

IZMIR VOKSEK TEKNOLOJI ENSTITOSO

II11II111I11111111111111I11111111111111111111
T000049

? .
Supervisor

Department of Computer Engineering

................... ~ .

Prof. Dr. Saban EREN

Department of Computer Engineering

Ege University

~rod/ii}
Head of Department

,-._.,~"_._'::-.~~-~".".'" \ .. ',.' ,'''c~l-Il1il,.;i~~L"\ ~ :: v!. ...r. ,•.••.. wJd

. l' :: i: T r"; '1 ~ ~ ~ (:;

l'_I\U_'Ul_:'_.·1'._':.·_·'_' _l_",_,.l_.'-_.: .._:,__ . ";1 .J" ". "~l

First, I would like to thank my supervisor, Prof. Dr. Sltkl Aytay, for his support to my project in
many aspects. I also thank Asst. Prof. Ahmet Koltuksuz for encouraging me in all stages of the
project.

I would also like to thank Prof. Dr. Balis Puskulcu, since he willingly enabled me to prepare
this thesis in spite of my primary jobs.

Finally, I would like to thank my family and my friends who have given me the real support so
far.

The common controllers used in industrial environments today cannot fulfill the requirements of
many data acquisition and control applications. As a result of this, personal computers has
become to be popular in industry, as they have been so in many areas due to the fact that today's
PCs have many advantages compared with their relatively low price. In this project, a PC based
embedded controller was designed for data acquisition and control purposes, and a real-time
executive running on DOS operating system was developed.

Gunumuzde endustriyel ortamlarda yaygm olarak kullamlan kontrol cihazlan, kar~I1a~I1an bir
yok veri toplama ve kontrol uygulamasmm ihtiyaylanm kar~I1ayamamaktadlr. Bunun sonucu
olarak ki~isel bilgisayarlar, du~uk fiyatlannm yamnda bir yok avantajlara sahip olmalanndan
dolayl, diger alanlarda da oldugu gibi endustride de populerlik kaZamTI1~tlr. Bu projede veri
toplama ve kontrol amaylan iyin ki~isel bilgisayar tabanlt bir gomulu kontrol sistemi
tasarlanml~ ve bu sistemi geryek zamanlt olarak yUrUtebilen ve DOS i~letim sistemi uzerinde
yalt~an bir program geli~tirilmi~tir.

,_ ..__ •._---_.
. I I) \':': .•, .•..••" ~.•~ , ~ •, ;;~ \: .•..,..~" " \"'01... 1\, •• IU~_ .•.• , .' •...•• ' ...••.•..• ~.o!:..-01

I R ~ :: I ' Y : ~ L J !

J. j' .r·',,'1'" I'· t, . - "~. L--·(,ir" P(kj• ,., .,.. '. <.,. . .. -'.' '1••. 111 •

LIST OF FIGURES VIII

LIST OF TABLES IX

CHAPTER 1. INTRODUCTION . 1

CHAPTER 2. THE DEFINITIONS AND DESIGN CONSIDERATIONS 3

2.1. The Definition of the Term "Embedded Controller" 3

2.2. The Definition of the PC 104 Standard .4

2.3. The Definition of the Term "Real-Time" . .4

2.4. Design Considerations for IBM PC Extension Boards 5

2.5. Design Considerations for Data Acquisition & Control Applications 6

2.6. Design Considerations for Real-Time Systems. . 7

CHAPTER 3. THE PRINCIPLES OF DATA ACQUISITION & CONTROL 9

3.1. Data Acquisition Speed 9

3.2. Data Acquisition Accuracy . 10

3.3. Aliasing . . 12

3.4. Signal Conditioning 13

3.5. Environmental Limitations of Data Acquisition Equipment 13

3.6. Software . . 14

CHAPTER 4. THE PARTS OF THE DEVELOPED EMBEDDED CONTROLLER 16

4.1. The PC Mainboard 16

4.2. Digital Input / Output Board 16

4.2.1. Address Decoder Circuit 17

4.2.2. Opto-Isolated Input 20

4.2.3. Relay Output 21

4.2.4. Connectors and Indicators 21

4.3. Analog Input & Power Supply Board 21

4.3.1. Address Decoder & Latch Circuit 22

4.3.2. Analog Multiplexer and Signal Conditioning Circuit 23

4.3.3. DC/DC Converter 24

4.3 A. Connectors .

4A. Enclosure

. 24

. 24

5. 1. Accessing the Hardware 25

5.1.1. Using the Digital I/O Board .. 25

5.1.2. Using the Analog Input Board 28

5.2. Explanation of he Developed Real-Time Executive 30

..................... 32

......................... 32

5.2.3. Preparing the System Configuration File, "load.dac" 33

5.2A. System Calls 34

5.2.5. Making Processes .

5.2.6. Making Timer Functions ..

CHAPTER 6. CONCLUSION, FUTURE WORK 44

SUMMARY 46

Figure 2.1

Figure 3.1

Figure 3.2

Figure 3.3

Figure 3.4

Figure 4.1

Figure 4.2

Figure 4.3

Figure 4.4

Figure 4.5

Figure 4.6

Figure 4.7

The Block Diagram of a Prototype Board

Block Diagram of a Data Acquisition and Control Application

Single-Ended and Differential Measurements

Measurement with Resistor Bridge, Measurement without Ground

The Signal Diagram of Aliasing

The Block Diagram of the Digital 1/0 Board

Address Decoder Circuit of the Digital I/O Board

The Input Layer of Digital Inputs

The Output Layer of Digital Outputs

The Block Diagram of the Analog Input & Power Supply Board

The Address Decoder of the Analog Input & Power Supply Board

Analog Multiplexing and Signal Conditioning Circuit

Table 4.1

Table 4.2

Table 4.3

Table 4.4

Table 4.5

Table 5.1

Table 5.2

Table 5.3

Input and Output States of the Address Decoder Circuit

Addressing of the Digital I/O Board

Explanation of the Ports Used by the Digital I/O Board

Voltage Levels of the Digital Inputs

Explanation of the Ports Used by the Analog Input & Power Supply Board

Explanation of the Ports Used by the Digital I/O Board

Explanation of the Ports Used by the Analog Input & Power Supply Board

Explanation of the Reading Operations from Digital to Analog Converter

Developing high performance data acquisition and control systems takes better tools than
the industry normally provides. Today the most common controllers in industrial
environments are Programmable Logic Controllers (PLC). They are the devices which
were developed especially for industry, hence they are quite suitable for control
applications. However, despite today's technology, PLCs can be still weak in many
applications. For instance they are not suitable for data acquisition due to their limited
capability of computation, speed, memory and programming constraints. On the other hand,
the fact that today's PCs have many advantages compared with their relatively low price
made them very popular everywhere, in every environment. As a result of this intendation,
PCs were used firstly for data acquisition purposes in laboratories, then for control
purposes in industry. The huge capacity of computation and memory, user-friendly
environment, ease of programming and impressive graphical screens made people to prefer
PCs instead of PLCs or other systems. On the other hand, it was the fact that desktop PCs
were not suitable for industrial regions, since industry has different working conditions. In
order to overcome this problem, different methods were tried so as to use conventional
desktop PCs, or new products which are suitable for industry were developed in time. The
number ofPCs used in industry is increasing day by day, and different options, products are
being developed as a result of this.

In respond to this need, a new embedded controller was designed in this project. This
controller is actually a PC controller and consists of basically a PC mainboard, digital and
analog input/output boards, a power supply unit, an enclosure and a suitable software for a
harmonious working of all these parts. This project deals with designing the digital and
analog VO boards, the enclosure and developing the software, not the mainboard and power
supply. Therefore the mainboard and power supply unit were chosen from on-the-shelf
products which are extremely widespread and appropriate in many aspects such as technical
specifications and prices

Therefore this project basically contains a hardware design, and a software development. In
the first part, two electronic boards, analog input and power supply board and digital I/O
board were designed in accordance with the PCI04 standard which is the format of the PC
mainboard chosen. Then an executive running on DOS and providing a real time
multitasking environment was developed.

This controller has 24 opto-isolated digital inputs and 24 relay digital outputs which are
capable of doing on/off operations and completely isolated from the PC against any
possible hazardous electrical shocks. In addition, it has 16 channels of analog input for
acquisition of analog signals such as temperature, pressure, displacement, etc. Analog
inputs accept the voltage level within the range from -10 to +10 volts and also have fault-
protection up to 40 volts. Maximum sampling rate is 16,000 samples/s and the processor

may handle many complicated tasks at even the highest sampling rate, without losing any
data. The performance-cost ratio of this system is expected to be higher than similar ones.

1. AMD 5x86 133 MHz CPU with arithmetic coprocessor.
2. 2MB Flash Ram for operating system and programs.
3. 24 volt de power supply.
4. One RS-232C serial port.
5. VGA display connector.
6. Keyboard connector.
7. 24 channels of opto-isolated input (provided with three connector blocks on the

enclosure).
8. 24 channels of relay output (provided with three connector blocks on the enclosure).
9. 16 channels of analog input (provided with four connector blocks on the enclosure).
10.48 LEDs as indicator of digital input and outputs and two LEDs for power OK.
11. 250x170x75 mm aluminium enclosure.

