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Estimating the three-dimensional motion of an object from a sequence of object

positions and orientation is of significant importance in variety of applications in

control and robotics. For instance, autonomous navigation, manipulation, servo,

tracking, planning and surveillance needs prediction of motion parameters. Although

"motion estimation" is an old problem (the formulations date back to the beginning of

the century), only recently scientists have provided with the tools from nonlinear system

estimation theory to solve this problem eural Networks are the ones which have

recently been used in many nonlinear dynamic system parameter estimation context.

The approximating ability of the neural network is used to identifY the relation between

system variables and parameters of a dynamic system.

The position, velocity and acceleration of the object are estimated by several

neural networks using the II most recent measurements of the object coordinates as

input to the system Several neural network topologies with different configurations

are introduced and utilized in the solution of the problem. Training schemes for each

configuration are given in detail. Simulation results for prediction of motion having

different characteristics via different architectures with alternative configurations

are presented comparatively.



Hareket halindeki bir Liv boyutlu nesnemn zamana gore uzaydaki arda~lk

yizgisel ve avlsal konumlanndan yararlanarak hareketinin tahmin edilmesi kontrol ve

robotik uygulamalan aVlsmdan son derece onemlidir. Ornegin, seyir halindeki aravlann

otomatik yonlendirilmesi, surev yonlendirme, hareketli nesnelerin takibi, planlama ve

gozetleme gibi uygulamaJar hareket parametrelerinin tahminine ihtiyav duyarlar.

Hareket kestirimi problemi eski bir problem olmakla birlikte, (formulasyonu bu

yUzytlm ba~lanna dayanmaktadlr) bilim adamlan bu problemin vozumu ivin ancak son

zamanlarda, dogrusal olmayan sistemler teorisi yardlmlyla tasarlanml~ aravlara

kavu~abilmi~lerdir. Yapay sinir aglan, dogrusal olmayan dinamik sistemlerin

parametrelerinin kestirilmesinde kullamlan aravlann en yenilerindendir.

Cisimlerin konum, htz ve ivmeleri bu hareket parametrelerinin onceki n

saylda olvum degerinin ayn yapay slmr aglanna girdi olarak verilmesiyle

kestirilmektedir. Birkav farkh yapay sinir ag modelinin degi~ik duzenlemeri goz onune

ahnarak tartl~IIml~ ve problemin vozumunde nasIl kullamldtgl anlatllml~tIr. Her

duzenleme ivin yapay sinir aglannm nasll egitildigine ili~kin yontemlerden aynntIlI ~ekilde

bahsedilmi~tir. Farkh ozellikteki hareketlerin degi~ik ag modellerinin farkh

duzenlemeriyle yapilan kestirimlerin ba~anmlan kar~IIa~tmlmah olarak

sunulmu~tur.
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The problem of predicting the trajectory of moving objects is encountered in

industrial robotics, servo systems and some aeronautical applications like target

tracking where interaction with these moving parts is required. From the point of

automatic systems' view, the trajectories of the parts are frequently unknown. For

instance, parts that are moving on conveyor belt are tried to be grasped firmly to be

placed into boxes. For a robot to grasp a part while the part is moving, it should be

provided with the instant motion information of the part. The situation becomes more

complicated when simple slide onto which products are thrown is used in the production

line. On such a device, parts are free to rotate and deviate from perfect linear path. In

such an application, the manipulator control system has to anticipate, at any instant,

parts' position, orientation, velocity, and acceleration with the highest possible accuracy

in order to plan an appropriate path for a manipulator to successfully grasp and pick up

the part without collision or sliding.

Although a guided missile has capability to track a target motion, an intelligent

pilot has the chance to deceive the missile chasing behind. For a guided missile

prediction of the target behavior helps to make necessary maneuver to keep on the

route to the target. If a missile is armed with an intelligent mechanism to identify

the behavior of the target it is less probable to be deceived by the intelligent target .

The researches in the physics showed that many objects around us display

chaotic behavior[Gulick, 1992]. Chaotic dynamics of a phenomena can be extracted

by different tools with of course different accuracy. Artificial neural networks are the

ones which have recently been employed in many applications of this kind. The aim

of this study is to give alternative solutions of trajectory prediction methods by



means of neural network having different architectures and configurations . Their

learning capabilities on the same set of data are presented in comparative manner.

Motion of an object IS characterized by set of parameters called

"motion parameters". These parameters give information both about the motion of

the center of gravity of the object which is called transitional motion and object's

rotational motion.

Both transitiOnal motion and rotational motion have three mam parameters;

position, velocity, and acceleration. Rotational position of object IS defined as

"orientation". "Angular velocity" is the terminology used for rotational speed.

In the case of rotational motion, change in rotational velocity in regard to time

IS defined as "angular acceleration".

Motion of center of gravity, namely transitional motion, can be described

by the parameters which are position, velocity and acceleration.

Consequently, it can be said that provided with the motion parameters

mentioned above, one have complete information about the motion of an object.

In order to describe the motion in detail, each parameter must be defined

with its x, y, z components in the three dimensional space. For instance, velocity

can be given in form of triplet ( Vx, Vy, Vz) where Vx, Vy, Vz are the components

of the velocity vector in x, y, and z directions respectively. Transitional acceleration a

has also components m x, y and z directions and denoted as ax, ay and az

respectively.

The situation is no different for the rotational motion. Let an imaginary axis

passing through an object is predefined such that this axis does not change in the

course of motion. The angles between the defined axis and x-y plane, y-z plane and

z-x plane represent the object's rotational position information simply named as

orientation. Orientation has three components denoted as 8xy, 8yz, 8zx. As the angles

changes, orientation is said to be changing. The rate of change in each angle with

respect to time is a component of angular velocity of object. Components of the

2



angular velocity are denoted as CDxy, CDyz, and COzx. Rate of change in each angular

velocity components is the angular acceleration with possible indices xy, yz, zx.

As a total, a moving object has 9 transitional motion parameters at any instant

of the motion. As for the rotational motion, 9 motion parameters can be counted just

as in the case of rotational motion. In other words, number of parameter in the system

is 18.

Any motion of sixth degrees of freedom needs 18 parameters to be

estimated[ Payeur et. al. , 1995] The phrase "six degrees of freedom" refers to how

many ways a body can move in space, including all translations and rotations.

The 6-DOF(degree of freedom) motion system can translate along and rotate

around three axes: it can translate east-west, north-south, and up-down, and it can also

rotate about those same axes. The translations and rotations are independent of each

other. Six is the minimum number of degrees of freedom required to simulate the motion

of a free-floating body in space.

Using image processing and pattern recognition techniques, an object can

be recognized and its motion can be detected If the the object IS movmg m

recorded by two video cameras which are placed such that they are not

face to face or not looking in the same direction. In other words, planes in

which objects are viewed are not parallel to each other. This is the basic

condition that needs to be satisfied for stereo-imaging. Alternatively, some different

position and orientation of an object. However, this study does not concern with

the performance and use of imaging techniques. Rather it concentrates on

predicting the value of motion parameters.

Collect last n position ( XOx, XOy, XOz, X Ix, X Iy, X Iz, ... , Xnx, Xny, Xnz) and

orientation information (8ox, 8oy, 8oz, 81x, 81y, 81z, ... , 8nx, 8ny, 8nz)

Calculate other motion parameters

h •• '" .~
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A system is the connected units or parts that form a whole and operate together

[Lim Ni Fu, 1994]. The function of the system depends not only on the functions of

parts constituting the system but also on how they connected to each other. Boundary

separating the system from the rest of the world is referred as environment. An open

system is a system that is affected by its environment, whereas a closed system is one

isolated from its environment. The assumption of closed system under certain restrictions

is a means to simplify the analysis of a system behavior[Lim Ni Fu, 1994].

System theory is the study of system behavior. The behavior refers to

input/output characteristics and internal state changes. Mathematics is the language for

expressing quantitative theory. Given a physical system, system identification aims to

construct its mathematical model on the basis of a set of examples encoding the

input/output behavior of the system.

Predicting the future in real-time (i.e. updating prediction "on the fly") has

potential applications in such fields as adaptive control and system modeling. In

fact, the problem of predicting the future is extremely general. The problem has

potential application in any field that involves working with time series, i.e. with

sequences of measurements or observations made on an unknown non-linear

dynamic process [Chichocki and Unbehauen, 1993].

The most powerful approach to the problem of prediction is to find a

law underlying the given dynamic process or phenomenon [Chichocki and

Unbehauen, 1993]. If such a law can be discovered and analytically described, e.g.

by a set of ordinary differential equations, then by solving them we can predict the

future, if the initial conditions are completely specified. Unfortunately, the

information about a dynamic process under investigation is often only partial and

incomplete; so the prediction cannot be based on a known analytical model. The

second less powerful approach is to attempt to discover some strong empirical

regularities in the observation of the time series. For example, a time series consisting



Unfortunately, in many real-world problems some regularities such as periodicity

are masked by noise and even some dynamic processes (phenomena) are described

by chaotic time series in which the data containing hidden periodicity seem

random [Chichocki and Unbehauen, 1993]. It must be stressed here that for chaotic

time series long-term predictions are not possible, since the error (uncertainty of the

prediction) increases exponentially in time. Note that for chaotic time series a

long-term prediction is impossible even when the equations of motion are known

exactly, because any error in the specification of the initial conditions will grow

exponentially fast with time on average. Though chaos precludes any long-term

predictability a short-time prediction is possible and very promising results have

been obtained by using a neural network approach [Chichocki and Unbehauen, 1993].

Given a physical system, a neural network can model it on the basis of a set of

examples encoding the input/output behavior of the system. The neural network learns

to map an input to a desired output by self-adaptation The modeling capability of the

neural networks can be described by its ability to learn the mathematical function

underlying the system operation. If the network is designed and trained properly, it can

perform generalization rather than curve fitting[ Lim Ni Fu, 1994].

Preprocessor
Nel.lfal
Network

Mathematical
"JvIode1

Postprocessor

N emal
Netvvork

IvIodelling
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A neural network can be used in mathematical modeling in several ways:

• As a preprocessor

• As a post processor

• As a mathematical model

• As a baseline control

Figure 1.1 shows how neural networks are used in system modeling.

The use of neural networks as a system model is increasingly getting common.

This is because a neural network can model a system by example mapping. If accuracy

issue is concerned for a model, neural network may be a good one.

For the purpose of training, a set of training examples are selected from the

domain. Each example is represented by ([x], [y] ) where [x] and [y] vectors having

dimensions m and n respectively. The goal is that after training,

[y] = f([x])=FNeuraINelwork([x]) ( 1.1 )

for every x in the domain, not limited to training set.

The main issue is generalization. In other words, the neural network is required

to make generalization about the entire domain from the training examples. The design of

the network architecture and training algorithm is aimed at improving this capability.

Another related issue is overtraining, which refers to deterioration of the network

performance against test examples beyond a certain number of training cycles. When the

network is overtrained, it tends to fit the training data so closely but performance on the

test data degrades [Lim Ni Fu, 1994].

An important theorem that illuminates the capability of multilayer neural

networks as proven by Kolmogorov and is described in [Lorenz, 1976]. This theorem

states that any continuos function can be represented in terms of nonlinear and

continuously increasing functions of only one variable[Lim Ni Fu, 1994].

In this study several hypothetical motion types have been studied and

different neural network topologies have been used for predicting the motion



parameters for these motion types. Performance of each network model has been

compared on the basis of prediction errors

Chapter 2 : Basic theory of rigid body motion is presented.

Chapter 3 : Time series concept is explained. Besides, methods used to analyze

and process time series data are presented.

Chapter 4 : Artificial neural network concept is introduced and fields in which

artificial neural networks are used are listed. In addition, several famous neural network

topology and their operation principles are presented.

Chapter 5: Theory of learning algorithms are explained mathematically.

Chapter 6: A literature survey on time series prediction and specifically

motion prediction fields is given.

Chapter 7: Different motion types are analyzed. Experiments on estimation of

these parameters with different neural network topologies are made and their

performances are presented in comparative manner.

Chapter 8: The result of the study is summarized and works to be carried

out in order to obtain a better performance are mentioned.



2.1 Introduction

A body can be subject to translational as well as rotational motion. In order to

describe the motion of a rigid body at a time, one has to give parameter values for

each motion type. "What are the characteristic parameters in each motion type?" and

"What are relationships between these parameters?" are the questions that are going to

be answered throughout the following sections.

Motion of a point object along a straight line IS the basics of more

complicated motions Translational motion on a plane and motions in a volume are

the translational motions in higher dimensions. Motion in one dimension can be further

generalized to motion in higher dimensions.

Let A be a particle moving along Ox axis as in the Figure 2.\ . Position of the

point object can be determined with respect to a reference point [Sears et. aI., \987].

In the figure below reference point is the origin denoted by O.



Position of a point object is defined as distance between the current point of an

object and reference point. In the figure, the point P where the object is located at time

II has the distance of jXd [IJ unit from origin. At the time t2 object has moved to the

point Q which is IX21 units far from origin. That is, the object has the position X2 at the

time 12. In this situation object is said to be undergone a displacement which is simply

a position change and denoted as /).}{.Equation (2.1) shows how /).}{ is obtained.

/).}{= Xz - Xl ( 2.1 )

The average velocity of the point object is defined as the ratio of the

displacement /).}{ to the time interval 11t, which is obtained as in equation (2.2).

l1t=tZ-/1 (2.2)



The average velocity is represented by the letter V with subscript "av" to

signify average value[ Sears et. aI., 1987]. Thus

Even when the velocity of a moving particle varies, we can still define a velocity

at any specific instant of time or at one specific point in the path. Such a velocity is

called instantaneous velocity[ Sears et. aI., 1987]. Instantaneous velocity is defined as

~x dx
lim -=
M~O ~t dt

When the velocity of a moving object changes with time, it is said that object

has an acceleration. Just as velocity is a quantitative description of the rate of change of

position with time, so acceleration is quantitative description of the rate of change of

velocity with time[Sears et. aI., 1987].

Considering again the motion of a particle along x-axis, suppose that at time tl

the particle is at point P and has velocity VI, and that at a later time t2 it is at point Q

and has velocity V2.

The average acceleration a.v of the particle as it moves from P to Q is defined as

the ratio of the change in velocity to the elapsed time[Sears et. aI., 1987].

Instantaneous acceleration can be defined by following the same procedure used

for instantaneous velocity[Sears et. aI., 1987].

~v dv
a= lim-=-

!':J-)() N dt



dv d (dx) d
2
xa---- -- ---- dt - dt dt - dt 2 .

The motion of real-world bodies can be very complex. A body can have

rotational as well as translational motions. In rotational motion angle IS the

fundamental unit of measurements. Position, velocity and acceleration which are

translational motion quantities get the description "angular" in rotational motion

domain. Detailed definitions of these quantities are given in the section below.

