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ABSTRACT

The two most well known and recently developed methods in cryptanalysis of
DES and DES-like symmetric block ciphers are differential and linear cryptanalysis.
But these cryptanalytic attacks need to be improved due to the computational
performance and storage capacity problems. On the other hand, genetic algorithms can
be a good solution in cases where the optimum value or near-optimum solutions are
sought in complex systems or for non-linear problems. This is a valid situation for the
cryptanalysis case where DES and DES-like ciphers are non-linear in structure making
differential and linear cryptanalysis a complex system with a very large search
landscape and extreme amount of conditional and probabilistic candidates for the key

being sought.

In this study, a new and promising method with better performance is to be
developed for differential / linear cryptanalysis of DES and similar symmetric
cryptosystems exploiting genetic algorithms’ broadened search and optimum finding

capacity.
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DES ve DES benzeri simetrik blok sifrelerin kriptanalizinde yakin zamanda
gelistirilen ve en iyi bilinen iki yontem diferansiyel ve lincer kriptanalizdir. Fakat, buyuk
miktarda yer gereksinimi ve hesaplama performansindaki dusuklukler gibi nedenlerden
otirii bu kriptanalitik saldinlarin gelistirilmesine ihtiyag vardir. Ote yandan genetik
algoritmalanin, optimum degerin veya optimuma yakmsayan ¢ozimlerin arandig
kompleks sistemler ya da lineer olmayan problemler i¢in iyi bir ¢ozum yontemi oldugu
bilinmektedir. Bu durum aym zamanda kriptanaliz uygulamalart igin de soz konusudur,
sovle ki, DES ve DES benzeni sifrelerin lineer olmayan yapilarindan otura lineer ve
diferansiyel kriptanaliz yontemleri kompleks bir sisteme donugmekte, oldukga buyuk
tarama alanlart kapsaminda aranan anahtar igin ¢ok sayida durumsal ve belirli olasilikta
aday degerler bulunmaktadir

Bu g¢aligmada, genetik algoritmalarin arama ve optimum sonucu bulma
gucunden yararlanilarak DES ve benzeri simetrik sifre sistemlerinin diferansiyel / lineer
kriptanalizinde daha basanli ve etkili sonuglar saglayan yeni bir yontem gelistirilmesi

amaqlammsllr.
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Chapter |

INTRODUCTION

1.1 Motivation

In today’ s cryptology, new techniques have been developed and yet being
developed involving cryptanalysis of DES and other symmetric ciphers. All such
methods’ aim is to find out a complete weakness or a big security hole in these
cryptosystems in order to prove that both in theory and practice, these systems are
insecure and must be replaced with entirely different and enhanced models. Differential
and linear cryptanalysis are two effective methods generated for the cryptanalysis of
DES and DES-like ciphers. However, these methods are not very practical and their
performances must be improved in some way or another For instance, it” s proven that
differential cryptanalysis of DES requires at least 2'" chosen plaintexts and 2
computational complexity; linear cryptanalysis of DES needs at least 2" - 2*7 known
plaintexts and equivalent computational complexity. Although these values are proven
to be better than brute-force attacks or other cryptanalytic attacks against DES, they
are still far from providing a feasible computation time as well as being impractical and
bringing storage overhead whenever the plaintext / ciphertext data requirements are in
concern. In order to implement these attacks successfully and break DES in acceptable
time limits, gigantic computing power and storage is required and this platform cannot
be obtained easily. Thus, results with much better performance values and more
realistic requirements are still being awaited reluctantly for the differential and linear

cryptanalysis.

Besides increasing the cracking speed and decreasing the storage consumption,
it” s still argued in common that with the aid of an improved variant of either
differential or linear cryptanalysis, a proof of entire weakness in the design of DES and
similar symmetric block ciphers might be achieved. This is, in fact, the main goal of all
the cryptanalysts involved in breaking DES and similar block ciphers.

On the other hand, genetic algorithms (GA’ s) are well known for their high
performance in searching and optimum-finding capacities, especially in probabilistic
problems, complex systems and in various conditions where good and robust
estimations and predictions are necessary. Especially, whenever the best possible
solution or a set of solution candidates are sought for complex or non-linear problems
while providing high performance within feasible time limits, GA” s are proven to be a
good alternative where all the other alternative methods, algorithms might be proven to
be inefficient, or even might not exist. It’ s also sometimes possible that the optimum
value or the exact solution being searched lies within a very large exploration space
with a lot of possible candidates or pseudo-optimum values which makes the standard
search algorithms such as simulated-annealing, and probabilistic estimation methods
both inefficient and unreliable. In such cases, GA is taken into account as a new
promising alternative. GA’ s sometimes outperform all the other heuristic and
probabilistic methods and artificial intelligence algorithms in problems like best-path,
travelling salesman, minimum cost - maximum throughput or maximum gain, load
balancing, stock market modelling, cost estimations amongst various applications and
so on. Most of these problems resemble the cryptanalysis phenomenon in structure,



where the best solution or a set of best possible solutions are required within the best
seek-time and highest efliciency with the lowest cost. In all types of cryptanalytic
attacks, the exact key or candidate key values or best possible plaintext data are being
sought where no formal solution or direct formulation for the solution of the problem
exists. Even, there are millions or billions of possible values or combinations for the
searched key value and no eflicient probabilistic method is in hand for a strong
symmetric block cipher algorithms such as DES. The differential and linear
cryptanalysis exploits the measurements of probabilities and conditional probabilities of
possible key / subkey values, but the resulting search space is again so large that makes
the implementations usually impractical and ineflicient. This space should be narrowed
significantly and the seek time and storage requirements must be greatly decreased
with enhanced probabilistic methods and search algorithms which. GA’ s seem to be
the one of the best choices. Thus, implementing a new model with genetic algorithms
for the cryptanalytic searches and embedding it into the differential / linear
cryptanalysis, the performance and efliciency of these cryptanalytic methods might be

improved

In fact this is a new idea that has never been tried or no similar study has been
done before, at least at the time of writing this thesis, it has been first brought up and
recommended by my advisor, Asst. Prof. Ahmet KOLTUKSUZ, Ph. 1., Genetic
algorithms were used only in a few applications among cryptanalysis, such as breaking
a Rotor Cipher or simple substitution ciphers. Yet, no search has been done involving
cryptanalysis of DES or similar symmetric block ciphers with GA as well as
implementing GA in differential / linear cryptanalysis Lven constructing a hypothetical
model for the GA usage in differential / linear cryptanalysis will be a study that has
never been carried out before If any of the existent ones can be used or a new GA
model can be derived and applied to the cryptanalysis of symmetric block ciphers. this
will probably open new extensions in cryptanalytic applications. The nature of the
problem faced in differential and linear cryptanalysis seems more or less related to the
GA-based approaches. However. the problem is very hard to implement with a suitable
GA model, and applying this to the standard cryptanalytic algorithms and hence
deriving any successful or unsuccessful results is noticeably difficult. But against all
odds, dealing with a difficult cryptological problem from a very different point of view
and trying to bring new visions to both GA and cryptanalysis has been a strong
motivation and desire for me to work on this subject.

1.2 Genetic Algorithms & Dilferential / Linear Cryptanalysis

Genetic Algorithm, (GA) is an alternative and competitive method in software
technology to the neural networks and various artificial intelligence (Al) algorithms, or
as some do say so, an Al variant It derives its roots from the fundamental theorems
and models of biology, genetics and genetic engineering. The implementations of these
models, facts and functions to the computer algorithms / sofiware has founded a new

cra.

GA’ s are especially proven to be useful in solving problems where
straightforward software mechanisms, linear algorithms, any kind of formulations or
any direct solution to the problem via computers are impossible or too ineflicient. For
example, no mathematical formulation or lincar algorithm is found for the load



balancing problem in networks, but GA” s, as well as neural networks, can be applied
to the system and can enable the solution of this problem accurately and reliably. The
only problem with GA’ s is that_ a suitable GA model cannot be driven for some types
of non-linear or complex problems In addition, it" s very diflicult sometimes to
establish an efficient GA model or implementation for some of the search and
optimum-finding problems. For the algorithm designer, this is the most important and
the hardest fact that must be dealt with. Another fact is that since GA’ s are usually
changeable due to the problem they are applied, no or very few theoretical
foundations, standards, formal models or basic structures exist. GA’ s are proven to be
much more implementational rather than theoretical, so one cannot deduce which GA
model might be best or more useful for the problem involved, or whether any of the
GA’ s 1s applicable or not until he / she makes trials with each of the alternative GA
models. This trial / error approach may be considerably exhaustive and time-consuming
sometimes and might leave the designer or programmer with unsatisfactory results.

On the other hand, the flexibility of GA both in design and application imposes
a good mark for software engineers. Also, giving the designer great freedom to extend
his GA model without limits and to provide new alternative techniques, models,
functions for any part of a GA, there always exists the hope of a better GA solution

with a leap in performance.

The design, structure and mmplementation of genetic algorithms will be
discussed and analyzed in detail later in Chapter 4, but a simple definition of GA is
included here. The construction of a GA for any problem is as follows; First, the
problem i question must be defined with all its vanables, constants, functions, etc..
where this problem can be any scientific, industrial, application-based, or something
else. Second, all the parameters and portions of the problem must be redefined as a GA
model components, thus the real model of the problem must be mapped into a GA-
system model. Third, the components of the GA model must be chosen among several
alternatives, such as which genotype, phenotype implementation will be used for the
parameters. which methods will be used in selecting, scarching mechanisms, which
probabilistic functions might be exploited, and what kind of fitness [unction shall be
used, etc. If necessary, new mechanisms, new genotype-phenotype models will have to
be derived by the designer. And the last stage is applying this GA model into the
software and making tests until obtaining the suflicient results. Throughout these tests,
any necessary changes are possible in the previously formed GA model, even that the
whole GA implementation for the problem might be redesigned and rebuilt.

Sometimes, early built GA models with implementations in several computer
languages, GA libraries or GA tools might be useful for the solution of the problem.
But if this problem is not similar to the ones in those tools or libraries, then everything
must be developed by the designer or programmer. This was also true for this project
where no toolbox, library or generated applications was available for a GA model
applied to cryptanalysis. It should be noted that even some of the prototypes in GA
libraries such as chromosome and gene representation and selecting mechanisms are
the same with the ones I used, 1 preferred coding and declaring everything by myself

throughout this study.



The cryptanalysis of symmetric block ciphers has been in question since the
invention and usage of DES and similar cryptosystems The common goal is to derive
an attack methodology faster and more efficient than brute-force attack. The two of
these cryptanalytic attacks are differential and linear cryptanalysis which were invented
in the early 90" s and still being used. These attacks are proven to be theoretically
successful whereas found to be impractical and infeasible in application; thus they need

some improvements.

Differential cryptanalysis is a statistical attack method used in cryptanalysis that
can be applied to any iterated mapping. therefore to any symmetric block cipher with
several rounds. This method analyzes the eflect of particular differences in plaintext
pairs on the differences of the resultant ciphertext pairs derived by the symmetric
encryption algorithm. These differences are used to assign probabilities to the possible
keys and to deduce the most probable key This method is usually applied to many
plaintext / ciphertext pairs having the same particular differences under the same initial
encryption key being sought. In other words, differential cryptanalysis looks for pairs
of ciphertexts whose corresponding plaintexts have particular differences and analyzes
the evolution of these differential values while the plaintexts propagate through the
rounds of the iterated cipher algorithm. For DES and DES-like symmetric block
ciphers, the difference is achieved by the XOR operation where the difTerential values
are the resultant fixed XOR outputs of the two randomly or specifically chosen
plaintext pairs. This attack is mostly used with chosen plaintexts even though can be
applied to known plaintexts, because the performance degrades significantly with the

known plaintext usage.

Although the differential cryptanalytic attack was proven to be effective against
some product ciphers like FEAL, REDOC-II, Lucifer, LOKI both in theory and
practice, this technique stll needs some strict improvements against DES and its

enhanced variants.

After the invention of differential cryptanalysis, again in the early 90 s another
cryptanalytic method was generated known as linear cryptanalysis. In the details and
implementation, linear cryptanalysis is proven to be quite different from the differential
one, however, it” s also shown that they are very similar in the structural level. Linear
cryptanalysis can be defined as the attack method which studies the statistical relations
between bits of plaintext / ciphertext pairs and the keys used in their encryption. These
relations thereafter are used to predict the bit values of the key with calculated
probabilities derived from known plaintext / ciphertext pairs Expressing it in another
way, linear cryptanalysis uses linear approximations to describe the action of a
symmetric block cipher. For DES and DES-like ciphers. this method works by XORing
some of the plaintext bits, XORing some of the corresponding ciphertext bits, and then
XORing the outputs of these two, a single bit value will be generated that will be also
the XOR of some of the key bits This is the linear approximation which will have a
calculated probability. Thus, by analyzing these probabilities, strong guesses can be
made about the key bits. This method requires known plaintext and their
corresponding ciphertext data rather than chosen plaintext that” s necessary for

differential cryptanalysis.




Linear cryptanalysis is proven to be performing better than differential
cryptanalysis against DES and similar symmetric block ciphers. However, this attack is
successful only in theory and yet needs improvements and enhancements to make it
practical and efficient in real life

It should be noted that differential and lnear cryptanalysis will be dealt in more
detail and more technically with mathematical notations, formulations, etc. in Chapter

3.

Both differential and linear cryptanalysis make use of statistical data,
probabilistic measures and require eflicient search algorithms and better estimators in
comparisons and selections. The search speed of both methods must be increased, the
exploration space for the key value must be narrowed while improving the differential
analysis and strengthening the linear approximations. These might be achieved by
embedding special-purpose genetic algorithms with some special fitness and selection
functions, estimators, etc. into the differential and linear cryptanalysis schemes.

1.3 Scope and Structure

This study aims to give a brief perspective of, structure, properties and
cryptanalysis of symmetric block ciphers (taking DES as the base model), differential
and linear cryptanalysis, genetic algorithms as well as discussing how genetic algorithm
techniques could be embedded into cryptanalytic attacks or how genetic algorithms
might be implemented for the usage of cryptanalysis. The applications and
implementations in this study are limited to a case study of a simple block cipher’ s
cryptanalysis and the usage of genetic algorithms (GA” s) in that case. This is due to
the shortcomings in the proposed project, lack of necessary equipment, data, hardware,
time problems, etc. which made the observation or tests on diflerential or linear
cryptanalysis of DES or a similar complex cipher and the genetic algorithmic
approaches to these attacks, impractical and inapplicable. Therefore, the analyzes
involved in differential / linear cryptanalysis with GA™ s and hypothetical models
related with this concept, assumptions and possible outcomes of such models are
submitted from a theoretical standpoint in this thesis. Implementations, tests, and
results providing any precise conclusions with the approval or disapproval of, genetic
algorithms™ usage in differential / linear cryptanalytic attacks against DES and DES-

like ciphers is far beyond the scope of this study.
The structure of this thesis is as follows.

In Chapter 1, a brief introduction is made where the reasons and the urge for
achieving this study are mentioned, an introduction to the concepts related with this
study including the basic terms is given. What™ s included in this project and yet, what
are beyond this project are explained shortly

A brief introduction and analysis of cryptanalysis is made in Chapter 2. The
general concepts and terms in cryptology as well as cryptanalysis are focused on. Then,
a detailed analysis of symmetric block ciphers is made where DES is taken as the
pivotal model. The design, theory, implementation, measured security performances
and cryptanalytic attacks achieved so far against DES are all explained in several



sections of Chapter 2 so as to give a brief information to the readers about symmetric
cryptosystems and their cryptanalysis.

Chapter 3 introduces differential and linear cryptanalysis. The basic concepts,
mathematical foundations, the design and basic structure, the algorithms and methods
are given. Both these cryptanalytic methods are explained in detail with their
theoretical and practical aspects. Several examples of differential and linear
cryptanalytic attacks are given with sample case studies previously attained among
various symmetric block ciphers, mainly focusing on DES.

In Chapter 4, genetic algorithms are introduced. The nature of genetic
algorithms, their basic structure, components, models are explained briefly both in
theory and practice with examples. The application areas of genetic algorithms are
given at the end of the chapter.

In Chapter 5, previous studies that have been achieved so far concerning
cryptanalysis of cryptosystems with genetic algorithms are given in the first section.
Then, the proposed model for differential / linear cryptanalysis using genetic
algorithms, that was expected to be used in this study, is given. The difficulties,
drawbacks and infeasibilities making this model impractical and inapplicable are
explained with reasons as well as recommendations for the similar future studies.

Chapter 6 deals with a simple case study that has been carried out. The
definition of the model, its implementation and application to several versions of a
simple symmetric block cipher that is designed and used, are all explained. The results
derived aftermath and the consequences of this test are included in the Results &

Discussion section.

Chapter 7 1s a general conclusion involving diflerential / linear cryptanalysis
with genetic algorithms, the model proposed in Chapter 5 and the results achieved in
Chapter 0. The necessary remarks, advices and assumptions are made for the future

studies

Some mathematical models, functions, algebraic concepts and formulations
related with cryptology and cryptanalysis can be found in Appendix A.

In Appendix B, a sample study of the avalanche-efTect of 56-bit DES in ECB
mode is given which I achieved during the analysis of DES.



Chapter 2
CRYPTANALYSIS

2.1 Introduction to Cryptanalysis

Cryptanalysis is the science of recovering the plaintext of a message without
l . . . -~ . .
access to the key " Also cryptanalysis deals with all kinds of methodologies, techniques
that aim:

* to achieve the key(s) used in any kind of encryption,

* to get or infer the algorithm used in encryption-decryption,
to deduce the meaning of ciphertext messages,

to find weaknesses in encryption algorithms.’

In any kind of secure system the basic purpose is to encrypt a message or data
(that’ s referred as plaintext) into a secret form (known as ciphertext) so that no one
but the authorized or aimed receiver could get it and read it correctly after a decryption
process. In a more terminological sense, the practice of using encryption to conceal
text’, henceforth the achievement of hidden writing is defined as cryptography. There
are various topics in cryptography but the most common and essential points are; the
encryption / decryption algorithm, kind of the cipher used, and the key(s) used (if
necessary) whilst encryption / decryption

The person involved i cryptanalysis is called as cryptanalyst. Thus a
cryptanalyst™ s aim is to break the cipher, to retrieve information from hidden messages
or data, and to achieve the key used in the cryptosystem within acceptable time limits,
money and energy costs. In fact, a cryptanalyst is an interceptor. he or she can be any
legal person as a scientist or researcher, but on the other hand, a cryptanalyst can be an
unauthorized and illegal person filled with criminal or immoral desires. A cryptanalyst
can use any kind of theoretical, mathematical, heuristic, randomized, etc. methods and
strategies whenever necessary, he / she should exploit from any tool, aid, method, data
on behalf of himself / herself in order to achieve a successful cryptanalytic attack. The
strategies used vary according to the structures of encryption schemes and the
availability and the nature of the information

It must be stressed that the language used in cryptography, the algorithm or the
cipher used in encryption, the type, size of the key used in encryption (or whether it” s
a keyless system), the amount of available ciphertext or plaintext / ciphertext paired
data, the syntactic and semantic pre-knowledge about data, etc. are very essential
points and guiding light for a cryptanalyst. Since cryptography blends several area of
mathematics: number theory, complexity theory, information theory, probability
theory, abstract algebra and formal analysis', a cryptanalyst should be good at all these

" Bruce Schneier. Applied Cryptography - Second Iidition, p. 5.

* Charles P Pfleeger. Security in Computing. pp. 24-25

Yibid. p. 24

*Bruce Schncicr. “Why Cryptography is harder than it looks™. CounterPlanc Systems, Technical
Report. p 4. 1997,



and also should have a good knowledge of advanced statistics, calculus, computer
sciences, linguistic sciences, social sciences. It should also be noted that there are
several important issues which assures a cryptanalysis’ success. These are:

* Achievement of some acceptable amount or all of the key, plaintext, or the
encipherment algorithm reliably and exactly,
e Fulfilment of the money, time, and effort by the value of the data or information

retrieved,
e Retrieval of data within a time limit that doesn’ t exceed the useful time of the data

or information

2.2 Cryptanalytic Attack Types

An attempted cryptanalysis is called an attack ® There are various kinds of
cryptanalytic attacks and most of these attacks all rely on the assumption that the
cryptanalyst has complete knowledge of the encryption algorithm used * Some of the
cryptanalytic attacks are listed as below which the first five are the most well known
ones and they are listed in order of cryptanalytic effectiveness from the weakest to the

strongest:

¢ Brute-force attack: This is the most difficult case for a cryptanalyst where he or
she has only the ciphertext. and no information is available for the plaintext or the
key. even any guesses for the encryption algorithm, data, key is hard to make. The
attack method relies on chance where all the possible keys are tried until the
successtul guess is made. Thus the search time is very long and the methodology is
very weak, resulting with NP complexity. For example, for a cipher with a key of &
bit length, 2 * or 2 %" trials are required to recover the messages or to find out the
key itsell. Sometimes, brute-force attack is referred as a special case of known-
plaintext attack” where a few or yet a single plaintext / ciphertext pair is used during
the trial of each key value.

o Ciphertext-only attack:*-" The cryptanalyst has the ciphertext of several messages
and also might have a-priori knowledge about the key structure or the encryption
system. The cryptanalyst tries to retrieve the plaintext of the messages or aims to
get the key(s) used in the encryption so as to decrypt the messages encrypted with
the same key(s). This can be abbreviated as below (where P; stands for any plaintext
message, C; is for ciphertext, k is the key used in encryption and decryption, Ly
denotes the encryption process or algorithm, and Dy is for decryption, conversely.),

Given: Cy = Ex(Py), C2 = Ex(Py), .., Ca = Ex(P,)
Recover: Either Py, P,, | Py, or k, or an algorithm to
get Po from C,. ) = Ex(Pn1)

*Bruce Schneier, Applied Cryptography - Second Ldition. p. 5
Sibid, p. 5.

“ibid, p. 152.

Yibid, pp 5-6

* Charles P. Pliceger. Security in Computing. p. 69.
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Known-plaintext attack:'"’-"" Not only the ciphertext, but also its related plaintext
form of several messages are all available to the cryptanalyst. The purpose in this
type of attack is to get or deduce the key(s) used in encryption, or an algorithm to
decrypt any new messages encrypted with the same key(s) with the aid of these
plaintext / ciphertext pairs in hand. This attack type is especially useful in
cryptanalysis of symmetric cryptosystems like FEAL, DES, etc. and is more
effective in linear cryptanalysis of such ciphers.

Given: Py, Cy = Ex(Py). P>, C, = Ex(P,). . P,. C, = Ex(P,)
Recover: Either k, or an algorithm to get P,y from C,.y = Ex(Pyy)

Chosen-plaintext attack:">-"* This is a similar but more advantageous attack
method than the previous one where the cryptanalyst has plaintext / ciphertext of
several messages and also, has the chance of choosing the plaintext that will be
encrypted. Thus, an improved and more powerful analysis of the cryptosystem is
possible by the chance of choosing since the cryptanalyst is able to test the plaintext
/ ciphertext pairs which have special structure enhancing the cryptanalysis. By this
way, cryptanalysis can be focused on the plaintext / ciphertext pairs that could
possibly give more information about the attacked key(s). The purpose is to deduce
the key(s) used in the cryptosystem or an algorithm to decrypt the incoming
messages encrypted with the same key(s) As similar to the previous one, this attack
type is usually applied to cryptanalysis of symmetric cryptosystems but has much
better performance with the usage of diflerential cryptanalysis rather than linear.

Given: Py, Cy = Ex(Py). Py, Co = Ex(): .. Py, Co = Ex(P),
where Py, Py, ..., P, are chosen
Recover: Either k, or an algorithm to get P,y from C,.p = Ey(Pyi)

Adaptive-chosen plaintext attack:'' This is a special case of chosen-plaintext
attack. Again, cryptanalyst has plaintext / ciphertext pairs of several messages, and
has the chance of choosing the plaintexts but this time, he / she can change his / her
choice with respect to the previous encryption results. Thus, in an adaptive manner
more optimized choices on the plaintext blocks can be made where a smaller block
of plaintext (compared to the previous method) can be chosen and the next block
can be selected based on the results of the first block™ s encryption, and so on.
Again, the aim is to recover the key(s) or to decrypt any messages under the same
cryptosystem and with the same key(s).

Given: Py, Cy = Ey(Py), Py is chosen;
P,. C; = Eu(P,), P, 1s chosen after checking Py, Cy;

P, , Ca = Ex(Py), P is chosen after checking Py, Coy o, Py, C

Recover: Either k, or an algorithm to get P,y from C,.y = Ex(P, 1)

1
1
12
13
14

Charles P. Plleeger. Securityv in Computing, p. 69.
Bruce Schnceicr, Applied Cryptography - Second I'dition, p. 0.
Charles P Plleeger. Security in Computing, p. 69

" Bruce Schncier, Applied Cryvptography - Second Fdition, p. 6.

ihid, p. o



o Chosen-ciphertext attack:"" The cryptanalyst has the chance of choosing different
ciphertexts to be decrypted and accessing to the decrypted plaintexts of these. He or
she has (and should have) more knowledge or access to the cryptosystem that’ s
attacked and this is a more powerful attack than the previous ones considering test
time and accuracy. As an example, if the cryptanalyst has access to a tamperproof
box that enables automatic decryption, he / she can make this type of attack
possible The purpose in this attack is to deduce or get the key(s) used in the
cryptosystem. It should be noted that this type of attack is primarily used in
asymmetric cryptosystems with public keys but it” s also sometimes effective in
symmetric algorithms or cryptosystems. It should also be stressed that sometimes
this attack type might fail or cause erroneous results if, in a cryplosystem or
algorithm two or more distinct keys can produce the same ciphertext as a result of
encrypting different plaintexts '® Henceforth, when the cryptanalyst decrypts using
this chosen ciphertext he / she can yield to the wrong plaintext and get a wrong key

in the end.

Given: Cy, Py = Di(C); G, Pr = DUCy); .., €y, P = DR(C,)
Recover: k

o Chosen-key attack:'” In fact, this attack does not claim that the cryptanalyst has
the chance of choosing the keys but rather, it means that the attack is carried out by
the help of some knowledge about the relationship between different keys. By the
way, this attack is also referred as related-key cryptanalysis'® where the differences
between the keys are examined and the cryptanalyst chooses a relationship between
a pair of keys, but does not know the keys themselves This method is especially
effective and successful among DES and DES-like symmetrical ciphers (ie  this
attack can break a modified DES variant using 2'” chosen-key chosen plaintexts or
2" chosen-key known plaintexts.'’) whereas it is considered as being strange,

. M
obscure and not very practical
2.3 Cryptosystems

2.3.1 Definition

Since, throughout this chapter it” s mainly focused on cryptanalysis and its
applications on the most well known ciphers such as DES, before going into further
details a short and simple overview of cryptosystems, the basic terminology and some
basic facts considering cryptosystems are introduced in this section. Cryptosystem can
be defined as a system both for encryption and decryption. More precisely, a
cryptosystem is an algorithm to devise secure information transfer, data hiding, secure
messages, etc., plus all possible plaintexts, ciphertexts and key(s) (if necessary) *' All

" Bruce Schneier. Applied Cryptography - Second Edition. pp. 6-7.
' Charles P. Pfleeger. Security in Computing, p. 70.

" Bruce Schneier. .pplied Cryptography: - Second Idition, p. 7

% ibid, p. 290,

Cibid. p. 290

*ibid, p. 7.

D ibid, p. 4
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of the important aspects (which are explained in the previous sections) considering
security and cryptography are implemented and used in a cryptosystem.

Cryptographic systems or cryptosystems, namely, must provide all three
objectives of information security: confidentiality, integrity, and availability.
Confidentiality simply means concealment of data from unauthorized parties and
assurance of secrecy and hiding of information. Integrity means that data can be
modified only by authorized parties and assurance of impossibility of any kind of
modification otherwise. Availability means that the system still functions efficiently
afler security precautions or measures are in place; also, the assurance of not
preventing authorized parties from accessing data or system objects that they already
have legitimate access.”’-*" In addition, confidentiality and integrity can also be sub-
classified into five groups: confidentiality, user authentication (assurance that any party
is really himself / herself as identified), data origin authentication (assurance of the
source of a message), data integrity, non-repudiation (the receiver of a transaction is
able to demonstrate to a third party that the claimed sender did indeed send the

. 24
transaction)

As far as it” s known, there are two basic types of cryptosystems; Symmetric
and Asymmetric cryptosystems, namely. Sometimes, they can be referred as
algorithms, considering key-based algorithms; Symmetric and Asymmetric (public-key)
algorithms ** Since both of them are implemented with the usage of key(s) and since
the distinction between them lies behind the usage and structure of key(s), thus the
algorithms. sometimes these cryptosystems can be called as algorithims

2.3.2 Symmetric Cryptosystems

In key-based cryptosystems, if the key used for encryption and decryption is the
same then this is called as symmetric cryptosystem. The encryption key can be deduced
from the decryption key or vice versa, and since there’s a single key for both
encryption and decryption process, these systems are also relerred as secret-key,
single-key, one-key algorithms or cryptosystems.” Also since there” s a single key, this
must be in hands of both the sender and the receiver which brings the necessity of,
secure key transfer, agreement protocols for the key usage and transfer, authentication
and proof of key validness, etc.”’-"*-"’ In applications where a limited number of users
exist, symmetric key cryptosystem can be considered feasible. However, in large
networks with a lot of users distributed over a wide area, key distribution becomes a
problem in symmetric cryptosystems.  Each individual in a network should have a
unique and different key to communicate with each other person. To establish this, a
tremendous number of keys must be produced and stored securely For instance, a

“ Certicom Inc . “An Introduction to Information Sccurity . Certicom Whitepaper. p. 2. March 1997,

* Charles P. Pflceger. Security in Computing. pp. 4-6.

* Certicom Inc . “An Introduction to Information Security”. Certicom Whitepaper. p. 3. March 1997
* Bruce Schncicr. Applied Cryptography - Second Idition, p. 4.

“ibid, p. 4

Tibid, pp. 4. 21-31, 47-74, 216-220.

* Aviel D. Rubin. Peter Honeyman, “Formal Methods for the Analyvsis of Authentication Protocols ™.
Technical Report, Center for Information Technology Integration. pp. 1-17, 1993,

# Charles P. Plleeger, Security in Computing, pp. 129-164, 381-385. [
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system with 1000 users would require approximately 500,000 keys to be exchanged
and maintained securely, in addition, exchanging and managing such a large number of

keys is very costly and difficult causing too much overhead, and sometimes might be

impossible at all.*’

However, symmetric cryptosystems require less computational effort and time
than asymmetric cryptosystems considering encryption and decryption. Also, the key
sizes used are comparatively much smaller than asymmetric cryptosystems while
achieving equal levels of security. Symmetric cryptosystems are commonly accepted
and used when speed 1s an important criterion in the security implementation. They are
widely used all around the world and accepted more conventional than asymmetric
cipher models. Symmetric algorithms and cryptosystems are considered more efficient
than asymmetric ones (not thoroughly, but by most of the authoritics and security
experts) and heavily used in applications of encrypting data (computer files, mail,
passwords, credit and bank cards, documents, software, etc.).”

When someone wishes to send a secret message to another user, he / she
encrypts the message with a key K and a symmetric encryption algorithm used with
that key. Then the encrypted secret message or data is sent to the other side. Also, the
receiver has the same key K and the decryption algorithm which enables him / her to
decrypt the message and get the plaintext. Both sides use the same private key K which
must be agreed on and be known to no one but the sender / receiver couple as well as
the cryptographic protocols; and this must be established in a very trusted and secret

manner before each session begins.

Encryption & decryption in a symmetric algorithm is denoted as below and also

shown in Figure 2.1

ncryption: Ey(P) = C
Decryption: Dy(C) =1

[ Encryption

Plaintext _.*.__w.__ﬁ Ciphertext
(o) ——

Decryption

Figure 2.1 Encryption & Decryption in a Symmetric Cryptosystem.

" Certicom Inc . “An Introduction to Information Security”". Certicom Whitepaper. p. 4, March 1997,
" Bruce Schncicr, Applied Cryptography - Second Idition, p. 216,
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In ceneral, symmetric cryptosystems aie divided mto two categories: Block
Ciphers (algorithms) and Stream Ciphers (algorithms) YOI each time a single bit or
byte of a plaintext (sometimes one 32-bit word) "' is processed and encrypted, then this
is referred as stream ciphers In stream ciphers, one character of plaintext is
immediately converted into ciphertext where the conversion or transformation
mechanism depends only on the character (bit or byte), the key, and control
information of the encryption algorithm.**

On the other hand, if a group of characters (bits or bytes) is operated and
encrypted at a time, it is called as block ciphers or block algorithms. The group of bits
or bytes is named as blocks where the block size used in a cryptosystem need not have
any particular relationship with the size of a character.”” It should be noted that the
block size can be of any fixed value in an encryption mechanism, as well as variable-
sized blocks can be used For today™ s computer algorithms, blocks of 64-bit length are
commonly used and considered as conventional and compact enough to be workable;™
but other sizes are also valid

Some symmetric cryptosystems are designed to operate in stream modes,
others in block, but also some algorithms can be accomplished to process in both
modes alternatively as seen in DES (These alternative operation modes will be
explained in section 2.4.2) But it should be stressed that DES and some other well
known symmetric cryptosystems are usually operated in block cipher modes; thus
considering differential and linear cryptanalysis, block algorithms are concerned in this
study. In general, whatever the operation mode of a symmetric cipher, it can be
concluded that the basic theory and implementation is based on substitution /
transposition operations (shifl registers, inverters, etc.), special function operators (ie.
S-Boxes), expansion operators and the key.

Regarding security considerations block ciphers have some advantages over
stream ciphers, block ciphers are more difficult to break than stream ciphers due to
diffusion and they are immune to insertions.’” But on the other hand, they are slower
during encryption when compared to stream ciphers and there’ s the problem of error
propagation. even an error in one bit or byte of a block will affect all the subsequent
characters in that block. Considering stream ciphers, they are faster in encryption than
block modes and there’ s low error propagation; an error in a bit or byte doesn’ t affect
the other bits or bytes due to the immediate detection of error as a result of singularity
in transformation. By contrast, stream ciphers do have some disadvantages; they are
more vulnerable because of low difTusion and they are prone to malicious insertions or
modifications because of the separate encryption of each character™, a case surely not

seen in block ciphers.

* Bruce Schncier, Applied Cryptography - Second Fdition, p. 4.
Wibid, p. 189,

" Charles P Plleeger., Security in Computing, p. 60,

S ibid, p. 61

“Bruce Schncicr. Applied Criptography - Second Idition, p. 4.

Y Charles P Pllecger. Security in Computing, p. 63. e
".f.“ll;d. Pp. 60-61. l ]?”': ‘-.. e



The definition summarizing the basic difference between stream and block
ciphers is given by Rainer Rueppel™ stating that,

Block ciphers operate on data with a fixed transformation on large blocks of
plaintext data; stream ciphers operate with a time-varying fransformation on
individual plaintext digits.

It’ s also accepted that in the real world applications, block ciphers seem to be
more general (more widely accepted and has four different alternative modes) and
stream ciphers yield to be analyzed more easily in mathematical terms. It s usually
accepted and also proven that stream ciphers do have a lower linear complexity, thus
less secure than block ciphers *" Also stream ciphers are vulnerable to correlation
attacks.'' On the other hand, differential and linear cryptanalysis methods are especially
generated for block ciphers and very successful attacks have been made to some of the
block symmetric cryptosystems, but not to all.*” It should be noted that a block
cipher’s vulnerability to cryptanalytic attacks or its strength lies behind the design of
the S-Boxes, diffusion / confusion quality in the functions producing the cipher, key
~ length, existence of weak keys, possession of the group structure.”® Rather than being

theoretical, when applications in real world is considered the basic difference between
stream and block ciphers is concerned to be the nature of the implementation. Due to
- their design and algorithmic structure, block ciphers are easier (o implement in

- software; whereas stream ciphers are considered to be more suitable for hardware
~ implementations. **

There are various types of symmetric ciphers developed early and some of them
'; are still in use today. Most well known ones are DES and variants of DES, FEAL,
- LOKIL, GOST, CAST, FEISTEL, RC4, RC5, Khufu, Khafre, IDEA, SAFER,
- Blowfish, SEAL, REDOC, WAKE **

24 DES

Since this research is involved in cryptanalysis of symmeltric ciphers, and since
- DES is today’ s one of the most well known and commonly used symmetric
eryptosystem which also stands as a basic model for the other symmetric ciphers, it will
“be focused on in more detail throughout this section. This is also necessary due to the
fact that DES was chosen as the target system in most of the linear and differential
“cryptanalytic studies and attacks that have been carried out, thus it would be better for

the readers to have a pre-knowledge about DES before going into further details of
inear / differential cryptanalysis.

d. pp. 346-349.
id, pp. 346-351.
id, p. 211,

8 ibid, pp. 265-351, 397304, (R Yo




2.4.1 Definition & Background

The Data Encryption Standard, namely DES, is a cryptosystem and algorithm
developed for the U.S. government previously and has been in common use all around
the world afterwards. DES has been officially accepted as a cryptographic standard
both in the U.S. and abroad which many hardware and software systems have been
implemented as well as the new and improved versions of the algorithm such as Triple-
DES, Fenced-DES, etc. However, as a controversy its security and reliability has been
questioned so far. Considering several successful cryptanalytic attacks and discovery of
some security flaws; at least the standard 56-bit DES and other old versions are
doubted today and not trusted for the future use **-*’-**

In the late 1960" s IBM began a research project in computer cryptography
which concluded in 1971 with the production of a symmetric block cipher named as
LUCIFER. Meanwhile, because of the great demands and needs, the National Bureau
' of Standards (NBS), which is today known as the National Institute of Standards and
~ Technology (NIST), was trying to construct the standards for encryption systems,
- computer and communication security. In 1973, NBS defined the criteria for such
~ encryption systems and issued a call for a single public encryption algorithm which
- could satisfy all the criteria proposed, which could be tested and publicly certified, and

~ which could become as a standard. The specified criteria were (which are also valid
today) as follows:

» The algorithm must provide a high level of security.

+ It must be completely specified and easy to understand.

o The security of the algorithm must reside in the key, thus the algorithm itself must
provide the security, the security should not depend on the secrecy of the
algorithm like a black box.

s The algorithm must be available to all users

~« It must be adaptable for use in diverse applications.

~ « It must be economical whenever implementation in electronic devices is necessary.

~» It must be efficient to use.

~ « [t must be open to validation

-+ It must be exportable

. Alter the second call from NBS in 1974, IBM started a new project for the
';_'! oposed algorithm which is based on formerly developed Lucifer. Later on, IBM
‘announced the new algorithm named as DEA (Data Encryption Algorithm). After the
negotiations between NBS and IBM, and after some changes, tests and adaptations,
NBS approved the algorithm as a standard and released it for public security usage
renowned as DES. It must be noted that until 1994 DES was only validated and
formally accepted as a standard for hardware and firmware implementations; after that
NIST also validated its software implementations. *-*’

¢ Schneier, Applied Cryptography - Second Idition, pp. 265-270).

les P. Plleeger, Security in Computing, p. 106,

Biham. Adi Shamir, Differential Cryvptanalvsis of the Data Fncrvption Standard, pp. 1-3. 7-9.
Schneier, Applied Cryptography - Second Fdition, pp. 265-270.

es P Pllecger. Security in Computing, pp. 106-107.
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2.4.2 Algorithm and Basic Structure

DES is a symmetric block cipher and algorithm which is based on the
combination of the two most fundamental and typical methods of encryption:
substitution and permutation (transposition). The algorithm gets its strength from
repeated application of these two techniques as a total of 16 cycles (rounds) and the
usage of a 64-bit key which is decomposed into subkeys through each of these cycles
so that during each cycle, encryption is achieved with a new key value. Although the
plaintext is encrypted in 64-bit blocks and key length is known to be 64 bits, in fact the
key is 56 bits long where 8 bits are discarded for parity checking. Since DES is
classified as a symmetric cryptosystem, the same algorithm and the same key is used
both in encryption and decryption except some slight differences in the key schedule '
* The substitutions in DES provide confusion by substituting some bit patterns for
others in each block of data. On the other hand, the permutations provide diffusion by
reordering the bits. Thus, the plaintext is operated on a substitution and then a
transposition through each round in an iterative manner which results with an
encrypted 64-bit block after 16 rounds It must be mentioned here that confusion
means output bits (ciphertext) have no obvious relationship to the input bits (plaintext),
no or very little correlation should be observed between them. Diflusion means any
change in a single bit of plaintext should affect many parts or bits of the ciphertext, in
other words, diffusion is the characteristic of distributing the information from single
plaintext letters over the entire output.™

The encryption process in DES algorithm is done as follows The first 64-bit
portion of the plaintext is taken as input and each time, the next 64-bit block is
processed for encryption until the end of plaintext is reached If the last block of
plaintext falls behind the 64-bit length, the algorithm pads the empty block with the
key. Also, the 64-bit key chosen previously is shortened to 56 bits by dropping the 8",
16" 24" 64™ An initial permutation (1P) is applied on the 64-bit plaintext and then
this block is divided into a left half and a right half, each 32 bits in length. Then some
mixed operations named as function f is applied on the right and left halves
interchangeably for each of the 16 rounds where the data is combined with the key.
After the 16" cycle, the right and left halves are joined and a final permutation which is
known as inverse of the initial permutation (IP"') is applied. This is the last stage of the
algorithm where the same processes are executed for each of the 64-bit plaintext
blocks *'-** The whole DES encryption process is also demonstrated in the Figure 2.2.

In each of the 16 rounds, the key bits are shifled and then 48 bits are selected
from 56 bits. Then these shifted bits are permuted by a simple permutation operation.
The right half of the data is expanded from 32 to 48 bits by a special operation known
as expansion operation. These 48 bits of data is XORed ( denoted by @ ) with the
shifted and permuted choice of 48-bit key. The output is processed through eight S-
Boxes and 32 new bits are produced. These 32 bits are finally permuted with a P-Box.
These four operations compose the function /. The output from P-Box is XORed with

" Charles P. Pfleeger, Security in Computing, p. 107.

* Bruce Schneier, Applied Cryptography - Second Idition, p. 270.
¥ Charles P Plleeger. Security in Computing. pp. 64-66. 109.

" Bruce Schncicr, Applied Cryptography - Second Fdition, p. 270.
% Charles P. Pflecger. Security in Computing, p. 109
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% Bruce Schneicr, Applied Cryptography - Second Edition, p. 271,
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~the left half which makes the new right half input for the next round where the old right
- half becomes the new left right for the next round All of these operations can also be

~ analyzed from Figure 2.3. This operation is repeated 16 times which makes up the 16-
~ round standard DES.*7-%*-%

Afer the 16" cycle, the left and right halves are combined together and
- processed through the inverse initial permutation to produce the 64-bit cipher block. It
~ should be noted that the left and right halves are not exchanged after the 16" round as

- seen in the previous 15 rounds, instead the concatenated left and right blocks are
~ directly input to the final permutation 1P %

1 The operation performed in each round can also be denoted as below, where K
-~ is abbreviated for the 48-bit key in round 7, 7, and R, are the left and right halves of

' round i, /.., and R, are the left and right halves from the previous round and fis the
-~ function executed in each cycle;

L =R,
R=1,®f(R,K)

The initial permutation 1P transposes the input block by changing the positions
ofthe bits which is shown in Table 2 1. For instance, afier the initial permutation the
58 bit mmes to the bit position I, bit 34 moves to position 4, bit 7 moves to 64, etc.
Similarly, 1P does just the same operation inversely in order to get back the bits to
their initial positions. The initial permutation and corresponding final permutation do
not affect DES’ s security, even these operations are ignored in cryptanalytic attacks
since they do not have any cryptanalytic significance.”’ Most people suggest that their
primary purpose is to make it less complex and less difficult to load plaintext and
ciphertext data into a DES chip in byte-sized pieces.*’

As previously mentioned, the initial DES key is first reduced from 64 to 56 bits
gnoring every eighth bit so as to use as parity bit. While discarding these bits, the
ositions of the key bits are also interchanged and this operation is named as key
permutation or key transformation which is given in Table 2.2. Afier this process, a
ifferent 48-bit subkey is generated for each of the 16 cycles. In other words, the keys
s used in each round 7 are also called as the subkeys since they are all calculated from
e 56-bit key at the very beginning. After the key scheduling operation, a new subkey
alue is derived for that round.®* This key scheduling operation is composed of two
ocesses, key shifting and compression permutation. First, the 56-bit key is broken up
1o two 28-bit halves. Then, these halves are independently and circularly shifted left
y | or 2 bits, depending on the round. This shilting operation is also given in Table

Schneier, Applied Cryptography - Second F-dition, pp. 110-111

li Biham. Adi Shamir, Differential Cryptanalysis of the Data I'ncryption Standard, pp. 12-14,
5-156.

Schneier. Applied Cryptography - Second Fdition, p. 277.

Biham. Adi Shamir, Differential Cryptanalysis of the Data F'ncryvption Standard, p. 12.
Schneier. Applied Cryptography - Second Idition, p. 271.

i Biham. Adi Shamir, Differential Cryvptanalvsis of the Data Facrvption Standard, p. 12.
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Key
28 bits 28 bits
Shifted Shifted

b Al

28 bits 28 bits

56 bits
Permuted Choice
48 bits
R, Expansion S-box Prbox
Permutation |a( | }af Substitution bf | R,
32 bits 48 bits D’ Chsico Permutation :
32 bits

b
32 bits L,

re 2.3 One Round of DES with 56-bit key *

uld be noted that, in the I'igure 2.3, the compression permutation operation is
noted as 56 bits — Permuted Choice —» 48 bits.

Table 2 1 Initial Permutation.”’

58, 50, 42, 34, 26, 18, 10,

2,60, 52, 44, 36, 28, 20,
62, 54, 46, 38, 30, 22, 14, 6, 64

1,59

5,

9 12
, 56, 48, 40, 32, 24, 16,
57, 49, 41, 33, 25, 17, 9, : 11
61, 53, 45, 37, 29, 21, 13, 15

51, 43, 35, 27, 19,
63, 55, 47, 39, 31, 23,

Table 2.2 Key Permutation.””

57,49, 41,33, 25,17, 9, 1,58, 50, 42, 34, 26, 18,
10, 2,59, 51, 43, 35,27, 19, 11, 3, 60, 52, 44, 36,
63, 55, 47, 39, 31, 23, 15, 7,62, 54, 46, 38, 30, 22,
14, 6,61, 53, 45,37,29, 21, 13, 5, 28,20, 12, 4

Table 2.3 Number of Key Bits shifted in each Round .’

1 1

B iound 12345678910111213141516
- Number of Bits Shifted 1122222212222221

P Plleeger. Security in Computing, p. 111
neier, Applied Cryvptography - Second I<dition. p. 272.
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In each round, after shifting the bits another permutation process is carried out
as the second part of the key transformation. 48 out of the 56 bits are selected and the
permutation operation is processed on these 48 bits named as permuted choice. Since a
subset of bits are selected as well as permuting the order, this is also named as
compression permutation.®® For example; the bit in the position 1 of the shifted key is
selected for position 5 as output, or similarly 56" bit of the shifted key becomes the
40" bit as the permuted choice On the other hand, the bits in positions such as 9, 38,
or 43 of the shifted key are not selected for the 48-bit output. This can also be
analyzed from the Table 2.4 Due to the shifting operation, different subset of key bits,
hence different subkey values used in each of the 16 rounds.

Table 2.4 Compression Permutation (Permuted Choice which selects the Subkeys’ 48
bits out of shifted 56 bits).*”

Key bit position 1 2 34 5 8 7 8 910 11 12 132 14
Selected for position : 524 7 16 6 10 20 18 12 3 1523 1
Key bit position 15 16 1? 18 19 20 21 22 23 24 25 26 27 28
Selected for position | 919 2 = 14 22 11 13 4 1721 8
Key bit position 29 30 31 32 33 34 35 36 37 38 39 40 41 42
| Selected for position | 47 31 27 48 35 41 46 28 39 32 25 44 |
Key bit position 43 44 45 46 47 48 49 50 51 52 53 54 55 56
Selected for position 37 34 43 29 36 38 45 33 26 42 30 40

_ For each round, the right half of the data, R,, is expanded from 32 to 48 bits by
~ an operation known as expansion permutation. Not only the order of the bits are
~ changed in order to perform transformation, but also some chosen bits are repeatedly
-~ used so as to achieve expansion For instance, the 3" bit in coming from the right half
as the input becomes the 4" bit in the output block; the bit in position 1 in the input

block becomes the 2™ and 48" bits in the output. These can be checked from Table
R2s.

Expansion permutation is designed and used in DES for two basic purposes:
st one is to make the right half size equivalent to the key for the XOR operation,
and the second is to provide a longer result that can be compressed later during the
substitution "-"' However, these are technical considerations which have no relation
with security enhancements or cryptographic purposes. But it does have also an aim
for eryptographic improvement By the expansion permutation, one bit is enabled to
affect two substitutions, thus the dependency of the output bits on the input bits
spreads faster This is known as the avalanche eflect which is a desirable property of
any encryption algorithm. DES exhibits this property so that every bit of the ciphertext
end on every bit of the plaintext and the key which provides the condition that a
small change either in the key or the plaintext does produce a great change in the
ciphertext, in other words, high diffusion. Expansion permutation enables the

e Schneier, Applied Cryptography - Second ldition, pp. 272-273.
“harles P. Pflecger, Security in Computing, p. 113

ce Schneter, Applied Cryptography - Second Idition, p. 273,
Charles P. Pflccger, Security in Computing, p. 111.
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5 " 72 : i
avalanche effect to occur very rapidly ™ During this research, some work has been
carried out related with the avalanche effect and it” s given in Appendix B

Table 2.5 Expansion Permutation.”

8,
6, 1
4,2

1
9
7;
5

After the compressed key is XORed with the expanded right half block, the 48-
bit output goes through a substitution operation. All the substitutions in this stage are
carried out by eight substitution boxes, named as S-boxes. In fact, it’ s assumed that
the S-boxes are the core of the DES algorithm, their uniqueness in design, high
confusion performance and their non-linearity give DIES its cryptographic strength and
make DES secure "*-”* The S-boxes operate as follows Each of the eight S-boxes has
a 0-bit input and 4-bit output where each S-box is different from the others. The 48-bit
input block is divided into eight sub-blocks of 6 bits in size. Each of these 6-bit sub-
blocks is input to a separate S-box such that the first sub-block goes to S-box 1, the
second is input to S-box 2, and so on. In other words, the first 6 bits of the 48-bit
block is processed through S-box I, the bits from 7 to 12 is input to S-box 2, etc. After
the substitution operation through S-boxes, each of the eight S-boxes produce an
output of 4 bits, totally making 32 bits. This 32-bit output is then forwarded to the P-
~ Box for permutation. These can also be checked out from Figure 2.4.

The process inside the S-boxes and their structure can be described simply
~ here. Each S-box is a table made up of 4 rows and 16 columns. Each entry in the box is
- a4-bit number ranging from 0 to 15 In Table 2 6, eight S-boxes with all their output
~ entries are given "* Since there are 64 entries in each box, some numbers are used more
~ than once in the S-box. The 6-bit input value give the row and column value of the
_entry for which will be chosen as the 4-bit output value. For example, if the 6 input bits
- 1o an S-box are denoted as b; h> ha by bs bg , then the left-most and right-most bits, b,
~and b respectively, are combined to form a 2-bit number which is used to index the
- tows (0 to 3) in S-box. Similarly, the other four bits in the middle, b, bz by bs are
- combined to form the 4-bit number so as to index the columns ranging from 0 to 15.
~ This can also be described by the following example:

If the input to the S-box 1 is 101110, then this input implies the entry which is
placed in the 2™ row (10) and 7" column (0111), and for S-box 1, this is the value 11
(in decimal). hence the 4-bit output will be 1011

“Bruce Schneier, Applied Cryptography - Second Idition, p. 273.

- Charles P. Pfleeger. Security in Computing. p. 117.
“ihid, p. 115
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Table 2.6 _S-Boxes for DES.