. .~:\c;.\
. 'C·\.I<··'··

"', ~ .•.. .
, .. ~ ... ,)':.y.•

., \-- '
.. '.--

2.1. THE DEFINITION OF THE TERM "EMBEDDED CONTROLLER"
An embedded system is a digital system which is acting as part of a larger system. The term
emhedded means being part of a larger system and providing a dedicated service to that
unit[l]. A PC which provides a dedicated software and some graphics and communication
interfaces can be an embedded control system in a production line of a factory. According
to this definition a microprocessor can be regarded as an embedded controller, if it gives a
dedicated service such as handling graphics operations.

The earliest embedded systems were banking processing systems running on mainframe
computers. These systems were very expensive and applications were small. However, as
the integrated circuits manufacturing technology developed, new embedded systems found
new application areas. Today's embedded systems can be itemized as:

• Industrial controllers, where there is need for maintainability, reliability and
programmability.

• Safety critical controller, such as ABS controller in a car.
• Laser printers, where there is need for computationally intensive.
• Home appliances, where there is a need for user interface and other advanced

features which are provided by microcontrollers.

By the term "Embedded Controller", an embedded system which is designed for industrial
environments is meant in this project.

The embedded PC can be very different from a desktop Pc. It can be hidden from user, it
might not have user interface, a display or keyboard, or it might have a different user dialog
unit that we are not used to. They frequently include a LCD display and a keypad for user
interface. At this point they can seem to have no difference from microcontroller-based
designs but they have the distinct advantage of using a PC platform. This provides user
with PC development tools and desktop PC's all advantages. The advantages of today's PCs
can be listed as follows:

PCs are ubiquitous.
PCs make it easy to create prototypes.
It can be easier to develop a project on a PC
PC expertise is available.
PCs offer low cost hardware.
Low cost, high quality development tools are available for Pc.
A wide variety of PC-compatible products are available.
Very high level automated tools are available.
The PC architecture continues to offer increasing performance.

• PCs offer a huge range of display and input options.
• Many low-level drivers are available.
• The shrinking PC for notebook computers results In technology that IS ideal for

embedded systems.

2.2. THE DEFINITION OF THE PCI04 8T ANDART
Due to the preceding advantage list, companies which design PCs as controllers began to
seek a new product that reaps the benefits of using the PC architecture. However, the
standard PC bus form-factor (12.4" x 4.8") and its associated card cages and backplanes are
too bulky (and expensive) for most embedded control applications. A need therefore arose
for a more compact implementation of the PC bus, satisfying the reduced space and power
constraints of embedded control applications. Yet these goals had to be realized without
sacrificing full hardware and software compatibility with the popular PC bus standard. This
would allow the PC's hardware, software, development tools, and system design
knowledge to be fully leveraged.
PCIl 04 was developed in response to this need. It offers full architecture, hardware and
software compatibility with the PC bus, but in ultra-compact (3.6" x 3.8") stackable
modules. PCIl 04 is therefore ideally suited to the unique requirements of embedded control
applications.

2.3. THE DEFINITION OF THE TERM "REAL TIME"
A real-time system is defined as a system where the correctness of the system depends not
only on the result of computations but also on the time at which it is produced [2].
According to this definition, the time is the most important item that should be managed in
real-time systems. The tasks must be assigned and scheduled in such way in order to be
completed by their deadlines. Messages and signals to be sent and received between tasks
must be arranged to facilitate this timing as well. The other crucial issue in a real-time
system is reliability. In many real-time systems such as flight control systems, nuclear plant
control systems and various industrial systems, a failure may not only cause economical
losses, but also may cost human lives.

A real-time application consists of some coordinated tasks. In some applications these tasks
should be activated periodically and has to be completed before a deadline. For instance, in
an antilock braking system (ABS), some tasks may be sensing the speed of the wheel and
control of the pressure of the breaking pedal. Both the tasks have to be repeated
periodically in order to keep the ABS system active. Such tasks are called periodic.
Periodic tasks are generally time-critical. Critical tasks should always be completed before
their deadlines under any conditions. On the other hand, some tasks can be run
aperiodically. For example, if any failure is detected in the system, some action needs to be
taken that means that the task is invoked when an event occurred. Aperiodic tasks can also
be time-critical, that is they have to be completed before their deadlines. However, in case
that they are not time-critical, they again have to be completed as soon as possible in order
not to prevent the deadlines of other time-critical tasks.

p ,.,

• Resource constraints: Other than the processor, tasks may want to access to some
hardware or software resources in the system, such as I/O devices, application-specific
hardware components, networks, databases etc.

• Precedence constraints Some tasks may require the results of some other tasks.
Therefore they cannot be completed unless the others have been completed.

• Dependability/performance constraints: A task may have to meet some performance
requirements.

2.6. DESIGN CONSIDERATIONS FOR IBM PC ISA Bus EXTENSION BOARDS
On a PC, there are several types of buses, which provides simply communication between
different devices such as the memory bus, the I/O bus and the address bus. The bus
concerning with this project is the I/O bus which allows the mainboard or CPU to
communicate with any peripheral devices [3]. This bus is used to attach the digital and
analog I/O boards to the mainboard in this project.
The type of the 1/0 bus is important, since it greatly affect the speed of the computer. The
oldest bus IBM declared with the first PC is 8-bit ISA (Industry standard architecture) bus.
This bus uses 8 bits data bus therefore it allows only 8-bits transfer between the CPU and
any plugged device at a time. This is the slowest of all buses, but the basic standard that is
still frequently used today. Following the 8 bit ISA bus was the 16 bit ISA bus. This 16 bit
bus is double the size of the 8 bit bus and thus can transfer data at twice the speed of the 8
bit bus. The PC 104 computer used in this project has a 16 bit ISA compatible bus, however
the integrated circuits used on the digital and analog I/O boards have 8 bit data bus.
Therefore the designed 8 bit cards could not take advantage of the 16 bit bus.
The PC 104 mainboard has a standard 114-contact extension slot. However, 22 signals from
this bus are most needed and may be enough for an expansion card. The descriptions of
these signals are as follows [4]:

SDO-SD7
Data is transferred on these lines between CPU and I/O.

SAO-SA9
These lines are used on the ISA bus to address I/O devices. For I/O board accesses, the first
10 bits of the address bus can be used.

IOR#,IOW#
Signal IOR# indicates a read, signal IOW# a write cycle on an I/O device if signal AEN is
active at the same time.

AEN
This low active signal specifies the I/O address space. It must always be used for I/O
address coding for expansion cards.

IRQ3-IRQ7, IRQ9-LRQ12, IRQ14, IRQ15
The interrupt signals are used to interrupt program currently executed by the processor and
indicates that an I/O device needs to be attendant by the CPU.

--, ,, ,, ,
: 74LS245 :
, DO - 07 Buffer

bidirect.
8-bit
ISA lOW
BUS

~P
compatible
integrated
circuit

~P
compatible
integrated
circuit

.uP
compatible
integrated
circuit

SM - SAg 74LS244
Buffer

Address
Decoder

The addresses Ox300 - Ox31F are reserved for prototype cards. In order to make the board
to communicate with the CPU properly, a space I/O region must be selected. This selection
is made by the address decoder circuit. When the address bus is driven with a predefined
address, the decoder generates necessary chip select signals to enable the integrated circuits
on the board. When an IC is enabled, it communicates with the CPU via the data bus, using
lOR and lOW signals.
On the ISA bus, there are also +5v and GND signals for supplying the circuits. However
instead of using this supply directly, it is recommended to use a dc/dc converter against any
faulty case.

The data lines are generally buffered by a bi-directional 3-state buffer (74LS245) in order
not to load the data bus too much. In same way, the address lines can be buffered with
74LS244 Ie. However, since there is only one IC connected to the data bus, which is
ADS7803 ND converter, on the analog input board designed in this project, both 74LS244
and 74LS245 were not used. They were not used on the digital I/O board either due to the
same reason.

2.5. DESIGN CONSIDERATIONS FOR DATA ACQUISITION & CONTROL
ApPLICATIONS

There are some requirements that must be taken into account when designing a DAC
system. These requirements can be classified as hardware and software requirements. The
first step of the process of hardware design is defining the numbers of the inputs and
outputs. In order to be able to do this, most common applications can be examined. Larger
numbers does not mean better, however the optimum number should be found out. Most
DAC systems has 16 single-ended analog inputs and 2 analog outputs. These numbers are
suitable for many applications, considering also the cost and size of the system. For digital

I/O, systems generally have 16 inputs and 16 outputs. In this system, the number of analog
inputs was chosen as 16, but analog outputs were not used.

On the other hand, the number of digital lias was chosen higher, since digital lias were
extremely needed in control applications, and it is observed that the expansion modules are
frequently used to increase the digital lias. The other observation is that many DAC boards
have TTL lias which need additional interfaces for connection between the controller and
the real world. In respond to these needs, the number of digital lias was chosen as 48 for
both inputs and outputs and the necessary interfaces such as opto-coupled isolators and
relays were embedded into the digital I/O board. That the digital I/O board contains al1 the
lCs for communication with the CPU, opto-isolator circuits and relays altogether provides a
compact and reliable structure.

The other need in data acquisition applications is a programmable gain amplifier for
measuring the sensors which have low-voltage output. Programmable gain amplifiers are
the integrated circuits which amplifies the input signal and the gain of the amplifier is
defined by the user. Gain can generally take three values; 10, 100, 500. Gain amplifier was
not used in this project however.

