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ABSTRACT 
 

PREDICTION OF EXTRACTIVES AND LIGNIN CONTENTS OF 

ANATOLIAN BLACK PINE (Pinus nigra Arnold. var pallasiana) AND 

TURKISH PINE (Pinus brutia Ten.) TREES USING INFRARED 

SPECTROSCOPY AND MULTIVARIATE CALIBRATION 
 

Determination of quality parameters such as extractives and lignin contents of 

wood by wet chemistry analyses takes long time. Near-infrared (NIR) and mid-infrared 

(MIR) spectroscopy coupled with multivariate calibration offer fast and nondestructive 

alternative to obtain reliable results. However, due to complexity of multi-wavelength 

spectra, wavelength selection is generally required. Turkish pine and Anatolian black 

pine are the most growing pine species in Turkey. Forest products industry has widely 

accepted use of these trees because of their ability to grow on a wide range of sites and 

their suitability to produce desirable products. Determination of extractives and lignin 

contents of wood provides information to tree breeders when to cut and on how much 

chemical is needed in pulping and bleaching process. In this study, 58 samples of 

Turkish pine and 51 samples of Anatolian black pine were collected to investigate the 

correlation between NIR and MIR spectra of these samples and their extractives and 

lignin contents which were determined with reference methods. Genetic inverse least 

squares (GILS) was used for multivariate calibration. Standard error of calibration 

(SEC) values were less than 1.86% (w/w) for lignin and 1.19% (w/w) for extractives 

whereas standard error of prediction (SEP) values were less than 3.81% (w/w) for lignin 

and 2.04% (w/w) for extractives. Resulting R2 values for calibrations were larger than 

0.8. Classification for Turkish pine and Anatolian black pine samples was performed by 

genetic algorithm based principal component analysis (GAPCA) and these two pine 

species were classified by using NIR and MIR spectra. 
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ÖZET 
 

ANADOLU KARAÇAMI (Pinus nigra Arnold. var pallasiana) VE 

KIZILÇAM (Pinus brutia Ten.) AĞAÇLARINDAKİ EKSTRAKTİF 

MADDE VE LİGNİN MİKTARLARININ INFRARED 

SPEKTROSKOPİSİ VE ÇOK DEĞİŞKENLİ KALİBRASYON 

KULLANILARAK TAHMİNİ 
 

Odun örneklerinin ekstraktif madde ve lignin miktarları gibi niteliksel 

parametrelerinin ıslak kimyasal analizlerle belirlenmesi uzun zaman almaktadır. Çok 

değişkenli kalibrasyonla birleştirilmiş yakın-infrared (NIR) ve orta-infrared (MIR) 

spektroskopisi güvenilir sonuçlar elde etmede hızlı ve tahribatsız bir alternatif sunar. 

Ancak, çok dalgaboylu spektrumların karmaşıklığından dolayı genelde dalgaboyu 

seçimi gerekir. Kızılçam ve Anadolu karaçamı Türkiye’de en çok yetişen çam türleridir. 

Orman ürünleri sanayisi bu ağaçların kullanımını geniş alanlarda yetişebilirliği ve arzu 

edilen ürünlerin üretilmesine uygunluğu nedeniyle geniş ölçüde kabul etmektedir. 

Ekstraktif madde ve lignin miktarlarının belirlenmesi ağaç yetiştiricilerine ne zaman 

kesim yapacakları, hamurlaştırma ve ağartma işlemlerinde ne kadar kimyasal gerektiği 

hakkında bilgi sağlar. Bu çalışmada, NIR ve MIR spektrumları ile referans yöntemlerle 

belirlenmiş olan ekstraktif madde ve lignin miktarları arasındaki bağıntıyı araştırmak 

için 58 kızılçam örneği ve 51 Anadolu karaçamı örneği toplanmıştır. Çok değişkenli 

kalibrasyon için genetik ters en küçük kareler (GILS) kullanılmıştır. Kalibrasyon 

standart hata (SEC) değerleri lignin için %1,86 (w/w)’dan ve ekstraktif madde için 

%1,19 (w/w)’dan az elde edilmiştir. Tahmin standart hata (SEP) değerleri lignin için 

%3,81 (w/w)’den ve ekstraktif madde için %2,04 (w/w)’ten az elde edilmiştir. 

Kalibrasyonlar sonucunda R2 değerleri 0,8’den büyük belirlenmiştir. Kızılçam ve 

Anadolu karaçamı örneklerinin sınıflandırılmasında genetik algoritmalara dayalı temel 

bileşenler analizi uygulanmış ve bu iki çam türü NIR ve MIR spektrumları kullanılarak 

sınıflandırılmıştır. 
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CHAPTER 1 

 

1. INTRODUCTION 

 
Wood is a composite material and is composed of cellulose, lignin, 

hemicelluloses, extractives, and ash. Hence wood is also described as a lignocellulosic 

material. Cellulose is a linear polymer consisting of repeating (1→4)-β-D-

glucopyranose units. It is the back-bone structure of the wood. Chemically it is highly 

strong against degradation due to hydrogen bonding between cellulose molecules. 

Hemicelluloses are polysaccharides made up of different carbohydrates including 

mannose, galactose, glucose, and 4-O-methyl-D-glucuronic acid, xylose, and arabinose. 

They fill the spaces in the wood fiber and enhance the strength of paper and pulp yield. 

Also they are more vulnerable than cellulose to chemical degradation (Biermann 1996). 

Lignin is a highly branched complex polymer consisting of phenyl propane 

units. It has a high molecular weight and it cannot be measured easily. There are three 

basic lignin monomers shown in Figure 1.1, but not all the woods have all these three 

monomers. It depends on the nature of the wood. Only one or two of them may exist 

(Biermann 1996). 
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Figure 1.1. Basic lignin monomers or precursors for woods 

 

Extractives are compounds which vary in molecular weights and are soluble in 

organic solvents and water. They contribute characteristic properties like color, odor, 
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taste and decay resistance to wood. Examples of extractives are terpenes (polymerized 

phosphate isoprene units), triglycerides, fatty acids, and phenolic compounds. Ash 

contains cations such as sodium, potassium, calcium and anions such as carbonate, 

phosphate, silicate, sulfate, chloride, etc. following combustion process of wood 

(Biermann 1996). 

Trees are classified as hardwoods and softwoods. Woods of conifers like pine 

are called softwoods and woods of broad-leaved trees like oak are called hardwoods. 

The terms hard and soft do not come from the hardness of the wood, because a 

hardwood species can be softer than a softwood species. The difference comes from the 

cellular structure of the wood. For example, hardwood species have vessels that are 

used to carry sap from body through leaves even softwoods do not have those vessels. 

Softwoods have simpler structure than hardwoods (Wood Growth and Structure 2007). 

Chemical contents also differ with respect to being hardwood or softwood. Table 1.1 

shows the comparison between North American hardwoods and softwoods with respect 

to chemical compositions (Biermann 1996). 

 

Table 1.1. Chemical compositions of North American woods in weight percent unit 

(Source: Biermann 1996) 

 

 Hardwoods (%w/w) Softwoods (%w/w) 
Cellulose 40-50 45-50 

Hemicelluloses 17-35 25-35 
Lignin 18-25 25-35 

Extractives 1-5 3-8 
Ash 0.4-0.8 0.2-0.5 

 
 
As it is seen from Table 1.1, wood consists of cellulose and hemicelluloses in 

60-80 weight percent unit range. The remaining part which mostly consists of lignin and 

extractives makes significance since contents of lignin and extractives are quite 

important in pulping and papermaking industry. High pulp yield requires high cellulose 

content but low extractives and lignin contents. During pulping process, lignin and 

extractives must be separated from cellulose fibers to obtain a high quality pulp (Poke, 

et al. 2005). 
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Determination of extractives and lignin contents provides information on how 

much chemicals are needed in pulping process. Besides, in tree breeding programs, 

sylvicultural treatments, which are applied for better tree growth, cause modifications 

and these trees may have different chemical properties than natural grown trees. 

Furthermore, wood samples obtained from the trees located in different regions show 

different properties in chemical compositions, morphology, etc. (Zobel and van 

Bujitenen 1989). Variations in chemical contents have consequences such as brightness 

of paper on the final products. 

In Turkey, Pinus brutia Ten. (Turkish pine) and Pinus nigra Arnold. var 

pallasiana (Anatolian black pine) are the most growing pine species. Turkish pine has a 

rotation period around 60 – 80 years and Anatolian black pine has around 120 years. 

Because of fast rotation period, these pine species are widely accepted in forest products 

industry since they are very suitable for production of window door panels, floor 

coverings, etc. They are also used in papermaking and construction. Therefore, 

determination of extractives and lignin contents of Turkish pine and Anatolian black 

pine trees is important and currently used methods for this purpose are time consuming 

and costly processes. There are standard methods which Technical Association of the 

Pulp and Paper Industry (TAPPI) offers and they are based on wet chemistry. Rapid, 

inexpensive and nondestructive methods to measure extractives and lignin contents are 

the focus of researchers. 

Recently, near-infrared (NIR) spectroscopy is being used for measuring 

chemical properties such as lignin, glucose, xylose, mannose, galactose, cellulose, 

extractives contents and mechanical properties such as annual ring widths, wood 

density, average fiber length, fiber length distributions, wood strength, stiffness, 

microfibril angle of wood species (Jones, et al. 2006, Poke and Raymond 2006, 

Hauksson, et al. 2001, Kelley, et al. 2004, Yeh, et al. 2004, Yeh, et al. 2005). These 

studies were performed using either diffuse reflectance or transmittance modes. Various 

multivariate calibration methods were used to analyze spectra and to construct 

calibration models. In some studies, mid-infrared (MIR) spectroscopy is used for rapid 

determination of chemical compositions of wood species (Schultz, et al. 1985, 

Nuopponen, et al. 2006, Dang, et al. 2007). 

The major aim of this study is to construct multivariate calibration models for 

determining extractives and lignin contents of Turkish pine and Anatolian black pine 

trees by using diffuse reflectance near-infrared and mid-infrared spectroscopy. 