Let A be a rigid body rotating about a stationary axis as in the Figure 2.3.

Line OP is fixed in the body of and rotates with it . The angle between this line and

horizontal line in the figure is e in radians. Once the position of the axis of the

rotation is known, e describes the position of the body completely [Sears et. aI., 1987].

Thus e serves as a coordinate to describe the rotational position of the body. This

has another name known as orientation of rigid body.



Rotational motion of a body can be described in terms of the rate of the change

of B. In hgllre 2.-1, a reference line OP in a rotating body makes an angle B1 with

the reference line Ox, at time I]. At a later time t] the angle has changed to B2•

!11 = I: - 11 , as the ratio of angular displacement B 2 - B] or L1B , to

L1B
OJ =--

av L1 t

L1B
lim ---

.,l~ 0 L1t

dB
dt

Because the body is rigid, all lines in it rotate through the same angle in the

same time, and the angular velocity is the characteristic of the body as a whole. If the

angle is in radians, the unit of angular velocity is one radian per second (I rad . S·I or

1 S·l) [Sears et. aI., 1987].



OJ 1 and OJ 2 are the instantaneous angular velocities at times t J and t2, we define

U2-01a =av

~UJ
---

N'

. ~m dm
a = hm -- = - ( 2.11 )

I'>.HO ~t dt

The unit of angular acceleration is 1 rad.s-2 or 1 S-2. Angular velocity and angular

acceleration are exact analogous to linear velocity and acceleration. In each case,

velocity is the time derivative of position, and acceleration is the time derivative of

velocity.

Because OJ = dejdt, the angular acceleration can also be written:

d de d2ea-------
- dt dt - d2t

motion. From this point of view 3-D motion can be described by 3n parameters

where n is the number of parameter describing a motion along a line.

2.4 Data Flow of Motion Parameters While Object IS Moving in Three-

Dimensional Space

When object is moving In space, motion parameters can be either measured or

calculated using the measured quantities. Measuring fundamental motion parameter



is performed by means of different techniques. Stereo imaging VIa two video camera is

a technique to measure displacement of object in space. By means of the same

method, orientation difference can be extracted. The other motion parameters like

average velocity and average acceleration in each direction for the duration of the

interval can be calculated from this information.



Throughout scientific research, time senes have been the basis for

characterising an observed system and for predicting its future behaviour. A number

of new techniques such as state-space reconstruction and neural networks promise

insights that traditional approaches to these very old problems cannot provide.

Learning the motion behaviour of an object is nothing but the time senes

analysis of motion parameters. Thus, time series constitute the basis of this study.

Powerful tools that can successfully extract the dynamics of a system have been used

in this study

This chapter gIves basic properties of time series and mentions evolution of

time series analysis methods.

The desire to predict the future and understand the past, drives the search for the

laws that explain the behavior of the observed phenomena. Examples range from the

irregularity in a heartbeat to the volatility of a US $-TL exchange rate. If there are

known underlying deterministic equation, in principle they can be solved to forecast the

outcome of an experiment based on knowledge of initial conditions. In order to make

prediction when the underlying equations explaining the system dynamics are not

known, one must find the rules governing the system evolution and actual state of the

system. For example, the motion of pendulum or the rhythm of the season are typical

dynamic systems whose future behaviours can be predicted without insight into the

underlying mechanism. The terms "understanding" and "learning" are used to refer to



system such as hydrodynamics flows and chemical reactions. In this context, this

parabola is called logistic map or quadratic map. The value Xt depends on previous
"

value Xt-I. /...,is a parameter that controls the qualitative behaviour, ranging from a fixed

point ( for small values of /...,) to deterministic chaos. For example, for /...,=4, each iteration

destroys one bit of information. Consider that, by plotting Xt against Xt-I, each value of

Xt has two equally likely predecessors or equally well, the absolute average slope is

two. Thus, if we know the location within E before the iteration, we will on average

know it within 2 E afterwards This exponential increase in uncertainty is the sign of

deterministic chaos.

Two crucial developments occurred around 1980; both were enabled by the

general availability of powerful computers that permitted much longer time series to

be recorded, more complex algorithms to be applied to them, and the data and the

results of these algorithms to be interactively visualised. The first development , state

. space reconstruction by time-delay embedding, drew ideas from differential topology

and dynamical systems to provide a technique for recognizing when a time series has

been generated by deterministic governing equations and, if so, for understanding the

geometrical structure underlying the observed behaviour. The second development was

the emergence of the field of machine learning , typified by neural networks, that can

adaptively explore a large space of potential models. With the shift in artificial

intelligence from rule-based methods towards data-driven methods, the field was ready

to apply itself to time series.

Global computer networks now offer a mechanism for disjoint communities to

attack common problems through the widespread exchange of data and information.

Santa Fe Time Series Prediction and Analysis Competition under the auspices of Santa

Fe Institute was held during the fall of 1991. The goal was to provide a structure for

researchers from the many relevant disciplines to compare quantitatively the result of

their analyses of group of data sets. To explore the results of the competition, a NATO

Advanced Research Workshop was held in spring of 1992.



Linear time series models have two particularly desirable features: they can be

understood in detail and they are easy to implement. The drawback of the convenience

is that they may not be unsuitable for even moderately complicated systems. Some of

the most well-known models are given below.

Given an external input series {~.}, if someone wants to modifY it to produce

another series {Xt}, assuming linearity of the system and causality (the present value

ofx is influenced by the present and N past values of the input series e), the relationship

between the input and output is
N

xt = L bnet_n = bOet + b,et_1 + ... + bNet_N .
n~O

Statisticians and econometricians call this an Nth -order moving average model,

MA (N). Engineers call this a finite impulse response (FIR) filter, because the output

IS guaranteed to go to zero at N time steps after the input becomes zero.

For a linear system , the response of the filter is independent of the input. A

characterization focuses on properties of the system, rather than on properties of the

time series. The series bo , ... , bN is thus the impulse response of the system. The

response of arbitrary input can be computed by superimposing the responses at arbitrary

delays, weighted by the respective input values. Thus, the transfer function completely

describes a linear system.

Sometimes it is more convenient to describe the filter in the frequency domain.

This is useful because a convolution III the time domain becomes a product in

frequency domain. If the MA model is an impulse (which has a flat power spectrum),

the discrete Fourier transform of the output is given by[Weighend and Gershenfeld,
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The third way of representing yet again the same information is, in terms of the
autocorrelation coefficients, defined in terms of the mean J.l=<Xt>and the variance
cr2=E{ (Xt-J.l)2}by

1
Pr == -2 E{ (Xt - J-l)(Xt-1 - J-l) } (3.5 )

()

where E{X} means expected value of X.
The autocorrelation coefficients describe how much, on average, two values of a

series that are 't time steps apart co-vary with each other. If the input to the system is a

stochastic process with inputs values at different times uncorrelated, <eiej> =0 for i:t:j,

then all of the cross terms will disappear from the expectation value in equation 3.5,

and resulting autocorrelation coefficients are

{

1 ~bb
(5< = "N b2 ~ n n-LrJL....n=o n

o
Irl~ N

Irl> N

FIR filters operate in an open loop without feedback; they can only transform an

input that is applied to them. Ifwe do not want to drive the series externally, we need to

provide some feedback ( or memory) in order to generate internal dynamics:
M

Xt = Lamxt-m + et·
m=l

This is called Mth -order autoregressive model ( AR(M)) or an infinite impulse response (

lIR) filter. Depending on the applications, et can represent either a controlled input to

the system or noise. As before, if e is white noise, the autocorrelations of the output

series x can be expressed in terms of the model coefficients, Here, however, due to the
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feedback coupling of previous steps, we obtain a set of linear equations rather than just

a single equation for each autocorrelation coefficient. By multiplying equation (3.7) by
'.

Xt-t , taking expectation values, and normalizing the autocorrelation coefficients of an

AR model are found by solving the set of linear equations, traditionally called Yule-

Walker equations,

M

Pr = L amPr-m, 1">0

Unlike th MA case, the autocorrelation coefficient need not vanish after M steps.

Taking the Fourier transform of both sides of equation (3.6) and rearranging terms

shows that the output equals the input times (1 - L :=1 a m e - i 2 Jr m ) - I . The power

spectrum of the output is thus that of input times

1

1
1 - a e-i2Jr1j

- a e-i2Jr2j
- .•. _ a e-i2JrMj 1

2

J 2 M

To generate a specific realization of the serIes, initial conditions must be

specified, usually by the first M values of series x. Beyond that, the input term et IS

crucial for the life of an AR model.

The next step is to allow both AR and MA parts in the model; this is called an

ARMA(M,N) model:
M N

Xc = Lamxc-m + Lbnec_n
m=] n=O

Its output is most easily understood in terms of z-transform, which generalizes the

discrete Fourier transform to the complex plane:

On the unit circle, (z=e-i27lf
), the z-transform reduces to the discrete Fourier transform.

Off the unit circle, z-transform measures the rate of divergence or convergence of a

series. Since the convolution of two series in the time domain corresponds to the

multiplication of their z-transforms, the z-transform of the output of an ARMA model is



B(z)
= 1- A(z) E(z)

The input z-transform E(z) is multiplied by transfer function that is unrelated to it; the

transfer function will vanish at zeros of the MA term ( B(z)=O) and diverge at poles

( A(z)=l ) due to the AR term. As A(z) is Mth-order complex polynomial, and B(z) is

Nth-order, there will be M poles and N zeros. Therefore, the z-transform of a time

series produced by equation (3.9) can be decomposed into a rational function and

remaining part due to the input . The number of poles and zeros determines the number

of degrees of freedom of the system ( the number of the previous states that the

dynamics retains ). It should be noted that since only the ratio enters, there is no unique

ARMA model. In the extreme cases, a finite-order AR model can always be expressed

by an infinite-order MA model, and vice versa.

ARMA models have dominated all areas of time series analysis and discrete-time

signal processmg for than half a century . For example, in speech recognition and

synthesis, Linear Predictive Coding compresses speech by transmitting the slowly

varying coefficients for a linear model rather than the origin signal. Ifthe model is good,

it transforms the signal into a small number of coefficients plus residual white noise.

Set of differential equations ( 3.8 ) permits to express the autocorrelation

coefficients of a time series in terms of the AR coefficients that generated it. But there

is a second reading of same equations: they also permits to estimate the coefficients

as a regression problem: expressing the next value as a function of M previous values.

This can be done by minimizing the squared errors: the parameters are determined such

that the squared difference between the model output and the observed value, summed

over all time steps in the fitting region, is as small as possible. There is no comparable

conceptually simple expression for finding MA and full ARMA coefficients from
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observed data. For all cases, however, standard techniques exist, often expressed as

efficient recursive procedure.

Although there is no reason to expect that an arbitrary signal was produced by a

system that can be written in the form of equation ( 3.9 ), it is reasonable to attempt to

approximate a linear system's true transfer function (z-transform) by aratio of

.polynomials, i.e., an ARMA model. This is a problem of function approximation, it is

well known that a suitable sequence of ratios of polynomials converges faster than a

power series for arbitrary functions.

So far we have dealt with the question of how to estimate the coefficients from

data for an ARMA model of order ( M,N ), but have not addressed the choice for the

order of the model. There is not a unique best choice for the order of the model is

increased, the fitting error decreases, but the test error of the forecast beyond the

training set will usually start to increase at some point because the model will be fitting

extraneous noise in the in the system. A simple approach is to hold back some of the

training data and use these to evaluate the performance of competing models.

It is said that chaos is characterized by the sensitive dependence on the initial

conditions. According to this feature it is suggested that long term of behavior of chaotic

systems cannot be predicted. However it may be possible to forecast behavior locally

after characterizing the deterministic rules of dynamic system from its complex

behavior.

Time senes to be predicted mostly do not display linear characteristics. In

such situations techniques or tools used in the prediction should be able to recognize

nonlinear geometrical structure of the output produced by· the system under

consideration. In the following subsections models that are used to predict nonlinear

dynamical structures are presented.



Yule's original idea for forecasting was that future predictions can be improved

by using immediately predicted values. ARMA model, equation (3.9) can be

rewritten as dot product between vectors of the time-lagged variables and coefficients:

where Xl=( Xl, Xl-I,... , Xt-(d-Il),and A=( aI, a2,··., ~). These vectors are also called

tapped delay lines.

In fact, there is a deep connection between time-lagged vectors and underlying

dynamics. This connection was proposed in 1980 by [Weighend and Gershenfeld,

1994]. Delay vectors of sufficient length can recover the full geometrical structure of

a nonlinear system. These results address the general problem of inferring the

behaviour of intrinsic degrees of freedom of a system when a function of the state of

the system is measured.

There are four relevant spaces and dimensions for the discussion of time series

prediction:

1. The configuration space of the system is the space "where the equation live". It

specifies the values of all the potentially accessible physical degrees of freedom of

the system. For example, for a fluid governed by the Navier-Stokes partial

differential equations, these are the infinite dimensional degrees of freedom

associated with the continuous velocity, pressure, and temperature fields.

2. The solution manifold is where "the solution lives," that is, the part of the

configuration space that the system actually explores as its dynamics unfolds. Due to

unexcited or correlated degrees of freedom , this can be much smaller than the

configuration space; the dimension of solution manifold is the number of parameters

that are needed to uniquely specify a distinguishable state of overall system. For

example, in some regimes, the infinite physical degrees of freedom of convecting

fluid reduce to small set of coupled ordinary differential equations for a mode



3. The observable is a usually one dimensional function of the variables of

configuration. In an experiment, this might be the temperature or a velocity

component at a point in the fluid.

4. The reconstructed state space is obtained from that observable by combing past

values of it to form a lag vector.

Given a time series measured from such a system- no other information about

the origin of the time series- the question is what can be deduced about underlying

dynamics.

Let y be state vector on the solution manifold, let dy/dt=f(y) be the goverrung

equations, and let the measured quantity be Xt=x(y(t)). The result to be cited here also

apply to systems that are described by iterated maps. Given a delay time 't and a

dimension d, a lag vector can defined,

lag vector: Xt=( xl, Xt-"... , Xt-(d-l),).

The central result is that the behavior of x and y will differ only by a smooth local

inevitable change of coordinates. For almost every possible choice of fey), x(y), and, 't

as long as d is large enough, x depends on the at least some of the components of y,

and the remaining components of yare coupled by the governing equations to the ones

that influence X.

Time delay embedding differs from traditional experimental measurement In

three fundamental respects:

1. It provides detailed information about the behavior of degrees of freedom other than

the one that is directly measured.