S-Box 1 Column
Row i O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
o:14 4 13 1 2 15 11 8 3 10 6 12 5 9 0 7
1 015 7 414 2 13 1 10 6 12 11 9 5 3 8
29 4 1 14 8 13 & 2411 15 12 9 7% 3 10 5 O
3i15 712 8 2 4 9 1 ¥ 5 11 3 14 10 0 & 13
S-Box 2 Column
Row o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
oi15 1 8 14 6 11 3 4 9 7 13 12 0 5 10
1 313 4 7 15 2 8 14 12 0 1 10 6 9 11 5
2: 014 7 11 10 413 1 5 8 12 6 9 3 12 15
313 8 10 1 3 15 4 2 11 6 7 12 0 5 14 9
S-Box 3 Column
Row o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0i10 0 9 14 6 3 15 5 1 13 12 7 11 4 2 8
1{13 7 0 9 3 4 610 2 8 5 14 12 11 15 1
2:13 6 4 9 8 15 3 0 1 1 212 5 10 14 7
3 110 13 0 6 9 8 7 4 15 14 3 11 5 2 12
S-Box 4 Column
Row o 1 2 3 4 5 6 8 9 10 11 12 13 14 156
T S T R S T S B B S F T B ST
7{13 8 11 5 6 15 0 3 4 7 2 12 1 10 14 9
2:10 6 9 0 12 11 7 13 15 1 3 14 5 2 8 4
3: 315 0 6 10 1 13 8 9 4 5 11 12 7 2 14
S-Box 5 Colunn
Row : 0 1 2 3 4 5 6 7 8 9 10 1112 13 14 15
02712 47177710711 6 8 s T3 U5 1370 14 o
1i14 11 212 4 713 1 5 01510 3 9 8 6
2/ 4 2 1111013 7 815 912 5 6 3 0 14
311 8 12 114 213 615 0 910 4 5 3
S-Box 6 Column
Row i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
o0i12 1 10 15 9 2 6 8 0 13 3 4 14 7 5 M
17:10 15 4 2 7 12 9 5 6 1 13 14 0 11 3 8
2: 9 14 15 5 2 8 12 3 7 0 4 10 1 13 11 6
3: 4 3 212 9 5 15 10 11 14 1 7 6 0 8 13
S-Box 7 Colunn
Row i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
o: 4 11 2 14 15 0 8 13 3 12 9 7 5 10 6 1
1713 0 11 7 4 9 1 10 14 3 5 12 2 15 8 6
2 1 4 11 13 12 3 7 14 10 15 6 8 0 5 9 2
3: 6 11 13 8 1 4 10 7 9 5 0 15 14 2 3 12
S-Box 8 Column
Row o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 13727 s I T1079 T e e 2T
711513 8 10 3 7 412 5 611 014 9 2
2: 711 4 1 91214 2 0 6 10 13 15 3 5 8
3: 2 114 7 410 8131512 9 0 3 5 6 11
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?Figure 24 S-Boxes from S, to Sg where each one operating on 6-bit input blocks and
producing 4-bit output blocks.””-™*

After the S-box substitution, the 32-bit output is processed through a
permutation box known as P-box The operation is also named as straight
utation”” because there’ s no bit discarding or bit expansion as seen in the
previous permutation operations In P-box permutation, each input bit is mapped to an
tput bit position producing a total of 32-bit output from 32 bits of input. For
mple, bit 16 of the input moves to position | in the output, while bit I of the input

k moves to 9™ position in the output block The permutation process inside the P-

X is simply demonstrated in Table 2.7

Table 2.7 P-Box Permutation *

16, 7, 1,29, 12,28, 17, 1,15,23,208, 5,18,31,10,
2,8 4,32,27, 3, 9,19,13,30, 6,22, 11, 4,25

20,2
24,1

As a final operation, the 32-bit output of the P-box is XORed with the left half
initial 64-bit block. The output 64-bit block becomes the new right half for the
round where the initial 64-bit right half block is switched to be the new left half
the next round. Thus, the next round begins with these new right and left blocks

arles P Plleeger. Security in Computing. p. 114,
liam Stallings, Network and Internetwork Security - Principles and Practice, p. 47.

ce Schneier. Applied Cryptography - Second Fditnon, p. 275
. p277.
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“where all of these operations are repeated 16 times as the 16 rounds or cycles of DES.
he block exchange can also be observed from the Figure 2.2.

As well as encryption, the decryption in standard DES is achieved in 16 rounds
~and the operations throughout the decryption process are similar to the ones in
tncrypllon but in an inverse manner. This is due to the symmetrical structure of DES
“which enables the same algorithm work both for encryption and decryption and also
_enables the usage of the same key, thus the subkeys *'-** But since, the decryption is
e inverse of encryption, this time the ciphertext 64-bit block is taken as input, and the
initial key is taken as K;; Thus, using K, in the first cycle, and repeating the same
process with key K;s in the second round, K4 in the third, and so on, the similar
processes are iterated for 16 rounds with the same algorithms and operations seen in
cryption. Finally, K, is used in the 16" round and the original 64-bit plaintext block
recovered aftermath. All the functions and the operations are exactly the same with
e ones processed in the encryption except some slight differences such as the key
ift operation. The basic logic while generating each subkey is the same and again
implemented in a circular manner, however this time the shift in each round is made in
righal1 direction and the number of key bits shifted in each round of decryption is as
follows"™;

012222221222222

_ It can also be compared with the shift process during the encryption procedure
which was given in Table 2.3 It should be noted that in the decryption process, the
same initial permutation and its inverse, IP and 1P respectively, are used which were
] '_ used in the encryption algorithm  As seen in the encryption, the left and right 32-

it halves /., and R, are exchanged after each round 7

In order to explain it better and in a simple manner, the decryption process is
ulated as below which can also be considered as the theoretical proof showing
the decryption process is the inverse of the encryption. In fact, this property is
ased on the symmetrical structure of the functions and operations used and the special

ure of XOR operation.

From the 16™ round of encryption it” s known that.

L, =R,
R =1y® (R Ky

Then, by the property of XOR, it can be deduced that,

Ly =R, ®f(R.K;)

uce Schncier, Applied Cryptography - Second Idition, p.277.
harles P. Pfleeger. Security in Computing. p. 116,
d, p. 277,
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» Thus,

Ly=Re®f(1,.K,).

3 So, since ;s , K6 and ;s already in hand, for the beginning of 1" round of
“decryption, 1.;5 and R;5 can be produced easily as well as the subkey K (shifting Ks).
.Hence, in a similar manner, 7,4 and /¢;, can be obtained in the 2" round, and this can
] he iterated for 16 rounds until /., and R, are obtained Thus, after the 1P filter the
plaintext is retrieved. These can be summarized in a generic form for each and every
round as follows, where ; /7-i and i stands for the i" round of decryption

(conversely, j was the /" round of encryption),

~
]

=R @ (1K)
R, =1

1

K, = ()
3 Operation Modes of DES

For the ease of use, and for the security enhancement in applications and
implementations, any one of the four common operation modes 1s used within the DES
orithm. In fact, these four modes of operation are also used in some other block or
eam cipher symmetric encryption algorithms. They are namely, ECB - Electronic
debook Mode, CBC - Cipher Block Chaining Mode, CI'B - Cipher Feedback Mode,
OFB - Output Feedback Mode Among those, ECB and CBC are designed and used
or block ciphers, whereas CFB and OFB are stream cipher modes in nature, but they
can also be adapted and used for block cipher algorithms so as to make those
neryption algorithms process in streams of bits or bytes *'

- Because of its simplicity, ECB is mostly used in ofl-the-shelf commercial
fiware products as well as in the studies throughout this thesis, but it” s not

ommended for highly-confidential purposes since XCB is the most vulnerable mode
) eryptanalytic attacks" and provides the lowest avalanche effect amongst all the
odes. The ANSI banking standards specify ECB and CBC for encryption, CBC and
it CFB for authentication.*® Some security specialists suggest that ECB is only
le for secure transmission and encryption of small amounts of data (ie. a key),
is convenient for block ciphers and secure encryption of long sized data; CFB
uld rather be chosen for authentication and also general-purpose stream-oriented
ta transmission, OFB is best suited for stream-oriented data transmission over noisy
annels such as satellite communication.*’

Besides the four modes used in DES, there are other operation modes for
and block ciphers, such as Counter Mode, Block Chaining Mode, Plaintext

Stallings, Network and Internetwork Security - Principles and Practice, p. 58.
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Block Chaining, Plaintext Feedback Mode, Cipher Block Chaining with checksum,
ete.* These types of modes will not be discussed since they are not involved in this
study, but the four modes applied to DES will be taken into spotlight.

e [Electronic Codebook Mode - ECB

The simplest mode among all the modes is proven to be the electronic
codebook mode where plaintext is divided into 64-bit blocks and is encrypted in 64-bit
blocks at a time where each block of plaintext is encrypted using the same initial key.
Thus, there’ s a unique ciphertext block for each corresponding plaintext block. This is
the easiest mode in implementation and usage both for software and hardware
platforms. Since each block is encrypted independently, there’ s no necessity of
encrypting a file or data linearly or in any definite sequence In other words, during
encryption (and also decryption), no plaintext block is dependent on the previous
plaintext or ciphertext blocks This is especially useful in encrypting random-access
files, databases and in parallel implementations with multiple processors (all the
processors can encrypt or decrypt the blocks of the whole data independent of each
other and without considering the order).*’

. Decryption in ECB is processed in the same way as encryption where each
block of ciphertext decrypted at a time independently using the same key. The
‘ encryption and decryption with DES in ECB mode is shown in Figure 2.5.

It’s stressed that any bit errors in the ciphertext block will cause the
- corresponding plaintext block to be decrypted incorrectly but this is accepted as an
- advantage for ECB mode, since errors in the ciphertext block only affect that
corresponding plaintext block so that the other plaintext blocks can be decrypted
correctly and the rest of the plaintext data can be obtained without errors. However, if
“a bit or some bits are lost o1 added in the ciphertext block, this will cause all the
“succeeding plaintext blocks to be decrypted incorrectly as well as that corresponding
plaintext block™ (ie. if the first bit of the ciphertext is removed as a result of damage,
__fhen since the size of the ciphertext is changed, all the ciphertext / plaintext blocks will
be arranged incorrectly during decryption and all the plaintext data retrieved starting
from the first bit will be wrong). This is considered as a disadvantage for ECB.

As mentioned before, the main disadvantage of ECB is its low diffusion and
ulnerability to some cryptanalytic attacks. Since there’s a unique ciphertext for each
aintext under the same key. a cryptanalyst can generate a codebook with several
laintext / ciphertext pairs. Thus, for the incoming enciypted messages, he / she can
deduce the plaintext block whenever a ciphertext block which also exists in the
codebook is met. With the help of some statistical analyses, all of the original plaintext
lessage can be recovered and if necessary, the key can also be retrieved. Because of
lese shortcomings, ECB is not accepted as a secure method for lengthy messages and
only used for encrypting small amounts of data, eg a key.”’

Bruce Schneier, Applied Cryptography - Second Ldition, pp. 205-208.

ibid. p. 190.

bid. p. 190

Villiam Stallings. Network and Internenvork Security - Principles and Practice, p. 59,
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25 Electronic Codebook Mode *
ipher Block Chaining Mode - CBC

- CBC mode was designed to overcome the security flaws faced in ECB and to
ase the diffusion rate and avalanche effect in the ciphertext data. The basic goal
implement a cryptographic mode that would enable the production of difTerent
ext blocks from the same plaintext block whenever met more than once in the
input. This goal was achieved by using a simple feedback mechanism known
g. The scheme in CBC' can be described simply as follows; each time, the
t block is first XORed with the previous ciphertext block that is stored in a
register and the result is encrypted with the key aflerwards. This is processed
y until the end of input data. Thus, each ciphertext block is not only
on the corresponding plaintext block but also on all of the other previous

blocks.” CBC mode algorithm also works on input data in definite sizes of
ortions.

lings. Network and Internetwork Security - Principles and Practice, p. 59.
ier, Applied Cryptography - Second Fdition, p 193
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Decryption process is also proven to be straightforward where each ciphertext
k is decrypted with the same key used in encryption and the decrypted output is
: XORed with the previous ciphertext block. The result is the corresponding

aintext block for that ciphertext block. Again, for each block’s decryption, the
coming previous ciphertext block is stored in the feedback register (also referred as
forward register for the decryption stage) and the process is carried out
itively in sequence until the last ciphertext block’s decryption. These can also be
plained simply using formulas as below; where (', is the i " ciphertext block, 7, is the

plaintext block, Iy is the encryption process with key K, Dy is the decryption
ess with key K.

for encryption : C, = I, ((', , @D l:)

for decryption - D, () = D (£ (¢, , D 7))

p(c)-c  @r since, D, (£,(/(x)) = f(x)
C,on(c)=¢,0C &P
thus,

P=C D)

_ As the whole scheme looks simple, it” s worth to mention that for the first
lock of plaintext during encryption and for the first ciphertext block during
u ption, a random data block is put into the feedback register since there’ s no
revious ciphertext block in hand. This random data is named as initialization vector,
50 denoted by IV. 1V can be assigned to any random value; since it’ s used to make
ach message unique and to enable the encryption / decryption of the first block using
e feedback register, it has no special meaning or value ' 1V is considered as an initial
rameter value throughout the CBC algorithm. In addition, it” s proven that 1V need
ot have to be kept secret or be protected; it” s referred as a dummy ciphertext block.”
3C mode can also be checked out fiom Figure 2.6.

CBC is accepted as an appropriate mode for encrypting data longer than 64
its, especially proven to be more secure than ECB mode.” The diffusion in the
ohertexts and the avalanche effect is much higher than ECB which is also an
vantage foro?CBC, Another advantage of CBC is its potential usage for
thentication.

~ On the other hand, a single bit error in any plaintext block affects not only that
hertext block but also all the other subsequent ciphertext blocks. But after
cryption, due to the CBC mode’ s structure, only the plaintext block with that
orrect bit will again be recovered with a single bit error while all the other plaintext
ks being retrieved without errors. As a result, it can be concluded that in CBC
le, errors in the plaintext has a significant effect on the ciphertext whereas the

Schneier, Applied Cryptography - Second Edition, p. 194,

A p. 194,

liam Stallings, Network and Internetwork Security - Principles and Practice, p. 59. 61,
d.p 61
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decrypted plaintext will only consist of errors coming from the original plaintext, thus
plaintext errors (if few in amount) doesn’ t cause too much trouble. ”*

Init.  lime =1 Time = 2 Time =N
Vector Py P, Py
'———’T FT CN 1 —'T
G | DES DES ) DES
Encrypt K Encrypt i K Encrypt
‘, l |
G C; Cy
Encryption
¢, G, Cy
, | l
: DES . o| DES ) DES
K Decryvpt K Decrypt fea B Decrypt
Init. ) > Coy ————»
Vector
v
P| p_* p:’*.‘
Decryption

Figure 2.6 Cipher Block Chaining Mode ”

More or less, in CBC the real problem is considered to be the ciphertext errors.
For instance, only a single bit error in any of the ciphertext blocks due to transmission
signal noises or an intentional eavesdropper attack will have a much higher effect and
damage on the recovered plaintext compared to the previous error type. A single bit
error in ciphertext block (', will cause the corresponding plaintext block /2, to be
entirely incorrect plus 1-bit error in the subsequent block 7,., . This can be considered
as a disadvantage for CBC mode, since its structure allows error extension problem
whenever ciphertext errors occur. If, there are single bit errors in each of the ciphertext
blocks, this will end up with a complete garbage of plaintext filled with errors.
However, it must be stressed that the errors in a ciphertext block affects two plaintext
blocks: the corresponding plaintext block and the following one. Thus, the other
plaintext blocks are not affected with the errors in that ciphertext block and can be

" Bruce Schneier. Applied Criptography - Second Edition, p. 195,
* William Stallings, Network and Internetwork Security - Principles and Practice, p. 60,
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recovered correctly. This property is known as self-recovering and it enables the CBC
mode to recover from bit errors quickly. As a conclusion, it” s stated that in CBC

mode, ciphertext errors are more effective and more spreadable than ECB mode, but
error detection is possible '

As seen in the ECB, fabrication in the ciphertext is also troublesome for CBC.
If a single bit is lost or added to any of the ciphertext blocks, then all the subsequent
blocks will be affected and all the corresponding plaintext blocks will be entirely
incorrect. For example, if the first bit is deleted from the first ciphertext block or one
bit is added to the first position of the first ciphertext block, then all of the plaintext
data will be affected and the complete plaintext will be a garbage where almost every
bit of all the plaintext blocks will be wrong. Thus, synchronization problem is a great
overhead and threat to the reliability and usage of CBC mode."""

Due to its structure, CBC mode has some other potential problems which can
be considered as other disadvantages First of all, a cryptanalyst can make changes on a
chosen ciphertext block so that he / she can easily observe the controlled changes in
the corresponding plaintext blocks. Thus, CBC mode is vulnerable to chosen ciphertext
“attacks. Secondly, an intruder can add extra ciphertext blocks to the end of original
ciphertext message and in some cases the receiver might not detect those additional
fraud blocks. Thus, to overcome this problem, some extra precautions must be taken
such as structuring the original plaintext before the encryption process. '

‘s Cipher Feedback Mode - CFB

One of the most well known modes which can be implemented for a block
cipher to work as a self-synchronizing stream cipher is the cipher feedback (CFB)
mode. With the usage of CFB, block encryption algorithms such as DES can process
the data in streams of bits or bytes one at a time rather than fixed sizes of blocks.
Implementation of a block cipher in stream mode is especially needed in secure
network applications and in real-time operations '" (ie, when each character is typed
from a terminal, it must be immediately encrypted and transmitted to the receiver host,
and must be decrypted whenever it” s received with no time or data loss.)

In CFB mode, the length of data encrypted & decrypted at a time unit can be
any length, ranging from 1-bit to j-bits. But, in most ciphers like DES, 8-bit
FB is often chosen because applications require | character transmission at a time
hich is 8 bits in length, thus if more than 8 bits are used during encryption
ansmission capacity would be wasted and if a size less than 8-bit is chosen this would
ing overhead in design and also would result with performance degradation.""

- The operation principle of a j-bit CFB mode working on a 64-bit block cipher
-. be explained here which is also represented in the Figure 2.7 As similar to CBC,
nitialization vector (1V) is used which is 64 bits in length, equivalent to block size.

Bruce Schneier. Applied Cryptography - Second Iidition, p. 196

bid, p. 196,

bid, p. 196

id, p. 200,

filliam Stallings. Network and Internetwork Security - Principles and Practice, p. 61.
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This 1V is loaded into a shift register as an initial operation both during encryption and
decryption. The 1V need not be secret, as in CBC, but the IV must be a unique value
- and must be changed within every message. This is an essential requirement for CFB
mode (this was not necessary in CBC mode), because unless the 1V is not kept unique
~ for each message, the cryptanalyst will have a chance to recover the plaintext."” The
-~ lefi-most / bits of the 1V is encrypted with the key K and this result is XORed with the
Mirst / bits of the plaintext message. The output is the first j-bit ciphertext which is also
~input to the shift register for the next round. The shifl register is shifted left j bits and
 this ciphertext output is put to the end of the shift register as the right-most / bits. This
15 in fact, a simple queue mechanism which also changes the value of 1V in the shift
“register before each round. The same encryption process is repeated in an iterative
~manner until the end of plaintext is reached. Each ciphertext bit is dependent on all the

previous ciphertext bits and hence plaintext characters, which was also a valid property
i 107
in CBC mode.

The decryption is very similar to the encryption process. Again, the shift
register is initialized with the same IV value, and the left-most / bits are encrypted with
he key K" and the result is XORed with the first ciphertext bits coming from the first
round of encryption. As a result, the first j bits of the plaintext will be retrieved, and
is repeatedly processed until the last ciphertext unit. Also, for each round, / bits are
ifted left from the left-most part and ; bits of ciphertext from the previous round are
fed to the shift register as the right-most j bits which is exactly the same as in the
neryption stage. It must be stressed that in CFB mode, during decryption the
ption function of the cipher is used instead of the decryption function. This can be
n by a mathematical notation as follows, where for each round /, and for each
P, is the j-bit unit of plaintext and (', is the /-bit unit of ciphertext for i " round, /1,
the left-most j-bit of the initialization vector, A is the key used in the cipher,;

if C=P® l",',_.(!f'a)‘ for encryption

jeén P =C & !-,',L.(H ',), is true for decryption by the transitivity of XOR.

~ The CFB mode could be implemented for any type of block cipher algorithms

well as 64-bit block ciphers like DES. The differences in block size would only
act on the size changes of the 1V

The plaintext errors are also faced as a problem in CFB mode where even a
le bit error in the plaintext aflects the corresponding and all the subsequent
ertext data. However, the error is reversed afler decryption, and only the bit(s)
errors in the plaintext is decrypted with errors while all the subsequent plaintexts

rieved without errors. The plaintext error effects are similar to the ones in CBC
P . . 108
and not considered as an important problem.

ce Schncier. Applied Cryptography - Second I<dition. p. 201
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i Because of the structure of CFB mode, ciphertext errors are accepted as an
~important problem and disadvantage. A single bit error in the ciphertext not only
- causes the corresponding plaintext bit to be recovered incorrectly but also affects a
large part of the subsequent plaintext data Since, that incorrect bit in the ciphertext is
also forwarded into the shift register, it will make the shift register contain a wrong
value and all the subsequent ciphertexts will be produced and decrypted incorrectly
‘until that bit is carried off from the shift register. For instance, in 8-bit CFB mode, a
single bit error causes a total of 9 bytes of plaintext to be decrypted entirely wrong. It
18 proven that for a k-bit block cipher using ;-bit CFB mode, a single bit error affects
he decryption of the current and subsequent X j-/ blocks "

A side-effect of ciphertext error is another problem which is that if an intruder
knows the plaintext message in any transmission, he / she can change bits in a chosen
iertext block so that it could be decrypted to whatever he / she wishes on the

eiving end afterwards. The changes might not be detected and the message could be
iccepted valid by the receiver.

Another disadvantage of CFB mode comes from the structure of self-
ynchronizing stream ciphers. It’ s proven that self-synchronizing stream ciphers are
ulnerable to playback attacks ' If any eavesdropper records some of the ciphertext
its, then he / she can put these data into the new ciphertext streams generated where
e receiver cannot recognize that the data being decrypted is not the new and the
tual one, but instead some older replayed data This technique is known as the
back attack and since CFB mode is a self-synchronizing stream cipher, the
ack attack can be considered as a potential threat for this mode.

One of the significant advantages of CFB mode when compared to ECB and
JC s its resistivity to synchronization problems due to its self-recovering structure.
v bit loss or extra bit addition to the ciphertext will affect only some portion of the
ext but not all the subsequent plaintext data In addition, since CFB is self-
nizing, the errors can be detected and recovered during decryption '

CFB mode is used both for encrypting messages of any length with high level
ecurity and for authentication purposes.'"” CFB mode is mostly preferred in
oriented data transmission of any desired size. Like CBC, CFB mode provides
evel of diffusion among the ciphertext data and high avalanche efTect.

utput Feedback Mode - OFB
“The output feedback mode (OFB) is another method of implementing a block
50 as to work as a synchronous stream cipher and it” s very similar to the CFB
The only difference in the algorithm is that, in OFB the j-hit output of the
plion function is fed back to the right-most positions of the shifit register whereas
| the ciphertext output was to be the feedback for the shifl register '

2 Schneier, Applied Cryptography - Second Fdition, p. 201

p 199

201-202.

Stallings, Network and Internetwork Security - Principles and Practice. p. 62
neier, Applied Cryprography - Second dition, p. 203
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_ As seen in CFB, the decryption is the reverse of encryption algorithm in OFB
mode. Again, for the decryption process, the block encryption mode is used. All the
other mechanisms and processes are just the same as in CFB mode for both encryption
id decryption. This can be deduced from the Figure 2 8 where a j-hit OFB mode is
wn. As in CFB mode, the length of the shift register and j can be of any length, but
r DES and DES-like cryptosystems, the shift register is 64 bits and j is 8 bits in
length for the conventionality and performance considerations.

: It should also be stressed that both OFB and CFB modes allow encryption with
Lvariety of block sizes, the block size can be chosen any length if necessary.'

In OFB mode, there’s a term named as internal feedback and it comes from the
act that, since the selected output of the shift register which is previously encrypted
with key K is fed back into the shift register for the next round, the feedback
mechanism is independent of the plaintext and ciphertext streams ' This property of
DFB mode brings a unique feature which does not exist for CFB; most of the
encryption process can be carried out independently and offline, even before the
aintext is retrieved. Only using the shifl register, the encryption can be processed for
ich and every shift register block; and when the plaintext data is acquired finally, it
n be XORed with the encrypted output from the shift register This is also true for
e decryption algorithm, where the shift register can be pre-processed and encrypted

pendently from the ciphertext blocks, and XORed with the ciphertext streams
erwards.

~ The algorithm for a j-hit OFB can also be described as follows; where for each
und 7, and for each j bits, /7, is the j-bit unit of plaintext and (', is the j-bit unit of
ext for i " round, S, is the state vector or the output of the shifi register, K is the
rused in the cipher:

for encryption: C =P ®S,, where
‘\Il = 1“..‘(('\': I)

for decryption: P = @S, again where
¥ = ’:K(‘S'I |)

~ The §; s for each round are the outputs of shift registers and they are
pendent of plaintexts and ciphertexts

~ In OFB, the initialization vector 1V is used which must be initially loaded into
I register before the first round. For each message. this IV must be a unique
,as seen in CFB, but 1V doesn’ t have to be kept secret in OFB mode.""

Biham. *Cryptanalysis of Multiple Modes of Operation™. Journal of Cryptology. vol.11
er 1. p. 45. 1998

ce Schneier, Applied Cryptography - Second I'dition, p. 203.
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One of the significant advantages of OFB mode is that bit errors that occurred
~ during transmission do not propagate.'" In other words, OFB mode has no error
- extension. Thus, if a single bit error occurs in the ciphertext (', this only causes a
~ single bit error in the corresponding recovered plaintext where the other subsequent
 plaintext units are not corrupted Due to its structure, CFB has the trouble of error

-~ extension and bit errors might propagate; for this reason, in some applications such as
digitized signal, voice, image, video transmissions OFB is preferred "

Also, the internal feedback property of OFB mode can be considered as an
“advantage. especially for some specific applications where offline encryption of the
shift register is necessary or pre-processing of the shift register is required.

It" s also proven that in OFB mode, a chosen plaintext attack does not enable
intruder to gain more information than a known plaintext attack, thus the

performance of chosen plaintext attack is no better than known plaintext attack in
120

However, OFB has some disadvantages. For instance, the synchronization
errors are fatal and OFB mode does not have the self-recovering property for
ynchronization errors. If the shift registers on the encryption and the decryption ends
re not identical, then the recovered plaintext will be a complete garbage. Any
ication implemented with OFB mode must have additional mechanisms for
detecting synchronization loss and for regaining synchronization as well as recovery of

ita. Since CFB is self-recovering by its nature. it” s considered a better algorithm than
JEB when synchronization problem is the case

Another disadvantage of OFB comes from the fact that it” s proven to be more
erable to a message-stream modification attack than CFB."*' Since, a change in a
gle bit in the ciphertext only affects the corresponding plaintext, controlled changes
uld be made to the selected ciphertext / plaintext pairs. This enables an attacker to
Ty out a chosen-ciphertext attack and deduce the encryption key. This also makes it
ssible for the eavesdropper to alter the ciphertext so that it could be decrypted to
atever he / she wishes on the receiving end without being detected by the receiver.

se were also considered as a problem for CIFB mode. but in OFB, it” s proven to be
€ troublesome.

There also exists another security problem whenever OFB mode is used.
ity experts advise that OFB should be used or chosen only when the feedback
s the same as the block size (ie for 64-bit DES. only 64-bit OFB mode must be
) Otherwise, it will hopefully breed security flaws Since OFB mode XORs a

m with the text block, this keystream may repeat after a period of cycles or
. When the feedback size is equivalent to the block size (k-bits), the block cipher

to show the characteristics of a permutation of k-bit values and the average
his 2* - 1. For a 64-bit block, this makes 2°* - 1. which is considerably a big

liam Stallings, Network and Internetwork Security - Principles and Practice, p. 63.
hneier, Applied Cryptography - Second Fdition, p. 204

. “Cryptanalysis of Multiple Modes of Operation”. Journal of Cryptology. vol 11
rl.p 45, 1998,

m Stallings. Network and Internetwork Security - Principles and Practice, pp. 63-64.
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value. But when the feedback size is less than block size &, the average cycle length
~ drops to around 2 ¥'? Thus, for a 64-bit block cipher, this is approximately 2*%, a value
~ not long and big enough.'”’

OFB is mostly useful in applications such as stream-oriented transmission of
- data over noisy channels with a moderate level of security. It” s also proposed that
- OFB mode is designed to act as a pseudorandom bit generator as well as allowing
~ precomputation of a major part of the encryption process.'”

- 2.4.4 Security Strength and Weaknesses of DES

Since its invention and usage, the security of DI:S has been questioned and has
~been a common subject of argument in cryptology until today. Several weaknesses
“have been proven, but no exact proof of a complete weakness or security hole in its
“design has been laid so far. But due to its structure and especially its key length,
security strength of DES is proven to be continually decreasing and it” s shown that
DES is computationally not secure today as it has been in 1970°s and 80’s. This has
brought the necessity of upgrading DES to a higher security level, or producing new

variants of DES, or inventing new alternatives to it. These will be discussed shortly in
section 2.4.5.

2.4.4.1 Security of DES

There has been even no proofl of weakness in its inner structure and design. In
other words, theoretically DES hasn’ t been proven yet to be completely insecure
ere are some known weaknesses in its design but these are not considered to be
threatening or inevitable problems. In fact, there has been some speculations and
guments on the key length, iterations, design of the S-boxes, existence of a probable
rity flaw in the algorithm or basic structure of DES as well as some myths claiming
hat certain trapdoors exist in DES which might have been embedded intentionally by
he designers in IBM or by the NSA experts afterwards.'**-""* Especially, there has
some arguments that NSA made some changes in the design for the establishment
idden trapdoors, even a US Congressional inquiry was made which ended with a

ormal and unclassified report exonerating NSA from any improper involvement in the
ES design '*-'?’

rDesign of the S-boxes and the Algorithm

~ Most of the arguments considering the security of DES was based on the
esign of the S-boxes, because S-boxes are accepted to be the core of DES security.
i non-linearity of S-boxes mostly give the DES its security strength Several
carches and analyses have been carried out and no flaw is revealed so far in the

Bruce Schneier. /pplied Criptography - Second Fdition, p. 205,

i Biham. “Cryptanalysis of Multiple Modes of Operation™. Journal of Cryptology. vol. 11
nber 1. p. 45, 1998,

3ruce Schneier, Applied Cryptography - Second I'dition, p. 278.

Charles P. Pfleeger. Security in Computing, pp. 117,

Jruce Schneier, Applied Cryptography - Second Fdition, p. 278

harles P. Pflceger. Security in Computing, p. 117
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functioning of S-boxes.'”* On the other hand, the design of S-boxes is also analyzed by
several researchers and no precise theoretical weakness is found in the design of S-
- boxes except some oddities and its vulnerability to differential and linear cryptanalytic
attacks'”” which showed that S-boxes and hence DES might be susceptible to such
- cryptanalytic attacks (requiring a great amount of time and storage capacity); but these
“did not impose an exact weakness in the design of S-boxes that could prove DES to be
_entirely insecure. Even today, some argue that there might be several trapdoors in S-

boxes, embedded by NSA. In 1970°s, The Bell Laboratories stated that the S-boxes

- might have trapdoors, but gave no scientific evidence. " Also, The Lexar Corporation’

‘sreport on the S-box analysis was concluded with a remark stating that,

. the problem (of the search for structure in the S-boxes) is complicated by

e ability of the human mind 1o find apparent structure in random data, which is
: 1
really not structure at all.""'

However, in that conclusion, it was also stated that,

Structures have been found in DLS that were undoubtedly inserted (o
strengthen the system against certain types of attack. Structures have also been found
32
that appear to weaken the system. e

In the meantime, NSA released some important information about several
esign criteria in S-boxes; which, in a way, indicates the security burdens of S-boxes
! s 13 '

nd how a secure S-box design should be:

- No S-box is a linear or aflline function of its input, that is, the four output bits
“cannot be expressed as a system of linear equations of the six input bits.

‘Changing one bit in the input of an S-box results in changing at least two output
bits, that is, the S-boxes difluse their information well throughout their outputs

The S-boxes were chosen to minimize the difference between the number of 1’s and
0's when any single input bit is held constant In other words, holding a single bit as

0 or I and changing the bits around it should not lead to disproportionately many
0s or 1's in the output.

It should be noted that, afler the differential cryptanalysis technique was known

eral, IBM published a more detailed and extensive design criteria for S-boxes
P-boxes in 1990” s."*

Besides, some analyzes have shown that the design of S-boxes is crucial for
§ security since some slight changes could easily cause the security of DES to be
kened considerably Indeed. it s proven that the order of the S-boxes or the
" allocations in these boxes aflect the overall security of DES, especially against

arles P. Plleeger. Security in Computing, p. 117.

uce Schncier, Applied Criptography - Second I'dition, p. 285.

Lp 284

,p. 285,

Lp 284

tles P. Plleeger. Security in Computing, p. 117.

ce Schncier. Applied Cryprography - Second Fdinon, pp. 293-294,
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differential cryptanalysis. A related comment was made by Biham and Shamir stating
that

The replacement of the order of the eight DS S-boxes (without changing their
value) also makes DES much weaker: DES with 16 rounds of a particular replaced
“order is breakable in about 2 steps . DIS with random S-boxes is shown to be very
easy to break. Even a minimal change of one entry of one of the DES S-boxes can
make DS easier to break.””

As well as S-boxes, all the other parts of DES algorithm has been analyzed
extensively and no serious flaw has been detected so far."** Some researches aiming
theoretical or mathematical proofs of security flaws in the DES structure such as non-
randomness or direct statistical dependencies were also unsuccessful '’

. Number of Rounds

{ Many analyses have also shown that the number of rounds or iterations being
chosen 16 for DES was proven to be adequate and sufliciently secure. Implementations
with iterations less than 16 rounds were proven to be much less secure against
differential cryptanalysis. "™ Also, it” s proven that increasing the number of rounds to
values greater than 16 do not improve the security strength or increase the diffusion
level, thus 16 is considered to be an optimum number for DES iterations with sufTicient
valanche effect and security."”-""

¥ Algebraic Structure

_ Another critical point in the security of DES is that DES is proven to be not a
goup. The group property of an encryption algorithm can be explained simply as
ollows; the elements of a group are the ciphertext blocks with each possible key where
omposition is the group operation I an algorithm shows a group structure, then
'tiple encryptions under multiple keys should give exactly the same result with
encryption under a single key. Thus, it” s stressed that if an encryption algorithm
orms a group under any combinations of keys, then that algorithm theoretically has a

re weakness in its structure and should not be used It's also proven that even not
aving an exact group structure; if an algorithm is fairly close to being a group, then
at encryption algorithm is poor in design and might yield to security weaknesses.

veral studies and researches were carried out whether DES was having a group
mcture or closed properties, and none were found. Finally in 1992 it was proven that
ES is not a group."*'-'*?

1 ce Schneier. Applied Cryptography - Second Fdition, p. 290,

Charles P. Pflccger. Security in Computing. p. 117

ce Schneier., . Ipplied Cryptography - Second Fdition, p. 285.
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Data Security Inc. “Answers to FAQ About Today's Cryptography™. RSA Laboratories paper.
4.70. 1996
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* Key Length

One of the main objectives related with security strength of DES is the key
~ length, which has always been a question in common Originally, DES key was chosen
~ 1o be 56 bits in length, which became as a standard afterwards. In the 1970 s and early
1980" s 56 bits was computed and accepted as an adequate and sufficiently secure key
length for DES. Since a brute-force attack requires 2°° - 2** computations to deduce
the key, this means testing all the possible key values approximately would take 7.2 *
- 10" sec, or about 228 million years if each key is tested in 100 ms. Even test time per
each key is assumed to be 1 ps, the total search time would take about 2280 years.'"
Considering the computing capacity, hardware / sofiware technology at the 1970” s,
these values were the possible limits with feasible money costs. If, only very high
_expenses were taken into consideration, the total time for exhaustive DES key search
would be reduced to days. For instance, in 1977 Diffie and Hellman suggested that a
specially designed parallel DES-cracking machine with 10° chips could recover the 56-
bit key in 1 day with a cost of $20 million."*-""" In 1981, Diffic updated his
calculations and predicted a time limit of 2 days within a cost of $50 million."*
Regarding these costs, at the 80" s, DES was still accepted strongly secure but the

ecurity experts asserted that by 1990, DES would become totally insecure and the key
length should have been increased

In fact they were right, thanks to both hardware / software advances in
computing technology and new cryptanalytic attack techniques. In 1993 Michael
Wiener designed a machine that could find the 56-bit DES key by brute force attack in

in average of 3.5 hours within a cost of $1 million."""-""* He also reported a design of

IS own that uses a pipeline architecture to break the key at a speed of 50 million keys
er second ' As the years went passing by, things got more realistic and more tragic
0 practice for 56-bit DES. In February 1998, Distributed Net won the RSA’ s DES
hallenge 11-1 by cracking in 41 days, but at a very low expense, where only a
stributed cracking software on a moderate computer and several thousand computers
contribution via Internet were used """ In July 1998, Llectronic I'rontier IFoundation
i) won the RSA” s DES Challenge 11-2 in 56 hours using a specially designed
achine named “DES Cracker™ which cost about $250.000."" In January 19, 1999,
stributed. Net worked together with the /2777 s "Deep Crack," a specially designed
percomputer and a worldwide network of nearly 100,000 PC s on the Internet to
ack 56-bit DES, and won RSA Data Securin’s DES Challenge 111 in a record-
aking 22 hours and 15 minutes."”’ /5/1"s "Deep Crack" and the Distributed Net
lputers” testing capacity was approximately 245 billion keys per second'™, a terrific

':;_.sri tles P. Plleeger. Security in Computing, p. 118,
hid, p. 118,

nice Schncier, . pplied Cryptography - Second Fdition, p. 283
id, p. 283
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~improvement in performance when compared to capacity of 1 million keys per second
] . " 5
'~ in the mid-80” 5"

As well as advances in exhaustive key search attacks, new methodologies in
- cryptanalysis made 56-bit DES security more doubtful. In 1990, Bilham and Shamir
~invented a technique named as differential cryptanalysis, which reduced the 2°
complexity of brute force attack to 2*7. This proved that 56-bit DES was not secure as
it was thought to be in the previous decades, not only in practice in but also in theory.
The only infeasibility with differential cryptanalysis is the storage capacity since this
method requires 2*7 plaintext / ciphertext pairs at least. Similarly, another attack by
* Matsui known as linear cryptanalysis needs 2*' known plaintexts to crack 56-bit DES.
- The storage requirements make these types of attacks impractical at the moment, but
“improvements and some changes will probably decrement these values. Still, some
‘argue that 56-bit key length would be enough for moderate DES security, whereas
‘most of the people believe that 56 bits do imply a weakness rather than a strength and
strongly suggest the use of key lengths much bigger than 56, or new alternatives to

DES.
2.4.4.2 Weaknesses of DES

_ As mentioned in section 2.4 4 1 although there are known weaknesses in DES,
it' s proven that these are not such serious problems that would endanger the

ectiveness and security of the algorithm Only to give an idea, these weaknesses will
be explained shortly in this section.

» Weak Keys

In DES, and in also some other symmetric ciphers, due to the structure of the
neryption algorithm, some of the key values do not change the ascii values of
nerypted blocks, in other words, the encrypted ciphertext block is exactly same of the
laintext block. These key values are named as weak keys '™ Since in DES encryption,
e initial key is split into two halves and each half is independently shifted for each and
very round; if all of the bits of each half is 0 or I as the initial key value, then the key
llue used for each of the 16 round will be exactly the same. Thus, XORing the key
plaintext won’ t make any changes in the ciphertext. There are 4 known weak
eys for 50-bit DES; all 0 s, all 17 s, left half all 1’s and right half all 0’ s, vice versa
ctual initial key values) "*-""" If the key & is chosen as one of these four values, then
cryption in DES can be denoted as follows;

E(F)=C where " wp for all /

nice Schneier, Applied Cryptography - Second Idition, p. 28+,
arles P Pfleeger. Security in Computing, p. 120.

uce Schneier, (Applied Criptography - Second Fdition, p. 280, ‘ [TMIR YOIELN
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* Semi-Weak Keys

The uniqueness of the keys used in encryption algorithms is considered as an
important criterion where each different key value (even a single bit) should produce a
different ciphertext from the same plaintext. But in most of the algorithms, some key
values don’ t satisfy this condition which is also true for DES. In other words, some
-~ key values produce exactly the same ciphertext from the same plaintext when 56-bit
'DES encryption algorithm is used. In cryptology, this phenomenon is named as key

dlustering where the semi-weak keys are key clusters."”* The problem can be denoted
~more mathematically as follows,

for two key values k; and k> where k; # k> .

C, =E (P
;88 0h)

and hence,

. This implies that 4, can decrypt any message encrypted under k> or vice
159 160 oy .+ - 3 - e .

rsa. - This is due to the fact that if the initial key values are chosen semi-weak
then these key values will generate only two diflerent subkeys instead of 16

roughout the 16 iterations."" There are 6 semi-weak key pairs known and any of
lese 12 keys can be avoided during encryption.

In addition to the semi-weak keys, in DES there are 24 pairs ol known possibly
ak keys. In fact, possibly weak keys are very similar to semi-weak keys, but each of
2se possibly weak key produce 4 subkeys thioughout 16 rounds of DEES, each used 4
ies."” These 48 key values can also be checked and avoided when a key is to be

Since all of the weak and semi-weak key values are publicized and known,
ding them while choosing a key will entirely eliminate all possible security
lems and vulnerabilities. However, there are totally 64 weak keys among 2
e key values, and the probability of choosing a weak key is very low (1 /2%);
is is not considered as a serious weakness and it’ s stressed that DES cannot be

as a poor encryption algorithm for this. Because of this extremely low
bility, it’ s also argued that even taking precautions against weak keys and

arles P. Plleeger, Security in Computing, p. 121,
'?‘3’ 120.

e Schneier, Applied Cryptography - Second I<dition, p. 280,
p 280
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checking them should not be bothered, yet the other security experts do not say so.'*-
164

¢ Complement Keys

If a plaintext is encrypted under a key value with the output ciphertext, then the
“complement of this encryption is the complement of plaintext encrypted under the
complementary value of the key resulting with the output ciphertext which is
complement of the previous ciphertext.'**-'*" The complement operation is the bit-wise
1" s complement of the original value, in other words, all the 1’ s in the plaintext, key
~and ciphertext are replaced with 0°s and 0" s with 1" s respectively. This can be
denoted as follows where ~ stands for the complement operation,

E(P)=C
E.(P)=C

This phenomenon occurs in DES and in most of the DES-like symmetric
-_-'.:.. because in each round, the subkeys are XORed with the right half after the
expansion permutation.'”” The problem which the complement keys might cause is that
he computational complexity is halved in cryptanalytic attacks. For instance,
exploiting this property in a chosen-plaintext attack against DES, a cryptanalyst needs
0 test half the possible keys, reducing the test key range from 2° to 2*°'*
The complementary fact is not accepted as a serious problem or threatening
veakness, because most messages during encryption do not have corresponding
omplements. In other words, in a random plaintext message the probability of
ceurrence of a complement block with the normal block is very low and users can be
amed not to use complement keys """

Design Weaknesses

There are also some oddities or negligible weaknesses in the design of DES
thm which are discovered by the designers or some researchers. For instance, it’
ound out that the expansion permutation EP in DES repeats the first and fourth bits
every 4-bit series by crossing the bits from the neighboring 4-bit series. """ This slight
akness is shown to be caused by the structure of the expansion permutation, a weak
int in the algorithm. Similarly, there are some small weaknesses found out in the
ign of S-boxes, such as some chosen different inputs to some S-boxes produce the

0|
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same outputs, or the imbalance in some of the S-boxes” entries. Also it has been found
~out that by changing some of the chosen bits in only three neighboring S-boxes, it’ s
possible to get the same output of a single DES round. The last three output bits of the

fourth S-box can be obtained in the same way as the first by complementing some of
the input bits.'”-'"?

_ These kind of weaknesses are not considered as serious problems or harmful
vulnerabilities for DES security, however, it s proven that some of the design
- weaknesses in S-boxes contribute to the differential and linear cryptanalysis.

24.5 Other DES Models

Due to the technological improvements and new cryptanalysis techniques, new
alternatives to the standard 560-bit DES having enhanced security and much greater
resistivity along with the equivalent efficiency and speed were being searched by the
end of 80" s, and still new products are being developed today. Some of these
alternatives have sought for increased key length while others made slight or significant
hanges to the design and structure of DES.  Another approach has been the

development of new alternative algorithms other than DES. All of these will be
discussed throughout this section

.4.5.1 Multiple DES

One of the common approaches is increasing the key length of 56-bit DES
hile making no or very few changes to the algorithm Using multiple keys and
ultiple encryptions is one of the solutions, since # number of different keys of 56-bit
espond to a key #*56 bits in length, thus an increase in the key size. There are
eral models of multiple DES, double-DES, triple-DIES with two keys, triple-DES
h three keys, 3-PEK which some are proven to be ineflicient and not secure enough

st some are considered moderately good but not accepted as a standard in
imon

Some of these multiple DES models are summarized in this part, but before
g any further, a fact should be noticed It” s stressed by the cryptographers that

¢ building a new improved system } instead of the cryptosystem .\, there are
. . - - 174
common criteria that must be followed. These are

I Keys in Y are significantly longer than keys in .\.

2 Given an appropriate assumption about the security of .Y, }"is evidently
~almost as hard to break as X" under any natural attack such as known-
plaintext, chosen plaintext, etc.

3 It can be convincingly argued that } cannot be broken faster by an
exhaustive key search, and therefore much stronger than .\.

fles P Plleeger. Security in Computing, p. 121
chneicr, Applied Cryvptography - Second Fdition, p. 285,

Damgard and Lars R. Knudsen. “Two-Key Triple Encryption™. Journal of Cryptology.
umber 3. p. 210, 1998,



These are also true for DES. Besides, whenever multiple encryption is the
choice, the two well known theorems are taken into consideration, which are also

followed in the design of multiple DES models. Theotem 1 is provided by Fven and
Goldreich stating that,

A cascade of ciphers is at least as hard to break as any of the component
: : -y o
ciphers in attacks where an attacker cannot make use of plaintext statistics.

Theorem 2, asserted by Maurer and Massey is as lollows,

Under any attack, a cascade of ciphers is at least as hard (o break as the first
176
ipher.

' Double-DES

The simplest choice was double-DES, which was later on proven to be
efficient and far less secure than expected. The basic idea is taking two different 56-
Lkeys K; and K> and applying a double encryption with them which would make up

augmented key length of 2*56 = 112 bits.'”” The encryption and decryption in
uble-DES can be denoted as,

C=1lLy, (l;',\-' (i’)), for encryption
P =D (I),\-2 (¢ )) for decryption

The overall mechanism is more or less proven to be the same as single DES,
only difference is doubling the encryption / decryption operations and using two
al keys instead of one. Initially. double-DEES was thought to be much harder to
ak than 50-bit DES. In general, if 2" attempts were required to break a key of
th n by brute-force attack, then 2" trials would have been required to break the
led key. This would mean 2'"” trials to break double-DES """ But it was
en later by Merkle and Hellman that a meet-in-the-middle-attack™-""'-'* (a
on of known-plaintext attack) could break double-DES in 2" * ' computations
rthan 2", which showed that double-DES was slightly more secure than 56-bit
but far less secure than it was expected Thus, it was proven that double-DES

d be a bad choice for replacing single-DES due to its insuflicient efTiciency and
’ 183 181 185 186
ty, and wasn’ t used aftermath "*'."*'.1#1

1B. Damgard and Lars R. Knudsen. “Two-Key Triple Encryvption™, Journal of Cryptology.
Number 3. p. 211, 1998.
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am Stallings, Network and Internetwork Security - Principles and Practice, p. 64,
Pp. 66

hneier, Applied Cryptography - Second ldition. p. 358.
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Stallings. Network and Internetwork Security - Principles and Practice, p. 66.

Ritter. “2xlIsolated DES: Another Weak Two-Level DES Structure™. Ritter Soltware
ing White Paper, p.2, February 16, 1994

m Stallings, Nenvork and Internetwork Security - Principles and Practice, p. 66.



Triple-DES with Three Keys

Another variant of multiple encryption-based DES is triple-DES with three
independent and different initial keys K, K>, K, each 56 bits in length. The scheme can
be denoted as follows,

C =k, (f-,';\,)_ (l:‘,.-l ( P))) i for encryption

P =Dy, (!),\.Z (“K; (¢ ))) . for decryption

This triple encryption with three diflerent kevs is also referred as DES-EEE3
mode """ There are also other modes of triple-DES with three keys such as DES-EDE3
wde'™, Lilison s triple DES-EEE with Tran() function'”, or triple DES-EEE with
do-random generator"’", etc. DES-EDE3 mode’ s operation can be shown as
WS,

C = Eg, (]J,\.z (lf,'t,..l (!’))) : for encryption

P =Dy, (1".',(z (H,‘ A« )J), for decryption

In fact, DES-EDE3 is very similar to DES-ELEI3 except that for the second
age of encryption with the key K>, decryption is used instead of encryption function,
id encryption with K instead of decryption is used in the second stage of decryption
ocess. DES-EDE3 mode is said to be generated for the sake of compatibility with
andard 56-bit DES; whenever needed, K = K; = K> = K setting can be done in order
use DES-EDE3 as single DES with a key A.'”

In theory, using three different keys would make an effect of 56*3=168-bit key
igth usage. But some analyzes proved that this was not so. It was shown that for n
 of length for each key, a meet-in-the-middle attack would require 2" trials and 2"
cks of memory whereas due to 3n bits of total key size, the initial estimated trials
brute-force attack had to be 2™ | thus the security for triple-DES with three keys
reases to 2'"?, instead of 2'* estimated.'"”-'"-""" To make matters worse, it’ s also

erry Ritter. “The Context of the Fenced DES Design™. Ritter Software Engineering White Paper.
June 30. 1994,

an B. Damgard and Lars R. Knudsen, “Two-Key Triple Encryption™. Journal of Cryptology.

[ Number 3. p. 211, 1998

uce Schneier. Applied Crvptography - Second Fdition, p. 358.

SA Data Security Inc. “Answers to FAQ About Today's Crvptography™. RSA Laboratories paper.
1996,

id. p. 71

;fr's- ography FAQ. Cryptosystems Journal, Internet Document. hitp://ourworld. compuserve.com/
pages/cryvpto/cryfag0s htm. p. 4. 1998

d, p 4.

illip Rogaway. *“The Security of DESX™. RSA Laboratorics” CryptoBytes. vol 2 Number 2. p. 8.

uce Schncier, Applied Cryptography - Second Fdition. p. 360
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- proven that the related-key attack can break a triple encryption with three keys in an
_approximate time of 2", ie, requiring about 2*° - 2”* computations for DES.'**-'"

However, computational resistance of 2'"” is accepted to be sufficiently high
~enough considering enhancement of DES security (much more secure than 56-bit
'DES), thus some advise the usage of triple-DES with three distinctive keys.'”” But
~when related-key attack possibility is taken into consideration, and regarding the
inefficiency and low speed for encryption / decryption. triple-DES with three keys is
not favored and not used in common today.'”-""-""" In fact, it s shown that triple-

DES with three keys is much slower (nearly three times) than 56-bit single DES, both
in hardware and software *"'

¢ Triple-DES with Two Keys

Another variant of multiple DES models is the triple-DES with two keys which
ryption of a plaintext block is iterated three times with two keys. The sequence is:
crypt with the first key, then decrypt with the second key and finally encrypt with
first key again. This is the most commonly used triple-DES with two keys
ithm and it’ s also referred as DES-EDE2.”" There’ s also DES-EEE2. but not

erred for the sake of compatibility with standard DES.*"-"" DES-EDE2 can be
enoted as follows where the two keys are K, and K,

C=E, (“x; (!;',_,I (P))), for encryption

P =Dy (I K ( Dy (€ ))) " for decryption

Triple-DES with two keys use two 56-bit keys which make up totally
6= 112 bits of key length. Thus, in general, if 7 bits of two keys are used, then the

an B. Damgard and Lars R. Knudscn. “Two-Key Triple Encryption™. Journal of Cryptology.
Number 3. p. 212, 1998,
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lower resistivity bound for all the attacks is expected to be 27" computations, in
- consequence. For brute-force attack, this is accepted true and it has also been proven
that differential cryptanalysis is extremely inefficient for DES-EDE2, requiring /0™

~ computations, which is a much greater value than single DES >

However, it has been proven that this model was less secure than it was
‘thought to be. Several variants of meet-in-the-middle attack have been applied to DES-
EDE2 successfully and the keys are broken even faster than exhaustive key search for
DES-EDE2, which is 2”7 **® Merkie and Hellman developed a technique which could

eak DES-EDE2 within 2" computations and 2" blocks of memory (chosen
plaintext/ciphertext pairs).”’-""* Later on, Panl van Qorschot and Michael Wiener
proved these values by a known-plaintext attack, which required 2"’ / p
mputations and p words of memory. In fact, this can be formulated in general as
'™ p time, where n is the key size of each key and m is the block size in bits, and p
the number of known plaintexts. Hence, for DES-EDE2, n-56, m 64 and 2" " " is
2 1t should also be noted that if p > 256, then this attack is computationally faster
an brute-force attack, since 2”7 p - 2'"7 212" The security levels of several
es of multiple encryption methods can be analyzed comparatively from Table 2.8.