4 

Therefore, one can save time, effort and money by using this type of calibration models 

for different wood species. In addition, this study is also intended to construct a 

multivariate classification model which distinguishes Turkish pine and Anatolian black 

pine trees with respect to their spectra. 
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CHAPTER 2 

 

2. INFRARED SPECTROSCOPY 

 
2.1. Infrared Region 

 

The infrared (IR) region of the electromagnetic spectrum lies over a wide 

wavelength range starting from around 780 nm to 1x106 nm. This region is divided into 

three sub-regions due to varying applications and instrumentations. Table 2.1 shows the 

three distinctly different infrared regions. 

 

Table 2.1. Infrared spectral regions 

(Source: Sherman 1997) 

 
Region Wavelength Range, µm Wavenumber, cm-1 

Near (NIR) 0.78 – 2.5 12,800 – 4,000 
Middle (MIR) 2.5 – 50 4,000 – 200 

Far (FIR) 50 – 1000 200 – 10 
 
 

Mid-infrared (MIR) spectroscopy is widely used as a tool for both qualitative 

and quantitative analysis. The most common use of MIR spectroscopy is to identify 

organic, inorganic and biochemical species (Sherman 1997, Griffiths 1978, Koenig 

1975). Especially the region around between 900 cm-1 and 1300 cm-1 which is called 

fingerprint region is highly specific to an individual compound. For instance, MIR 

spectra of 1-propanol and 2-propanol are very similar but show differences in 

fingerprint region. Far-infrared (FIR) spectroscopy is used for analysis of organic, 

inorganic, and organometallic compounds involving heavy atoms. It gives information 

about conformation and lattice dynamics of samples. Near-infrared (NIR) spectroscopy 

offers quantitative analysis of certain species such as water and hydrocarbons with low 

molecular weights without consumption or destruction of the sample. Therefore, NIR 

spectroscopy has become a popular method for simultaneous chemical analysis and is 

being studied widely in different fields such as process monitoring (DeThomas, et al. 
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1994), biotechnology (Arnold, et al. 2000), and pharmaceutical industry (Tran, et al. 

2004). 

Infrared radiation provides rotational and vibrational motion to a molecule. 

Since rotational motion has low energy, FIR region may be used for rotational 

spectroscopy. The MIR region is used to study fundamental vibrations (change in 

vibrational quantum number is ±1) and rotational – vibrational structures. NIR region in 

which radiation with higher energy lies is commonly used to study overtone (change in 

vibrational quantum number can be ±2, ±3, ±4…) and combination vibrations. 

 

2.2. Infrared Instruments 
 

An IR instrument contains a source of infrared radiation, a sample container 

which should be infrared transparent, a wavelength selecting device, a detector and a 

signal processor, consecutively. Nernst glower (ZrO2+Y2O3), Nichrome wire (Ni+Cr), 

and Globar (SiC) can be used as IR sources depending on the type of application since 

they cover certain sub-regions of IR region. As a sample holder, mostly quartz cells are 

used in the NIR region and potassium bromide (KBr) is used in the MIR and FIR 

regions. Wavelength selecting devices will be discussed later because all IR instruments 

don’t have wavelength selectors and they will be classified with respect to this. Thermal 

detectors are used in the IR region such as thermocouples and bolometers. A signal 

processor is an electronic device that amplifies the signal from the detector. The last 

component of an IR instrument is a readout device (Skoog, et al. 1998). 

Commercially there are three types of instruments for infrared absorption 

measurements. These are dispersive instruments, multiplex instruments and non-

dispersive instruments (Skoog, et al. 1998). 

A dispersive instrument has a monochromator with a grating element to disperse 

the radiation coming from the source into its wavelengths and it is used as a wavelength 

selecting device. It is mostly designed double-beam, that is, incoming IR radiation is 

split into two beams in order to pass through the reference and sample materials. By this 

way signal is amplified and interferences of air during the analysis are prevented. A 

representative figure for a dispersive instrument is shown in Figure 2.1 (Smith 1996). 
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sample
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detector
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Figure 2.1. A schematic representation for a dispersive instrument 

 

The most commonly used type of multiplex instruments is Fourier transform 

(FT) instruments. FT instruments don’t have grating element to disperse the light. This 

feature allows high speed measurement and to obtain the full spectrum in one scan. In 

addition, increasing number of scans enhances signal-to-noise ratio of the spectrum. FT 

instruments are generally based on the Michelson interferometer. In Michelson 

interferometer, incoming radiation passes through a beam splitter and separated into 

two. One of the beams goes through a fixed mirror and the other one through a moving 

mirror by the help of beam splitter. The reflected beams from the mirrors combine 

constructively and destructively on the beam splitter. Then this radiation passes through 

the sample and goes to the detector. The detector measures the variation of light 

intensity of IR radiation with optical path difference as a sinusoidal wave. Light 

intensity versus optical path difference forms an interferogram. At the end, this 

interferogram is converted to a single beam spectrum by Fourier transformation. Figure 

2.2 is the schematic representation of an FT instrument (Smith 1996). 
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Figure 2.2. A schematic representation for an FT instrument 

 

Non-dispersive instruments are filter or non-dispersive photometers. They are 

designed for quantitative analysis. Generally they are not complex, easy to use and not 

expensive compared to the instruments mentioned above (Skoog, et al. 1998). 
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2.3. Diffuse Reflectance Infrared Spectroscopy 
 

Some of solid samples such as polymer films, food products, agriculture 

products and rubbers are inconvenient for absorption measurements most of the time 

due to sampling difficulties in transmission techniques. Diffuse reflectance infrared 

spectra are generally similar to that of corresponding infrared spectra and have the same 

chemical information. The differences are observed on the intensities of the peaks. 

Reflectance spectra can be used both qualitatively and quantitatively in MIR region. 

NIR region is often used quantitatively (Smith 1996). 

There are mainly two types of reflection of radiation as illustrated in Figure 2.3. 

Specular reflection takes place when the angle of incident beam is equal to the angle of 

reflected beam. Diffuse reflection takes place when the incident beam coming with a 

constant angle is reflected through all directions. Thus one can say that diffuse 

reflection occurs on rough, specular reflection occurs on smooth surfaces (Smith 1996). 

 

specular 
reflection

diffuse 
reflection

 
 

Figure 2.3. Schematic representation of specular and diffuse reflection processes 

 

Since, in this study, diffuse reflectance is used, a detailed description of the 

method is given here. Diffuse reflectance (DR) spectroscopy is generally applied on 

powders and other solid samples. Generally, the sample preparation is at minimum and 

in some cases no sample preparation is required. It became more common after 
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development of FT instruments because signals reflected from the powder samples are 

very weak to be finely detected by a dispersive instrument. To obtain diffuse reflectance 

spectra, firstly diffuse reflectance accessory is attached to the sample compartment of 

the FT instrument (either MIR or NIR). The accessory consists of mirrors to focus the 

IR beam onto the sample. The sample is placed in a sample cup designed specifically on 

the focal point of the spherical focusing mirror. The radiation coming through the 

sample is diffusely reflected and collected by a second spherical mirror. Then, the 

collected light is focused on the detector. In Figure 2.4, optical diagram of a DR 

accessory is shown. The intensity of the diffusely reflected light is very sensitive on the 

packing density of the particles and the uniformity of the particle size. To overcome 

these effects, sample can be mixed with KBr during MIR measurements and can be 

meshed to get uniform particle size (Smith 1996). 

 

to 
detector

IR beam

mirrormirror

focusing mirror

 
 

Figure 2.4. Schematic representation of a diffuse reflectance accessory 
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CHAPTER 3 

 

3. MULTIVARIATE ANALYSIS METHODS 

 
Chemometrics is the science of relating measurements made on a chemical 

system or process to the state of the system via application of mathematical or statistical 

methods according to The International Chemometrics Society (ICS). It is now 

recognized as a branch of analytical chemistry. There are several chemometric 

techniques for collecting good data (optimization of experimental parameters, design of 

experiments, calibration, signal processing) and for getting information from these data 

(statistics, pattern recognition, principal component analysis). The aim of using 

chemometrics is to combine the chemometric methods and their application in 

chemistry (Wikipedia contributors 2008). In this chapter, the focus is on calibration and 

classification techniques which are used in this study. 

 

3.1. Calibration Methods 
 

3.1.1. Overview 
 

Calibration is a process that a model is constructed to obtain a relation between 

the output of an instrument and properties of samples. Prediction is a process that the 

constructed model is used to predict the properties of a sample which its instrument 

response is given. The model is constructed by measuring instrument responses and 

concentration levels of certain chemical contents of the samples. Then, this model is 

used to predict the concentration of an unknown content sample in the future (Beebe, et 

al. 1998). In this study, instrument responses refer to MIR and NIR spectra, and 

concentration levels refer to extractives and lignin contents of wood meal samples. 

In many applications, one response is taken from an instrument and that 

response is related to the concentration of the chemical component of a sample. This 

method is called univariate calibration because number of instrumental response for 

each sample is just one. The process that relates multiple instrument responses to one or 

more properties of a sample is called multivariate calibration. The sample can be multi-
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component and the aim is to predict the concentrations of the components from, for 

example, UV-Vis absorption measurements (Beebe, et al. 1998). 

 

3.1.2. Univariate Calibration 
 

This type of calibration has been widely used for years in chemical analysis. In 

an absorption or chromatography study, absorption at a wavelength or a peak area is 

taken and its relation to the concentration of a sample is then modeled. If the relation is 

considered as linear, there are two options. 

• Classical calibration 

• Inverse calibration 

These models are based on Beer’s law in which absorbance at a wavelength is 

directly proportional to the absorptivity coefficient, light path length and concentration. 

 

3.1.2.1. Classical Calibration 
 

This type of calibration considers absorbance at a spectroscopic wavelength of a 

chromatographic peak area as a function of concentration. The general formula of 

classical calibration is: 

 
 s⋅≈ ca  (3.1)
 
where a  is the vector of absorbances at one wavelength for a number of samples and c  

is the vector of corresponding concentrations. The scalar coefficient s  is related with 

these parameters and can be determined by the following equation: 

 
 ( ) accc ⋅′⋅⋅′≈ −1s  (3.2) 

 
where the c′  is the transpose of the concentration vector. 