2. It rests on probabilistic assumptions and - although it has been routinely and reliably

used in practice-it is not guaranteed to be true for any system.

3. It allows precise questions only about quantities that are invariant under such a

transformation, since the reconstructed dynamics have been modified by an

unknown smooth change of coordinates.

Using embedding for forecasting appears to be very similar to Yule's original

AR model :a prediction function is sought based on time-lagged vectors. The crucial

difference is that understanding embedding reduces forecasting tom recognizing and

representing the underlying geometrical structure, and once the number of lags exceeds

the minimum embedding dimension, this geometry will not change. A global linear



model (AR) must do this with a single hyperplane. Since this may be a very poor

approximation, there is no fundamental insight into how to chose the number of delays-

and related parameters.

Theoretical work in connectionism ranges from reassunng proofs that neural

networks with hidden units can essentially fit any well-behaved function and its

derivative to results on the ability to generalize [Weighend, Gershenfeld, 1994 ]. These

properties of neural networks are exploited to predict motion prediction of motion

parameters in the way time series are predicted.

Theory of neural networks is going to be presented in detail in the following

chapters.



Before discussing the solution methods of real world problems using neural

networks, a definition of neural networks need to be presented It is important to know

the conditions under which this style of problem solving performs better and what its

limitations are.

At the core of neural computation are the concepts of distributed, adaptive and

nonlinear computing Neural networks perform computation in a very different way than

conventional computers, where a single central processing unit sequentially dictates

every piece of the action. Neural networks are built from a large number of very simple

processing elements that individually deal with pieces of a big problem. A processing

element (PE) simply multiplies an input by a set of weights, and nonlinearly transforms

the result into an output value (table lookup). The principles of computation at the PE

level are deceptively simple The power of neural computation comes from the massive

interconnection among the PEs which share the load of the overall processing task, and

from the adaptive nature of the parameters (weights) that interconnect the PEs.ss

Figure 4. I illustrates a simple MLP. The circles are the PEs arranged in layers.

The left row is the input layer, the middle row is the hidden layer, and the right row is the

output layer. The lines represent weighted connections (i.e., a scaling factor) between

PEs.



By adapting its weights, the neural network works towards an optimal solution

based on a measurement of its performance. For supervised learning, the performance is

explicitly measured in terms of a desired signal and an error criterion. For the

unsupervised case, the performance is implicitly measured in terms of a learning law and

topology constraints[Principe et. aI, 1996].

Neural Networks are an expanding and interdisciplinary field bringing together

mathematicians, physicists, neurobiologists, brain scientists, engineers, and computer

scientists. That is bringing a tremendous momentum to neural network research and

creating many challenges.

Neural network theory started with the first discoveries about brain cellular

organization, by Ramon Y. Cajal and Charles S Sherrington [Principe et. aI, 1996] at

the turn of the century. The challenge was immediately undertaken to discover the

principles that would make a complex interconnection of relatively simple elements to

produce information processing at an intelligent level This challenge is still with us

today.

The work of the neuroanatomists has grown into a very rich field of science .. The

work of McCulloch and Pitts [Principe et. al ,1996] on the modeling of the neuron as a

threshold logic unit, and Caia-niello on neurodynamics merit special mention because

they respectively led to the analysis of neural circuits as switching devices and as
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nonlinear dynamic systems. More recently, brain scientists began studying the underlying

principles of brain function and even implications to philosophy [Principe et. a\., 1996].

The theoretical neurobiologists' work also interested computer scientists and

engineers. The principles of computation involved in the interconnection of simple

elements led to cellular automata, were present in Norbert Wiener's work on cybernetics

and laid the ground for artificial intelligence [Principe et. a\., 1996]. This branch is often

referred to as artificial neural networks ..

An initial goal in neural network development was modeling memory as the

collective property of a group of processing elements [Principe et. a\., 1996]. Caianiello,

Grossberg and Amari studied the principles of neural dynamics. Rosenblatt created the

perceptron for data driven (nonparametric) pattern recognition, and Fukushima proposed

the neocognitron[Principe et. a\., 1996]. Widrow's adaline (adaptive linear element)

found applications and success in communication systems. Hopfield's analogy of

computation as a dynamic process captured the importance of distributed systems.

Rumelhart and McClelland's compilation of papers in the PDP (Parallel Distributive

Processing) book, opened up the field for a more general audience. From the first

International Joint Conference on Neural Networks held in San Diego, 1987, the field

exploded [Principe et. a\., 1996]

Neural computation has a style. Unlike more analytically based information

processing methods, neural computation effectively explores the information contained

within input data, without further assumptions Statistical methods are based on

assumptions about input data ensembles (i.e. a priori probabilities, probability density

functions, etc.). Artificial intelligence encodes a priori human knowledge with simple IF

THEN rules, performing inference (search) on these rules to reach a conclusion. Neural

networks, on the other hand "discover" relationships in the input data sets through the

iterative presentation of the data and the intrinsic mapping characteristics of neural

topologies (normally referred to as learning). There are two basic phases in neural



network operation. The training or learning phase where data is repeatedly presented to

the network, while its weights are updated to obtain a desired response; and the recall or

retrieval phase, where the trained network with frozen weights is applied to data that it

has never seen. The learning phase is very time consuming due to the iterative nature of

searching for the best performance. But once the network is trained, the retrieval phase

can be very fast, because processing can be distributed.

In general, neural networks offer viable solutions when there are large volumes of

data to train the neural network. When a problem is difficult (or impossible) to formulate

analytically and experimental data can be obtained, then a neural network solution is

normally appropriate.

The major applications of ANNs are the following:

Pattern classifiers: The necessity of a data set in classes is a very common

problem in information processing. We find it in quality control, financial forecasting,

laboratory research, targeted marketing, bankruptcy prediction, optical character

recognition, etc. ANNs of the feedforward type, normally called multilayer perceptrons

(MLPs) have been applied in these areas because they are excellent functional mappers

(these problems can be formulated as finding a good input-output map).

Associative memories: Human memory principles seem to be of this type. In an

associative memory, inputs are grouped by common characteristics, or facts are related.

Networks implementing associative memory belong generally to the recurrent topology

type, such as the Hopfield network or the bidirectional associative memory. However,

there are simpler associative memories such as the linear or nonlinear feedforward

associative memories.

Optimizers: The neural network model of computation proposed by Hopfield

appears to have a variety of interesting applications, among which is the solution of

combinatorial optimization problems. Some mechanisms are combined with Hopfield

neural network model to improve its performance in optimization.

Feature extractors: This is also an important building block for intelligent

systems. An important aspect of information processing is simply to use relevant

information, and discard the rest. This is normally accomplished in a pre-processing

stage. ANNs can be used here as principal component analyzers, vector quantizers, or
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clustering networks. They are based on the idea of competition, and normally have very

simple one layer topologies.

Dynamic networks: A number of important engineering applications require the

processing of time-varying information, such as speech recognition, adaptive control,

time series prediction, financial forecasting, radar/sonar signature recognition and

nonlinear dynamic modeling To cope with time varying signals, neural network

topologies have to be enhanced with short term memory mechanisms. This is probably

the area where neural networks will provide an undisputed advantage, since other

technologies are far from satisfactory This area is still in a research stage.

It should be noticed that a lot of real world problems fall in this category, ranging

from classification of irregular patterns, forecasting, noise reduction and control

applications. Humans solve problems in a very similar way. They observe events to

extract patterns, and then make generalizations based on their observations.

Biologial neurons transmit electrochemical signals over neural pathways Each

neuron receives signals from other neurons through special junctions called synapses.

Some inputs tend to excite the neuron; others tend to inhibit it. When the cumulative

effect exceeds a threshold, the neuron fires and sends a signal down to other neurons .

An artificial neuron receives a set of inputs Each input is multiplied by a weight

analogous to a synaptic strength .. The sum of all weighted inputs determine the degree

of firing called the activation level[MakhouJ, 1992]. Notationally, each input Xi is

modulated by weight Wi and the total output is expressed as L X)¥, or in vector

form, X.W where X=[X1, X2, .. ,Xn] and W=[W1, W2, ... ,Wnl This is depicted in the

Figure 4.2.
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Xj are the inputs to unit j.

Xi is the output of unit i.

Wij are the weights that connect unit j to unit i.

\II is a nonlinearity.

Figure 4.2.b The building blocks of artificial neural networks.

The input signal is further processed by an activation function to produce the

output signal. The activation function can be threshold function or or smooth function

. Some of the famous activation functions are ploted in Figure 4.3.



......Threshold .linear
xi-

• [ 1

=....... ... ne..t.... , - ,.

•.• -.1... , ..
. . " .... , .

1~ ne t.
[~ne.t-:i -1
.. ,', . " ... ;1

net;;5. ""'1

O:i net.
net. :i 0

.. , .... .. ,. , '" ..

•••·.HyperboliC· ,Tangent
xi

y-.=-... .1 '-.r>~{,.. +e··

Distributed computation has the advantages of reliability, fault tolerance, high

throughput (division of computation tasks) and cooperative computing, but generates

problems of locality of information, and the choice of interconnection topology.

Adaptation is the ability to change a system's parameters according to some rule

(normally, minimization of an error function). Adaptation enables the system to search

for optimal performance, but adaptive systems have trouble responding in a repeatable

manner to absolute quantities.

Nonlinearity is a blessing in dynamic range control for unconstrained variables

and produces more powerful computation schemes (when compared to linear

processing) such as feature separation. However, it complicates theoretical analysis

. tremendously.



These features of distributed processmg, adaptation and nonlinearity are the

hallmark of biological information processing systems. ANNs are therefore working with

the same basic principles as biological brains, but probably the analogy should stop here.

We are still at a very rudimentary stage of miinicking biological brains, due to the rigidity

of the ANN topologies, restriction ofPE dynamics and timid use of time (time delays) as

a computational: resource.

The process of modifYing network parameters to improve performance is

normally called learning. Learning in ANN's can also be thought of as a second set of

dynamics, because the network parameters will evolve in time according to some rules.

Consider the 6 PE rvILP in A Multilayer Perceptron and its Weight Matrix figure as

depicted in Figure 4.4. Assume that inputs are currents, and the weights are

potentiometers that the user can contro!' For this example, the PEs can be thought of

simply as being transistors. The goal is to obtain a value of 1 volt at the output, when

several different currents are presented to the network. What the user would do is the

following: start by connecting one of the inputs, and check the value at the output. If the

value is not 1 volt, then some of the potentiometers will have to be changed until the

goal state is reached. Then a second input is presented, and the process repeated until the

desired response is obtained for all the inputs. When a neural network is trained, this very

process of changing the weights is automated.
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Learning requires several ingredients. First, as the network parameters change,

the performance should improve. Therefore, the definition of a measure of performance

is required. Second, the rules for changing the parameters should be specified. Third, this

.procedure (of training the network) should be done with known data.

The application of a performance measure produces another important taxonomic

division in ANN s. When the performance function is based on the definition of an error

measure, learning is said to be supervised. Normally the error is defined as the difference

of the output of the ANN and a pre-specified external desired signal. In engineering

applications where the desired performance is known, supervised learning paradigms

become very important.

The other class of learning methods modify the network weights according to

some pre-specified internal rules of interaction (unsupervised learning). There is

therefore no "external teacher". This is the reason unsupervised learning is also called

self-organization. Self-organization may be very appropriate for feature discovery

(feature extraction) in complex signals with redundancy. A third intermediate class of

learning is called reinforcement learning. In reinforcement learning the external teacher

just indicates the quality (good or bad) of the response. Reinforcement learning is still in

a research phase, but it may hold the key to on-line learning (i.e. with the present

sample).

Aetaline
Perceptron .
MLP ••........
Dyriamicnets ..

Figure 4.5 A taxonomy for artificial neural networks

For the class of supervised learning there are three basic decisions that need to be

made: choice of the error criterion, how the error is propagated through the network,
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and what constraints (static or across time) one imposes on the network output. The first

issue is related to the formula (the cost function) that computes the error. The second

aspect is associated with mechanisms that modify the network parameters in an

automated fashion. After some investigation one can easily notice that gradient descent

learning is the most common in supervised learning schemes. The third aspect is

associated with how we constrain the network output versus the desired signal. One can

specify only the behavior at the final time (fixed point learning), i.e. we do not constrain

the values that the output takes to reach the desired behavior. Or, the intermediate values

can be constrained and trajectory learning can be performed. Note that a feedforward

network, since it is an instantaneous mapper (the response is obtained in one time step),

can only be trained by fixed point learning. Recurrent networks, however, can be trained

by specifying either the final time behavior (fixed point learning) or the behavior along a

path (trajectory learning).

Learning requires the specification of a set of data for training the network. This

is normally called the training set. Learning performance should be checked against a

different set of data called the test set. It is of fundamental importance to choose an

appropriate training set size, and to provide representative coverage of all possible

conditions. During learning, the network is going to discover the best mapping between

the input data and the desired performance. If the data used in the training set is not

representative of the input data class, we can expect poor performance with the test set,

even though performance can be excellent with the training set.



The perceptron was probably the first successful neurocomputer. Rosenblatt

[Principe et. al., 1996] constructed the MARK I for binary image classification. The

perceptron is nothing but a feedforward neural network with no hidden units. Its

information processing abilities are limited. It can only discriminate among linearly

separable classes, i.e. classes that could be separated by hyperplanes. The appeal of the

perceptron was Rosenblatt's proof that it is trainable (for linearly separable classes) in a

finite number of steps. The perceptron learning rule is very simple:

Present a pattern. If the output is the desired output, do nothing. If the response

is wrong, from the units that are active, change their weights towards the desired

response. Repeat the process until all the units have acceptable outputs.

The delta rule (simplified backpropagation) can also be applied to the perceptron,

but perceptron learning is faster and more stable if the patterns are linearly separable.

Even today (more than 30 years later), the perceptron and its learning rule are still

popular. Recently the perceptron learning rule was revisited to provide acceptable

results even when the patterns were not linearly separable.

The multilayer perceptron (MLP) is one of the most widely implemented neural

network topologies. Generally speaking, for static pattern classification, the MLP with

two hidden layers is a universal pattern classifier. In other words, the discriminant

functions can take any shape, as required by the input data clusters. Moreover, when the

weights are properly normalized and the output classes are normalized to 0/1, the MLP

achieves the performance of the maximum a posteriori receiver, which is optimal from a

classification point of view [Makhoul, 1992]. In terms of mapping abilities, the MLP is

believed to be capable of approximating arbitrary functions. This has been important in



the study of nonlinear dynamics [Principe et. aI., 1986], and other function mappmg

problems.

MLPs are normally trained with the backpropagation algorithm [Principe et. aI.,

1986]. .In fact the renewed interest in ANNs was in part triggered by the ~xistence of

backpropagation. The LMS learning algorithm proposed by Widrow[Piincipe et. aI.,

1986] can not be extended to hidden PEs, since we do not know the' desired signal there.