Thus, it was proven that triple encryption with two keys was not a good
dlternative in general for single block ciphers such as 56-bit DES. The security
erformance was lower than needed, almost the same as single #-bit key cipher while
ificantly decreasing the encryption / decryption speed Due to these shortcomings,
ES-EDE2 and similar algorithms of triple encryption with two keys are not preferred
nd used as an alternative to single mode ciphers.”"” It should be noted that there are
veral variants of triple-DES algorithms with two and three keys aiming to increase
iency and security of original triple-DES; such as Triple-DES with Inner CBC,
ple-DES with Outer-CBC, Triple-DES with CBCM (CBC with OFB Masking),
A However, these alternative modes are proven to be not efficient enough and
) not impact significant improvements on the security of triple modes, or their
sistivity limits to cryptanalytic attacks haven’ t been tested yet *'*-*'¢
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~* Triple-DES with Minimum Keys

It should be noted that, for all the symmetric block ciphers, this variant is a
subtype of generalized method known as Multiple Encryption with Minimum Keys®"’
that is used for multiple key alternatives. Also, one of the well known types of multiple
encryption with minimum keys where encryption is repeated three times is named as
TEMK (Triple Encryption with Minimum Key)’'* which can also be applied to DES.
And, a different variant of TEMK is known as 3-PEK”". which is implemented for
DES and these two types are also referred as Triple-DES with Minimum Keys.

The general scheme for multiple encryption with minimum keys is described as
ollows,

Given a block cipher ., with key-length 4, the encryption under .Y is
C=FEg(P), withakeyk

and decryption process under cryptosystem X is
P = D (C).

A new cipher } can be devised using a function (; where;

G(K,,K;) =(X,,.X,,4X3)

and this function maps two X-keys to three previous X-keys, where the keys in
onsist of pairs (K;,K) of X-keys. Then the encryption process under 1'is defined as;

f‘:;\';»Kz (P)= !'*.,\'_1 (hl"'? (h“.' ( P))) |

~ where decryption can be achieved by using X,” s in reverse order.”" It’ s proven
for all the types of attacks, } is at least as secure and as hard to break as X.**'

~ TEMK is defined shortly as a method for triple-encryptions with the minimum
of keys, which is achieved by deriving three keys K, K>, K;, from two initial
A and XS, namely,m This can be shown as below where 7, 75 and 75 are initial
1S, or constants with random values which needn’ t have to be kept secret™;

n B. Damgard and Lars R. Knudsen. “Two-Key Triple Encryption™, Journal of Cryptology.
Number 3, p. 213, 1998.

¢ Schneier, Applied Cryptography - Second Fdition, p. 360.

B Damgard and Lars R Knudsen. “Two-Key Triple Encryption™. Journal of Cryptology.
imber 3, p. 215, 1998.
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So far, the best attack against this scheme is proven to be known-plaintext
attack ***

3-PEK is a new method for triple encryption with pseudorandomly expanded
keys similar to TEMK, and 3-PEK is implemented and used for DES.*** The algorithm
- can be simply defined as follows. where the three keys that will be used in encryption
are X;. X5, Y, and the key length for each of the keys is & ., which is 56-bits for DES
and (5 is the mapping function,

G(K,.K,) = (X,.X,, Xy)

and the construction of (;, hence the X" s are achieved by

b f'.';\-l (;r",';‘-2 (” ) ))
x"z & E’\'l (h"'z (” '2 ))
= 1, 3)

It should be noted that /1, © s are three different initial values that can be
“randomly generated with any method .’ Several attacks have been applied to 3-PEK
DES, and it has been proven that this method provides fairly well security with
‘acceptable efTiciency. The resistivity boundaries are shown in Table 2.9 in comparison
with the previous methods The best attack against 3-PEK DES is proven to be
known-plaintext attack with 2 computational complexity and 2** known plaintexts.*”’
s also shown that for DES, 3-PEK don’ t produce any weak keys and related-key
attack is not applicable, like the other triple encryptions with two key variants,**-*%

As a general comment, it can be concluded that all of the triple-DES models
duced so far have some weak or bad points somehow. But on the other hand, the
ncial services industry has developed ANSI X9 52, a standard for triple-DES as an
interim solution.”’-**' But this standard is not related with NIST and do not imply a
general standard approval for the replacement of 560-bit DES.

Bruce Schneier, Applied Cryptography - Second Fdition, p. 360.
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Table 2.8 Comparison of several variants of DIES Multiple Encryption.”"?

' Number of | Number of | Computational Required Type of Attack
| Encryptions Keys Complexity Storage (words
’ of Memory)
I 2" - known plaintext
1 2 B chosen plaintext
I - el chosen plaintext
2 2" - known plaintext
2 - il 2% known plaintext "
2 - g chosen plaintext
2 ks - known plaintext
2 i g% 2 chosen plaintext
2 g 3! 2" known plaintext "
2 - h= chosen plaintext
3 g™ > known plaintext ~
3 i g chosen plaintext

Was a meet-in-the-middle type of known plaintext attack,

this attack was performed by Merkle and Hellman.

!hn attack was per formed by Van Qorschot and Wiener where, for n plaintext
hertext pairs, 2" / n, hence 2" U-lag computations needed; in other words, if nis
oted by 2", then computational complexity is 27" "

Y itwas a meet-in-the-middle tvpe of known plaintext attack.

N lnc ci _pl_le__s,__‘l _ggn_t;[gl_
Key size g Lower bound (all Upper bound (best
attacks) known attack)
k z 2
-KE 2k Unknown 2%
ee-key lriple 3k 3 2"
2k T A

DLS, k ~ 56.
le encryption with minimum key.
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_'2.4.5.2 Different DES Variants

Apart from the multiple encryption models, another alternative approach to the
mprovement of DES has been making some changes in the algorithm design or
implementation as well as the key size. Various models have been proposed which
e have been outdated and rejected while some still being questioned and tested and
e others are being used for special purposes. The variants such as G-DES, DES
with Alternate S-Boxes or Isolated-DES are proven to be insecure or infeasible. For
instance, 2 x Isolated Double DES was proposed as an alternative to 56-bit DES, but it
was proven to be highly susceptible to difTerential cryptanalytic attack, although
proven to be sufficiently secure to other well-known cryptanalytic attacks.”* Another
model, designed by Schaumuller-Bichl was the Generalized DES (G-DES) which was
'::'f?l ing to speed up DES as well as improving its security. But later on, Biham and

tanir proved that G-DES was breakable easily and even less secure than 56-bit DES
1 some occasions. -7

Some of the alternative DES models were proven to be fairly resistive to
cryptanalytic attacks and highly secure as well as promising eflicient
erformances; but still they are not approved as a standard and not accepted as formal

ernatives that would replace DES worldwide Anyway. some of these DES variants
ill be mentioned shortly in the following paragraphs.

DES with Independent Subkeys

An alternative DES variant proposed was DES with Independent Subkeys,
ed on the idea of using different independently generated subkeys for each of the 16
nds of DES instead of generating them from the initial 56-bit key. In other words,
e 48-bit subkeys are used in each round. this would imply the usage of a
'16-768-bit key in total instead of 56 bits Thus, the resistivity of the cipher is

ely strengthened up to 2 ** computations against brute-force attack and to 2™
nst meet-in-the-middle-attack. However, it” s proven that this model is not secure
st linear and differential cryptanalysis as expected. where 2’ chosen plaintexts are
for a successful differential cryptanalysis and 2 known plaintexts are enough
1 linear cryptanalysis. Thus, this variant is not accepted efficient for a good
native model and proven to be slightly more secure than 56-bit DES *7--*"

¥ Ritter. “2xlIsolated DES: Another Weak Two-Level DES Structure”™. Ritter Software
g White Paper, pp. 2-4. Fcbruary 16, 1994,
Schneier, Applied Cryptography - Second I'dition. p. 296.
Security Inc, “Answers to FAQ About Today s Cryptography™. RSA Laboratories paper.
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phy FAQ. Cryptosystems Journal. Internet Document. http://ourworld compuserve.com/
‘plo/cryfaq05. htm, p. 4, 1998



* DESX

DESX is another DES variant developed by 2SA Data Security Inc.”* DESX
algorithm is mostly based on a technique known as whitening which is added to the 56-
bit DES structure. Whitening can be simply defined as a technique which some key
values are XORed with the input to a block algorithm and some other key material is
XORed with the output generated from the block algorithm.”"' The goal in the usage
of whitening is to prevent a cryptanalyst from obtaining plaintext / ciphertext pairs
from the target algorithm where the cryptanalyst is obliged to guess or break at least
one of the whitening keys as well as the algorithm key.”*” Thus, applying this technique
to DES, DESX is derived in consequence where two whitening keys each of 64 bits in

length are used. The 64-bit key that is XORed with the 64-bit plaintext block before
the first round of DES is named as pre-whitening key; and the additional 64-bit key

which is XORed with the 64-bit ciphertext block after the last round of DES is known

as post-whitening key, derived from the computation of a one-way function of the 120-

bit key value (64-bit pre-whitening key plus original 56-bit DES key) ***-***

The algorithm of DESX can also be simply denoted as below, where &, and 4
are the pre and post-whitening keys respectively, K is the 56-bit standard DES key, Fy
~ is DES encryption with key K and /), is DES decryption with key K,

for each plaintext / ciphertext block 7,
C, =k, L, (Ii Dk, ) for encryption
B=k®Dy (( Dk, ) for decryption

It’s proven that DESX is much stronger than DES against brute force attacks
since this attack needs 2'””  n operations with # known plaintexts.”” It should be
noted that in fact, the total key length used in DESX is 641 56+64=184 bits, but since
the pre-whitening key is derived from the other two, cryptographically, the effective
key space is taken as 120 bits in computations.”**->*” In addition to its high resistivity
arious key search attacks, DESX is proven to be improving the security of 56-bit
JES against differential and linear cryptanalysis, where the first attack requires 2%

osen plaintexts and the second one needs 2”” known plaintexts ”**-**"->*" It should be

‘Bruce Schneier, Applied Cryptography - Second I'dition, p. 295.

uce Schneier, Applied Cryptography - Second Fdition, p. 295.
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stressed that these values are exactly equivalent to that of DES with independent
subkeys, but the security of DESX against brute force is also much greater than DES

l with independent subkeys as well as the standard DES. >

However, DESX is not accepted to be a very efficient alternative, since totally
184 bits and three keys are used, but the security strength is not as high as an expected
outcome from that augmented key space. Also, the key size of DESX is claimed to be
inconvenient among various applications.”"* DESX is still not approved as a standard
algorithm and a formal alternative to DES in general, but due to its acceptable
resistivity boundaries, it’ s been in use commercially and in some special applications.
For instance, RSA Data Security Inc. has included DESX in some of its security
toolkits, such as MailSafe electronic mail security program and BSAFE toolkit.”**->**

¢ s"DES

Another DES variant was proposed by a group of Korean researchers led by
Kwangjo Kim and the basic idea was to derive an alternative to DES with optimal
security against both differential and linear cryptanalysis.”>’ The former models such as
s’ and s' were proven to be even worse resistive than 56-bit DES against differential
and linear cryptanalysis respectively. Later on, the upgrades s' and s’ were proposed
and proven to be highly secure against both differential and linear cryptanalysis. Rather

~ than using s" DES alone, mixing it with triple-DES is strongly suggested in order to
- produce a very strong algorithm against all types of cryptanalytic attacks.”

* DES with Key-Dependent S-Boxes

Another DES variant which focuses on the improvements in design and usage
- of S-boxes is DES with key-dependent S-boxes The basic idea in this model is
establishing key-dependent S-boxes and choosing them by a cryptographically strong
‘method. This approach is proven to convert 56-bit DES into a much stronger cipher
‘against both differential and linear cryptanalysis by adding secrecy to S-boxes
themselves as well as keeping their randomly generated structure ”’ (It” s proven that
‘knowing the composition and inner structure of S-boxes enable linear and differential
cryptanalysis.)

It" s proven that the exhaustive search could succeed at least in 2'”
computations to break this variant which makes it much more resistive than 56-bit
DES. The computational complexity for a successful differential cryptanalytic attack to

“'RSA Data Security Inc. “Answers to FAQ About Today's Cryptography™. RSA Laboratories paper.
p 74, 1996,
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this algorithm is calculated as 2" and for a successful linear cryptanalysis, it” s found
out to be 2 *%

Considering the efficiency and feasibility, DES with Key-Dependent S-boxes is
claimed to be favourable among the other variants. Because it can be implemented in
existing hardware with chips having loadable S-boxes and also in software; in addition,
its encryption performance and speed is shown to be no worse than 56-bit DES.*”
However, this model is still not used in common and not approved to be the standard
alternative for 56-bit DES.

- 24.6 F'uture of DES

There are different approaches and comments about whether DES will be in
existence in the future with the enhanced variants or will be completely replaced with
the new algorithms. While some security experts suggest the new alternatives for DES
such as DESX or triple-DES would be a sufficient choice for today and hopefully for
the near future;,”®” others recommend the usage of key-dependent S-boxes with Bikhan’
s construction as a secure DES implementation instead of 56-bit DES *'

Meanwhile, in the recent years, a new alternative solution is being formulated.
This solution is based on the replacement of DES entirely and building a new
symmetric block cipher with larger key sizes and block sizes.”"” The suggestion of
larger block sizes comes from the fact that, in today’ s cryptology it’ s strongly
suggested not only the key length but also the block length of the plaintext / ciphertext
pairs for each round in the encryption algorithm must be increased considerably to
assure high level of security. This proposed idea has been put into a formal shape by
he announcement of NIST in 1997 that an Advanced Encryption Standard (AES) will
¢ developed With this announcement, NIST intends to standardize a new encryption
Igorithm, AES, as a replacement with 56-bit DES %" So far, numerous candidate
igorithms have been proposed to NIST and these are still being tested by an
llernational group of experts. Some of these AES ciphers are, Cast-256, Crypton,
EAL, DFC, LOKI97, Mars, Magenta, RC6, SAFER+, Serpent, TWOFISH.”” The

fthesis’ writing, no AES candidate has been declared formally by NIST as the new
ndard, but researches are continually going on. However, it’ s strongly expected
t the AES process will result with a block cipher strongly resistive to all of the
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known cryptanalytic attacks, will be much more secure than 560-bit DES as well as
roviding feasibility and efficiency with only a slightly lower speed than DES

~In conclusion, it can be stated that 56-bit DES won’ t be used, and probably its
iants won’ t be accepted as the new standard in the future. It” s presumed that an
orithm entirely different from DES, such as an AES model, will be approved as the
v symmetric block cipher standard and shall be served for worldwide use. However,
uld not be forgotten that until that day, DES and its variants will be reluctantly
d forcefully used and still be in existence carrying the dusty crown.

tham. Lars R. Knudsen. “DES. Triple-DES and AES™. RSA Laboratories™ CryptoBytes. vol 4
1 p. 21, 1998,
Kaliski, “Life After DES™. RSA Data Sccurity Inc . Internet Document. http://www.rsa com,
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Chapter 3
DIFFERENTIAL/ LINEAR CRYPTANALYSIS

3.1 Differential Cryptanalysis

3.1.1 Introduction

_ A new method in cryptanalysis of symmetric block ciphers, the differential
~ cryptanalysis was introduced in 1990 by L1i Biham and Adi Shamir. The differential
- eryptanalysis is in fact very complex and based on several mathematical properties
which will be focused on in the following sections. This section will give a short
overview of this attack as an introduction.

Differential cryptanalysis is simply defined as a type of chosen plaintext attack
“on iterative block cipher systems (In fact, this method can be extended to known
plaintexts, but not preferred due to performance considerations.) It” s a method which
“analyzes the effect of particular differences in plaintext pairs on the differences of the
corresponding resultant ciphertext pairs. In other words, differential cryptanalysis
“analyzes the evolution of the difterences of the plaintext input pairs as these pairs
propagate through the rounds of DES (or any iterated block cipher) encrypted under
the same initial key Thereafier, these differences are used to assign probabilities to the
possible key values and to deduce the most probable key which is aimed to be broken
For DES and many other similar symmetric block ciphers, the difference operation is
chosen as XOR which might be another operation for different cipher models The
XOR outcomes of plaintext or ciphertext pairs are the differences of those pairs. By
choosing random plaintext pairs with fixed difference values and using the differences
oming from the resultant ciphertext pairs, different probabilities can be assigned to
arious key values and thus the attack can be carried out. It should be stressed that the
eal values of plaintext and ciphertext pairs are of no importance to the cryptanalyst
ut their difference values must satisfy particular conditions. The intruder only needs to
ve the chosen plaintext pairs in hand which give the required difference values and

roduce necessary ciphertext differences that enable the correct guess for the key
TR

Recalling from Chapter 2, DES and most of the other symmetric block ciphers
¢ based on applying several encryption functions and operations to the plaintext
ocks in an iterated manner for specific number of rounds. Thus, these systems are
0 known as iterated cryptosystems  which are accepted as a family of
yptographically strong functions based on iterating a weaker function » times. Each
ration is called as round and the cryptosystem is called an n-round cryptosystem.
us, the differential cryptanalytic attacks are carried out amongst these iterated
ers exploiting the characteristics of the round functions and operations.* Since
:isa 16-round iterated cipher, it’ s also a type of iterated cryptosystem chosen as

(Biham, Adi Shamir, Di/ferential Cryptanalysis of the Data Encryption Standard, p 11,

uce Schneier, A pplied Cryptography - Second Fditton, pp. 285-286.

(Biham, Adi Shamir, “Differcntial Cryptanalysis of DES-like Cryptosystems”, The Weizmann
ute of Science - Department of Applicd Mathematics, Rescarch Paper, p. 8, 1990,

Biham, Adi Shamir, Differential Criptanalvsis of the Data Fncryvption Standard, p. |
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the fundamental case study for the differential cryptanalysis. In iterated cryptosystems,
the round function is the function of the output coming from the previous round and
hence, the round function in DES is the f function which is explained in detail in
Chapter 2, Section 2.4 2

An important remark about the differential cryptanalysis should be made in
general  The applicability of a differential cryptanalytic attack is determined by
comparing the number of encryptions needed by the attack to the size of the key space
and the size of the plaintext space. If the number of encryptions is larger than the size
of the key space, the expected encryption time of the chosen plaintexts is proven to be
larger than an exhaustive key search. Even worse, it” s also stated that if the number of
encryptions is larger than the possible size of the plaintext space, the attack cannot be
carried out at all’ In other words, it can be proven that an algorithm is resistant to
differential cryptanalysis by showing that the amount of plaintext required to mount
such an attack is greater than the amount of plaintext possible.®

When the applicability and implementations of differential cryptanalysis is in
question, some additional points must be also noticed. First of all, this attack is proven
to be largely theoretical so far. 1t s shown that this attack’ s extremely huge amount of
time and data requirements made it beyond the reach of almost everyone. For instance,
the necessary chosen plaintext data for 16-round DES can be gathered at least in three
- year’ s time, even within an encryption speed of 1.5 megabits per second. Thus, if a
~ cryptanalyst doesn’ t have the complete chosen plaintext set already in hand, then he
~ won’ t be able to deal with any study involving differential cryptanalysis unless he has
- several spare years A second issue is that when the attack is implemented with known
 plaintext data, things seem to get worse The cryptanalyst has to choose among
~millions of plaintext / ciphertext pairs analyzing each and every pair, which brings a
-~ complexity of 2! operations. Collecting that amount of data is an overhead alone,
“besides the analysis and computation overhead. Consequently, the differential
cryptanalysis of 16-round DES with known plaintexts is not better than the brute-force
attack in real life by no means, which makes it insensible to implement such an attack

Before going into details of the differential cryptanalysis, the theoretical basis

of this attack 1s simply formulated and explained in this section so as to give a short
outlook of the model

For each round / of DES, if the chosen plaintext pairs are X and X', then the
difference of these pairs is denoted as,

AX = XOR (X, X')

Similarly, if the corresponding output ciphertext pairs are Y and Y, then the
ence of these are;

AY=XOR (Y. Y)

li Biham, Adi Shamir, Differential Cryptanalysis of the Data Encryption Standard, pp. 30-31.
Bruce Schncicr, Applied Cryptography - Second Fdition, p. 289.
bid, pp. 289-290. e
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Thus, for any round /, analyzing AX and AY for several characteristic values,
the subkey K, for that round is guessed with a calculated probability of p; in other
words, AX may cause AY with a probability of p. For several differences and
characteristics, these probability values are high and hence, the subkey guessed will be
correct with a high probability. The relationship between AX |, AY and K, can be
~ established due to the design of DES and f function. Since the expansion permutation
~ and the P-box are known, the output difference AE from the expansion functions E(X)
can be easily deduced On the other hand, since the permutation operation after S-
- boxes and the output ciphertext difference AY are known, the input to the final
- permutation, thus the output difference value AS,, from S-boxes can also be found out
“easily. Finally, exploiting the properties of XOR operation the input difference to the
- S-boxes (AS)) can be trivially obtained which is exactly equal to the AE, regardless of
the value of K, Using the difference distribution tables for each S-box and checking
out the derived AS, and AS,, values, the most possible K, values can be extracted ®
Knowing the structure of DES round function £, and the properties posed by the very
structure of / provides these deductions which is also simply shown in the Figure 3.1.

Due to the structure of the f function in DES, AE = AS; is a vahid deduction and
‘can be proven mathematically as follows;

Let /2, and /2 be the two expansion permutation outputs, and 5, and .5, , be the
0 inputs for S-boxes derived from the plaintext pair and K, be the subkey for any
round / such that;

Abk=FL, &L, and AN, =5,,05,

Prove that

EDE;, =5, thus, AL =AS,
8
S =E ®K, (a)

with the property of XOR| (a) and (b) can be rewritten as,

K =$,®F,
K‘[- — ns'!‘-! ”) )":2

K, can be discarded by equalizing the duo above and,

SOk =8,,8 L, thus
L Bl =885,

\"—"—; N y
ruce Schneicr. Applied Cryptography - Second Fdition, p. 286.
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So i’ s proven that Al = AS,, for any round of DES regardless of any subkey
value and this is valid for each and every round of DES.

X
AX
1(X) K, (subkey)
AE
s D
'\- -
AS
S - Boxes
ASo
PP - Box
AY
Y

Figure 3.1 Differences throughout the DES round (#) function ”’

The gencralization of the differential cryptanalysis for all the 16 rounds of DES
can be summarized as below,

For each initial plaintext block m, m, is the left half and m;, is the right half for
e first round. For each round, the right 32-bit block is processed through f function
nd XORed with the left half to form the new right half for the next round. Thus, if

ich new block is labelled as m,, the interim data blocks through each round can be
enoted as;

m,, =m,_, D f(m, K,) fori=1,.,16

K, is the 48-bit subkey value for that round. In differential cryptanalysis, the
flerence of two chosen plaintext blocks is used which is Am=m@&m . And
roughout any round of DES, the difference value of interim data blocks is
,=m, ®m’  Thus it can also be shown that,

Schneier. A pplied Cryptography - Second Fdition, p. 286,
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Am, =m, &m,
Am,,; = [m,_, @_}"(ng K, )]@[m:_, ® f (m:,K,. )]
Am,,, = [”‘; L Dm ] ] [f (m, K, )(B g (m: K, )] SO,

i

Am = Am_| @ [_f(ng K, ) ® f(m: K, )]

As a conclusion, it can be stated that, as long as Am;_; and Am; are known with
a high probability, then Am;,; can also be retricved with a high probability. Hence,

- collecting a number of such differences, it is possible to determine the subkey K, for
each round "

Exploiting the structure of S-boxes, the above formulations, the iterative and
- some other special characteristics and the difference distribution tables, the differential

cryptanalysis of DES with reduced rounds and some other block ciphers are achieved
- successfully whereas for 16-round standard DES and some other strong ciphers, some
- necessary additional algorithms and mathematical mechanisms are generated and used.
 These will be explained in detail with examples in the following sections

- 3.1.2 Definitions and The Basic Model

In this section, the basic model of the differential cryptanalysis technique will be
analyzed in more detail within all the necessary terms, theorems, definitions, etc.

Before going into further details of the differential cryptanalysis, it’ d be better
1o revise the fundamentals and the background which this attack is based on. As
mentioned in the previous section, all the differential attacks focus mainly on the
properties of the iterative round function used in the cryptographic algorithm. The f
function of DES takes 32-bit input coming from the right half of the data block and
alter expanding it by the expansion function E(X) to 48 bits, it” s XORed with 48-bit
es, the resultant 32-bit output is permuted by a P(X) operation in the P-box and the
tput is the 32-bit output of the f tunction which is then XORed with the left 32-bit
to form the new right half for the next round of DES. The basic idea in the
erential cryptanalytic attack is to analyze the differential behaviour of this function.

n two plaintexts X and X', the differential of this pair after the expansion function
an be formulated as;

E(X)DE(X )=EXY®YX)

For any data block pairs, the key doesn’ t change the XOR value in the pair,
ue to the property of XOR,;

(vok)o(y ok)=vox

Villiam Stallings, Network and Internetwork Security - Principles and Practice, p. 56.
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Also for the outputs coming from the P-box permutation for each of the data
pair X and X, their difference can be also rewritten as,

PY)Y®P(X)=P(XDX").

In addition, for any round of DES, the outputs of the f function for the initial
pair that will be XORed with their left halves for the next cycle, a linearity exists for
the difference of the pairs such that,

(veNo(x or)=(vex)e(rer)

Therefore it can be concluded that the difference of pairs is invariant in the key
and is linear in the E(X) expansion, P(X) permutation and the XOR operation.''-"
~ This provides an ease of use for the implementation of the attack; because rather than
- processing each of the chosen plaintext pair through separately and then measuring the
differences of those afterwards, their difference value could be directly fed into the
rounds of DES and the results could be delivered in less effort. This also explains the
logic behind the method of differential cryptanalysis and provides its validity.

However, the S-boxes are proven to be non-linear (In fact, they should be,
considering the security of DES, explained in Chapter 2, Section 2.44.1.) Even
knowing the difference value of the pair input to the S-boxes and the output difference
coming from the S-boxes, AS; and AS,, respectively, doesn’t give any knowledge of the
output values of each S, There can be numerous possible input pairs and output pairs
which can produce the same diflerence values for each of the S-boxes But, the
frequency of the possible pairs, hence their probabilities are not uniformly distributed,
hus making good comparisons and analyzing through the values, one can make a good
uess or exactly find out the correct pair."

¢ Difference Distribution Tables

In 56-bit standard DES algorithm, there are 8 S-boxes where each one has
94*64 possible input pairs and each of this pair has an input XOR and corresponding
output XOR. There are 64*16 possible tuples of input and output XORs for each S-
since each S-box gets 6-bit input and produces 4-bit output which makes 2° * 2*
es. Thus, it can be concluded that each tuple results from 4 pairs in average. On the
ther hand, all the tuples do not exist as a result of a pair, and the existing ones do not
uggest a uniform distribution either. This is issued as a very important fact for the

ential cryptanalysis, and the usage of these distribution values and knowing the
ecial properties of each of the S-box is crucial ' In a nutshell, due to the design of
ES, given some input XOR, how many possible pairs could produce a given output
JR can be determined

Eli Biham, Adi Shamir, Differential Cryptanalvsis of the Data Encryption Standard, p. 15,
Alcourt, “Differential Cryptanalysis™, Internet Document, hitp //www execpe.com/~alcourt/
doc.html, 1998

tham, Adi Shamir, “Differential Cryptanalysis of DES-like Cryptosystems™, The Weizmann
litute of Science - Department of Applied Mathematics, Rescarch Paper, p. 12, 1990

li Biham, Adi Shamir, Differential Cryptanalysis of the Data Encryption Standard. p. 16.
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As mentioned in the several previous parts of this chapter, the difference
distribution tables play an important role in the differential cryptanalysis and their
usage is essential. The definition of the difference distribution tables is given below:

A table that shows the distribution of the input XORs and output XORs of all
the possible pairs of an S box is called the difference distribution table of the S box.
In this table each row corresponds to a particular imput XOR, cach column
corresponds to a particular output NXOR and the entries themselves count the number
of possible pairs with such an input XOR and an output XOR."

Since there are eight S-boxes in DES, there are eight difference distribution
tables as well. The difference distribution table of S1 is given in Table 3.1 as an
example. It could be analyzed from this table, for example, given that the input XOR is
0 (the two inputs are identical), a difference distribution table of S1 would show that
there are 64 possible pairs for that input XOR and an output XOR of 0. With the usage
of these distribution tables several theorems, methods and definitions have been
- constructed for differential cryptanalysis.

Considering the input and output XORs for any S-box, AS; and AS, named
previously, a relationship is defined as follows;

Let X and Y be two values representing potential AS; and AS,, respectively. It
-~ can be stated that X may cause Y by the S-box if there is a pair in which AS; equals .\’
“and AS,, equals V' If there’ s such a pair, it could be written X' — Y | and if there’ s no

“such pair it could be stated that X may not cause Y by the S-box and written as .Y />
i }r.lb_l?

In other words, if X may cause Y by the S-box, then in the X/Y location of the
lable, some number greater than 0 should be observed If however, X may not cause Y
‘by the S-box, then 0 should be found in the X/Y location of the difference distribution
table of the S-box. For instance, it could be seen from Table 3.1 that for S1, input
XOR (’, (12 in hexadecimal notation) may not cause output XOR 2, but may cause
output XOR 3, with eight different possible pairs.

It should also be noted that in order to have a useful knowledge, not only the
difference distribution tables but also the numerical values of all possible input pairs for
gach and every S-box’ s input/output XOR entries must be in hand. These are obtained
after collecting many chosen plaintext samples and analyzing them For example,
possible input values for the input XOR S1 = 34, by the output XOR (for all possible
output XOR values that may be caused by that input XOR) are given in Table 3.2.

li Biham, Adi Shamir, Differential Cryptanalysis of the Data Fncryption Standard, p. 16,
‘ibid, p. 18.

Alcourt, “Differential Cryptanalysis™. Internet Document. http://www execpe.com/~alcourt/
esdoc. html, 1998,
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¢ tables 3.1 and 3 2, some useful information is made available
it could be seen from the Table 3.1 that when input

the cryptanalyst. For instance,
OR is 34, there are only 8 possible output

Checking both th

XOR’s, 1y, 2n.3c, 42, 7, 8. Dy s

The total number of possible

and by checking the Table 3.2, all the possible values
erved. For instance, 34, — 3, with possible input pairs

XORs their entries are 0.)

e for the other output
are given in the ea

r those pair

ch entry,

s can be obs

glance,

st

It should be noted these constitute three pairs at f

B2, 15,.21,; 35,364

Eli Biham, Adi Shamir, “Differential Cryptanalysis of DI

'S-like Cryptosystems”, The Weizmann

fitute of Science - Department of Apphed Mathematics, Research Paper, p. 91, 1990
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but their duals are also counted as another pair, but not shown for the sake of
simplicity. Thus, it makes up totally 6 pairs which is equal to the relevant entry in Table
3.1. This duality aspect is necessary since for the same (01,,02,) input values, both
input pairs S1; = 01, ® S1;” = 02, and S1; = 02, ® S1;” = 01, produce ASI; = 34,; but
the values of each input S1 differ in themselves which implies totally two distinct pairs
dual of each other This is important for the cryptanalyst, since a single
(mathematically) pair yields two possible chosen plaintext pairs for the same input
difference

Table 3.2 Possible input values for the input XOR (AS1;) = 34, with all the output

: . . 19
XORs it may cause (values in hexadecimal).

Output XOR

(AS1) Possible Inputs (S1))
/ 03, OF, IE, IF, 2A, 2B, 37, 3B
2 04, 05, 0E, 11, 12, 14, 1A, 1B, 20, 25, 26, 2E, 2F, 30, 31, 3A
3 01,02, 15, 21, 35, 36
4 13,27
7 00, 08, 0D, 17, 18, 1D, 23, 29, 2C, 34, 39, 3C
8 09, 0C, 19, 2D, 38, 3D
D 06. 10, 16, 1C, 22,24, 28 32
I 07, 0A, 0B, 33, 3E, 3F

It could easily be seen from the previous examples and tables 3 1 and 3 2 that
for a fixed input XOR, the possible output XORs do not have a uniform distribution.
Thus the former definition for the relationship of differences can be transformed into a
new definition with a probabilistic property as follows;

It can be said that X may cause Y with probability p by the S-box if for a
fraction p» of the pairs in which AS; equals .Y and AS,, equals ot

For example, 34, > 4, provides only two pairs out of the 64 possible pairs of
S1 with a probability p — 1/32 and similarly 34, > /), posing a probability 1/8 with
eight pairs out of 64,

The distributions, thus the probabilities are proven to be different among the S-
boxes. In total, around 70-80% of the entries are possible ( p # 0 ) ones and the rest
20-30% are impossible entries ( p — 0, thus the entry value itself is 0 in the difference
distribution tables ). The exact percentage of the possible entries is given Table 3 3.

The usage of the distribution tables in differential cryptanalysis can be shown
with the following example

‘Eli Biham. Adi Shamir, //ferential Cryptanalysis of the Data Encryption Standard. p. 19.
ibid, p. 18.
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lable 3 3 Percentage of possible (non-zero) entries for the distribution tables of all the

S-box Percentage
Sl 79.4%
S2 78 6%
S3 79.6%
S4 68.5%
S5 76.5%
S6 80.4%

S7 77.2%
S8 77.1%

Suppose that the expansion outputs for S| of a chosen pair are EI = /, and E1”

. and the output XOR is AS1(, = /), The subkey K~ s 6-bit portion Sy , which is
JRed with the E1 values, is being searched

AEl = 1, ® 35, = 34, and since AEI = AS1,, AS1, = 34,. Since the input XOR
0W in hand, by looking up the row for 34, > /), in the Table 3.2, the eight possible
s for the S1 inputs can be extracted These eight possibilities make eight
ssibilities for the Sy, because Sy = E ® Sy, due to the structure of / function. A new
le can be constructed for all the possible S1y, candidates by XORing either Elor EI°
1each of the S1, value In this new table, each line denotes two pairs with the same
) inputs with the opposite order. Thus, each line leads to two possible key values
king up 8 possible S1y values in total. The correct 6-bit subkey portion is exactly
¢ of these eight values Thus, so far, the cryptanalyst has a 1/8 hit chance of the
ect S1;, value only by a simple analysis and very few initial knowledge. The
Itant table is given in Table 3 4.

.;';.: 3.4 Eight possible key values for 34, —> D, by SI (values in hexadecimal)_;22

Possible Inputs (S1y) Possible Keys (S1g)
06 32 07 33
10 24 1125
16 22 17 23
1C 28 1D 29

~ This example can be extended further with another chosen input pair so as to
ve a narrowed possible key space Suppose that a new input pair is provided with
21, E1" =15, and AS 1, = 3, Again, the input XOR AS1yis 34, and similarly by
ng up the row for 34, —» 3, in the Table 3 2, six possible input pairs for SI and
orresponding six possible key values can be extracted These values are given in
able 3 5. Thus, comparing the two possible key spaces, the correct key candidates
e chosen, which must be the ones that occur in both tables The intersection key

yare /7, and 23, , which the right key is one of these two and the correct key can
essed by a 50% chance.

iham. Adi Shamir, Differential Cryptanalvsis of the Data I'nervption Standard, p. 19,
p 20
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Table 3.5 Six possible key values for 34, > 3, by S1 (values in hexadecimal) *

Possible Inputs (S1)) Possible Keys (S1y)
01 35 20 14
02 36 23517
15 21 34 00

It should be stressed that if a new input pair is used with a different XOR input

value rather than 34, , the exact correct key value can be detected among the possible
~values /7, and 23,

The previous definitions of relationship between input and output XORs and

probabilities can also be extended to a new definition for use with the f function as
follows;

Let X and Y be two values that stand for potential input and output XOR values
of the / function. It can be stated that X may cause Y with probability p by the f
Junction if for a fraction p of all the possible input pairs encrypted by all the possible
subkey values in which the input XOR of the f function equals X, the output XOR
equals V. If p > 0, this possibility is denoted by X > V.7

With the definition above, a theoretical assertion for DES, a lemma namely, is
proposed as;

In DES, if X" — ) with probability p by the / function then every fixed pair P, P’
with P =P ® P* = .Y causes the f function output XOR to be ¥ by the same fraction p
of the possible subkey values **-*

It should be noted that this lemma is not exactly valid for the other iterated

eryptosystems. On the other hand, among most of the other cryptosystems the fraction
s found to be very close to p.*’

The methods discussed and the examples given previously in this section that
ie involved with finding the key bits entering S-boxes can be extended to find the
entire subkey entering the f function This extension can also be defined as a

eneralized basic method for the difterential cryptanalysis of DES which is given in the
teps below,

|, Choose a suitable plaintext XOR, in other words, choose a specific difference
value of any two plaintexts.

2. Create an appropriate number of plaintext pairs with the chosen plaintext XOR,
encrypt them and only keep the resultant ciphertext pairs.

Eli Biham, Adi Shamir, Differential Cryptanalysis of the Data Encryption Standard, p. 20.
id, p. 21.

D21,

urt, “Differential Cryptanalysis”, Internet Document, http://www execpe.com/~alcourt/
html, 1998,

itham, Adi Shamir, Differential Cryvptanalysis of the Data Encryption Standard, p. 21.
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3. For each pair compute the expected output XOR of S-boxes in the last round
from the plaintext XOR and the ciphertext pair as many as possible (It should be
remembered that the input pair of the last round is known because it is part of
the ciphertext pair )

For each possible key value, count the number of pairs that produce the expected
output XOR using this key value in the last round.

The right, and presumably the unique, key value is the key value provided by all
the pairs.”*-*

¢ Characteristics

Until now, it” s mainly focused on the techniques and the basic methodology of
the differential cryptanalysis for any single round However, DES or any other iterated

cryptosystem is constructed within several rounds which brings the necessity of having
the knowledge of the XORs of the plaintext pairs as many rounds as possible without
~ making them zero. This is essential because if the XORs of the pairs are 0, then this
means that both chosen input texts are equal, thus the outputs are equal, which makes
- all the candidate keys with equal probability. As a result, the cryptanalyst is unable to
choose or extract some keys or a single key among the whole key space Because of
this, an additional mechanism is required so as to provide a statistical characteristic of
the cryptosystem which is an extension of the single round analysis *" This mechanism
is named as characteristic and can be simply described as follows;

The related components of an encryption within any input pair are the XOR
value of its two plaintexts, the XOR of its ciphertexts after the last round, the XORs of
the inputs through each round in the two executions and the XORs of the outputs
through each round in the two executions. These XOR values produce an n-round
characteristic. A characteristic has a probability which is the probability that a random

pair with the chosen plaintext XOR has the round and ciphertext XORs specified by
' that characteristic. "

It should be noted that the above informal definition is proposed for DES

ere for a more generalized definition including all the other iterated cryptosystems,
difference can be used instead of the term XOR.

In general, the plaintext XOR of a characteristic is denoted by €, and its
ciphertext XOR by Q. Also, Qp and Q; are expressed in two-tuple variables, where
the left element of the two-tuple of €y stands for the left 32-bit of the plaintext XOR
and the right element represents the right 32-bit half of the plaintext XOR; similarly,
the left element of the two-tuple of €y is for the ciphertext XOR’ s left 32-bit and the
ht element is the ciphertext XOR’ s right 32-bit half. This notation is shown in the
re 3.2 as a simple example for the characteristic. This figure denotes a one-round
acteristic for DES with probability p = 1. In fact, this characteristic given in Figure

" Eli Biham. Adi Shamir, Differential Cryvptanalysis of the Data Encryption Standard, pp. 21-22.
~ Alcourt, “Differential Cryptanalysis™. Internet Document, http://www execpc.com/~alcourt/
oc.html, 1998.

Biham, Adi Shamir, Differential Cryptanalvsis of the Data Encryption Standard, p. 22
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3.2 is proven to be the only and best one-round characteristic with p > ' This

characteristic is proven to be very useful and is also applicable to any other DES-like
- 32

cryptosystem as well as DES.

C Qe = (I,0;) )

;

P = p=1

'
( 0O = (2,0,) )

. # . P " R R 5
Figure 3.2 A one-round characteristic with probability 1 (for any L ).

It can be analyzed from the Figure 3 2 that the right 32-bit plaintext XOR is 0,
“and no matter what the left plaintext XOR (L) is, the right 32-bit ciphertext XOR is
produced as 0, while preserving the left 32-bit ciphertext XOR value as 1. | every time,
regardless of the value of 1. It should be recalled that, in DES, if a right half entering f
function consists of all 0" s, then the output of the function is purely 0 aftermath.

Another simple one-round character in DES with a probability 14/64 1s given in
Figure 3 3. In this one-round characteristic, the input XORs of seven S-boxes are zero,
however the input XOR to S1 is non-zero and its input value is specifically chosen so
to maximize the probability that the input XOR may cause the output XOR. Thus,
nput XOR, denoted by a, is (60 00 00 00), which provides two bits to be 1 as
put 1o S1. By this way, the best probability for S1, 14/64, could be achieved by

assigning an entry with 14 pairs that cause the input of the other seven S-boxes to be
zero. This can be given in a mathematical notation as;

St 00, >k, withp = 14/64
. . .58 00, >0, withp =1

Thus, the probability of this one-round characteristic is 14/64 while producing
e output XOR from the / function as (00 80 82 00), which imposes only 3 non-zero
its for the output. It should be noted that the actual output from the S-boxes is (E0 00
0 00), , but after the P-box permutation, it becomes (00 80 82 00),. And, after
ed with the right half of the input XOR, Q; is derived as L & (00 80 82 00), for
ft half and (60 00 00 00), for the right half Like the previous example, this
aracteristic is true for any value of L, imposing the L -invariant effect again.

i Biham, Adi Shawmir, Differential Cryvptanalysis of the Data Encryption Standard, p. 22

Biham, Adi Shamir, “Iifferential Cryptanalysis of DES-like Cryplosystems”, I he Weizmann
itute of Science - Department of Applied Mathematics, Research Paper, pr 20, 1990,
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C e = (L,60 00 00 00,) )
!

A’ = 00 80 82 00, a’ = 60 00 00 00,
P Fooqe p=14/64
= P(E) 00 00 00,)

D

!

@,. = (L’ & 00 80 82 00,, 60 00 00 UO,D

Figure 3.3 A one-round characteristic with probability 14/64 (for any L) **

Another simple characteristic case is given in the Figure 3 4, but this time a
two-round characteristic with probability 14/64. This two-round characteristic’ s
“probability can be obtained by concatenating the two one-round characteristics, hence
~multiplying their probabilities. As can be seen from the Figure 3.4, the first one-round
characteristic’ s probability p ~ 14/64 and the second one-round characteristic’ s
probability p = 14/64, thus the probability of their compound, two-round characteristic
becomes p = 14/64 * 1 = 14/64 The theoretical aspects lying behind this solution will
be given in the following paragraphs

( Qe =00 80 82 00 60 00 00 00, )
'

t\,l“}ﬁ A" =00 80 82 00, r k a’ = 60 00 00 00, p=14/64
£ p-g ¥ =0
P £ p=1

t
( £ = 60 0000 00 00 00 00 00x )

; igure 3.4 A two-round characteristic with probability 14/64.%

Biham, Adi Shamir. “Differential Cryptanalysis of DES-like Cryptosystems”, The Weizmann
stitute of Science - Department of Applied Mathematics, Rescarch Paper, p. 21, 1990,
ibid, p. 21.
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The exact or the formal definition of a characteristic is stated as below;

An n-round characteristic is a tuple Q= (€Q,,Q, Q) where Q, and Q,
are m-bit numbers and €, is a list of n elements Q, =(A,,A,,..,A,) each of
which is a pair in the form of A, = (X',,X',) where &', and X', are m 2-bit numbers

~and m is the block size of the cryptosystem Then, a characteristic must satisfy the
following criteria*°

%' = the right half of Q,,
A2 =theleft halfof Q, @1},
% the right half of Q,

A" =the left halfof Q, B A

()

and also requiring the condition that:

R ?L';' €3] k*;” for every 1, where 2<i<n-1

In differential cryptanalysis, when dealing with n-round characteristics, there’ s
another term involved, right pair / wrong pair, namely. This can be simply described as;
a plaintext pair that satisties the charactenistic is a referred as a right pair and a
laintext which does not satisfy is named as a wrong pair Thus, a right pair implics the
orrect round key for the last round of that characteristic and a wrong pair suggests a
andom round key.’” A more detailed and formal definition is stated as follows,

A right pair with respect to an n-round characteristic Q =(€Q,.Q,,Q,) and
) independent key K is a pair for which P” = €, and for each round / of the first
ounds of the encryption of the pair using the independent key K, the input XOR of the
‘;g;.round equals &', and the output XOR of the f function equals &', Conversely,

pair which is not a right pair with respect to the characteristic and the
dependent key is called a wrong pair ™

The concatenation of several different characteristics is another key point in the
lerential cryptanalysis, since usually different characteristics need to be concatenated
h each other in order to reach the aimed number of rounds with a proper and useful

racteristic value. The following definition is the formal description of the
catenation;

An n-round characteristic Q' = (Q},,Q\ ,Q}) can be concatenated with an m-
ud characteristic Q? = (Q2, 0% 02) if Q) equals the swapped value of the two

of O} The concatenation of the characteristics Q' and Q° is the

am, Adi Shamir, Differential Cryptanalysis of the Data Encryption Standard, p.
ice Schneier, Applied Cryprography - Second Fdition, p. 287.
Biham. Adi Shamir, Differential Cryptanalysis of the Data Fncryprion Standard, p
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characteristic Q = (Q},, Q0 Q) where Q, is the concatenation of the lists Q' and
2 3
i .

The probability of any characteristic is defined formally as follows;

Round i of characteristic €2 has probability p* if A, — &', with probability
p* by the f function. Similarly, an n-round characteristic Q has probability p** | if p* is
the product of the probabilities of its # rounds. This can be denoted as:

"
v} 0 Q40
p = l-lp’ ;
1=1

This definition 1s also valid for the concatenation of several different
characteristics’ resultant probabilities. Therefore, it can be stated that the probability of
a characteristic €, which is the concatenation of the characteristic Q' with the

il . : =i 1 2 4
characteristic Q| is the product of their associated probabilities: p* = p* * p*° ¥

A theorem has also been provided which also deals with the probability of a
characteristic and it” s as follows;

The formally defined probability of a characteristic Q= (€ ,,€ Q) is the

actual probability that any fixed plaintext pair satisfying P = Qp is a right pair
i . .
when random independent keys are used.”

It should be stressed that for the sake of simplicity and practicality, the
articular probability associated with a characteristic is the probability that a pair (
whose plaintext XOR is equivalent to the characteristic’ s plaintext XOR) is accepted
18 a right pair using a fixed key that” s being searched. However, it” s proven that this
obability is not constant for all the keys whereas it could be assumed that for
andomly chosen key, it” s well approximated by the probability of the characteristic. **

Related with these concepts, some simple examples are given in the figures 3.5
3.6 which denote the concatenation of several characteristics and their
obabilities. For instance, in Figure 3 5, a three-round characteristic is shown with the

2
obability [:}] ~ 0.05 In fact, this characteristic is the concatenation of the
L F

aracteristic given in the Figure 3.4 with the one in Figure 3.3. Since, the probability
the first characteristic (two-round) is 14/64, and the probability of the second one

Biham, Adi Shamiur, Differential Cryptanalysis of the Data Encryvption Standard, p. 24.



(one-round) is 14/64, their concatenated probability for the resultant three-round

4\2
characteristic is the product of these two probabilities, which is ;4—4'2 2 (:’4—4J

C {3 =00 80 8200 6000 00 00« )

!

. A’ =00 80 82 00, a' = 60 00 00 00, p = 14/64

3l
4

K F -

F i Y

O = 2 d =
O =00808200, [ "] ¢ = 60000000, ——

t

( 0, = 00 80 82 00 60 00 00 00, )

2
Figure 3.5 A three-round characteristic with probability [g] s

It can be seen from the Figure 3.5 that when the input plaintext XOR differ in
five bit locations, the output XOR from the / function in the third round differ in three
bits and also, after the third round the ciphertext XOR output is exactly equal to the
plaintext XOR . 1t should be noted that this three-round characteristic with a zero input

XOR in the middle is proven to be having the best probability among all the known
hree-round characteristics. *’

~ Asimilar structure can be constructed for a five-round characteristic where the
iiddle round has 0 input/output XORs with a probability p = 1 and possessing a
mmetry for the rounds around it. This five-round characteristic is shown in Figure
6 where the existence of the structure o' > a’ —> A" within its rounds ensures the
astence of such a five-round characteristic. In fact, this characteristic’s probability is
oven 10 be quite low due to the fact that three S-box inputs must differ in both
unds b' — a’ and a’ — A ', and six bits in the entire five-round characteristic.

li Biham, Adi Shamir, “Differential Cryptanalysis of DES-like Cryptosystems”, The Weizmann
ltute of Science - Department of Applied Mathematics, Research Paper, p. 24, 1990,
i Biham, Adi Shamir, Differential Cryptanalysis of the Data Encryption Standard, p. 26.
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C Qp = (L', R) )

|

- A o =R with some
e o * probability p,

Fa noh

¥=LagA with some
probability py,

p=

P =Pv

M

k1
-

I

F &

Pa

'

C p =Qp = (L', R) )

Figure 3.6 A five-round characteristic.**

Therefore the probability of the five-round is (p'a)l *(p,,)z in general, and
since the best probability for an S-box is %, this limits the five-round characteristic’s

W 6
probability to be equal to or less than ( ;J = JE;;F - However, the best known five-round
47

characteristic achieved so far has probability around F}j:? .
h ]

Besides these known best characteristics, there’ s another type of characteristic
which is proven to be mostly useful for the cryptanalyst, named as iterative
characteristic. It can be simply defined as follows;

- “Eli Biham, Adi Shamir, “Differential Cryptanalysis of DES-like Cryptosystems”. The Weizmann
Institute of Science - Department of Applied Mathematics, Research Paper, p. 25, 1990.
"Eli Biham, Adi Shamir, Differential Crvptanalysis of the Data Fncryvption Standard, p. 27.
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A characteristic 2 = (€2,,,Q,,Q ) is called an iterative characteristic if it can
be concatenated with itself **

Thus, an iterative characteristic can be concatenated with itself for any number
of times which produces characteristics with an arbitrary number of rounds in
consequence. It’ s claimed that the essential advantage of iterative characteristics is
that an n-round characteristic for any large » can be built with a fixed reduction rate of
the probability for each additional round whereas for any non-iterative characteristic
the reduction rate of the probability usually increases because of the avalanche effect.
There are several iterative characteristics provided so far, and it’ s proven that the
~ simplest ones (with less rounds) are the most useful. These iterative characteristics are
based on a structure with a non-zero input XOR to the f function producing a zero

output XOR. The iterative characteristic given in the Figure 3.7 is an example to this
structure.

For the iterative characteristic denoted in Figure 3.7, the input XOR of the f
 function is abbreviated by y, such that y — 0. The best such characteristic achieved
- 50 far is proven to have a probability around ;-:4- b

It can be seen from the Figure 3.7 that the derived output €, after the second
‘round and the final permutation is just the reverse of the Q, regarding the right and
left halves. Thus, if these output right and left halves are to be input to any further
rounds, they will be exactly the same input XORs of the first round of the iterative
characteristic. ( In fact, after the second round, /. = yand R = 0, but after the final

utation, they are swapped, hence 2, = (0, y) ). In other words, using this

( Qe = (L, }:’) = (1,0) )

1
e 7

»

'}= g=y F . Y=LoA=1 with some

probability

'

( m-wn-o0w )

Figure 3.7 An iterative characteristic.”

-:Biham, Adi Shamir, Differential Cryptanalysis of the Data Encryption Standard, p. 27.
id, p. 28.
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two-round characteristic consecutively or embedding into any other characteristic, the

extension can be achieved for any # rounds. This makes the specific property of the so-
called iterative characteristic.

It should be stressed that several times throughout this section, while
commenting on various characteristics and their related probabilities, . the best value
known so far...” remark is made This is due to the fact these information is based on a
- few previous studies, manual calculations and some heuristic search programs derived

by Biham and Shamir, et al. Btham and Shamir has made a very important and
noticeable remark which says,

Although we believe that we have found the best DIS characteristics, we have
110 proof that better characteristics do not exist.”'