After determining s , the prediction model for an unknown is constructed as: 

 
 sac /ˆˆ ≈  (3.3) 
 
where the hat symbol for scalars a  and c  refer to prediction. 

To check the prediction model’s quality, residuals are calculated. Residuals or 

errors are the difference between the observed and predicted concentration values. 



13 

 cce ˆ−=  (3.4) 
 

The less the residuals mean the better the model (Brereton 2000). 

 

3.1.2.2. Inverse Calibration 
 

The aim of using calibration models is to predict concentration from a spectrum 

or a chromatogram. Errors in the classical calibration are due to instrumental response. 

However, developments in the reproducibility of instruments made the instruments 

reliable because concentration values are mostly determined gravimetrically or by 

dilutions, so source of error is larger than instrumental error in this case. More 

convenient approach can be that source of error is due to the concentration. In Figure 

3.1, difference between errors due to instrument and concentration is represented. 
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Figure 3.1. Error distributions in (a) classical and (b) inverse calibration models 

 

Then, inverse calibration can be modeled as: 

 
 b⋅≈ ac  (3.5) 
 
where b  is a scalar coefficient and is approximately inverse of s  because each model 

makes assumptions on errors in a different way. b  can be determined according to the 

following formula: 
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 ( ) caaa ⋅′⋅⋅′≈ −1b  (3.6)
 
and prediction of an unknown sample can be performed easily by using b  (Brereton 

2003). 

 
 bac ⋅≈ ˆˆ  (3.7) 
 

Chemometricians prefer to use inverse models but traditional analytical 

chemistry books mostly represent classical models as calibration methods. For a good 

data set, both models should give comparable predictions. If not, other factors such as 

an intercept, non-linearities, outliers or noise in the spectra should be taken into 

consideration and the model must be modified (Brereton 2000). 

 

3.1.3. Multivariate Calibration 
 

Multivariate calibration is applicable to determination of major and also minor 

components of mixtures and for various instrument types. The necessity for sample 

preparation is reduced because selective input measurements are not needed any more. 

Actually output results must be selective. Therefore multivariate calibration can give 

rise to the development of new analytical instruments. In addition, it can enhance the 

analytical capacity and reliability of traditional instruments (Martens and Naes 1989). 

Multivariate calibration has some advantages over univariate calibration. 

1) Simultaneous analysis of multiple components in a sample is possible. By 

univariate method, there has to be one measurement for each component. So, 

spent time will be more (Beebe, et al. 1998). 

2) Precision in the prediction can be enhanced by repeating a measurement and 

calculating the mean. This will cause consequence of reduction in the 

standard deviation of the mean. This is called signal averaging (Beebe, et al. 

1998). 

3) Multivariate calibration has fault-detection capabilities. That means unknown 

interferences in the sample can be overcome by multivariate calibration. In 

univariate calibration, the presence of interferences may cause wrong 

prediction of concentration of analyte. To avoid this problem, physical 

separation of analyte from interfering material or using selective 

measurements is needed and this means necessity of more effort. Figure 3.2 
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demonstrates how the calibration curve is affected by the interferences. By 

multivariate calibration, nonlinearities caused by the interferences can be 

reduced by selecting more variables and chance of obtaining better calibration 

curve can be increased. Therefore, time and effort spent to remove 

interferences physically is respectably decreased (Öztürk 2003). 

 

absorbance absorbance

concentrationwavelength(a) (b)

absorbance absorbance

concentrationwavelength(c) (d)  
 

Figure 3.2. (a) Spectra of a sample in different concentrations which has no interference 

and its calibration curve (b) by univariate calibration; (c) spectra of a sample 

in different concentrations which has interfering materials and its calibration 

curve (d) by univariate calibration 

 

In multivariate calibration, the equations can be developed in two ways. First 

one is that, as in the classical calibration case, absorbance is a function of concentration. 

Second one is that, as in the inverse calibration case, concentration is a function of 

absorbance. Difference from univariate calibration is the usage of absorbance values in 

the full spectrum of one sample. So, the absorbance vector in univariate calibration 

becomes a matrix. Also more than one component can be used and thus concentration 

vector becomes a matrix, too. 
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In this study, genetic inverse least squares method is used. Before discussing this 

method, it is necessary to explain classical least squares and inverse least squares 

methods as an introduction to the multivariate calibration methods. 

 

3.1.3.1. Classical Least Squares (CLS) 
 

Taking into consideration Beer’s law, classical least squares method is modeled 

by the following equation: 

 
 EKCA +×=  (3.8)
 
where C  is the matrix which consists of concentrations of multi-component samples 

and E  is the error matrix. If there is only one component, it is denoted as a vector c . 

A  is the matrix which consists of absorbance values of the samples at different 

wavelengths. Each row of C  and A  and correspond to one sample, each column 

represents different component and different absorption values, respectively. K  is the 

matrix of absorptivity coefficients multiplied by path length. Each member of this 

matrix corresponds to absorptivity coefficient of an absorption value at a certain 

wavelength. K  matrix can be determined by the following formula: 

 
 ( ) ACCCK 1 ⋅′⋅⋅′= −  (3.9)
 

To perform prediction, an unknown sample spectrum is measured ( â ). Given â  

and K , concentration can be predicted by using simple matrix algebra: 

 
 ( ) 1KKKac −′⋅⋅′⋅= ˆˆ  (3.10)
 

Here, the notations of prediction elements are vector, not scalar as in the 

univariate calibration, because there are more than one component and there are more 

than one absorbance value in one unknown sample. The residual is the difference 

between the reference and predicted concentration values. 

 
 cce ˆ−=  (3.11)
 

In summary, the CLS method can be applied to simple systems where all of the 

pure-component spectra can be measured. In order to construct the CLS model, the 
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pure-component spectra are measured for each analyte in the sample. These are utilized 

to form spectral matrix and the model is then constructed. This calibration model is used 

to predict the concentrations of components in unknown samples. 

CLS method has advantages and disadvantages depending on the purpose. First 

of all, strict assumptions must be obeyed for the method to work well. This means that 

the measurements are linear with concentration, obligation of linear additivity, and all 

the components in the sample must be known. The simplicity to describe the model is 

an advantage. Only a small number of samples are needed to construct the calibration 

model. Since many variables are used, it is possible to overcome overlapping problems 

(Beebe, et al. 1998). 

 

3.1.3.2. Inverse Least Squares (ILS) 
 

In some cases, CLS may not work because the system of interest is not simple or 

it may not be possible to obtain the pure spectra of all the analytes in the unknown 

samples. Practically it is not clear that either inverse or classical method is optimal. 

There have been approaches on this purpose and they give some guidance (Haaland and 

Thomas 1988). 

The relationship between the measurements and concentrations is modeled as in 

CLS but in this case the concentrations are treated as a function of absorbance values, as 

shown in the following equation: 

 
 EPAC +×=  (3.12)
 
where C  is the concentration matrix, A  is the absorbance matrix and E  is the error 

matrix as in CLS. The matrix P  contains the model coefficients and can be determined 

by: 

 
 ( ) CAAAP 1 ⋅′⋅⋅′= −  (3.13)
 

A predicted concentration of a multi-component sample can be obtained by: 

 
 Pac ⋅= ˆˆ  (3.14)
 

The residual is, as in the CLS model, the difference between the reference and 

predicted concentration values. 
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 cce ˆ−=  (3.15)
 

In summary, ILS can be used to construct accurate calibrations when just 

knowing the concentrations of analytes in the sample. That means there is no need to 

know all of the components in the sample. To use ILS, one must select as many 

variables (wavelengths in our case) as there are sources of variation in the system 

instead of using the full spectra. Weaknesses of ILS are that it has limited outlier 

detection and there is no efficient method for optimal wavelength selection for 

predictive models. Also collinearity between the absorbance values causes problems the 

validation of the model because it prevents stabilization of the predictions against noise 

in absorbances. So, it is very important to select the best set of wavelengths to use in the 

construction of calibration (Beebe, et al. 1998).  

 

3.1.3.3. Genetic Inverse Least Squares (GILS) 
 

This method is a modified version of ILS in which genetic algorithms (GA) are 

used as a tool for wavelength selection. GA are global search and optimization methods 

based on the principles of natural evolution and selection as developed by Darwin 

(Wang, et al. 1991). According to the Darwin’s theory of evolution, individuals who fit 

better to the environment are more likely survive and breed, thus are able to pass their 

genetic information to their offspring. However, individuals who do not fit and unable 

to adapt will eventually be eliminated from the population. This process progresses 

slowly over a long period of time (or may never end) through generations and the 

species will evolve into better and fit forms. In the last couple of decades, scientists 

have been trying to take advantages of the natural evolutions as an improvement 

concept in the process of solving large-scale optimization problems. In the 1960’s, 

biologists have begun to perform the simulation of genetic systems experiments with 

computer. The initial work in GA was done by Holland who developed a genetic 

algorithm in his research on adaptive systems in the early 1960’s and is considered the 

father of the field (Gilbert, et al. 1997). Over the years, GA have attracted attention and 

have been applied to various global optimization problems in many areas including 

chemometrics (Fontain 1992, Cong and Li 1994, Wienke, et al. 1993, Hibbert 1993, 

Lucasius and Kateman 1991). In terms of calibration, there have been several 

applications of GA to wavelength selection (Lucasius, et al. 1994, Lucasius and 
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Kateman 1992, Paradkar and Williams 1997, Ozdemir, et al. 1998a, Ozdemir, et al. 

1998b, Ozdemir and Williams 1999). 

Computationally the implementation of a typical genetic algorithm is quite 

simple and consists of five basic steps including initialization of gene population, 

evolution of the population, selection of the parent genes for breeding and mating, 

crossover and mutation, and replacing the parents with their offspring. These steps have 

taken their names from the biological foundation of the algorithm. The implementation 

of a typical GA is shown in Figure 3.3. 