The backpropagation rule propagates the errors through the network and allows

adaptation of the hidden PEs.

Two important characteristics of the multilayer perceptron are: its nonlinear

processing elements (PEs) which have a nonlinearity that must be smooth (the logistic

function and the hyperbolic tangent are the most widely used); and their massive

interconnectivity (i.e. any element of a given layer feeds all the elements of the next

layer).

The multilayer perceptron is trained with error correction learning, which means

that the desired response for the system must be known. In pattern recognition this is

normally the case, since we have our input data labeled, i.e. we know which data belongs

to which experiment.

The backpropagation learning rule based error correction IS going to be

presented in the following chapter in detail.

Madaline is an acronym for multiple adalines, the ADAptive LINear Element

proposed by Widrow. The adaline is nothing but a linear combiner of static information,

which is not very powerful. However, when extended to time signals, the adaline

becomes an adaptive filter of the finite impulse response class. This type of filter was

studied earlier by Wiener. Widrow's contribution was the learning rule for training the

adaptive filter. Instead of numerically solving the equations to obtain the optimal value of

the weights, Widrow proposed a very simple rule based on gradient descent learning (the

least mean square rule LMS). The previous adaptive theory was essentially statistical (it

required expected value operators), but Widrow took the actual value of the product of

the error at each unit and its input as a rough estimate of the gradient. It turns out that
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this estimate is noisy, but unbiased, so the number of iterations over the data average the

estimate and make it approach the true value[Principe et. al., 1996].

The adaptive linear combiner with the LMS rule is one of the most widely used

structures in adaptive signal processing. Its applications range from echo cancellation, to

line equalization, spectral estimator, beam former !n adaptive antennas, noise canceller,

and adaptive controller. The adaline is missing one of the key ingredients for our

definition of neural networks (nonlinearity at the processing element), but it possesses

the other two (distributed and adaptive).

Radial basis functions networks have a very strong mathematical foundation

rooted in regularization theory for solving ill-conditioned problems. Suppose that we

want to find the map that transforms input samples into a desired classification. Due to

the fact that only have a few samples are present, and that they can be noisy, the

problem of finding this map may be very difficult (mathematicians call it ill-posed). The

mapping is performed by decreasing the error between the network output and the

desired response, also a constraint relevant to our problem is aded . Normally this

constraint is smoothness.

One can show that such networks can be constructed in the following way: Bring

every input component (p) to a layer of hidden nodes. Each node in the hidden layer is a

p multivariate Gaussian function

of mean (each data point) and vanance . These functions are called radial basis

functions[Chichocki and Unbehauen, 1993 ]. Finally, linearly weight the output of the

hidden nodes to obtain
N

F(x) = Lwf(G(x:xf))
f=!



The problem with this solution is that it may lead to a very large hidden layer (the

number of samples of your training set).

This solution can be approximated by reducing the number of PEs in the hidden

layer, but cleverly position them over the input space regions, i.e. where we have more

input samples. This means that we have to estimate the positions of each radial basis

function and its variance (width), as well as compute the linear weights Wi .

The most widely used method of estimating the centers and widths is to use an

unsupervised technique called the k-nearest neighbor rule. The input space is first

discretized into k clusters and the size of each is obtained from the structure of the input

data. The centers of the clusters give the centers of the RBFs, while the distance between

the clusters provide the width of the Gaussians. The definition of the width is nontrivial.

Each width is set proportional to the distance between the center and its nearest

neighbor. Conscience can be used to make sure that all the RBF centers are brought into

the data clusters. However, conscience also brings the problem of confining the centers

too close together. Scheduling of the conscience may be necessary for a good coverage

of the data clusters.



The output weights in turn are obtained through supervised. learning. The error

correction'learning described in the multilayer perceptron section is normally used, but

this problem is easier because the output unit is normally linear, so convergence is faster.

In practical cases, an MLP can be superior to the linear network, because it may take

advantage of nonlinearly separable data clusters produced by too few RBFs.

Steinbuch was a cognitive scientist and one of the pioneering researchers in

distributed computation. His interests were in associative memories, i.e. devices that

could learn associations among dissimilar binary objects. He implemented the

learnmatrix, where a set of binary inputs is fed to a matrix of resistors, producing a set of

binary outputs. The outputs are 1 if the sum of the inputs is above a given threshold.,

zero otherwise. The weights (which were binary) were updated by using several very

simple rules based on Hebbian learning. But the interesting thing is that the asymptotic

capacity of this network is rather high and easy to determine [Principe et. aI., 1996].

The linear associative memory was proposed by several researchers [Principe et.

aI., 1996]. It is a very simple device with one layer of linear units that maps N inputs (a

point in N dimensional space) onto M outputs (a point in M dimensional space). In terms

of signal processing this network does nothing but a projection operation of a vector in

N dimensional space to a vector in M dimensional space.

This projection is achieved by the weight matrix. The weight matrix can be

computed analytically: it is the product of the output with the pseudo inverse of the input

[principe et. aI., 1996]. In terms of linear algebra, what we are doing is computing the

..outer product of the input vector with the output vector. This solution can be

approximated by Hebbian learning and the approximation is quite good if the input

patterns are orthogonal. Widrow's LMS rule can also be used to compute a good

approximation ofW even for the case of non-orthogonal patterns [Principe et. aI., 1996]



The theory of neural networks with context units can be analyzed mathematically

only for the case of linear PEs. In this case the context unit is nothing but a very simple

lowpass filter. A lowpass filter creates an output that is a weighted (average) value of

some of its more recent past inputs In the case of the Jordan context unit, the output is

obtained by summing the past values multiplied by the scalar 1" as shown in the figure

below.

y(n) = Ix(n)'Ln
-
i

Notice that an impulse event x(n) (ie x(O)=I, x(n)=O for n>O) that appears at

time n=O, will disappear at n= I. However, the output of the context unit is t 1 at n= I, t2

at n=2, etc. This is the reason these context units are called memory units, because they

"remember" past events. t should be less than 1, otherwise the context unit response gets

progressively larger (unstable)

The Jordan[Jordan, 1986] network and the Elman[Elman, 1990] network

combine past values of the context units with the present inputs to obtain the present net

output. The input to the context unit is copied from the network layer, but the outputs of

the context unit are incorporated in the net through adaptive weights. One issue in these

nets is that the weighting over time is kind of inflexible since we can only control the

time constant (i.e. the exponential decay). Moreover, a small change in 1 is reflected in a

large change in the weighting (due to the exponential relationship between time constant

and amplitude). In general, how large the memory depth should be is not known, so this

makes the choice of 1 problematic, without a mechanism to adapt it.



In linear systems the use of the past of the input signal creates what is called the

moving average (MA) models. They represent well signals that have a spectrum with

sharp valleys and broad peaks. The use of the past of the output creates what is called

the autoregressive (AR) models. 'These models represent well signals that have broad

valleys and sharp spectral peaks. In the case of nonlinear systems, such as neural nets,

these two topologies become nonlinear (NMA and NAR respectively). The

Jordan[Jordan, 1986] net is a restricted case of an NAR model, while the configuration

with context units fed by the input layer are a restricted case of NMA. Elman' s[Elman,

1990] net does not have a counterpart in linear system theory. As can be understood

from this simple discussion, the supported topologies have different processing power,

but the question of which one performs best for a given problem is left to

experimentation.

The Hopfield network is a recurrent neural network with no hidden units, where

the weights are symmetric (Wij= Wji). The PE is an adder followed by a threshold

nonlinearity. The model can be extended to continuous units. The processing elements

are updated randomly, one at a time, with equal probability (synchronous update is also

possible). The condition of symmetric weights is fundamental for studying the

information capabilities of this network. It turns out that when this condition is fulfilled

the neurodynamics are stable in the sense ofLyapunov, which means that the state of the

system approaches an equilibrium point. With this condition Hopfield was able to explain

to the rest of the world what the neural network is doing when an input is presented. The

input puts the system in a point in its state space, and then the network dynamics

(created by the recurrent connections) will necessarily relax the system to the nearest

equilibrium point (point PI in the figure below) [Principe et. aI., 1996].



If the equilibrium points were pre-selected (for instance by hardcoding the

weights), then the system could work as an associative memory. The final state would be

the one closest (in state space) to that particular input. We could then classify the input

or recall it using content addressable properties. In fact, such a system is higWy robust to

noise, also displaying pattern completion properties. Probably, biological memory is

based on identical principles. The structure of the hippocampus is very similar to the

wiring of a Hopfield net (outputs of one unit fed to all the others). In a Hopfield net if

one asks where the memory is, the answer has to be in the set of weights. The Hopfield

net therefore implements a nonlinear associative memory, which is known to have some

of the features of human memory (e.g. highly distributed, fault tolerance, graceful

degradation, finite capacity).

Most Hopfield net applications are m optimization, where a mappmg of the

energy function to the cost function of the user's problem must be established and the

weights need to·be pre-computed. The weights in the Hopfield network can be computed

using Hebbian learning, which guarantees a stable network. Recurrent backpropagation

can also be used to compute the weights, but in this case, there is no guarantee that the

weights are symmetric (hence the system may be unstable).



The fundamental problem in pattern recognition is to define data features that are

important for the classification (feature extraction). One wishes to transform our input

samples into a new space (the feature space) where the information about the samples is

retained, but the dimensionality is reduced. This will make the classification job much

Principal component analysis (PCA) also called Karhunen-Loeve transform of

Singular Value Decomposition (SVD) is a technique to perform the task mentioned

above. PCA finds an orthogonal set of directions in the input space and provides a way

of finding the projections into these directions in an ordered fashion. The first principal

component is the one which has the largest projection (we can think that the projection is

the shadow of our data cluster in each direction). The orthogonal directions are called

the eigenvectors of the correlation matrix of the input vector, and the projections the

corresponding eigenvalues[Principe et. aI., 1996].

Since PCA orders the projections, we can reduce the dimensionality by truncating

the projections to a given order The reconstruction error is equal to the sum of the

projections (eigenvalues) left out. The features in the projection space become the

eigenvalues. Note that this projection space is linear

PCA is normally done by analytically solving an eigenvalue problem of the input

correlation function. However, Sanger and Oja demonstrated that PCA can be

accomplished by a single layer linear neural network trained with a modified Hebbian

learning rule[Principe et. aI., 1996].

Let us consider the network shown in the figure below. Notice that the network

has p inputs (we assume that our samples have p components) and m<p linear output

PEs. The output is given by

1'-1

y; (n) = L \-1.'1} (n )x; (n), .i = 0,1,. .. ,m - I
j (I



What is interesting in this network is that the eigenvectors of the correlation

function of the input are computed without ever computing the correlation function.

Sanger showed that this learning procedure converges to the correct solution, i.e. the

weights of the PCA network approach the first m principal components of the input data

matrix. The outputs are therefore related to the eigenvalues and can be used as input to

another neural networks for classification[Principe et. aI., 1996].

PCA networks can be used for data compression, providing the best m linear

features. They can also be used for data reduction in conjunction with multilayer

perceptron classifiers. In this case, however, the separability of the classes is not always

guaranteed. If the data clusters are sufficiently separated, yes, but if the classes are on

top of each other, the PCA will get the largest projections, but the separability can be in

some of the other projections. Another problem with linear PCA networks are outlying

data points. Outliers will distort the estimation of the eigenvectors and create skewed

data projections. Nonlinear networks are better able to handle this case.

The importance of PCA analysis is that the number of inputs for the MLP

classifier can be reduced a lot, which positively impacts the number of required training

patterns, and the training times of the classifier.



As was stated previously, one of the most important issues in pattern recognition

is feature extraction. Since this is such a crucial step, different techniques may provide a

better fit to our problem. An alternative to the peA concept is the self-organizing feature

The ideas of SOFM are rooted in competitive learning networks. These nets are

one layer nets with linear PEs but use a competitive learning rule. In such nets there is

one and only one winning PE for every input pattern (i.e. the PE whose weights are

closest to the input pattern). In competitive nets, only the weights of the winning node

get updated. Kohonen proposed a slight modification of this principle with tremendous

implications. Instead of updating only the winning PE, in SOFM nets the neighboring PE

weights are also updated with a smaller step size. This means that in the learning process

(topological) neighborhood relationships are created in which the spatial locations

correspond to features of the input data. In fact one can show that the data points that

are similar in input space are mapped to small neighborhoods in Kohonen's SOFM layer.

Our brain has several known topographic maps (visual and auditory cortex).

The SOFM layer can be a one or two dimensional lattice, and the size of the net

provides the resolution for the lattice. The SOFM algorithm is as follows:

• Initialize the weights with small different random values for symmetry breaking.

• For each input data find the winning PE using a minimum distance rule, i.e.

-4 -4

i (x) = argj min x(n) - W j

• For the winning PE, update its weights and those in its neighborhood L(n) by

wj(n+ 1) = wj(n) + rKn)[x(n)- wj(n)]

Note that both the neighborhood and the learning rate are dependent on the iteration, i.e.

they are adaptive. Kohonen suggests the following Gaussian neighborhood
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where f is the winning PE and IIj-Ifl is the spatial distance from the winning node to the

j-th PE [Principe et. aI., 1996]. The adaptive standard deviation controls the size of the

neighborhood through iterations. The neighborhood should start as the full output space

and decrease to zero (i.e. only the winning PE), according to

where Coand do are constants. The step size l1(n) should also be made adaptive. In the

beginning the step size should be large, but decrease progressively to zero, according to

where aT] and bT] are also problem dependent constants.

The idea of these adaptive constants is to guarantee, In the early stages of

learning, plasticity and recruitment of units to form local neighborhoods and, in the later

stages of learning, stability and fine tuning of the map. These issues are very difficult to

study theoretically, so heuristics have to be included in the definition of these values.

Once the SOFM stabilizes, its output can be fed to an MLP to classify the

neighborhoods. Note that in so doing we have accomplished two things: first, the input

space dimensionality has been reduced and second, the neighborhood relation will make

the learning of the MLP easier and faster because input data is now structured.

Adaptive resonance theory proposes to solve the stability-plasticity dilemma

present in competitive learning. Grossberg and co-workers [Principe et aI., 1996] add a

new parameter (vigilance parameter) that controls the degree of similarity between

stored patterns and the current input. When the input is sufficiently dissimilar to the



stored patterns, a new unit is created in the network for the input. There are two ART

models, one for binary patterns and one for continuous valued patterns. This is a highly

sophisticated network which achieves good performance, but the network parameters

need to be well tuned.