* The Signal to Noise Ratio

There’s another term involved in characteristics and differential cryptanalytic
‘attacks which is known as the signal to noise ratio. As mentioned previously, the
Sstatistical behaviour of most of the characteristics does not allow the cryptanalyst to
look for the intersection of all the keys suggested by the various pairs This is due to
the fact that; when the characteristics are shorter than the cryptosystem, it’ s
impossible to identify the right pairs, hence, the intersection of the suggested key-space
is null. However, it s proven that the right key value can be extracted with the
characteristic’ s probability from right pairs plus the other random occurrences driven
ifom the wrong pairs. Hence, counting the number of total occurrences of each of the
uggested keys, the right key could be deduced which would be the key with the
shest occurrence.”” It should also be noted that counting the number of occurrences
of all the possible values of a large number of bits of the key usually requires extremely
arge amount of memory. In order to decrease this memory requirement and make the
ltack more practical, a smaller number of subkey bits entering a less number of S-
oxes can be counted, and all the other S-boxes can be used only to identify and
scard the wrong pairs. These wrong pairs are proven to be the ones in which the
put XORs in such S-boxes cannot cause the expected output XORs. In consequence,
e number of the possible wrong pairs can be calculated as well as the right pairs and
n be used as an extra knowledge in addition to the characteristics used for the

erential cryptanalysis of any n-round scheme. The formal definition of signal to
Dise ratio can be stated as follows;

The ratio between the number of right pairs and the average count of the

orrect subkeys in a counting scheme is called the signal to noise ratio of the
inting scheme and is abbreviated by S N.**

i Biham, Adi Shamir, “Diffcrential Cryptanalysis of DES-like Cryptosystems”, The Weizmann
tute of Science - Department of Applicd Mathematics, Research Paper, p. 26, 1990.
| Biham, Adi Shamir, Differential Cryptanalysis of the Data Encryption Standard, p. 28.
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The S'N can be derived by the following formula;

S

2"-;
a

=z

In the above formula, & is the number of key bits counted making 2* possible
y values, p is the probability of the characteristic, « is the average count per
nalyzed pair and Sis the fraction of the analyzed pairs among all the pairs.**

It” s been observed that when §'N is high enough, only a few occurrences of
ght pairs are required to identify the right value of the subkey bits uniquely. For
stance, when the signal to noise ratio is around 1-2, nearly 20-40 occurrences of right
s are proven to be sufficient. When the signal to noise ratio is much higher, only 3

pairs are shown to be suflicient enough, conversely, when this ratio is much

ler than 1, then an extremely large number of pairs are required to identify the
bt value of the subkey bits.**

3 Differential Cryptanalysis with Known Plaintexts

- The differential cryptanalysis is mostly carried out with chosen plaintexts, but it
be extended to known plaintexts for any iterated block cryptosystem. However, it’
ially observed that the performance of differential cryptanalysis with the known
ltexts decreases significantly when compared to chosen plaintexts. But, whenever
ssary, any differential cryptanalytic attack to any cipher model with chosen
ext can be easily converted to known plaintext, a property which is proven not to
lid for some other cryptanalytic attacks.

- The conversion to known plaintext attack for DES is simply explained here
L can be similarly applied to any other symmetric block cipher. It can be assumed
or a differential cryptanalytic chosen plaintext attack requiring m pairs, it” s given
2% .J2m random known plaintexts and their corresponding ciphertexts. Thus,

(2 =, ﬁn;)l

an form at most =2 m possible pairs of plaintexts. Each pair’s

it difference (XOR) value can also be calculated trivially. Since, the block size is
in DES, there will be 2 possible plaintext XOR values, implying that there are

=m possible pairs associated with each plaintext XOR value. Therefore,

¢ concluded that with high probability, there are about m pairs with each one of
eral plaintext XOR values needed for the differential cryptanalysis.*® It should
stressed that as well as ECB mode, differential cryptanalysis with known
is applicable to CBC, CFB and OFB mode which is also valid for the

al cryptanalysis with chosen plaintexts having similar computational
oo 5758 59

Adi Shamir, Differential Cryptanalysis of the Data Encryption Standard, p. 30.
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The S'N can be derived by the following formula:

A p

N ap

In the above formula, & is the number of key bits counted making 2" possible
values, p is the probability of the characteristic, « is the average count per
alyzed pair and Sis the fraction of the analyzed pairs among all the pairs.**

~It" s been observed that when S'N is high enough, only a few occurrences of
ght pairs are required to identify the right value of the subkey bits uniquely. For
stance, when the signal to noise ratio is around 1-2, nearly 20-40 occurrences of right
irs are proven to be sufficient. When the signal to noise ratio is much higher, only 3
" pairs are shown to be suflicient enough, conversely, when this ratio is much

aller than 1, then an extremely large number of pairs are required to identify the
bt value of the subkey bits. >’

3 Differential Cryptanalysis with Known Plaintexts

The differential cryptanalysis is mostly carried out with chosen plaintexts, but it
be extended to known plaintexts for any iterated block cryptosystem. However, it’
ually observed that the performance of differential cryptanalysis with the known
exts decreases significantly when compared to chosen plaintexts. But, whenever
sary, any differential cryptanalytic attack to any cipher model with chosen
lext can be easily converted to known plaintext, a property which is proven not to
lid for some other cryptanalytic attacks.

The conversion to known plaintext attack for DES is simply explained here
) can be similarly applied to any other symmetric block cipher. It can be assumed
o a differential cryptanalytic chosen plaintext attack requiring m pairs, it’ s given
2%.J2m random known plaintexts and their corresponding ciphertexts. Thus,

2 an)

gan form at most = 2% . m possible pairs of plaintexts. Each pair’s

xt difference (XOR) value can also be calculated trivially. Since, the block size is
in DES, there will be 2° possible plaintext XOR values, implying that there are

=m possible pairs associated with each plaintext XOR value. Therefore,

concluded that with high probability, there are about m pairs with each one of
eral plaintext XOR values needed for the differential cryptanalysis.*® It should
stressed that as well as ECB mode, differential cryptanalysis with known
s is applicable to CBC, CFB and OFB mode which is also valid for the

cryptanalysis with chosen plaintexts having similar computational
i 5758 59

. Adi Shamir, Differential Cryptanalysis of the Data Fncryption Standard, p. 30.
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The performance degradation is the only problem of differential cryptanalysis
with known plaintexts. For instance, differential cryptanalysis of 16-round standard
DES requires 2% chosen plaintexts, but 2" known plaintexts. However, for the
differential cryptanalysis of 16-round DES with independent subkeys, the performance
is not so significantly different where 2°’ chosen plaintexts and 2% known plaintexts
are required.”’ The performance of differential cryptanalysis with chosen and known
plaintexts can be comparatively analyzed from the tables 3.6 and 3.7.

: Table 3.6 The differential cryptanalysis of FEAL for different rounds with the required
chosen plaintexts and known plaintexts.®'

No. of Chosen Known
Rounds Plaintexts Plaintexts

4 23 234

8 2! i

12 22] 242

16 229 2-!6

20 i 2
24 2% 2

28 256 260
30 260 962
31 263 263

:.'za 3.7 The differential cryptanalysis of DES for different rounds with the required
shosen plaintexts and known plaintexts.®

Dependent Key Independent Key
No. of Chosen Known Chosen Known
Rounds Plaintexts Plaintexts Plaintexts Plaintexts
23 233 2-! 7 33
28 236 28 2.‘6
538 516 510
;u ;26 ;45
;43 ;35 .U
;41‘ ;]6 ;50
;4? ;43 ;53
;52 ;-H ;54
;51 ;51 ;s?
= = s
;55 ;ﬁll ;hl

Biham, “Cryptanalysis of Multiple Modes of Operation”, Journal of Cryptology. vol. 11 Number
7,1998.

Schneier. Applied Cryptography - Second Fdition, p. 289.

am, “Cryptanalysis of Multiple Modes of Operation”, Journal of Cryptology. vol 11 Number

. Adi Shamir, Differential Crvptanalysis of the Data Encrvption Standard. p. 9
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c=a®p , thus

¢z B since ai=0

Thus, for the output difference (", about six bits will be different, or 6 bits with
~ the value 1. These bits will be XORed with the known difference of the input of S1
~ from the second round, 4, namely, and a difference of seven bits will be produced
aftermath which is also the input for the fourth round and final round. All these can
~ also be analyzed from the Figure 3.9 After the f function of the fourth round, a total of
- 11 bits will differ, and hence, there will be eleven 1’s in the ciphertext differences after
the fourth round. This poses the fact that such an avalanche ensures the input of all the

- S-boxes differ at the fourth round, providing the knowledge that the exact value of d
isusually different for every initial plaintext pair *’

The former information also suggests that the total 28 output XOR bits of the
S-boxes S2, .., S8 for the second round must be zero, since their corresponding inputs
are 0. Hence, the value of' /) could be achieved froma’, B’ and 7} as below;

D'=a®B®T, (a)

It should be noted that 7; is the left half of the output XORs of the ciphertext
I whichis 7 = 7" @ 7"" When the ciphertext pairs 7, 7" are known, then  and "
are also known, since the input pairs to the fourth round are also the right halves of the
ciphertext pairs (d = 7 and d" ~ 13" ). By the equation (a), the 28 bits of D are also
known, which imply the 28 output bits of the seven S-boxes S2, .., S8. As a result, the
28-bit portion of the expansion permutation outputs ( Sk, T ) that are XORed with
he subkey ( Sk, ) , and the output difference ( S, ) of the seven S-boxes S2, .., S8 of
he fourth round will be in hand. Having granted all this knowledge, all the 64 possible
alues for the subkey Sy, can be tried and checked for the right one using the following

S(S,y ® Sy ) S(Shy ® Siy) = Sirg
The above equation is valid, because,

S =S DSy
Snf = ‘Sw ® .S Kd

and since,

Soa = Soa D Sou
and also,

Biham, Adi Shamir, Differential ( ‘ryptanalvsis of the Data Encryption Standard, p. 34.

d, p. 35.

80



S(St) = 85 SS)=55

therefore,

(S0 ®8,0) D S(Sps B Sis) = Spna

The right subkey value will be the one suggested by all the pairs, since the
probability of the characteristic Q' is 1. In fact, this right subkey value of the fourth
“round is the 42-bit portion of the entire 56-bit key value, since this method is applied
to seven of the eight S-boxes making a total of 7*6 = 42 bits for the key value.
‘However, the remaining 14 bits can be deduced by trying all the 2'* possibilities. This
is simply achieved by holding constant the 42-bit portion and deriving all the key
combinations for the remaining 14-bit part, and decrypting the given ciphertexts by
“each of this subkey value and comparing the results with the original plaintexts. The
56-bit right key will be the one that decrypts all the pairs correctly. Thus, the 56-bit

subkey of the fourth round, and also the initial original key for 4-round DES will be
broken with a few effort

7 L
( (Plaintext XOR) )

¢ X7

| 4 ”

I A = a

NP F
X2
X3
x4

?‘ *
( (Ciphertext YOR) )

Figure 3.9 DES reduced to four rounds ®’

Biham, Adi Shamir, “Differential Cryptanalysis of DES-like Cryptosystems”, The Weizmann
of Science - Department of Applicd Mathematics, Research Paper, p. 31, 1990.
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As a result, it was found out that the differential cryptanalysis of DES reduced

to four rounds can be achieved successfully with 2° chosen plaintext pairs and 2%
 known plaintext pairs.**

3.1.4.2 DES Reduced to Six Rounds

In the previous DES model, a single-round characteristic with a probability of 1
‘was used; but for the differential cryptanalysis of six-round DES, two different three-
found characteristics each with a probability of 1/16 are used. Each one of these
characteristics is concatenated with additional three rounds of DES (this extension
with the additional three rounds is known as 3R-artack which will be explained later
on) to form a six-round characteristic, and the outcomes of these six-round
acteristics are analyzed and compared. This attack is proven to be somehow more
complex than the previous one, and an additional counting scheme is required in order
0 deduce the key bits. Each of the two characteristics enable the cryptanalyst to find
out the 30 bits of the subkey in the sixth round, but since three S-boxes are common in
oth, the actual number of key bits extracted turn out to be 42 in total. The remaining
4 bits can be calculated by the exhaustive search method, as implemented in the four-

ound DES, or by a new scheme which carefully counts the key bits entering S8 in the
ith round *°

The first three-round characteristic ' has a probability 1/16, which is also
in the Figure 3.10. When an additional three-round is placed afier this
aracteristic, five S-boxes ( S2, S5, S6, §7, S8) in the fourth round is ana_llyzed as
ving zero input XORs ( 5 sz = 0 ) and consequently zero output XORs ( Sous =0 ).
e output XORs in the sixth round can be derived by /"= ¢'®D'®7; " It should be
ed that the output XORs for the first three rounds, are A', B’, ("', as shown in the
ure 3.10. And similarly, for the other additional three rounds, the fourth, fifth and
;: output XORs are abbreviated as /)', /v, /" and their corresponding input XORs
i, e’, f*, where the input XOR in the fourth round isd' = 5" ® (" = (40 08 00 00),.

Using the similar assumptions used in four-round analysis, the 30 bits of the
of the sixth round relevant to the five S-boxes mentioned previously could be
icted with a feasible probability. The same mechanism is implemented to another
e-round characteristic, Q’ . to derive the 30-bit of the subkey associated with the
xes ( S1, S2, S4, S5, S6 ). As similar to the first case with Q', five boxes in the
h round are proven to have zero input XORs after concatenating Q° with
jonal three rounds. ( As similar to Q', the input XOR in the fourth round becomes
b’ ® C' = (00 20 00 08), ). Combining the 30-bits derived from both
icteristics, and extracting the bits associated with the common S-boxes (S2, S5,
| total of 42 bits is extracted from subkey of the sixth round. The second
dleristic Q is also given in Figure 3.11.

ham. Adi Shamir, Differential Cryptanalysis of the Data Encryption Standard, p. 8. 53.
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C QL =40 08 00 00 04 00 00 00, )

Y. A’ =40 08 00 00, a’ = (04 00 00 00, p=1/4
(e F

r e
% &
A C' =40 08 00 00, ¢ =04 00 00 00,
- a p=1/4

( =40 0800 00 04 00 00 00 )

Figure 3.10 The first characteristic Q' with p» = 1/16 of the six-round DES.""

( 07 =0020 0008 000004 00« )

1
A A =00 2000 08, - ad =00 0004 00 p=14
AP F
%IJ:I
L C =002 d = :
(1}10' 00 20 00 08, » . 00 00 (4 00 G

( 8. = 00200008 0000 04 00: )

Figure 3.11 The second characteristic Q” with p = 1/16 of the six-round DES.”

“Eli Biham, Adi Shamir, “Differential C ryptanalysis of DES-like Cryptosystems”, The Weizmann
nstitute of Science - Department of Applied Mathematics. Research Paper, p. 35, 1990.



By this way, the cryptanalyst can find 42 bits out of 56; but the remaining 14
bits are still unknown The easiest, but not the fastest way is to carry out the
exhaustive search among all the possible 2'* combinations, just the same method used
in DES reduced to four rounds. It’ s proven that a better and faster way is to use a
scheme that enables looking for the six missing bits of the subkey in round six ( K6 )
'_ hich enter S3. There are two parts in this scheme, the first one is to deduce and

scard the wrong pairs and the second part is to find out the six missing bits with the
help of extracted right pairs.”

For the first part, each pair is checked whether for the five S-boxes having S e
0, the output difference from the S-boxes at the sixth round form the expected value

= “'GB.’)'EB?}: or not. If not, this pair is supposed to be a wrong pair. By this
 all the wrong pairs can be filtered from the entire pair space ”*

. For the second part, a special table is constructed and used within the scheme.
his table shows the known bits of the input of the / function and of the subkey at the
th round with the prior knowledge of 42 bits of the subkey. This information is given
the Table 3.8, which is the table referred here, and in this table there are some
breviations that need explanation. The digit ‘3” implies that the bit depends on the
act value of the missing key bits that enter S3 in the sixth round. On the other hand,
" denotes that the sought bit depends only on known key bits. The eight key bits of
subkey K6 which are excluded in this part are abbreviated as ‘o’ In other words, ‘e’
ks are the remaining cight key bits which totally make up 14, with the six missing
sbeing searched. Thus, using this table, the correctness of the guessed six bits of K6
1be verified. This is achieved by calculating input bits (denoted as ¢ bits in the Table

) to the / function in the fifth round for each right pair and by verifying that the

ues of 52 oe, $3 e and S8 . (the output XORs from the S-boxes S2, S3 and S8 at

fifth round for which all the input and key bits are known) are as expected by /2" =

)/

Table 3.8 Known bits at the fifth round.”

Into the S-box e bits Key bits
(Ske) (Ske)

Sl +++++ 4 Jteet+

S2 ++3+++4 +3+333

S3 ++4++++ b4+

S4 +4+++3+ F+ oo+ +

Ss 3+++++ +++ o+ +

S6 +4+++3+ - et et +

S7 34+ 4++++ +++ o4+

S8 ++3+4+ A

m. Adi Shamir, “Differential Cryptanalysis of DES-like Cryptosystems™. The Weizmann
Science - Department of Applied Mathematics. Rescarch Paper. p. 36. 1990.
ham. Adi Shamir, Differential Cryptanalysis of the Data Fucryvption Standard, pp. 38-3Y9.

84



For the other five S-boxes, it could be further verified that there are values of
the missing key bits which are not used in the subkey K6. As a result, the verification
of most of the 64 possibilities of the six missing bits will probably fail providing a
unique single 6-bit value as the correct one with a high probability.”

It should be noted that similar tables can be constructed for different
characteristics’ rounds whenever necessary.

After the deduction of these six subkey bits, yet the cryptanalyst is to search the
femaining unknown eight bits. These eight bits can be found by an exhaustive search of

256 combinations, or by applying a similar key analysis scheme to these eight bits that
enter S-boxes in the fifth round ”’

Calculating the signal to noise ratios, Biliam and Shamir found out that a total
0f 240 pairs of ciphertexts, hence 240 pairs of chosen plaintexts, are necessary for the
differential cryptanalysis of DES reduced to six rounds. Among these 240 pairs, 120
pairs come from the first characteristic Q' and the other 120 pairs are derived from the

econd characteristic €’ They also computed that an average of 2°° known plaintexts
e required for this attack ™

Biham and Shamir also remark that in order to decrease the memory
2quirements in this attack and for the attacks to the ciphers with higher rounds, they
evised a special algorithm named as cligue. They also state that other efficient
:n ithms might be produced for the counting scheme that could get even better
sults with less memory consumption and faster look-ups.””

1.4.3 DES Reduced to Eight Rounds

The differential cryptanalysis of DES reduced to eight rounds is more complex
an the former implementations, but the basic model is similar. Again, a suitable
laracteristic is chosen to extract some portion of the subkey in the eighth round, and
 remaining key bits are found by construction of look-up tables and by the necessary
"pulations on the key bits, similar to the one implemented in DES with six rounds.

ive-round characteristic with a probability -—-'

e Y chosen for the cryptanalytic

when Biham and Shamir implemented ih:s model. This five-round characteristic
be extended to eight rounds by concatenating it with specifically chosen three
itional rounds that are not covered by this characteristic. (The same mechanism was
din DES with six rounds.) The five-round characteristic is shown in Figure 3.12. In

same manner, for the succeeding rounds six, seven and eight; the input XORs are
¢, h', and the output XORs are /', (;

The input XOR to the / function in the sixth round is the right XOR output
1 the fifth round of the characteristic, which is (40 SC 00 00),. Consequently, it’ s
observed that for the five S-boxes ( S2, S5, S6, S7. S8 ) in the sixth round, the

Biham. Adi Shamir, Differential Cryptanalysis of the Data I-ncrvption Standard, p. 39.
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output XOR from expansion permutation, .S,/ = 0, the input XOR to the S-boxes, Sty
0, and the output XOR from these S-boxes, S, = 0"

By deriving the formula, H'= 1, ® g'= 1, ®¢'®I"  the output XORs of the
orresponding S-boxes in the eighth round can be found. Since the input data of the
ghth round can be granted from the ciphertexts, the 30 subkey bits entering the five

-boxes at the eighth round can be found by decrypting for each pair and counting the
. This is the same mechanism used in the previous two versions of DES that

dracted the 42 bits in both. The SN is found to be 100 for this part of the analysis.*'

( Qp = 40 5C 00 00 04 00 00 00, )

1 A’ =40 0800 00, e ‘a’=040000001 p=1/4
= P(0A 00 00 005)
T

9 B' =04 00 00 00, " ¥ = 00 54 00 00, p= 1603"(64)2

[ = P(00 10 00 00,)

C=0 ¢ =0 o=

' D =04 00 00 00 7 | d =00 5400 004 P = 160/(64)"
NEE— e
- _-_-'_‘_‘—*—\.._.___
g ) —
w;_;;:_4()()3(]{](){)s 7 L€ =040000 00, p=1/4

!

( Q0 =40 5C 00 00 04 00 00 00, )

e3.12 The five-round characteristic used for eight-round DES."

e . N . ~ o g
Since exploring the 30 bits require a huge memory of 2" counters, Biham and
devised extra mechanisms and algorithms in order to reduce the memory

_' ion and speed up the counting process *

am, Adi Shamir, Differential Cryptanalysis of the Data Incryption Standard, p. 42.

. Adi Shamir, “Differential Cryptanalysis of DES-like Cryptosystems™, The Weizmann
ience - Department of Applied Mathematics. Rescarch Paper. p. 40, 1990,
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_ In order to find out the remaining 26 bits, a filtering mechanism that extracts
e wrong pairs, and a look-up table, that produces 18 bits out of 26, are used. The
asic logic behind the scheme is similar to the one used in DES reduced to six rounds.
his time, a table for the known bits at the seventh round is constructed, and the
orrect 18 bits of the subkey K& is extracted by the aid of known right pairs, bit
gpendencies, known bits, and so on After the successful implementation of the
heme, 48 bits of the subkey K& is found and the cryptanalyst has only got to deduce
e remaining eight bits, which can be found out by the ordinary exhaustive search *

The differential cryptanalysis of DES reduced to eight rounds is successfully
lieved at an average of 250,000 chosen plaintext pairs. On the other hand, the same
ik’ s requirement with known plaintexts is computed as 2* plaintext pairs.®

4.4 DES With an Arbitrary Number of Rounds

The difTerential cryptanalysis of DES with nine, ten, etc. rounds were also
lemented by choosing specific characteristics with 7 rounds, and deriving look-up
s for the missing bits, in other words, by establishing similar schemes to the ones
d in six and eight-round DES. However, Biham and Shamir found a special
ilive characteristic which enable the differential cryptanalysis of DES with any
rary number of rounds in a conventional and generic sense. This iterative

acteristic is composed of two rounds and has a probability ’—l-l— which is also given

e Figure 3.13. The probability of this iterative characteristic is calculated as
%

s

: s - 0 only valid for three S-boxes: S1, S2 and S3 and hence,

S, =81, =03, > S1,, =0 with probability

[¢%]
82, = 82), =32, > 82,, =0 with probability
B =53, =2C, > 383, =0 with probability %

Meanwhile, for the other five S-boxes S4, .., S8.

o

-5, =035, =0 with probability 1.

, i 14,8 10 1
s, B'=0 with probability e A o
64 61 64 23

The iterative concatenation of this iterative characteristic with itself and with
-round characteristic having p = 1 (given in Figure 3.3), enable the differential
alysis of DES with any odd number of rounds. The attacks to these odd number

'u Adi Shamir, Differential Cryptanalysis of the Data I'ncryption Standard, pp. 42-44.
k. '45

im, Adi Shamir, “Differential Cryptanalysis of DES-like Cryptosystems™, The Weizmann
Science - Department of Applied Mathematics. Rescarch Paper. pp. 47-48. 1990.
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.* rounds and their corresponding characteristics’ probabilities are denoted in the
Table 3.9. All these characteristics given in the table have Q, = Q; = (19 60 00 00 00
0000 00); = (\, 0). If any new round is added to any of these characteristics, the input

XOR to the / function will be y in the next round and five of the S-boxes satisfy S =
Din that next round.*” This can be proven as follows" |

The XOR data through the intermediate rounds for the plaintext XOR
2 =(¥,0):

a=0—->A'=0 with probability |
=W - B=0 with probability —;—’
=a®B'=0->"=90 with probability 1
d=¥ D=0 with probability ~ ‘i?
=cPD'=0-I'=0 with probability 1

and so on, for any number of rounds.

£ 39 The probability of the iterative characteristic with respect to the number of

s Liative Lildld Witl] 16

Number of Rounds Probability

.2 T= 55000

23. 0

There are also some other possible types of attacks carried out amongst
ty number of rounds in which some additional rounds are concatenated with the
characteristic whereas these rounds are independent of the characteristic, in
ords, are not covered by the characteristic. For instance, as mentioned
sly, in the differential cryptanalysis of DES reduced to six rounds, three
"; rounds were concatenated with three-round characteristics and similarly, in
k to DES with eight rounds, a five-round characteristic and additional three
ere used. This kind of attack is named as 3K-attack. There are other similar

s attack; 2R-attack, which adds two extra rounds and /R-attack with one
I round. A OR-attack is also possible but since it” s been proven that a 0R-

n be reduced to /R-attack with better probability (with better statistics and

0. Adi Shamir, “Differential Cryptanalysis of DES-like Cryptosystems™. The Weizmann
nece - Department of Applied Mathematics. Research Paper, p. 48, 1990,
. Adi Shamir, Differential Cryptanalysis of the Data I'ncryption .S?rlryi;u:r_{ prdBry Trvirtni i
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esame S/N), OR-attack is not used. It is also proven that 3R-attack is advisable over
itack, and both are more preferable than /R-atiack due to their relative
babilities and also due to the fact that for a fixed cryptosystem it’ s advisable to use
shortest possible characteristic having better statistics.™-"' In the following
agraphs, these attacks will be mentioned shortly.

@ = (1%,0) = 19 60 00 00 00 00 00 o@
!

& P p=1

[ _B' — b’ —. ==
e 9 Ja y p~1/234
' 18 60 00 00,
'

@- — (0,1) = 00 00 00 00 19 60 00 00

ure 313 The iterative characteristic with probability about ]_1 b

-

Altacks

In 3R-attacks, three additional rounds are concatenated with the characteristic
for the attack. With the aid of these three rounds, counting can be applied to
 of the subkey of the last round that enter S-boxes whose corresponding S-
ithe first round of the additional three rounds have zero input XORs. The four,

eight-round attacks described previously and also nine-round attack are all
nted in this manner.”*

However, for DES reduced to 10 or more rounds, 3R-attacks are not

ended because it’ s shown that the signal to noise ratio of the 3R-attack
94
100 small.

ttacks

) 2R-attacks, counting is done on all the bits of the subkey of the last round.
r the input XORs of the S-boxes in the former round may not cause the

N, Adi Shamir, Differential Crvptanalysis of the Data Encryption Standard, p. 49.
1, Adi Shamir, “Differential Cryptanalysis of DES-like Cryptosystems™. The Weizmann
ience - Department of Applied Mathematics, Rescarch Paper, p. 49, 1990,

|, Adi Shamir, Differential Cryptanalysis of the Data F-neryvption Standard, p. 49.
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expected output XORs, wrong pairs can be discarded. For instance, the success rate of
the check that output XOR is zero for the corresponding input XOR for an S-box is

alculated as 1/16. For the other S-boxes, the success rate is proven to be
approximately 0.8.”

An example of the implementation of 2R-attack is DES reduced to nine rounds,
ihere a seven-round characteristic and additional two rounds as the 2R are used. The
wven-round characteristic is derived from the iterative concatenation of the iterative
haracteristic given in Figure 3 13. At the end of the seven-round characteristic, 2R is
ded to achieve a total of nine rounds. For the ninth round, the 48 bits of subkey K9
nbe found using 2°° pairs within the seven-round characteristic. The right pairs for
final two rounds are also known which can be derived as follows™ ;

for the plaintext XOR €,, = (V,0)

round 1: a=0->A4'=0 with probability |
round 2: b=¥ > B=0 with probability ~ ;—l—l—
round 3. d=0->("=0 with probability 1

round 7 g=0->G'=0 with probability |
round §. =% -> H=i®g' = !H
round 9: i'=lp > 1 =h®T, =1, ®¥

ciphertext XOR ©Q, = (7;.7;,)

Thus, it could be checked that /1" — /1" and i’ —> /" for the two rounds of 2R
§ eight and nine) and then, the possible occurrences of the key bits in the
ng pairs could be counted. It’ s analyzed that for /7" > /1" five S-boxes satisfy
15 = 0 and hence S, will be 0 with a probability 1/16 among the wrong pairs,
e other three S-boxes satisfy S, —> S,, with a probability 0.8 among the

airs. Therefore, counting on the key bits and deriving the associated S/N
ie subkey K9 can be found within 27 pairs.”’

he 2R-attack can also be applied to other reduced round variants of DES in a
DES reduced to eleven rounds can be broken using a nine-round
stic and additional two rounds within 2 pairs The 13-round DES can be
with the eleven-round characteristic plus 2R using 2°* pairs and 15-round
nbe broken with a 13-round characteristic plus 2R using 2" pairs ™*

. Adi Shamir, Differential Cryvptanalysis of the Data F'ncrvption Standard, p. 50.

i Shamir, “Diffcrential Cryptanalysis of DES-like Crvptosystems™, The Weizmann
- Department of Applied Mathematics. Research Paper. p. 50. 1990,
Shamir, Differential Crvptanalysis of the Data 'ncrvption Standard, pp. 50-51.
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IR-Attacks

In IR-attacks, all the bits of the subkey, which enter S-boxes with non-zero
nput XORs can be counted for the last round. The values of Tk can be verified and
e possibility checks on all the other S-boxes in the last round can be achieved in
rder to find whether the input XOR may cause the output XOR or not. As analyzed in
R-attacks, the check’ s success rate is 1/16 for those S-boxes having zero output
OR within zero input XOR. But this time, it cannot be distinguished between several
bkey values due to the fact that the input XOR of the last round is constant.
owever, this can be overcome since there aren’ t many such subkey values and each

‘these can be checked later via exhaustive search or by a simple differential
3 1 99
yptanalytic method.

An example for 1R-attack is the differential cryptanalysis of DES with ten

inds which can be achieved by a nine-round characteristic and additional round as
t can be shown as below;

for the plaintext XOR Q, = ('V,0):

round [: a=0—>A'=0 with probability 1
round 2. h=¥—>B=0 with probability =~ TI;
round 3. C=0->("=0 with probability 1
round §: =% H=0 with probability = —7—;—]
round 9. i'=0->1I'=0 with probability 1
round 10: F='W= Tl =il =1,

ciphertext XOR Q, =(7,,7;,)

From this knowledge, the right pairs can be identified easily It” s proven that
pairs that satisfy In y and the 20 bits of /i coming from the S-boxes S4,.. |
zer0. This assertion is also proven to be valid with a probability of 2 * for the

rs. Deriving S/N for the other S-boxes’ bits and counting these bits, the
n be successfully achieved using an average of 2™ pairs "

In a similar manner, the twelve-round variant of DES can be broken using an

characteristic and IR within 2%’ pairs. The 14-round variant can be broken
-round characteristic and 1R within 2" pairs.""

im. Adi Shamir, Differential Cryptanalysis of the Data Fncryvption Standard, p. 51.
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The 16-round DES, the complete standard DES in other words, is proven to be
broken using a 15-round characteristic and 1R within 2°" pairs."”” However, the 2°
complexity is even higher than a brute-force attack, which turns out the differential
cryptanalytic attack useless. Thus, Biham and Shamir made some enhancements and

derived a different differential cryptanalysis method for a successful attack to the full
16-round DES, which shall be explained in the following section.

3.1.5 Differential Cryptanalysis of the Full 16-Round DES

As mentioned in the previous section, the standard model for the differential
iyptanalysis of DES reduced to several rounds was proven to be inefTicient for the full
6-round DES, yet even having a worse performance than the brute-force attack. For
IS reason, a new method is established for the differential cryptanalysis of the
andard 56-bit DES with 16 rounds, which will be described in this section. However,
should be stressed that this method is not applicable to independent-key variants of
S, which the former model was proven to be suitable among such variants.

In this new differential cryptanalysis model, a 13-round characteristic, an
ditional round and a 2R-attack with two rounds are combined so as to establish the
al 16 rounds. The 13-round characteristic is derived from the iteration of a two-
ind iterative characteristic six and a half times, which this iterative characteristic is
eone mentioned in the former sections and given in Figure 3 13. Since, this iterative
racteristic’ s probability is about 1/234, iterating it six and a half times result with a
ound characteristic having probability p ~ 2 **2. " This 13-round characteristic is
d after combining it with an initial one-round, thus the 13-round characteristics
mthe 2" to 14™ rounds of the 16-round DES. This additional one-round which is
edded as the first round of DES is stated as the crucial part of the attack. This one-
id is added in order to eliminate the possible mixture of wrong and right pairs, to
gase the huge memory requirement, and most importantly, to establish an
mative method which can entirely eliminate the use of counters '™ After the
entations, it” s been proven that this one-round satisfies all these requirements.
(the usage of this additional round as the first round of DES, rather than
eting possible values for a subset of key bits, a list of complete 56-bit candidate
can be suggested and examined independently within each pair. In fact, this aspect
ted to be one of the core differences of this method when compared to former
differential cryptanalysis model. By this way, each suggested 56-bit key value can
imediately tested via trial encryption, without any counting scheme or any
ers'"” The 2R-attack is added finally to the 14 rounds which makes up the 16-

§in total. This full 16-round DES implementation of the attack is also denoted in
gure 3. 14.

‘The attack can be divided into two parts, where the first part is the first 14
, the combination of the first round and 13-round characteristic, and the second
the usage of 2R-attack, which is also defined as the data analysis phase.

Adi Shamir, Differential Cryptanalysis of the Data Fncrvption Standard, p. 52.
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3 14 The differential cryptanalytic attack to the full 16-round DES.
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iham. Adi Shamir, “Diffcrential Cryptanalysis of the full 16-round DES”. Technion- Israel
of Technology, Technical Report. p. 5. 1991.

93



In the first part, or phase namely, the essential goal is to generate pairs of
plaintexts whose XORed outputs after the first round are the required XORed inputs
(¥, 0) into the 13-round characteristic without a loss of probability. Assuming 7’ as an
arbitrary 64-bit plaintext and vy, ..., Vaes as the 2"? 32-bit constants, a structure that
consists of 2’ plaintexts is defined as follows (it should be noted that these 32-bit
onstants consist of all the possible values at the 12-bit positions which are XORed

ith the 12 output bits of the S-boxes S1, S2, S3 after the first round, and 0 in other
ositions. )"’ ;

P = P{B(uj,()) P = (I’GB(UI ,()))H)(O,w) for 0<i<2"
I'= DES(P ,K) 7, = DES(P, ,K)
where K is the 56-bit initial key used in 16-round DES encryption.

It should be remarked that the plaintext pairs involved are all the 2*' pairs
' P,) with 0<i,j<2" Their plaintext XOR is proven to be always (vy, y) and
h v, to be occurring exactly in 27 pairs. Since for the first round of the attack the
ts ”’z and Pr @ y entering the f function produces an output XOR which is only
kzero at the output bits coming from S-boxes S1, S2, and S3, this output XOR
Ifis one of the correct vy value. Thus, among all the 2’7 pairs, the output XOR of
ffunction in the first round is completely cancelled by XORing it with the left half
he plaintext XOR. As a result, the output XOR of the first round becomes (y, 0)
f swapping the right and left halves, and this is the desired input XOR value into
lerative characteristic. This result enables the concatenation of the first round with
13-round iterative characteristic which can also be analyzed from Figure 3.14.
efore, each structure has a probability p ~ 2’7 * 2“7 ~ 2 %7 In other words, the
ot of the first additional round on the attack can be summarized as follows: For
irst round of the 16-round attack, 2'” 32-bit samples for all the combinations of
t positions are used in order to derive the required vy that cancels output XOR v
the f function so that the output XOR of the first round can be forwarded as the
ied input XOR for the second round which is (y, 0) This increases the
bility of the 13-round characteristic from 2 7 to 2 %7 which provides a
icant enhancement to the overall 16-round attack.'"
It should be noted that a potential problem can be faced in this method. This
m is due to the fact that the actual value of vy is not known initially and hence,
of the correct pair among the 2'? plaintext pairs to be chosen is not known. This
a time-complexity problem because all the 2°* possible pairs should be tried.
er, Biliam and Shamir also derived a scheme to overcome this problem and to
e the time required for computations. This scheme uses the cross-product
e of the pairs so that the right pairs could be extracted among them in 2 time.
ing some sorting and selection mechanisms as well as exploiting the specific
ies of the S-boxes, most of the wrong pairs can be eliminated in a few
ations resulting with an average of 1.19 pairs per structure as the expected

iam, Adi Shamir, Differential Cryvptanalysis of the Data Incryption Standard, pp. 80-81.
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output of the data collection phase. All these necessary computations and mechanisms
re shown to be implemented by a few table look-up operations as well, decreasing the
E g - . 109

me complexity further and hence, eliminating the necessary problem.

The first phase of the attack within the first 14 rounds extracts most of the
quired right pairs but all the wrong pairs are not discarded, thus the input of the
cond phase, data analysis phase namely, is still a mixture of right and wrong pairs. In
e data analysis phase, the goal is to discard the wrong pairs completely and to derive
e correct 50-bit key finally with the aid of 2R-attack. As explained in the former
gtions, the data analysis phase use huge arrays up to 2* counters imposing extremely
h memory consumption, usually whenever the rounds increase. Hence, in order to
wide an efTicient attack to the full 16-round DES, a new method is developed and
d in this phase as well. Rather than using counters and counting on the key bits,
th suggested 56-bit key value is tried immediately. This assertion is proven to be
id, because an entire key value can be suggested whenever it can create the output
R values of the last round as well as the expected output XOR of the first round
‘the 15" round for the particular plaintexts and ciphertexts. Checking and
nparing some of the bits of the key that enter and exit some specific S-boxes, most
the wrong pairs can be discarded as well as reducing the possible candidate key
ies. At the end of this analysis each analyzed pair suggests around 0.84 values for
32 bits of the entire key, where each value corresponds to 16 possible values of the
it key. Therefore, each structure suggests approximately 1.19*0.84*16 = 16
es for the key value. With the combination of all the structures and some further
fing mechanisms, only 2'* possible key values can be left in the hand. These values

be tested via trial encryption among any single plaintext / ciphertext couple, and

a very high probability, the extracted key will be the correct 56-bit key value. It

Id also be noted that S/N is proven to be 2'* for the data analysis phase, much

f than the 2° value calculated for the 16-round DES using the basic differential
analytic attack model described previously '"

In addition, it” s also proven that this data analysis can be carried out more

ently by carefully choosing the order of the various key bits being tested. With the
f some specific S-boxes’ input bits for the first and 16" rounds, and analyzing

n some order, and by making some necessary calculations, the deduction of
of the key bits could be achieved in less computations '

‘Now that all the 16 rounds of the attack has been covered, the performance of
erall attack can be calculated as follows: Each structure contains a right pair with
ability 2 **? coming from the first phase of the attack Also, since a total of 2%
are encrypted, and since each structure consists of 2" plaintexts, there are
= 2" chosen plaintexts in hand. Moreover, since it” s been calculated that
119 pairs exist per each structure, then about 2™ * 1.19 = 2%% pairs and
2% ciphertexts remain as candidate inputs to the second (data analysis) phase.
bability that at least one of these pairs is a right pair is found to be 0.58, and
lysis of any right pair assures the deduction of the correct 56-bit key. Thus, the

Adi Shamir, Differential Cryptanalysis of the Data l'ncryprion Standard, pp. 82-83.
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overall time complexity of the attack becomes 2 * 4 = 27 equivalent DES
operations.''” Finally, all these values show that this attack can be regarded as feasible
and successful when compared to brute-force attack with 2™ complexity.

In order to reduce the number of chosen plaintexts involved in this attack,
am and Shamir extended the method by using an additional structure established
ithin a two-round iterative characteristic. Since, the basic collection of plaintexts in
is attack is proven to be a structure rather than a pair, some metastructures that
ontain 2'* chosen plaintexts could be established. They developed a metastructure
at" s composed of four structures where two of them come from the iterative
aracteristic used in the 13-round of the attack, and the other two is developed from
[iterative characteristic shown in the Figure 3.15. With the use of metastructures,
ur times as many pairs from twice as many plaintexts can be obtained. Thus, the
mber of chosen plaintexts required in this attack is reduced from 2 to 2"

@, = (¥1,0) = 1.8 60 00 00 00 00 00 0@

p~1/234

!
@=(0,¢*)=0000 00 00 1B 60 00 09

figure 3 15 The iterative characteristic used for improving the attack to the full
6-round DES.""*

- The differential cryptanalysis of the full 16-round DES might even be improved
further achievements. For instance, Biham and Shamir noted that since the
anisms in this attack use different structures and instances independent and
ated of each other, the model could be successfully implemented in parallel with
) 2" nodes. However, the differential cryptanalysis of the full 16-round DES has
some shortcomings. Besides its inapplicability to DES with independent keys as
d previously, this model is not directly applicable to plaintexts having ASCII
oters only. This is due to the fact that such plaintexts cannot supply the desired
ifferences. Only, by making some changes in the model and by using different

Biham, Adi Shamir, Differential Cryptanalysis of the Data I'ncryption Standard, p. 85.
L p. 86.

Biham, Adi Shamir, “Differential Cryptanalysis of the full 16-round DES”. Technion- Isracl
¢ of Technology, Technical Report, p. 8. 1991
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iterative characteristics, the attack can be successfully implemented within

2" chosen
ASCII plaintexts.""”

There are other variants of this attack developed for some enhanced versions of
16-round DES and also for the reduced rounds of DES using the similar schemes and
the model explained in this section. Thus, the best results could be deducted for DES

with any rounds via all the different differential cryptanalysis models explained so far.
These results are given in the Table 3.10.

Table 3.10 Best results achieved for the differential cryptanalysis of DES with
different rounds. "

No. of Chosen Known Analyzed Complexity of
Rounds Plaintexts Plaintexts Pairs Analysis

8 2 14 238 4 2‘]
9 224 24-! 2 232 .
10 224 243 zl-l 2 15

1! 2\] 247 2 232 b

12 2?.l 247 221 22]

13 2* 2% 2 2"

14 I 2 b g=

1,; 24? 256 2‘1 2 i7

f(] 2-1? 255 236 23?

It s proven that the complexity of the analysis could be reduced significantly for
these variants by using the clique method.""’

3.1.6 Differential Cryptanalysis of DES Variants

As mentioned in Chapter 2, section 2452 some different variants of DES
were developed so as to improve the security and the efficiency of the algorithm. The
susnvny performances of these variants among several cryptanalytic attacks including
the differential cryptanalysis are also given in the section 2.4.5.2 The differential
ptanalytic attack is proven to be successful among most of these implementations
and some of these will be mentioned shortly throughout this section. By analyzing all
hese attacks and making comparisons, an important and final statement for the
ifferential cryptanalysis of DES might be as follows: The amount of information the
ryptanalyst obtains is heavily dependent on how many rounds are used for DES. For a

ES version with many rounds, less information can be obtained directly, making

ysis rather difficult. For reduced round variations of DES, Biham and Shamir

ved that their method can break DES even with independent subkeys in less than

¥0 minutes on an average personal computer platform for eight-round variations, and

t faster for fewer rounds.'" From these results, it becomes worthwhile to study their

ethod, and search for new schemes and improvements in this method

Biham. Adi Shamir, Differential Cryptanalysis of the Data Encryption Standard, p. 86.
ibid, p. 87.

bid, p. 87.
bid, p. 68.
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DES with Modified P Permutation

Since it was proven that the choice of the /7 permutation had a major influence
on the existence of high probability characteristics, some changes were applied to the
design of the P permutation so as to improve the security of DES. However, these
mplementations were proven to be weakening the security of DES, all but one. The
only improvement was shown to be achieved via replacement of the 7 permutation by
e identity permutation or entirely elimination of the /” permutation.'"” The differential
fyptanalysis against such a DES variant is established successfully with the usage of a
pecial three-round iterative characteristic. When this characteristic is iterated to a ten-
ound characteristic, the probability is shown to be around 2'"7 where this
haracteristic can be used for the entire 16 rounds of DES by making some extensions
ith the aid of some of the S-boxes’ property in the 14" round. This extended

laracteristic is proven to have a probability 2 %7 and within 2”’ pairs and the attack is
own to be successful.'”’

This analysis is extended further to attack to DES with all sort of random
mutations, and is proven to be successful among all such variants within the
mplexity between 277 - 2*°. All these successful differential cryptanalytic attacks have

0 proven that the replacement of the /” permutation by any permutation cannot make
ES stronger.'!

DES with Modified and Random S-Boxes

Some of the DES variants were changed in the design of S-boxes in order to
prove the security of the cipher. One of these variants is DES with S-boxes modified
the order Since, in the standard DES, the eight boxes are arranged in a certain
er, altering the order of these S-boxes and rearranging them probably changes the
icture of the encryption system. However, with the help of differential cryptanalysis
such alternative DES models are proven to be weaker than the original DES. For
different order arrangement, a suitable iterative characteristic can be generated and
d for the differential cryptanalytic attack. Biham and Shamir proved this in several
cessful experiments. For one of the modified order model, they achieved the
ential cryptanalysis of the 16-round system successfully using 2* chosen

ntexts with S/N = 2°" and using 2*’ known plaintexts.'”’

Another approach was making some modifications in the inner structure of the
xes themselves, ie, changing bit entries, etc. so as to improve the security of DES.
ner or later, such these variants are proven to be weakening the security of DES
\the aid of differential cryptanalytic attacks. For instance, a 16-round DES variant
(a modified S1 was broken using a specific two-round iterative characteristic 7.5

s plus 1R-attack with 2* pairs and S/N = 27°, an attack much better than made to
yriginal 16-round DES.'**

| Biham. Adi Shamir, Differential Cryptanalysis of the Data Fucrvption Standard, p. 56.
. p. 56.

i p 57

d. pp. 57-58.

d. pp. 61-62.
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Yet another idea aiming to improve the security of DES was using random S-
boxes in the algorithm. Since, all the eight S-boxes used in the standard DES algorithm
‘are known with all their entries where these entries are constant; using randomly
selected different S-boxes from a wide range set of S-boxes for each encryption was
thought to shield the cryptanalyst from knowing the complete structure of the
algorithm, presumably. Alas, this is also proven to be an attempt in vain because of the
successful differential cryptanalytic attacks. The essential aspect lying behind this
success is due to the discovery of a specific two-round iterative characteristic. It’ s
proven that no matter what random S-boxes are used, 97% of such sets have this
ilerative characteristic with a probability of 1/8 or higher. Producing a 13-round
tharacteristic with p = 2 '* by the concatenation of this iterative characteristic with
iself six and a half times, and adding a 3R-attack, 42 subkey bits are proven to be

found within the requirement of 2" pairs. Moreover, the entire 56-bit key is proven to
e broken for nearly any random S-box set within 2 - 2*" pairs.'*!

» DES with Independent Subkeys

In the standard DES model, each subkey for each round is derived from a
mple shifting mechanism of the initial 56-bit key which makes all of the subkeys
gpendent on the initial key. Some security experts developed a new variant of 16-
und DES, which each 48-bit subkey generated for each of the 16 round is
dependent of each other as well as the initial key. This new variant seems much more
eure than the standard 56-bit DES at first sight, especially considering the brute-
e attack with a gigantic computational complexity of 2" But the differential
planalytic attacks implemented for this DES variant afterwards proved that this
0’ t true. However, these attacks also proved that this variant is more secure than
standard 56-bit DES besides proving the diflerential cryptanalysis’ applicability and
ciency when compared to exhaustive search or other cryptanalytic attacks.

Biham and Shamir first developed a model for the differential cryptanalysis of
S with independent subkeys reduced to eight rounds. In fact, this model is basically
lar to the one explained in this Chapter, section 3.1.4.3; but this time some
ssary changes and additional mechanisms are established due to the independent
¢y phenomena. These mechanisms and the algorithm of the attack is not given
for the sake of simplicity, but in short, the basic idea is to adapt the scheme used
inding the subkey K& in round eight to the previous rounds and for other keys by
jzing each independently and by counting the subkey bits and analyzing the S-
§" entries and output differences independently through each round. This attack is
ssfully carried out within 250,000 pairs for the chosen plaintext version. Also, it

wen that within 2*’ known plaintexts, the attack can be successfully implemented
ll the subkeys broken '’

The attack for the eight rounds can be extended to 16 rounds with independent
na similar manner. Using three different characteristics and an additional iterative
leristic, and analyzing some of the rounds independently, all the independent

ough the 16 rounds can be found out. The entire attack requires 2°” pairs

tham, Adi Shamir, Differential Cryptanalysis of the Data I'nervption Standard, pp. 60-61.
pp. 65-68.
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derived from 2°° chosen plaintexts within 2% computational complexity where the
known plaintext version requires 2°’” known plaintexts. These are the best results

achieved ever since, far from being practical and effective but even much better than
he brute-force attack.'?

s GDES

GDES is another variant of DES, which was initially designed aiming both to
mprove the security of DES and to speed up the encryption / decryption processes.
lowever, GDES was proven to be much less secure than the original DES by some

Herent cryptanalytic attacks. Bihkam and Shamir also managed to prove this fact via
fferential cryptanalytic attack.

GDES is a structurally modified variant of DES, where some changes are made
the design of the algorithm, especially the structure and processing of the f function
‘modified so as to increase the ratio between the block size and the number of

aluations in the f function. By this way, the processing speed of the cryptosystem can
increased significantly.'?’

- Since, the some of the basic operations and the / function itself is modified in
DES, the differential cryptanalytic attack to GDES had to be modified considerably
well. This ended up with a new differential cryptanalysis method in which
racteristics are not used, but the attack is mostly focused on the / function Again,
loiting the properties of XOR, some special difference operations and equations are
ived and used. Also, sum of the key bits for specific rounds and for specific S-boxes
.analyzed within the right pairs and some counting schemes are used in the attack.
§ attack is proven to be applicable both with chosen plaintext pairs and known
et pairs. The attack is also extended to different various models of GDES with
rent rounds and successfully implemented amongst all of them. 124

- Some of the results achieved for differential cryptanalysis of GDES are given
¢ whereas the details of the attack and the mechanisms in GDES are not explained
he sake of simplicity. GDES with 16 rounds is proven to be broken easily with 6
ertexts only, and with /6 ciphertexts if independent keys are used. GDES with 22
ds can be broken with 24 pairs, hence 48 ciphertexts. Even more complicated
S models can be broken; for instance, GDES of 31 rounds is proven to be
ssfully attacked with 250,000 pairs and S/N ~ 2” and the most secure GDES
e, 64 rounds with independent keys can even be broken with 2* chosen
exts, proving that any feasible GDES model is less secure than a standard 56-bit
‘However, the differential cryptanalytic attacks with known plaintexts to GDES
its of high rounds are not recommended, since this is shown to be requiring
nely huge number of plaintexts and making the attack inefficient.'”

Adi Shamir, Differential Cryptanalysis of the Dala I‘ncryption Standard, p. 68.

. 7176,
pp. 76-77, 88,
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3.1.7 Differential Cryptanalysis of Some Other Cryptosystems

The differential cryptanalysis of some iterated symmetric block cryptosystems
ire proven to be successfully achieved as well as DES. Since in this study DES, as
eing the core and basic model of all symmetric block ciphers, is mostly focused and
alyzed, its differential cryptanalysis is also explained in detail and mainly concerned.
¢ differential cryptanalytic attacks to some other well-known ciphers are
immarized in this section to give an idea and any further detailed information is left to
ereader. It should be stressed that in some of these attacks such as FEAL, REDOC-
¢, XOR is used again for the difference operation and some special characteristics

e derived as similar to DES; but in some others, entirely different methodologies and
me difference operations rather than XOR are used for the differential attacks.

.i' ifferential Cryptanalysis of FEAL

The differential cryptanalysis of FEAL is first achieved successfully by Biham
|Shamir where they managed to attack several variants of FEAL such as FEAL-8,
L-N and FEAL-NX as well. For instance, they have proven that four-round
dard FEAL cryptosystem is breakable with eight pairs; an eight-round FEAL
AL-8) can be broken with /28 pairs of chosen plaintexts and 2™ known plaintexts.
I FEAL-N and FEAL-NX is proven to be broken faster than brute-force attack for

s N <31, hence being effective among those rounds, where for a 31-round
k2" chosen plaintexts or 2 known plaintexts are nceded.""

ilferential Cryptanalysis of Khafre

As similar to DES and FEAL, Khafre uses some kind of S-boxes and /-
ons which makes the differential cryptanalysis possible and suitable by using
sand deriving some special characteristics. Biliam and Shamir proved that the
ntial cryptanalysis of Khafie can be even more eflicient than exhaustive key
| for the known highest rounds. The 16-round Khafre can be broken with /536

plaintexts or 2" known plaintexts. Moreover, 24-round Khafre can be broken
"~ chosen plaintexts or 2”*” known plaintexts "'

rential Cryptanalysis of RC6

The differential cryptanalysis of RC6 and also some of its variants such as RC6-
6-NFR and RC6-I-NFR have been successfully implemented by some
alysts. The difference operation used in the attack is not only XOR, but also an
al operation named as integer-subtraction mod 2 is used, some unique
 and algorithms such as Hamming weight and rotation amounts; and special
ristics entirely different from the ones in DES are derived and adapted for the
Some of the results achieved within the attacks to RC6 variants are considered
iecessful. For instance, a 20-round RC6-I variant is proven to be broken with
ext pairs and a 24-round RC6-I is broken with the usage of 2% plaintext pairs.
ently, a 20-round RC6-NFR variant is broken with 2* plaintext pairs and its

m, Adi Shamir, Differential Cryptanalysis of the Data Iincryption Standard, pp. 89-104.
09-114.
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55' round version could be attacked successfully with 2’” plaintext pairs. For the RC6-

I-NFR variant, the 20-round is broken with 2° plaintext pairs and the 24-round can be
broken with 27 plaintext pairs.'"?