 

selection of the best gene

TERMINATE?

replacing the parent genes with their offspring

crossover and mutation

selection of genes for breeding

evaluate and rank the population

initialization of gene population

YES

NO

 
 

Figure 3.3. Flow chart of general genetic algorithm used in GILS 

 
 

3.1.3.3.1. Initialization 
 

A gene is defined as a potential solution to a given problem. The exact form of a 

gene may vary from application to application and depends upon the problem being 

investigated. The term population is used to describe the collection of individual genes 

in the current generation. 



20 

In the initial gene pool, a gene consists of absorbance values at randomly chosen 

wavelengths between a predefined lower and upper limit. An example of a gene is as the 

following: 

 
[ ]512868958432 AAAS =  

 
where S  is so-called a gene, A  is the absorbance measured at the indicated wavelength. 

The chosen absorbance value at one wavelength is a vector of samples. Concatenation 

of these vectors forms the new absorbance matrix which is the gene. Figure 3.4 shows 

the schematic representation of the gene for a wood sample. Then, the population is 

formed according to the number of genes initially entered as an input of the software. 

 

0.5

0.6

0.7

0.8

0.9

1

40005000600070008000900010000

A
bs

or
ba

nc
e

Wavenumber (cm-1)

A8432

A6895 A5128

 
Figure 3.4. Illustration of a gene on a NIR spectrum of a wood sample 

 
 

3.1.3.3.2. Evaluate and Rank the Population 
 

In order to evaluate each gene’s success in the prediction of analyte 

concentration, fitness function such as the reciprocal of standard error of calibration 

(SEC) is used. SEC is calculated from the ILS model in which absorbance values from 

the selected wavelengths are used to construct the model. SEC is calculated from the 

following equation: 
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where ic  is the reference and iĉ  is the predicted values of concentration of ith sample 

and m  is the number of samples. Degrees of freedom is 2−m  because when a linear 

model is assumed, there are only two parameters to be extracted which are the slope of 

the actual vs. reference concentration plot and the intercept. In each step, increase in the 

fitness value is targeted. 

 

3.1.3.3.3. Selection of Genes for Breeding 
 

This step involves the selection of the parent genes from the current population 

for breeding according to their fitness value. The goal is to give higher chance to those 

genes with higher fitness so that only the best performing members of the population 

will survive in the long run and will be able to transfer their information to next 

generations. Here, it is expected that the genes better suited for the problem will 

generate better off-springs. The genes with low fitness values will be given lower 

chance to breed and hence most of them will be unable to survive. There are number of 

selection methods that can be used for parent selection (Wang, et al. 1991). Top down 

selection is one of the simplest methods for parent selection. After genes are ranked in 

the current gene pool, they are allowed to mate in a way that the first gene mates with 

the second gene, third one with the forth one and so on. All the members of the current 

gene are given a chance to breed. Roulette wheel selection method, which is used in 

GILS, is the one where the chance of selecting gene is directly proportional to its 

fitness. In this method, each slot in the roulette wheel represents a gene. The gene with 

the highest fitness has the slot that has the largest area and the gene with the lowest 

fitness has the slot that has the smallest area. Therefore, when the wheel is rotated, there 

is a higher chance of selection for a gene with high fitness than for a gene with a low 

fitness. There will also be the genes which are selected multiple times and some of the 

genes will not be selected at all and will be thrown out from the gene pool. After all the 

parent genes are selected, they are allowed to mate top-down, whereby the first gene S1 

mates with the second gene S2; S3 with S4 and so on until all the genes mate. Since no 

ranking is done for the roulette wheel selected genes, the genes with low fitness have a 
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chance to mate with better performing genes, thus resulting in an increased possibility 

of recombination. 

 

3.1.3.3.4. Crossover and Mutation 
 

The genetic algorithm does most of its work in the breeding/mating step. The 

step involves breaking the genes at random points and cross-coupling them as illustrated 

in the following example: 

Consider S1 and S2 are parent genes which are to breed; S3 and S4 are their 

corresponding off-springs. 

 
[ ]48909237573242551 AAAAS ⊕=  

[ ]892278329743845751232 AAAAAS ⊕=  

[ ]8922573242553 AAAS =  

[ ]4890923778329743845751234 AAAAAAS =  

 
Here, the first part of S1 is combined with the second part of S2 to give S3, 

likewise the second part of S1 with the first part of S2 to give S4. This process is called 

single point crossover and it is the one used in GILS. The symbol ⊕  is used to indicate 

the separation of the genes and the place where crossover occurs. There are also other 

types of crossover methods such as two point crossover and uniform crossover, each 

having their advantages and disadvantages. In the uniform case, each gene is broken at 

every possible point and many combinations are possible in the mating step, thus 

resulting in more exploitation. However, it is more likely to destroy good genes. Single 

point crossover will not provide different off-spring if both parent genes are identical, 

which may happen in the roulette wheel selection, and broken at the same point. To 

avoid this problem, two points crossover, where each gene is broken in two points and 

recombined, can be used. Single point crossover generally does not disturb a good gene 

but it provides as many recombinations as other types of crossover schemes. Also 

mating can increase or decrease the number of base pairs in the off-spring. 

Mutation, which introduces random deviations into the population, can be also 

introduced into the algorithm during the mating step at a rate of 1% as is typical in GA. 
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Replacing one of the wavelengths in an existing gene with a randomly generated new 

wavelength usually does this. However, it is not used in GILS in this study. 

 

3.1.3.3.5. Replacing the Parent Genes by Their Off-springs 
 

After crossover, the parent genes are replaced by their off-springs. The ranking 

process based on their fitness values follows the evolution step. Then the selection for 

breeding/mating starts again. This is repeated until a predefined number of iterations are 

reached. 

At the end, the gene with the lowest SEC (highest fitness) is selected for model 

building. This model is used to predict the concentrations of component being analyzed 

in the validation set. The success of the model in the prediction of the validation set is 

evaluated using standard error of prediction (SEP) which is calculated as: 
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where m  is now, in this case, the number of validation samples. 

 

3.1.3.3.6. Termination 
 

The termination of the algorithm is done by setting predefined iteration number 

for the number of breeding/mating cycles. However no extensive statistical test has been 

done to optimize it, though it can also be optimized. Since the random processes are 

heavily involved in the GILS, the program is set to run predefined number of times for 

each component in a given multi-component mixture. The best run, i.e. the one 

generating the lowest SEC for the calibration set and at the same time obtained SEP for 

the validation set that is in the same range with SEC, is subsequently selected for 

evaluation and further analysis. 

GILS has some major advantages over the classical univariate and multivariate 

calibration methods. First of all, it is quite simple in terms of the mathematics involved 

in the model building and prediction steps, but at the same time it has the advantages of 

the multivariate calibration methods with a reduced data set since it uses the full 
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spectrum to extract genes. By selecting a subset of instrument responses, it is able to 

eliminate nonlinearities that might be present in the full spectral region. 

 

3.2. Classification and Clustering Techniques 
 

Nowadays answering the question “Can a sample stated in a known class really 

belong to that class or not?” becomes valuable for the chemists who study in the area of 

qualitative analysis. Generally classification and clustering techniques are used to define 

the distribution of samples. Classification techniques are mainly divided into two 

different groups; supervised and unsupervised techniques. The extraction of useful data 

from analytical measurements and optimum information from analytical results are 

important objectives in terms of what we want as a result. Therefore to understand the 

differences between both techniques is important in the determination of which 

technique or techniques yields better result. If the classes or groups are known and the 

goal is to find in which class or group should be chosen for the investigated sample, 

supervised classification methods such as soft modeling of class analogy (SIMCA), 

linear discriminant analysis (LDA), and K-nearest neighbors (KNN) will be used. On 

the other hand, in unsupervised classification techniques, the chemical or physical 

variables of corresponding samples are not known clearly and therefore firstly the 

similarities of samples are found then the classes are developed. Principal component 

analysis (PCA) and hierarchical cluster analysis (HCA) are the most used techniques in 

unsupervised classification techniques (Beebe, et al. 1998). 

General procedure in classification techniques are based on the variables of 

samples, then this variable data matrix is used to classify the samples according to their 

similarities or dissimilarities. After the developments in spectroscopy, the usage of 

spectral data matrix instead of variable data matrix becomes widespread. The critical 

point in this case is determining which part of spectrum contains the most useful 

information for interested samples. Therefore generally wavelength selection or 

optimization procedures are used to obtain necessary information. Genetic algorithms 

(GA) or moving window size are examples of the wavelength selection methods. 

In this study principal component analysis was chosen as an unsupervised 

classification technique and genetic algorithm was imposed on the principal component 

analysis algorithm to select the wavelengths which have the most useful information. 
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Principal component analysis is a full spectral and soft modeling method which 

is based on the decomposition of data matrix into two separate and smaller matrices. 

These two kinds explain the relationships between the variables and the relationships 

between the objects. Also this division makes the dimensionality reduction for the large 

data matrix (Kowalski 1983). For instance, spectral data matrix contains hundreds of 

wavelengths with their corresponding absorbance values and it is really hard to 

visualize this data matrix in hundreds of dimensionality. As it is not possible to 

visualize dimensions larger than three, generally pictures or graphs that are used to 

explain the distributions of samples or variables should have three or less dimension in 

a space.  

Singular value decomposition (SVD) and nonlinear iterative partial least squares 

(NIPALS) are most commonly used algorithms in PCA analysis. In this study, SVD 

based principal component analysis was used. In this algorithm the training set A  with 

m samples and n variables is decomposed into the principal component scores ( U ), 

matrix of singular values (S ), and V  matrix whose rows are eigenvectors of A . 

Equation (3.18) shows the mathematical expression of SVD. The singular values matrix 

of S  is a diagonal matrix that has elements different from zero on diagonal. 

Eigenvalues of corresponding training set are calculated using the singular value matrix. 

The larger the eigenvalue means the more significant information. Generally the 

principal components (PC’s) are calculated according to this significance. 

 
 T

nxnmxnmxmmxn VSUA =  (3.18)
 

Often the Equation (3.18) is given in only two matrices in which it is shown in 

Equation (3.19). 