Fukushima [Principe et. aI., 1996] proposed the Neocognitron, a hierarchical

network for image processing that achieves rotation, scale, translation and distortion

invariance up to a certain degree. The principle of a Fukushima network is a pyramid of

two layer networks (one, feature extractor and the other, position readjusting) with

specific connections that create feature detectors at increasing space scales. The feature

detector layer is a competitive layer with neighborhoods where the input features are

recognized.

In the model of artificial neuron suggested by Fukushima all synaptic weights

and all input and output signals are nonnegative[Principe et. aI., 1996]. In this model the

inputs and corresponding synaptic weights are separated in to two groups: excitatory

and an inhibitory one. The excitory effects ej which is the weighted sum of all the

excitatory inputs, is suppressed by the inhibitory effects hj , which is the weighted sum of

all the inhibitory inputs in a shunting manner. The output of the neuron can be described

by the expression

n

1+nLajjxj

j=!
m

l+Lbjjvj
j=!

{

U. if U ~ 0,
'¥u = }

() 0 otherwise

In this expression the aji mean the the excitatory synaptic weights and bji are the

inhibitory synaptic weights.



TLRNs with the memory layer confined to the input can also be thought of as

input preprocessors. But now the problem is representation of the information in time

instead of the information among the input patterns, as in the peA network. When we

have a signal in time (such as a time series of financial data, or a signal coming from a

sensor monitoring an industrial process) we do not know a priori where, in time, the

relevant information is. Processing of the signal can be used here in a general sense, and

can be substituted for prediction, identification of dynamics, or classification[Principe et.

A brute force approach is to use a long time window. But this method does not

work in practice because it creates very large networks that are difficult or impossible to

train (particularly if the data is noisy). TLRNs are therefore a very good alternative to

this brute force approach. The other class of models that have adaptive memory are the

recurrent neural networks. However, these nets are very difficult to train and require

more advanced knowledge of neural network theory.

The most studied TLRN network is the gamma model. The gamma model is

characterized by a memory structure that is a cascade of leaky integrators, 1.e. an

extension of the context unit of the Jordan and Elman nets[Principe et. aI., 1996].
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Figure 4.10 Connectionist memory structures, and the frequency domain location of the

pole

xo(n) = 11...n)

xk(n) = (1-,u)xk(n-l)+,uxk_1(n-l) k=l, ...,K

(4.11.a )

(4.11.b )

Note that the signal at tap k is a smoothed version of the input, that holds the

voltage of a past event, creating a memory[Principe et. al., 1996].

Note that the point in time where the response has a peak is approximately given

by k1!l, where !l is the feedback parameter. This means that the neural net can control the

depth of the memory by changing the value of the feedback parameter, instead of

changing the number of inputs. The parameter !l can be adapted using gradient descent



procedures just like the other parameters in the neural network. But since this parameter

is recursive, a more powerful learning rule needs to be applied.

Memories can be appended to any layer in the network, producing very

sophisticated .neural topologies very useful for time series prediction and system

identification and temporal pattern recognition

Instead of the gamma memory there are other memory structures that recently

have been applied with some advantages. One of these is the Laguarre memory, based on

the Laguarre functions. The Laguarre functions are an orthogonal set of functions that

ares built from a lowpass filter followed by a cascade of all pass functions.

This family of functions constitutes an orthogonal span of the gamma space, so

they have the same properties as the gamma memories, but they may display faster

convergence for some problems. The equation for the Laguarre functions is

----2 (Z-l - (1- J1))j-l
L(z, J1) = ~1- (1- J1) (1- (1- J1)Z-l )j

xo(n) = (1- j..L)xo(n-1)+J1-(1- j..L)2u(n)

Xk (n) = (1- fl)Xk (n -1) + Xk-1 (n - 1)- (1- J1)xk_t (n)

(4.13.a)

(4.13.b)



LEARNING ALGORITHMS FOR ARTIFICAL NEURAL

NETWORKS

In this section supervised learning from examples is described in detail,

and most widely used learning procedure, the back- propagation algorithm, also

called the generalized delta rule is introduced.

The back-propagation algorithm was developed first by Werbos in 1971,

but his achievement remained almost unknown. The technique was rediscovered

by Parker in 1982 and independently in 1986 by Rumelhart, Hinton and

Williams [Cichocki and Unbehauen , 1993]. The multilayer perceptron networks

were not used in the past because of lack of an effective learning algorithm.

This has recently changed, mainly owing to Rumelhart and his coworkers who

have popularized the back-propagation algorithm among the scientific

community. Recently the back-propagation algorithm has also been adapted to

feedback (recurrent) neural networks [Cichocki and Unbehauen ,1993]. In this

section, discussion is limitted to back-propagation algorithms for the feedforward

multilayer perceptron (MLP). The MLP is supposed to perform a specific

nonlinear mappmg or association task (e.g. classification, diagnosis, pattern

recognition, etc.) which can be expressed in terms of a gIven input/output

pattern (pairs). These input/output relations will be called a set of learning

examples. Learning of the MLP consists in the adaptation of all synaptic weights

in such a way that the difference between the actual output signals and the

desired signals, averaged over all learning examples (input patterns), is as small

as possible. The back-propagation learning algorithm can be considered as an

unconstrained optimization problem of a suitably constructed error function (cost

function).



In order to explain the back-propagation algorithm in its basic form, let us

first consider the learning of a single neuron (located in the output layer of a

multilayer perceptron (.l\1LP)) Let us assume that the nonlinear activation function

is chosen to be the hyperbolic tangent function,

n

uf = LwJix; +0 f'Yf > 0
;=1

by modifying the synaptic weights wji.The problem of learning can be formulated as

follows. Given the current set of synaptic weights Wji, and the bias 0 j = Wji we need

to determine how to increase or decrease them in order to decrease the local

error function Ej. This can be done using a steepest-descent gradient rule expressed as

dw ji iJE
~ = - f.1 Owji

where I..l is a positive learning parameter determining the speed of convergence to the

minimum. Taking into account that the instantaneous error can be expressed as

n

uj = L wjixi
;=0

dw ji

dt -I'
dE· de)..I

dej -at
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If the activation function is hyperbolic tangent function given by equation (5.1)

then the derivation \}J' (Uj) is given by

with J.lj > o. Weight update stabilizes if Yj approaches -lor +1 since the derivative

Oyi /Oui , equal to (l-y/ )Yj, reaches its maximum for Yj = 0 and its minima for ± 1

[Cichocki and Unbehauen, 1993].

However, if the sigmoid activation function is unipolar that is described by

1
Yj = \f'(u) = l+exp(-yju)



It should be noted that in this case the derivative Oyi IOu; reaches its maximum for

Yj=1/2 and, since 0::;; Yj ::;;1,approaches its minima as the output Yj approaches "0" or

"1" [Cichocki and Unbehauen, 1993].

The synaptic weights are usually changed incrementally and the neuron

gradually converges to a set of weights which solve the specific problem. On the

basis of the algorithm gIven by equation (5.9) an incremental (discrete-time)

change of the weight Wj; can be determined by the formula

The implementation of the above algorithm reqUires an accurate

realization of the sigmoid activation function and its derivative function. These

functions are plotted in the Figure 5.1 . It can easily be noticed that shape of the

derivative of sigmoid nonlinearity strongly depend on the value of the parameter y.

In VLSI implementations of neural networks practical, accurate realizations of such

a function may be difficult [Cichocki and Unbehauen, 1993].
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An alternative implementation of the back-propagation algorithm which

avoids the use of the derivative of the sigmoid activation function is illustrated III

Figure 5.2. The network uses a small perturbation signal L1Uj which is added to

the internal signal Uj in order to estimate the instantaneous gradient of the error



function. The effect of this small perturbation upon the output error ej= dj - Yj is

registered. The components of the instantaneous gradient can be expressed as

[Cichocki and Unbehauen, 1993]

oE j 1 oe 2 1 oe 2 OU j oe j
-- - --- - ------ - -e --x
Ow ji - 2 Ow ji - 2 t3u j Ow ji - j ou j i

oe2 (~e~)
_J_:::: (5.17.a)
oUj ~Uj

or

oe2 oe ~e j

~= 2ej
__ J :::: 2e ( 5.17.b)- J

~Ujuj uj

Hence, taking into account (5.3) and (5.16) the following two forms of an alternative

algorithm for updating the synaptic weigths can be obtained:

1 (~e)2
~Wji = - 2 TJoej ~u Xi

J

[
~e ]

~Wji = -TJoej ~u:Xi

For small perturbations ~Uj these two forms of the algorithm are the same. In order to

implement the algorithm the variation of the error ej caused by a small! perturbation

signal ~Uj must be registered and the quantity (~e/~uj ) or ((~e/)/(~uj)) must be

computed at each iteration step.

The above described approach of the adaptive learning (updating) of

synaptic weights can be extended to the multi-layer perceptron (MLP). For

simplicity of our further considerations let us assume that the MLP consists of three
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layers of neurons: the first hidden layer with no inputs and nt units, the second hidden

layer with n2units, and the output layer with n3units.

The network behaviour should be determined on the basis of a set of

input/ output pairs. Each learning example is composed of no input signals Xi (i = 1, 2, ... ,

no ) and n3 corresponding desired output signals dj U = I, 2, ..., n3 ). The input/output

pairs are expressed as stable states of neurons which are usually represented by + 1

(ON) and - 1 (OFF). Learning of the MLP for a specific task is equivalent to

finding the values of all synaptic weights such that the desired output is generated

for the corresponding input. More explicitly, learning of the MLP means adjusting all

weights such that the error measure between the desired output signals djp and the

actual output signals Yjp averaged over all learning examples p will be minimal [Cichocki

and Unbehauen , 1993]. The standard backpropagation algorithm uses the steepest-

descent gradient approach to minimize the mean-squared error function. Such a local

error function for the p-th learning example can be formulated as

1 n J

E p = - L (d jp _ Y jp ) 2
2 j = 1

E = L E p = ~ L L (d lP _ Yjp ) 2 ,

P P 1

where djp and Yjp are the desired and actual output signal of the j-th output neuron for

the p-th learning example, respectively.

There are two basic approaches to find the minimum of the global error

function E. The first technique is the on-line or per example learning in which the

training patterns are presented sequentially, usually in random order. For each learning

example the synaptic weights Wjj[sl (s = 1, 2, 3) are changed by an amount LlWj/S]

proportional to the respective negative gradient of the local error function Ep, which

can be written mathematically as

[s] _ iJE p
~ W ji - - 1] iJw[s] ,1] > 0

)1

It has been proved that, if the learning parameter 11 is sufficiently small, this procedure

minimizes the global error function E = L Ep [Cichocki and Unbehauen , 1993]. Of



course, the above discrete gradient descent rule can be replaced by the continuous

differential equations

dw[S]
)1

dt
iJE p

= - J1 Ow [s] , J1 > 0
JI

In the second approach, sometimes called "batch learning", the total

error function E is minimized in such a way that the weight changes are

accumulated over all learning examples before the weights are actually changed

[Cichocki and Unbehauen, 1993].

At first we shall discuss the on-line learning approach in which the

gradient search in the synaptic weight space is carried out on the basis of a local

error function Ep. Let us first determine an updating formula for the synaptic

weights w/1 (s = 3) of the output layer. Using the chain rule for equation (5.19)

L1wl1 can be written as

~ W [3] = IJE p
)1 -17 1Jw[3]

)1

iJE au [3]
p )= - 17 -a-u-[3-] Ow [3]

) )1

n3

U [3] = '" w [3]X [3]) L...)1 1

i= 1

w [3]0 [3]
)1 1

iJE p oejp

- oe. &[3]
JP J

Updating the synaptic weights in the hidden layers is little more complicated .

For the second hidden layer the following equation can be written ..



A [2] CEp OEp W)2
1

~[2] [2] ~[21 [2]uw .. =-n--=-n----=nU. x. =nU. O.
Jl 'I aP] 'I aPl av[2] 'I J J 'I J J .

J Jl

The local error for the second hidden layer is defined as

[z] _ oE p . _5] - - [2] ,(J - 1,2, .... ,nz).
ou]

However, this local error cannot be directly evaluated like local errors in the output

layer. Instead, it can be represented in terms of quantities which are already known, and

other quantities which are easily evaluated. Using the chain rule

oE p

OU[2]
J

oE p OO~2]

00[2] OU[2]
) )

is obtained.

Taking into account that

5 [2] = _ dE p o'-P [2]

] OO~2] ou]

The factor -oEp/ooP1 can be evaluated as

gp [2]
£5 [2] = j

j Ou [2]
}



Similarly, an updating formula for the first hidden layer obtained as

8 [1] =
j

o\}! [1]
j

OU [1]
j

8.[2] W [2]
I jl.

Figure 5.3 Network architecture for standard backpropagation algorithm of a three-

layer perceptron

Generally, the local error of the hidden layer is determined on the basis of the

local errors at an upper layer. Starting with the highest output layer we compute 6Pl

using formula (5.27), next· we can propagate the errors 6p1 backward to the lower

layers. Figure 5.3 illustrates the functional scheme of the back-propagation



algorithm. The major deference of the learning rule for the output layer and the

hidden layers is the evaluation of the local error 8/s1 (s = 1, 2, 3). In the o~tput layer

the error is a function of the desired and the actual output and the derivative of the

sigmoid activation function. For the hidden layers the local errors are evaluated on the

basis of the local errors in the upper layer.

The basic back-propagation algorithm can be performed by realizing the .

following steps:

Step 1: Initialize all synaptic weights wij to small random values.

( The initial values of the weights should be chosen rather small, since, if they are

too large, the activation functions may saturate from the beginning, and the

network will become stuck in a very flat plateau or a local minimum near the

starting point. Usually, the initial values of weights are chosen as random

values uniformly distributed between (- O.S/fan-in) and (+ O.S/fan-in),

where fan-in of a unit is the number of units which are fed forward to this unit.)

Step 2: Present an input from the class of learning examples (input/output

pattern) and calculate the actual outputs of all neurons using the present

values of Wji[8] and the pattern.

Step 3: Specify the desired output and evaluate the local errors 8/8
] for all layers

Step 4: Adjust the synaptic weights according to the iterative formula

~ w[s) = n5[s) x[s) (8 = 3 2 1)
)I '/ J I' , ,

Step S: Present another input pattern corresponding to the next learning example

and go back to Step 2.

All the training examples are presented cyclically until the synaptic weights are

stabilized, that is, until the error for the entire set is acceptably low and the network

converges. Sometimes, in order to increase the convergence speed, it is useful to restrict

the training set to those patterns for which the network fails to predict correctly. The

learning process is extended to the entire training set as the performance of the

network improves. After training a multilayer perceptron usually has the feature of a

generalization, i.e. it has the ability for proper response to input patterns not



presented during the learning process. Such a generalization IS an important feature

of multilayer perceptrons.