* Differential Cryptanalysis of REDOC-II

REDOC-II is a ten-round cryptosystem with 70-bit blocks and for each round,
ome special substitution and permutation operations are processed on data bits with a
ound key. However, instead of S-boxes, some specific enclave, permutation and key
ibles are used. For this reason, different techniques and special mechanisms are
stablished and used for the analysis of differences in the differential cryptanalysis of
EDOC-I1. The difference operation is XOR again, and the attack is carried out again
ith the aid of some specific characteristics derived for REDOC-II within the plaintext
airs. The attacks known so far are achieved by Bihkam and Shamir, which is proven to
successful and efficient up to four rounds. The differential cryptanalysis of REDOC-
for further rounds might be achieved successfully if new and better implementations
n be made. It should be noted that among the attacks for the rounds | up to 4, the
mplexities within chosen plaintexts and known plaintexts are proven to be very close
each other and this was not observed in any of the previous cryptosystems. For
tance, the differential cryptanalytic attack to the three-round REDOC-II is achieved
thin 2’ chosen plaintexts and 2°* known plaintexts, for four-round REDOC-II the

ck can be carried out with equivalent number of pairs, 2° chosen plaintexts and
own plaintexts.'

ald L. Rivest, Scott Contini. M. J. B. Robshaw. Yiqun Lisa Yin. “The Security of the RC6
Cipher”. RSA Laboratories. Technical Report, pp. 15-40, 1998,

Biham. Adi Shamir, Differential Cryptanalysis of the Data I'ncrvption Standard, pp. 115-121.
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12 Linear Cryptanalysis

2.1 Introduction

Linear cryptanalysis is another type of cryptanalytic attack generated for
etric block ciphers. This attack is invented by Mitsuru Matsiu, several years after
e invention and implementation of differential cryptanalysis. Linear cryptanalysis can
simply defined as a cryptanalytic attack that uses linear approximations to analyze
d discover the action of a block cipher, where these approximations are derived from
e statistical linear relations between the bits of the plaintexts, ciphertexts, and the
levant keys. With the aid of these linear relations, good predictions can be made for
e portion of the key bits, or the entire key can be broken. It” s shown that linear
ptanalysis is quite different from the differential cryptanalysis in implementation and

fail, however, considering the basic structure and viewing from the point of the
R [ 4 13
ign’ s core, both attacks are similar to each other."**-'*

The basic notions and the logic lying behind the linear cryptanalysis is explained

thodologies, the implementations among DES and several other ciphers, and any
ther information will be given. However, it should be stressed that since linear
planalysis is much newer than differential cryptanalysis, less knowledge and results
¢ been granted so far where new improvements and extensions are being derived

Linear cryptanalysis is generally carried out with known plaintexts since it’ s
ven that with chosen plaintexts, the performance is significantly lowered. This is
the opposite of the differential case. However, any linear cryptanalytic known
lext attack can be converted to its chosen plaintext version, if desired.

The essential and basic idea behind the linear cryptanalysis is to exploit the
r flaws in the design or the processing of the cryptosystem. Most of the
losystems such as DES, are designed to have non-linear features and accepted to
on-linear However, some lincar properties were uncovered later on which led to
inear cryptanalysis of these systems. In DES, these linear flaws or some linear
erties are proven to exist within the S-boxes where all the other operations and the

ions of the algorithm are non-linear. Thus, the linear cryptanalysis of DES is
lished by attacking to the S-boxes.'**

In other words, it” s proven that the linear cryptanalytic attack is heavily
ident on the structure of the S-boxes among DES and DES-like cryptosystems,
he S-boxes in the standard DES are not optimized against such an attack. Yet,
fthe designers of DES, Don (‘oppersmith once stated that,

ce Schneier, Applied Cryptographv - Second Fdition, p. 290.

am, “On Matsui’ s Lincar Cryptanalysis™, Technion- Israel Institute of Technology.
cal Report, p. 1. 1994.
ip.2.
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Resistance to linear cryptanalysis was not part of the design criteria of

DES."¥

This might yield the cryptanalysts to look more hopefully over linear
cryptanalysis, recalling the differential issue. Even that the strong resistivity to
differential cryptanalysis was a part of the design criteria for DES, the differential
cryptanalytic attacks generated so far have been successful to some extent. Therefore,
with the new improvements, linear cryptanalysis might be much more efficient and
impressive than differential cryptanalysis in the future.'** A more important fact is that,
due to the results achieved so far, linear cryptanalysis is proven to be more efficient
and successful than the differential cryptanalysis, furthermore, it is accepted as the

most powerful attack known on DES and DES-like block cipher algorithms at the time
of this thesis’ writing.'*’

The first step in any linear cryptanalysis is deriving the linear relations between
some of the specific bits of the plaintext, corresponding ciphertext and the key. For
DES and most of the other ciphers, this relation can be simply defined by the equation;

(rore or)o(coceo. ec)-(k ok e oK)

where, P, ..., P, can be any subset of bits of the plaintext /°, ', ..., (’; can be
ly subset of bits of the corresponding ciphertext (" and similarly K, ..., K, can be any
bset of the key or subkey bits for any round. It should be noted that in both sides of
€ equation, a single bit value, 0 or 1 is achieved. This equation denotes a linear
lation which produces a linear approximation. In other words, if the system is
mpletely unbiased or non-linear, this equation must always hold with a probability of
lor any combination. But, whenever this probability is lower or higher than 0.5, than
ere’ s a bias in the system posing a linear relation in some or all of these bits in the
uation. Exploiting this bias, some of the key bits or any single bit of the key can be
essed with some probability. The more data used and the more relations derived, the
her the probability of a correct guess. Moreover, the greater the bias, the higher the
pbability of a correct guess with the same amount of data.'*-"*" In other words, the
cess of any linear cryptanalytic attack is strictly dependent on the size of the set of
ntext / ciphertext blocks so as to provide good guesses for the key bits and this can
established by using these linear approximations derived from such sets.'*?

The linear approximations are basically achieved for each S-box independently.
0, these linear approximations are converted into linear approximation tables for
h and every S-box. In contrast, these tables are somewhat like the difference

ice Schneier, Applied Cryptography - Second Fdition, p. 293.
id, p. 293.
 Bakhtiari, R. Safavi-Naini, “Application of PVM to Linear Cryptanalysis”, University of
ongong. Technical Report. p. 2, July 25. 1994

uce Schneier, Applied Cryptography - Second Idition, pp. 290-291.

onald L. Rivest, Scott Contini, M. J. B. Robshaw, Yiqun Lisa Yin, “The Security of the RC6
(Cipher”, RSA Laboratories, Technical Report, p. 41, 1998.

Bakhtiari, R. Safavi-Naini, “Application of PVM to Lincar Cryptanalysis”. University of

ngong. Technical Report, p. 2, July 25, 1994. E
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distribution tables of S-boxes used in differential cryptanalysis. The detailed study of
these tables will be given in the subsequent section.

A simple example of a one-round linear approximation for DES is denoted in
- the Figure 3.16. In this approximation 17" bit of the plaintext X, X;, namely, 26" bit of
the key for the round /, K, > namely and several bits of the output ciphertext, Vs, Vs,
Y, and Y55 are used to derive the equation as below'" ;

?

_YI?GEIG@};@}LEBYH:K_M

As denoted in Figure 3.16, the four output bits from the S-box SS are c,7, ¢35,
Ci9, C20. The input to the S5 is the bit b5 and this input bit is derived from the XOR of
the a» , the output bit from the expansion permutation, with the subkey bit K, s.
Tracing back further, the corresponding input bit to the expansion permutation for ays
is extracted as .X;», which can also be seen from the same figure. Also, the four output
bits from S5 are processed through the P-box so as to get the resultant four ciphertext
bits which are used in the linear approximation.

This linear approximation is proven to be achieved with a probability 3/16, the
best probability or the bias achieved so far among all the S-boxes in DES '**

X
X7
E(X) K; (subkey)
a2 Ki. 26
i Die
»(Pe
bZlS
S - Boxes

€17, €18, C19, C20

4

P - Box

r

b

Y., Y, Yis, Yos

Figure 3.16 A sample one-round linear approximation for DES.'**

Bruce Schneter, Applied Crvptography - Second Fdition, p. 292. e P Sy

e e T Y

ibid, p. 291. (7o YRUeEy T
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In order to establish a suitable attack the linear approximations of S-boxes are
combined which form a compound expression with a product probability including
several S-boxes. This operation is achieved by a special method known as piling-up
lemma which is invented by Matsui. This compound linear approximations only give
information for any single round. But, using the same logic derived from the piling-up
lemma, several rounds of DES can be concatenated together so as to form linear
characteristics with known probabilities. These characteristics are also similar to the
ones in differential cryptanalysis in the basis and the purpose they are used for. On the
other hand, linear characteristics are different in implementation and details which will

be given in the following section.

Having derived the characteristics, the rest of the attack is trivial. By using
these characteristics, some bits of the key can be deduced with a computed probability
for any rounds of the target algorithm. The rest of the key bits can be found out by the
exhaustive search, or by using some additional mechanisms which are very similar to
the ones in the differential cryptanalysis. For instance, Matsui proved that some key bit
guessing techniques can be adapted to the linear cryptanalytic attack which are known
as /R and 2R-methods, just similar to the /R and 2R-attacks used in differential
cryptanalysis. But this time, the mechanism is based on the identification of some bits
of a linear approximation that depend for their value on a small subset of bits in the
targeted key. Thus, it can be assumed that only by making a correct guess for these key

bits, it” s sufficient to detect the anticipated bias in certain bits of the plaintext /

ciphertext pair.'*

3.2.2 Definitions and The Basic Model

In this section, the basic model of the linear cryptanalysis will be given brietly
with all the necessary terms, theorems, definitions, etc. However, it should also be
noted that this model is the one derived by its inventor, Matsui, but there are several
approaches alternative to this model, such as using 1 / O sums for the generalization,
applying non-linear approximations, and even combining with differentials such as
differential-linear cryptanalysis, and so on. Since, linear cryptanalysis is a newer and
more flexible attack type than differential cryptanalysis, the basic method is prone to
some changes as time goes by. It should also be remarked that since the first
implementations and mechanisms involving linear cryptanalysis were established for
DES, the basic model and methodologies described here are also based on DES.

Throughout this section and for the rest of this chapter, some notations are
used within some formulas and equations. These are described here so as to make it

clear and easy to follow.

" Bruce Schneier, Applied Cryptography - Second FEdition, p. 291.
" Lars R. Knudsen, Matt Robshaw, “Non-linear Approximations in Linear Cryptanalysis”, Advances
in Cryptology - Proc. EUROCRYPT'96, p. 225, 1996
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For any data N , where N canbe: P for any plaintext block
(" for any ciphertext block
K for any (sub)key;
X for any input block of f function
I for any output block of ffunction
Sk(x) output data x from any S-box that

k-12..8
N, stands for N in the r " round
NH stands for the 7 " bit of N

N[’.’j'kl stands for NH EBNM @le]
lel dg i ] stands for l\"[ill @1\‘[‘2] ...... @N[j"]
Nl stands for N[jI,N[i . I],N[Hz],....,t\‘[n]

As mentioned previously, the first step in Matsus’ s linear cryptanalytic attack is
to find a linear approximation of DES cipher with some probability p # 0.5. This linear

approximation can be expressed as below'"’
/JIJ’|J’2 .'“.]@(If} 12 H’]:[\l 1.2 (] (])

The equation (1) holds for 0 < a,b < 64 and 0 < ¢ < 56, since in DES, data are
encrypted in 64-bit blocks and the key size is 56 bits.

For the denoted equation (1), each of the left and right sides represent a single
bit which suggests the probability of the equation to be true or false by a value of
’p - | ¥ The linear approximations for each of the S-boxes are derived in such a
similar manner, including any combination of sets of bits that provide a probability
value for each of the 64* 16 entries in that S-box’ s linear approximation table.'*

Matsui derived two algorithms to extend the equation (1) to the whole of the
encryption system and to calculate the required data so as to suggest correct guesses
for right and left sides of the equation within a calculated success rate. The algorithms,
equations and the relevant information given below are all extracted from the study of

- Shahram Bakhtiari.
Algorithm [:
Let 7" be the number of plaintexts such that the left part of the equation (1) is 0 (having a zero

 parity);
Let N be the number of plaintexts;

:.141 Shahram Bakhtiari, “Lincar Cryptanalysis of DES Cipher”, University of Wollongong, The Report
for Master of CS Degree, p. 8. July 1, 1994,

" ibid, p. 8.

im Eli Biham, “On Matsui” s Linear Cryptanalysis”, Technion- Israel Institute of Technology,

‘Technical Report, p 2, 1994 O
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brings the necessity of linear approximation tables of S-boxes and the linear
approximations of S-boxes By combining these linear approximations, the actual
approximation for any » rounds will be delivered aftermath.

¢ Linear Approximation of S-boxes and Linear Approximation Tables

The linear approximation of S-boxes finds a linear relation between input bits
and output bits of S-boxes."”” These linear relations could be derived for each S-box by
choosing a subset of the input bits and the output bits, calculating the XOR (parity) of
these bits for each of the possible 64 inputs of that S-box and counting the number of
inputs whose subset’ s parity is 0. This implies that if the S-box is linear in the bits of
the subset, all the inputs must have a zero parity of the subset, in other words the XOR
- combination of all those bits must end with a 0 value. Conversely, if the S-box has a
non-linearity, is affline in the bits of the subset namely, all the inputs must have a parity
|. It should be mentioned that whenever the number of zeroes come closer to the
number of ones within any subset, that subset is proven to be more non-linear. "’

Matsui calculated the number of zero parities for each of the 64*16 entires,
which are the possible subsets of the input and the output bits of each of the S-box.
This calculation can be put into a formal definition as follows'* ;

For any S-box Sk (k=1,..8),0 < a <63 and 0 < #< 15, it could be defined
that NSk(a, /7 ) is to be the total number of inputs out of 64 possible input values which
suggests that an XORed value of the input bits masked by a is equivalent to an XORed
value of the output bits masked by /2 The formulation of this statement is given as
below where e stands for the bitwise AND operation, x is the input to Sk,

NSk(a, ) =H {x|0 <x< 64,( @ (x[’] . a[*})) = ( @ (Sklfl(x) . /;I’l))} B
=0

s=0

In other words, a and £ are the bitwise vectors which are used to derive the
scalar products with the S-box input and output bits via AND operation; and
consequently, the outputs of these scalar products are the subsets of bits that will be
XORed with each other to provide the necessary parities.'” In fact, this definition
gives the inner structure of the scheme generally preferred while implementing the
inear approximations. Using this definition, tables within 64*16 entries can be
constructed for each of the eight S-boxes and they are named as linear approximation
ables.”*' (some refer as linear distribution tables."*®) Therefore, it can be concluded

* Shahram Bakhtiari, “Linear Cryptanalysis of DES Cipher”, University of Wollongong, The Report
or Master of CS Degree, p. 8, July 1, 1994,

" Eli Biham, “On Matsui’ s Linear Cryptanalysis”, Technion- Israel Institute of Technology,

lechnical Report, p. 2, 1994,

“ Shahram Bakhtiari, “Linear Cryptanalysis of DES Cipher”, University of Wollongong, The Report
) Master of CS Degree, p. 9, July 1, 1994,

" Ronald L. Rivest, Scott Contini, M. J. B. Robshaw, Yiqun Lisa Yin, “The Security of the RC6

ock Cipher”, RSA Laboratories, Technical Report, p. 42, 1998,

.F..ll Biham, “On Matsui’ s Lincar Cryptanalysis”, Technion- Israel Institute of Technology,

echnical Report, p. 2. 1994
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that the linear approximation table of any S-box describes all the possible values, hence
the probabilities for all the possible subsets of that S-box."*®

As an example, the linear approximation table of S5 is given in the Table 3.11.
An important fact should be stated, which is that all the values for the entries in the
linear approximation tables are subtracted from 32, valid for the table of S5 as well.
This is done so as to represent the subsets’ linearity in a simple manner by subtracting
the number of half of the inputs ( 64/2 = 32 ) from the values of subsets By this way, it
can be easily analyzed from the tables that the 0-value entries suggest purely non-linear
subsets, whereas high negative or positive values suggest linear (affline) or close to
linear subsets."”” In other words, for the basic linear cryptanalytic attack the difference
 between NSk(a, /) and the value 32 is the crucial point which provides the distance
between NSk(a, /) and mid-point 32 (the distance of non-linearity), where only a few
entries are proven to be far from 32 among all the S-boxes."**

Analyzing Table 3.11, some important properties of S5 related with linear
cryptanalysis can be figured out. For instance, it can be seen that about 30% of the
entries have value 0 implying that S-box S5 has entirely non-linear subsets which are
useless for the linear cryptanalysis by a percentage of 30. It could be further analyzed
from the same table that the highest difference entry value is -20 which provides the
subset with the highest bias or the highest linearity among S5. This is the entry (10,
Fy) where 10, is the input subset mask (vector) and F, is the corresponding output
subset mask of the bits for S5. In other words, this shows that out of the 64 possible
XOR combinations of the subsets of 6 input bits and 4 output bits of the S5, only 12 of
‘them have a bias when the input bits are ANDed with 10 and the output bits are
ANDed with F,. This can be identified from the equation (3); when a = 10, and = F,,
only 12 different combinations out of the 64 possible subsets satisfy the equality.
‘Henceforth, it can be concluded that only 12 out of the 64 inputs, the parity of the four
output bits is the same as the value of the second input bit which is 1. In fact, this
property of S5 was found out by Shamir long before the invention of linear
cryptanalysis, however, nobody found a way to exploit this weakness at that time.
Furthermore, this specific entry, besides having the highest linearity for S5, is proven
1o be the most linear entry among all the S-boxes in DES."*’

It should be noted that in Table 3.11, the distance value is denoted as 32 for the
entry (0, 0,). But this entry is not taken into consideration because both all the input
and output bits of the S-box is 0, which provides 64 possible combinations with parity,
or this entry is possible with a probability of 1, thus it’ s trivial and requires no
Cryptanalytic analysis.

" Shahram Bakhtiari. “Linear Cryptanalysis of DES Cipher”, University of Wollongong, The Report
for Master of C'S Degree, p. 9, July 1, 1994,

“Eli Biham, “On Matsui’ s Linear Cryptanalysis”, Technion- Israel Institute of Technology,
Technical Report, p. 2, 1994.

ibid, p. 2.

~ Shahram Bakhtiari, “Lincar Cryptanalysis of DES Cipher”, University of Wollongong, The Report
Jor Master of CS Degree, p. 9. July 1, 1994,

" Eli Biham, “On Matsui’ s Linear Cryptanalysis”, Technion- Israel Institute of Technology,

fechnical Report, p. 2. 1994,
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The probabilities of such linear approximations’ validity for the S-boxes are
required in order to continue the attack and this is trivial. The probability can be
calculated as the distance from 1/2 (32/64) within that entry. '*! For example, the

probability of the most linear entry mentioned previously is 12/64, since its distance

1/2 - 20/64 = 12/64. Therefore, an entry with value 0 has probability

value is -20, p’

"

~ Eli Biham, “On Matsui’ s Linear Cryptanalysis”, Technion- Israel Institute of Technology,

ical Report, p. 3, 1994,

% ibid, p. 2.
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p’ = 1/2 which shows its pure non-linearity. Another example can be observed from
Table 3.11, where the entry (2,, 1,) has a probability p' = 1/2 + 4/64 = 9/16 since its
distance is 4.

In other words, each element of the linear approximation tables gives a linear
expression based on some bits of the input and output of the S-boxes, and some bits of
the subkey for any round. Recalling from the equation (3), each linear expression can

be accepted true with probability denoted as below'®’ ;

g NSk(a, p)
T 64 e

It was also mentioned previously that the parity of the four output bits is the
same as the value of the second input bit for the entry NS35(10, Fy) with the probability
p'=12/64. Using this information and analyzing the f~function for any single round, an
- extended linear approximation for S5 can be derived with the addition of relevant
subkey bits and output bits of the f~function. The four output bits of S5 are found to be
the bits 72, 13, /4 and /5 of the entire 32-bit output block of the S-boxes. After P
permutation, these bits become 7, /8, 24 and 29 respectively, as the output bits of the
Ffunction. A further analysis of the round function gives the information that the 4™ bit
of the 6-bit input to S5 is also the 22™ bit of the 48-bit input block to S-boxes. In
addition, since this 22™ bit is the XORed output of the 22™ bit of the subkey K, with
the 22" bit of the output of expansion permutation, then the related subkey bit
~necessary for the linear approximation is easily extracted as bit 22. Also, the related
input data block ( the right 32-bit input block, denoted as X, ) bit can be found as the
15" bit because this bit becomes the 22™ bit of the expanded data block after the
expansion permutation. Thus, having made all these analyzes, the linear approximation

of the /-function for any single round i can be formed as the one below'® ;

X{l_‘-] ® !,[?.18.24.29] = K[zz]_ (4)

It should be stressed that the probability of this equation is true with 12/64,
which is exactly the same probability of the entry of S5 itself.'®® This deduction is
trivial because this equation is a simple extension of the linear approximation of S5,
where no other additional approximation, or probabilistic property is used. The
additional subset of bits are only correlated with no other S-box but S5
i
For any linear approximation, the required number of plaintext / ciphertext
pairs can be calculated easily by using the bias of that approximation.. The distance
value of any entry in the linear approximation table divided by the total number of
subset combinations gives the bias or the probability of the bias. For instance, the bias

**Shahram Bakhtiari, “Linear Cryptanalysis of DES Cipher”, University of Wollongong, The Report
or Master of CS Degree, p. 9, July 1, 1994,

“ibid, pp. 10-11.

“ibid, p. 11,
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of the linear approximation for S5 is -20/64. In fact, the bias is the difference between
1/2 and the probability p". If the bias is denoted by e, then it can be shown that'®*-'% ;

3

B

Similarly, the bias for the linear approximation of S5 and hence, of one-round /-
function can be found as ¢, = 12/64 - 1/2 = -20/64. Consequently, Matsui proved that
the amount of plaintext required to exploit this bias with a high success rate is ¢ * ¢,”
where ¢ is a constant dependent on the style of the attack mounted. Later on, ¢ = 1 is
accepted commonly so as to simplify the proposition.'”” Thus, for any linear
approximation with the bias ey, the number of known plaintexts needed to carry out a
successful attack is accepted to be ¢,°. '® For instance, the linear approximation of

2
(24)2 ~ 10 known plaintexts to be successful.
(20)

one-round /~function requires about

It can be easily seen that the greater the bias, the fewer the number of plaintext
[ ciphertext pairs required. It” s proven that the data requirement for a linear
cryptanalytic attack is inversely proportional to the square of the bias of the linear
approximation used in that attack. This is issued as a noticeable and interesting fact
when compared to differential cryptanalysis; since in differential cryptanalysis the data

requirements are proven to be inversely proportional to the probability of the
differential '’

When considering the required amount of data for such an attack, it should be
stressed that the corresponding ciphertexts of all the known plaintexts should be
available to the cryptanalyst, so it would be better to say known plaintext / ciphertext
 pairs rather than known plaintexts. These plaintexts can be randomly chosen, however
all these plaintexts must be encrypted under the same key. Another important fact is

that each of these linear approximations only find out a single bit of the key within the
involved known plaintext / ciphertext data.'”

It should be noted that, many other linear approximations can be constructed
with different probabilities within any single S-box, or several S-boxes But whenever
several S-boxes are combined, a theoretical assertion is required to calculate their
compound probability. Similarly, these one-round linear approximations could be
extended further to any number of rounds with the requirement of a method or formula
$0 as to calculate the overall probability. For such iterations, there exists a method

' Eli Biham, “On Matsui’ s Linear Cryptanalysis”, Technion- Israel Institute of Technology,
Technical Report, pp. 2-4, 1994.

Ronald L. Rivest, Scott Contini, M. J. B. Robshaw, Yiqun Lisa Yin, “The Security of the RC6
Block Cipher”, RSA Laboratories, Technical Report, p. 41, 1998.

T ibid, p. 42.

*“Eli Biham, “On Matsui’ s Lincar Cryptanalysis”, Technion- Israel Institute of Technology,
Technical Report, p. 4, 1994.

" Ronald L. Rivest, Scott Contini, M. J. B. Robshaw, Yiqun Lisa Yin, “The Security of the RC6
Block Cipher”, RSA Laboratorics, Technical Report, p. 41, 1998,

’ Eli Biham, “On Matsut’ s Linear Cryptanalysis”, Technion- Israel Institute of Technology,
echnical Report, p. 4, 1994.
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based on a theoretical lemma which is proven to be valid and useful. It’ s named as
piling-up lemma and will be explained in the following paragraphs.

¢ Piling-up Lemma

As stated previously, whenever more than one S-box is combined and used
within a linear approximation, or any linear approximations with different rounds are
combined together, an extra mechanism is required to achieve the resultant bias or
probabilities properly. Matsui asserted the piling-up lemma which is a simple and basic
formula based on theoretical facts so as to satisfy this requirement. It can be simply
described as a method and the related formula that computes the bias and hence, the
compound probability of the combination of linear approximations, up to any number.
The lemma can be formulated as below where p is the compound probability, / is the
total number of different linear approximations of the S-boxes or of the f-functions

with any number of rounds, p, " is the probability of each linear approximation'”" ;

b il ﬁ ..

p=—+2" - e

gy '

2 o 2
This lemma is also sometimes denoted with a similar formula, but this time bias

values of each approximation, ¢, * s are used where the compound bias is e. This is also

given in the following formula'” ;

_ ni-1
8—2 '”U:‘,

i
.l"—]

A simple example of piling-up lemma can be given when two different S-boxes
with different approximations, p, and p, namely, are to be combined to form a new
linear approximation. By assigning 2 to /, the compound bias or probability of the new
approximation can be obtained using the piling-up lemma. Thus the probability of the
approximation with two S-boxes can be found as'” ;

p'=ppy+(1=p)-(1-py)
174_1?5_

Similarly the bias of their linear approximation can be formulated as :

e=2-¢-¢

' Shahram Bakhtiari, “Linear Cryptanalysis of DES Cipher”, University of Wollongong, The Report
lor Master of CS Degree, p. 12, July 1, 1994.

*Eli Biham, “On Matsui’ s Lincar Cryptanalysis”, Technion- Isracl Institute of Technology.
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Ronald L. Rivest, Scott Contini, M. J. B. Robshaw, Yiqun Lisa Yin, “The Security of the RC6
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14



Consequently, the linear approximation with any number of S-boxes, or any
number of different approximations of several rounds can be combined and their
probabilities can be found out. Another important fact is that with the existence of
piling-up lemma, the linear characteristics can be developed and used in linear
cryptanalysis. However, the applicability and validity of piling-up lemma whenever the
issue of key-dependency is included in the attack is still being questioned and argued.
But it” s also remarked that no other lemma or alternative method is found yet, which
turns out the piling-up lemma to be the best and only mechanism for calculating
concatenated probabilities amongst the linear cryptanalytic attacks.'”

¢ Multiple Linear Approximations

Another technique in the linear cryptanalysis terminology is known as multiple
linear approximations. Their use is proven to be enhancing a basic linear cryptanalytic
attack in some occasions. The basic idea in multiple linear approximations is to reuse
the data one already been set up in a different way. In fact, the plaintext / ciphertext
data is exactly the same, but the difference comes from using a different linear
approximation with different subsets of bits each time. Thus, it could be made possible
to extract more information about the key being searched by using a variety of linear

. H ; 177
approximations together.

The most important thing that must be taken into consideration is that this
technique is mostly based on the bias of the different approximations; its success
heavily depends on the biases achieved from different approximations. The higher the
bias, the more successful and eftective the attack will be. But, if the biases are much
less for the newly developed ones than the original approximation, this technique
becomes useless.'”

The fact that how these different approximations with different biases might
enhance the linear cryptanalytic attack is shown to lie behind the theoretical aspects of
approximations and their biases. This can be simply explained here as follows:

Given n approximations A, with biases ¢, which hold for 0 </ < n-1. It is also
known that the amount of plaintext / ciphertext required for Ay is proportional to ¢;’.
Therefore, as a best-case attack it could be assumed that the amount of data required
to successfully use all n approximations (4, for 0 < i < n-I) is proportional to

Z"-' AL
¢ o
i=0 !

For instance, by using n linear approximations all having the same bias the
plaintext / ciphertext requirements for that attack might be reduced by a factor of #. In

" Ronald L. Rivest. Scott Contini, M. J. B. Robshaw, Yiqun Lisa Yin, “The Security of the RC6
Block Cipher”, RSA Laboratorics, Technical Report, pp. 42-43, 1998,
" ibid, p. 43.
ibid p. 43.
ibid, p. 43.
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n-1 2
(Zi=ﬂe* ) 180

general, it’ s found out that the reduction rate in data needs is around 5
€
0

e Characteristics

The characteristics that are developed and used in the differential cryptanalysis,
are one of the basic schemes used in linear cryptanalysis as well. The basic
methodology and the purpose of the use of the characteristics in linear cryptanalysis is
similar to the differential ones that was explained in section 3.1.2 of this chapter.
However, it must be stressed that there are some remarkable differences in the design
and implementation of the characteristics in linear cryptanalysis. First of all, the bit
differences (XORs) of the pairs were used in the characteristics of differential
cryptanalysis; but in linear cryptanalysis, the bits set in the characteristics denote the
subset of bits whose parity is approximated. Whenever a linear characteristic is
considered, the input and output halves must not be taken as neither the actual values
of bits nor the XORs of the actual values of bits.'"*' Other differences between
differential and linear characteristics are the implementation of iteration and
concatenation of characteristics, combined probability calculations, the criteria for the
choice of input data, the effect of right and left input halves, etc. which will be
discussed throughout this section.

As seen in differential cryptanalysis, the simplest fundamental characteristics
with the highest probability are the one-round characteristics in linear cryptanalytic
attacks. Thus, a one-round linear characteristic is defined as follows;

A one-round characteristic is a tuple (Qp, Qf, Qg, Y2 + p) in which (Qp), =
(Qp), =A", (Qp)x ® (2))x =a’ and in which 2 + p is the probability that a random
put block 7°, its one-round encryption (' under a random subkey K satisfies
P-Qp®C-Qp = K-Qy where € is the subset of bits of the data before the round,
Oy is the subset of bits of the data after the round and Qy is the subset of bits of the
key whose parity is approximated '**

Recalling from the linear approximation issue, the p value in %2 + p is in fact the
bias of that characteristic, where "2 + p is sometimes denoted as p .

Following the definition, it’ s shown that one-round linear characteristics can
easily be derived, as seen in differential cryptanalysis. The easiest way with the best
probabilities for one-round characteristics is suggested to be constructed with one
active S-box; which implies that one has to choose a non-zero entry in one of the S-
boxes and the related subsets Qp, Qr, Q'™ For example, the one-round characteristic
shown in Figure 3.17 has only one active S-box, S5 namely, and in order to maximize
its probability, the characteristic uses the maximal entry for S5. This provides a one-

?"R{mald L. Rivest, Scott Contini, M. J. B. Robshaw, Yiqun Lisa Yin, “The Security of the RC6
Block Cipher”, RSA Laboratorics, Technical Report, p. 43, 1998,
| e A § i . I i y . F
= Eli Biham, “On Matsui’ s Linear Cryptanalysis”, Technion- Israel Institute of Technology.
echnical Report, p. 4, 1994
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round characteristic with probability 1/2 - 20/64, which is 12/64. It can be seen from
the Figure 3.17, that the input a’ to the f~function is (00 00 80 00),, and the output of
the /~function is (00 00 FO 00), which implies the maximal entry for S5 as (10, F,).
This subset of input / output bits of S5 result with a -20/64 bias which was explained in
the previous sections and was also given in Table 3.11.

C Op = (21 04 00 80,, ') )

.

1 ’ - —— E =
L A’ =21 04 00 80, p S RSNEWSE) o by s
P(00 00 FO 00.)

!
@ = (21 04 00 80, B’ & 00 00 80 oorD

Fa Y

Figure 3.17 The one-round characteristic with a probability 1/2 - 20/64."**

In fact, this one-round characteristic is not the best among the linear ones. The
best one-round characteristic is trivially known to be the one with no active S-box with
a probability 1 and it’ s denoted in Figure 3.18.

C Op = (0, R)) )

;

. A =10 & = '
e F 0 p'=1

N

;

(" wcam )

Figure 3.18 The one-round linear characteristic with a probability 1.'*’

It’ s mentioned that one-round characteristics can also be constructed with
more than one active S-box where the entries are chosen among two or more S-boxes
and the resultant probability is calculated by the piling-up lemma easily. However, it
should be stressed that unlike in differential cryptanalysis, one does not need to have
the same values in common bits of both S-boxes; hence, if the bits common to two S-
oxes are affected, this won’ t imply that both these S-boxes are active in any linear
eryptanalytic attack. Furthermore, it” s stated that if both of these S-boxes are active,
he value of the common input bits become the XOR of their values from both S-

" Eli Biham, “On Matsui’ s Lincar Cryptanalysis”, Technion- Israel Institute of Technology,
echnical Report, p. 5, 1994.
“ibid, p. 5.
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boxes, since the same bit is used twice in a linear equation, hence it (the repeated bit)
cancels itself. In theory, it” s proven that the probability calculated by this way is the
average between all the possible random keys. In DES, this probability is found to be

true for all the keys when applied in practice and this is mentioned to be due to the
design criteria of S-boxes '*

The concatenation of characteristics with any number of rounds can be
established in linear cryptanalysis as well as the differential cryptanalysis. The formal
definition of the concatenation of linear characteristics is given as follows;

An n-round characteristic Q' = (Q’,,Q;.,Qi- Y2+ p,) can be concatenated
with an m-round characteristic Q? = (Qf, ,Q%,Qi- Ja+ py) if Q} equals the swapped
value of the two halves of Q}, . Thus, the concatenation of the characteristics Q' and
Q% is the (1 + m) round characteristic Q = (Q},,Q%,Q} ® QL % +2-p,-p,)."Y

When a total of / different characteristics are concatenated, the probability of

the resultant characteristic, % + p , can be found easily which is denoted below'™* (in
fact, it” s the piling-up lemma),

[
Va4 p:'/zlz"di-np,.
i=1

An interesting fact with the characteristics of linear cryptanalysis is the specific
property of the structure within the rounds. For any single round of the n-round
characteristic, the input subset of bits, @’ namely, to the f-function is derived by
XORing the subset bits of right half of the input to that round by the subset bits of
right half of the output from that round. The output subset of bits from the f~function,
A'is XORed with the subset bits of left half of the input to that round, to form the new
right half input for the next round and the subset bits of right half of that round’ s input
becomes the new left half input for the next round. This causes the right halves of the
input and output data of any round to be free of choice for any characteristic. In other
words, since a’ is the XOR of (Qp)z and (Qy)r, then R’ can be of any value, and
without knowing the right halves, the cryptanalyst can freely continue the analysis with
that characteristic. In contrary, the values of the (p), and (€27), are of importance to
the cryptanalyst and /.” must be specifically chosen for the first round of any
characteristic. Noticeably, this is just the opposite of the scheme in differential
cryptanalysis, since for each single round of the characteristics in differential
cryptanalysis the right half of the input XOR must be satisfying necessary values and a
specific 2 ' should be chosen whereas the left half of the input XOR, /.", can be of any
value. In fact this phenomena is stated to be one of the basic differences between linear
differential cryptanalysis.'® This can also be analyzed from figures 3.2 and 3.18,

* Eli Biham, “On Matsui’ s Lincar Cryptanalysis”, Technion- Israel Institute of Technology,
echnical Report, pp. 5-6. 1994
ibid, p. 6. e S
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1

i {

18 I_h_ il =




where the free variable is at the left half in the differential cryptanalysis’ characteristic
and at the right half in the linear one respectively.

: It should be stressed that this difference is due to the structure of the
. implementation in the two attacks. In differential cryptanalysis’ characteristics, all the
inputs to the rounds, f~functions and their corresponding outputs are all composed of
the differences of data bits (XORs) whereas in linear cryptanalysis’ characteristics, all
these inputs and outputs are derived by the subsets of the data bits."”

Comparing the use of characteristics, another important difference between
linear and differential cryptanalysis is pointed. It’ s noted that this difference comes
from the ability to use differentials in which only the values of €2, and €, are in
concern. In differential cryptanalysis, it” s seen that whenever several characteristics
have the same values for 2, and Q; , they can be directly concatenated or iterated and
consequently, they can be viewed as one differential in which the internal information
can be ignored. However, in linear cryptanalysis, the internal data belonging to several
characteristics contain the information about the subset of key bits participating in the
linear relations and approximations. For instance, it s proven that; if two
characteristics with equivalent values of €, and €7 and with similar probabilities exist,
they might cancel the effect of each other if the parity of the subset of the key bits is
not the same, or if their probabilities are the complement of each other while the parity
of the subset of their key bits is the same. Thus the internal information cannot be
ignored and therefore, it requires more attention and effort whenever one suggests or
proposes for a linear characteristic. '’

3.2.3 Linear Cryptanalysis of DES with Reduced Rounds

The linear cryptanalysis of DES for any number of rounds is successfully
achieved with the use of necessary characteristics, linear approximations and additional
schemes such as counting the key bits. In the following sections, some of the linear
eryptanalytic attacks against DES reduced to some rounds will be discussed.

3.2.3.1 DES Reduced to Three Rounds

Using some linear approximations for the ffunction of DES and by
concatenating these approximations, the linear cryptanalytic attack to three-round
variant can be carried out easily. The scheme denoted here uses the linear
approximation given in equation (4) for the first and third rounds, and the linear
approximation for the second round is derived from these two approximations. As a
result, combining these linear approximations, the resultant linear approximation and
the compound probability can be achieved.'”

~ Eli Biham, “On Matsui’ s Lincar Cryptanalysis”, Technion- Israel Institute of Technology,

hnical Report, p. 6, 1994.

ibid, pp. 6-7.

Shahram Bakhtiari, “Linear Cryptanalysis of DES Cipher”, University of Wollongong, The Report
Master of CS Degree, pp. 11-12, July 1, 1994,
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The linear approximation for the first and last of rounds of three-round DES is
established as follows;

‘\,wa ® }'.l[?,ls_z-l‘zo] _ Kllzz]
‘\,gls} ® f'_';[T‘Is'N'Z()I _ K;zz]

As can be analyzed from the Figure 3.19, in the first round, the output of the /-
function (/) is XORed with the left half of the input plaintext (denoted as 7 in the
figure) to become the input ., for the second round. Also, the right half of the input
plaintext (denoted as 7’ in the figure) is the input to the f~function, X namely, for the
first round. Similarly, the left half of the resultant ciphertext (C) is produced by
XORing the output of the f~function in the third round (/3) with X, where the right half
of the resultant ciphertext ((;) is also the input to the f~function in round three, X,
namely. These can all be denoted as follows,

X,=F@P,, thus /[, =X,®P,
Co=FE®X,;; thus £, =X,®C,
X, =P,
X,=C,

These equalities can be derived easily by the very nature of the DES algorithm.
Using these for the linear approximations of the 1* and 3" rounds, these
approximations can be rewritten as follows which discard the F;, ¢ s from the linear
relations;

._¥,121.|3.24.3u| @® P,I,?‘Is'u'z‘)] @ ).,llsj _ K!z:
‘k.g?,ls,uzu] @(.L?.ls,y.:u] @(,LIS] = ngz]
These two equations can be combined together via XOR operation which

discards the .Y variable and produces a single equation. Henceforth, this equation gives
the linear approximation of three-round DES which is denoted as follows;

1),[;']"'24'29] (D(,H.IK.ZJ.:‘)] ® !’}_'SI EB('L”I e K||22] GBK_F

Using the piling-up lemma with the two probabilities (which is the same
probability: 12/64) derived from the linear approximation table of S5, the probability of
the linear approximation for three-round DES can be obtained as follows'” ;

o Lo 2( l)__‘_ (12 _'.)[.'3 _1)_
p=5+2 11 P=5)= 5+ g~ \eq ~7) = 06953124

1=1 =

Thus, the single bit of the keys for the first and third rounds can be obtained
with a probability around 0.7. This implies that the linear cryptanalytic attack against

** Shahram Bakhtiari, “Lincar Cryptanalysis of DES Cipher”, University of Wollongong, The Report
or Master of CS Degree, p. 12, July 1, 1994
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three-round DES can be mounted successfully within the requirement of 25 plaintext /
ciphertext pairs to find the single key bit. ( Since the probability is 0.7, this implies a

bias of 0.7 - Y2 = 0.2, and the data requirement is )

(02)?

[7.18.24,29] /-I\ E [15] ¥
(‘fr 8
!
34

Figure 3.19 Linear Cryptanalysis of three-round DES.'**

It” s worth to mention that the linear approximations denoted in the Figure 3.19

15, at the same time, a three-round characteristic for the linear cryptanalysis of DES
rteduced to three rounds.

13.2.3.2 DES Reduced to Ten Rounds

_ The linear cryptanalysis of ten-round DES can be obtained by using the similar
logic and schemes explained in the attack to three-round DES. Some necessary linear
relations are derived for some of the rounds which are proposed to be the best
‘approximations achieved so far. By combining these approximations, a final linear
approximation for the ten-round DES is constructed with a resultant probability. This
10-round linear approximation is also used for the linear cryptanalysis of 12-round
DES, which will be explained in the following section. The linear cryptanalysis of 10-
10| ndw[s)ES is also included in the Figure 3.20, so it can also be analyzed from that

igure ', where the input, output and the key bits used in the linear approximations are
denoted.

Shahram Bakhtiari, “Linear Cryptanalysis of DES Cipher”, University of Wollongong. The Report
0r Master of CS Degree, p. 11, July 1, 1994.
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The core of the 10-round linear approximation is shown to be three linear
approximations derived from the S-boxes S1 and S5. Using the entries and the

probabilities provided from the linear approximation tables of these two S-boxes, the
following approximations can be derived'” ;

81:  xP@plsusl o gl % from the S5 entry (10,, F,)
)
2 x®lgFE - k4 ,p= g from the S1 entry (4, 4,)
B el gl }‘% from the S5 entry (10, Ey)
)

Using the first equation of the notation above in the second, eighth and tenth
rounds, the second equation a2 in the third and seventh rounds, and the third equation

a3 in the fourth and sixth rounds; the linear approximations for seven rounds of 10-
round DES can be found as below“ !

X[H] ® 1 [7.08,24,29] _ K[zzl
Xlu] @ l's[-”‘ 24.29] _ Klzz]
,([;_q ® !‘-{?_ls_zuuf = K:;:I

for the 2™ round
for the 8" round

for the 10" round
2ol @ gl = kil for the 3"

round
Y[zul ® },lnsl i Kful for the 7" round
XU @ pfrnas) _ gl for the 4" round

Xley gl l’ 13.24] . =K [22] for the 6" round

By the structure of the DES algorithm, the following deductions can also be
made along the ten rounds;

I, =P ® X,

F,=X,_,®X,,, for3<i<9
Plti_‘Y‘J(B(H

Xm:(‘!,

Inserting these equalities in the former seven linear approximations, the linear
pproximations for these rounds can be rewritten as follows'™ ;
X[I‘i]@P[?IIHZ?]EB ,‘[n:n 29) _ K[zzl
15 ?IIIZ-IE 7,18,24,29] __ 22
Xl @ xlrsuvl g xl P = gl
W15 7,18,24,29 v 7,18,24.29] _ 22
M@ x| T 1 I = gl2]
29 15 115 4+
e X! g xivl = ki

Shahram Bakhtiari, “Lincar Cryptanalysis of DES Cipher”, University of Wollongong, The Report
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KM vl sl
Xi”l @A’_£7""24] ® Xj[r.u,n] = KEHI
Xi.”l ® A"_,[?’"‘“] @ ‘X-E?,Il,u] ™ Klzz]

XORing all these seven approximations, the compound linear approximation
for the ten-round DES is achieved as'” ;

P[T.IS.I—L!'J]

| ® (-.!:Js,u,zu] GD('!,_”] 05 Kiznl ® K-[‘4-l| ® KLM! ® Kin] ® K.!,“] ® Kin] ® Kl[:I]

This is stated to be one of the best linear approximations for 10-round DES

found so far. Using the piling-up lemma, the probability of this approximation can be
calculated as™ ;

e ’[ 1]_1 ,,[12 1J‘[30 1)’(42 1]’"
p-5+2 [Il [)‘—'2 -j;+2 a"j’- e = =

-— sy
2 2) \64 2/ \64 2

1
2

It’ s proven that another best approximation with the same probability can also
be derived in a similar way exploiting the round symmetry of the DES algorithm. By
applying the linear relation in al to the first, third and ninth rounds, a2 to the fourth
and eighth rounds and a3 to the fifth and seventh rounds of DES and by making the

replacements and combining the seven approximations via XOR, the second best linear
approximation for 10-round DES can be found as™" ;

3

(_rL?,u,za,z-)] ® ]1L7,|s,z4.19j ® ‘“.r[lﬂl i Kln] @D Kl-u] ® K.[’ul ® K;zz] @Kiu] @ Kizz] ® Kl[u]

1
The probability of this approximation is also calculated as p = 5 1,53x2 "

which is exactly equal to the probability of the first linear approximation for ten
rounds. Thus, several bits of the keys for all the ten rounds can be retrieved by these

two approximations. Any other linear approximations, but with less probabilities can be
achieved using the similar scheme so as to guess the other bits of the keys.

3.2.3.3 DES Reduced to Twelve Rounds

The linear cryptanalysis of 12-round DES can be achieved by establishing the
linear approximations for 12-round DES. When the basic methodology is used, in
order to mount a successful attack for 12 rounds, the best linear approximations of 10-
tound DES are required. Since these were derived in the previously mentioned attack,
the 12-round linear cryptanalytic attack can also be carried out. In other words, the
linear cryptanalysis of DES reduced to 12 rounds explained here is the extension of the
10-round attack by adding a first and last round to the ten-round characteristic.

Shahram Bakhtiari, “Linear Cryptanalysis of DES Cipher”, University of Wollongong, The Report
Master of CS Degree, p. 14, July 1, 1994,

ibid, p. 14.
ibid, p. 14.
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However, it must be stressed that all the former attacks and this attack can be carried
out with different linear characteristics and schemes as well.

Both the two best 10-round linear approximations given in section 3.2.3.2 can
be adapted for the rounds two to eleven to derive the linear approximations of the ten
rounds of 12-round DES. Thus, the approximations are derived as follows*"* ;

X[:r 18,24,29] ® Y[? 18,24,29] ® ‘l [n] ]\IMI ® hl“l EBK'NI (_BK[n] ® K{ul ® K[n] @K[n]
k{?l! 24, 2')] Q‘) YE?JS 24, 2‘)' (U \Il‘} K[H] @ Kl[-l-l] @KI“] &B A[IEI @Klﬂi @K ’I] O K ”i

These can also be analyzed from Figure 3.20 where the 12-round characteristic
within the embedded 10-round characteristic denoting the relevant subsets of bits for
each round is given. Exploiting the basic properties of DES algorithm, the following
equalities, which can also be analyzed from Figure 3.20, are also shown to be valid;

.\}gf‘ m-;
,x,‘

X
g

O!

i ,u

By substituting these equalities in the two linear approximations for 12 rounds,
and reconstructing the equations, the two best known linear approximations for the 12-
round DES can be achieved as follows™” ;

!,f[‘?‘n.u.zu| ® !.;{?,w_u_:ug ® ( -l?,ls.::.zvl (D(-“.*I ® ‘;,-Il;sl -
Kizz} ® ‘K.{lH! ® Kll-’] ® K!,“i & K‘I“} ® KLH] b K',I,H]

(1'[:,13.24\:9} @ f,;[z?.m.u,_m] @ l;,{[?.lx,zq.w] ® P,E;H] @ !"l[nl i
!\i:.’f' ® K’i-ﬂl ® Aflz.’] @ K{[,EZ] ® Kl“f ® Kizz} ® K’{,n]

Each of these approximations are proven to be true with a probability of
1/2 - 1.53 x 277, which is exactly equivalent to the probabilities achieved for the best
linear approximations of 10-round DES "

Shahram Bakhtiari. “Lincar Cryptanalysis of DES Cipher”, University of Wollongong. The Report
Master of CS Degree, p. 14, July I, 1994,

ibid. p. 16.
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It* s stressed that in order to implement the attack successfully and efficiently,
one should know how the plaintexts, ciphertexts and keys affect the result of these two
linear approximations. This is necessary, because it can be seen from both of the
approximations that some bits of the / are included in the equations. All the other
subsets of bits in the left side of the equations are trivially known since they belong to
input plaintext and output ciphertext halves. However, the / bits are unknown, which
brings the necessity of implementing a mechanism to guess those bits in order to find
out the key bits in the right side of the approximations.

The mechanism is derived by the use of effective bits. Effective text bits are
defined as the bits that affect the left hand side of the linear approximations. For
instance, considering the first 12-round linear approximation,
plrisnelg a2l g eIl can be considered as a one effective text bit. The
effective bits for the unknown subsets of bits in the linear approximations can be found
exploiting the structure of DES  Again, for the left side of the first 12-round linear
approximation, /!*'is unknown. Analyzing the DES algorithm, this single bit can be
found as the one output bit of S1. This implies that only the input to S1 affects /!

Further analysis show that the input of S1 is derived from XORing K!#! » K!¥"I and
bits 42,-43,..47 of the output of the expansion function. The input bits corresponding to

those output bits of the expansion function are X!'> XP' and Y9 hence,

C o B and 1 Therefore, (11 > 1" and 1! are the other six effective bits
of the left side of the equation. Moreover, the similar analysis can be made for
F232]which results with 21" > PI') as the effective bits for //7"****1 Totally,
13 effective text bits are found for the first 12-round linear approximation. **

It” s proven that using the same method, the effective key bits for the right side
of the same approximation can be derived as K[! > K1¥ and K" » K12 which

totally make up /2 effective keys. The same method can also be implemented for the
second 12-round linear approximation which results with®® ;

13 effective text bits: ('E”I - (.'[,“'} : i’}_"' ; P,[,”I > f"L{“] ,f‘L?'"'“'n] b PF“'“'M b Pf[rm
12 effective text bits: K!* > K[V gl gl

In practice, the method described for the linear cryptanalysis of 12-round DES
~ can be implemented in two phases. The first phase is the data counting phase where
using counters, the /3 effective text bits for the first linear approximation are derived
and each bit’ s value is computed. The second phase is the key counting phase. In this
phase, first, new counters are used for finding the value of the /2 effective key bits of
the first approximation. Then, for calculated number of required plaintext / ciphertext

pairs, the key bits are guessed with the possible highest probabilities within the
generated 12-round linear approximations.*”’

5 Shahram Bakhtiari, “Lincar Cryptanalysis of DES Cipher”, University of Wollongong, The Report
for Master of CS Degree, p. 16, July 1, 1994,

“ibid, p. 16.

T ibid, pp. 16-17.
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It” s found that totally, 1.5*2" counters are required so as to carry out such an
attack. Iowever, if both linear approximations are combined together then this value
might increase to 1.5*2"" If the two phases mentioned previously are applied to both
of the linear approximations, a total of 25 key bits are proven to be correctly guessed
with a high probability. It” s also proven that the linear cryptanalysis of 12-round DES
require 2 pairs of plaintexts and ciphertexts when implemented with the method
described here. The remaining 31 bits of the entire 56-bit key can be found by an
exhaustive search. The required execution time for the complete linear cryptanalysis of
12-round DES by using the methodology described here was recorded as /20 hours

when implemented on SUN + SPARC stations running SOLARIS 2.3 operating
System 3“8_ 209

3.2.4 Linear Cryptanalysis of the Full 16-Round DES

The linear cryptanalysis of the standard 16-round DES algorithm has been
successfully implemented by Matsui et al. In some of these linear cryptanalytic attacks,
the basic methodology described in the subsections of 3.2.3 are used, whereas some

improved methods with additional schemes and mechanisms are derived and
implemented as well.

The first known linear cryptanalytic attack against 16-round DES was
implemented by AMatsui. The basic idea in his attack was to derive a best 16-round
approximation. However, rather than using best 14-round linear approximations and
extending those to 16 rounds, he chose an eight-round iterative linear characteristic
with a probability of 1/2 + 277, and concatenating this iterative characteristic with itself
he managed to get a l6-round linear characteristic.’"

The eight-round iterative
characteristic is denoted in the Figure 3.21.