 
 T

nxnmxnmxn VTA =  (3.19)
 
where T  ( hxnmxhSU= ) is the score matrix and proportional to the size of the training 

set contains the information about the objects, TV  is the loading matrix that has the 

knowledge of variables. Each row of original data matrix is linear combinations of 

loading vectors. The first PC is generally the best straight line in multidimensional 

space and first two PC’s are used to visualize the samples (Brereton 2003, Massart, et 

al. 1998). In Figure 3.5 three distinct groups can be seen by plotting first principal 
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component score versus second principal component score graph, which is called score 

plot. 
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Figure 3.5. Score plot of a representative example which has three groups 

 

As it is mentioned before, multidimensional data contains information of the 

variables of samples or objects. PCA generally uses not only all the wavelengths in the 

spectra but also the variables that are extracted from the spectral measurements. When 

data reduction term is used in PCA analysis, it means variable selection is done. On the 

other hand, all the wavelengths in the spectra are used in the explanation of the 

relationships between variables. For the best selection, one can also need a reduction in 

the number of wavelengths. As a result, the data interpretation of objects is done with 

the most useful wavelengths and their corresponding variables and the relationship 

between the samples can be observed clearly. GA are used for wavelength selection in 

this case as in the calibration part. 

The algorithm is very similar to GILS method according to genetic algorithm 

steps, but there are some differences in the steps. Since the aim is optimizing a 

classification technique, which is in our case PCA, GA is imposed to PCA and distance 

which is defined as the distances between the groups of the sample set is taken as fitness 

function. The new algorithm was named as genetic algorithm based principal 

component analysis with distance fitness criterion (GAPCA-d). For instance, if the 

distance between two groups is increased by selection of certain wavelengths, and thus a 

clearer boundary between the groups is obtained, then classification is optimized. 
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The gene is defined as the randomly selected wavelengths with their 

corresponding instrumental responses in the whole spectra for a spectroscopic data set 

as in the GILS case. 

The evaluation of the genes is done with a fitness function that measures the 

success of the population based on their ability to solve the given problem. Once a gene 

is selected, it is used to form the reduced data matrix at the points determined by the 

elements in that gene. This data matrix is used in PCA analysis where score and loading 

matrices of all PC’s are determined. Also all the eigenvalues of the system are found 

and used to evaluate the systems. The summation of cumulative value of these first two 

eigenvalues generally explains about the 95% of the system. The total cumulative value 

of the first two eigenvalues is expected as near as 100%. According to the GAPCA 

algorithms, the first two eigenvalues are forced to be very significant for the explanation 

of the system. These first two PC’s are used to calculate the distance between the 

classes or groups and the value of distance is chosen as large as possible for the system. 

After the calculation of the distance values for all the genes in the population, the genes 

are sorted from largest to smallest and the best one is reserved for the comparison with 

the best of the next generation. In Figure 3.6, it is schematically shown how fitness 

function, which is the summation of all distance values, is applied to the data.  
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PC2

 
 

Figure 3.6. Schematic representation of evaluation of a gene according to fitness 

criterion in GAPCA method 
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The parent genes are selected in third step from the current population according 

to their fitness function using roulette wheel selection method. The genes that have 

higher fitness values shares larger portion of the wheel and those that have small fitness 

values have small areas on the wheel. The goal is to give a higher chance to those genes 

with fitness so that only the best performing members will survive in the long run and 

will pass their information to the next generations. Better suited for the problem will 

generate even better off-springs. The genes with the low fitness values will be given 

lower chance to breed hence most of them will be unable to survive. 

After selection of the parent genes for the next generation, the genes were put 

the crossover by top down without resort the selected ones. After crossover, the parent 

genes are replaced by their off-springs and the off-springs are evaluated with SVD-PCA 

once again. Then, the whole roulette wheel selection and crossover operation are 

repeated. 

This cycle continues until a predefined number of iteration is reached and the 

gene that has the highest classification power is selected to analyze the data at the final 

step. Because GAPCA is based on a lot of random processes, it is expected that 

whenever the algorithm is run, it will generate a different result. For this reason, the 

algorithm is designed to run multiple times for a given classification problem and it is 

possible to make a comparison among these runs in terms of the similarities and 

dissimilarities of the best genes of each run. By this way, it is possible to determine 

whether the GA based PCA is able to focus on the regions of the spectrum that contains 

the necessary information for accurate classification of the samples. 
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CHAPTER 4 

 

4. EXPERIMENTATION & INSTRUMENTATION 

 
4.1. Experimentation 
 

Turkish pine and Anatolian black pine samples were collected from Isparta, 

Turkey. Turkish pine trees were sampled from terrains of 700 m elevation and 

Anatolian black pine trees from 1230 m. Average precipitation was 51.5 cm. Average 

maximum temperature in July was 30.3°C and in January 1.8°C. Age of Turkish pine 

trees were around 30 – 40 years and Anatolian black pine around 17 – 22 years. Tree 

selection was based on good form trees and eccentric piths were not used. Wood 

samples were taken from breast height section of the trees. There were total of 58 

Turkish pine and 51 Anatolian black pine samples collected. Details about the samples 

are given in Table 4.1. 

 

Table 4.1. Number of samples with respect to sylviculture terrains 

 

 

 

 

 

 

 
Thinning is the selective removal of trees to improve the growth rate or health of 

the remaining trees. From this definition, the term thinning applied terrain can be easily 

understood. Control terrain is where no thinning is applied to the trees. 

Extractives and lignin contents of the samples were determined according to 

TAPPI standard methods T204 om-88 and T222 om-88. The obtained values were used 

as reference in the calibrations. First of all, wood meal samples were prepared with a 

Wiley mill and ground to pass various mesh screens. In order to determine the content 

of extractives, ethanol-benzene solution (1:2v/v) was used according to T204 om-88 

Turkish 
pine 

Anatolian 
black pine 

Control terrain 28 29 
Thinning applied terrain 23 29 

TOTAL 51 58 
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method. Extraction was performed in a Soxhlet apparatus for 6 hours. After filtration of 

extract, the remaining solid was weighed. It is subtracted from initial mass and 

expressed as weight percentage. In order to determine acid insoluble lignin content, the 

carbohydrates in the wood meal sample hydrolyzed and dissolved in 72% (v/v) sulfuric 

acid according to T222 om-88 method. Then, acid insoluble lignin is filtered off, dried, 

and the content in the sample is measured as weight percent. 

 

4.2. Instrumentation 
 

Near-infrared spectroscopic analyses were performed with FTS-3000 NIR 

spectrometer (Bio-Rad, Excalibur, Cambridge, MA) and mid-infrared spectroscopic 

analyses were performed with Spectrum 100 FTIR spectrometer (Perkin Elmer, 

Waltham, MA). Configurations of the spectrometers are shown in Table 4.2. Three 

spectra were taken for each sample and the means of corresponding three spectra were 

used in multivariate analyses. 

 

Table 4.2. Instrumental parameters used in the spectrometric analyses 

 

 NIR spectrometer MIR spectrometer 

source tungsten-halogen lamp tungsten lamp 
beam splitter calcium fluoride extended range KBr 

detector lead selenide FR-DTS 
resolution 16 cm-1 4 cm-1 
# of scans 128 4 

# of data points 780 3601 
range 10,000 – 4,000 cm-1 4,000 – 400 cm-1 

 
 

Initially, the wood meal samples were allowed to pass through 300 µm mesh 

screen to obtain uniform particle size. This was needed because non-uniform particle 

size might affect the absorbance measurements. Then, the samples were dried in an 

incubator for 24 hours before spectroscopic measurements to obtain uniform humidity. 

For both near-infrared and mid-infrared measurements, diffuse reflectance accessories 

(Pike Technologies, DiffusIR Accessory) were used. Wood meal samples were placed 

into micro sample cup (6.0 mm diameter, 1.6 mm deep) cautiously making the surface 
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as flat as possible to minimize absorbance changes due to the surface. For background 

correction, gold disk was used for near-infrared and mirror disk was used for mid-

infrared measurements.  

 

4.3. Data Analysis 
 

The collected spectra were transferred in ASCII file format and were combined 

with Microsoft Excel program. Then, data files for multivariate analyses were prepared 

as text files. Genetic algorithm based calibration and classification methods were 

written in MATLAB programming language Version 7.0 (MathWorks Inc., Natick, 

MA). 
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CHAPTER 5 

 

5. RESULTS AND DISCUSSION 

 
5.1. Calibration Results 

 

5.1.1. Near-Infrared Spectroscopy 
 

Near infrared diffuse reflectance spectra of 10 samples from both Turkish pine 

and Anatolian black pine trees are shown in Figure 5.1 and Figure 5.2. It is evident that 

the samples yield high absorbances around 6800, 5150, and 4700 cm-1 wavelength 

regions. However, since they are all pine wood samples, their spectral characteristics are 

very much alike except the severe baseline differences among the samples. This type of 

baseline shifts in the absorbance scale is common in diffuse reflectance spectroscopy 

and part of it is due to composition differences and part of it is due to inhomogeneities. 

Since GILS method is a genetic algorithm based multivariate calibration technique, it 

was expected that it could select certain combination of wavelengths which had 

maximum correlation with extractives and lignin contents of the samples. 
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Figure 5.1. NIR diffuse reflectance spectra of 10 Turkish pine samples 
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Figure 5.2. NIR diffuse reflectance spectra of 10 Anatolian black pine samples 

 

5.1.1.1. Anatolian Black Pine 
 

In order to construct NIR spectroscopic multivariate calibration models for 

extractives and lignin contents, three different calibration sets were prepared. The 

samples were received in two different dates, so calibration was constructed separately 

and for all samples. Reference extractives and lignin contents of Anatolian black pine 

samples are given in Table 5.1 and Table 5.2. 

