black
color. The red dashed lines show matched line defect modg¢sstguided in the line defect,
and also guided in this defect even in the absence of photoystal. As mentioned earlier,
there exist band gaps for TE-like modes between horizomtédw lines. Consequently, the
red dashed lines through the band gap give us the TE-like pvadaeh will be guided in the
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line defect and won't be reflected during @& turning.
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Figure 6.14. Matched band diagrams of symmetric silicaailiwaveguide slab.

6.5.2. Asymmetric Silica Silicon Saveguide Slab

Figure 6.15. Asymmetric silica silicon waveguide slab.

We present the asymmetric silica silicon waveguide slabign §6.15). It lies on
a silica substrate, that breaks the mirror symmetry in théioa direction because of the
different dielectric constants of air and silica.

The band diagram of the asymmetric silica silicon wavegsldb are studied for 1D-
LDWG slab and 2D-LDWG slab, both for asymmetric case.
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The Fig. (6.16) shows silica silicon waveguide slab for Tke-imodes, in this figure
the first fundamental TE-like mode is the guided mode in the tiefect. The Fig. (6.17)
shows band diagrams of asymmetric silica silicon wavegsiiale for mixed modes.
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Figure 6.16. Band diagram of asymmetric silica silicon vgaude, 1D-LDWG Slab,
mixed modes.

For the guidance of light,the guided modes of 1D-LDWG slai$ 2D-LDWG slabs
must be coupled. Because we want to find the guided mode whitprapagate in these
structures in the same time. On account of this we show in (6ig.8) the band diagrams of
1D-LDWG slab is with green color and 2D-LDWG slab is with tamlor. The red dashed
lines show matched line defect modes that is guided in tieedefect, and also guided in this
defect even in the absence of photonic crystal. As mentieadder, there exist band gaps for
TE-like modes between horizontal yellow lines. Consedyetite red dashed lines through
the band gap give us the TE-like mode, which will be guidechmline defect and won't be

reflected during thé0° turning.
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Figure 6.17. Band diagram of asymmetric silica silicon waude slab (2D-LDWG Slab).
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Figure 6.18. Matched band diagrams of asymmetric siliceosilwaveguide slab.
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6.6. Air Silicon Waveguide Slab

In this section we will present air silicon waveguide slabdfpmmetric and asymmet-
ric cases. For each case we will show the band diagrams, noaghdireg for the structures.

6.6.1. Symmetric Air Silicon Waveguide Slab

We show the symmetric air silicon waveguide slab in Fig. 9. Here the waveguide
is surrounded by air from above and below. At the middle ofdtracture, air is used as a
background material and silicon rods and slabs are immengée air background.

Figure 6.19. Symmetric air silicon waveguide slab.

The band diagram of the symmetric air silicon waveguide sliastudied for 1D-
LDWG slab and 2D-LDWG slab, both for symmetric case.

The Fig. (6.21) shows band diagrams of 1D-LDWG in Fig. (6)2drad 1D-LDWG
slab in Fig. (6.21b). Here simultaneously two figures arexshimgether. The reason is that
we want to do comparison between the two. The Fig. (6.21ayslsdica silicon waveguide
for TE modes, in this figure the first fundamental TE mode isgh&led mode in the line
defect. The Fig. (6.21b) shows silica silicon waveguidé $tat TE-like modes, in this figure
the first fundamental TE-like mode is the guided mode in the defect. If we compare the
two figures, we see that Fig. (6.21b) has extra modes becétise 8 dimensionality of the
structure and also represents a mixture of TE-like and Td4ihodes.
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Figure 6.21. Band diagrams of air silicon waveguide (1D-LGY\and symmetric air
silicon waveguide slab (1D-LDWG Slab).



The Fig. (6.23) shows band diagrams of 2D-LDWG in Fig. (6)28ad 2D-LDWG
slab in Fig. (6.23b). The Fig. ( 6.23a) shows air silicon waude for mixed modes. The
Fig. (6.23b) shows air silicon waveguide slab for mixed nsod&hen we compare the band
diagrams of 2D-LDWG and 2D-LDWG slab, we see while the banm(g@ mixed modes) for
2D-LDWG in Fig. (6.23a) is wide, the band gap for symmetricRDWG slab gets narrow.
Also if we compare the two figures, we see that Fig. (6.23b)xés modes because of the 3
dimensionality of the structure. Nevertheless the shaptteaurves preserved similar in 2D
and 3D cases.
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Figure 6.23. Band diagrams of air silicon waveguide (2D-LOY\and symmetric air

silicon waveguide slab (2D-LDWG Slab).