This somewhat mysterious generalizing ability of the multilayer perceptron

can be interpreted as follows: The multilayer perceptron performs a nonlinear

mapping between an input and "anoutput space. The learning of the perceptron can be

regarded as synthesizing' an approximation of a multidimensional function which is

performing a simple fitting operation or a hypersurface reconstruction in a

multidimensional space to a finite set of the training examples. From this point of

view the generalization is nothing more than interpolating the test set on the fitting

hypersurface[ Cichocki and Unbehauen , 1993].

The learning algorithm described in the prevIous section has some

important drawbacks. First of all, the learning parameter 11 should be chosen small

to provide minimization of the total error function E . However, for a small 11 the

learning process becomes very slow. On the other hand, large values of 11

correspond to rapid learning, but lead to parasitic oscillations which prevent the

algorithm from' converging to the desired solution. Moreover, if the error function

contains many local minima, the network might get trapped in some local minimum,

or get stuck on a very flat plateau.

One simple way to improve the standard back-propagation learning

algorithm is to smooth the weight changes by overrelaxation[Rumelhart and Hinton,

1986], that is, by adding the momentum term

The weights are now updated using the formula

w~:1(k + 1) = w~:1(k) + ~w~:1(k)



improve the convergence rate and the steady state performance of the

algorithm. Intuitively, if the preVIOUS weight change is large, then adding a

fraction of this amount to the current weight update' will accelerate the

convergence process.

More precisely, if we are movmg through a plateau regIOn of the

performance surface function then the gradient component 8ErJOwji will be

the same at each time step and equation ( 5.38 ) can be written as

This means that the effective learning rate increases to the value lletFll/(1-a)

without magnifying the parasitic oscillations. A momentum term is useful not only with

the on-line learning but also with the batch learning algorithm.

In the on-line algorithm described above a pattern p (a learning example) is

presented at the input and then all weights are updated before the next pattern is

presented. In the batch learning algorithm the weight changes ~pWji are accumulated

over some number (usually all) of the learning examples before the weights are actually

changed. More precisely, using the standard back-propagation procedure described in

Section 5.1.2 the weight updates ~pWji for all the synaptic weights Wji in the MLP are

calculated for the particular learning example .

This procedure is repeated for all the learning examples in the training set to yield

the resulting update

,1w[s] = " ,1 wls] = -n dE = n" £5[s]o[s-1]
)1 ~ P)I " ow[s] " ~ )P )P ,

P . ji P

where the subindex p means that the corresponding variable is computed for the p-th

learning example. Updating of all the weights is then made and again all learning



examples in the training set are presented in order to obtain a new update. Since the

weight changes must be accumulated over the entire training set, the batch learning

requires additional local storage for each connection.

During the training process, each time step is called an epoch and is defined to

be a single sweep through all learning examples. At the end of each epoch the

weights of the network are updated [Cichocki and Unbehauen, 1993].

In practice the back-propagation batch learning algorithm usually takes a

more sophisticated form than that given by. The change in each weight is often

calculated from the formula

,1wls] (k) = -.!L "" g[S]O[S-l] + a,1w[s] (k -1) _1II..Js] (k)
JI L...i JP Ip ]I I ".11

ns_1 pEpattern_set

where II is the learning factor, a is the momentum coefficient, y is the decay

factor and nS-l , is the number of processing units (neurons) in the (s - l)-th layer.

The decay factor y (with typical values of 10-3 to 10-4
) prevents the

algorithm from generating very large weights. Very large weights may create

such a high barrier in the total error function that a solution cannot be found

within reasonable time. Moreover, the decay factor can improve the generalization

capability of the neural network [Cichocki and Unbehauen, 1993].

It should be noted that the effective learning rate lleff[sl=[ll/(l-a)] IS

inversely proportional to fan-in, where fan-in of a neuron is the number of

neurons which are inputs to it. In the fully connected multi-layer perceptron the fan-

in at each layer is equal to the number of neurons in the lower layer.

As it has been already pointed out, one serious problem of the back-

propagation algorithm is that it can be trapped in a local minimum of the error

function. A simple and effective technique which often enables us to avoid local

rruruma is to choose examples in random order from the training set. Such a

random order generates a "noise" which enables us to get out of local minima. On

the other hand, if the training set is cycled regularly in the same sequence of

pattern pairs the probability of getting stuck in a local minimum is greater since

series weight changes cancel.



~
the neural network is adding noise to the input training set. It appears that a neural

network trained with noise-distorted inputs not only often allows an escape from a

local minimum, but also ha~ a better ability to recognize noisy patterns, and performs

better in recognizing or correctly classifYing patterns that have never been presented to

the network during the training procedure [Sietsma, 1991]. The last feature is called

the generalization ability and it is one of the major strengths of artificial

networks.

(i) The on-line approach has to be used if all training examples are not available before

the learning starts and an adaptation to the actual (on-line) stream of training

patterns is desired.

(ii) Furthermore, the on-line learning algorithm is usually convenient and more

effective than the batch algorithm when the number of the training examples IS

very large, since the batch procedure requires auxiliary memory to accumulate the

local updates.

(iii) The on-line procedure introduces some randomness (noise) that often may help in

escaping from local minima. On the contrary the standard batch procedure

introduces some inherent averaging filtering due to collecting the total gradient

information before deciding the next step. Although the batch learning algorithm

provides a better estimate of the gradient components and avoids a mutual

interference of the weight changes (caused by different

improve the learning speed sufficiently to compensate

computational cost.

(iv) Usually, the on-line algorithm is faster and more effective than the standard

batch procedure, especially for large-scale classification problems, This can be

explained by the fact that usually many training examples possess redundant

information in the sense that many contributions to the gradient are very similar,

and waiting to compute all these contributions before updating the weights is

simply wasteful.



(v) However, for many applications, especially, if high precision mapping is required,

the batch procedure may be the method of choice.

(vi) Moreover, the batch approach lends itself to straightforward applications of

more sophisticated optimization procedures.

Summarizing, the relative effectiveness of the on-line and batch procedures

IS highly dependent on the problem, but the on-line algorithm seems supenor In

most cases, especially for large redundant training sets[Cichocki and Unbehauen, 1993].

5.1.6 Back-propagation Algorithm with a Neural Network having Variable

Hidden Layer Dimension

The number of neurons to be used in the hidden layers is not known in advance,

and usually is estimated by a trial and error approach.

One possible approach is to construct a neural network with an exceSSIve

number of hidden units, i.e., a network which is known or suspected to be larger than

required is used and then some redundant units are removed during the learning

process[Sietsma, 1991]. All neurons that do not contribute to the solution or give

information not required at the next layer [Sietsma, 1991] can be considered as

redundant hidden units. In order to find which hidden units can be removed, the output

of all the hidden units is monitored analyzed accross all the training examples after the

approximately the same or opposite output for all training examples, only one of these

units is needed since both neurons convey the same information[Cichocki and

Unbehauen, 1993] . After removing some hidden units which do not contribute to the

solution the weights of the reduced network must be appropriately updated or the

network must be trained once again to ensure the desired performance. The process of

removing the redundant hidden units to produce the smallest neural network capable of

performing a desired task is called pruning [Sietsma, 1991].

The technique described above enables neural network designer to reduce the

number of hidden units. Sometimes, at the first stage of learning process, it is

sometimes convenient to gradually increase the number of hidden units. After achieving



the desired convergence, it is recommended to remove some of them in order to find

the minimal size of the network which performs the desired task. [Cichocki and

Unbehauen, 1993]

The purpose gradually increasing the number of hidden units is important in two

• The number of hidden units is not known in advance. Gradually increasing

the number of units during the training process it is possible to find the optimal

number of units.

• The learning process may became trapped in a local minimum or very flat

plateau. If one or more extra hidden units are added to the network it may

escape from a local minimum since the error function in the weight space

changes its shape.

Recently, a heuristic back-propagation algorithm has been propose which varies

the number of hidden units dynamically[Cichocki and Unbehauen , 1993]. According

to this algorithm a new hidden unit is added when network becomes trapped in a local

minimum or a very flat plateau. For this puppies a total error function E is monitored

and examined during the learning process. If the error function does not decrease very

slowly less than a predefined rate within the next 50 weight update, the network is

probably trapped in a local minimum and number of hidden units is insufficient for the

convergence. Thus, new hidden units need to be added. The initial values of the

weights of this unit can be set randomly in some ways as in the standard back-

propagation algorithm.

The network is trained agam and if the error function fails to decrease or

decrease by more than predefined rate within the next 50 weight update one or

more hidden units are added. This procedure is repeated until the network eventually

converges.

Since, in some cases, the number of hidden units becomes excessively large in the

second stage of the training we can try to reduce the number of hidden units according

to technique described above. It should be noticed that too many hidden units usually

degregades the network performance to generalise[ Cichocki and Unbehauen, 1993].



Training of the feedforward multilayer neural networks usmg the standard

backpropagation results in slow convergence. There are cases in which the learning

speed is limiting factor in practical applications of neural networks. [Cichocki and

Unbehauen, 1993]

There are several approaches to increase the convergence speed:

• Estimation of optimal initial conditions. In other words, finding initial weights

that are better starting values than pure random values.

• Reducing the size of problem by pre-processing of the data, for example by

employing future extraction algorithms or the projections like Principle

Component Analysis.

• Applying more sophisticated optimisation algorithms.

Numerous heuristic optimisation algorithms have been proposed to improve the

convergence speed of the standard back-propagation algorithm. Unfortunately, some of

these algorithms are computationally very expensive.

5.2.1 Back-Propagation Learning Algorithm with an Adaptive Slope of the

Activation Functions

In the standard back-propagation learning algorithm, it was assumed that the

slope y of the activation function is fixed (typically 1). Kruschke and Movellan[ Amari,

1991] have shown that a modified learning algorithm with adaptive slope significantly

increase the learning speed and improve the generalization.

Considering a three layer neural network architecture it can be assumed that all

activation functions have variable slopes y[s] which must be computed during the

learning process to be able to evaluate output of neurons as follows;

ojs] = \I1 s] (rJ s] uj sJ ) = tanh(r! s] uj s])
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5.2.2 Search-Then Converge Strategy

Darken and Moody[ Cichocki and Unbehauen , 1993] proposed a simple

approach called" search then converge" strategy. According to this strategy the

learning rate is gradually decreasing during the learning process. In the first phase of

learning ( search phase) the learning rate is almost constant, that is, it decreases very

slowly and it is sufficiently large. In the second phase of learning (convergence phase)

the learning rate exponentially decreases to zero. Two possible schedules for the learning

rate have suggested[Cichocki and Unbehauen, 1993].
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where 110 >0 , c>O, ko» 1 ( typically 100 ~ ko~ 500 ) are suitably chosen parameters.

Note that for k« ko the learning rate 11(k):::: 110. and for k» ko the functions
,

decrease proportional to 11k. It has been demonstarted that for suitabily chosen

parameters a considerable improvement in the convergence speed can be achived[

The averaging procedure for adaptive filtering developed by Polyak is somewhat

similar to the search -then-converge strategy of Darken and Moody. According to this

approach the weights can be computed as [Cichocki and Unbehauen, 1993].

- - - 8E
Wij(k+l)=Wij(k)-7](k) _

8Wij

L _o_'E_p_ ~ (k )
,7]

p OWij
7J0 / k r , [~ < r < 1] and

OW ij

17(k) = 1/(1+k) .

The above learning algorithm combines two processes. The first computing

process is a standard stochastic recursive algorithm with its learning rate 'ij(k) 170 I kr .

The second process is an averaging process with learning rate rfk) =1/ (1+k). In

algorithm is that it employs two learning rates: 1J(k) =TJvk-r and rfk) =(l+kfl. Note

~(k)
TJ

decreases more slowly than 17(k). In practice the averaging process will start not at k=O
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It should be noted that that one may use only the set of difference equations but at the

expense of slower convergence speed. The use of the second set of equations

(averaging process) may improve the convergence speed[ Cichocki and Unbehauen ,

Quickprop is a heuristic learning algorithm for a multilayer perceptron,

developed by FaWman, which is based on Newton's method[Cichocki and Unbehauen ,

When processing unit with a standard sigmoid function is near its maximum or

minimum, the slope of the activation function is near zero, so the corresponding local

error 8j is near zero and consequently the corresponding weight change LlWij is near

zero. In order to overcome this problem FaWman uses in his quickprop algorithm as

modified activation functions

or alternatively

'P(uJ = tanh(y;u;)+ O.lu;

The quickprop learning algorithm can be formulated as

l:i.wij(k) = _ry(klSij(k) +atl l:i.wij(k-l)

OE(W(k))
Sij(k):= Ow + rwij(k -1),

lJ



rfk)={1JJ, if ~Wij(k-1)=0.0 orSi](k)~wi](k-1»0.0,
. 0 ~+1~.'; ( 5.56 )

, UlJKfWlse
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am,x, ijat:; 0 or S (k)~w (k -l)a(k) < 0.0
(k) Si.(k) Y Y Y (5.57)

aij = -(k) " otherw ise
aij - ,

Sij(k - 1) - Sij(k)

Note that in this algorithm the learning rate l1(k):;cO is only necessary to start the

training or restart it, if ~Wij=O. A small decay factor y is used to prevent weights from

growing to very large values. Typical values of parameters are: 0.01 :s; r)o:S; 1.75, y=10-4

Usually, the quickprop algorithm is simplified as [Cichocki and Unbehauen, 1993]

a.(k) = min
I)

OE(W(k))

Owij
OE(W(k-l)) OE(W(k)) ,amax



MOTION MEASUREMENT, TRAJECTORY PREDICTION AND

PARAMETER ESTIMATION

"Parameter" and "estimation" are the most frequently encountered pair of

words in the science literature. This is because science aims to convert mysterious

events into comprehensible phenomena

In this chapter, a literature survey of parameter estimation in relation with

motion parameter estimation subject is presented. In addition, motion measurement

systems currently being used are introduced.

In order to design a real-time system performing motion estimation, a reliable

motion measurement need to be done. Motion measurement is carried out with

currently available special devices. In this section some of the methods exploited to

determine motion parameters and their implemented forms are explained briefly

Macreflex Motion Measurement System is a professionally produced, user-

friendly, and flexible 2D/3D movement analysis system[Bateman, 1995]. Specially

designed video camera(s) emit and receive infrared light. Reflective markers are used to

identify the moving target. If at least two cameras are used, the relative 3D coordinates

of the target are displayed qualitatively on screen. The exact coordinates can be exported

to a spreadsheet for further analysis. The package includes the WingZ (Informix)

spreadsheet with an additional pull-down menu of MacReflex scripts that will graph the

data (position, position-time, velocity, acceleration, angle, angular velocity, angular

acceleration). It is possible to write further scripts, for example, to operate on batches of



files. The raw data is available for further statistical manipulation, within WingZ, or

following export to an analysis package.