 

Table 5.1. Reference extractives and lignin contents of 1st party Anatolian black pine 

trees 

 
sample 

no 
lignin content 

(%w/w) 
extractives 

content (%w/w) 
sample 

no 
lignin content 

(%w/w) 
extractives 

content (%w/w) 
1 19.46 4.60 12 26.46 13.00 
2 16.87 7.30 13 17.53 10.60 
3 20.99 7.40 14 23.03 8.30 
4 22.16 6.80 15 17.96 6.90 
5 22.90 10.00 16 14.30 8.80 
6 19.44 5.30 17 20.71 4.60 
7 20.80 6.30 18 18.00 5.10 
8 24.23 6.60 19 23.88 7.80 
9 21.60 8.80 20 19.19 7.60 

10 23.59 7.60 21 20.28 4.30 
11 24.61 9.40       
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Table 5.2. Reference extractives and lignin contents of 2nd party Anatolian black pine 

trees 

 
sample 

no 
lignin content 

(%w/w) 
extractives 

content (%w/w) 
sample 

no 
lignin content 

(%w/w) 
extractives 

content (%w/w) 
25 22.37 11.73 43 19.65 9.26 
26 22.59 10.75 44 21.84 11.10 
27 26.51 9.26 46 26.15 10.31 
28 24.89 10.42 47 24.68 11.79 
29 19.42 11.55 48 24.48 11.86 
30 22.47 13.40 49 23.06 8.90 
31 22.98 9.90 50 20.86 9.83 
33 26.61 10.72 51 26.32 11.77 
34 23.82 10.01 52 21.06 11.59 
35 30.85 8.61 53 21.21 13.61 
38 22.41 12.19 54 28.44 10.35 
39 18.84 12.40 55 34.47 12.79 
40 21.17 11.33 56 23.88 11.62 
41 21.07 11.83 57 19.94 8.85 
42 28.27 11.79 58 16.70 12.13 

 

 

The first calibration set were generated from 1st party in which 14 of them were 

randomly selected with the samples having minimum and maximum extractives and 

lignin contents and these samples were assigned as calibration set. The remaining 7 

samples were reserved for independent test samples. Reference extractives and lignin 

contents versus predicted values based on NIR spectra using GILS method are shown in 

Figure 5.3 for the first data set. Calibration models for lignin content determination gave 

standard error of calibration (SEC) and standard error of prediction (SEP) values as 

0.51% (w/w) and 1.70% (w/w) for calibration and independent test sets, respectively. In 

the case of extractives content determination, the SEC and SEP values were 0.49% 

(w/w) and 1.12% (w/w) for calibration and prediction sets, respectively. The R2 value of 

regression lines for lignin was 0.975 and that for extractives content was 0.961.  
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Figure 5.3. Reference vs. NIR predicted extractives and lignin contents for the first data 

set of Anatolian black pine trees 

 

When these SEC and SEP values are examined, it is seen that the values for 

lignin content were comparable even though the SEP value is about the twice of the 

SEC. It must be realized that the GILS method is an iterative procedure due to the 

genetic algorithm used to select a subset of wavelengths from the whole spectral range. 

As mentioned above, NIR spectra of these samples suffer from somewhat large baseline 

fluctuation and this causes the GILS to model this effect while preparing calibration 

models even though the cross validation approach is used during model building step. 

Since independent test samples in the prediction set do not have same baseline trends as 

in the calibration set and therefore predictions result in larger SEP values. Yet, when the 

overall calibration performance of the models examined, it is possible to state that the 

NIR spectra do contain quantitative information that is correlated with extractives and 

lignin contents of the Anatolian black pine samples studied here.  
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Figure 5.4. Reference vs. NIR predicted extractives and lignin contents for the second 

data set of Anatolian black pine trees 

 

Figure 5.4 shows the reference extractives and lignin contents versus GILS 

predicted values for the second data set with 30 samples of which 20 of the used for 

model building in the calibration set and the remaining 10 samples were reserved for the 

prediction set. While, the concentrations of lignin content were ranging between 14% 

(w/w) and 27% (w/w) for the first data set, the upper level of lignin content in second 

data set was around 35% (w/w). On the other hand, the extractives content of the 

samples in the second data set were distributed in a narrower range between 5% (w/w) 

and 11% (w/w) when compared with the first data set. The SEC values for extractives 

and lignin contents were 0.31% (w/w) and 1.04% (w/w), respectively while the SEP 

values were ranged between 0.69% (w/w) and 1.87% (w/w) for extractives and lignin 

contents. The R2 value of regression lines for lignin was 0.939 and that for extractives 

content was 0.940. 

When SEC and SEP values are examined in the second data set, it is seen that 

the agreement between these values are better than those obtained for the first data set 

even though lignin content interval is larger. One possible explanation of this 

improvement could be attributed to increased number of calibration and prediction 
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samples. On the other hand, the R2 of calibration lines were now lower than those 

obtained for the first data set. This is also an expected outcome of calibration models 

with larger data set as variability increases with the increased number of sample in 

calibration set. 

The third data set analyzed in this part of study was formed by combining the 

first and the second data sets into a single set. The calibration and prediction sets are 

formed by adding the corresponding spectra in the first data set to the data in the second 

data set. The calibration plots for extractives and lignin contents are given in Figure 5.5. 
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Figure 5.5. Reference vs. NIR predicted extractives and lignin contents for the third data 

set of Anatolian black pine trees 

 

Since the samples in the first data set were received in different date than the 

samples in the second data set, both SEC and SEP values were somewhat higher in the 

third data set compared to the first and second data sets. For the determination of lignin 

content, SEC and SEP values were 1.82% (w/w) and 2.36% (w/w), respectively. In the 

case of extractive content determination similar results were obtained in which the SEC 

was 0.78% (w/w) and the SEP was 1.57% (w/w). These increases in calibration and 
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prediction results were also reflected in R2 values of regression as the values went down 

to 0.801 for lignin and 0.913 for extractives. 

Because GILS is a wavelength selection based method, it is interesting to 

observe the distribution of selected wavelengths in multiple runs over the entire full 

spectral region. Figure 5.6 illustrates the frequency distribution of selected wavelengths 

in 100 runs with 20 genes and 50 iterations for the third data set. 

 

15

20

25

30

35

40

45

50

0.4

0.5

0.6

0.7

0.8

0.9

1

40005000600070008000900010000

Se
le

ct
io

n 
Fr

eq
ue

nc
y

A
bs

or
ba

nc
e

Wavenumber (cm-1)

(a)

 

15

20

25

30

35

40

45

50

0.4

0.5

0.6

0.7

0.8

0.9

1

40005000600070008000900010000

Se
le

ct
io

n 
Fr

eq
ue

nc
y

A
bs

or
ba

nc
e

Wavenumber (cm-1)

(b)

 
 

Figure 5.6. Frequency distribution of GILS selected NIR wavelengths for both lignin (a) 

and extractives (b) contents of Anatolian black pine samples in the third set 
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As can be seen from Figure 5.6 there are a number of regions where selection 

frequencies are very high compared to the rest of the spectrum. The wavelength region 

around 5500 and 9500 cm-1 for lignin content indicates a strong tendency for GILS 

method to select while for extractives content, around 5200 and 7300 cm-1 is the most 

frequently selected region.  

 

5.1.1.2. Turkish Pine 
 

As in the Anatolian black pine case, three different calibration sets were 

prepared. Reference extractives and lignin contents of Turkish pine samples are given in 

Table 5.3 and Table 5.4. 

 
Table 5.3. Reference extractives and lignin contents of 1st party Turkish pine trees 

 
sample 

no 
lignin content 

(%w/w) 
extractives 

content (%w/w) 
sample 

no 
lignin content 

(%w/w) 
extractives 

content (%w/w) 
1 28.80 6.00 12 28.67 7.89 
2 29.27 5.84 13a 28.90 6.09 
3 29.04 7.19 13b 29.07 6.09 
4 28.93 6.78 14 29.16 6.86 
5 28.63 6.46 15 28.82 6.72 
6 29.10 6.27 16 28.79 6.69 
7 28.96 7.51 17 29.20 7.02 
8 28.69 6.03 18 28.44 7.53 
9 29.00 5.73 19 29.08 6.43 

10 28.96 5.85 26 28.93 6.31 
11 29.02 6.59       
 

Table 5.4. Reference extractives and lignin contents of 2nd party Turkish pine trees 
 

sample 
no 

lignin content 
(%w/w) 

extractives 
content (%w/w) 

sample 
no 

lignin content 
(%w/w) 

extractives 
content (%w/w) 

25 25.49 8.55 45 22.30 10.87 
26 32.25 6.42 46 28.39 8.10 
27 31.67 3.56 47 25.44 8.70 
28 31.77 11.58 48 22.27 4.55 
29 34.67 6.73 49 31.66 6.46 
30 35.46 11.64 50 23.50 8.52 
31 28.40 9.70 51 30.47 6.55 
32 34.99 6.30 52 25.37 6.18 
33 29.57 8.00 53 34.57 7.92 
34 33.53 7.21 54 30.80 2.71 
35 25.34 16.12 55 23.76 11.92 
36 33.94 11.27 56 32.02 9.20 
37 30.30 12.06 57 21.46 2.05 
38 26.73 10.42 58 26.04 8.57 
39 27.65 8.65 59 36.70 7.45 
40 31.02 7.46 61 33.47 8.26 
41 24.10 9.04 64 35.09 11.93 
42 19.93 8.25 66 31.36 9.09 
44 34.11 10.41       
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The first calibration set were generated from 1st party in which 14 of them as 

calibration set and the remaining 7 samples as test samples. Reference extractives and 

lignin contents versus predicted values based on NIR spectra using GILS method are 

shown in Figure 5.7 for the first data set. Calibration models for lignin content 

determination gave standard error of calibration (SEC) and standard error of prediction 

(SEP) values as 0.03% (w/w) and 0.10% (w/w) for calibration and independent test sets, 

respectively. In the case of extractives content determination, the SEC and SEP values 

were 0.11% (w/w) and 0.27% (w/w) for calibration and prediction sets, respectively. 