84



As stated previously for the guidance of light,the guidedie®of 1D-LDWG slabs
and 2D-LDWG slabs must be coupled. Because we want to finduiged mode which will
propagate in these structures in the same time. On accouhisofve show in Fig. (6.24)
the band diagrams of 1D-LDWG slab is with green color and 2ZDAIG slab is with black
color. The red dashed lines show matched line defect mod¢sstguided in the line defect,
and also guided in this defect even in the absence of photoystal. As mentioned earlier,
there exist band gaps for TE-like modes between horizomdidw lines. Consequently, the
red dashed lines through the band gap give us the TE-like pvadaeh will be guided in the
line defect and won't be reflected during @& turning.
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Figure 6.24. Matched band diagrams of symmetric air silwameguide slab.
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6.6.2. Asymmetric Air Silicon Waveguide Slab

We present the asymmetric air silicon waveguide slab in @@®5). It lies on a silica
substrate, that breaks the mirror symmetry in the vertigaiction because of the different
dielectric constants of air and silica.

Figure 6.25. Asymmetric air silicon waveguide slab.

The band diagram of the asymmetric air silicon waveguidb al& studied for 1D-
LDWG slab and 2D-LDWG slab, both for asymmetric case.

The Fig. (6.26) shows air silicon waveguide slab for TE-lkedes, in this figure the
first fundamental TE-like mode is the guided mode in the liaedt. The Fig. (6.27) shows
band diagrams of asymmetric air silicon waveguide slab fieechmodes.
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Figure 6.26. Band diagram of asymmetric air silicon wavdguilD-LDWG Slab,
mixed modes.
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Figure 6.27. Band diagram of asymmetric air silicon wavdguslab (2D-LDWG Slab).
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For the guidance of light,the guided modes of 1D-LDWG slais 2D-LDWG slabs
must be coupled. Because we want to find the guided mode whiltprapagate in these
structures in the same time. On account of this we show in 6i&8) the band diagrams of
1D-LDWG slab is with green color and 2D-LDWG slab is with tamolor. The red dashed
lines show matched line defect modes that is guided in tieed@fect, and also guided in this
defect even in the absence of photonic crystal. As mentieaddr, there exist band gaps for
TE-like modes between horizontal yellow lines. Consedyetite red dashed lines through
the band gap give us the TE-like mode, which will be guidedhmline defect and won't be
reflected during th@&0° turning.
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Figure 6.28. Matched band diagrams of asymmetric air siliwaveguide slab.
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6.7. Transmission Results

The next step is time domain simulation to prove if the desigarks. Above, we give
the parameters for our proposed structure and also we sh@wvmaind diagrams for each of
the structures. Now we want to understand how much powes tilma bend. To know this
we need to find transmission. Transmission of the bend caefiged as the ratio of the total
output flux measured after ben#,, to total input flux for the corresponding 1D-LDWG slab,
P;, which is given by

T =P,/P.

Therefore we calculated flux on yz-plane of the waveguideedacthe straight 1D-LDWG
slab, and on xz-plane of the waveguide once for after the fmmehch of the structures.

The FDTD simulations have been performed using MEEP [22]clvigives conve-
nience in using custom sources. We used a current source et form

—(t —to)
202

Im(r,t) = 6(z — 2,)H(y, 2, w)exp{ ] exp(—iwt)

wherelJ,,(r, t) is @ monochromatic source locatedvat z, of frequencyw. It is enveloped

in a Gaussian packet with widthw = 1/0, whereo is wavelength, in the frequency do-
main. H(y, z,w) is the guided mode of the 1D-LDWG slab at the center frequencyVe
useH,(y,z,w), H,(y, z,w), H,(y, z,w) to generate a current source is in yz-plane in order to
excite TE-like modes. We call this source as “mode sourcdie Mode source excites only
itself, by this way the initial straight segment can be madgy\short, so considerably re-
ducing the simulation time, additionally yielding much re@orrect results for transmission.
Gaussian source is adjusted for the flux calculations udill after the fields have decayed to
1/10.000th of their peak values at the end of the waveguide where tkedgions have been
placed.

We analysed the role of the interface between 1D-LDWG slab2i-LDWG slab,
which is previously defined as dsepar. That's why while daking the flux we take flux once
for the straight 1D-LDWG slab, and once for the structurehm Eig. (6.29). For each case
calculation dimensions are identical and locations of the fegions are in the same place.
The transmission is taken as the ratio of the fluxes and mead$wrm—0.4a to 1a increasing
in 0.1a steps. We observed that the transmission results averelgahged only one percent.
Therefore we worked with the same dsepar value for all atrest it isdsepar = 0.2a.