Peak Performance Technologies, Inc. has been supplying 2D and 3D motion

measurement systems to the medical, biological, ergonomics, sports and animation

markets since 1984. Peak software captures and calculates the 2D and 3D coordinates of

specified points on a moving object using video or real-time hardware. These coordinates

are then used to calculate kinematics data such as linear and angular velocity and centers

of mass. Coordinate data can also be integrated with analog data from force platforms

and EMG devices to calculate kinetics such as the joint moments and joint forces. Report

generation includes synchronized video images, stick figures and graphics on Cartesian

axes, along with exporting the data to animation software or statistical packages.

Motion and Position Measurement (MPM) system data is often used In

conjunction with design verification, fatigue calculations and life time estimates, but also

for the purpose of on-line positioning control.

Motion parameter estimation is a special field of interest in which non-linear

estimation theory is used extensively. This section is devoted to different approaches

that has been used in motion parameter estimation. The original study inspired many

concepts from trajectory prediction literature and literature on prediction of non-

linear system behavior.

Goerke and Eckmiller [Goerke and Eckmiller, 1993] used a neural network

model approximating a function which maps the one-dimensional input space ( time )

onto an m-dimensional output space (workspace of the trajectory). Approximating a
A

trajectory S with the function S generated by the network is done by approximating

the second derivative §, of the desired trajectory ,§ and integrating it twice to

form a smooth trajectory S The acceleration S" is considered as a sequence of forces

driving a virtual fingertip with unity mass through m-dimensional workspace.

Within the network the locally constant acceleration values are stored as synaptic



neurons and subsequently integrated by the Neural Integrators to the final trajectory In

the study made by Goerke and Eckmiller [Goerke and Eckmiller, 1993].

Go~rke and Eckmiller [Goerke and Eckmiller, 1993] divided all trajectory in to

N intervals with duration Dj which are called parcels; within one parcel i the

corresponding neuron i in the Parsel-Iayer is fully active as defined by a pair of values:

"switch on-" and "switch off-" thresholds.

For a given parceling situation the weights Ware changed according to the

cumulative o-rule after each epoch ( duration of trajectory).

(x) _ (x) C-<x).
newWn -old Wold +170~ ,

1 I=end

~x) = Ii L(YL1x;' + tfu; + ~I put n (t) ( 6.1)
n 1=0

where 5n( x) denotes the linear combination of the cumulative difference between

desired and estimated acceleration, LU;' , velocity i1x; and spatial position L1x1

normalized by the parcel-duration D , for the x-component with respect to parcel n..

estimation model based on tracking set of points on the moving object. The system

predicts trajectories of many point objects and combine them to predict motion of

the rigid object as a whole. Since distances between point do not change because the

object is assumed to be a rigid one , using many points at a time to check distances

between points provides a mechanism to reduce the prediction errors.

In [Debrunner and Ahuja, 1990] the object centered coordinate system is a
--->

cylindrical coordinate system whose axis is aligned with the rotation axis n and with
--->

its origin at Ca(f) in frame f. Each point on the object has three coordinates: the radial

--->

to the point and the axis, and the distance dp from Co along the rotation axis. They

formulated instantaneous position of a single point by the equation ( 6.2 ) .

.... [(1- F2
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-~~
-F F ][coswf
(1- ~;) sin wf
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In the system n points viewed in m succeSSIve frame are used for estimation.

Position difference are used to construct a matrix having dimension m x n. This

matrix is decomposed into matrices 0 and C by means of SVD ( singular value

decomposition) method. The decomposed matrices are used to predict next position

of moving object.

Chen and his friends [Chen et ai, 1994] performed image motion estimation by

using the spatio-temporal approach which has largely relied on the constant velocity

assumption. Time-variation is modeled either as a polynomial or as a periodic function of

time. Under these models, they showed that time-varying image motion estimation is

equivalent to parameter estimation of one-dimensional polynomial phase or phase

modulated signals. Spatio-temporal algorithms was developed in [Chen et ai, 1994] to

handle time-varying motion. Time-variation is modeled either as a polynomial or as a

periodic function of time.

Pierre Payeur and his friends [Payeur et ai, 1995] conducted a study on the

valid observation that objects do not move totally at random. They exploited

neural networks' ability to learn regularities m a sequence to predict motion

parameters of moving object so that a manipulator could use this information to catch

and grasp the moving object. If prediction of the motion variables could be achieved,

manipulator and object could meet under conditions such that no collision and

sliding would occur.

In their study, the positions and orientation of the object (x, y, z, 8, <1>, <p) were

provided at .regular intervals by the vision system which processes the scanned images

of the scene. They assumed that the object velocity and acceleration are within

acceptable range compared to manipulator joint limitations.

They formed a generic motion model which is described by cubic equation

given below.

where X is represents position, orientation, velocity or acceleration depending on the

considered variable, Xo is the initial value, t is the time.



The cubic model was chosen because it can represent rather complex system

nonlinear trajectories with low risk of overmodeling. Besides, cubic model allows

variable acceleration.

A cubic polynomial with assigned coefficients is used to .generate training

data. Generated data was used as baseline in predictions. Predictions performed by

cubic model updating technique and neural network approach. In their study

Payeur and his friends pointed out superiority of neural network prediction models

over cubic model updating technique.

6.4 A Brief Bibliography of Problem of Non-linear Systems' Behaviour

Prediction

As stated in Chapter 3 as well, the estimation of motion parameters is nothing

but a problem of time series prediction. The complexity of the prediction task

depends on the system that produces time series throughout its evolution. If the

system is linear it is not difficult to carry out the estimation task. However, if

system is a non-linear or a probabilistic one it is much harder to attain a precision

beyond a certain limit.

In this section some studies conducted to find solution to complex time

senes prediction are summarized. People that made these studies were not intending

to develop a motion prediction model, but the methods they used in prediction of

some typical time series may be suited for application in motion parameter estimation

field. For this reason it is worthwhile to mention these studies here.

Principe and his friends [Principe et. aI., 1991] used time delay neural networks

to predict Mackey-Glass( D=30) time series. The training set was a different set of

3,500 points of the time series. They obtained prediction results over a test set of 500

points of the Mackey-Glass system characterization

In [Principe et. aI., 1991] long term predictions are utilized in rating of the

predictors. TDNN used was able to follow with a very small error the Mackey-Glass

time series up to 45 steps.



Bengio and his friends [Bengio et. ai, 1995] performed a study to optimize the

medium term prediction of sunspots using multilayer perceptron ( MLP ) neural

networks with different configuration and different input data set formats.

Output schemes used in [Bengio et. ai, 1995] are as follows

a MLP with one output

a MLP with h+ 1 output units Xt, XI-+I , ... ,Xt+h

a MLP with one output unit XLIn that case is predicted usmg as input

previously predicted values "~,,.··,X'+h_1 ' which are estimates ofXt, XI-+!, ... ,Xt+h-l

They used different embedding dimension and time delay combinations. In

addition, they increased the number of training sample by using daily measurements

instead of monthly and weekly ones. Bengio and his friends [Bengio et. ai, 1995]

observed that increasing size of training set decreased the overfitting.



A COMPARATIVE STUDY ON MOTION PARAMETER

ESTIMATION BY MEANS OF DIFFERENT NEURAL NETWORK

ARCHITECTURES

Task of measunng motion parameters requIres use of advanced technological

devices. These devices determine object location in the 3 D space in regard to time as

described in the previous chapter. Assuming that such devices are providing necessary

information about motion of an object, a mechanism able to make accurate on-line prediction

of motion parameters can be used to solve important automation problems. Because

complexity of motion types display significant variations, it is more appropriate to approach

the problem with motion models. In this chapter, several motion models will be considered

and capabilities of different neural network topologies to predict parameters of these

motion types are compared on the basis of error function.

In motion estimation context, prediction can be defined as approximating a function

underlying dynamics of the system under discussion. The first step in design of a realistic

estimation system is identification of variables that influence the parameter to be estimated.

This can be achieved by means of statistical analysis or by some mechanisms which decide to

remove or keep a given variable in the prediction process dynamically. A mechanism

which does not assume any prior conditions about the influence of a certain variable on the

parameter to be predicted can be implemented by including all the suspected variable into

the system. While the neural network predictor is being trained, those variables which

have no effect on the prediction can be identified by observing the changes in the weights

coming out of input nodes to which instantaneous values of these variables are fed. If the

changes in this group of weights that connect an input node to other neurons are not

significant as compared to changes in weights coming out of other input nodes then it



can be concluded that the variable that fed to this input node can be taken out of

prediction process. In the artificial neural network literature this operation is named as

"weight pruning". That is, by removing the weights coming out of a input node, that input

node is made ineffective.

Nevertheless, the mechanism mentioned above is difficult to implement due to the

computational complexity of operations and possible synchronization problems of

parameter values caused by data acquisition systems. Although this issue will not be

discussed any further, it is an important point for the design of realistic prediction

system.

Periodic motion is one of the simplest and the most easily understood motion types.

In this section this kind of motion is considered and two neural network topologies are

employed in the task of learning the dynamics of this motion without supplying them with

any prior knowledge about motion model.

Let formulate object spatial position with respect to time by a set of parametric

equations.

Jr
X(t) = 100 Cos(i5t)

Jr
yet) = 400 Sin(Wt)

Jr Jr
Z(t) = 400cos(- t)Sin(- t)

100 25

This set of equation can be a motion model of a machine part on a shaft such

that while the shaft is subject to elliptic motion, a machine part itself is movmg

periodically up and down. Figure 7.1 presents 3-D plot of object trajectory described above.

For the safe manipulation of the object attached to this part manipulator has to predict

approximate position, velocity and even acceleration of object with a certain accuracy.



Motion data has been generated by assigning successive integer values to time

variable t starting from "0". The size of generated data is limited to 450 successive

coordinates in the space Here ~t=l is a hypothetical time unit ( let say n/25 second)

indicating that an imaging system can identify 450 successive position of object in 450

equally spaced intervals. If the motion measurement system can perform faster position

determination, then higher resolution data can be input to the trajectory learning system

which is supposed to improve the accuracy of the prediction

A sample of 3-D motion data is shown in tabular form In Table 7.1.

Time X(t) Y(t) Z(t)
0 100 0 0
1 99.21227 25.10349 50.08331
2 96.86148 50.10801 99.2306
... ... ... ...
... ... ... ...
... ... ... ...

447 91.89188 80.53882 -15.9661
448 96.10925 55.79068 -7.72434
449 98.81246 30.82259 -2.36978



Figure 7.1 Trajectory of the periodic motion described by the set of equations {( 7.1), (7.2)

and (7.3)) (Graphic output form Mathematica v.2.2)

In order to feed motion data to neural networks, they have to be pre-processed The

reuson is that operational range of a neural network is determined by the activation function

mapping range. If activation function for neurons in the networks IS

1
\}l (u) = 1 + e -yu ,

then operational range of neural network is [0,1]. If selection of activation function for

output nodes is made as



1 -
\feu) = tanh(u) =

1 +

e -2Yll

-2Ylle '
then operation range extends from -1 to 1. Because the range IS wider for the second case

it can be more precise for the application. Besides, negative values can be mapped to

interval [-1,0 ] , resulting in more accurate representation of parameters. In the neural

network literature, mapping real values of a quantity into representative values lying in

operational range of network is called normalization operation. More precisely, if m is a

measurement of a quantity M, normalized form of m is

,.'here rnmax is the maximum possible value that m can take. If m has negative values, so

does rnnonn . It can easily be deduced from equation (7.6) that rnnonn E [-1,1 ].

Component of position vector of an object can have unbounded magnitude. That is,

maximum magnitude of any component cannot be known in advance. Lack of information

about absolute maximum value for magnitude of position makes normalization impossible.

Under these circumstances, another representative parameter set has to be used instead of

absolute magnitude of positions.

Position difference vector can't have magnitude larger than a certain value[Payeur

et. aI., 1995]. Let Xx be denoting x-component of position vector. If the 6Xx is the

relative difference between two position vectors, it can be stated that IMXI1H(I ~ IMxl,
where 6Xxmax is the maximum possible magnitude of the x-component of position difference

vector. The value of 6Xxmax depends on the amount of energy that can be converted into

kinetic energy form in the time interval 6X takes place. The fact that this energy is limited

IS a sound justification for the above inequality.

The first phase of processing data is differencing successive position values. If n

psitions are present then differencing process yields n-1 values. Beside satisfying the

\.)ndition mentioned above, differencing operation is useful in the sense that it removes

linearity in the signal sequence which yields simpler sequence [Masters, 1994]. Figure 7.2. a

and 7.2.b illustrate the operation by presenting before and after phases.
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Figure 7.2.b Differencing operation removed linear trends in the sequence ( Figure 7.2.a)

(Graphic output from MS Excell v7.O.Software)

Once prediction mechanism estimates difference between any two succeSSIve

positionsthe real value of predicted position can be obtained by adding predicted difference

value to preceding position value.

Although differencing operation does not remove any linear trend, because no linear

tr~~ldis existing in any component of object position vector in the motion model described by

"1uations (7.1), (7.2), (7.3), it is still necessary to apply it in order to make normalization

~locess possible. In fact, presuming no linearity in the sequence contradicts with the claim



that prediction mechanism can make short-term estimation without any pnon knowledge

about motion model.

Table 7.2 contains the difference values between successIve positions. Note that the

sequence length is decreased by 1.

Time LlX(t) LlY(t) LlZ(t)
Interval

No
0 -0.78773 25.10349 50.08331
1 -2.35079 25.00452 49.14728
2 -3.8768 24.80697 47.29562
... ... ... ...
... ... ... ...
... ... ... ...

446 5.665099 -24.4306 10.85093
447 4.217377 -24.7481 8.241763
448 2.703211 -24.9681 5.354558

M(t)
M(t)norm = -1-3-

Although operation range of neural networks that are gomg to be used m the

prediction process is [-1, I], in many applications it is observed that values -1 and 1 are

never reached. If normalizing factor is chosen to be the maximum value of sequence it is

apparent that the maximum sequence element cannot be reached . Thus, normalizing factor

must have a value larger than 13, say 16.

M(t)
M(t)norm - -]-6-

M(t)
M(t)"orm = (l + a) * M(t)max' where 0 < a < 1. ( 7.9 )

Table 7.3 tabulates normalized position difference in x , y and z coordinates with

their respective normalization factors.



Normalization 16 31 60
factor

interval no .6.X(t)norm .6.Y(t) norm .6.Z(t) norm
0 -0.04923 0.80979 0.834722

1 -0.14692 0.806597 0.819121

2 -0.2423 0.800225 0.78826

... . .. ... . ..