After the extension of the eight-round characteristic to 16 rounds, AMatsur also
replaced the first and last round of the characteristic with locally better ones having
higher probabilities. In the end, he managed to get a 16-round linear approximation
with a probability around 1/2 + 2°*'. The plaintext / ciphertext requirement for this
atack is calculated to be around 2. Matsui claimed that the characteristic he
developed for this attack was the best one without any restrictions. This assertion is
based on the fact that, among the 16 rounds of the characteristic, there’ s only one
active S-box posing a single affected key bit at 12 rounds and no active S-box with no
affected key bits at the other rounds. However, this attack is not considered so

successful since only a single bit of the 56-bit key can be retrieved by this method.?''-
1

S, Bakhtiari, R. Safavi-Naini, “Application of PVM to Linear Cryptanalysis”, University of
Wollongong, Technical Report. p. 5, July 25, 1994,

* Shahram Bakhtiari, “Lincar Cryptanalysis of DES Cipher”, University of Wollongong. The Report
for Master of CS Degree, p. 18, July 1, 1994

“Eli Biham, “On Matsui’ s Linear Cryptanalysis”, Technion- Israel Institute of Technology,

echnical Report, p. 10, 1994,

“ibid, pp. 10-11. e
“Bruce Schneier, - pplied Cryptography - Second Fdition, p. 292, IMIR
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C Qp = 21040080 000000 00, )

'
. - - p'=1/2-20/64
:'}q"q =21 04 00 80, = F o a’ =00 00 80 00. with one affected
P(00 00 ¥0 00..) key bit

o kst P S

——
) - - p'=1/2-2/64
B =000800.= _ [ ¥&=20000000 with one affected

P(40 00 00 00..) ey bit

p'=1/2 + 10/64

¢’ =01 04 00 80, = c=00008000 |, . oneaffected
P(00 00 E0 00,) key bit
B.*1
#* ' no affected key

"l‘\& bits
—‘__—_/—__F‘
_‘____,_b—q:_ﬂ_
—
— ) N p'=1/2 + 10/64
E=01040080.=| _ | ¢=00008000- | .. oneaffected
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P(00 00 F0 00.) key bit
d H =0 ) =0 p'=
e ' no affected key

bits

( Qr =00000000 21 04 00 80.. )

Figure 3.21 Eight-round iterative characteristic with probability 1/2 + 277 "3

Later on, a much better and more powerful attack with less data requirements
5 successfully implemented, both in theory and practice. The basic methodology used
this refined attack is similar to the one implemented for 12-round DES. For 16-

Eli Biham, “On Matsui” s Linear Cryptanalysis™, Technion- Israel Institute of Technology,
hnical Report, p. 10, 1994
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round DES, the best linear approximation for 14 rounds is used in order to derive the
16-round linear approximation. The effective text and key bits are derived aftermath,
and using the same methodology in 12-round attack, counters are generated for data
bits and key bits analysis in which some of the bits of the 56-bit key could be guessed
with a high probability. The construction of the 16-round linear approximation and the
derivation of the effective bits can be simply described as follows:

The best linear expression for 14-round DES, which has a probability of 1/2 -
1.19 * 2" is denoted below”"* ;

},F.l:._u] @(_-.[:.ls.n.zv] EB('E.M =

(oY Gl Gl GV Ol o F ol F Gale- ¥ Gallol daltl ¢

This 14-round lincar approximation is embedded into full 16-round DES so as
to use for the approximation of 2™ to 15" rounds. After combining the first and 16"
rounds with this approximation, the linear approximation of 16 rounds can be derived

as follows, with a probability of 1/2 - 1.19 * 2! being exactly equal to the probability
for 14-round approximation®" ;

18, [7.08.24) gy o o[718.24.29] 4 o108 ey 008
plr-n.2] gy poir1824] g (1wl g s @ AVl

KHeokHekHeok®eokMokHekHoklP okMe ki

The basic logic in deriving the effective text and key bits is the same of the one
used in the linear cryptanalysis of 12-round DES. Hence, the effective bits for the 16-
round linear approximation can be found as’'® ;

B effective text bits: P;I,“’ > Prl.lbl ,(,!ul,(wg"n] > (75.3|| j,[:',u,u] @(WL?,II.EJ.E')] @(1£:si

** H

2 effective text bits: K" » k(81 gl gl

Exploiting the symmetric structure of the DES algorithm, a second similar 16-
round linear approximation with a probability equivalent to the one found for the first

approximation can be derived as well as the related effective bits >’ These are all
‘shown below;

C;:,u.yl ® ‘;,;[b?.ls.H] ® P![?.u.u.zu] ) f’,[,”] ® ;';[.,] .
| klekMekle ek e kM ek e KM ok e K1Y

3 effective text bits: (115 (el plol plarl o plail ¢{11824] gy plras22] g, plsl
2 effective text bits: K11~ K141 KE;'} ' KE:SI

M Shahram Bakhtiari, “Linear Cryptanalysis of DES Cipher”, University of Wollongong. The Report
for Master of CS Degree, p. 55, July 1, 1994,
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By implementing this methodology, it” s proven that 26 bits of the 56-bit key
can be retrieved correctly with a high probability. The remaining 30 bits can be found
via exhaustive search, or by some other special search algorithms for the key bits. The
overall data requirement of this attack is calculated between 2*’ - 2* known plaintexts.
In practice, it’ s recorded that a software implementation of this method recovered the
56-bit key of the 16-round DES cipher in 50 days using twelve HP9000/735
workstations. These results show that the linear cryptanalysis of 16-round DES using

this method is much more efficient and successful and than the former method with
eight-round iterative characteristics.*'*-*"*-2

The requirement of 2*° known plaintexts is also accepted to be the most
successful performance among all the cryptanalytic attacks against standard DES so
far. However, these values are still considered to be strongly effective in theory, not in
practice; thus, the linear cryptanalysis of 56-bit DES still needs some significant
improvements with a much higher feasibility as well as the differential cryptanalysis.

3.2.5 Linear Cryptanalysis of Some Other Cryptosystems

The linear cryptanalytic attacks are also carried out among some other
symmetric block cryptosystems successfully which some of these will be discussed
shortly in this section. The methods used, more or less, are shown to be similar to the
basic methodology used in DES However, in some of these implementations,

- additional schemes are derived, or different linear cryptanalysis techniques are used
whenever necessary.

¢ Linear Cryptanalysis of FEAL

The basic method used in the linear cryptanalysis of FEAL is known to be
originated by Matsui. Since FEAL is a DES-like cryptosystem, the fundamental model
~and the implementation used in the attack is proven to be similar to the Matsui’ s
attack to 16-round DES. Some characteristics with feasible probabilities are used in
these attacks to find the key bits of FEAL for some of its rounds. It’ s shown that there
- are 15 one-round linear characteristics in FEAL with probability 1/2 + 1/2, based on
the linearity of the least significant bits in the addition operation. It’ s remarked that
these characteristics are essential in the linear cryptanalysis, since they can be applied
to any rounds of FEAL, or can be combined to form any n-round characteristics with
probability either being 0 or 1. For instance, in his attack to FEAL-8, Matsui used two
of these one-round characteristics to form a special three-round characteristic with
probability 1, which is also denoted in the Figure 3.22. Then, this characteristic is used
in rounds 3 up to 3 of the eight-round FEAL-8 in order to carry out the linear
cryptanalytic attack. For the remaining rounds, /, 2, and 6 up to &, the bits of the
subkeys are revealed by using exhaustive search and mounting some other auxiliary
search methods. By this way, the linear cryptanalysis of the eight-round FEAL-8 is
achieved. It” s shown that this method requires 2’ known plaintexts with a

?IsBrucc Schneier, Applied Cryptography - Second Edition, p. 293.

_ ? Shahram Bakhtiari, “Linecar Cryptanalysis of DES Cipher”, University of Wollongong, The Report
Master of CS Degree, p. 55. July 1, 1994,

S. Bakhtiari, R. Safavi-Naini, “Application of PVM to Linear Cryptanalysis”, University of
Wollongong, Technical Report. p. 6, July 25, 1994
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computational complexity of 2", or 2" known plaintexts with a computational

complexity of 2% **'

C Qp =04 04 04 00 0001 00 00, )

!

A’ =04 04 04 00, _d=00010000, [P =V2-12=0
L/

Faa Y

_ & = 0001 00 00,

F

3¢ = 0404 04 00,
(P p'=12-12=0

:
( Q7 =04 04 04 00 00 01 00 00, )

Figure 3.22 Three-round characteristic used in the linear cryptanalysis of FEAL-8 **

A refinement of this attack is established by Brham et al. This attack is basically
similar to the Matsui’ s, however, instead of a three-round characteristic, they derived
and used several iterative n-round characteristics such as a seven-round characteristic
with probability 1/2 - 2" In fact, this characteristic is developed by iterating a special
two-round iterative characteristic 3.5 times. A sample use of this two-round iterative
characteristic is given in Figure 3.23, in which a four-round characteristic is formed.
Using this iterative characteristic, the linear cryptanalytic attack to FEAL-8 is
successfully achieved such that; 2°’ known plaintexts are required with a success rate
of 78%, and 2” known plaintexts are required with a success rate of 97%. The seven-
round linear characteristic mentioned is also used to attack FEAL-N up to 20 rounds

successfully, requiring less amount of plaintexts and complexity than the brute-force
attack.””’

*'Eli Biham, “On Matsui’ s Lincar Cryptanalysis”, Technion- Israel Institute of Technology,
[echnical Report, pp. 11-14, 1994,
“ibid, p. 13.

ibid, pp. 14-15.
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( Qp = 86 81 00 00 86 81 00 00, )
!

L A'=86810000. [ ] a'=81000000. | p'=12-18
e 4

3 B PO
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\Iﬁ\ 7 p'=1/2-1/4
ﬂ.-‘_—\_‘_ﬁ_\_".’_‘_"-—\—_.
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o N p'=12-1/8

.
C Qr =86 81 00 00 86 81 00 00.. )

Figure 3.23 Four-round characteristic derived from the two-round iterative
characteristic of FEAL-8 ***

¢ Linear Cryptanalysis of RC6

The linear cryptanalysis of RC6 and also some of its variants such as RC6-1,
RC6-NFR and RC6-I-NI'R have been implemented successfully to some extent, but
not better than the differential attacks. As mentioned previously in section 3.1.7, since
the design and structure of RC6 algorithm is significantly different from DES, the basic
methodology and the techniques used in linear cryptanalysis are different as well. The
details of the design and implementation of the linear attacks are not given here,
however, it should be stressed that two different types of linear approximation are used
in the attacks to RC6 and its variants. 7ype I approximation uses a chosen particular
type of linear approximation across the data-dependent rotation. On the other hand,
Iype 11 approximation involves a different style of approximation across the data-

dependent rotation which leads to approximations across the fixed rotation and the
quadratic function.’”

According to the results achieved among the attacks to several variants of RC6,
it’ s stated that 7ype I approximations are far more efficient than 7ype /. However,
some of the linear cryptanalytic attacks against several RC6 variants are proven to be

*Eli Biham, “On Matsui’ s Lincar Cryptanalysis”, Technion- Israel Institute of Technology,
Technical Report, p. 15, 1994,

* Ronald L. Rivest, Scott Contini, M. J. B. Robshaw, Yiqun Lisa Yin, “The Security of the RC6
Block Cipher”, RSA Laboratorics, Technical Report, p. 44, 1998.
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much less efficient than brute-force or differential versions, yet it” s stressed that most
of the RC6 variants with higher rounds are strongly resistive to linear cryptanalysis.
For instance, using 7ype I approximation, the linear cryptanalysis of RC6 with the
basic linear attack methodology require 2'* plaintexts for 20 rounds and 2°° plaintexts
for 24 rounds. Similarly, using 7ype I approximation again but with multiple linear
approximations this time, the attack can be implemented successfully 2'”' plaintexts for
20-round and 27" plaintexts for 24-round models of RC6. When the linear
cryptanalytic attack is implemented using the 7ype /I approximation, the following
plaintext data requirements are observed for each of the RC6 variants™ |
RC6: 2°” for 20 rounds, 2°* for 24 rounds
RC6-I: 2" for 20 rounds, 2°** for 24 rounds,
RC6-1-NFR: 2" for 20 rounds, 2°' for 24 rounds,
RC6-NFR:  2'* for 20 rounds, 2°’? for 24 rounds.

¢ Linear Cryptanalysis of LOKI 91

LLOKI91 is a DES-like symmetric block cryptosystem that operates on 64-bit
blocks and uses a 64-bit key. It s proven that LOKI91 is strongly resistive to linear
cryptanalytic attacks with the basic methodology and techniques similar to the ones
used in DES, by the studies of 7okita et al. For instance, the known plaintext
requirements for 4, 7 and 10-round LOKI91 is found to be 2%, 2, 2%° respectively
and these are shown to be not much better than other cryptanalytic attacks. Moreover,
for I3 and 16-round LOKI91, all the regular linear cryptanalytic attacks are proven to
be infeasible due to the fact that the plaintext requirements for linear cryptanalysis
increase substantially whenever more rounds are added to the cipher.?’

On the other hand, using an entirely different scheme named as non-linear
approximations””®, the linear cryptanalysis of LOKI91 is proven to be achieved
successfully with much less data requirements and computational complexity. In fact,
the non-linear approximations are used instead of the 1R-attack and 2R-attack schemes
used in the basic model of linear cryptanalysis so as to guess more number of bits with
less plaintext / ciphertext pairs. It” s proven that by embedding the non-linear
approximations into linear cryptanalytic attacks, 20 bits of the 64-bit LOKIO1 key can
be recovered instead of /3 bits with the equivalent probability of success, and the data
requirements are significantly reduced as well. (non-linear approximations require less
than % of the plaintext data needed for the standard linear cryptanalysis )**’

Ronald L. Rivest, Scott Contini, M. J. B. Robshaw, Yiqun Lisa Yin, “The Security of the RC6
k Cipher”, RSA Laboratories, Technical Report, pp. 48-59, 1998,
Lars R. Knudsen, Matt Robshaw, “Non-lincar Approximations in Lincar Cryptanalysis”, Advances
n Cryptology - Proc. EUROCRYPT'96, p. 231, 1996,
ibid, pp. 225-231.
ihid, pp. 231-230.
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Chapter 4
GENETIC ALGORITHMS

4.1 Introduction

Genetic algorithm (GA) technology has been around for over 30 years. However,
applications based on this technology are just recently being produced. Genetic Algorithms
(GA’ s) were developed by Prof. John H. Holland and his students at the University of
Michigan during the 1960s and 1970s. Essentially, they are a group of breeding computer
programs and solutions for optimization or search problems by means of simulated
evolution. In fact, these algorithms are based on the idea that seek to achieve systems
which maintain a population of potential solutions, which have some selection process
within fitness of individuals, and some recombination operators. Processes loosely based
on natural selection, crossover, and mutation are repeatedly applied to a population of
binary strings (or other data structures, whenever necessary) which represent potential
solutions. Within the time of progress, the number of above-average individuals increases,
and highly-fit building blocks are combined from several fit individuals to find good
solutions to the problem at hand. In some references, however, such similar algorithms are
named as Lvolutionary Programming or Evolutionary Algorithms' In fact all of these
methodologies are based on the same evolutionary basics and disciplines, whereas,
Genetic Programming’ is a different and recently developing technology. In short.
Evolutionary Programs (EP), can be used as a common term for all evolution-based

3
systems.

Genetic Programming (GP) is simply defined as GA’ s applied to programs.
Genetic Programming is more expressive than fixed-length character string GA' s, though
GA’ s are likely to be more efficient for some classes of problems. The first and basic
model of GP has been founded by .J.R. Koza, who proposed an evolution based system to
search for the most fit computer program to solve a particular problem. The main
difference between genetic programming and genetic algorithms is the representation of
the solution since, genetic programming creates computer programs in the Lisp or
scheme-like computer languages as the solution.*-’

' Zbignicw Michalewicz, Genetic Algorithms + Data Structures — Fvolution Programs, pp. 1-2.
* Genetic Algorithms FAQ, Internct Document, http://www.cs.cmu.edw/Groups/Al/html/faqs/ai/genetic/

part2/faq-doc-6.himl, 1997,
} Zbigniew Michalewicz, Genetic Algorithms + Data Structures - Evolution Programs, pp. 1,8-9.

' Genetic Algorithms FAQ, Internet Document, http://www.cs.cmu.edu/Groups/Al/html/fags/ai/genetic/

part2/fag-doc-6. html, 1997.
? Jaime Fernandez, “The Genetic Programming Tutorial Notebook™, Internet Document, http://www.

geneticprogramming.com/Tutorial/index html, 1997.
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4.2 Definition of a Genetic Algorithm

4.2.1 Background

The Genetic Algorithm concept is formed upon the basics of Biology, Evolution,
Genetics, and hence, nature It is a model of machine learning which derives its behaviour
from a metaphor of the processes of evolution in nature. This is done by the creation of a
population of individuals within a machine that is represented by chromosomes, a set of
character strings analogous to the base-4 chromosomes that is seen in our own DNA.
(Since, in any individual DNA polynucleotide, 4 types of nucleotides exist: Adenine (A),
Guanine (G), Cytosine (C), Thymine (T). These can be chained in any combination of
sequence. Thus, this 4-letter alphabet can form # different sequences of nucleotides of
length /. This is the variability of DNA that enables the genetic material to exist in an

almost infinite number of forms.°) The individuals in the population then go through a
process of evolution.

It should be stressed that evolution (in nature or anywhere else) is not an
intentional or directed process. That is, there is no evidence to support the assertion that
the goal of evolution is to produce Mankind, in other words, the assertion, which once had
been proposed by .. B. Lamarck that living beings change by consciously willing to
change’ is out of date. Also, the inheritance of acquired characteristics, a theory of
evolution which once had been founded by J. B. Lamarck® has turned out to be false and
unacceptable. Indeed, the processes of nature seem to converge into different individuals
competing for resources in the environment in which some are better than others. Those
that pose better characteristics do have a higher probability to survive and propagate their
genetic material. This is, in fact, one of the basic theories of evolution, proposed once by

Charles Darwin, and which is still valid today. Also, during evolution, in nature, there are
various forces such as chemical agents, strains, contacts, temperature changes, etc. that

act on an individual. As far as these forces work changes in the organism, the changes may
be considered largely fortuitous or accidental, named as physico-genetic.’

In nature, what occurs at the molecular level is that a pair of chromosomes bump
into one another, exchange chunks of genetic information and drift apart. This is the
Recombination operation, which GA/GP researchers generally refer to as Crossover (also,

in some Biology and Genetics books, it’ s referred as (‘rossing-over) because of the way
that genetic material crosses over from one chromosome to another.

T. A Brown, Geneticy - A Molecular Approach, p. 31.

Thomas E. Hart. “Lamarck and His Theory of Evolution”, Internet Document, http://www stg brown
edw/projects/hypertext/landow/victorian/scicnce/lamarck 1 html, 1997,

ibid. '
). Mark Baldwin, “A New Factor in Evolution”, American Naturalist 30, pp. 441-451, 536-553, June
1896, reprinted in: hitp://paradigm soci brocku.ca/~lward/Baldwin/BALD_002 html. 1998
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The crossover operation that occurs in an environment where the selection of who
or which gets to mate is a function of the Fitness of the individual, ie. how good the
individual is competing or how hard it tries to survive and reproduce in its environment.

4.2.2 Terminology and The Basic Model

GA is a process which stimulates the way biological evolution works. Like
evolution, it operates on a population of individuals which represent potential solutions to
a given problem. It then seeks to produce better (more fit) individuals (solutions) by
combining the better of the existing ones (breeding). Using a survival of the fittest tactic,
it discards the bad ones and tends to produce more of the good individuals. Not only does
it produce more of the good solutions but also provides better and better solutions. This is
due to the fact that it combines the best traits of parent individuals to produce superior
children or the offsprings, in other words. This combination operator is called crossover
The term genetic algorithm comes from the fact that individuals are represented as strings
of bits, integers, letters, floating numbers, etc. analogous to chromosomes and genes. In
addition to recombination by crossover, these bit-strings are also thrown in a randomly
process referred as mutation. This prevents the GA from getting stuck at good but non-
optimal solutions. Some of the most important keywords and issues in GA can be

summarized as follows;

Crossover - The genetic process by which genetic material is exchanged between
individuals in the population, thus, in a computer program implementation, the data that
represents the candidate solutions for a problem (ie. variables in a function optimization) is
exchanged. There are various types of crossovers in GA which will be explained later on.

Reproduction - The genetic operation which causes an exact copy of the genetic
representation of an individual to be made in the population.

Mutation - Another genetic operation which a single candidate chromosome (a bit
sequence) is selected and some of its bit values is randomly changed.

Generation - An iteration of the measurement of fitness and the creation of a new
population by means of genetic operations.

Selection - The process that determines which parents shall undergo crossover or
reproduction operations. There are various selection methods used in GA, such as Fitness-
proportionate selection, which a simple function of the fitness measure is used to select
-~ individuals via a probabilistic scheme that shall undergo genetic operations, or Tournament
selection; where certain randomly selected individuals in a subgroup compete and the

fittest is selected.
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Inversion - A technique first proposed by .J. H. Holland, which works by reversing the
order of genes between two randomly chosen positions within the chromosome. "’

Complement - Also, complement (ie. considering a binary representation, taking
complement of each bit, each gene in other words, thus, taking inverse of the
chromosome) of a whole chromosome can be added to the population to maintain

diversity "'

Reordering - It’ s another genetic operation that changes and reorders the sequence of
bits, or genes on a chromosome. This greatly expands the search space, since, not only is
the GA trying to find good sets of gene values, it is simultaneously trying to discover good
gene orderings t0o. "’

Some genetic algorithms use a simple function of the fitness measure to select
individuals in a probabilistic manner that consequently undergo genetic operations such as
crossover or reproduction (the propagation of genetic material unchanged). This is
Fitness-Proportionate selection. There are several different sub-methodologies used in
fitness-proportionate selection, such as, Rowulette-Wheel or Fitness-Ranking. Other
implementations use a model in which certain randomly selected individuals in a subgroup
compete and the fittest is selected. This is called Tournament Selection and is the type of
selection that is seen in nature. There are also other selection methodologies used, such as
Stochastic Universal Selection developed by Baker'. The two processes that most
contribute to evolution are crossover and fitness based selection / reproduction. As it turns
out, there are mathematical proofs and computer tests'*-"* which indicate that the process
of fitness proportionate reproduction is, in fact, near optimal in some manner. Also, in
some complex cases, Stochastic Universal Selection outperforms the others significantly as

well as being elegantly simple and theoretically perfect '*-'’

Mutation also plays a role both in nature and in GA, though it is not the dominant
role that is popularly believed to be the process of evolution, ie. random mutation and
survival of the fittest. It cannot be stressed too strongly that the genetic algorithm (as a
simulation of a genetic process) is not a random search for a solution (highly fit individual)
to a problem. The genetic algorithm uses stochastic processes, but the result is distinctly

" David Beasley, David R. Bull, Ralph R. Martin, “An Overview of Genetic Algorithms - Part 27,
University Computing, UCISA, pp. 3-4, 1993.

L. Darrell Whitley (editor), Foundations of Genetic Algorithms 2, pp. 146-150.

" David Beasley, David R. Bull, Ralph R. Martin, “An Overview of Genetic Algorithms - Part 27,
University Computing, UCISA, pp. 3-4, 1993,

" David Beasley, David R. Bull, Ralph R. Martin, “An Overview of Genetic Algorithms - Part 17,
University Computing, UCISA, p. 11, 1993.

L. Darrell Whitley (editor), Foundations of Genetic Algorithms 2, pp. 128-139.

B Zbigniew Michalewicz, Genetic Algorithms + Data Structures ~ Evolution Programs, pp. 58-60, 132-
135.

'L, Darrell Whitley (cditor), FFoundations of Genetic Algorithms 2, pp. 128-139.

" David Beasley, David R. Bull, Ralph R. Martin, “An Overview of Genetic Algorithms - Part 17,

University Computing, UCISA, pp. 11-12, 1993,
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non-random which is proven to be better than random. Also, there has always been an
argument between GA researchers whether mutation or crossover, or both, play an
important role in the performance of GA, and which is more or perhaps, the only
necessary one.'*-'">-*-*' There’ s no exact and clear answer, since the performance of a
GA depends on the nature of the problem, and thus, the usage of crossover and mutation
and their efTects vary among different problem-solution domains.

A sample genetic algorithm can be formulated as follows? ;

Let P’(1) define a population of candidate solutions at time r:

P(t) :{X1',X2' — Xn[}

Then, a procedure for GA can be generated as:

procedure genetic algorithm;
begin
t=0;
initialize P(t);
while termination condition not met do
begin
evaluate P(t);
select pairs of solutions according to the quality of their evaluation;
produce the offspring of these pairs using genetic operators;
replace the weakest candidates with the offspring;
=t
end;
end;

Here, it should be noted that evaluation of candidate solutions assumes a fitness
function, f{x,’), that returns a measure of candidate’ s fitness at time /. Using such a fitness
function, a typical evaluation assigns each candidate solution a value as follows*,

e/ m(Py

where m(P, 1) is the average fitness over all members of the population.

"L Darrell Whitley (editor), lFoundations of Genetic Algorithms 2, pp. 200-201.
¥ ibid, pp. 221-237.

Y ibid, pp. 239-254.
* David Beasley, David R. Bull, Ralph R. Martin, “An Overview of Genetic Algorithms - Part 27,

University Computing, UCISA, p. 6, 1993.
= George F. Luger, William A Stubbleficld, Artificial Intelligence Structures and Strategies for Complex

Problem Solving - Second Fdition, p. 528.
ibid, p. 528.
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In general, it’ s stated that any implementation of a genetic algorithm or an
evolutionary algorithm requires five basic components, which are grouped as below”'-> ;

« a genetic representation for potential solutions to the problem

« a method for creating an initial population of potential solutions

o an evaluation function verifying fitness of each solution and rating these
solutions

« genetic operators changing a gene’ s contents in chromosomes (the composition
of children) during reproduction

« some constant values for different parameters used by the algorithm (such as
population size, probability of applying crossover or mutation, etc.)

It should be noted that except for some very specific and unique applications, the
initial populations used in such algorithms are selected or created randomly. However, at
the end of reproduction, the new population after the recombination and fitness ranking
might be either derived randomly choosing among the new children, or via a selection
mechanism among only new children or new children plus the old population **-*’

Another important remark is that the execution of a genetic algorithm is in fact
based on two main stages. The first stage starts with the current population where the
selection mechanisms are applied to this population in order to create the children (the
intermediate generation) as candidates for the next generation. The second stage is the
phase where recombination operators such as crossover and mutation are applied to the
intermediate population and after this process, the new population is established **

4.3 How and Why Genetic Algorithms work?

Before going into further details, several terms should be mentioned first which are
used in GA terminology In fact, genetic algorithms use a vocabulary borrowed from
natural genetics. (sene (also referred to as a feature, character or detector) refers to a
specific attribute that is encoded in the genotype' s chromosome (string). The particular
values the gene can take are called its A/leles. The position of the gene in the chromosome
is its Locus.”” A common example taken from biology is that eye color is determined by a
gene, the different eye colors are the gene' s alleles (blue, brown, etc.) and where the eye
color gene happens to lie in the chromosome is its locus. This terminology is used among
most of the GA researchers and the reason is that these researchers are coming from
natural genetics domain rather than from computer science, whereas computer scientists

* Zbignicw Michalewicz, Genetic Algorithms + Data Structures — Evolution Programs, pp. 17-18.
¥ Leonard Bole, Jerzy Cytowski, Search Methods for Artificial Intelligence, p. 202.

4 Enrique Alba, Carlos Cotta. “Introduction to Nature-Inspired Algorithmic Techniques”, Internet
Document, http://www.lcc.uma cs/personal/cotta/semEC/capO1/cap_1.html, 1997.

¥ David Beasley, David R. Bull, Ralph R. Martin, *An Overview of Genetic Algorithms - Part 17,
University Computing, UCISA, pp. 6-7, 1993.

* L. Darrel Whitley, “A Genetic Algorithm Tutorial”, Computer Science Department, Colorado State
~University, Technical Report, p. 4, November 10, 1993,

%EZbigllicw Michalewicz, Genetic Algorithms + Data Structures — Fvolution Programs, p. 15.
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and software engineers, prefer the more computer-based terminology such as position,
size, etc.

The characteristics an algorithm must have, in order to be considered as genetic
will be discussed in the following sections. These characteristics will be described
explaining the facts; how they are usually implemented and why they work in the desired

way.
4.3.1 Fitness Function

Due to the nature of a genetic algorithm, it is easier to describe them as solving
optimization problems which search for maxima. However, this does not prevent the
researchers from using GA' s to find minimal values. A minimization problem can always
be mapped mathematically into a maximization problem. To make it clear, an essential
component of all GA' s - the fitness function (also called the objective function) will be

explained.

The fitness or objective function is used to map the individual' s bit strings into a
positive number which is called the individual' s fitness. There are two steps involved in
this mapping; however it’ s known that in some problems these two steps are essentially
accomplished as one. The first step is referred as decoding and the second, calculating
fimess. In order to understand the decoding concept, it can be simply stated that it helps to
distinguish individuals into two parts commonly called the genotype or genome and the
phenotype. These terms come from biology. The genotype, as its name implies, specifically
refers to an individual' s genetic structure or for the software implementations, the
individual' s bit string(s). The phenotype refers to the observable appearance of an
individual. For our purpose, the phenotype is the desired result, the parameters of the
problem that yield its fitness. Therefore, decoding refers to the process of mapping the
genotype to the phenotype, the code to the parameters. For example, in the function
optimization problem f(x,y) - X - xy’, a 60-bit string might be used to encode the
parameters x and y (30 bits per parameter). Thus, the decoding process would refer to the
mapping of these bit strings to real values (x,y) on some range of interest [M,N] (for
example [-1.0, 2.0] ). Using the genetic structure, x and y are the genes which occur at
locus, or position, namely, 0 and 30 in the chromosome. These can be analyzed from the
Figure 4.1. It should be stressed that, in this genetic implementation, the gene' s alleles
range from -1 to 2.0 in increments of (2 - (-1)) x =3 x3"

The second step, fitness calculation, is trivial once the genotype has been decoded.
A function is used to map the phenotype's parameter values into a positive number, which
is referred as the fitness. In a function maximization problem, the fitness function is often
shown to be the same as the function being optimized (provided that the output domain of
the function is positive). If the domain contains negative values or whenever a
minimization problem is the case, then the output of the function can be simply be mapped
into the required form. It’ s indicated that for negative values, this will involve
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adding a constant to the output so as to shift it into the positive range. For minimization
problems, the following deduction is used™ :

Min (f(x))  Max(g(x))  Max( - f{x) ).

This states that the minimum of a function, f{x), is equivalent to the maximum of
some other function g(x) where one specific g(x) for which -7*f{x) is true. Again if, -f{x) is
negative (it might not be if the domain of f{x) is negative) then an appropriate constant, (
~ might be added as follows""

Min (f(x))  Max(g(x) + ()  Max(-f(x) + C).

It must be stressed that the construction of a fitness function is shown to be very
important and crucial for the correct execution of a GA with the satisfying results. Thus,
the design and implementation of a suitable and proper fitness function for the problem is
heavily dependent on the following issues which usually makes it very difficult for the

. 32
designer™” ;

« The fitness function differs with respect to the maximization or minimization
criterion.

. The environment is susceptible to noise in the evaluations, ie. partial
evaluations.

«+ The fitness function might change dynamically as the GA proceeds.

« The fitness function might be so complex that only approximations to fitness
values can be computed.

« The fitness function should allocate very different values to strings in order to
facilitate the process of selection mechanisms.

« The fitness function must be designed so as to consider the constraint of the
problem properly by clearly distinguishing the unfeasible solutions.

Zbigniew Michalewicz, Genetic Algorithms + Data Structures — Fvolution Programs, p. 31.
Yibid, p. 31.

“ Enrique Alba, Carlos Cotta, “Introduction to Nature-Inspired Algorithmic Techniques”, Internet
iment, http://www lcc.uma es/personal/cotta/semEC/cap02/cap 2 html, 1997.
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In some cases, the fitness function might form some different sub-objectives. It’
s stressed that such a multi-objective function can cause non-conventional
problems.

The fitness function is like a black box for the GA. Phenotype is fed into this
black box and the fitness value is derived as the output, but the internal
mechanisms that enable this are not always straightforward. For instance, such
mechanisms need to be achieved by complex mathematical functions, a complex
simulator program or indeed by a human who himself makes the decision for
good strings, ie. when GA 1s used in music or animation programs.

The operations of decoding and fitness calculation can also be applied to problems
even when a function optimization is not the case. For instance, in the Traveling Salesman
Problem, (a well known NP-Hard Problem), the genotype would be chosen in the way a
tour is encoded in a string. The parameters or phenotype would be the actual tour being
considered and the fitness would be a function of the length of the tour for a minimization
problem * The Traveling Salesman Problem and its GA implementation will be described

in more detail in the subsequent sections.

4.3.2 Selection

Selection is one of the most important mechanisms in GA' s. Selection determines
which individuals in the population will have all or some of its so-called genetic material
passed on to the next generation of individuals. The object of the selection method
employed in a GA is to give exponentially increasing trials to the fittest individuals. The
most common scheme to accomplish this is the technique named as roulette-wheel
selection, but it shouldn’ t be considered as the best. This technique involves selecting the
positive fitness values where higher values indicate greater fitness. Roulette wheel
selection gets its name from the fact that the algorithm works like a roulette wheel in
which each slot on the wheel is paired with an individual in the population. This is done in
such a way that the size of each slot is proportional to the corresponding individual® s
fitness. Due to this fact, this selection method is also referred as fitness-proportionate
selection. 1t should be obvious that maximization problems fit directly into this paradigm
where larger slot implies larger fitness. On the other hand, it’ s remarked that negative
values are not allowed because there' s no such a slot of negative size.**

A common way to implement roulette wheel selection is as follows:

I. Sum up all the fitness values in the current population, call this value SumkFitness.
SumFitness is in effect the total area of the roulette wheel.

2. Generate a random number between 0 and 1, called Kand.

3. Multiply SumFitness by Rand to get a number between 0 and SumFitness which
will be called RouletteValue (RouletteValue = SumkFitnesss x Rand). Think of this
value as the distance the imaginary roulette ball travels before falling into a slot.

P Zbigniew Michalewicz, Genetic Algorithms + Data Structures = Evolution Programs, pp. 25-26.
" ibid, pp. 32-33.
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4. Finally sum up the fitness values (slot sizes) of the individuals in the population until
an individual, which makes this partial sum greater or equal to RouletteValue, is
reached. This will then be the individual that is selected.

It is not always intuitively obvious that this algorithm actually implements a
weighted roulette wheel. To see this fact, some extreme situations should be considered.
For instance, there can be an individual, whose fitness is equal to SumFitness (implying all
other individuals have a fitness of zero).

It’ s proven that no matter what number is generated for RouletteValue, someone
will always throw the partial sum over the top, thus having a selection probability of 1.
This corresponds to a roulette wheel with just one slot. On the other extreme, an
individual, 7, with fitness zero can never cause the partial sum to become greater than
RouletteValue, so it has a zero probability of getting selected. It’ s shown that this
corresponds to a slot that does not exist on the wheel. All other individuals between these
extremes will have a probability of throwing the partial sum over the top that is
proportional to their size, which is exactly the expected behaviour of a weighted roulette
wheel. An example of the roulette wheel selection is given in Figure 4.2 where for five
individuals, their corresponding fitness values and the probability for each within the
provided slot size percentages are denoted

Individual Fitness Slot Size %

! 30 35
2 10 12
3 15 18
4 5 29
5 5 6

Roulette Wheel —
? e e SumFitness: 85

Figure 4. 2 Roulette Wheel Selection with five Individuals of varying Fitness.
This selection mechanism can also be denoted as follows;

/. : the fitness value of each individual for i=1,2,...n
p. - the probability of being selected for each individual

2

Fitness-proportionate selection is not the best way to implement selection if both
efficiency and fairness are taken into consideration. This method is not always fair,
because it’ s proven that random noises (referred to as stochastic errors) might cause the
actual number of individuals of varying fitness to receive more or less than their expected
preference. To overcome this drawback, Stochastic Universal Selection (SUS) has been




developed. It” s proven that in this method, sometimes also referred as stochastic universal
sampling, the mean variation can almost be completely eliminated by using the
reproduction rate in a more generic way than the fitness-proportionate selection, and by
applying the special sampling mechanism. In contrast, the wheel used in SUS is divided
into a number of equally spaced markers equal to the population size.*’-**

There are also other selection and sampling mechanisms such as; Tournament
Selection,  Truncation Selection, Linear Ranking Selection, FExponential Ranking
Selection, etc. which are also classified according to some specific properties they possess
or some affects they pose to the population such that; dynamic or static selection,
extinctive or preservative selection, ellitist or pure selection, generational or steady-state

. 37 38 39 40
selection.” -"°-""-

The efficiency and performance of these selection schemes are proven to vary
among the different GA models and implementations. It” s stressed that when one is to
decide upon a selection scheme, three basic criteria should be concerned. These are
selection intensity, selection variance and the loss of diversity. The selection intensity can
be defined as the measure which gives information about the selection mechanism’ s effect
on the average fitness of the population. This effect can be obtained by computing the
difference between the population average fitness after and before selection. The selection
variance is the normalized expected variance of the fitness distribution of the population
after applying the selection method to the fitness distribution. The loss of diversity is the
proportion of individuals of a population that is not selected during the selection phase.*'

Under these circumstances, it” s generally accepted that despite being the simplest,
fitness-proportionate selection is unsuitable in most GA applications producing side-
effects among the population, and degrading the search efficiency. It’ s also stated that
SUS is very powerful and strongly decisive but it has high computational complexity which
might slow down the execution of the GA. On the other hand, when the highest selection

variance is regarded as the main criteria, exponential ranking selection is proven to be the

best method *2-*

It’ s stressed that the common and crucial goal in all legitimate GA selection
techniques is to reward better fit individuals by letting them reproduce more often. This is

¥ Zbignicw Michalewicz, Genetic Algorithms + Data Structures — Fvolution Programs, pp. 56-57.
* Tobias Blickle, Lothar Thicle, “A Comparison of Sclection Schemes used in Genetic Algorithms”,
- Swiss Federal Institute of Technology, TIK-Report, No:11, pp. 43-45, December 1995.

- ibid, pp. 14-51.

* Zbigniew Michalewicz, Genetic Algorithms + Data Structures ~ Fvolution Programs, pp. 56-58.
¥ Richard K. Belew. Lashon B. Booker (editors), Proceedings of the 4th International Conference on
Genetic Algorithms and their Applications, pp. 92-99.

L. Darrell Whitley (editor), FFoundations of Genetic Algorithms 2, pp. 132-133.

" Tobias Blickle, Lothar Thiele, A Comparison of Selection Schemes used in Genetic Algorithms”,
. Swiss Federal Institute of Technology, TIK-Report, No:11, pp. 11-13, December 1995.

| 2ibid, pp. 49-52.

'. Y. Darrell Whitley (editor), Foundations of Genetic Algorithms 2, p. 134
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one of the important aspects of a GA which makes it different from random search or
several huill-climbing methods. 1t should be stressed that when compared to other search
and optimization algorithms, such as random search, gradient methods (ie., random-
mutation hill-climbing), iterated search (ie., steepest-ascent hill-climbing, next-ascent
hill-climbing,), simulated annealing, etc., GA’ s outperform all the others in some cases
or have better performance than some of the other algorithms in some other cases. **-*- *

4.3.3 Reproduction

The second important issue in all genetic algorithms is stated to be the fact that
they contain some sort of recombination procedure. It’ s the reproduction stage where
two individuals selected in the previous step are allowed to mate to produce offspring.
This mating is done by a genetic operator commonly called as crossover. As mentioned
previously, crossover is the process by which the bit-strings of two parent individuals
combine to produce two child individuals, or offsprings, namely. *’-**

There are many ways in which a crossover can be implemented. Some of the ways
are broadly applicable to all types of problems and others are highly problem-specific. The
most primitive but also highly effective form of crossover that is commonly implemented is
single-point crossover. Single point crossover starts by selecting a random position on the
bit string, called a cut point or cross point. The bits from the left of the cut point on
parent] (P1) are combined with the bits from the right of the cut point in parent2 (P2) to
form child1 (C1). Similarly, the opposite parts are combined to form child2 (C2) A simple
example of single-point crossover is given in the Figure 4.3.

L/f—'-f:utpni.:l
P1:(001100}110011

P2 00H011|10000

C1:001100 110000
C2:000011 110011

Figure 4.3 Example of a single-point crossover.

* David Beasley, David R. Bull, Ralph R. Martin, “An Overview of Genetic Algorithms - Part 17,
University Computing, UCISA, pp. 4-6, 1993,

" Thomas Back, David B. Fogel, Zbigniew Michalewicz (editors), [landbook of Evolutionary
Computation, pp. 1-5.

S"GZbignic'.'r Michalewicz, Genetic Algorithms + Data Structures - Fvolution Programs, pp. 16-17, 26-

29

" David Beasley, David R. Bull, Ralph R. Martin, “An Overview of Genelic Algorithms - Part 17,
University Computing, UCISA, p. 3, 1993,

L. Darrel Whitley, A Genetic Algorithm Tutorial”, Computer Science Department, Colorado State
niversity, Technical Report, p. 6. November 10, 1993,
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Thus, childl and child2 will tend to be different from either of their parents, but
also shall possess some characteristics of both. If the parents each had high fitness then
there would be a good chance that at least one of the children is as fit or better than either
parent. If this is the case, then selection will favour this child's s existence and insertion
into new population, if not, then selection will favour the child's extinction. There is, of
course a small possibility that most or all of the crossovers produce children of less fitness.
To overcome this possibility, a parameter, /-, the probability of crossover, is introduced.
Before crossover is applied, a random number is generated. If this number is less than or
equal to P, then crossover is performed, if not, then the parents are passed into the next
generation unchanged.*” Since without crossover it’ s proven that except some complex

and special cases, no advancement can be observed in the execution, P is usually set high
([}5 = )“(‘ < IO)

There are also other kinds of crossovers for bit-wise and real-coded applications,
such as 7wo-Point Crossover, Multi-Point Crossover, Uniform Crossover (UX), Half-
Uniform  Crossover (HUX), Parameterized Uniform Crossover, Parameter-bounded
Blend C'rossover (BLX-w), Segmented Crossover, a Crossover, Randomized And Or
Crossover (RAOC), Randomized Uniform Crossover (RUC), ete’’-'-22.53.5455 ¢ g
proven that the performance, efficiency and applicability of such crossover schemes vary
among the implementation, data structure and the algorithm chosen. Therefore, there can
be no crossover model in general to be regarded as the best or the worst. One should
decide upon the most suitable crossover scheme according to the structure of the problem
and the corresponding GA he / she deals with.

As mentioned previously, another important and effective GA operator is shown to
be mutation. Mutation can be simply defined as the operation on which the value of a
single bit or some of the bits within an individual is changed in a random fashion so as to
produce a new child with different genes. An example of a single-bit mutation is given in
Figure 4 4 where the 3" leftmost bit of P1 is mutated from 1 to 0 as it’ s passed onto CI
within the same crossover denoted in Figure 4.3 It should be stressed that, in genetic
algorithms, high mutation rates cause the algorithm to degenerate to random search and
usually this is an undesired situation. The rate of genetic drift can be reduced by increasing
the mutation rate. However, if the mutation rate is too high, the search becomes

* David Beasley, David R. Bull, Ralph R. Martin, *An Overview of Genetic Algorithms - Part 17,
University Computing, UCISA, p. 3, 1993.

YBill Keller, Rudi Lutz, *A New Crossover Operator for Rapid Function Optimisation Using a Genelic
Algorithm”, School of Cognitive and Computing Sciences, The University of Sussex, pp. 1-11.

* David Beasley, David R. Bull, Ralph R. Martin, “An Overview of Genetic Algorithms - Part 27,
University Computing, UCISA, pp. 1-2, 1993.

** Zbignicw Michalewicz, Genetic Algorithms + Data Structures - Evolution Programs, pp. 68-70.

L. Darrell Whitley (editor), /oundations of Genetic Algorithms 2, pp. 34-43.

“ibid, pp. 188-201.

ibid, pp. 239-254.
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effectively random, thus enabling to investigate new and unknown areas in the search

P1: 00[j100]110011
P2: 00p011|110000

C1: 000100 110000
C2 000011 110011

Figure 4 4 Example of a single bit mutation.

Unlike crossover, mutation is a unary operator, in other words, it only acts on one
individual at a time. As bits are being copied from a parent individual to a child, usually a
random number is generated. If, the probability of mutation, P, namely, is greater than this
random number, mutation is activated. P, is usually chosen small (0 <= P, <= 0. l).” It is
remarked that there’ s no optimum value for 7,, it depends on the algorithm and problem.

P, can be deduced heuristically or by some simple mechanisms. (ie. P, = 1 /
Chromosome Length.)

There’ s also another genetic operator known as inversion. However, inversion is
not used as often as crossover and mutation in most GA' s. Inversion is a process that
shifts the locus of one or more gene in a chromosome from one point to another. This
does not change the meaning of the genotype in the sense that a genotype before and after
inversion will still decode to they same phenotype.*® Consequently, this fact causes a
question in mind wondering why designers would be bothered with inversion at all.** The
theory behind inversion is that there are groups of two or more genes in a chromosome
that work together to yield a high fitness. If these genes are physically close together than
single point crossover is much less likely to disturb these groups. Although this argument
seems reasonable, inversion in practice has achieved conflicting results. Another operator
similar to inversion is known as reordering. Reordering changes the sequence of genes of
- any chromosome to any new valid sequences. It” s proven that reordering might be useful
in implementations where the gene orderings of the individuals are effective as well as the
gene values *’ Especially, for the problems where the ordinal encoding is necessary such as
graph partitioning problems or TSP. Besides establishing a proper order, reordering can
help to expand the search space for the candidate solutions. In many GA applications
inversion is ignored whereas in some applications for which the fitness function might

* David Beasley, David R. Bull, Ralph R. Martin, “An Overview of Genetic Algorithms - Part 17,

University Computing, UCISA, p. 8, 1993,
5 L. Darrel Whitley, A Genetic Algorithm Tutorial”, Computer Science Department. Colorado State

University, Technical Report, p. 6. November 10, 1993,

¥ Zbigniew Michalewicz, Genetic Algorithms + Data Structures — Fvolution Programs, pp. 52-53.
¥ David Beasley, David R. Bull, Ralph R. Martin, “An Overview of Genetic Algorithms - Part 2”,
University Computing, UCISA, pp. 3-4, 1993.

Y ibid, pp. 3-4.
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change dynamically over time, special GA operators such as inversion and reordering can
be considered useful.

4.3.4 Alternative GA Operators and Schemes

So far, the only format applied to genotypes is bit string encoding. However, there
is an increasingly large number of GA' s being researched and implemented which do not
use bit encoding at all. Some researchers who are purists or conservative in terminology
would claim that these are not true genetic algorithms. The others oppose to this and claim
that non-binary representations are better suited to complex optimization problems. The
term evolutionary program is sometimes applied to algorithms which are in the soul of GA'
s but use other kinds of data structures

Two common forms of genetic encoding alternatives are real or floating numbers
and ordinals. Real encoding uses strings (arrays) of real numbers rather than bits. Thus,
instead of encoding each parameter in a genetic algorithm as many bits, a single real
number can be used. With a real numbered scheme a decoding step is not necessary since
the genes are already in the form they will be processed.

It” s stressed that when using a real valued encoding with several genes, traditional
single point crossover can certainly be used. However, one of the reasons of the trend to
real encoding is to exploit the ability to manipulate the chromosomes directly as strings of
numbers. This suggests that new forms of crossover might be more useful and efficient.
One possible technique can be crossing by averaging the two parents. Another technique
might use weighted averages, weighting each child toward a different parent.® Still others
may combine features from single point crossover with weighted crossover. Imagination
and experimentation can often lead to varying results based on the nature of the problem.

Mutation in real encoding also presents the designer with a variety of choices. The
simplest method might be to replace a real gene completely with another randomly
generated one. One can also average a random number into the existing gene. Another
good alternative is to add or subtract a small noise factor into the gene's value. Or,
swapping two numbers in the chromosome string, known as structural mutation. Again
the choice and results usually depend on the problem in hand.%-**

An example of a domain where real encoding is useful is in engineering design
optimization. Here, there are usually a large number of real parameters which describe the
various design choices that can be made. Finding a near optimal design for a given
application is often an arduous task. Because of the larger parameter space, bit strings
would probably yield poor results. In addition, real encoding would be more intuitive to

% Zbigniew Michalewicz, Genetic Algorithms + Data Structures — Fvolution Programs, pp. 3-6, 75-82.
% David Beasley, David R. Bull, Ralph R. Martin, “An Overview of Genetic Algorithms - Part 27,

University Computing, UCISA, pp. 2-3, 1993,
® Zbigniew Michalewicz, Genetic Algorithms + Data Structures - Fvolution Programs, pp. 87-88.

%ibid, pp. 213-214.
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the engineer and allow him to incorporate other known algorithms into the optimization
process. This is known as Aybridizing the genetic algorithm

Another class of optimization problem that requires a different encoding scheme is
combinatorial optimization. In combinatorial optimization problems, people are concerned
with optimizing the order of some operation rather than a set of control parameters. An
example of this is the Traveling Salesman Problem (1SP) which is previously mentioned.
In 78P, we have a salesperson who must make a tour throughout the country visiting
various cities and then returning to home base. The salesperson can not go to any city
more than once. The goal is to schedule a travel plan (a tour) which minimizes the total
distance travelled. It is not obvious that this algorithm can be mapped onto a bit-string
encoding, although it has been done. A more natural and hence, efficient encoding is to
use a string of ordinals. These are simply positive integers which describe the order in
which the cites should be visited (assuming each city is associated with a number). Thus,
the solution of the problem might be achieved via a hybridized genetic algorithm, in an
evolutionary sense rather than a standard genetic algorithm model. There are actually
several methods of solving the 757 via the use of a GA.*°--*® The one illustrated in

Figure 4.5 uses a representation generally known as path encoding.

For the example denoted in Figure 4.5, there are ten cities in the tour, and the tour
order given in that figure is one of the possible schedules, which is [1,4,3,2,5,6,8,9,10,7].
In fact, this is a vector-based representation where each city travelled at a unit time is each
element of this vector, thus an individual stands for the complete touring path. For
instance, for the vector mentioned here, at time ¢, the salesman is at city 1, then at time
11 1, he goes to city 4, and so on. Hence, for the GA implementation, the population is
- composed of several possible and legal (no cycles, etc) individuals that represent a
complete tour with all the cities travelled, path encoding, in other words.

The evaluation of these individuals, ordinal number encoded chromosomes, is done
by calculating the overall cost of the complete tour. Since the cost of travel between each
city pair is given initially in the problem, the calculation process is trivial.

The aim of the GA is to search and find the best ordering of the cities in the tour,
thus to find the chromosome that gives the minimum cost. Thus, by establishing a proper
fitness function which calculates each vector’ s cost and gives a fitness value to each
chromosome that suggests the fittest individuals with the minimum costs, the problem can
be solved via a GA approach. The important fact is that since the encoding and the
structure of the genes and the chromosomes is of a special case in 7.SP, the recombination
and reproduction operators, crossover, mutation, etc. should also be designed and adapted
in a suitable manner regarding the ordinal encoding and the order of genes.

® Zbigniew Michalewicz, Genetic Algorithms + Data Structures — Fvolution Programs, pp. 7-9, 75-78.

“ibid, pp. 165-191.
S Lawrence Davis (editor), Genetic Algorithms and Simulated Annealing, pp. 43-60.

*Leonard Bole, Jerzy Cytowski. Search Aethods for Artificial Intelligence, pp. 211-217.
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2

Ordinal Genotype: [1,4,3,2,5,6,8,9,10,7]
represerts a tour.

Figure 4.5 Traveling Salesman Example with an Ordinal Encoded
Individual

This is due to the fact that the types of operators that have been considered for bit
strings and real numbers are shown to be problematic when applied to ordinals. The
reason is that operators like single-point crossover or simple mutation are likely to cause
the generation of invalid individuals. It” s strictly remarked that an ordinal chromosome
must not contain duplicate ordinals and must have every ordinal in its range represented, in
other words, the order of genes within a chromosome and the genotype do have essential
and critical importance in implementations such as 757,

For instance, partially-mapped crossover (PMX), order-crossover (OX), cycle-
crossover (('X) crossover methods and mutation operators such as inversion, insertion,
displacement, reciprocal exchange can be used.*”-" For example, the order-crossover can
be processed as follows" ;

Let two parents representing ordered path for the complete tour be:

pi=[12345678910]
p:=145218769310]

The order-crossover can be applied to these parents by choosing a subsequence of
atour from one parent and preserving the relative order of cities from the other parent. If,
the subsequence is chosen as the middle four cities in the tour, then the corresponding
offsprings will be produced in the following way: First the segments between cut points
for the four cities in the middle are copied into offsprings. Thus;

: Zbignicw Michalewicz, Genetic Algorithms + Data Structures — Fvolution Programs, pp. 172-176.
“ibid, p. 213.
ibid, pp. 173-174.
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the parents with the cut points denoted:

pi=[123]4567]8910]
p=14521187619310]

the corresponding offsprings with the tour between the cut points:

u;=[xxx|456?fxxx]
r)_)"—'[xxx| 1876 | X X X]

Next, beginning from the second cut point of the second parent, the cities from the
first parent are copied in the same order, omitting the ones already present in the first

offspring. Thus,

the sequence of p,: 93104521876
removing the ones presentino, : 93 10218

This new sequence is then placed in the first offspring, starting from the second cut
point, so that the new offspring is formed as,

0= [218456793 10]
The similar procedure can be applied for the second offspring, thus,
0,-[34518769102]

The other crossover operators use methodologies basically similar to the order-
crossover. The common goal in all these operators is to derive the offsprings with no
cycles or anomalies in the tours they represent. However, other types of crossover
operators are used for the GA implementation of TSP, where rather than focusing the
positions and the sequence of the cities within a tour, the links between the cities are
considered; hence, the encoding of the chromosomes and the crossover operators are
implemented via matrix representations. /<«dge combination crossover (IERX), matrix

72
crossover are such of these models.

As well as crossover, some various mutation schemes can be applied to the TSP
implementation. However, these mutation operators must be designed so as to be well-
suited for the ordinal encoding of the chromosome. Some of these mutation operators can
be summarized as insertion, selecting a city and inserting in a random place;
displacement, selecting a subtour and inserting in a random place; reciprocal exchange,
swapping two cities.””-"* For instance, the displacement mutation can be applied as

follows;

" Zbignicw Michalewicz, CGenetic Algorithms + Data Structures — Evolution Programs, pp. 176-189.