In Fig. (6.30), we present the snapshots from our simulatadrisilica silicon waveg-
uide”, symmetric slab. The figure on the left is a snapshotrwthe frequencyva/27c =

89



Figure 6.29.2 = 0 slice from 3D slab is shown witthisepar = 0.2a. All parameters are
the same described for 3 dimensional system.

a b (o
LU | O

Figure 6.30. FDTD simulations af= 0 slice from "silica silicon waveguide” symmet-
ric slab. On the left the slab is at the frequencyaf 27c = 0.2967 which
is in the band gap. a, b and c show different plane sectiorthédigure on
the left. On the right the slab is at the frequencyaf 2rc = 0.2633 which
is below the band gap. The wave is gaussian with witifva /27 ¢) = 0.1.
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0.2967 is in the band gap.2745 < wa/2mc < 0.3077 of the 2D-LDWG structure. Therefore
there is no visible penetration into the corner element. tfdr@smission is nearly lossless (%
97.23) as it is clear from the plane sectians andc of the structure. In contrast the figure on
the right is a snapshot when the frequeney 27c = 0.2633, which is below the band gap of
the 2D-LDWG structure. This time the radiation penetrateghly into the photonic crystal
and corner element so there is large leakage and transmisdaw (% 57.06).

Figure 6.312 = 0 slice from 3D single slab is shown. Single slab is a waveguide
without photonic crystal assistance.
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Fig. (6.32) shows the transmission for the "silica silicoaweguide” as function of
frequency. The results are given for through the symmelratgmic crystal (red filled circles),
symmetric single slab (green blank circles), asymmetratghic crystal (blue filled squares)
and asymmetric single slab (pink blank squares). Here sisighh means a slab waveguide
without photonic crystal assistance as shown in Fig. (6.Bf4¢ transmission of the symmetric
photonic crystal is largest for frequencies inside the ZDALG slab bandgap which lies in
the range).2745 < wa/2me < 0.3077. On the other hand the transmission of the asymmetric
photonic crystal is smaller comparing the symmetric phigtanystal for frequencies inside
the 2D-LDWG slab bandgap which lies in the rarg2r40 < wa/2mc < 0.3018.
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Figure 6.32. Transmission result of MEEP according to diffie values ofva/2mc for
the "silica silicon waveguide”. All parameters are the saiaecribed for
3D system.

Fig. (6.33) shows the transmission for the "air silicon wgwiele” as function of fre-
quency. The results are given for through the symmetricqhiotcrystal (red filled circles),
symmetric single slab (green blank circles), asymmetramhic crystal (blue filled squares)
and asymmetric single slab (pink blank squares). Like tle®ipus transmission results the
symmetric photonic crystal is largest for the frequencnssde the 2D-LDWG slab bandgap
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which lies in the rang®.2985 < wa/2mwc < 0.3790. The transmission of the asymmetric
photonic crystal is smaller comparing the symmetric phigtanystal for frequencies inside
the 2D-LDWG slab bandgap which lies in the rarig&035 < wa/2me < 0.3683.

Let's show the FDTD simulations of the symmetric siliconcsilwaveguide slab at a
frequency out of the photonic band gap= 0.2633 in Fig. (6.34) and at a frequency in the
photonic band gapy = 0.2966 in Fig. (6.35). Here we can see the effect of the photonic
band gap to bend light.
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Figure 6.33. Transmission result of MEEP according to diffie values ofva/2mc for
the "air silicon waveguide”. All parameters are the samecdbsd for 3D
system.

As aresult we worked for TE modes in 1D-LDWG for the straigddteons and for TE-
like modes in 2D-LDWG for the corner element. Here we prefismtmaximum values of the
transmission results for worked examples in the Table (@.B¢ best transmission is obtained
for symmetric air silicon waveguide slab98.32 but since in the real world this design is
not possible this data just given for theoretical real@ati The second best transmission is
obtained for asymmetric air silicon waveguide slalyig7.43. If one examines where the
losses arise, they occur in two places. %0.44 is dispersed at the transition between the
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Figure 6.34. FDTD simulations of the symmetric siliconcalwaveguide slab at a fre-
guency out of the photonic band gap= 0.2633.
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Figure 6.35. FDTD simulations of the symmetric siliconalwaveguide slab at a fre-
guency in the photonic band gap= 0.2966.
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Structure | FrequengyObtained Lost in the transi{ Lost
types (wa/27c)| best trans{ tion between 1D4 during
mission LDWS and 2D-| 90°bend
(%) LDWGS (%) (%)
SSS-Wgs
0.2967 | 97.23 1 1.77
ass-wgs
0.2907 | 94.96 1.16 3.88
sas-wgs
0.3685 | 98.32 0.45 1.23
aas-wgs
0.3522 | 97.43 0.44 2.13