2.6. DESIGN CONSIDERA nONS FOR REAL TIME SYSTEMS
As mentioned in section 2.3, time is the most important factor in real-time systems [5].
How the system handles the time determines the characteristics of the system, and
consequently its correctness. It is scheduling that allocates time and resources to task in
order to fulfill the timing constraints. Therefore choosing the best scheduling algorithm is
vital when setting up a real-time system [6].

There are a number of performance criteria which have been proposed for different types of
systems. However, different scheduling algorithms can be grouped as follows:

1. Static table-driven approaches
2. Static priority driven preemptive approaches
3. Dynamic planning-based approaches
4. Dynamic best-effort approaches

Static table-drive scheduling is based on the idea that in order to assure a priori that the
deadlines of critical tasks, the resources must be preallocated. The scheduling of such
safety-critical tasks are done statically considering the worst possible run-time conditions.

Priority-driven preemptive scheduling is frequently used in multitasking systems. In non-
real-time systems, the priority of a task depends whether it is CPU-bound or 1/0 bound. In
real-time systems, the priority of tasks must be related to their timing constraints. Two
typical examples of priority-driven algorithms are the rate-monotonic algorithm and
earliest-deadline-first algorithm.

Dynamic planning-based schedulers use dynamic feasibility checks to guarantee newly
arriving tasks, which means that a task is guaranteed by finding a plan for execution,
whereby all tasks meet their deadlines.

Best effort scheduling is a very popular approach in real-time systems today. In this
approach, a priority value is computed for each task, according to its characteristics and the
tasks are ordered regarding this priority value. Such systems can hardly be predictable and
confidence in the scheduling method has to be gained via extensive simulation. Two typical
examples of this type of algorithm are earliest-deadline and minimal-laxity approaches.

THE PRINCIPLES OF PC BASED DATA ACQUISITION AND
CONTROL

1. Physical systems (real-world phenomena)
2. Transducers and Actuators
3. Signal Conditioning equipment
4. Data Acquisition & Control Hardware
5. A PC Software

Data Acquisition &
Control Hardware I I Real-world

~~ Actuators :> Phenomena

~ JJ
~

'<"~ Signal Conditioning <:= Transducers
~={> i

~
software

embedded
con/roller

There are different types of data acquisition products such as digital meters, chart recorders,
data loggers, external boxes and PC plug-in boards. In PC based applications plug-in
boards are used and they plug into inside a computer, directly to a bus, with an external
"Terminal Panel" or connectors on itself in order to make sensor and other connections.
The bus may be ISA, EISA, or PCI, or can be a PCMCIA card.

3.1. DATA ACQUISITION SPEED
Defining the sampling rate of a data acquisition system is vital in many aspects. For slowly
changing signals, like temperature, the only consideration is to provide a new reading often
enough that the data is reasonably up-to-date. In some applications it is necessary to
accurately represent an input waveform. For example, an electrocardiogram must be
reproduced with considerable precision since some of the important things a doctor looks
for may be very small changes.
The important rule that should be taken into account when defining the sampling rate is the
Nyquist theorem. It states that the sample rate must be more than twice the highest
frequency in order to measure all the frequencies present.

When the sampling rate is too slow than aliasing may occur. However if it is too high, more
than 1 kHz for instance, the internal noise will be more, which reduces the accuracy of the
measurement. On the other hand, handling the data in software will be more difficult at
high sampling rates, which will be discussed in chapter 4.
In many data acquisition systems, there is only one ND converter which is multiplexed to
16 or a different number of analog inputs by multiplexer Ies. In case of using more than
one analog channel, the maximum sampling rate of the system is divided by the number of
the channels used.
For example, if the system has 100 kHz max sampling rate, in case that four analog
channels are measured, the maximum sampling rate for each channel will be 25 kHz.

3.2. DATA ACQUISITION ACCURACY
Accuracy is the combined effect of number of factors such as resolution, gain, offset,
calibration, common mode rejection, linearity, drift, noise etc. The most important of these
factors are briefly described as follows.

Resolution.
Resolution is one of the most important features that differentiate ND converters. The
resolution defines the smallest measurable change in the input signal. The ND converter
converts analog voltage or current to binary words. Resolution is the number of bits for
which the ND converter is rated. A 1-bit converter can detect only two states of a signal,
high or low. A 2-bit number can be arranged in four combinations, "00", "01 ", "10", or
"11". Each additional bit doubles the number of possible combinations. For example, a 12-
bit converter has 4096 combinations. The typical resolutions used in industrial
environments are 12 and 16-bits. Since there are number of factors that affects the
accuracy, higher resolutions does not mean better. All factors should be considered when
selecting resolution.

Gain and Offset Errors
Gain error results when a change in the input signal yields a different change in the
measured value. This is caused by the differences in the components from one device to
another. Offset error is the error in the reading at zero input. Both errors can be minimized
by adjusting potentiometers. However it is possible to calibrate analog inputs from
software. Software calibration does not correct the analog readings physically, but corrects
the wrong measurements with some arithmetic operations using gain and offset errors
predefined in the software.

Common Mode Rejection, Dtfferential Measurement.
A common mode signal is one that appears equally on both the positive and negative input
terminals. Since this type of input appears equally on both inputs, it is ideally completely
rejected. However single-ended inputs do not have independent positive and negative
inputs therefore do not reject common mode signals.
When the negative input is not exactly at ground, the differential input should be used. A
differential input measures the signal that is the difference between the positive and
negative terminals. The degree to which differential input is rejected is called common
mode rejection. This would measure how much a voltage difference between ground and

'

"T.
, i

; c t '. '.,. ,.: ", ••L\
~\\'; ..~:" ..~~

sensor's negative output terminal would affect the measured sensor signal. Common mode
rejection is expressed in percent or decibels. It is ratio of the measured response divided by
the common mode signal.
Differential measurement may be a necessity due to the nature of some sensors such as
strain gauges, termistors or may be preferred in order to remove the measurement errors
caused by the voltage difference between two ground points. The following figures show
how the differential measurement prevents the ground loop errors.

INl

'v iVs
Vs-rft·rft

GNDl IN:l -iN DIFFER
AV=VgI-Vg2 AV mIDI INPUT

Vgl Vg2
GNDJ

Vgl
Vg2

As shown in figure 3.2, when there is a potential difference between the two grounds
especially with long sensor cables, single-ended input measures the signal with L1V error. In
the left figure, although the self-resistance of the cable actually exist on both lines, L1V
occurs on the bottom line only since no considerable current flows into TNl point due to the
high impedance of the input.
In differential measurements, as one single-ended input measures the faulty signal Vs-L1V,
one more single-ended input is used to measure the error -L1V, and the input amplifier
responds to the difference between these two inputs.
The other reason of using differential input is that some circuits like resistor bridge used to
measure strain-gauges and termistors cannot be connected to a single-ended input due to
the fact that this will corrupt the balance of the bridge.
It should be noted that when measuring with differential input, the ground must be brought
and connected to the ground terminal of one of the single-ended inputs in order to provide a
reference. A connection to the ground terminal is also necessary to provide the bias current
for proper working of input layers.

If a system ground is not available, a resistor may be placed between each single-ended
input and ground, as shown in figure 3.3. The 100KO resistors provide current paths to the
differential signal to maintain a reference with the ground. If the output impedance of the
differential signal is low, the voltage level of the signal is effectively unchanged. The
impedance of the differential signal source, which can be considered as being in a voltage
divider network with the resistors, causes only a negligible drop in voltage.

DIFFER
INPUT

Although the above circuit will keep unreferenced signals from floating, it should not be
used to measure signals that have a large common-mode or DC voltage. If the voltage of
either of the differential inputs exceeds the input voltage range, it will be clipped, and
erroneous readings may occur.

Linearity.
Linearity error occurs when the gain error varies with different input levels. For example, a
change in the input signal from 0 to 1 Volt may show a different change in the
measurement than an input signal change from 1 to 2 Volts. This is due to linearity error.
Generally the linearity error cannot be removed by calibration. However the linearity errors
which are caused by the sensors can be eliminated by some software linearization methods.

Noise.
Noise is probably the worst factor when reading analog inputs. It is seen as random
variations on readings. Noise signals are picked up from electrical and electronic devices
such as fluorescent lights, motors, radio transmitters, power wires and computers. A certain
amount of noise is created inside the data acquisition circuit or device itself. Faster devices
have more noise.
The important point is that noise is much larger than the resolution on most data acquisition
systems. Such a noise reduces the resolution seriously. Noise is generally at high
frequencies and can be eliminated by hardware or software low-pass filters.

3.3. ALIASING
Aliasing is caused by digitization of data. In PC based systems, data must be digitized since
PC can only handle digital bits. Signal is measured at a constant rate and amplitude is
represented by digital bits in the Pc. The changes between samples are not detected.
Aliasing causes signals to appear in the data with frequencies that never actually occurred.
A common example is the effect that causes a wheel to appear to move backwards when
seen on a television.
The Nyquist Theorem states that the sample rate must be more than twice the highest
frequency in order to measure the signal accurately. If the sample rate is too slow, lower
frequencies are created in the data that does not exist in the signal. This is shown in figure
3.4.

samples

\

The only way to ensure that aliasing does not occur is to remove high frequencies with an
anti-aliasing filter which is a low-pass filter. This filtering must be done before the data is
digitized since once it is captured in the PC there is no way to correct the data, or even to
determine if aliasing happened.