... ... ... . ..

446 0.354069 -0.78808 0.180849

447 0.263586 -0.79833 0.137363

448 0.168951 -0.80542 0.089243

Training pattern has been prepared in the form of shifted sequence as in Table 7.3.

The last element of each row is the value that has to be predicted in the estimation

procedure

TaMe 7. -IList Pattern for training and testing with n last value (!f L1Xnorm S

Pattern No(p) .6.X(t-(n)T)norm .6.X(t-(n-1) T)norm .6.X(t-(n-2)T)norm ... .6.X(t) norm .6.X(t + T) norm
0 -0.04923 -0.14692 -0.2423 -0.68724 -0.72922

1 -0.14692 -0.2423 -0.33386 -0.72922 -0.75971
. . . ...

M 0.765002 0.73721 0.697804 0.26358 0.168951

The pattern M, (M-2), (M-4) and (M-6) are used for testing the performances of

neural networks in the simulation runs. If the testing pattern used in a simulation run has

number K, then training sample set for that run is formed with the patterns located in

the range 0 to K-l. Since the size of training patterns vary only very little, the difference in

the performances cannot be attributed to the different training sample sizes. This is the basic

reason for choosing patterns clustered at the end of whole pattern list.



Two well-known neural network architectures have been employed in the prediction

proc~sses. The first one is recurrent neural network and the second one is Jordan/Elman

network. Before deciding on these neural networks, their characteristics and performances

havebeen compared to those of some other neural network models namely MLP (multilayer

pp'fceptron), PCA( Principle Component Analyzer) neural network etc.

The learning rule for both neural network models has been chosen as

t..1ckpropagation with momentum update in order to speed-up the learning process ..

Recurrent neural network architecture with fully recurrent connection for its first

hidden layer has been created. Number of hidden layers in the network is determined to be

onlyone. Testing has been performed during the training.

£(s) = ~(d(s) - M(s)y ( 7.10)
2

where d(s) is the real value and ~Xi (s) is the estimated value for normalized position

difference at training step s . The error is measured for both training data and testing (cross

validation) data.

Two different embedding dimensions have been tried in the experiments. The

embedding dimensions for which the simulations have been carried out are 4 and 9

respectively. Changing embedding dimension has resulted in different performances for

both neural network models.

Figure 7.3.a and 7.3.b illustrates effect of changing embedding dimension for the

prediction of normalized position difference in X axis. It is clear that increasing the

nnmber of input nodes which means increase in embedding dimension results ill

I'o,timationswith higher precision for periodic motion.
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Figure 7.3.a Estimation error functions in regard to training epoch when recurrent neural

networks with 4 and 9 input nodes are employed.
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Figure 7.3.b Estimation error functions in regard to training epoch when Jordan/Elman

neural networks with 4 and 9 input nodes are employed

The first recurrent neural network used in the experiments has 4 input nodes. Inputs

are simple axons which simply perform an identity map between its input and output activity.

The delay time:t between inputs is n/25 second ( 125.6 rris). The single hidden unit in the

network consists of 8 nodes with hyperbolic tangent (tanh) activation function. Firing

levelof single output node represents normalized form of predicted L1X value which is used



to· calculate next position of the object. Learning rate for weights connecting input layer

to single hidden layer in the network has been chosen as 1. For the recurrent weights the

learning rate is set to value 0.1. The value for momentum, on the other hand, has been set

to be 0.7 for all weights. The second recurrent network has only one hidden layer as the

first one. The number of nodes in the input layer 9. Number of nodes in the hidden layer

has been increased to 18. On the hand, learning parameters values of the network have

been set to those of first recurrent neural network.

The first Jordan/Elman Network used for time series prediction with embedding

dimension d=4 and time delay t=125.6 ms has 4 input nodes. The first and second

hidden layer contains 8 and 4 nodes respectively. Backpropagation rule with momentum

update has been employed for training and constant for momentum term is defined to be

0.7. The learning rate for weights connecting input nodes to first hidden layer is 0.4. For

weights connecting two hidden layers in the network the learning rate is set to 0.3. As for the

weights between last hidden layer and single output node, the learning rate is 0.2. It is

necessary to mention here that these values have determined throughout experiments. The

second Jordan /Elman network configuration contains 9 nodes in input layer. For first

and second hidden layers the sizes have been determined to be 18 and 9 nodes

respectively. However, the same values for learning parameters of first configuration have

been used throughout the training process.

Experiments have shown that recurrent networks outperform the Jordan/Elman

neural networks in predicting normalized position difference of an object that is subject to

r:eriodic motion. It should be noticed that recurrent network is more compact than the

J0rdan/Elman network which means less number of weights and less computation to update

them. Let us see the performance curves of these neural networks when the embedding

dimension is 9. An average performance measurements based on error criterion defined

with equation (7.10) are plotted in the Figure 7.4.
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Figure 7.4 Comparison of Recurrent and Jordan/Elman neural networks on their position

change predicting capability for a periodic motion. ( embedding dimension d = 9)

In this section prediction for chaotic motion model will be discussed in order to

measure the prediction capability of neural networks with more complicated motion time

famous chaotic formulations done in the nonlinear dynamics literature. The first

formulation is Thinkerbell attractor for which several neural network topologies have been

used to perform predictions. The second one is the chaos described by Lorenz equations.

F(XJ = (x
2

- y2 + 0.9x - 0.6013Y)
y 2xy + 2x + 0.5y



The attractor studied by James York is plotted in the Figure 7.5. A planer chaotic

motion can be modeled by using the formulation done by James York.

Since the Tinkerbell attractor is used as motion model, two dimensional position

of an object can be obtained by applying the recursive nonlinear formulation done with

equation (7.11). After trying many values as initial conditions, x and y have been set to

values -0.5 and 0.45 respectively. The reason for choosing small values as an initial conditions

is that using large values yield very large values after a number of iterations such that

computers used in the data generation generate overflow error.



As in the section 7.1 differencing operation has been applied on the data produced

Lf iterating equation 7.11. The length of training time series is 400. Embedding dimension

1.1 the prediction is 9 for X and Y. That is, it is not used as a sample training by the

neural network while it is being trained. The aim is to obserVe the predicted values of

the next position difference while the network is being trained . The graph of position

differences in x and y coordinates are plotted

respectively.
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,
During the training process, neural networks have been tested against the real

value of the next position difference in x (y) axis. The error has been measured for both

training data and testing (cross validation) data ,using the equation 7.10.

The first studied configuration is lordanlElman neural network architecture with

input nodes fed with the last 9 x component ( y component) of position differences. At

the output node prediction for the next position difference has been obtained. Two hidden

!',yers have 18 and 9 nodes respectively. The backpropagation with momentum learning

1"lIe has been used for the training of the network. The learning rate used in updating the

weights connecting input layer and first hidden layer is 0.4. Weights between two hidden

layers have been updated with learning rate of 0.3. As for the weights between the last

hidden layer and single output node, the learning rate has been chosen to be 0.2. The

maximum iteration size for the training has been set to 1000 epochs.

The experiments have been carried out with recurrent neural network for the

same testing patterns . The network has 9 input nodes and it is fed with last 9 normalized

position difference in x coordinate. The first of two hidden layer has 18 nodes. The second

one has 9 nodes. The firing rate of output node is considered as the predicted normalized

difference in successive values of the parameter to be estimated. Backpropagation with

momentum learning rule has been employed to train the network. Momentum all weights

has set to be 0.7. Learning rate for weights between input and first hidden layer is 0.4.

Weights between hidden are updated with learning rate of 0.3. As for the weights

connecting second hidden layer to single output neuron has been reevaluated with the

learning rate of 0.2. Another feedforward connection stream between the input layer and

second hidden layer has been created and learning rate for this weight stream is set to 0.4.

'~.he only recurrent weight connection stream from first hidden layer to itself has the

l~arning rate equal to 0.1. The recurrent connection stream has been chosen as partial

rather than a full connection type because of instability problem associated with fully

Testing patterns have been determined in the same way in periodic motion

experiments. Testing error for every 50 epochs has been measured and plotted for each



simulation runs. The average performance curves for recurrent network and Jordan Elman

network are plotted in Figure 7.7.
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Figure 7. 7 Comparison of Recurrent and Jordan/Elman neural networks on their position

ch~nge predicting capability for Tinkerbell Attractor motion model

( embedding dimension d = 9)

According to the Figure 7.7, it can be said that prediction with Jordan/Elman

networks is more refuible than that with recurrent network for Tinkerbell-like chaos

case. It should be noticed that after 800-1000 epoch a reasonable accuracy can be

attained with Jordan/Elman networks.

Lorenz attractor is a famous model in the nonlinear dynamics literature. It was

used to model Far-infrared (FIR) laser beam behavior and fluid convection phenomena. Its

natural aspects and 3 dimensional property have made it an interesting motion model

to be analyzed.

The characteristic equations describing Lorenz attractor are:



dX--- o-Y - o-X,
dt

dY
-=-XZ+rX-Y,
dt

dZ
dt = XY -bZ.

dX
--= 12Y - 12X
dt

dY- = - XZ + 60 X - Y
dt

dZ 8
-=XY--Z
dt 3

with initial conditions X(O)=I, Y(O)=l, Z(O)=l

3-D plot of trajectory described by the equations (7.13.a), (7.13.b) and (7.I3.c) IS

Figure 7.8 A 7/-ajectOl)l of Lorenz Attractor Motion Model

(Graphic o/{tputfrom Mathematica vers.2.2)



The equations (7.13.a), (7.13.b) and (7.13.c) with initial conditions are used to

generate time series data for X, Y and Z coordinates separately. The starting position of

the motion has assumed to be (1, 1, 1) in xyz cartesian coordinate system. The length of

generated time series is 400 for each axis.

Selection of testing patterns has been done in the same way done for periodic

motion case

As in the section 7.1 differencing operation has been applied on the data produced

by solving iterating equations 7.13 with initial conditions supplied. The aim is to observe

the predicted values of the next position difference while the network is being trained. The

same procedure in the previous motion model has been followed for selection of testing

patterns The graph of normalized position differences in x, y and z coordinates are plotted

in the Figures 7.9.a, 7.9.b and 79.c respectively.
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The procedure used in prediction of Lorenz motion parameters is no different from

the previous ones. As in the previous cases, two neural networks namely recurrent neural

networks and Jordan/Elman neural networks have been employed in the predictions.

r;mbedding dimension for the prediction has determined to be 9. The networks used in the

1 redictions are not very large. Only one hidden layer has been used in each network

tOiJology. Both network has 9 input nodes, 18 hidden layer nodes and only one output nodes.



Each input node of the recurrent network is simple axon which makes unity map. On the

other hand, each input node of the Jordan/Elman network is a tanhintegrator axon which

implements normalized feedback mechanism by in the Jordan/Elman architecture by

integrating with a time constant the activity received by each PE in the layer.

For training, backpropagation with momentum update rule has been used for both

network topology. The momentum value for all weights in both neural network topology

has been set to be 0.7.

Weights connecting input nodes to hidden layers have been trained with learning

parameter 1 for the recurrent neural network. On the other hand, in order to obtain good

results, the counterparts of these weights in Jordan/Elman network has been updated with

learning parameter O. 1.

The weights between the hidden layer and output layer of both. network have trained

with learning parameters set to the value O. 1.

Figure 7. 10 illustrates comparison of recurrent and Jordan/Elman neural networks on

their position change predicting capability ( in x coordinate axis) for Lorenz motion model.
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Figure 7.10 Comparison of Recurrent and Jordan/Elman neural networks on their position

changer in x coordinate axis) predicting capability for Lorenz attractor motion model

( embedding dimension d = 9)

In the graph, test error for recurrent network IS smaller. It should be noticed that

testing error is in the order of 10-4 after 500 epochs.



Problem of prediction of motion parameters has been studied in the

context of time series prediction. Throughout the study, characteristics of time

series have been assessed. The methods to analyze and model time series have

been reviewed. Their advantages and disadvantages have been discussed.

Since the aim of the study is to predict motion parameters, the set of

parameters which are to be estimated have been identified and the

mathematical relations between these parameters have been stated.

In order to use neural networks in the motion prediction problem, the

neural network solution paradigm has been explained by introducing

properties of various neural network topologies. The learning rules that are

used to train neural networks are examined and the strategies to construct

an effective neural network have been assessed by experimental studies.

Mathematical models describing trajectories have been analyzed and

those models which are suitable to describe a motion have been selected for

the study.

The neural network topologies namely PCA( Principle Component

Analysis), RBF( Radial Bases Function), MLP (Multilayer Perceptron),

Jordan/Elman and Recurrent Networks have been tested for fast and

accurate prediction of motion parameter. The outstanding neural network

topologies in these experiments have been selected to be used in the study.

The factors affecting the performance of predictions have been worked

out and following results have been obtained:

• Provided with high performance hardware, estimation of complex trajectories

via neural networks is possible



• Recurrent networks can make good predictions for smooth curves after

reasonably short training period.

• Although the convergence of Jordan/Elman networks is slower, it has been

observed this network shows better performance with time series

displaying fast fluctuations.

• Overtraining of neural networks decreases prediction accuracy. However,

the number of iteration at which learning has to be stopped varies from

one time series type to another.

• The larger the size of neural networks the greater the number of iterations

required to obtain predictions with a predefined accuracy.

• The resolution of measurements has significant effect on precIsIon of

estimations. For this reason motion measurement systems has to operate to

keep up with frequency of measurement requirements ( resolution)

The sequences of difference of motion parameters constitute fairly

complicated time series. As the complexity increases it becomes more

difficult to identify the dynamics of system producing the time series. For most

of the time series, equally spaced signal amplitudes does not provide deep

insight to a neural network model about the dynamics of the process. It is

known that if neural networks are provided with frequency information of a

signal, then their identification capability increases. However, presenting only

frequency information obtained by Fourier-like transformations are not

effective due to the lack of information about frequency localization. Based

on these facts a new training scheme should be developed such that both

time and frequency information can be presented to the network.

Transformations that are providing both type of information are Short-Term

Fourier Transformation, Gabor Transformation, Wavelet Transformation, etc.

The most feasible transformation should be selected and training should be

performed in complex number domain.



Another strategy to improve the accuracy of predictions may be cross

validation of predictions. For instance, the prediction value for acceleration

can be used to calculate the predicted value of velocity by numerical

integration methods. Moreover, predictions for position should be used to

calculate the predicted velocity by numerical differentiation. The value obtained

from different predictors should be combined to obtain estimations with

higher precision.

Another point in the prediction problem is including all the variables

that has affect on the evolution of the system The mechanism briefly explained
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