Table 6.3. The best transmission results.

structures andv %2.13 is reflected at the moment of turning. The maximum transioissi
is obtained for symmetric silica silicon waveguide slal§i$7.23. ~ %1 is dispersed at the

transition between the structures ard%1.77 is reflected at the moment of turning. The
maximum transmission is obtained for asymmetric siliceail waveguide slab i%94.96.

~ %1.16 is dispersed at the transition between the structuresati.88 is reflected at the

moment of turning.
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CHAPTER 7

CONCLUSION

We analyzed mathematical modeling of light propagationhintBnic Crystal Waveg-
uide Slab. We described Maxwell’s equations in periodic imedth proper boundary con-
ditions as generalized eigenvalue problem for Hermitiaerafors. Two types of periodic
media we modeled; 1D-LDWGS and 2D-LDWS. Using unitary tfamaation we reduced
problem to block diagonal Hermitian eigenvalue problem.cBgnbination of basic geometri-
cal photonic crystal slabs in 1D and 2D, we constructed soaweguides in silica substrates.
Solving the problem using the computer simulations we failnedmaximum transmission of
light propagation. Obtained the best transmission reanétgjiven in the previous chapter.

99



REFERENCES

Baba, T., A. Motegqi, T. Iwai, N. Fukaya, Y. Watanabe, and Ak&42002). Light propaga-
tion characteristics of straight single-line-defect wgwiees in photonic crystal slabs fab-
ricated into a silicon-on-insulator substraantum Electronics, IEEE Journal of 33,
743—-752.

Benisty, H. (1996). Modal analysis of optical guides witlotdimensional photonic band-gap
boundariesJournal of applied physics 190), 7483-7492.

Berenger, J.-P. (1994). A perfectly matched layer for treogition of electromagnetic waves.
Journal of computational physics 123, 185—-200.

Bloch, F. (1929)Uber die quantenmechanik der elektronen in kristallgittZeitschrift fir
physik 527-8), 555-600.

Chutinan, A., S. John, and O. Toader (2003). Diffractiosliésw of light in all-optical mi-
crochips.Physical review letters 902), 123901.

Chutinan, A. and S. Noda (2000). Waveguides and waveguiadgdie two-dimensional pho-
tonic crystal slabsPhysical review B 6(), 4488.

Floguet, G. (1883). Sur les equations differentiellesdires.Ann. ENS [2] 1247-88.

Hughes, S., L. Ramunno, J. F. Young, and J. Sipe (2005).r&Sxtroptical scattering loss
in photonic crystal waveguides: role of fabrication disardnd photon group velocity.
Physical review letters 948), 033903.

Imada, M., L. H. Lee, M. Okano, S. Kawashima, and S. Noda (RDévelopment of three-
dimensional photonic-crystal waveguides at optical-camitation wavelength&pplied
physics letters 838.7), 171107.

Ishizaki, K., M. Koumura, K. Suzuki, K. Gondaira, and S. N¢&@13). Realization of three-
dimensional guiding of photons in photonic cryst@ature Photonics (2), 133-137.

Ishizaki, K. and S. Noda (2009). Manipulation of photonshatsurface of three-dimensional
photonic crystalsNature 46{7253), 367—-370.

100



Joannopoulos, J. D., P. R. Villeneuve, and S. Fan (1997)toRfwocrystals: putting a new
twist on light.Nature 3866621), 143-149.

John, S. (1987). Strong localization of photons in certasomiiered dielectric superlattices.
Physical review letters 523), 2486.

Johnson, S. G., S. Fan, P. R. Villeneuve, J. Joannopould4,.d&olodziejski (1999). Guided
modes in photonic crystal slalBhysical Review B 8), 5751.

Johnson, S. G., P. R. Villeneuve, S. Fan, and J. Joannop(®009€). Linear waveguides in
photonic-crystal slab$hysical Review B §22), 8212.

Kafesaki, M., M. Agio, and C. Soukoulis (2002). Waveguides finite-height two-
dimensional photonic crystal30SA B 199), 2232-2240.

Kawashima, S., K. Ishizaki, and S. Noda (2010). Light prateg in three-dimensional
photonic crystalsOptics express 1&), 386—-392.