The R2 value of regression lines for lignin was 0.984 and that for extractives content 

was 0.964.  
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Figure 5.7. Reference vs. NIR predicted extractives and lignin contents for the first data 

set of Turkish pine trees 

 

When these SEC and SEP values are examined, it is seen that the values are 

smaller than the Anatolian black pine case since reference values lay on narrower 

intervals. Similar regression coefficients show that NIR spectra of Turkish pine trees 

also contain information of extractives and lignin. NIR spectra of Turkish pine samples 

again suffer from baseline fluctuations and this causes GILS to model this effect while 
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preparing calibration models even though the cross validation approach is used during 

model building step. So, high SEP values of validation sets are caused by this.  
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Figure 5.8. Reference vs. NIR predicted extractives and lignin contents for the second 

data set of Turkish pine trees 

 

Figure 5.8 shows the reference extractives and lignin contents versus GILS 

predicted values for the second data set with 37 samples of which 24 of the used for 

model building in the calibration set and the remaining 13 samples were reserved for the 

prediction set. While, the concentrations of lignin content for Turkish pine trees were 

ranging between a very narrow interval for the first data set, lignin content range in 

second data set was much larger. Similarly, the extractives content of the samples in the 

second data set were distributed in a wider range between 3% (w/w) and 16% (w/w) 

when compared with the first data set. The SEC values for extractives and lignin 

contents were 0.87% (w/w) and 1.26% (w/w), respectively while the SEP values were 

ranged between 1.70% (w/w) and 3.71% (w/w) for extractives and lignin contents. The 

R2 value of regression lines for lignin was 0.936 and that for extractives content was 

0.933. 
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When SEC and SEP values are examined in the second data set, it is seen that 

the agreement between these values are worse than those obtained for the first data set. 

Actually, SEC values don’t differ so much compared to Anatolian black pine calibration 

but SEP values are more than twice of SEC values. Explanation of this could be the 

increased number of calibration and prediction samples and larger data interval. On the 

other hand, the R2 of calibration lines were now lower than those obtained for the first 

data set. This is also an expected outcome of calibration models with larger data set as 

variability increases with the increased number of sample in calibration set. 

The third data set analyzed in this part of study is the same as the Anatolian 

black pine case. The calibration and prediction sets are formed by adding the 

corresponding spectra in the first data set to the data in the second data set. The 

calibration plots for extractives and lignin contents are given in Figure 5.9. 
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Figure 5.9. Reference vs. NIR predicted extractives and lignin contents for the third data 

set of Turkish pine trees 

 

Both SEC and SEP values were higher in the third data set compared to the first 

and second data sets. The reason might be the time of reception of the samples and data 

interval differences. For the determination of lignin content, SEC and SEP values were 
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1.24% (w/w) and 3.57% (w/w), respectively. In the case of extractives content 

determination similar results were obtained in which the SEC was 1.02% (w/w) and the 

SEP was 1.82% (w/w). These increases in calibration and prediction results were also 

reflected in R2 values of regression as the values went down to 0.898 for lignin and 

0.861 for extractives. 

Figure 5.10 illustrates the frequency distribution of selected wavelengths in 100 

runs with 20 genes and 50 iterations for the third data set. 
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Figure 5.10. Frequency distribution of GILS selected NIR wavelengths for both lignin 

(a) and extractives (b) contents of Turkish pine samples in the third set 
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As can be seen from Figure 5.10 there are a number of regions where selection 

frequencies are very high compared to the rest of the spectrum. The wavelength region 

around 4200 and 5300 cm-1 for lignin content indicates a strong tendency for GILS 

method to select while for extractives content, around 6000 and 8500 cm-1 is the most 

frequently selected region.  

 

5.1.2. Mid-Infrared Spectroscopy 
 

Mid-infrared diffuse reflectance spectra of 10 wood samples from both Turkish 

pine and Anatolian black pine trees are shown in Figure 5.11 and Figure 5.12, 

separately. It is evident that the samples yield high absorbance values around 3400, 

2900, and between the range 1750 and 1000 cm-1 wavelengths. Also there is a peak 

around 2150 cm-1. From the spectra, similarities are obviously seen but there are still 

baseline differences as mentioned in near infrared spectroscopy case. However using the 

GILS method will decrease the effect of baseline shifts because it can select certain 

combination of wavelengths which have maximum correlation with extractives and 

lignin contents of the samples.  

 

 
 
Figure 5.11. MIR diffuse reflectance spectra of 10 Turkish pine samples 
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Figure 5.12. MIR diffuse reflectance spectra of 10 Anatolian black pine samples 

 
 
5.1.2.1. Anatolian Black Pine 

 

In order to construct MIR spectroscopic multivariate calibration models for 

extractives and lignin contents for Anatolian black pine, the procedure followed in the 

NIR calibration is again used, i.e., three different calibration sets were used again but 

NIR spectra were replaced with the MIR spectra.  

The first calibration set were generated from 1st party in which 14 of them as 

calibration set and the remaining 7 samples as test samples. Reference extractives and 

lignin contents versus predicted values based on MIR spectra using GILS method are 

shown in Figure 5.13 for the first data set. Calibration models for lignin content 

determination gave standard error of calibration (SEC) and standard error of prediction 

(SEP) values as 0.62% (w/w) and 1.66% (w/w) for calibration and independent test sets, 

respectively. In the case of extractives content determination, the SEC and SEP values 

were 0.51% (w/w) and 1.13% (w/w) for calibration and prediction sets, respectively. 

The R2 value of regression lines for lignin was 0.961 and that for extractives content 

was 0.958.  
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Figure 5.13. Reference vs. MIR predicted extractives and lignin contents for the first 

data set of Anatolian black pine trees 

 

It is seen from SEC and SEP values that for extractives and lignin contents they 

are still comparable. But the values become higher than corresponding NIR results. 

Again it must be realized that the GILS method is an iterative procedure due to the 

genetic algorithm used to select a subset of wavelengths from the whole spectral range. 

The effect of baseline fluctuation will be more since MIR region is very sensitive for 

quantitative analysis because absorbance changes become more than it becomes in NIR 

case. The reason can be that fundamental vibrations have more probability to be 

observed than overtones. Yet, when the overall calibration performance of the models 

examined, it is possible to state that the MIR spectra do contain quantitative information 

that is correlated with extractives and lignin contents of the Anatolian black pine 

samples studied here.  
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Figure 5.14. Reference vs. MIR predicted extractives and lignin contents for the second 

data set of Anatolian black pine trees 

 

Figure 5.14 shows the reference extractives and lignin contents versus predicted 

values by GILS for the second data set. The SEC values for extractives and lignin 

contents were 0.34% (w/w) and 1.27% (w/w), respectively while the SEP values were 

ranged between 0.68% (w/w) and 2.50% (w/w) for extractives and lignin contents. The 

R2 value of regression lines for lignin was 0.908 and that for extractives content was 

0.929. 

When compared with the first data set and also the NIR results, SEC and SEP 

values became higher and thus regression became smaller. One possible explanation of 

this improvement could be attributed to increased number of calibration and prediction 

samples. On the other hand, the R2 of calibration lines were now lower than those 

obtained for the first data set. This is also an expected outcome of calibration models 

with larger data set as variability increases with the increased number of sample in 

calibration set. However the correlation between chemical contents and MIR spectra of 

Anatolian black pine samples are still seen. 

The third data set analyzed in this part of study was formed by combining the 

first and the second data sets into a single set. The calibration and prediction sets are 
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formed by adding the corresponding spectra in the first data set to the data in the second 

data set. The calibration plots for extractives and lignin contents are given in Figure 

5.15. 
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Figure 5.15. Reference vs. MIR predicted extractives and lignin contents for the third 

data set of Anatolian black pine trees 

 

Since the samples in the first data set were received in different date than the 

samples in the second data set, both SEC and SEP values were somewhat higher in the 

third data set compared to the first and second data sets. For the determination of lignin 

content, SEC and SEP values were 1.77% (w/w) and 2.38% (w/w), respectively. In the 

case of extractives content determination similar results were obtained in which the 

SEC was 0.84% (w/w) and the SEP was 1.24% (w/w). These increases in calibration 

and prediction results were also reflected in R2 values of regression as the values went 

down to 0.812 for lignin and 0.900 for extractives.  

Figure 5.16 illustrates the frequency distribution of selected wavelengths in 100 

runs with 20 genes and 50 iterations for the third data set. 
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Figure 5.16. Frequency distribution of GILS selected MIR wavelengths for both lignin 

(a) and extractives (b) contents of Anatolian black pine samples in the third 

set 

 

As can be seen from Figure 5.16 there are a number of regions where selection 

frequencies are very high compared to the rest of the spectrum. The wavelength region 

around 1000 cm-1 for lignin content indicates a strong tendency for GILS method to 

select while for extractives content, around 1200 and 2200 cm-1 is the most frequently 

selected region.  
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5.1.2.2. Turkish Pine 
 

In order to construct MIR spectroscopic multivariate calibration models for 

extractives and lignin contents for Turkish pine, the procedure followed in the NIR 

calibration is again used, i.e., three different calibration sets were used again but NIR 

spectra were replaced with the MIR spectra.  

Reference extractives and lignin contents versus predicted values based on MIR 

spectra using GILS method are shown in Figure 5.17 for the first data set. Calibration 

models for lignin content determination gave standard error of calibration (SEC) and 

standard error of prediction (SEP) values as 0.03% (w/w) and 0.11% (w/w) for 

calibration and independent test sets, respectively. In the case of extractives content 

determination, the SEC and SEP values were 0.14% (w/w) and 0.29% (w/w) for 

calibration and prediction sets, respectively. The R2 value of regression lines for lignin 

was 0.981 and that for extractives content was 0.946.  
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Figure 5.17. Reference vs. MIR predicted extractives and lignin contents for the first 

data set of Turkish pine trees 
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From SEC and SEP values, the results are very comparable with NIR results but 

SEP values are somewhat higher. Similar regression coefficients show that MIR spectra 

of Turkish pine trees also contain information of extractives and lignin. 
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Figure 5.18. Reference vs. MIR predicted extractives and lignin contents for the second 

data set of Turkish pine trees 

 

Figure 5.18 shows the reference extractives and lignin contents versus GILS 

predicted values for the second data set. The procedure was same again; MIR spectra 

were replaced with the NIR spectra before the calibration process. The SEC values for 

extractives and lignin contents were 0.97% (w/w) and 1.86% (w/w), respectively while 

the SEP values were ranged between 1.87% (w/w) and 3.81% (w/w) for extractives and 

lignin contents. The R2 value of regression lines for lignin was 0.860 and that for 

extractives content was 0.916. SEC and SEP values in the second data set are higher 

than the corresponding NIR values. Also, regression coefficients became smaller. 