Dibid, p. 176.
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individual: [31526847]

selected subtour: {526}
random position: before city 7

individual after mutation: [31845267]

Any of the selection methods mentioned previously can be used for the GA
implementation of the 757 Once the fitness values established properly for each
chromosome, any selection mechanism can be applied involving no extra adaptation for

the ordinal encoding.

4.4 Theory of Genetic Algorithms

In the following sections, a short analysis of the theoretical and mathematical basis
that genetic algorithms rely on, will be given with necessary examples and notations.

4.4.1 The Fundamental Theorem of Genetic Algorithms

In section 4.3, it' s been stated that GA's work because a GA gives exponentially
increasing trials to the fittest individuals. However, it’ s shown that this is not completely
accurate. For instance, if a GA only worked at the level of the individual, then it would be
doubted whether it could be sufficient to explore spaces as large as 2'”’ ~ 10" or greater.
Certainly, it” s stated that in order to be efficient, a GA must limit its population size to
some manageable number This number is taken usually in the range of /0° to /0°. Then in
contrast, anyone might suspect how could a few hundred or even a few thousand
individuals could explore a space with a trillions of different points. The answer is proven
to lie in a more accurate definition of the underlying GA theory. Instead of saying that
individuals receive exponentially increasing trials, the fundamental theorem of genetic
algorithms states that each time an individual is processed, the GA is not simply sampling
a single point in the space but too many points. In order to understand how this can be
achieved, the concept of schemata should be known, which will be discussed in the

following section.
4.4.2 Schema Theorem and The Building Block Hypothesis

It” s stressed that whenever bit string genotypes are chosen for the implementation,
by no doubt, each position in the string is limited to the characters 0 and / only. In other
words, the representational alphabet domain for the strings is {0,1}. Throughout this
discussion an additional third symbol will be used which is *, and will stand for the don't
care property. This produces the new alphabet as {0,1,*}.7°-" A string from this alphabet

" Melanic Mitchell, Stephanie Forrest, John H. Holland, “The Royal Road for Genetic Algorithms:
Fitness Landscapes and GA Performance”, Proceedings of the First European Conference on Artificial

Life, Cambridge, pp. 1-2, 1991
“ Thang Nguyen Bui, Byung Ro Moon, “Genetic Algorithm and Graph Partitioning”, IEEE Trans. On

Computers. vol. 45, No. 7, pp. 843, 847-848, July 1996.
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might look like the following: 00**11. The meaning of the don't care symbol, is that
whatever value (0 or 1) is preserved at that position, is not taken into consideration, it can
be neglected. Another way of stating this is that the sample string, 00** 11 matches all of
the strings in the following set {000011, 000111, 001011, 001111}. Strings which include
the don't care symbol are called schemata or similarity templates. In order to understand
the importance of schemata, the following hypothetical population of bit-strings and their
associated fitness is given as an example,

String Fitness
10011 361
00110 36
11001 576
O1rio 196
00111 158

Some patterns between the strings and their fitness can be directly notified from
this example, without even knowing how the strings decode to yield their fitness values.
One pattern that seems to emerge is that strings which begin with 1 do have significantly
higher fitness values than those which begin with zero. Another deduction that holds for
this example is that strings with more 1' s than 0' s tend to have higher fitness. Thus, by
only looking at 5 strings out of a possible 32, a lot of information can be extracted. If one
had to make a guess for a string that would give even better fitness, he’ d confidently
guess 1111, given these two observations. The first observation noted is equivalent to
stating that strings which match the schema 1**** have higher fitness than those that
match the schema 0**** The second observation is that; strings which match schemata
Bom the set {1111%; 111%1, 11*1], 1011, #1110, 111%, 117%). 1**11, Y2111} will
have greater average fitness than those which match schemata in the set {0000*, 000*0,
00*00, 0*000, *0000, 000** 00**0, 0**00,**000}. Also, it should be noted that a
chromosome of length 7 can be viewed as an instance of 2" schemas. For instance, a
chromosome or string 101 is an instance of 27 = 8 schemas: *¥** 1** *0* **]| |0* 1%1.
*0l and 101.”

Therefore, the success of GA" s, can be concluded to be due to the fact that they
implicitly search for patterns (schemata) with higher fitness. In a bit string of length 5 there
are only 2’ = 32 individuals but 3’ = 243 schemata. Thus, it can be clearly stated every
time a GA processes a single individual it is actually processing many schemata. According
to the schema theorem first worked out by .John Holland, in a population of size N, the
number of schemata effectively processed is in the order of N°. This assertion is based on a
specific property known as implicit parallelism or sometimes referred as intrinsic
parallelism. In fact, the implicit parallelism property is remarked to be one of the basic
reasons that explain the good performance and power of GA” s.”%-7-%

" Thang Nguyen Bui, Byung Ro Moon, “Genetic Algorithm and Graph Partitioning”, IEEE Trans. On
Computers, vol. 45, No. 7, pp. 843, 847-848, July 1996

" ibid, p. 843.
" Zbignicw Michalewicz, Genetic Algorithms + Data Structures — Evolution Programs, p. 52.
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This fact can be simply denoted by an example. In any GA application, if a
population of /000 individuals each of length /00 exists, then it is necessarily sufficient to
explore a space of /0™ points. The number of schemata processed in each generation of
the GA is approximately /000° = 10°. Moreover, bad schemata can be quickly discarded
from the exploration by the selection mechanisms, which results with a fairly powerful
search procedure with an optimized search space and efficiency.

As a conclusion, John Holland provided the Schema Theorem which is stated as

follows;

Short, low order, above-average schemata receive exponentially increasing trials
in subsequent generations of a genetic algorithm.®

This theorem i1s sometimes called as Schemata Theorem as well.

A related observation that emerges when one considers the relationship between
schemata and the crossover operator is referred as the Building Block Hypothesis and is

stated as follows;

A genetic algorithm seek near-optimal performance through the juxtaposition of
. . . . J
short, low-order, high-performance schemata, called the building blocks.™

Similar to Schema Theorem, the building block hypothesis states that the
reproduction, selection and exploration schemes in GA’ s are the source for a powerful
search. Both in these two definitions, the term short indicates the length of the defining
portion of a schema. This is the distance between the first 0 or 1 and the last 0 or 1 which
defines the compactness of information contained in that schema. For example, in 1***0*,
the defining length is + and in **111* it is only 2. Order (as in low-order) refers to the
number of fixed positions (0 or 1) in the schema. For example, the order of the schemata
*¥*#0*1*1 is 3, and the order of the schemata 00***00*0 is 5. It can be seen that schemas
of low order match a larger number of individuals than those of high order where a high
performance schema is the one that matches individuals of high fitness.*’

Another fact of the Schema Theorem is that the schemata can also be defined as
the bit-wise combinational representations of hyperplanes. Thus, a schema of order-3 can
be used to implement a Aypercube. Thus, each binary-encoded chromosome of length /is a
member of the 2’ -1 different hyperplanes where 3' -1 hyperplane partitions can be defined
over the entire search space *-*> Consequently, it’ s stated that the implicit parallelism is

* David Beasley, David R. Bull, Ralph R. Martin, “An Overview of Genetic Algorithms - Part 17,
University Computing, UCISA, p. 7, 1993.

¥ Zbigniew Michalewicz, Genetic Algorithms + Data Structures - Evolution Programs, p. 51.
“ibid, p. 51.

Y ibid, pp. 51-53.

*'L. Darrel Whitley, “A Genctic Algorithm Tutorial”, Computer Science Department, Colorado State
University, Technical Report, pp. 6-7, November 10, 1993,

¥ Gregory J.E. Rawlins (editor), l‘oundations of Genetic Algorithms, p. 222.
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derived from the fact that many hyperplanes are sampled when a population of
chromosomes are evaluated *

The derivation of the Schema Theorem and the related assertions can also be
explained in a more mathematical form as follows*’-**

Let / be any schema in a population /(1) at any generation #, where the number of
strings or chromosomes of H is denoted by m(H,1). If during any reproduction stage,
chromosomes {x,, x5, ... x,} are regenerated according to the fitness function, then a
chromosome x; of the new population will be reproduced with a probability

_Stal
Bi =y

)

where f indicates the fitness value of the j ” chromosome. Thus, the average
fitness for the whole population can be denoted as

; /' ...... .

H

Consequently, if an average fitness function value for a schema is denoted by f(H),
then the following equation can be stated,

/(H)

m(H t +1) = m(H 1) P (1)

If, the schema // remains below or above the average of a constant threshold value
¢, which is independent of ¢, then the following statement holds;

m(H 1 +1) = f—%'!}—"_j—-n:(f!, )=(1+¢)-m(H 1). (2)

Therefore, the cardinality of the schema / during any reproduction can be stated
by the equation below,;

m(H 1) = m(H 0)-(1+ )" (3)

L. Darrel Whitley, “A Genetic Algorithm Tutorial”, Computer Science Department, Colorado State
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The three equations (1), (2), (3) denote the effects of fitness-proportionate
selection on the schema //_ On the other hand, if the defining length of H is denoted by 8H
and the length of each chromosome is given as /, then the probability that a random
crossover point is between the defining bits of the schema can be deduced as follows;

S(H)

pa(H) ===

The pu(H) value is also referred as the probability of disruption of the schema.
Thus, a schema marked as disrupted will survive with a probability denoted as below;

S H)
[J_$(H) =]1- }j

However, this can directly occur whenever this schema also exists in the other
parent. Since only some of the chromosomes can undergo crossover, the probability of a
schema survival becomes (the selective probability of crossover is pc),

pHY =1~ i~

On the other hand, since it” s proven that a schema H can be generated by crossing
over two strings that do not possess H. Thus, the formula for the probability of schema

survival 1s denoted as;

S(H)
I-1

p,(H)=21-p,_ -

which implies that
m(H t+1) > m(H 1) f}(r—@ -L - [;}C ‘%(_Hl—)ﬂ (4)

The equation (4) imposes the crossover effects on the schemata. From this
equation it can be deduced that the expected number of chromosomes matching a schema
H in the next generation is a function of the actual number of strings having the schema,
relative fitness of the schema and its defining length. As stated previously, the crossover

probability is mostly set as p- < 1

Since another effective basic operator is mutation in the population then the similar
assertion can be derived for the mutation as well. In general, mutation is applied to all the
bits of all the strings with a very low probability p,, << 1. It’ s also shown that a schema H
will be preserved with no alteration if all of its 8(/) specified positions are unchanged. The
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probability of a single bit being prevented from mutation is trivially 1 - p,. Hence, the
probability of a schema that survives mutation can be denoted as follows, where each
single bit mutation is independent from the other mutations;

py(H)=(1-p, )"

since p,, << 1, this equation can be rewritten as,

ol "
(I _f’m)’[ ) ~1- (‘)(H)‘[),,, (5)

Finally, combining all the selection, crossover and mutation effects denoted in the
equations (1), (2), ...(5) a new form of the reproductive schema growth equation can be
derived as below, which is the formal definition of the Schema Theorem,

m(H ¢ +1) = m(H 1) —{;-H) [I -(p‘, (;(_H)J S(H) p

From this formula, it could also be seen that if only fitness-proportionate selection
is applied with no crossover or mutation, generation after generation, a schemata with
above average fitness will be sampled by an increasing number of chromosomes (or
conversely, a schemata with below average fitness will be observed by a decreasing
number of chromosomes).

Considering that crossover tends to cut off schemata as it recombines individuals,
it can be firmly stated that short schemata have a higher chance of surviving crossover
intact. Low order schema effectively process more individuals and they are also more
likely to remain intact.*’-""-"' Moreover, it’ s proven that the positions of the bits in the
schema are important in determining the likelihood that those bits will remain together
during crossover, whenever single-point crossover is used.”

On the other hand, it should also be stressed that; for a number of schemas to
combine with each other via any crossover and to construct higher order schemas, all of
them must be kept through that crossover. This brings another important fact among GA’
s; the importance of disruptivity of a schema.” Disruption can be defined as the loss of
some or all of the schema in the offsprings after a recombination operator, mainly
crossover, is applied to the parents preserving that schemata. For instance, if there exists a
schemata in a population as (1********]) then whenever the string having that schema

YL, Darrell Whitley (editor), lroundations of Genetic Algorithms 2, pp. 77-79.

Y ibid, pp. 226-228, 230,

Zbigniew Michalewicz, Genetic Algorithms + Data Structures — I'volution Programs, pp. 52-53.

L. Darrel Whiltley, “A Genetic Algorithm Tutorial”, Computer Science Department, Colorado State
niversity, Technical Report, p. 13, November 10, 1993

Thang Nguyen Bui. Byung Ro Moon, “Genetic Algorithm and Graph Partitioning”, IEEE Trans. On
Computers, vol. 45, No. 7, p. 843, July 1996.

157

JZMIR YCHSEK TERNOLO FNeTITRCR



undergoes a single-point crossover with any string such as (*********() then the
disruption will occur with a probability 1 (recalling that the computation of the probability
of the disruption of schema was indicated in this section previously). Because, no matter
which bit-location is chosen for the single-point crossover between these two
chromosomes, the schema will be lost. This provides an important fact: When using 1-
point crossover, the bit-positions of the schema are crucial in determining the probability
of the survival of the schema.” Another important deduction based on this fact, which can
also be analyzed from the example, is that the shorter the schema’ s defining length, the
less likely it is to be disrupted through crossovers™. It’ s also proven that the disruption
rate of crossover varies among different types of crossover schemes such as n-point
crossover, parameterized uniform crossover, etc.” For instance, for the example given
here, any 2-point crossover scheme has a disruption probability (rate) < 1, thus might be a
better choice than I-point crossover for that schemata.

It' s proven that the building block hypothesis has application in both the design of
new kinds of crossover operators and in determining how to best encode a problem.”’

4.5 Potential Problems for GA Implementations

Besides the difficulties that lie in the design and implementation of proper and
successful evaluation and fitness functions, there are some other potential problems and
shortcomings that can be faced for any GA implementation or in any GA application. Also,
in some cases, the designer should consider some of the important facts related with the
special properties in the structure of GA’ s; because sometimes it might become too
difficult for him / her to decide upon which mechanisms to use in the design and
implementation. Some of these facts and the potential problems will be mentioned shortly

throughout this section.

¢ Exploration vs Exploitation

It” s stated that any efficient optimization algorithm, like GA, should use two basic
techniques to find a global maximum, exploration and exploitation. Exploration is defined
as the investigation of new and unknown areas in the search space. On the other hand,
exploitation makes use of knowledge found at points previously visited to help finding
better points. The crucial issue is that these two requirements are contradictory, when one
is kept high in the search, the other becomes low-utilized. Thus a good genetic algorithm
must be implemented so as to find a balance between the two, because the power and

efficiency of a GA lies in this balance.”*-*

"' L. Darrel Whitley, “A Genetic Algorithm Tutorial”, Computer Science Department, Colorado State

University. Technical Report, p. 13, November 10, 1993.
” Thang Nguyen Bui, Byung Ro Moon, “Genetic Algorithm and Graph Partitioning”, IEEE Trans. On

Computers, vol. 45, No. 7, p. 843, July 1996.
* L. Darrell Whitley (editor), lFoundations of Genetic Algorithms 2, pp. 222-229.

I Tibid, p. 230.
* Zbigniew Michalewicz, Genetic Algorithms + Data Structures - Evolution Programs, p. 15.
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For instance, a purely random search is good at exploration, but does no
exploitation. However, a purely hill-climbing method is good at exploitation but has very
little exploration. Making a good balance is the best approach, but this must be carefully
implemented in a genetic algorithm’ s design. In theory, combining these two techniques in
an optimal way at the same time for a GA is shown to be true, whereas some difficulties
and inevitable problems are faced in practice. These are shown to be due to the facts that,
the population size is not infinite, the fitness function accurately reflects the utility of a
solution and the genes in a chromosome do not interact significantly.'*’-"""

e Premature Convergence

There are some common problems observed in GA” s due to the variation in fitness
range throughout the execution of a GA. One of them is known as premature
convergence. The premature convergence is the domination of a few number of highly fit,
but not optimal chromosomes throughout the population very rapidly. Since, the
population is converged, the GA loses the ability to search for better solutions and sticks
on the same type of chromosomes with the same values covering the entire population.
Except mutation, all the other reproduction operators produce almost the identical

offsprings in the next populations. This turns out the GA into a non-efficient, slow random
search '’

It” s remarked that as a result of the schemata theorem, premature convergence
occurs, because the population size is not infinite. It” s shown that, in order to overcome
premature convergence, the selection mechanisms must be rearranged in a way that
enables the compression of the range of fitness and the prevention of any super-fit

individuals® dominance.""
e Difficulty in Finding The Global Maximum

Another problem caused by the vanation in fitness range is shown to be the
difficulty in finding the global maximum, in other words, slow finishing After many
generations, the population will be largely converged, but may still have not precisely
located the global maximum (have not found the exact and best solution in optimization
problems). Since, the average fitness has reached a high value, there will probably be little
difference between the best and average individuals, thus the GA will have difficulty in
reaching the global maximum and will wander through the local maxima. This is a very
crucial problem when the exact optimum solution is required in time-critical applications.
This problem might be overcome by expanding the range of fitness in the population by

* David Beasley, David R. Bull, Ralph R. Martin. " An Overview of Genetic Algorithms - Part 17,
University Computing, UCISA, p. 8, 1993

" ibid, p. 8.

"' L. Darrell Whitley (editor), Foundations of Genetic Algorithms 2, p. 231.

"> David Beasley. David R. Bull. Ralph R. Martin, “An Overview of Genetic Algorithms - Part 17,
University Computing, UCISA, p. 10, 1993

" ibid, p. 10, 1993
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some special mechanisms such as explicit fitness remapping and implicit fitness
remapping. Also, some random mechanisms can be added to the selection and
recombination operations so as to introduce new individuals that might help reaching the

global maximum.'"*

e Crossover / Mutation Balance

It s mentioned previously that in general, for any GA, crossover and mutation
operators are used together in recombination phase, where crossover probability is
significantly high and mutation probability is too low. However, some researchers suggest
completely discarding the mutation operator but some others advise keeping mutation
probability high, even higher than the probability of crossover in some occasions. No
matter what kind of problem is dealt, and which GA model is chosen, the designer should
be aware of some of the facts concerning the crossover / mutation balance.

It” s shown that mutation can provide any level of disruption that crossover can
provide. Moreover, it’ s proven that crossover has no advantage over mutation in terms of
the amount of exploration that can be performed. However, considering the type of
exploration, crossover is proven to guarantee the preservation of common alleles, while
mutation does not. Another fact is that, crossover can exhibit high simultaneous levels of
preservation, survival and construction since it can share information between the fit
individuals. But since mutation is often implemented with a parameter that is constant
during the search, no information can be shared by mutation unless it’ s implemented in a
variable fashion. However, it” s proven that crossover implicitly concerns the interaction
among the genes when generating new instances, a property not valid for the standard

mutation operator. This property is shown to be the source of crossover’ s power as a

105 106
search operator.'"”-'"

When optimizing the balance between exploitation and exploration in a GA is
concerned, it” s stressed that neither mutation nor crossover must be dismissed. Instead,
they should be both used with an optimized balance between their probabilities. It’ s
proven that mutation plays an important role in the exploration strength of a GA, while

crossover heavily affects the exploitation quality. '’

4.6 Other GA Models

The standard GA model previously described, sometimes is proven to be
insufficient in some applications, especially whenever the evaluations are very time-
consuming and the populations need to be held extremely large. For such situations,
different GA models have been successfully derived and yet still being constructed. One of

" David Beasley, David R. Bull, Ralph R. Martin, “An Overview of Genetic Algorithms - Part 17,
University Computing, UCISA, pp. 8-12.

' L. Darrell Whitley (editor). Foundations of Genetic Algorithms 2, pp. 226-232.

"6 ibid, pp. 200-201.

“ibid, p. 231.
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these is known as Parallel Genetic Algorithms (PGA). 1’ s shown that PGA’ s are not
only an extension of the standard sequential GA via parallelism, but also they represent a
new class of algorithms that have a different search mechanism. There are various types of
PGA models, depending on; the distribution of the population (Centralized, Distributed,
etc.), depending on the implementation (/arming, Island, Cellular) and depending on the
Parallel Model (Coarse-Grained. Fine-Grained, ete.)'"*-'%-1°

Another GA model is known as CHC (Cross-generational ellitist selection,
Heterogeneous recombination, Cataclysmic mutation), which is a non-traditional genetic
algorithm. It processes sequentially as the standard GA’ s, but it combines a conservative
selection strategy that always preserves the best individuals found so far with a highly
disruptive recombination operator that produces offsprings that are maximally different
from both parents. The CHC algorithms are shown to perform better than the standard

M . ey i H 1 12
GA’ s in some specific implementations.” -

There are also other different GA models such as messy genetic algorithms
(MGA), Delta Coding, The Vose and Liepins models, Genitor, Dynamic Parameter
Encoding, etc. These all differ from the traditional GA’ s in some or all of the schemes,
such as representation, operators, selection, phases of the evolution process '"*-'"*-'"’

4.7 Applications of Genetic Algorithms

In this section some GA applications are summarized among a broad range of
application areas that, GA’ s are proven to be successful, or might be useful in the near

future.

¢ Scheduling

Scheduling can be defined as a problem of finding the optimal sequence to execute
a finite set of operations such that a certain set of constraints are not violated. A schedular
usually attempts to maximize the utilization of individuals or machinery and minimize the
time required to complete the entire process being scheduled. Conflicts can arise when an
individual or machine is scheduled for more than one operation at a given time or when

1% Lawrence Davis (cditor), Genetic Algorithms and Simulated Annealing, pp. 129-140.

" Gregory J.E. Rawlins (editor), Foundations of Genetic Algorithms, pp. 316-335.

"7 L. Darrel Whitley, “A Genetic Algorithm Tutorial”, Computer Science Department, Colorado State
University, Technical Report, pp. 32-34, November 10, 1993,

11 oy
ibid, p. 30,
"2 Gregory J.E. Rawlins (editor), Foundations of Genetic Algorithms, pp. 265-283.
" L. Darrel Whitley, “A Genetic Algorithm Tutorial”, Computer Science Department, Colorado State

University, Technical Report, pp. 27-31, November 10, 1993,
" Zbignicw Michalewicz, Genetic Algorithms + Data Structures — Evolution Programs, pp. 65-72, 135-

138.
' David E. Goldberg, Kalyanmoy Deb, Hillol Kargupta, Georges Harik, “Rapid, Accurate Optimization
of Difficult Problems Using Fast Messy Genetic Algorithms”, University of Illinois, Urbana-Champaign,

HIiIGAL Report No. 93004, pp. 1-17, February 1993.
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the schedule utilizes more resources than are available. Other constraints include priority
of some tasks over others and precedence of certain tasks with respect to others. GA' s
can be applied successfully and do show a great performance in several scheduling areas
like job-shop scheduling, transportation and assignment problems (;ENOCOP), resource
scheduling (in laboratories, several good stocks, etc), ERP, MRP, control systems

(GAFOC). -
e NP-Complete and NP-Hard Problems

The solutions for various forms of complex problems such as NP-Complete (Non-
Deterministic Polynomial Complete) and NP-Hard (Non-Deterministic Polynomial Hard)
have been successfully implemented using GA' s. These include the traveling salesman,

. . . sl . 118 119 12
map coloring, timetable assignment and graph partitioning problems. ''*-'""-'%

e Engineering and Design

Optimizing a design that includes many different parameters is a time consuming
and difficult task, even for expert engineers. GA' s can assist in design by quickly heading
toward near-optimal designs, given certain user specified design constraints. Aircraft and
space shuttle designs can be given as examples. GA’ s also offer a great aid in various kind
of industrial engineering applications, control systems, etc.'?'-'*.'%

e Machine Learning

Machine learning is mainly based on building computer programs that are able to
construct new knowledge or to improve already possessed knowledge by using the input
information. There are several models of machine learning in which GA’ s have been
successfully applied For instance, GA’ s have been applied to classifier systems where the
GA tries to evolve a set of if . then rules to deal with some particular condition or

1o Zbigniew Michalewicz, Genetie Algorithms + Data Structures — Evolution Programs, pp. 99-126,
203-209.

""" Christian Bierwirth, Herbert Kopfer, Dirk C. Mattfeld, Ivo Rixen, “Genetic Algorithm Based
Scheduling in a Dynamic Manufacturing Environment”, Department of Economics, University of
Bremen, Germany, Technical Report, pp. 1-6.

' Zbigniew Michalewicz, Genetic Algorithms + Data Structures — Evolution Programs, pp. 165-200,
209-214.

" Thang Nguyen Bui, Byung Ro Moon, “Genetic Algorithm and Graph Partitioning”, IEEE Trans. On
Computers, vol. 45, No. 7, pp. 841-854, July 1996.

' Kenneth A. De Jong, William M. Spears. “Using Genetic Algorithms to Solve NP-Complete
Problems”. ICGA-89 The Third International Conference on Genetic Algorithms, pp. 1-9, June 4-7,

1989.
1! Sigurd A. Nelson. “Strain Gage Sclection in Loads Equations Using a Genetic Algorithm”, NASA

Contractor Report 4397, pp. 1-20, 1994,

' George W. Ryan, “A Genetic Search Technique for Identification of Aircraft Departures”, NASA
Contractor Report 4688, pp. 1-16, 1995,

' James L. Rogers, Collin M. McCulley, “Integrating a Genetic Algorithm into a Knowledge-Based
System for Ordering Complex Design Processes”, NASA TM-110247, pp. 1-13, April 1996,
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problem. GA” s are also used in other learning models, such as connectionist network
. 124 125 1206
models and symbolic systems. “-"*"-

e Telecommunications

Routing of information through a complex communications network is an
extremely important problem in today' s world filled with computer networks, cellular
networks, packet switching networks and the like. This is a tough problem that some
researchers have addressed the solution using GA' s. And also, the optimization of
network channels in terms of speed, load balances, etc. can be achieved via GA usage_m

e Security in Computer Systems

GA' s can also be used efficiently in several areas of security in computer systems.
For example, a very successful implementation is achieved for the security audit trail
analysis problem, where, GA enables both an automotive efficient tool for audit trail
processes and also a simulation system for various kinds of attacks and threats to a
computer system, an intrusion detection system namely. A tool and program has been
developed for this aim which is known as (GASSA7TA. (a Genetic Algorithm tool for
Simplified Security Audit Trail Analysis) It s been developed by M.I. Ludovic and used
in IBM ALY systems successfully with proven reliability and efficiency.'”

"W F. Punch, E. D. Goodman, Min Pei, Lai Chia-Shun, P. Hovland, R. Enbody, “Further Rescarch on
Feature Sclection and Classification Using Genetic Algorithms™, ICGA93, pp. 1-8, 1993,

1* Zbigniew Michalewicz, Genetic Algorithms + Data Structures — Evolution Programs, pp. 215-229.

126 Lawrence Davis (editor), Genetic Algorithms and Simulated Annealing, pp. 129-140.

7 Viadimir N. Davidenko. Victor M. Kureichik, Victor V. Miagkikh, “Genetic Algorithm for Restrictive
Channel Routing Problem”, ICGA97 The Seventh International Conference on Genetic Algorithms, pp. 1-
6, July 19-23, 1997,

"M E. Ludovic, “Genetic Algorithms, an Alternative Tool for Security Audit Trails Analysis”, Internet
Document, http://www.supelec-rennes fr/rennes/si/equipe/lme/these/oakland95/oakland95 himl, 1997.

163 o o

T
Uit £

Kiitiinh -



Chapter 5§
CRYPTANALYSIS OF SYMMETRIC CIPHERS USING GA’ S

5.1 Previous Studies

It” s been proven that there haven’ t been much study on the cryptanalysis of
symmetric ciphers using genetic algorithms (GA’ s), especially when differential or
linear cryptanalysis is the case. However, in conjunction with this issue, there are some
remarkable works or projects that has been formerly established or being constructed
during the writing time of this thesis. But, against all my efforts, 1 have been able to
find only a few information about these studies. Only one of these projects, 7he
Decryption of Rotor Ciphers Using Genetic Algorithms' namely, had detailed and
accessible information via Internet, and it will be explained in the following paragraphs.

The first known studies combining the genetic algorithms and the cryptanalysis
is shown to be derived by Prof. Richard Jay Spillman. In one of his studies, with the
assistance of some other researchers, he successfully established a genetic algorithmic
method to break the keys of mono-alphabetic simple substitution ciphers as an
alternative to brute-force type cryptanalytic attacks’ In a reference’ concerning this
study, it” s been mentioned that randomly chosen keys were evaluated for fitness using
letter and diagram frequencies and the fittest candidates were then mated and subjected
to mutation to provide the next generation of keys. The mating operation used a
selective crossover, in which the best character of each key was passed on

Following this research, Spillman’ s another successful study is shown to be the
cryptanalysis of Knapsack Ciphers using genetic algorithms.* It’ s mentioned that in his
study, he described the design and use of a genetic algorithm to attack small trap do or
knapsacks eftectively and gave performance data to prove that GA-based search
performed 50 - /00 times faster than exhaustive search ’

Another researcher who made several studies based on the usage of GA’ s in
cryptanalytic attacks is K. A. Matthews. In one of his studies, he established a genetic
system for the cryptanalysis of simple transposition ciphers.® In this system, candidate
column orders were assessed for fitness using digram frequencies, and the best of them
were used to breed a new generation of candidates, using column rotations and swaps

" Emergent Technologies Inc . “On the Decryption of Rotor Ciphers Using Genetic Algorithms”,
Internet Document, http://www.sys.uca.ac.uk/~ajb/rotor. html, Scptember 1997.

*R. Spillman. M. Janssen, B. Nelson, M. Kepner, “Use of a genetic algorithm in the cryptanalysis of
simple substitution ciphers”™, Cryptologia, v. 17, No. 1, pp. 31-44, January 1993,

* Cypherpunks, “Re: Coding and Nnet's”, Internet Document, http://www.inet-one com/cypherpunks/
dir.95.11.08-95.11.14/msg00209.html, May 1998.

'R, Spillman, “Cryptanalysis of knapsack ciphers using genetic algorithms”™, Cryptologia, v. 17. No.
4, pp. 367-377, October 1993,

* Cypherpunks, “Re: Coding and Nnet's”, Internet Document, http://www.inet-one.com/cypherpunks/
dir.95.11.08-95.11.14/msg00209. himl, May 1998,

R. A. Matthews, “The use of genetic algorithms in cryptanalysis”, Cryptologia, v. 17, No. 2, pp. 187-

201, April 1993,
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as mutation operators. The algorithm was proven to be successful in finding partial
3 i 7
anagrams to aid manual solution.

One of the most impressive and outstanding application among the
cryptanalytic attacks with GA” s 1s shown to be the cryptanalysis of rotor ciphers. The
design and implementation of this study will be discussed shortly in the following

paragraphs.

A rotor cipher is a mechanical time-varying substitution cipher. In the times of
First World War, rotor ciphers were mostly preferred in cryptography. Also, its
variants such as /-nigma ('ipher were used in the Second World War. However, as the
power and the applicability of computer technology increased, the security of the rotor
ciphers decreased significantly and were not used any more after the 1950’ s. But it
should be stressed that nowadays, a rotor cipher is still considered as a good challenge
to test a cryptographic method’ s breaking capacity. Failure to decrypt a rotor cipher
would be indicative of a failure in the algorithm of the cryptanalytic attack, or low
performance in the cryptanalysis of any rotor cipher via any kind of cryptographic
method imposes that method’ s inefficiency.”

The original rotor cipher was a physical device made of an insulating disk
which had a number of electrical contacts around the perimeter of each face. The
contacts on one side of the disk are connected randomly to the contacts of the other
side. Thus, if each letter of the input alphabet is assigned to a contact on one face, the
output contacts would be a monoalphabetic substitution cipher. By connecting several
rotors face to face, a product of substitutions can be achieved. The complexity of the
cipher is obtained by rotating some of the rotor disks in a certain fashion after each
character is encrypted. By this way, a highly complex polyalphabetic cipher with a
moderately long key length can be derived.’ (the so-called certain fashion used in
rotation after each encryption provides the key itself.) This cipher is proven to be
ported easily to computers, either in hardware or software.

There are various cryptanalytic methods previously invented to break the rotor
cipher efficiently such as the iterative technique."’ A recent alternative approach is
implementing the cryptanalytic attack to several rotor cipher models by the aid of
genetic algorithms, which has been successfully established by 4. J. Bagnall et al. It s
shown that a genetic algorithm can be used to successfully search the very large
discrete key-space of a rotor machine, of magnitude up to (26!)", using a simple
measure of suitability. The method involves finding the last rotor of a three-rotor
machine using a GA and then solving the remaining two rotors by the iterative

" Cypherpunks, “Re: Coding and Nnet's”, Internet Document, hitp://www inet-one.com/cypherpunks/
dir.95.11.08-95. 11 14/msg00209 html, May 1998,

* Emergent Technologies Inc.. “On the Decryption of Rotor Ciphers Using Genetic Algorithms”,
Internet Document, htip://www sys.uca.ac.uk/~ajb/rotor html, Scptember 1997.

i
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" A J. Bagnall, “The Applications of Genetic Algorithms in Cryptanalysis”, MS Thesis. University of

East Anglia, pp. 85-92, 1996
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technique.'' The cryptanalysis of two-rotor machines by using GA’ s is also proven to
be more efficient than the other attack methods where it’ s also suggested that the
four-rotor and Enigma ciphers might also be cracked using enhanced GA” s.'*-"

For the GA implementation, the rotor is converted into an array of m integers,
where each integer is a 32-bit chromosome, representing the wiring for each position.
By this way, the subset of the key-space containing the correct keys for an m-rotor
cipher can be represented with a population of chromosomes. Several selection
methods were tried and roulette selection was proven to be the most suitable for the
implementation, producing faster convergence to an optimal solution (the correct key
value). Also, since PMY performed the best results, it was chosen as the basic
crossover operator. Two mutation operators were used, randomly swapping two rotor
wirings as a reciprocal exchange and randomly shifling selected substring of rotor
wirings to random position. Either one of these operators were chosen randomly and
operated on the offspring through each reproduction. It was found that the optimum
probability level for mutation was 0.5 for all the attacks. For the construction of the
new population, only the offsprings that had better fitness than the worst member of
the current pool and that were different from the chromosomes in the current pool
were added to the new population replacing the worst ones.'*-"*

The core and the most essential part of the GA implementation was pointed to
be the fitness function because, unless a proper fitness function is derived so as to
choose the candidate keys among the entire key-space, the cryptanalytic attack with
any GA would be useless. The basis for the fitness evaluation was that plaintext
enciphered by a monoalphabetic substitution would still exhibit characteristics of the
original distribution. A periodic polyalphabetic substitution system with period P can
be reduced to a series of monoalphabetic substitution ciphers. Therefore, a likelihood
function can be used as the fitness measure for which the search space of an m rotor
machine is s permutations and a chromosome p " has fitness L(p' l_}’) e

L(p'Iy) = 1’(_;'”|p') . !’()'||p') e 1’(}'”_||p') for a ciphertext of size n

However, it was shown that using such a likelihood function as a fitness
measure caused a problem due to the fact that; for any reasonably large string size the
likelihood would be a very small value, yet with an extreme range of possible values.
Thus, if roulette selection was used, poor solutions could possibly dominate the

'"A. J. Bagnall, G. P. McKcown, V. J. Rayward-Smith, “The Cryptanalysis of a Three Rotor Machine
Using a Genetic Algorithm”, ICGAY7 The Seventh International Conference on Genetic Algorithms,
p. 1, July 19-23, 1997.

A Bagnall, “The Applications of Genetic Algorithms in Cryptanalysis™, MS Thesis, University of
East Anglia. pp. 130-139, 1990.

" Emergent Technologies Inc . “On the Decryption of Rotor Ciphers Using Genetic Algorithms”,
Internet Document, http://www sys uca.ac.uk/~ajb/rotor. html, September 1997.

""A. J. Bagnall, G. P. McKeown, V. J. Rayward-Smith, *The Cryptanalysis of a Three Rotor Machine
Using a Genetic Algorithm™, ICGA97 The Seventh International Conference on Genetic Algorithms,
pp. 3-5, July 19-23, 1997.

" A. J. Bagnall, “The Applications of Genetic Algorithms in Cryptanalysis”, MS Thesis, University of
East Anglia. pp. 121-126, 1996

"“ibid, p. 126.
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population because their fitness would be much greater than the other chromosomes,
but still much smaller than the optimum. It was proven that taking the logarithmic
values of each side of the equation in the fitness function and consequently, using
-log(L(p’ | »)) as the fitness measure could overcome this problem. Thus, the objective
is to find the minimum of the negative log likelihood that corresponds to the optimum
solution. The revised fitness function is denoted as follows'” ;

]og( 1(ply)) = log(_ ! ’(,vulp')) + los(i (0 ’p‘))+--~+ Iog(i’(y,._ub"))

Using the genetic mechanisms and functions described previously, the GA was
coded and executed. The program generates new populations and executes through an
evolution cycle in an iterative manner until a chromosome with the required optimum,
thus a correct or nearly correct rotor is found. This also means that the key for that

rotor is broken.

After the tests and several studies it was proven that by using a GA-based
attack, the single rotor cipher was broken much more rapidly and efficiently than all the
other known cryptanalytic techniques. For instance, a GA could efficiently search the
discrete key-space of a size about /0" and could find the key by examining only /0’ -
10° candidates. It was shown that an unknown plaintext decryption of a single
ciphertext enciphered in a 32-contact rotor could be achieved by a GA at an average of
20 minutes on the /2 AMhz 80286 platform. Thus, when the GA is embedded to a
standard cryptanalytic attack, the overall cryptanalytic performance was proven to be
better than all the other attack types on two and three-rotor models. Moreover, it was
also shown that the GA embedded attack technique outperformed other search
mechanisms such as simulated annealing and hill-climbing when these were embedded
to the cryptanalytic attack in a similar manner. In all these studies as a conclusion, it
was firmly stated that a very basic implementation of a GA could be used to solve a

fairly hard cryptographic system. o a

Besides these former studies that have been mentioned previously, there are
also currently ongoing projects based on the cryptanalysis of different types of
cryptosystems using genetic algorithms. For instance, one of these studies aims to
derive a general mechanism to enhance key searches in cryptanalytic attacks using GA-
based techniques; by making the best use of good global search capability of GA” s.*'
Another project that has been recently founded and is still being developed; is the
cryptanalysis of DES via transformation of the DES algorithm into an instance of an
NP-Hard combinatorial problem and attacking with an appropriate combinatorial

'TA. J. Bagnall, “The Applications of Genetic Algorithms in Cryptanalysis”, MS Thesis, University of
East Anglia, pp. 126-127.

" Emergent Technologies Inc.. “On the Decryption of Rotor Ciphers Using Genetic Algorithms”,
Internct Document, http://www sys.uca.ac.uk/~ajb/rotor html, September 1997,

" A. J. Bagnall, G. P. McKeown, V. J. Rayward-Smith, “The Cryptanalysis of a Three Rotor Machine
Using a Genetic Algorithm”, ICGA97 The Seventh International Conference on Genetic Algorithms,

pp. 5-6, July 19-23, 1997,
AT Bagnall, “The Applications of Genetic Algorithms in Cryptanalysis”, MS Thesis, University of

East Anglia. pp. 130-140, 1990
* ADFA Computational Intelligence Group Projects, “Applications of Evolutionary Algorithms in
Cryptanalysis”, Internet Document, http://www.cs.adfa oz au/research/CIG/projects.html, April 1999.
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algorithm.”* In this project, one of the possible and promising alternative for the
combinatorial algorithm is recommended as GA.

5.2 Proposed Theoretical Model Differential / Linear Cryptanalysis using Genetic
Algorithms

The implementation of any differential or linear cryptanalytic attack via any
genetic algorithmic approach is the core of this thesis. However, due to some
important and strict aspects and shortcomings, this approach has been in a proposed
theoretical or hypothetical fashion rather than an implementation; where these reasons

will be explained later on

Having made a detailed analysis both in differential / linear cryptanalysis and
GA’ s, my basic approach was to find a suitable methodology to combine these two
issues which might possibly result with an exploitable effort. 1 also included the
knowledge and concepts involved with the previous cryptanalytic attacks achieved via
the usage of GA” s. Using these former information, and combining these with my
analyzes and ideas, | tried to establish several alternative models related with the
differential or lincar cryptanalytic attacks using GA’ s. | tried to generate alternative
models each having a different view of standpoint in the use and application of GA” s

among these cryptanalytic attacks.
e New Characteristics in Differential Cryptanalysis using GA’ s

As mentioned previously, there are several best n-round characteristics derived
for the differential cryptanalysis of DES and DES-like symmetric cryptosystems.
However, as stated by Btham and Shamir, there might be better differential
characteristics than the best ones found so far for the DES algorithm.** Since, it’ s
shown that the derivation of better characteristics in any type of differential
cryptanalytic attack is the heart of this attack methodology; better characteristics shall
improve the performance of the attacks significantly. For instance, if better
characteristics could be established than the one used in the differential cryptanalysis of
16-round DES, having a higher probability than 2*7% | then the overall computational
complexity of the attack and the chosen plaintext requirements could be reduced too.

Therefore, if a suitable GA can be adapted so as to search and find better
differential characteristics than the known ones, then the differential cryptanalysis can
be improved with the aid of GA” s. This might be achieved by constructing a GA which
takes several chosen plaintext pairs that produce the good and the best characteristics
known so far and several random plaintext pairs as input. These pair values will be
encoded so as to be the chromosomes of the GA population. The fitness function will
be trivial, the probability of the characteristic provided within these chromosomes.
Thus, the more fit chromosomes with higher probabilities will be used for
reproduction, and if any chromosome having a near-optimum (best known
characteristic) or equal-optimum or indeed, a better-than-optimum is produced, then

* Eric Michael Cordian, “The DES Analytic Crack FAQ", Internet Document,
http://www.cyberspace.org/~cnoch/crakfaq html, December 1998,
* Eli Biham, Adi Shamir, Differential Cryptanalysis of the Data Fncryption Standard, p 28
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its ciphertext pairs will be checked. If these are different from the previously derived
characteristics, they will be used as new and best (if any) characteristics in the
differential cryptanalysis. However, the reproduction operators, selection and
replacement processes and other necessary genetic mechanisms can be decided and
properly adapted whenever this hypothetical model is transformed into an
implementation. This fact holds for the other methods described in the following

subsections as well.

It should be stressed that since any characteristic’ s probability is found by
checking the output differential of ciphertext pairs and the input differential plaintext
pairs; in the GA, for each new chromosome (the input pairs) the encryption algorithm
should be executed and the corresponding ciphertext differentials must be derived.
Another important issue is that, since the best differential characteristics vary with
respect to the number of rounds, this must also be distinguished in the GA search
Thus, for any specific number of rounds, the GA” s must be implemented and executed
separately so that each GA focuses on finding the better differential characteristics of

the cryptosystem for that specific n-round version.

e Enhancement of the Data Analysis Phase in Differential Cryptanalysis using
GA’s

As discussed previously in Chapter 3, both for the differential cryptanalysis of
DES reduced to some rounds and 16-round DES, some special look-up tables,
searching schemes and key-counting mechanisms were used to find some portion of
the key bits apart from the key bits found by the characteristics, which was referred as
the data analysis phase of the differential cryptanalysis. If, a GA-based search can be
used instead of the standard look-up mechanisms, then the key bits would be extracted
in less computational time. With the aid of a GA’ s, less number of decrypted
ciphertext samples can be compared with the expected XORed plaintext values in the
data analysis phase. Thus, the ciphertext data will be mapped into chromosomes for the
GA model, and the fitness measure will be the result of the comparison. Another GA
enhancement might be in the key-bit counting used for subkey bits in any specific S-
boxes. By encoding the chromosomes for the subkeys and transforming the selection
and checking mechanism used in key-bit counting into a fitness function, some subkey
bits might presumably be broken faster. Since, the basic approach in all parts of the
data analysis phase is checking all the possible combinations of data and some specific
key bits instead of using heuristic exploration mechanisms, GA’ s can be used
providing more efficiency and less execution time.

¢ New Characteristics in Linear Cryptanalysis using GA’ s

A similar approach to the one used in the differential cryptanalysis might also
be helpful for the linear cryptanalytic attacks. Since, the characteristics are also the
core of the linear cryptanalysis, GA’ s can be used in deriving better linear
characteristics than the known best ones. In linear cryptanalysis of DES and DES-like
cryptosystems, as stated in the differential case, there might be better characteristics
with better probabilities for any number of rounds. The general model can also be
designed similar to the GA model used for differential cryptanalysis. However, this
time the chromosomes had to be composed of some bits of plaintext, ciphertext and
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the key due to the structure of linear cryptanalysis. For each chromosome, the linear
approximation is applied and thereafter, its corresponding probability and thus, the
linear characteristic can be generated. The fitness function checks the probability of
each newly generated characteristic within that chromosome and selects the fittest ones
among the highest probabilities, in other words, the best linear approximations. As
similar to the model for the differential version, the GA for the linear characteristics
tries to converge or find new linear characteristics with higher probabilities than the
known ones. Thus, these characteristics can be used to improve the linear cryptanalytic
attacks decreasing the known plaintext / ciphertext requirements and hopefully, finding
out more number of key bits with good possibilities. For each different n-round linear
characteristics of the cipher, a different GA implementation should be applied and

executed separately
e Using GA’ s for the Generalization of Linear Cryptanalysis

As discussed in Chapter 3, there are several methods which enhance the
standard linear cryptanalysis such as generalization techniques. GA” s might be useful
in implementing these techniques since some of these generalization methods are NP-

hard or NP-complete problems.

For instance, non-lincar approximations is proven to be one of these methods.
By using non-linear approximations in DES or DES-like cryptosystems, the
generalization of the linear cryptanalysis for these cipher models are proven to be
established successfully.** The non-linear approximations can be derived for any
cryptosystem by analyzing the non-linearity between the plaintext, ciphertext and the
key bits. However, this analysis is proven to be more complex and hard to implement
successfully sometimes. Exploiting the search and the optimum finding capacity in non-
linear problems, GA” s can be adapted to non-linear approximation techniques so that
the cryptanalytic performance might be improved. It should be noted that non-linear
approximations try to find non-linear properties within the cipher with the best possible
estimated probabilities where an adaptive GA can find these properties much more
efficiently. The chromosomes could represent the relevant data and key bits where
each chromosome value consume the parameters for various non-linear
approximations. Thus, calculating the non-linear approximations as the problem
functions of the GA, the problem can be solved for the ones having the most fit values,
in other words, the highest probabilities. Several GA’ s might be derived for several
different non-linear properties and their approximations where each fitness measure
corresponds to the solution of the non-linear equation

It should be noted that if any linear or non-linear technique can be useful for the
generalization of linear cryptanalysis, which results with the improvement of the linear
cryptanalytic attack performance; then that technique might be transformed into a GA-
based generalization. Such an approach should possibly improve the performance of
the attack further more, by decreasing both the computational complexity and the data

requirements

*'Lars R. Knudsen. Matt Robshaw, “Non-linear Approximations in Linear Cryplanalysis”, Advances
in Cryptology - Proc. EUROCRYPT'6, p. 224, 1996.



e Enhancement of the Bit Counting Phase in Linear Cryptanalysis using GA’ s

Within a typical linear cryptanalytic attack, some of the (sub)key bits are found
by data and key-bit counting schemes after the linear approximations and
characteristics. By analyzing the effective key and data bits, some bits of the key can be
deduced after the extraction of these effective bits. However, so far it’ s proven that
only 25 key bits of 16-round DES can be guessed by the bit counting mechanisms.*’
Since it” s shown that analysis of the effective bits and their counting is a tedious and
time consuming effort (all the possible bit combinations are used by making a search
among those), a better method might improve the efficiency. Using a GA-based search
mechanism, this counting method can be improved significantly where the same
number of bits can be deduced with equivalent probabilities, but in less time. The
chromosomes could represent the effective data and key bits, and by using the
equalities with given probabilities, the possible key bit values could give the fitness
measure of each chromosome where the best results suggesting the given probabilities
yield to the fittest ones, thus the possible key bit values. The fitness function only tries
to select which key-bit values satisfy the equations with the given probabilities. It
should be stressed that for the GA implementation of effective bit analysis and
counting; the effective bits, the equations and their probabilities should already be

ready in hand

5.3 Remarks and Future Work

It should be remarked that due to some difficulties in the implementation and
due to the infeasibilities and inapplicability, the models discussed in this chapter were
limited to theoretical assumptions. As explained in Chapter 3, section 3.1.1 and in
some other previous sections, the differential and linear cryptanalytic attacks require
chosen or known plaintext / ciphertext data to be generated in sufficient amounts so as
to develop any further studies among such cryptanalysis techniques. However, these
attacks are proven to be largely theoretical so far because very huge amount of time
and data requirements made it beyond the reach of almost everyone as well as me. The
achievement of the necessary data is proven to be requiring several years’ time.
Besides the collection of the data, the analysis and computational requirements bring
extra overhead. Moreover, even these requirements were fulfilled, the hardware
requirements were too costly and beyond our capacity which made my study
inapplicable. For instance, the minimal storage consumption for a linear cryptanalytic
attack to DES shall yield to 2*8*2* = 2*" bytes (= 10" Gigabytes) and similarly for a
differential cryptanalytic attack to DES should be to 2*8*2*" = 2°! bytes (=~ 2**10*
Gigabytes) which are extreme values for today. Thus, even having the data ready
would not be sufficient so as to make the study applicable.

On the other hand, I had no means of accessing or granting the known or
chosen plaintext / ciphertext pairs formerly developed. Therefore, since I had no
accessible data; and had not any sufficient time, computational power and storage
medium to create and use such data for the differential and linear cryptanalysis, the
genetic algorithmic approaches to these attack types could not be implemented. In

 S. Bakhtiari, R. Safavi-Naini. “Application of PVM to Linear Cryptanalysis”, University of
Wollongong, Technical Report. p. 5, July 25, 1994,
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order to successfully establish any applications involved with differential / linear
cryptanalysis using GA’ s among DES and DES-like ciphers, these requirements must

be satisfied first.

I should also point some important facts for any future studies involved with
genetic algorithmic approaches to differential / linear cryptanalysis. First of all, it’ s
been mentioned throughout this thesis that, for the studies related with differential /
linear cryptanalysis, a remarkable amount of the key bits were found using exhaustive
key-bit search, especially for the linear cryptanalytic attacks. But, since it’ s proven
that any statistical attacks among DES and DES-like ciphers were not efficient, and no
direct dependencies or statistical relations could be found for the key bits and data bits
of these cipher models, then any GA model would not be meaningful if it focuses on
improving the exhaustive key search part of the cryptanalytic attack.’® (This
phenomenon will be given in more detail in Chapter 6, section 6.3.) Unless a statistical
attack is possible among any cipher system, any GA-based key search better than the
exhaustive key search cannot be adapted. Therefore, for any genetic algorithmic
approach one should focus on improving the techniques for the parts other than
exhaustive key-bit search of differential / linear cryptanalysis.

Another important fact is since GA’ s are implementational rather than
theoretical due to their very nature, any innovative ideas, new visions or techniques for
the GA’ s might be necessary for the differential / linear cryptanalysis. As stated in my
theoretical models, the best suitable and the most efficient reproduction, selection,
replacement operators could only be decided whenever the attacks are implemented
and the necessary algorithms are executed. Thus, any researcher involved with
implementations of differential / linear cryptanalytic attacks using GA’ s, he / she
should also be open to new ideas, methods so as to derive new selection, reproduction
operators, etc. which might be more successful and suitable than the ones found so far.
[ specifically remark this fact because differential / linear cryptanalysis is a very unique
and new era for the genetic algorithmic implementations which seems basically
different from all the other application areas of GA’ s

The parallelization of the genetic algorithmic approach to differential / linear
cryptanalysis might be another future work topic. Since both differential / linear
cryptanalytic attacks and some GA’ s were successfully implemented in parallel, then a
parallel model for any GA-based differential / linear cryptanalysis could be constructed
as well. Since the parallel implementations were proven to improve the performance of
any differential or linear cryptanalytic attack significantly, then a parallel GA model
could be adjusted to such implementations which might further improve the
performance of the parallel differential / linear cryptanalysis.

** A.J. Bagnall, “The Applications of Genetic Algorithms in Cryptanalysis”, MS Thesis, University of
East Anglia, p. 95, 1996,
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Chapter 6
CASE STUDY

In this chapter, a simple case study concerning the usage of genetic algorithms
(GA” s) in cryptanalysis will be given. This study’ s aim is to analyze and validate the
performance of a cryptanalytic attack to a simple symmetric block cipher using a
genetic algorithm. I generated this sample cryptosystem which might be considered as
a very simplified model of DES and DES-like ciphers. Then, a brute-force attack using
a single plaintext / ciphertext pair is applied to this cryptosystem to find out the keys
used for several encryption tests. Finally, a GA-based cryptanalytic attack is applied to
the same cipher for the same keys. Thus, making a comparison between the results of
the exhaustive key search and the key search using GA, the efficiency and effectiveness
of my genetic algorithmic approach to the cryptanalysis of the sample cryptosystem is
evaluated. It should be remembered that any cryptanalytic attack method must perform
at least better than an exhaustive search in order to be accepted as a valuable and

suitable technique.