3.4. SIGNAL CONDITIONING
Signal conditioning provides any required gam, isolation, nOIse rejection, offsetting, or
linearization of the output of a transducer.
Gain is required in those cases in which the output id too small to be directly useful in a
measurement or control system. The required gain is supplied by operational amplifiers or
instrumentation amplifiers.
Offsetting is required when the level of a signal must be shifted by some predictable
amount. Offsetting includes the conversion of one measurement scale to another, cold
junction compensation for thermocouples and conversion of a voltage signal to a current
signal for transmission purposes.
Linearization may be accomplished by digital or analog methods. In digital approach, the
computer may linearize the readings by performing mathematical operations on them.
Another computer approach is to convert each digitized value to a corresponding corrected
value by using readings stored in computer memory. The linearized values are stored in
look-up table. Analog linearization uses amplifiers and other circuits that have a nonlinear
response that is complementary to the characteristic curve of the transducer. For example,
an amplifier with a logarithmic response can be used to linearize a sensor with an
exponential output.

3.5. ENVIRONMENTAL LIMITATIONS OF DATA ACQUISITION EQUIPMENT
A data acquisition system may not perform as expected unless it is suited to the
environment in which it will be used. Since they measure sensors in all kinds of places,
they can be subjected to different environments. Most systems are designed for benign
environment like a PC requires. Some can handle extreme environments, but this makes
them more expensive. The environmental extremes are temperature, humidity and water,
dust and oil, shock and vibration, electrical noise and high voltage.
Temperature extremes may cause that the acquisition system does not work properly or
stops functioning. They can be reduced by putting the device in a heated or cooled
enclosures or building.

High humidity may cause corrosion and electrical conduction, and low humidity can
increase the chance of electrostatic shock, which may cause momentary measurement
errors or permanent damage. The way to avoid this extreme is to put the device in a heated
enclosure or a sealed enclosure.
Dust and oil may cause electrical conduction and interfere with moving parts, such as fans.
This protection requires placing the device in a protective enclosure or placing it remotely.
Shock and vibration may damage sensitive electronic parts or damage the enclosure. The
protection can be provided by locating the device away from violent motion.
Electrical noise does not often cause a damage to the device, but reduce the measurement
quality. Power line noise can come from motors and other electrical devices. High
frequency noise can come from radio stations and other transmitters or the devices which
are switch-mode. Electrical noise can be reduced by shielding sensor wires and by properly
connecting the ground terminals. Using an enclosure does not provide much protection
from noise because it is usually picked up by the sensor wires. Electrical noise can also be
reduced by filtering. Proper design of inputs reduces suspectibility to high frequency radio
sources.

3.6. SOFTWARE
One of the important things that affects the system performance directly is the software
running on the data acquisition & control system. In these systems software is expected to
provide with the following features:

Acquisition. Software is responsible for capturing analog inputs from sensors, or
digital inputs from switches and other on-off devices. At especially high sampling rates, it
may capture data in a burst. When capturing data in a burst, data is placed in a buffer in the
data acquisition device and transferred to the PC after burst is complete. There is no display
or data manipulation until the burst of data fills the buffer. Therefore burst acquisition is
not suitable for control.

Data Manipulabon. Software should provide for data manipulation and analysis
functions such as scaling, trigonometry, arithmetic, logic and much more complex ones
such as linearization, FFT, filtering etc.

Logging to disk.
disk.

Display. Data may be showed on the display in different forms such as x-y charts,
different kinds of graphs or digital meters.

Control. Software should be able to operate the devices In the control system by
turning them on and off through digital outputs.

There are quite different software options for data acquisition and control systems. The
DAC systems my be classified from the programming aspects as the follows:

··r· ...-...t .,_~~.~

"

"1'\,;, ·\'lfl,,~k·'.(T~J'.· :'!.~ t.;
!.. •• ". > \. • ~. ~ r , • - •

In this system, there is one program running on the PC and it is responsible for everything.
This program has to run on one of the common platforms such as DOS, Windows or Unix
and may probably have some difficulties in meeting the requirements, since these operating
systems are not suitable for control applications. It should be noted that there are also some
real-time operating systems developed for these purposes, however common data
acquisition applications were not developed for these platforms.

2. A Desktop PC & a plug-in DAC device with its own microprocessor.
The difference is that there are two programs here that share the load. There must be also
one more operating system running one the data acquisition device which may meet all the
requirements in real-time. The other program provides only user communication,
monitoring and storage of the data therefore the operating system on which this program
runs does not have to be a specific one.

3. A special PC including the DAC functions.
This is the most preferable type of system from many aspects such as speed and size. The
microprocessor and ND converters are on the same board, which means faster data transfer
rates and very compact structure. There is an operating system running on this system
which is probably dedicated to data acquisition and control. However they are not common
in industrial applications due to their high prices and less flexibility compared to the other
types of data acquisition systems.

4. An embedded PC & a plug-in DAC device with no microprocessor.
The only difference from the type 1 is the difference between desktop and embedded
computers described in chapter 2. On the other hand, the operating system is not a common
one. This operating system is dedicated to data acquisition and control and user mostly has
to develop an application program running on this platform.

User has the following advantages and disadvantages when he develops his own program
using high or low level languages:

• It will be specific to the application and may fulfil all the requirements of that
application in case that package programs are insufficient.

• The program includes the features which user needs only, which makes it smaller and
faster than ready-made programs.

• The user knows very well his program, therefore he makes the possible changes in the
program easily in future.

• It is flexible to develop a program with especially low-level languages which means
that the program is limited by only user's imagination.

• Ready-made programs are usually expensive compared with those user develops.
• The only disadvantage may be that programming takes a lot of time and effort. Package

programs often have a more user-friendly environment which makes the development
period shorter, and they are also more reliable.

rm. .-.,.- ---"- .-~~'--':;-'~;'-::;I··r,.;:;;l
•• t'i '\' _t.· , ••

\·ZI.I\·' \,,~. :. \. L'" • ," .. r ..;'{\. •• J

. '(I I

The developed embedded controller consists of four main parts:
l. The PC mainboard
2. The Digital I/O board
3. The Analog I/O board & Power Supply module
4. The Enclosure

4.1. THE PC MAINBOARD
The PC mainboard is Microdesign™ Powerdwarf 486/R which serves as a processor board
in a PC/1 04 environment and provides for a fully ISA-compatible computer system [8]. It
has different options for users, however the board chosen for this project has a 5x86 P75
CPU, 4MB DRAM, 2 MB FlashDisk, one parallel, two serial, keyboard, SVGA and LCD
display interfaces. Powerdwarf single board computer also has an expansion slot according
to the PC/1 04 norm. The digital I/O and analog input boards are plugged into this slot.

4.2. DIGITAL INPUT/OUTPUT BOARD
The digital I/O board was designed in order to provide basic digital inputs and outputs
which are highly needed in control applications. The board has an address decoder circuit,
two 82C55 programmable I/O ICs, 24 transistor&relay pairs, 6 TLP52 1-4 YCs, connectors
and LEDs as indicators [9]. Figure 4.1 is the block diagram of the board.

Intel
Microprocessor
Based Syslems

8085
8086188
80186/188
80286
8031151

Address
Decoder 82C55

PIO
82C55
PIO

4.2.1. ADDRESS DECODER CIRCUIT
This part of the board is used to address the 8255 chips. The address decoder allocates an
I/O region for communication between the CPU and 8255s. For this purpose, two 74'138
decoder/demultiplexer lCs were used. In order to do a data transfer between CPU and
82'55, first its CS (Chip Select) pin must be given LOW. For timing diagrams of these data
transfer operations, please refer to the datasheet [9]. The following diagram shows the
address decoder circuit.

A4 A YO A3 A YO 10 CS pin of 8255#1
AS B Y1 B Y1 10 CS pin of 8255#2
A6 C Y2 AEN C Y2
A7 G2,A. Y3 GND G2A Y3
A8 G28 Y4 GND G28 Y4
A9 G1 Y5 A10 G1 Y5

74'138 74'138

Figure 4.2: Address Decoder Circuit of the Digital I/O Board

As shown in figure 4.2, 8 address lines of the address bus and AEN signal are used to
resolve the address. A1 and AO signals are connected to the Aland AO pins of the 82'55
that provides a selection among the three ports of the chip internally. However A2 signal is
not used due to some PCB problems, which costs wasting of 8 bytes of the address space.
The following table best explains the working of this circuit.

Inputs -----~--AIO A9 A8 A7 A6 A5
-- - _ ..-

H H L L L L_.

H H L L L L
Any other comhinationg[these hits

As seen from the above table, an address word between Ox600 and Ox60F will activate the
YO and Y1 outputs of the address decoder. At this point A1 and AO signals decide which
port of 82'55 is to be used. The following is a more comprehensive table which considers
Al and AO signals and also explains the operations with these ports.

AddreS.fi
Ox600

Ox603
Ox608
Ox609
Ox60A
Ox60B

82C55 is a programmable I/O device therefore one of the chips on board should be
programmed as all of its pins are input, and the other should be output in the same way.
After reset, all ports of 82C55 are set to input mode therefore the first 82C55 does not need
to be programmed. In order to program the second one, Ox80 is written into the port Ox60B.
Table 4.3 is the description of the ports that the board uses.