The third data set is formed by adding the corresponding spectra in the first data 

set to the data in the second data set. The calibration plots for extractives and lignin 

contents are given in Figure 5.19. 
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Figure 5.19. Reference vs. MIR predicted extractives and lignin contents for the third 

data set of Turkish pine trees 

 

Both SEC and SEP values were higher in the third data set compared to the first 

and second data sets. The reason might be the time of reception of the samples and data 

interval differences. For the determination of lignin content, SEC and SEP values were 

1.48% (w/w) and 3.73% (w/w), respectively. In the case of extractives content 

determination similar results were obtained in which the SEC was 1.19% (w/w) and the 

SEP was 2.04% (w/w). These increases in calibration and prediction results were also 

reflected in R2 values of regression as the values went down to 0.855 for lignin and 

0.814 for extractives. 

Figure 5.20 illustrates the frequency distribution of selected wavelengths in 100 

runs with 20 genes and 50 iterations for the third data set. 
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Figure 5.20. Frequency distribution of GILS selected MIR wavelengths for both lignin 

(a) and extractives (b) contents of Turkish pine samples in the third set 

 

As can be seen from Figure 5.20 there are a number of regions where selection 

frequencies are very high compared to the rest of the spectrum. The wavelength region 

around 2000 cm-1 for lignin content indicates a strong tendency for GILS method to 

select while for extractives content, around 1300 and 2800 cm-1 is the most frequently 

selected region.  
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5.1.3. Calibration Summary 
 

To make a comparison between NIR spectroscopy and MIR spectroscopy; SEC, 

SEP and R2 values are given for all three data sets in Table 5.5, Table 5.6 and Table 5.7. 

In the tables, ABP stands for Anatolian black pine and TP stands for Turkish pine.  

 

Table 5.5. Calibration summary for the first data set 

 

LIGNIN  EXTRACTIVES  
1

st
 data set  SEC 

(%w/w) 
SEP 

(%w/w) R
2  SEC 

(%w/w) 
SEP 

(%w/w)  R
2  

NIR – ABP  0.51  1.70  0.975 0.49  1.12  0.961 

MIR – ABP  0.62  1.66  0.961 0.51  1.13  0.958 

NIR – TP  0.03  0.10  0.984 0.11  0.27  0.964 

MIR – TP  0.03  0.11  0.981 0.14  0.29  0.946 

 

 

For the first data set, the results are very comparable but NIR results seem to 

have somewhat better R2 values for calibration models. 

 

Table 5.6. Calibration summary for the second data set 

 

LIGNIN  EXTRACTIVES  
2

nd
 data set  SEC 

(%w/w) 
SEP 

(%w/w) R
2  SEC 

(%w/w) 
SEP 

(%w/w)  R
2  

NIR – ABP  1.04  1.87  0.939 0.31  0.69  0.940 

MIR – ABP  1.27  2.50  0.908 0.34  0.68  0.929 

NIR – TP  1.26  3.71  0.936 0.87  1.70  0.933 

MIR – TP  1.86  3.81  0.855 0.97  1.87  0.814 
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For the second data set, it is obviously seen that values for NIR models are 

better than values for MIR models. High R2 values show that calibration models 

constructed by NIR spectra of the samples of second set are more successful in this 

case. However, it is necessary to take a look at the third data set which is the 

combination of first and second data sets. Since samples from first and second sets were 

received in different time periods, making a general comment according to the second 

data set would be insufficient. 

 

Table 5.7. Calibration summary for the third data set 

 

LIGNIN  EXTRACTIVES  
3

rd
 data set  SEC 

(%w/w) 
SEP 

(%w/w) R
2  SEC 

(%w/w) 
SEP 

(%w/w)  R
2  

NIR – ABP  1.82  2.36  0.801 0.78  1.57  0.913 

MIR – ABP  1.77  2.38  0.812 0.84  1.24  0.900 

NIR – TP  1.24  3.57  0.898 1.02  1.82  0.861 

MIR – TP  1.48  3.73  0.855 1.19  2.04  0.814 

 

 

For the third data set, the R2 values are lower than the ones in the first two data 

sets. When NIR and MIR results are compared, NIR results seem to be better except in 

the case of lignin prediction for Anatolian black pine.  

As a result, both NIR and MIR spectroscopy can be used to construct calibration 

models for lignin and extractives determination. 

 

5.2. Classification Results 
 

Classification techniques were applied to NIR and MIR spectral measurements 

of Turkish pine (TP) and Anatolian black pine (ABP) trees. Each pine species contain 

51 wood samples with their corresponding spectral data. Two different classification 

modeling techniques were chosen; singular value decomposition based principal 

component analysis (SVD–PCA) and genetic algorithm as a wavelength selection in 
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principal component analysis with distance criterion (GAPCA–d). Then results were 

compared to visualize both the power of genetic algorithm and the construction of 

classes.  

 

5.2.1. Near-Infrared Spectroscopy 
 

NIR spectral measurements were considered as data matrix at the beginning of 

analysis, firstly SVD-PCA was performed and principal components were found. The 

first two PC’s were taken in the construction of score and loading plots. As it is 

mentioned previously, PCA generally forces the first two principal components for 

explanation of system in 95%. Figure 5.21 shows the loading and score plots of Turkish 

pine and Anatolian black pine data matrix.  

 

(a) (b) 

 
Figure 5.21. Results of SVD–PCA method, a) score and b) loading plot of pine samples 

measured with NIR 

 

SVD–PCA takes the all variables in the determination of principal components. 

Therefore it can be seen complicated, because NIR spectrum contains spectral overlap 

and absorption at similar wavelengths. The homogenous distributions of wavelengths 

seen from the loading plot prove that there is no unexpected data point in the spectra. 

Only the upper left side of plot gives differences due to the baseline shift in the spectral 

measurements. On the other hand, score plot which indicates the classes of samples 

distinguishes the sample set with a few overlap samples. It can be the result of the 

baseline shift in NIR spectra. To reduce the spectral effects in data matrix, genetic 
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algorithm is used as a wavelength selection and then principal component analysis with 

distance criterion was applied to data set. In the result with a few wavelengths as it 

shown in Figure 5.22 Turkish pine and Anatolian black pine trees were distinguished 

much better. In this regression analysis, gene population is predefined as 20 genes with 

10 iterations. In the beginning of the classification, the whole spectrum was taken and 

the algorithm selected the wavelengths by itself.  

 

(a) (b) 

 
Figure 5.22. Results of GAPCA-d method, a) score and b) loading plots of pine samples 

measured with NIR 

 

 

5.2.2. Mid-Infrared Spectroscopy 
 

Same studies were also performed to the MIR measurements of Turkish pine 

and Anatolian black pine tree samples. Two separate classes were obtained from both 

SVD-PCA and GAPCA-d. The difference was only the number wavelengths with their 

corresponding absorbance values in the principal components.  

In Figure 5.23, the distribution of loading plot obtained from SVD-PCA shows 

scattered wavelength points at the left bottom of the plot. This was due to the 

absorbance values in the region of 400 and 1400 cm-1. As it was shown before MIR 

spectra of samples, in that region the fluctuation in absorbance spectra causes the 

heterogeneity in the loading plot. 
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(a) (b) 

 
Figure 5.23. Results of SVD–PCA method, a) score and b) loading plot of pine samples 

measured with MIR 

 

Loading plot of principal components especially is used in the explanation of 

which variables are most influential or most correlated in the determination of the 

classes. All the relationships of variables are shown in the same graph. MIR 

measurements of tree samples show that classes can be constructed with a few 

wavelengths. Figure 5.24 indicates the selected wavelengths in MIR spectrum and 

descriptive ability of GAPCA-d. Two different tree classes were obtained without any 

overlap samples. In the beginning of regression analysis only 6 genes with 10 iterations 

was utilized and full spectrum was used in the analysis. The whole spectrum contains 

3601 wavelengths. SVD-PCA used all the wavelengths in the construction of classes 

whereas GAPCA-d only selected 30 wavelengths.  

 

(a) (b) 

 
Figure 5.24. Results of GAPCA-d method, a) score and b) loading plot of pine samples 

measured with MIR 
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As a result, we can conclude that the Turkish pine and Anatolian black pine tree 

samples with MIR spectroscopic techniques much better than NIR measurements in the 

classification. On the other hand, GAPCA-d does not only classify the samples but also 

select a few wavelengths which contains the necessary information. In the future, the 

algorithm can be improved by adding validation steps after construction of models. 
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CHAPTER 6 

 

6. CONCLUSION 

 
In this study, calibration models were developed for extractives and lignin 

contents of Turkish pine and Anatolian black pine trees by coupling infrared 

spectroscopy and multivariate calibration. Samples were analyzed in both near-infrared 

and mid-infrared regions by using diffuse reflectance measurements. To construct 

calibration models, GILS was used as a multivariate calibration method. Reliability of 

the calibration models was determined by SEC and SEP values as well as with the R2 

values from the reference vs. predicted content plots. From the results, it is seen that 

successful calibration models can be constructed by using the methods mentioned to 

provide fast and nondestructive determination of extractives and lignin contents. This 

might give rise to improvements in the forest industry in economical manner. In 

addition, by wavelength selection feature of GILS method, the wavelengths which carry 

information of extractives and lignin contents could be determined in order to develop 

case specific analysis models.  

Classification of pine samples were performed by SVD-PCA and GAPCA. 

Wavelength selection feature of GAPCA method enhances the success of classification. 

The results show that eliminating wavelengths without information make the 

classification more successful. The application of this part of the study might be that an 

unknown pine sample could be predicted from its NIR or MIR spectrum whether it 

belongs to Turkish pine species or Anatolian black pine species. 
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