Kuchinsky, S., D. Allan, N. Borrelli, and J.-C. Cotteverg9)00). 3d localization in a channel
waveguide in a photonic crystal with 2d periodici®ptics communications 1{b), 147—
152.

Kuramochi, E., M. Notomi, S. Hughes, A. Shinya, T. Watanadogj L. Ramunno (2005).
Disorder-induced scattering loss of line-defect wavegsiid photonic crystal slabBhys-
ical Review B 7f16), 161318.

Lin, S.-Y., E. Chow, V. Hietala, P. R. Villeneuve, and J. Joapoulos (1998). Experimental
demonstration of guiding and bending of electromagnetigesdn a photonic crystal.
Science 28%387), 274-276.

Lin, S.-Y., E. Chow, S. Johnson, and J. Joannopoulos (2@&nonstration of highly ef-
ficient waveguiding in a photonic crystal slab at the ArB-wavelength.Optics let-
ters 25§17), 1297-1299.

Loncar, M., T. Doll, J. Vuckovic, and A. Scherer (2000). Dpsiand fabrication of silicon
photonic crystal optical waveguidesightwave Technology, Journal of (®), 1402—
1411.

101



Loncar, M., D. Nedeljkovi¢c, T. Doll, J. VuCkovi¢, A. Seher, and T. P. Pearsall (2000).
Waveguiding in planar photonic crystaBspplied Physics Letters 7Z3), 1937-1939.

Meade, R. D., A. Devenyi, J. Joannopoulos, O. Alerhand, Dittgrand K. Kash (1994).
Novel applications of photonic band gap materials: Lowslbends and high q cavities.
Journal of applied physics 19), 4753—-4755.

Mekis, A., J. Chen, I. Kurland, S. Fan, P. R. Villeneuve, andahnnopoulos (1996). High
transmission through sharp bends in photonic crystal wadeg.Physical Review Let-
ters 7118), 3787.

Mekis, A., S. Fan, and J. Joannopoulos (1998). Bound statelsdtonic crystal waveguides
and waveguide bendBhysical Review B §8), 4809.

Noda, S., K. Tomoda, N. Yamamoto, and A. Chutinan (2000)l thuée-dimensional pho-
tonic bandgap crystals at near-infrared wavelendgiogence 28%479), 604—606.

Sami Sozier, H. and H. DUYGU SENMN (2011). Photonic crystal assisted 90 waveguide
bend.International Journal of Modern Physics B @%), 2167-2182.

Shinya, A., M. Notomi, I. Yokohama, C. Takahashi, J.-I. Tla&shi, and T. Tamamura (2002).
Two-dimensional si photonic crystals on oxide using soisst#te.Optical and quantum
electronics 341-3), 113-121.

Sozier, H. S. and K. Sevim (2005). Robustness of one-diraeal photonic band gaps under
random variations of geometrical paramet&sysical Review B {29), 195101.

Taniyama, H., M. Notomi, and Y. Yoshikuni (2005). Propagaticharacteristics of one-
dimensional photonic crystal slab waveguides and radiatass. Physical Review
B 71(15), 153103.

Tokushima, M., H. Kosaka, A. Tomita, and H. Yamada (2000ghtwave propagation
through a 120 sharply bent single-line-defect photonistadywaveguideApplied physics
letters 78), 952—-954.

Yablonovitch, E. (1987). Inhibited spontaneous emissiosalid-state physics and electron-
ics. Physical review letters §80), 2059.

102



Yee, K. S. et al. (1966). Numerical solution of initial boamg value problems involving
maxwells equations in isotropic medl&EE Trans. Antennas Propag (3), 302—-307.

103



VITA

Date and Place of Birth: 28.09.1981|zmir - Turkey
EDUCATION

2007 - 2014 Doctor of Philosophy in Mathematics

Graduate School of Engineering and Scientasir Institute of Technology,
Izmir -Turkey

Thesis Title: Mathematical Modelling of Light PropagationPhotonic
Crystal Waveguides

Supervisor: Associated Prof. Dr. H. Sami Sozuer

2004 - 2007 Master of Science in Mathematics

Graduate School of Engineering and Scientamsijr Institute of Technology
|zmir -Turkey

Thesis Title: Classical and Quantum Euler Equation

Supervisor: Prof. Dr. Oktay PASHAEV

2000 - 2004 Bachelor of Mathematics
Department of Physicézmir Institute of Technologylzmir - Turkey

PROFESSIONAL EXPERIENCE

2005 - 2014 Research and Teaching Assistant
Department of Mathematickzmir Institute of Technology,
|zmir -Turkey

PUBLICATIONS