Port Digital 1/0 board . Output port A of 8255# 1
Ox600
InA TO.3 lOA 10.2 10.5 TO.7 10.0 10.6 10.1

w w w W w w w w
D7 D6 D5 D4 D3 D2 D1 DO

Port Digital I/O board. Input port B of 8255# 1
Ox601
InB 12.6 12.7 12.5 12.4 10.2 I1.7 12.1 12.0

w w w w w w w w
D7 D6 D5 D4 D3 02 Dl 00

Port Digital I/O board . Input port C of 8255#1
Ox602
InC 11.6 f2.3 I1.5 11.0 11.2 II.3 11.0 11.4

w w w w w w w w
07 D6 D5 D4 03 D2 Dl DO

Port Digital I/O board. 8255# I control port
Ox603
Control 1 0 0 1 1 0 1 1

w w w w w w w w
D7 D6 D5 D4 D3 D2 Dl DO

Port Digital I/O board . Output port A of 8255#2
Ox608
OutA 00.3 00.4 00.2 00.5 00.7 00.0 00.6 00.1

r r r r r r r r
D7 D6 D5 D4 D3 D2 Dl 00

Port Digital I/O board. Output port B of 8255#2
Ox609
OutB 02.6 02.7 02.5 02.4 02.2 01.7 02.1 02.0

r r r r r r r r
D7 D6 D5 D4 D3 D2 Dl DO

Port Digital I/O board . Output port C of 8255#2
Ox60A
OutC 01.6 02.3 01.5 01.0 01.2 01.3 01.0 01.4

r r r r r r r r
D7 D6 05 04 D3 02 01 DO

,--------------_._--,
IZ",I!·f) V(W(>"'!{ ';"':'~'."; 1"11i ptr.l"i-ll'rnIn 1\ \ Uh~ }j~hl ~~L. _tl-' I -,J"",

e ~ l ~~ ~; '. • ; , l'

1"\.,.. ..i ••..'\,. 1 ••

Port Digital I/O board . 8255#2 control port
Ox60B
Control 1 0 0 0 0 0 0 0

w w w w w w w w
D7 D6 D5 D4 D3 D2 Dl DO

4.2.2. OPTO-ISOLATED INPUT
One of the popular protection methods for digital inputs is using opto-couplers. In order to
provide an isolation between the PC and real world, TLP521-4 opto-coupler ICs were used
on the digital I/O board. Figure 4.3 is the circuit diagram of the input layer.

to- 2.2 kQ
INPUT o~--~-I-~V'1

+5vo

12.2 kQ

To 8255
Input pin

This circuit provides an isolation up to 2500 volts and a voltage conversion which increases
the noise margin. By means of this isolation, in abnormal cases although the input layer of
the opto-couplers may get damaged, the computer will not be affected. According to table
4.4, in order for the computer to perceive "0" state, the input must be nominally within the
range from 18 to 48 volts, and for "1" state, it must be from 0 to 8 volts. Applying a voltage
continuously over 48 volts may damage the input, however it is able to resist up to peaks at
very high levels without damaging.

Input Voltage (INPUT- The state of the output
COM)
0-8 volt " 1 " state (- +5 volt)
18-48 volt "0" state (-0 volt)

4.2.3. RELAY OUTPUT
By means of the relays, the board gives user actually 24 pieces of computer-controlled
switches.
Relay is an electrically controlled device that opens and closes electric contacts. The relays
used on this board are Phoneix Contact micro relays The contact rates of these relays are 6
Amps, 250 Volts and these rates are quite sufficient for driving many devices without a
need for any other interface. The other reason of having chosen this relay is that it is very
small in size that is important when designing compact products.
Relays also provides an isolation up to 1500 volts between the computer and the real world
that gives a protection against possible hazardous electrical shocks.

f'" - - - - - - - -.

, :
I

: ~C~:---~OOUTPUT
~I

: I': -~:-----;0 COM
,- - -- - -- - .

From 8255
Output pin

4.2.4. CONNECTORS AND INDICATORS
24 relays and 24 opto inputs require 48+48 connection points on the enclosure and this
means that there is a need for a very large enclosure to locate 96-pin connector. In order to
reduce the size, and also considering the most common applications, inputs and outputs are
grouped. 24 outputs are separated into three groups in a way that one pin of every relay are
connected together internally and named as common. Therefore each of the group of 8
relays has a 9-pin connector. It is same for the inputs.
Therefore in an application, a group of relays has to be used for the devices which are
similar with their input voltage levels. For example the common of the first group can be
connected to the mains, in this case this group's relays can only drive the devices which are
allowed to be supplied by mains.
There are also 48 LEDs (Light Emitting Diode) on the board to show the status of the IIOs.

4.3. ANALOG INPUT AND POWER SUPPLY BOARD
This board converts analog signals to digital signals so that we can measure many
quantities such as temperature, pressure, flow, displacement, etc. The analog input board
provides 16 analog inputs each of which has the input range from -10 to + 10 volts. These
inputs pass through two analog multiplexers and then to an op-amp for signal conditioning.
Signal conditioning is nothing but scaling and filtering the signal. The board, like the digital
1/0 board, has an address decoder and latch, one AID converter IC, two analog multiplexer

rcs, opamps for signal conditioning, a DC/DC converter as the power supply and
connectors. The block diagram of the analog board is shown below.

8085
8086188
80186/188
80285
8031/51

Intel
Microprocess or
Based Systems DC/DC

Converter

Input 24 v
Output.
+5,5000 mA
+12,500 mA
-12v,500mA

4.3.1. ADDRESS DECODER & LATCH CIRCUIT
This part of the board is used to address the ADS7803 IC and to select the analog input
channel. The address decoder allocates an liD region for communication between the CPU
and ADS7803. For this purpose, two 74'138 decoder/demultiplexer rcs and a 74'373 Latch
IC were used.

A4 A YO A3 A YO A
A5 B Y1 B Y1 _ B

A6 C Y2 GIVD C Y2 ~

AT G2A Y3 GIVD G2A Y3 A2 10 1Q EI\Jpin of MPC509s
AEN G2B Y4 GIVD G2B Y4 A1 20 2Q A1 pin of MPC509s
A9 G1 Y5 A8 G1 Y5 AD 3D 3Q AD pin of MPC509s

74'138 74'138 74373

Figure 4.6: The Address Decoder of the Analog Input & Power Supply Board

1;\~ill;Jj~'".. .'
'--~-~'-'-'- - ~-_._- .

" "'.' " ~~KI. ~

Address Description
Ox300 Writing any value to this port selects channel 0 - 1 pair. Reading from this port is

undefined
Ox301 Writing any value to this port selects channel 2 - 3 pair. Reading from this port is

undefined
Ox302 Writing any value to this port selects channel 4 - 5 pair. Reading from this port is

undefined
Ox303 Writing any value to this port selects channel 6 - 7 pair. Reading from this port is

undefined
Ox304 Writing any value to this port selects channel 8 - 9 pair. Reading from this port is

undefined
Ox305 Writing any value to this port selects channel 10 - 11 pair. Reading from this port is

undefined
Ox306 Writing any value to this port selects channel 12 - 13 pair. Reading from this port is

undefined
Ox307 Writing any value to this port selects channel 14 - 15 pair. Reading from this port is

undefined
Ox308 Writing the value of OxOto this port starts conversion from the one channel of the pair

selected before. Writin,g Ox1 starts conversion from the other channel.
Ox308 After conversion the low byte of the result can be read from this port.
Ox309 After conversion the high byte of the result can be read from this port.

Explanation of the Ports Used by the Analog Input & Power Supply
Board

scaling and buffering
+5v

ADS7B03
AID
Converter

Input
signals
(Real world s7
Phenomenon)

The MPC509 analog multiplexer rcs multiplex 16 channels into an AID converter.
However the input signal needs to be scaled after the multiplexer in order to be able to

make the input range different from the input range of the AID. The input range of
ADS7803 is between 0 and 5 volts [10]. Most common range in the industrial environments
when we consider transducers and other electronic equipment is (-10, + 10 volt). The
resistor network shown in the above diagram converts (0, +5v) analog voltage to (-10,
+ 1Ov). After the resistor network, the input signal has to be buffered before going to the
filter. OP07 buffers this signal, then the signal passes through a low-pass filter which does
not reduce the bandwidth of the AID. The lk resistor in the low-pass filter also provides a
protection for the analog input layer of the AID converter.

4.3.3. DC/DC CONVERTER
To power the controller, Melcher 24IMR40-051212-2 DCIDC converter is used and it is
located on the analog input board in order to reduce the size of the controller. The reason of
using this converter is that it has been developed for powering commercial type of
electronic circuits such as telephone systems components, industrial controllers and small
appliances. The input voltage is 24 volts and it provides +5, +12, -12 volts at 6000mA,
500mA, 500mA current levels respectively. +5 volt output is the main supply voltage for
the Powerdwarf computer. The computer does not need any other supply input. + 12 and -12
volt outputs are necessary for the multiplexers and opamps. For further information about
the converter please refer to the data-sheet [11].

4.3.4. CONNECTORS
16 analog inputs require 32 connection points on the enclosure. Each analog input has a
signal and a ground line. All of the ground points are connected to the system's ground
internally, however the reason of using separate ground points for all inputs is to prevent
ground loop errors. There is also a connector on this board for power input.

4.4. ENCLOSURE
Enclosure covers all the hardware equipment in order to provide a protection and ease of
montage. The enclosure of the embedded controller developed in this project is made by
aluminum and has 250x170x70 mm dimensions.