The first phase of my study was the design of the cipher model and the model
of the cryptanalytic attacks, both the brute-force and the genetic algorithm versions,
which will be applied to the cryptosystem. The second phase was the implementation
of these models, by generating the necessary algorithms and executing these algorithms
via software codes written in C language.

6.1 Design of the Model

For the first part of the design, 1 chose a symmetric block cryptosystem. For
the sake of simplicity and the ease of implementation, this system takes a plaintext data
as input, encrypts in A-bit size blocks with a 4-bit initial random key for which each
data block will be enciphered independently known as the ECB mode. The decryption
process 1s exactly the symmetric inverse of the encryption. Each ciphertext block will
be decrypted with the same initial key and the same encryption algorithm, producing
the original plaintext without error and at the same process rate.

The inner structure of encryption and decryption algorithms are composed of
only a simple substitution operation and will be applied in an iterative manner for any
arbitrary number of m rounds. For each round, the initial key will be shifted » bits to
the left and the corresponding -bit subkey will be used in the substitution operation
within the £-bit data block. The » value can be any integer ranging from / to -/, and
can be any different value for each round. The &, m and » could be any integer value,
however, in the implementation, & was chosen 32 due to some necessary criteria which

will be explained later on

To keep the model simple, there were no S-boxes, complex substitution
functions and transpositions in the cryptosystem This was a crucial and necessary
design criteria because the memory and processing requirements for the cryptanalysis
phase had to be kept limited. Since, the aim in this case study is the comparison of an
exhaustive key search with a GA-based attack, the security quality or the complexity of
the cryptosystem itself is not an essential issue. In my model, the cryptosystem serves
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only as a test-pad for the comparison of attack techniques in a fairly and feasible
fashion as well as providing the basic common features of any iterated symmetric block

cryptosystem in a primitive manner

The design of the cryptosystem is also denoted in the figures 6.1 and 6.2 where
in the second figure, the inner structure of the encryption algorithm is given. The
scheme in the decryption algorithm is exactly the same as the encryption algorithm; the
only difference is that the input at the first round 1s the ciphertext block.

P P ol aisuesd o Py
k bits k bits k bits
(nutlal Ley)
----- D
k bm ft bm k bits
Gie | it Cs
k bits k bits k bits
Block Encryption of the
Plaintext P into ciphertext C
G, K | sooeenss Cs
k bits k bits k bits
(mmal I\ey
—*( Decrypt —*( Decrypt @
k bm k bm k bn‘s‘
........... Py
k bity k bits k bits
Block Decryption of the
ciphertext C into Plaintext P

Figure 6.1 The Symmetric Cryptosystem used in the Case Study.

The second part of the design was the construction of the test system model for
the comparison of cryptanalytic attacks. Since the study was involved in
implementation and analysis of a GA-based cryptanalytic attack, one of the attack
types was necessarily this GA-based cryptanalytic model itself I chose the brute-force
attack with a known plaintext / ciphertext pair as the other model in testing and making

comparisons.
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It should be noted that for the encryption (and hence, decryption) algorithm,
the initial key K, is used for the first round. Then, for the other rounds, the subkeys K,
are generated by shifting the initial key. Thus, for an m-round encryption, m-/ subkeys
are used starting from the second round.

FFor the brute-force attack, I designed the system so as to enable the
establishment of an exhaustive key search This yielded the construction of a
tamperproof mechanism in the design. Thus, in my brute-force attack model, the
cryptanalyst could reach the encryption algorithm or the cryptosystem tool for which
the keys used in encryption might be recovered by random trials. Therefore, a single
plaintext / ciphertext pair that was encrypted under the cryptosystem would be used
with a brute-force attack algorithm. I designed this algorithm so that, it would take
that plaintext, encipher under any random key value by using exactly the same
encryption algorithm that was designed for this system, and then compare the
produced ciphertext with the original one The algorithm would repeat this process
until the correct key value is found (the original ciphertext and the ciphertext produced
from the attack exactly match each other). This attack model surely insists on an
exhaustive k-bit key search with a theoretical computational complexity of 2* ' up to
2* This is the most important reason why I chose the exhaustive key search attack in
comparison with a GA-based attack besides the feasibility, simplicity and accuracy
norms. This attack technique typically gives the threshold value for the performance of
any alternative cryptanalytic attack model If the GA-based attack model performs
worse than the average performance of exhaustive search for any number of trials with
random keys, then this will show the inapplicability and inefficiency of GA’ s in the
cryptanalysis of the cipher that was designed for this case study.

The GA-based cryptanalytic attack was designed in the manner so as to
enhance the brute-force attack technique. The logic in this design was to establish the
same brute-force attack, but this time, rather than searching the correct key
exhaustively, GA’ s would be used to deduce the key exploiting the optimum finding
and search capabilities of such algorithms. If a proper GA was adapted in the
cryptanalytic attack, the sought key value would be found more efficiently and in less
computational time than randomly searching the key-space.

I designed the GA-based attack as follows: As similar to the brute-force attack,
the same plaintext / ciphertext pair is input to the system. This plaintext / ciphertext
pair would be derived by tamperproofing the same cryptosystem version used for the
brute-force attack tests. Then, using a population composed of candidate key values,
the ciphertexts would be produced within each generation by using the same
encryption algorithm of the designed cryptosystem. Comparing these ciphertexts with
the input ciphertext value, the key values that give the fittest results would be included
for the next generation. With the aid of GA’ s exploitation and exploration strength,
after some generations, the possible key values are presumed to converge to the
correct key value. The GA is to be executed until the global optimum, in other words,
the correct initial encipherment key is found exactly.

Since the cryptosystem and the cryptanalysis is involved in operating on bit
values of the data, I preferred to use bit values for the genotypes in the GA. Each k-bit

chromosome represented the candidate k-bit key values for the correct solution. Due
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to the nature of the GA” s, 1 only designed the general structure of the GA-based
attack. However, which crossover or mutation techniques with what probability, which
selection mechanisms, etc. had to be clarified during the implementation and the trials.
But, I designed the system as much flexible and adaptive as possible. The GA used in
the cryptanalytic attack was designed so as to benefit from both crossover and

mutation.

The most essential issue and the core of the design for the GA-based attack
was to find a suitable way to construct a fitness measure and function. Since the aim of
the GA was to find the correct key value, then the relation between each key value and
the corresponding ciphertext’ s correctness would directly impose the fitness of that
chromosome. Thus, the fitness measure had to be devised so as to establish a relation
between the candidate key value and its resultant ciphertext data. The more fit
chromosomes should have to be the ones which could give the more number of correct
bits for the required ciphertext. Therefore, the global optimum fitness value would
imply the exactly correct ciphertext with no single bit error, which could identify the
correct key value being sought. But it should be stressed that not only the total number
of correct bits, but also the positions of these bits in the ciphertext are important. For
instance, two different key values might produce equal number of correct bits in the
ciphertext, however, one of these ciphertexts could be much more near to the correct
ciphertext due to the positions of the bits and hence, the ASCII character values of the
data. Therefore the fitness function should be designed so as to have a measure on the
bit positions of the data as well The relation between the key value and the ciphertext
depends on both the amount of correct bits and the positions of the correct bits The
fitness function should properly find a mapping between the positions of the correct
key bits and correct ciphertext bits with their proportional weighted values This
correlation between the bits and the corresponding measure varies due the
cryptosystem model (number of rounds, key and block size) and since different variants
of the cryptosystem could be used with various number of shift bits and various
number of rounds, each fitness function should be designed according to the

implementation of the cipher

For each key value and n-round variant of the cipher, the execution times until
breaking the key would be recorded both for the brute-force attack with exhaustive
key search and GA-based key search attack. After several trials for different keys, an
analysis could be made for the breaking performance and the average time complexities
of both attack types for each cipher variant by comparing the results. Thus, the aim of
the design criteria could be fulfilled.

6.2 Implementation of the Model

The implementation of the model was straightforward. 1 first established the
required algorithms for the cryptosystem, brute-force attacks and attacks using GA’ s,
then implemented these algorithms in software and executed them using C language.
After the executions, the corresponding results were recorded and analyzed.

For the implementation of the cryptosystem, I chose the key and data block
length as 32 bits. After several trials with different key sizes, this value was observed

to be legitimate and fairly sufficient because the exhaustive search for higher key
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lengths were extremely time consuming which could turn the case study infeasible.
Since the data block length was designed to be the same of key length, the plaintext
and ciphertext data were also processed in 32-bit blocks. In the algorithms, the
plaintext is first divided into 32-bit blocks and each block is encrypted one by one in a
batch fashion. This is the simplest and most straightforward implementation of any

ECB mode encryption via a sequential algorithm

For the test studies, 1 decided to use two different variants of the designed
cryptosystem; one with a 3-round and one with a 5-round model. Thus, I first
implemented the cryptosystems for both versions by deriving the necessary algorithms
and the coding. 1 made several tests on both cipher variants by using some sample
random plaintexts and random key values. 1 first encrypted a plaintext and then
decrypted it using the corresponding ciphertext. For both cryptosystems, all the data
were encrypted and decrypted correctly without any errors. As described in the design
section, the cryptosystem for any rounds was proposed to be symmetric by the
structure of the algorithm In the implementation, I verified this assertion, because both
the encryption and decryption algorithms were exactly the same except their input
data. Thus, using the same initial key and the same algorithm, any enciphered plaintext
could be decrypted to its original by the symmetric structure of the cryptosystem.

In fact, this symmetric property was due to the substitution operation that I
chose and used within each round. I applied the XOR operation for the substitution
operation. Thus, for each round both in encryption and decryption, the data is XORed
with the key for that round so as to produce the output for the next round Since DES
and DES-like cryptosystems are all designed to use XOR operations in several parts of
the algorithm, I also followed the same approach in the implementation. Bits from 0 to
31 of the 32-bit data block is XORed with corresponding 32 bits of the key directly,
and no additional mechanism or operation was used in the substitution in order to

make the cipher as simple as possible.

For the 3-round cipher, the initial encryption key was used in the first round.
Then the second key for the 2™ round was formed by shifting the initial key left 2 bits.
And for the last round, the key in the 2" round (thus, the first subkey) was shifted
bits to the left so as to derive the subkey. The key-shifting bit values could have been
some other value, but | heuristically chose these in the implementation. Similarly, for
the 5-round cipher variant the left key-shifting bit values for the rounds 2 to 5 were
chosen 2, 4, 4, 2, respectively so as to derive the subkeys. Also, for the decryption
process, the same key-shift values were used for each round of the each cipher variant.

The encryption algorithms for the 3-round and 5-round variants are denoted as

follows;

Encryption algorithm for the 3-round version:

Begin ;
Generate a 32-bit random initial key K1 ; o
K2 = shift_left (K1, 2 bils ) ; ‘_A_ s e ;
Ks = shift_left (K2, 4 bits ) ; AL ‘ =
Set ciphertext C = null ;
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Get any random plaintext P ;

Divide P into 32-bit blocks: P, wherei=1.2...,s;

i=1;

while (i <=s)do {
D.=(P,XORK1);
D.=(D,XORKz2);
Ci=(D/XORK3);
Concatenate C, atthe end of C ;
i=i+1;

}loop ;

End;

Encryption algorithm for the S5-round version:

Begin ;
Generate a 32-bit random initial key K ;
Kz = shift_left (K1, 2 bits ) ;
K3 = shift_left (K2, 4 bits ) ;
K4 = shift_left ( K3, 4 bits ) ;
Ks = shift_left ( K4, 2 bits ) ;
Set ciphertext C = null ;
Get any random plaintext P ;
Divide P into 32-bit blocks: P, wherei=1,2....s;
i=1;
while (i<=s)do {

D.=(P,XORK:);
D, =(D,XORK2);
D,=(D,XORK3);
D.=(D,XORKs):

Ci=(D/XORKs);
Concatenate C, at the end of C ;
i=i+1;
} loop ;
End:

For the implementation of the cryptanalysis phase of the study, 1 first derived
the algorithms and made the studies concerning the standard brute-force attack with
the exhaustive key search using a single known plaintext / ciphertext pair. In fact, the
implementation of the attack was composed of two parts. In the first part, I chose any
random plaintext and for different random key values, the corresponding ciphertexts
were enciphered and stored. Then, in the second part of the attack, for each plaintext /
ciphertext pair, the attack was established using the same encryption algorithm. Each
key value was tested until the correct ciphertext could be reached within the same
plaintext. All the correct key values and the computation times were recorded within
each attack. 1 first applied this attack to the 3-round cipher with several random key
values, and then similarly to the 5-round version with the same initial key values. The
implemented algorithm of the brute-force attack for both variants of the test cipher can

be denoted as follows;
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Brute-force attack algorithm - Part 1

Begin ;
Get any random plaintext P ;
Encrypt P under an unknown key K ;
Retrieve corresponding ciphertext C ;
End;

Brute-force attack algorithm - Part 2

Begin ;
Extract 32-bit portion of P as Ps;
Extract 32-bit portion of C as Cs;

loop {
Generate 32-bit random key k ;

If ( k is not a pre-generated value ) then
Encrypt Ps under k and retrieve corresponding ciphertext block Cs x ;
end if ;
yUntil (Cs.x=Cs); I* the key is found */
Record k :
End:

The key & that satisties (5 v (g will be exactly equal to the searched key K,
hence the initial encryption key will be broken It should be noted that since the
cryptosystem in this study handles each 32-bit data block independently (ECB mode), I
dealt with only the first 32-bit block of the plaintext and the ciphertext. However, in
the second part of the algorithm, for each randomly generated key value the storage of
each previously generated keys and a look-up process is required. In order to eliminate
this overhead and simplify the search process, | revised the second part of the
algorithm as follows and used this scheme in all of the implementations;

Brute-force attack algorithm - Part 2 (revised version):

Begin ;
Extract 32-bit portion of P as Ps;
Extract 32-bit portion of C as Cs;
k=03
loop {
Encrypt Ps under k and retrieve corresponding ciphertext block Cg x;
If (Cs_x=Cg ) then /* the key is found */
Record k ;
exit loop ;
endif ;
k=k+1;
}Until (k> 2%2);
End:

This revised version also exhaustively searches the key, but rather than
randomly generating & values, it starts from an initial key value and tests each key one
by one.
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For the key search attack using GA’ s, | first constructed the genetic algorithm
with the necessary criteria, then applied the algorithm to the cryptanalytic attacks of
both cipher variants for 3 and 5 rounds. Since, the cryptosystem was implemented with
an encipherment key length of 32 bits, the chromosome size was set to 32 in all GA
implementations. Since, the correct key is searched in the attacks, the candidate key
values would be the possible solutions to the problem, thus the chromosomes would
represent the key values This also suggested the bit-wise representation for the
chromosomes, as similar to the structure of the key. Thus, each chromosome is made
up of 32-bit strings, where each bit of the chromosome is a gene either having value 0
or 1 and consequently, the genotype of the chromosome directly gives the 32-bit key

value itself’

For both attacks, I set the population size to /00, which could be a generic
parameter for any variant of this cryptosystem whenever the key size is held 32-bits.
Recalling from the Schemata Theorem, a population size of 100 yields a key search
space of /00° for each generation. Since the key size, hence the chromosome size is
32, the total key-space is 2, or approximately /0'’. Thus, it could be stated that a key
search among /0" chromosomes within each generation would be sufficient for the
GA, which was also stated in the Bagnall’ s study, in which the chromosome size was
again 32 and the population size was set to 100.' On the other hand, for the initial
population, all the candidate key values were generated randomly, thus a total of 100
individuals having different key values was gathered. For instance, any individual of the
population would be a chromosome of 32-bit array as,

001101, . L 01]

where, the lefi-most bit would stand for bit-0 of the key, the next one would be
bit-1 of the key, and so on. The 32" bit of the chromosome would correspond to the

32" bit of the key, or the right-most key bit, bit-31.

Before porting the actual attack to the both cipher variants, I made some tests
so as to decide upon which GA mechanisms should be used and how they would be
used. I chose some specific 32-bit integer values, and generated some different genetic
algorithms to find these values via alternative reproduction, selection operators. This
was necessary due to the structure of GA’ s. Since, GA is an implementation-based
technique rather than a theoretical system, the efficiency and performance of its
operators vary among different problems So, in order to decide upon the most
adaptive and best-suited GA for the cryptanalytic attack, I made several tests. After
these tests, some mechanisms were proven to be better than others, so I used these in

the GA-based brute-force attacks.

For both of the attacks to the 3 and 5-round cipher variants, the single-point
crossover was used in the GA’ s. However, I used a variable crossover rate which was
between 0.7 and 1. Thus, within each generation, two individuals were selected to
undergo crossover with a probability of 0.7 < p. < 1. A random value was generated to

' A J. Bagnall, “The Applications of Genetic Algorithms in Cryptanalysis”, MS Thesis, University of

East Anglia, p. 124, 131, 1996. R I e it
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set the crossover probability for each chromosome duo. Then, another random number
was generated, and if this number was equivalent to or below this threshold p., the
crossover was applied. The similar mechanism was used for the mutation operator,
where a mutation was applied to a chromosome within a probability of 0.2 < p,, < 0.5
If a random value was less or equal to p,, then the mutation was applied to a randomly
selected bit of the chromosome. However, I also generated an additional technique for
the mutation mechanism The mutation was applied to not a single bit for each
chromosome, but instead it could be applied to n different bits of each selected
chromosome. This n value was a random value which was dependent on the p,, in an
iterative manner. In other words, the mutations were applied on the same chromosome
until a random value below the new threshold p,, was generated. Then, it was passed to
the following chromosome for the mutation. It should be stressed that a control
mechanism was included so as not to let any bit of a chromosome to be re-mutated.

However, there was an additional mechanism used in the reproduction. In fact,
this mechanism was a specially designed operator for this case study which 1 named as
shift-bits recombination. This was a very important point in the implementation of GA’
s for the key search attacks, since the fitness function was not efficient alone. For the
3-round cipher, the shift-bits recombination operator processes as follows: Before the
GA begins the cycles of generation, 2° different chromosome values are generated.
These chromosomes are formed by changing the /left-most 6 bits for all the 64
combinations while keeping the other 26 bits set to a constant random value. For each
of these key values, the corresponding fitness values are calculated and the
chromosomes are ordered with respect to their fitness values. The left-most 6 bits of
the eight of the fittest different chromosomes are then recorded These eight 6-bit
strings will be used then within each reproduction. After the crossover and mutation
operations are applied to the population, the fittest four different offsprings are
selected. Then each of these 6-bit strings are replaced with the left-most 6 bits of each
of the four chromosomes so as to form 32 additional chromosomes. This operation is
defined as the shift-bits recombination, since the left-most 6 bits are the total key bits
shifted left during each encryption process of the 3-round cipher. These additional
chromosomes are also input to the new population which will be processed through the
replacement operation afterwards. This recombination operation is repeated within
each generation, and it should be remarked that the fitness values of these 32 additional
chromosomes are also checked out in every stage. 1 adapted this mechanism for the 5-
round cipher model as well This time, the left-most 12 bits were used to generate 2'’
chromosomes and the best 16 strings were recorded where the shift-bits recombination
was applied to these within the fittest four chromosomes so as to generate 64
additional offsprings. The purpose in the use of shift-bits recombination was to check,
manage and include the effect of some specific bits that were shifted in each cycle of
the encipherment algorithm; thus the exploitation strength of the GA could be
improved significantly. This was necessary due to the difficulty of establishing a proper
fitness function which could impact the correlation and dependency of the shifted key
bits among the ciphertext

For the fitness function of the GA’ s in both cipher attacks, a proper and
effective implementation was necessary so as to estimate and represent the relation
between the correct bits of the key and the corresponding ciphertext. 1 first
implemented the function as a raw fitness function which only looked for the total
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number of correct bits in the ciphertext. So, each chromosome value is processed
through the encryption algorithm of the attacked cipher model, and then the produced
ciphertext is compared with the ciphertext enciphered with the unknown key. This can
be denoted as follows, where ¢, stands for the chromosome representing the candidate
key value, and X, corresponds to the j" bit of the ciphertext enciphered by that
chromosome, and 7; is the j" bit of the initial ciphertext that was enciphered by the

sought key value;

3l
Z;':“(}I(}) i
fe)=— = {(R=1onlyifX,=7,else R, =0, for0<;<31}

Thus, if all of the bits of the ciphertext X are equal to the original ciphertext 7,
then that chromosome has fitness equivalent to 1, which would be the global optimum.
In other words, a chromosome having a raw fitness of 1 implies the exact unknown
key. The more fit chromosomes having fitness values around 1 would be passed onto
the next generations so as to converge to the genotype having the raw fitness as 1.

However, this raw fitness measure only focused on the correctness of the
ciphertext which could not exploit the correct bit positions of the key, ciphertext, the
correlation between the key bits, or the ciphertext bits, or the dependency or
interrelationship between the key bits and the ciphertext bits. For instance, two
different key values with different number of correct key bits could give the same or
near fitness values. (ie, a key with a total of 31 correct bits and another one with 25
correct bits could both have a fitness of 26/32 = 0.8125.) These both chromosomes
would be equally treated in the GA due to the raw fitness function, although one of
them is more converged towards the correct key value. Indeed, in some cases, the
candidate chromosomes would be equivalent in the total number of correct bits while
their fitness measure do not say so. (eg, a chromosome only had a single wrong bit for
the bit-5 position of the key (the 6™ bit from the left), but its fitness value was
computed as 22/32 = 0.6875, yet another chromosome had a single bit error at the bit-
15 position of the key, but provided a fitness value of 27/32 = 0.84375. 1 observed this
type of diversity especially whenever any one or more bits of the left-most 6 bit

positions of the key were incorrect.)

All these were due to the avalanche effect and the substitution complexity of
the cipher. In my observations, a noticeable fact was that, for the 3-round cipher, a
single bit error in the left-most 2 bits (bit-0 and bit-1) of the key affected the first and
fourth blocks of the ciphertext for each 32-block portion. Furthermore, any single bit
error for the bit-positions 2 to 5 from the left provided errors in all of the four blocks
of the ciphertext. In fact this was a reasonable fact, because in the 3-round encryption
algorithm, the left-most 2 bits were shifted in the second round to develop the subkey
and the following 4 bits of the subkey were shifted left in the next round. Thus, these
left-most 6 bits of the key were more disruptive and effective on the ciphertext blocks
than any other bits of the key. The same fact was also observed in the S-round cipher,
where the single bit errors in the left-most 2 bits affected the first and fourth blocks of
the ciphertext data and any single bit error among the other 10 bits used in the shifting
affected all the block of the ciphertext. Further analyzes could possibly find
correlations and internal dependencies between the specific positions of the key and the
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ciphertext such that;, when several bits in the specific positions of the key were
incorrect, which bits of the ciphertext would be affected, and so on.

However, these impose very intensive and extended studies of each of the
cipher variant, requiring statistical cryptanalysis and analyzes. Unless such studies were
established, the derivation of a new fitness function rather than the raw one would be
meaningless. But since the case study was designed so as to focus on brute-force
attack types, I used the raw fitness function as the general fitness function in all tests.
On the other hand, the effect of left-most 6 and 12 key bits in both ciphers were
obvious, so I decided to exploit this aspect in the GA implementation. It was this
reason that I derived the shift-bits recombination operator which could reflect the
shifted key bits’ impact on the ciphertext and reverse the negative effect of these bits in

the fitness measure.

The roulette-wheel selection mechanism was used in order to select which
chromosomes would undergo crossover and mutation. The standard method of
roulette-wheel that was explained in Chapter 4, section 432 was used

straightforwardly

The replacement and the generation of the new population was achieved by
replacing the weaker chromosomes with the newly generated oftsprings The fittest
ones were ordered among the offsprings and these were replaced with the worst ones
from the current population | devised this mechanism so that for any generation
throughout the execution of the GA, the population size was strictly held constant
being equivalent to the initial value, 100

The complete implementation of the exhaustive key search attack using GA’
s can be denoted by the algorithms as follows;

(GGA-based attack for the 3-round cipher:

Proc init_encrypt () ;

Begin ;
Get any random plaintext P ;
Encrypt P under an unknown key K ;
Retrieve corresponding ciphertext C ;
End;
Proc main () ;
Begin ;

Extract 32-bit portion of P as Ps;

Extract 32-bit portion of C as Cs;
Initialize a random population of size 100 having each chromosome as a 32-bit array ;

Generate 64 specific chromosomes sc , for the shift-bits recombination ;
for (i=01063) {
Proc Fitness (sc.) ;

}nexti;
Select the fittest 8 sc, and store their left-most 6-bits in an array SA[s_left ] ;
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while ( True ) do { 1* iterative loop until global optimum is reached */
for (i=0t099) {
Proc Fitness (¢ ) ;
}nexti;
Roulette-wheel selection to select n chromosomes as the more fitc.'s;
for(i=0ton){
Apply crossover amongc,'s;
Apply mutation amongc/'s;
Proc Fitness (¢ 1) ;
Add ¢ to offspring population as o ;

}nexti;
Select the fittest 4 offsprings o, ;
for(i=0to7){

for (j=01t03)({
Apply shift-bits recombination among SA[s_left,] and o, to formo,;;
Proc Fitness (0,,) ;
}nextj;
}nexti;
Insert 0, s to the offspring population ;

Reorder the offspring population ;
Replace the weaker individuals of the old population with the more fit offsprings

and get new population for which X ¢, = 100 ;
} loop;
End;

Proc Fitness ( parameter x ) ;

Begin ;
Encrypt Ps under x and retrieve corresponding ciphertext block Cs x ;
If (fitness f(x) = 1) then

Record x ; /" the key is found */
exit main ;

else
Store f(x) in an array FA[x, f(x)] ;

end if ;

End;

The GA-based attack for the 5-round variant was similar to the 3-round
version except some parameters. For instance, the generation of string-portions which
would be used for the shift-bits recombination was revised as;

Generate 4096 specific chromosomes sc , for the shift-bits recombination ;

for (i=0104095) {
Proc Fitness (sc ) ;

}nexti;
Select the fittest 16 sc | and store their left-most 6-bits in an array SA[s_left ] ;

Consequently, the shift-bits recombination operation was also revised in the
GA, which was re-implemented as,




for (i=0to15){
for (j=0to 3){
Apply shift-bits recombination among SA[s_left:] and 0, to formo;

Proc Fitness (04,) ;
}nextj;
Ynexti;

6.3 Results and Discussion

Several cryptanalytic tests were made within the 3-round and 5-round versions
of the symmetric block cipher. For each cipher variant, 20 different random key values
were used to generate the 20 different ciphertexts corresponding to a single known
plaintext. Then, the brute-force attack with exhaustive key search and GA-based key
search attacks were applied to find each of the 20 keys. All the tests, implementations
and attacks were carried out on a single /ntel Pentium-MMX 233 Mhz PC platform
with /28 Mbytes of RAM. The execution times for each attack within each key value
(denoted in hexadecimal) are given in the tables 6.1 and 6.2. The total time spent for
breaking the 20 keys and the corresponding average execution times for both methods

and ciphers are also given in the Table 6 3.

It could be seen from all these results that GA-based key search attack
outperformed exhaustive key search for both cipher models, when the overall
performance and the average key breaking times are considered. In some of the cases,
for both cipher models, the exhaustive key search seemed to find the key faster than its
GA rival. However, since the key values are random and the search is started from the
key value 0 and continued sequentially for the exhaustive search, for some key values
this might be possible. But the concluding remark can be stated if only the overall
performance for all the 20 keys is compared. This clearly and firmly validates the better
cryptanalytic performance of GA-based search over exhaustive key search for both
cipher models. It could be analyzed from Table 6.3 that GA-based search found the
keys nearly three times faster than the exhaustive search for the 3-round cipher, and
two times faster than the exhaustive search for the 5-round cipher. Another important
point is that, GA-based attack successfully found the exact key value in all of the 40
tests and did not get stuck at any local optima or did not lack in finding the global

optimum.

Another remarkable result is that since the 5-round cipher model was more
complex than the 3-round version, the resistivity to both attack types was observed to
be significantly increasing However, the performance degradation for the GA-based
attack seemed to be much higher than its rival. This was also an expected result,
because the increase in the encryption rounds and in the number of shift-bits do have a
much greater negative impact on the performance of the GA-based attack. First, the
number of strings and their fitness computation used in the initialization of the shift-bits
recombination goes up to 4096 from 64, secondly, for each population, instead of 32,
64 fitness computations are made within the shift-bits recombination; and finally, a
great number of fitness computations are required for each generation of the GA and
consequently each fitness computation involves encipherment and ciphertext check for
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Case: Attack type: Key: (Hex) Broken in:

1 Exhaustive key search OE37FF08 554.04 sec
Z " 00A258F2 28.78 sec
3 " 08C25921 340.26 sec
4 o 6F1CA520 4335.44 sec
5 " FF47A408 10099.98 sec
6 L B93A521D 7318.27 sec
7 " L2EOOT7A9 721.61 sec
8 i D187C134 8261.45 sec
9 " 0970CE10 368.38 sec
10 " 10056A98 625.99 sec
11 t FFFF1724 10143.48 sec
12 " FO000000 9514.69 sec
13 " 0OE000001 552.77 sec
14 " OFFFFFFF 631.42 sec
1:5 " 1FOF47CB 1226.15 sec
16 " 42780000 2664.43 sec
17 b 33E50018 2083.05 sec
18 " 7811BD22 4815.81 sec
19 " cBB65361 8060.26 sec
20 " DDD2BA44 8901.72 sec
1 key search using GA OE37FFO08 3123.36 sec
2 " 00A258F2 2475.10 sec
3 " 08C25921 2602.27 sec
4 " 6F1CAS520 2015.01 sec
5 " FF47A408 1757.06 sec
6 " B93A521D 2058.67 sec
7 ” 12E007A9 1986.44 sec
8 Lz Dp187Cc134 1689.03 sec
9 " 0970CE10 2906.12 sec
10 " 10056A98 1050.75 sec
11 " FFFF1724 843.03 sec
12 i FO000000 95.59 sec
13 " 0OE000001 210.31 sec
14 n OFFFFFFF 104.16 sec
15 i 1FOF47CB 2573.40 sec
16 " 42780000 698.85 sec
17 " 33E50018 1245.93 sec
18 " 7811BD22 2254.61 sec
19 o ceBB85361 2003.07 sec
20 " DDD28A44 957.82 sec

an increased number of rounds of the cipher. The last issue is also valid for the
exhaustive key search, but the encryption and ciphertext check is more straightforward
and yet the only process in the attack. This lowers the performance of the exhaustive
key search for the S-round cipher, but the effect on the GA-based search is much

higher due to the structure of the genetic process.

As previously mentioned in section 6.3, the fitness function for the GA was not
excelled and could be possibly improved and turned into a more efficient operator if a
more intensive and extended analysis is made for the cipher models. If a suitable model
was established for the key and ciphertext bits” dependence; some relationships among
the bits of the key, or ciphertext or interrelationship between both were formulated via
Markov Chains, or other mechanisms, the correlation between the keys and the

rETfFE?Mf”T:Tm“TTrTT.
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Table 6.2 Results achieved by exhaustive key search vs. key search using GA for the 5-
round cipher.

Case: Attack type: Key: (Hex) Broken in:

1 Exhaustive key search OE37FF08 950.16 sec
2 o 00A258F2 41.97 sec
3 " 08Cc25921 582.93 sec
4 " 6F1CA520 7507.77 sec
5 " FF47A408 17246.72 sec
6 " B93A521D 12525.04 sec
7 " 12E007A9 1280.15 sec
8 4 D187C134 14143.59 sec
9 " 0970CE10 635.60 sec
10 i 10056A98 1078.35 sec
11 " FFFF1724 17335.36 sec
12 " F0000000 16199.29 sec
13 I OE000001 942.85 sec
14 : OFFFFFFF 1077.53 sec
15 o 1FOF47CB 2108.37 sec
16 " 42780000 4488.56 sec
17 " 33E50018 3512.54 sec
18 " 7811BD22 8119.47 sec
19 L cg885361 13573.74 sec
20 2 DDDZ2B8A44 14987.96 sec
1 key search using GA OE37FF08 2987.55 sec
2 " O0A258F2 3012.26 sec
3 " 0BC25921 5561.73 sec
4 " 6F1CAS520 2678.06 sec
7] L FF47A408 8340.14 sec
6 L B93A521D 5108.69 sec
7 " 12E007A9 6219.02 sec
8 " D187C134 2465.41 sec
9 " 0970CE10 3549.50 sec
10 T 10056A98 4006.14 sec
11 R FFFF1724 2358.61 sec
12 " FO0O00000 1034.13 sec
13 " 0E000001 1567.05 sec
14 " OFFFFFFF 943.16 sec
18] " 1FOF47CB 3678.90 sec
16 ” 42780000 1257.22 sec
17 b 33E50018 6431.43 sec
18 " 7811BD22 5219.36 sec
19 " csBB85361 3573.81 sec
20 N DDD2BA44 1904.67 sec

Table 6.3 Total and average execution times for the 20 test keys within both attack
types applied to 3 and 5-round cryptosystem variants.

Attacked 3-round cipher 5-round cipher
cryptosystem

Type of Exhaustive key key search Exhaustive key key search
cryptanalysis search using GA search | using GA |
Total

execution}_ime 8124798 sec. | 32650.58 sec. [ 138337.95 sec. | 71896.84 sec.
Average

execution time | 4062.399 sec. | 1632 529 sec. | 6916.8975 sec. | 3594 842 sec.
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ciphertexts was properly measured, then the GA could have been hopefully much more
efficient than the one used in this study. All these necessary studies are referred as
statistical cryptanalysis methods For any cipher model, if either of the following

criteria holds;

« some set of output bit (ciphertext) coordinates, Cs, are dependent on some set of
input bit (plaintext) coordinates, Ps, for a fixed key k,
» some set of output bit (ciphertext) coordinates, Cs, are dependent on some set of

key bit coordinates, ks, for a fixed input, Ps,

then a statistical cryptanalytic attack can be carried out for that cryptosystem.’
In other words, if a dependence between some subset of the output bit positions and
key bit or input bit positions exists for any cryptosystem, then a statistical attack might
be possible. The second criteria was observed for the cryptosystem designed in this
case study. In fact, both attack types were applied following the basic logic in the
second criteria. However, it should be stressed that for any strong symmetric
cryptosystems such as DES, the statistical cryptanalysis attack is proven to be
infeasible, because no such obvious or direct dependencies were found.* Thus, any GA
designed so as to enhance the exhaustive key search of DES or to exploit direct

statistical interferences would be useless.

On the other hand, for weak symmetric block ciphers or polyalphabetic
cryptosystems, any GA-based cryptanalytic attack with a proper fitness function or any
genetic operator exploiting the direct dependencies between data and key bits could be
considerably successful and efficient. This was proven to be true both for this case
study and other studies mentioned in Chapter 5, section 5.1. However, the GA in this
study was adapted to benefit from the dependencies partially, and a complex fitness
function that has a measure on any correlation or dependencies was not used. This is
due to the fact that any detailed statistical analysis or statistical cryptanalysis was

beyond the scope of this case study.

As a final statement, I should remark that if any GA is being used to enhance
the exhaustive key search or to improve any cryptanalytic attack based on searching
the key-space; then the building-block hypothesis corresponds to the dependency
between (sub)keys and the related ciphertexts, but in a converse manner. In the
building-block hypothesis, it was stated that low order schemata with above average
fitness values combine to form optimum whereas in the cryptosystems such as the one
in this case study, the dependency (if could be observed) between the key and the
ciphertext yields to construct high order schemata with above average fitness. This
must be strictly taken into consideration whenever a genetic algorithm is applied to a
cryptanalytic attack searching the key(s). 1 happened to notice this fact in this study
and it was also stated in some other researches as well.* Henceforth, the success of a
genetic algorithmic approach in any type of cryptanalytic attack lies in the proper
representation, the achievement of best suitable genetic operators and mechanisms and
most crucially, the establishment of a well-adapted and efficient fitness function.

* A. J. Bagnall, “The Applications of Genetic Algorithms in Cryptanalysis”, MS Thesis, University of
East Anglia, pp. 92-95, 1996.
? ibid, p. 95.

ibid, pp. 121-122, 140.
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Chapter 7
CONCLUSIONS

In this study, it’ s shown that genetic algorithms could be successful in the
cryptanalysis of simple symmetric block cryptosystems where dependencies between
key bits and the data can be observed and their algorithms possess security flaws that
enable statistical attacks. On the other hand, for DES and DES-like ciphers, any
genetic algorithm would be inefficient for brute-force type cryptanalytic attacks such as
searching the key-space due to the lack of dependence between instances of key and

plaintext / ciphertext data among such cryptosystems.

It’ s also analyzed that genetic algorithms might be successful in the
enhancement of the differential or linear cryptanalytic attacks among DES and DES-
like cryptosystems. The basic methodology in these cryptanalytic attacks are believed
to have a convenient nature to enable the adaptation of genetic algorithmic approaches.
(A. J. Bagnall had made a similar statement in one of his studies as well ") If, a suitable
implementation with the necessary selection, reproduction, fitness function and other
mechanisms of the genetic algorithm is established, then the computational complexity
and the data requirements in these types of attacks can be decreased significantly to
some level. This might result with a much more powerful differential / linear
cryptanalytic attack that consequently turns these attacks to an applicable and more
feasible in real-life implementations. Thus, the use of genetic algorithms in differential
and linear cryptanalysis could outdate the security of DES and DES-like ciphers
entirely providing a more realistic, powerful and applicable threat.

The key to the success of genetic algorithmic approaches in differential / linear
cryptanalysis is the derivation of best suitable genetic operators and mechanisms and
the establishment of a well-adapted and efficient fitness function within the
implementation. It should not be forgotten that any genetic algorithm used in
differential or linear cryptanalysis do not entirely alter the ordinary methodology in the
attack and stand alone as a competitive alternative. Instead, the genetic algorithm
should be embedded as an enhancement tool in several phases of such attacks

whenever applicable

" A J. Bagnall, “The Applications of Genetic Algorithms in Cryptanalysis”, MS Thesis, University of
East Anglia, p. 141, 1996,
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SUMMARY

In this study, several researches and analyzes have been achieved involving
differential / linear cryptanalysis with genetic algorithms and related hypothetical
models are constructed, assumptions and possible outcomes of such models are
discussed theoretically. Remarks and recommendations for any successful
implementation of genetic algorithmic approaches to differential or linear cryptanalytic
attacks are given as a guide for future studies.

Also, a brief perspective and detailed information about the main topics in
cryptanalysis, cryptography, symmetric block cryptosystems, differential and linear
cryptanalysis, and genetic algorithms are given. Regarding as the basic model of
symmetric block ciphers, DES has been studied and discussed in detail Several
observations and experiments related with DES have also been included in this study.

A case study of a simple block cipher’ s cryptanalysis and the usage of genetic
algorithms in brute-force attacks among such a cryptosystem have been established.
How genetic algorithm techniques could be embedded into cryptanalytic attacks or
how genetic algorithms might be implemented for the usage of cryptanalysis in such

simple ciphers have been discussed.

Implementations, tests, and results providing any precise conclusions with the
approval or disapproval of, genetic algorithms’ usage in differential / linear
cryptanalytic attacks against DES and DES-like ciphers have been beyond the scope of
this study due to necessary shortcomings which were mentioned in several chapters of

this thesis.
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OZET

Bu g¢aligmada, genetik algoritmalarla diferansiyel / lineer kriptanaliz konusuna
iligkin gesitli aragtirmalar ve analizler yapilmig, baglantih varsayimsal modeller
olusturulmus, onergeler ve bu tur modellerden ortaya g¢ikabilecek olasi sonuglar teorik
bir g¢ergeve iginde tartigihmigtir. llerideki ¢ahgmalarda, diferansiyel ya da lineer
kriptanalitik saldirilara genetik algoritmalar yaklagimiyla yapilabilecek her tirli basarnli
uyarlamaya igik tutmasi amaciyla bazi uyanlar ve tavsiyelerde bulunulmugtur.

Ayrica, kriptanaliz, kriptografi, simetrik blok kriptosistemler, diferansiyel ve
lineer kriptanaliz ile genetik algoritmalardaki belli bagh konular ve kavramlara iligkin
ayrintil bilgiler verilmigtir Simetrik blok gifrelerin temel modeli olarak gorildiigiinden
DES ile ilgili gesitli gozlemler yapilmig ve DES sifre sistemi aynintii bir sekilde

incelenmigtir.

Basit bir sifre sisteminin kriptanalizi ve bu sisteme yapilan brute-force tipi
kriptanalitik saldinlarda genetik algoritmalarin kullammuna iligkin 6rnek bir galigma
yapilmigtir. Bu tar basit gifre sistemlerinin kriptanalizinde genetik algoritmalarin nasil
kullanilabilece@i ve kriptanalitik saldinlara nasil uyarlanabilecegi konularinda ¢esitli
aragtirmalar yapilmig ve gozlemlerde bulunulmustur.

Daha onceki bolimlerde agiklanan gesitli nedenler ve teknik yetersizliklerden
oturu, DES ve benzeri gifre sistemlerinin diferansiyel veya lineer kriptanalizinde genetik
algoritmalarin - kullammina iligkin uygulamali ¢aligmalar teze dahil edilmemustir.
Dolaysiyla, bu konuda olumlu ya da olumsuz kesin ¢ikanimlara gidilebilecek
uyarlamalar, testler ve sonuglar bulunmamaktadir,
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APPENDIX A

A.1 Properties of Modular Arithmetic
If amodn = b then a =cxn+b , for some integer ¢

For any two integers x and y; x = y if and only if (xmodn) = (y modn)
x =y ifand only if (x—y) = k*n for some k

commutativity, (a+b)modn = (h+a)ymodn
(axbymodn = (bxa)modn

associativity, a+(h+c)ymodn = (a+b)+cmodn
a*(bxc)ymodn = (a*bh)*cmodn

distributivity; ax(b+c)ymodn = ((a*bh) + (a*xc))mod n

El

identity; atOmodn=a
axlmodn = a

inverse; at(—a)modn =10
a*(a Yymodn=1 ifaz0

reducibility, (a +b)ymodn = ((amodn) + (hmodn)) modn
(axb)modn = ((amodn)* (b modn)) modn
(a*(b+c¢))ymodn = (((a*b)ymod n) + ((a*c)mod n)) mod n

It should also be noted that,

(a-b)ymodn=a+(-h)modn
(a+bymodn=a*(h "Yymodn
(a¢modn)ymodn = amodn
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A.2 XOR Operations

XOR is the exclusive-or operation. In mathematical notation, it’ s denoted by
the symbol @ . It’ s a standard function which operates on bits and it is commonly
used in logic gates, in various software and hardware implementations, and in
cryptographic applications. XOR is simply shown as below, where X and Y are two

single-bit entries;

X®Y

&b
0
|
I
0

— o=~

X
0
0
|
|

Also, for any x, y, z k values as single-bit entries or bit-wise blocks, the
following XOR properties are valid:

x@®y=xy"+x'y, where, ' stands for the complement operation

(xDy) =xDy
(x®y) =x"Dy

commutativity,x ® y = y® x

associativity, (x@ y)bz=xd(y®z)

identity; x®@x'=1
xPl=x
x®0=x
x®x=0

transitivity, ifz=x®y, then x=z®y
y=x®z

(xBy)D(zBhk)=(xDz)D(yDk)

reducibility, x@®y=(x®z)®(y®z)



APPENDIX B

B.1 Avalanche Effect Analysis for 56-bit keyed DES in ECB Mode

In this research, some tests are made and some results are obtained using 56-bit

standard DES algorithm in ECB mode and some other necessary programs all written
in C language in order to observe the Avalanche Effect and diffusion performance of
DES encryption algorithm. Related data and the results are as follows;

Test 1:

Sample Plaintext:
@This is a trial for DES;to see the AVALANCHE effect.@®

It should be noted that all the data and outputs throughout all the tests are
edited in MS-DOS platform, where some ASCII characters are not MS-WINDOWS
standards; also some characters cannot be displayed properly, for instance in the
above sample plaintext data, the last character is displayed as null since its original

ASCII value was 0.

Encrypted outputs and related keys of the sample plaintext using 56-bit key
standard DES algorithm - where the initial keys’ sizes were 64 bits as the input to the

encryption program - are all given as follows,

Key 1 (Shown in Binary and Decimal formats):
0100000001000000010000000100000001000000010000000100000000000000

64 64 64 64 64 64 64 0

Encrypted Sample Plaintext using Key 1:
f[wad ieL¥oL ¥ iugg-2ef; i10rEnd0 * cyla—rinJfu)oubtaond]-4qv

Key 2 (Shown in Binary and Decimal formats):
0100000001000000010000000100000001000000010000000100000000000001

64 64 64 64 64 64 64 3.

Encrypted Sample Plaintext using Key 2:
®woi-a|d6@»337211Mxu¢_ [F1100bh ©jhlvQsgldi1a§61133. WY@

As it can be seen from the data above, only changing 1 bit of the encryption key
(the eighth byte of the Key 1 is changed from value 0 to 1, where only a single bit, the
first bit from the right is differentiated) and using this new key as Key 2, made very
significant changes in the ciphertexts. These changes can be seen both from the output
data characters of both ciphertexts as shown above, or from the Table B.2. Thus,
changing a single bit in the key made great diffusions all around the ciphertext data
where the plaintext input was exactly the same. There were similar results with other
sample data which showed that DES had a good avalanche effect property. For both
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tables, each row corresponds to the binary and decimal ASCII values of each character
(one byte) in the plaintext starting from the 1* byte from the left.

Table B.1 ASCII character values for the Sample Plaintext.

Binary Decimal
00000001 1
01010100 84
01101000 104
01101001 105
oLiioo1l 115
00100000 32
01101001 105
01110011 115
00100000 32
01100001 97
00100000 32
01110100 116
01110010 114
01101001 105
01100001 97
01101100 108
00100000 32
01100110 102
01101111 111
01110010 114
00100000 32
01000100 68
01000101 69
01010011 83
00111011 59
01110100 116
01101111 111
00100000 32
01110011 115
01100101 101
01100101 101
00100000 32
01110100 116
01101000 104
01100101 101
00100000 32
01000001 65
01010110 86
01000001 65
01001100 76
01000001 65
01001110 78
01000011 67
01001000 72
01000101 69
00100000 32
01100101 101
01100110 102
01100110 102
01100101 101
01100011 99
01110100 116
00101110 46
00000010 2
3B 1 i 0 1 255 .“ﬁ' T\‘Cﬁr
00000000 0 ] EE ST
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Table B.2 ASCII values for the characters of the Ciphertexts encrypted with Key 1 and
Key 2.

Ciphertext 1 (encrypted with Key 1) Ciphertext 2 (encrypted with Key 2)
Binary Decimal Binary Decimal
11110100 244 00000010 2
01011011 91 10101100 172
01101101 109 10010101 149
01100001 97 10011011 155
01001010 74 10110101 181
11101100 236 00011011 27
01100101 101 10011011 155
01001100 76 10110011 179
00011111 31 10111100 188
10010101 149 00110110 54
00011100 28 10111000 184
10111110 190 00010110 22
10110000 176 00010000 16
10010111 151 00110011 51
10011110 158 00110011 51
10011110 158 00110111 55
00011010 26 11100111 231
10010010 146 01101001 105
10010010 146 01101100 108
10110010 178 01001101 77
00010111 23 11101000 232
10001011 139 01110111 119
10001101 141 01111011 123
10100011 163 01011111 95
11000010 194 11001100 204
01000101 69 01001001 73
01101101 109 01101100 108
11100100 228 11101010 234
01000000 64 01001111 79
01100000 96 01100010 98
01100011 99 01101000 104
11101101 237 11101110 238
11101001 233 01001111 79
11000110 198 01101010 106
11000100 196 01101000 104
01000001 65 11101001 233
11010110 214 01110111 119
11111110 254 01010001 81
11011010 218 01110011 115
11011011 219 01110001 113
01111110 126 10001111 143
01110101 117 10000110 134
01111100 124 10001011 139
01111111 127 10001101 141
01110101 117 10000100 132
11100010 226 00010101 2l
01100110 102 10010100 148
01100100 100 10011010 154
10011101 157 00110001 49
10010110 150 00110011 51
10011001 153 00110011 51
10111001 185 00011011 27
00010110 22 10111111 191
00000110 6 10101100 172
11110100 244 01011001 89
00000011 3 10101001 169
IIMIR Y{“™ ~=N0L0] F
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Test 2:

In this test, some similar trials are also made for the analysis of avalanche effect
with DES; but this time the same key is used for encrypting both of the plaintext data,
while slight changes are being made in the plaintext pairs. In the previous test, while
making some slight changes in the key, the plaintext was kept unchanged and the
differences in the ciphertext pairs were observed. The changes and diffusion effects are

analyzed among the ciphertext pairs.

Sample Plaintext 1:

Divide et impera,it's no secret

Sample Plaintext 2:
EDivide er impera-it's no secret

Only two characters, the first and 18" from the left are different in the
) ’ ] {

plaintexts above.

Key (Shown in Binary and Decimal formats):
0000000100011011011100000001000011111111100000000100010000010001
1 27 112 lé 255 128 68 ] )

Encrypted outputs of the sample plaintexts using 56-bit key standard DES
algorithm - where the initial key size was again 64 bits as the input to the encryption
program, and it was used for encrypting both sample plaintexts 1 & 2 - are all given as

follows;

Encrypted Sample Plaintext 1:
(26 astigH’ " eOKNLBLOSHOBFkOLOLKEF

Encrypted Sample Plaintext 2:
355) tetwgH * eOkNOAO®- | ~@KkOLODKEF

In this study, the difference between Plaintext 1 and 2 is achieved only by the
change of two bits, the 1” bit from the left in the 1* byte and the 1% bit from the right in
the 18" byte respectively, which also made slight differences in the 1* and 18"
characters of the plaintext data due to the change in their ASCII values. However,
after encrypting these two plaintexts with exactly the same key, the first and third 8-
byte data blocks in the ciphertexts were composed of almost completely different
characters, thus a 2-bit difference in the plaintext pairs affected approximately 14 bytes
of data in the ciphertext pairs. These can also be analyzed from the Table B.3. Similar
trials are also made resulting with acceptable avalanche effect rates, however the rates

and diffusion effects achieved in Test 1 seemed to be much higher.

It must be stressed that, since ECB operation mode of DES encryption
algorithm is used during these studies, the differences in the ciphertext pairs occur only
amongst the 8-byte blocks in which the bit changes exist. In order to affect the whole
ciphertext output and to widen the diffusion effect throughout all data blocks, at least 1
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or 2 bits must be changed in each and every 8-byte blocks in the plaintext input. This is
due to the structure of ECB mode. On the other hand, if any of the other operation
modes of DES had been used rather than ECB, the diffusion rate and the amount of
avalanche effect would have been much higher with the same amount of bit changes in

the plaintexts.

Table B.3 Plaintext and corresponding Ciphertext pairs where 2 bits differ in the
plaintext inputs and encrypted with the same key.

Plaintext | Plaintext 2 ~ Ciphertext 1 Ciphertext 2

Binary Dec. | Binary Dec | Binary Dec. | Binary Dec.
00010000 16 {10010000 144 | 00101000 40 | 01101010 106
01000100 68 01000100 68 10001111 143 { 10000111 135
01101001 105 { 01101001 105 { 10010011 147 | 10011110 158
01110110 118 01110110 118 { 10111001 185 { 10111001 185
01101001 105 01101001 105 i 10010110 150 { 10010110 150
01100100 100 ;01100100 100 | 10011111 159 | 10010001 145
01100101 101 01100101 101 10010111 151 10011100 156
00100000 32 | 00100000 32 00010010 18 | 00010000 16
01100101 101 01100101 101 §{901100111 103 { 01100111 103
01110100 116 : 01110100 116 : 01001000 72 01001000 72
00100000 32 00100000 32 11101111 239 {11101111 239
01101001 105 01101001 105 01100000 96 01100000 96
01101101 109 {01101101 109 :03100101 101 01100101 101
01100001 ~ 20k 011000 103 ) GI101011 7 10y- Lil0ie1l 07
01110010 114 01110010 114 §{g1001110 78 | 01001110 78
01100001 97 ;01100001 97 ;44001000 200 | 10010101 149
00101100 ‘a4 00101101 43 - 01000010 €6 00011210 30
91110108 116 [ 01110400 116 (11100101 229 | 10111000 184
oolooltl 3o |ooloolll 3 Guotony 7o | doouton 36
Oolooods 33 |oolososs 35 |Lil0tol 220 |loiconi 179
priaiiag, 110 | 01101110 110 § 43001011 203 | 10011101 157
01101111 111 01101111 111

: _ 01101011 107 01101011 107
00100000 32 00100000 32 .

11100010 226 11100010 226
01110011 115 {01110011 115 :
: 01001100 76 { 01001100 76
01100101 101 01100101 101
01101111 111 { 01101111 111
01100011 99 01100011 99
01110010 114 01110010 114 g}ég?gi? gg giég?gi? 32
plobniil D BLAUCAOL . I Giio0116 a0y | Gizebiid 102
01110100 6 - %
e k4 01110100 116 151000110 70 i 01000110 70

* The changes in bits and corresponding ASCIH decimal values are denoted with bold
character printing.
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