~

• o ••• 0 __ • ._,

,. . "-r f - .•••", "1 -I' -TI"-··· f11:,. X Yl. .. :., ..~.:.·~tJ.1 tliS,oIU.O

b ::.-..1 :, " ~ i', '"',L:

Xutt: ;~':.:..:' • _. . _" ,.,.r: .1

5.1. ACCESSING THE HARDWARE
In this section, the ways of accessing the designed digital and analog boards will be
explained. Example codes are all written in C, since it provides a flexible programming.

5.1.1. USING THE DIGITAL I/O BOARD
The below table describes the related ports needed to control the board.

Address
Ox600
Ox601

Ox603
Ox608
Ox609
Ox60A
Ox60B

When the system is booted, all pins of the 8255s are defined as input. Therefore the
second 8255 should be programmed with the following command to provide that all of its
pins are output for driving relays.

The first 8255 does not need to be programmed, so the above command is all the
initialization of the board. After the initialization, inputs and outputs are controlled by
accesing the related ports. For example, writing Oxl to port Ox608 makes one of the
relays to close its contact.

Both inputs and outputs are grouped as described in section 4.2.4. The Outputs have three
groups of relays, namely 00, 01 and 02 and outputs of the first group are named as
00.0,00.1,00.2, ... , outputs of the second group are named as 01.0,01.1,01.2,
and so on. This is same for the inputs, for example 10.0, 110 and 12.0 are the first bits of
the three groups of digital inputs.

When one of the relays is needed to be activated, the related bit must be set to "1" and
one byte must be written to the related port. Since there is not a peer to peer logical

connection between the bits and the outputs, that means writing Ox1 to the port Ox608 in
the above example activates the second relay not the first one, a kind of mapping of the
bits is necessary. This non-matching was the result of some physical difficulties with
which were confronted in preparing the printed circuit board. However, this difficulty
may easily be overcome by software. C gives the ability to handle each bit of a byte
separately. The following structures provides an output mapping:

struct BITS{
int 00 3 1
int 00 4 1

-int 00 2 1
-

int 00 5 1
-int 00 7 1
-int 00 0 1
-int 00 6 1
-

int 00 1 1

int 02 6 1
-int 02 7 1
-int 02 5 1-int 02 4 1
-int 02 2 1
-int 01 7 1
-int 02 1 1
-int 02 0 1

int 01 6 1
-int 02 3 1
-int 01 5 1
-int 01 0 1-int 01 2 1
-int 01 3 1-int 01 1 1
-int 01 4 1

} ;

struct BYTES {
char portA;
char portB;
char porte;

} ;

union {
struct BITS bit;
struct BYTES byte;

out;

out.bit.o2 1 =1; /* set the 2th output of the second port to 1 */
out.bit.oO 3 =1; /* set the 4th output of the first port to 1 */
/* Although the related bits are changed, the outputs does not
change until the ports are refreshed */

/* refresh the ports */
outportb(Ox60S, out.byte.portA);
outportb(Ox609, out.byte.portB);
outportb(Ox60A, out.byte.portC);

This is the same for the digital inputs. The following structures provides an input
mappmg.

struct BITS{
int iO 3 1
int iO 4 1

-int iO 2 1-int iO 5 1
-int iO 7 1
-int iO 0 1
-int iO 6 1
-int iO 1 1

int i2 6 1
-int i2 7 1
-int i2 5 1
-int i2 4 1
-int i2 2 1-int i1 7 1
-int i2 1 1
-int i2 0 1

int i1 6 1
int i2 3 1
int i1 5 1
int i1 0 1
int i1 2 1
int i1 3 1
int i1 1 1
int i1 4 1

struct BYTES {
char portA;
char portB;
char portC;

I II~~iil'1 f. ,t , .•

union {
struct BITS bit;
struct BYTES byte;

/* read the ports */
outportb(Ox600, in.byte.portA);
outportb(Ox601, in.byte.portB);
outportb(Ox602, in.byte.portC);

On the other hand, the real-time executive provides some useful system calls for handling
digital inputs and outputs, which will be described later.

5.1.2. USING THE ANALOG INPUT BOARD
The below table describes the related ports needed to control the analog input board.

Addre .••.••
Ox300
Ox301
Ox302
Ox303
Ox304
Ox305
Ox306
Ox307
Ox308

Ox308
Ox309

Explanation of the Ports Used by the Analog Input & Power
Supply Board

As seen from the above table, the lIO region between Ox300 and Ox309 are reserved for
the analog input board. The board has sixteen analog channels multiplexed by analog
multiplexers. Therefore, in order to make a read operation, first the analog channel pair
must be selected by writing the ports between Ox300 and Ox307. The channel which will
be read from this selected pair is defined when the conversion is started. Writing OxOto
the port Ox308 selects the first analog channel of the pre-selected channel pair and also
starts the conversion. Writing OxI to the port Ox308 selects the second analog channel of

~-----------

the pre-selected channel pair and also starts the conversion. After conversion is started,
the AID converter completes the conversion process about 20~s later. For further

. information about how the AID operates please refer to ADS7803 data sheet [10].

After conversion is completed, the result value can be read from the ports Ox308 and
. ox309. Since the AID has twelve bits resolution, but 8-bit data transfer is used with this

system, two consecutive read operations are needed to get the 12-bit data. The low byte
of the value is read from the port Ox308, the high 4-bit value is read from the port Ox309.
The following tables describe these ports.

Port Analog Input Board
Ox308
Bit 7 6 5 4 3 2 1 0

w/r w/r w/r w/r w/r w/r w/r w/r
07 06 05 04 03 02 01 DO

Port Analog Input Board
Ox309
Bit 7 6 5 4 3 2 1 0

R r r R r r r r
0 0 0 0 011 010 09 08

Explanation of the Reading Operations from Analog to Digital
Converter

Therefore, in order to obtain the combined value from these ports the following structure
can be used.

char high_byte;
char low_byte;

struct NIBLES nible;
short combined;

...-:J

outportb(Ox300, OxO);
channels*/

outportb (Ox308, Oxl); /* select the second analog channel and
start the conversion at the same time */

u_delay(25) ;
completed */

value.nible.low_byte = inportb(Ox308);
value. nible. high_byte inportb(Ox309);

/* read the low byte */
/* read the high byte */

printf ("Analog value %u \n", value. combined) ;
result in the variable

Variable value. combined which digitally represents the analog signal can only be
between 0 and 4095, which means it can take 4096 different values. The analog input
range is from -10 to +10 volts, therefore -10 volts is converted to 0, and +10 volts is
converted to 4095 theoretically. The following simple formula can be used so as to obtain
the input voltage value from the digital value.

On the other hand, the above equation is not always valid due to calibration problems.
There are many factors that affect the calibration such as temperature and other
environmental conditions, which makes it difficult to get the true analog value.

Assuming that the linearity is good as it should be, two values, the offset and the gain
should be known so as to correct the analog value.

The real-time executive uses readAnalog internal function to acquire the analog data.
This function is called from timer interrupt service routine at every 62.5 /ls and it
performs analog to digital conversion algorithm expressed above, from channel 0 to 15
respectively every time it is called. This means that all analog channels are sampled once
at everyone milIisecond. Therefore the maximum sampling rate for a channel is 1kHz. If
a sampling procedure is defined in "Ioad.dac" file for an analog channel, readAnalog
function also puts the data into the defined pipe.

5.2. EXPLANA nON OF THE DEVELOPED REAL TIME EXECUTIVE
As the last step, a real-time executive was developed for the embedded controller. This
executive runs on DOS and provides user with a real-time multitasking environment. An
executive was preferred to a new operating system so that software development could be
easier and faster. This executive uses all useful features of DOS such as I/O handling, and

after it starts to run, takes over the CPU and all the system management. The only
disadvantage of it is that a DOS has to be used with every embedded controller.

this executive schedules and performs many tasks concurrently and runs in real-time
without losing data. This executive controls the analog sampling hardware, and the digital
board. It is responsible for reading the digital inputs, updating the digital outputs and
controlling the analog hardware including acquiring data at predefined sampling rate and
placing them into predefined buffers and moreover scheduling the tasks meeting the real-
time requirements [12]

The executive was compiled and linked with Microsoft Quick C 2.01 and Microsoft
Quick CLinker 4.07 and it consists of the following files:

custom.h
dacos.h
system.
cal/s.h
defs.asm
dacos.c
kernel.asm

The definitions of the max numbers for tasks, pipes, variables etc.
All prototypes for functions and data structures used by the real-time

The definitions for the system calls.
Some definitions for the assembly functions.
Almost all of the function implementations of the real-time executive.
The assembly language routines providing task switching which cannot

be done well within C.
: Includes main function which does the initialization of the executive and
shell functions for interacting with user.

qcl -c -AL -Zi -Ox -Aw -Gs dacos.c
qcl -c -AL -Zi -Ox -Aw -Gs mam.c
qcl -c -AL -Zi -Ox -Aw -Gs kernel.asm

link Ico Istack: 16384 dacos.obj kernel.obj main.obj, dac.exe;

Tasks are converted from executable files that are generated for DOS. The converter tool
is quite simple and it is available. One can write as many processes as he wants using C
compilers what he can do in a process is limited only by his imagination. How a process
can be prepared will be explained comprehensively in section 5.2.6.

The executive supports code sharing in two ways. The first one is that all processes may
share the system calls existing in the memory. How a process can use the system calls
will be explained later. By the way, the object code of a process does not have to include
the common functions used by many processes and therefore code duplications are
prevented, which results in lower memory and disk usage. The second method of
preventing the duplications is used for processes, considering a need in data acquisition
applications that is using the same algorithm for many channels. For instance, a low-pass
filter algorithm or process may be used for all of the analog channels. In this case, the

I~' . ..,":.-:'-:',.\ t'. t-. :.i·· -\
'1,..1',<\ I' ..••.. ·1 I J I", . I

; ~.~ . ,< -; (' '., . \.

~\ tUpl'>l ..1.'_' _~~_. _._ ••.. _. " ~.~

low pass program (i.e. "Iowpass.bin") is loaded into the memory once and all processes
use the same object code, however each process has its own stack which stores the
register values, variables and parameters of that process.

5.2.1. SCHEDULER
Many different performance criteria have been proposed for different types of real-time
systems. However this diversity of criteria sometimes make it difficult to compare the
scheduling algorithms. Another difficulty is in the variety of the characteristics of the
tasks one can face. Tasks are characterized by their deadlines, execution times, resource
requirements, criticalness or importance levels. For periodic tasks, the period is important
property, whereas for aperiodic tasks, the deadline becomes important. Different
scheduling methods are discussed in chapter 2. In this project, round robin scheduling
was used [13]. Round-robin scheduling algorithm is easy to implement and widely used
in many systems. In this scheduling, each executable task is assigned a fixed time
quantum called a time slice. Time slice is statically defined as 500 J..lS for each process,
which means that currently running task is preempted at every time the scheduler is
called by the clock interrupt, giving the next task in the queue a chance to run.

Scheduler is called by the timer interrupt service routine and also by some system calls
such as getyipe, getyipe_bl!f etc. These functions call waitEvent function and cause
that the running task to be suspended until the related event has been occurred.

5.2.2. INTERPROCESS COMMUNICA nON
For interprocess communication, pipes and variables can be used. [8] This can be
explained with an example. The followings are two tasks one of which tells another to
terminate itself. For this purpose, task A creates a pipe for communication with the other
task, and puts the string "STOP" into this pipe. Task B continuously controls this pipe if
any command is available for itself, and if this command is saying "STOP", then it calls
terminate function and stops its execution.

/* TASK A*/
include "calls.h"
include "task.h"

void main ()
{

create_pipe(&com_buffer 1, 30, "COMl");
if (com_buffer l.p==NULL) terminate (); // failed to create a

pipe

1* TASK B*I
include "calls.h"
include "task.h"

void main ()
{

TPIPE *com buffer=NULL;
short size;
short buf [30];

open_pipe (&com_buffer, "COM1");
if(com buffer==NULL) terminate(); II failed to open the plpe

if(size>=4) {
get_pipe_buf(com_buffer 1, 4, buf);
if(buf[O]=='S'&&buf[l]=='T'&&buf[2]=='O'&&buf[3]=='P')

terminate();

5.2.3. PREPARING THE SYSTEM CONFIGURATION FILE
When the executive is started, it reads sampling procedures and definitions for processes,
pipes and variables from the file "Ioad.dac". There are five commands that can be used in
this file:

This command defines a pipe with the given name and size. A pipe is nothing but a FIFO
buffer and the maximum number of the pipes which can be used in a program is defined

in "custom.h" header file. The length of name cannot be longer than 15 characters and
size has the type unsigned integer. Pipes are used for placing the sampled analog data or
other data produced by processes and also for interprocess communication.

This command defines a variable with the given name and puts the initial_value in that
variable. The length of name cannot be longer than 15 characters and size has the type
integer. Variables can be used for interprocess communication like pipes.

sample. channel_numher[integerO-l5].samplingyeriod[unsigned
integer].pipe _name ('\tring J.

Defines a sampling procedure for the given analog channel. The channel number must be
between 0 and 15, since there are 16 analog channels in this system. The sampling period
tells the executive to take one sample from the channel at every samplinKperiod
milliseconds and to put the sample into the pipe with the name pipe Jlame. This pipe
must be defined before it is used in this command, otherwise an error will occur. For
example the command "sample.O.lO.temp2. ,. means that the analog channel 0 will be
sampled at every 10 ms and these samples will be placed in the pipe with the name
"temp2" .

This command defines a process. The executive adds' .bin' extension to the end of name
and looks for a file with this name in the directory \procs. If the file does not exist an
error occurs and execution is stopped. The other parameters are the pipes and variables
which will be passed to the process. The number of the parameters is not constant and
was not limited. The type of the parameters written in this line and those the process
express should match, which means if the first parameter is a pipe, the first parameter that
the process sends with param yrocess function must be a pipe, otherwise unexpected
errors may occur.

Timer function definition is same as the process definition except for the additional
period parameter. This period specifies the period with which the function is called. The
period is in milliseconds and must be between 1 and 30,000.

5.2.4. SYSTEM CALLS
System calls are functions which are used by the executive and other processes in order
for them to do the basic operations of the embedded system such as reading and writing
operations to buffers, control of the hardware etc. All these functions are defined in the
header file "dacos.h" and implemented in "dacos.c". Therefore, once the real-time
executive is run, all these functions are loaded into the memory as well, which means one
copy of each function is available in the memory after running the executive.

Therefore each process may share the same functions existing in the memory. When a
binary code of a process is generated, it does not need to be linked with the codes of the
common functions existing already in the memory such as get_pipe, putyipe, set_out,
reset_out etc, printk etc. It may contain only four-byte address pointers to these functions
instead of the whole binary code of them. This way preventing the duplications,
obviously results in a lower memory and disk usage [14].

The only initialization that the process has to do before starting is to get the addresses of
the system call functions. Since the executive is compiled with the large-memory option,
all function pointers are defined as 'far' that means each of them consists of four bytes.
The following is the -.J5et_address function of the executive. The parameters of this
function are the system call number whose address is wanted to learn and a pointer to the
pointer to that function.

#define SLEEPTASK 0
#define TERMINATE 1
#define PARAMPROCESS 2
#define PUTPIPE 3

void far get address(int call number, void (far pascal
**func) ())
{

case SLEEPTASK: *func=(void far *)sleepTask; break;
case TERMINATE: *func=(void far *)terminate; break;
case PARAMPROCESS: *func=(void far *)param_process; break;
case PUTPIPE: *func=(void far *)put_pipe; break;

In order for a process to call the function _get_address, first it has to know the address of
this function. Then it gets the addresses of the other functions using -.J5et_address
function. The executive places the address of _get_address function into a location in the
interrupt vector table which is actually reserved for interrupt Ox60. The interrupt Ox60 is
a software interrupt reserved for users, therefore it is safe to use this known memory
location for transferring the function address. Therefore the four memory bytes between
Oxl80 (Ox60 * 4) and Oxl83 keeps the address of the _get_address function. The process

nl~IRYOK(:v Tnfl,jcTo1TF;~n:t~f!,
r: '. ". T i~ { . '..'

E..UllllJhl.J~_~_~:-~OI~IIl~'<'.. ',' 'l n''lre o~kj

must get this address to call the function. The following code shows how the executive
places the function address into the interrupt vector table.

int far * pint= Ox60*4;
unsigned cs, ip;

union{
struct

int cs;
int ip;

*(pint+l)=u.h.ip;
*(pint)=u.h.cs;

How a process can use the system calls will be explained in the following section. Here,
the system calls will be explained briefly.

Terminates the currently executed task, which means it is never given a chance to run.
All of the code and stack of that task are emptied in the memory as well.

This function prints the given string and integer on the screen. The string is not formatted
like the standart printf function and only one integer is allowed to be written.

,--7 I" ', .. f'. •fa../t" (. l.,t~·. t

C r :' 1

~---_._--- ..

A pipe is nothing but a memory buffer. It is represented with a special structure variable
TPIPE. This function creates a pipe with s;ze of items each of which can store two bytes
short integer.

Puts the variable a into the pipe out. The item is placed at the end of the buffer unless it is
entirely full of data.

Gets the first item in the pipe if available. If there is no item in the buffer, then wa;tEvent
function is called to suspend the task until the pipe has an item. When wa;tEvent is
executed, it calls scheduler, therefore the execution of get pipe is interrupted until the
related event has occurred. Before waitEvent is called, the variable hlock;ngyrocess of
TPIPE structure is set to one so that putp;pe function may understand that there is a
process waiting for this event.

This function is called to learn the number of items in a given pipe. The return value is
placed into the pointer variable.

Processes often need the data more than one in order to perform an algorithm on them.
For example an average process need a number of data to calculate the average. In this
case, using get y;pe function to get the data is not efficient, since this way a process
obtains the data one by one, which means time-consuming anyway. gety;pe _buf
function provides obtaining a number of data at once. Like get_pipe function,
getyipe_buf calls waNEvent if there is no the given number of data in pipe and causes

thatthe scheduler suspends the task until the pipe is filled with at least that number of
data.

Putsmultiple items of data into the given pipe. When there are items more than one, this
function should be preferred to call ing pU(jJipe many times.

This function is used to handle pipes by glvmg their names. Using this function,
processes and timer functions may handle any pipe which is not sent as a parameter by
theexecutive, so long as they know the name of that pipe. For example, let the following
linebe a pipe definition in "load.dac". The name of this pipe is temperature1.

The following code puts a value into the pipe whose name is "temperature 1", which may
bea part of a process.

This function sets the given single output. The variable hit can be between 0 and 23, since
there are 24 outputs in this system.

Resets the given output. The variable hit can be between 0 and 23, since there are 24
outputs in this system.

Toggles the given output that means the new state of the output will be the
complementary of the previous state.

If one of the processes stops executing due to any problem, the system must be informed
about this unexpected case. To do this, a counter for each process is incremented at every
timer interrupt tick and if one of these counters exceeds a certain value, the executive
concludes that the related process has a problem. In order to prevent overflowing of their
counters, processes must use clear __wdt function anywhere in the loop.

5.2.5. MAKING PROCESSES
The processes that can be executed by this executive should be compiled and linked in a
different way. Borland C++ 4.5 compiler, linker and an additional utility program that
converts executable files to binary files were used to make the processes in this project.
User should follow the following steps to make a process;

An appropriate C source code is written using any editor program. How this source code
is prepared will be explained later. Then the source code should be compiled with the
following command:

After a successful compilation, the output file proc.obj should be linked as follows
without using any library:

Since no library is used by the linker, the linking process will generate the executable file
but give a warning message "No stack" that means it cannot be run on DOS. Attempting
to run this exe file results in crash. The compiler and linker add some extra code such as
an exe signature, a relocation table into the object and executable files which are not
necessary for the real-time executive, since it creates the necessary stacks itself for the
processes. The only needed thing is the binary code of the functions implemented in the
source code. Therefore the needed binary code should be selected from the exe file. For
this purpose, a small program exeproc.exe can be used. This program selects the function
codes from the file which is in DOS exe format and generates a binary file. To do this the
following command is used:

______ ~i_'l(!.r~ ~~~

If all these steps were successful, the result file proc.bin is available to be used by the
real-time executive.

A process probably needs to use the system calls of the real-time executive, for instance
to access the hardware, as it may do everything by itself. However using the systems calls
is faster and an efficient way. How a process can be created and how the source code is
organized can be explained best with a sample C source code. The following is a process
which reads n bytes from an input buffer and writes the average of them into an output
buffer in infinite loop. This task may be used as a simple low-pass filter for analog input
channels.

/* average.cpp: takes the average qf a group qf data in input pipe and puts the result into
output pipe */

define PARAMPROCESS
define PUTPIPE
define GETPIPEBUF

5 void main ()
6 {
7 typedef void (far *CALL) (...);

8 TPIPE *in, *out;
9 TVARIABLE *n;
10 short buffer[50];
11 int i;
12 unsigned int total;
13 int far * pint= (int far *) (Ox60*4);
14 unsigned cs, ip;

CALL
CALL
CALL
CALL

get_address;
param_process;
put_pipe;
get_pipe_buf;

19 ip= *(pint);
20 cs= *(pint+l);

21 get_address= (CALL) (cs* OxlOOOO + ip);
22 get_address (PUTPIPE, &put_pipe);
23 get_address (GETPIPEBUF, &get_pipe_buf);
24 get address (PARAMPROCESS, ¶m_proCess);

/* the task
with

lS blocked until the pipe 'in' is filled
n->v bytes of data */

The header "task.h" has the definitions for pipe and variable, therefore first it should be
included in order to be able to use pipes and variables. The process must do two
initializing operations; obtaining the addresses of system calls which are needed and
obtaining the program parameters. The addresses should be obtained first so as to get the
parameters, since the function that provides the parameters is also a system call. Line 7 is
a type definition for using function pointers. Line 15, 16, 17 and 18 are the definitions of
the function pointers to the system calls which will be used in this process. The types of
the parameters of the process in this system are limited to two: pipe and variable.
Therefore the definition of the parameters, which also must be pointers to the pipe and
variable structures should be placed at the beginning of the main function. (Line 8, 9)
Then transferring the addresses should start with obtaining the address of Jjef _address
function, since all the other addresses will then be provided by this function. It is obvious
that in order to be able to learn the addresses of the functions existing in the memory, at
least one function's address should be known which is the function of providing the other
addresses and this function is -.Ref_address here. -.Ref_address is implemented in the file
"main.c" of the executive and its start address in the memory is placed into the interrupt
vector table as mentioned before. Thus, line 13, 19, 20 and 21 show how the address of
-.Rei_address is obtained. The following lines 22, 23, 24 and 25 show obtaining of the
other system calls' addresses. yaram_yrocess is also another important function which
provides the parameters necessary for data transferring between the executive and itself.
A parameter can only be a pipe or a variable and all these pipes, variables and the
parameters sent to the processes are defined in the system configuration file "Ioad.dac".
This will be explained comprehensively in section 5.2.4.

The system call __paramyrucess sends the parameters defined in "Ioad.dac" to the
process by which it is called. For instance, the following is a valid command that defines
a process and the parameters which will be passed to it. It should be noted that all the
parameters passed to the process must be defined before that process' definition.

The pipe inpipe is filled by the executive or another process. The process average reads
from this pipe and calculates the average of the number of data specified by the variable
var, and places the result into the pipe uUfpipe. There can be number of average processes
all of which share the same code, however only the parameters passed by the executive

differ. This is called code-sharing. As a result, the process reads its parameters by calling
the param yrocess. The function param yracess shown below accepts variable number
of parameters provided that the first parameter should indicate the number of variables.

int i;
Task far *task=currentTask;
Timer far *timer=currentTimer;
void far **argument;

va_list ap;
va start (ap, num);

if (currentTimer) *argument=timer->param.p[i);
else *argument=task->param.p[i);

When the function is called, it gets the parameters from the task or timer structure related
to that process or timer function, and places them into the parameters which are actual1y
pointers to the pointers to the pipe and variables existing in the memory. In other words,
the function does not return any value, but uses the pointers for parameter transferring.
Line 25 shows the usage of the function. It should be noted that there are three
parameters, so the first parameter is 3 and the other parameters are the addresses of the
pointer variables defined in line 8 and 9.

Another parameter transferring option is using open pipe and open variable functions.- --

These functions provide handling pipes and variables by using their names. Please refer
to section 5.2.4 for a detailed description of them.

After the initialization part, the algorithm may take place. The algorithm is generally in
infinite loop, but remember that it is allowed to run no more than 500 IJ-S due to
multitasking. In this example given here, the algorithm is very simple and consists of
three lines. In line 27, getyipe __hl{{ function is called to obtain n->v bytes of data from
inpipe. When this function is executed it first looks if the given number of data is
available in the input pipe, if so it gets the data and places them into the buffer defined in
line 10, otherwise it suspends the process, cal1s the scheduler and consequently CPU is
given to the other processes until the pipe has the data. In line 28 the sum of the data in
the buffer is calculated so as to obtain the average of them. The last step is calling
put yipe function in order to place the result into autpipe.

5.2.6. MAKING TIMER FUNCTIONS
Preparing oftimer functions is almost same as the processes, but the only thing that must
be considered is that these functions cannot be interrupted by the scheduler, therefore it
must not include a loop or it must not be too long in order not to damage the integrity of
the system. Like a process, a timer function is compiled and linked with the same
methods. To explain how a timer function is prepared, the following sample will be used.
The only job of this function is to toggle one of the digital outputs, which may be used
for flashing of a lamp for alarming.

1 # include "calls. h"
2 # include "task.h"

3 void main ()
4
5 # include "ini t. c"

The header file "init.c" contains all the initialization definitions and commands seen in
lines from 13 to 24 of "average.cpp". The only parameter of the function specifies which
relay is going to be toggled. Parameter transferring is done with param process function
again, and unlike processes it is done every time the function is called, with all the other

tnitializations, which spends an useless time. A timer function is defined in "load.dac" as
follows:

hitnumher is a variable, and as seen in the above definition, other than the function
parameters, there is one more parameter which specifies the period in which the function
is called. The period is given in milliseconds. It should be noted that period must be
between 1ms and 30,000 ms.

._\
.. _ .-.-_.. ..'"' ,";Cft :

W
..:--;;...~..",~!,\\ r 'I D;:,\. t ')~

. ,..., \; '~"" , •. '.11;''''. 1 h __ '" ,_
.~ ! I" '1 1 (. \ '" '..j d

. .."\il.".:..ti~
~--_ ..._._ -.... . . ~

In this project, a new product "embedded controller" was developed for data acquisition
and control applications. Considering the new developments in computer technology and
the rising demand for computers in industrial environments, the controller was designed
with a PC which is in pcn 04 format and has rather high performance for time-critical
applications. In Chapter 2, the definition of the important terms such as "embedded
controller", "real-time" and the factors taken into account when designing the controller
have been described. Chapter 3 gives the fundamentals of data acquisition and control,
which will be the basis of the design of the controller.

In order to provide data acquisition and control operations the analog signal sampling board
and the digital input/output board were prepared and connected to the Pc. All analog
inputs, digital inputs and outputs are accessible by the connectors situated on the enclosure.
The designed boards are described comprehensively in chapter 4. This controller may
measure many quantities such as displacement, pressure temperature at quite fast sampling
rates, may acquire digital signals and perform basic on/off operations with relay modules.
Along with this hardware, user is given a suitable software which runs in real-time and
provides a multitasking environment. This software was developed taking into account
many requirements of data acquisition applications so that it helps user with controlling the
hardware and developing an application. User is completely free when developing an
application, which means that he may use all advantages of a desktop PC such as
computational power, graphical interface, flexibility of programming etc. The developed
software is explained in chapter 5.

Such a system is feasible for many applications in different areas when we consider its
performance-cost ratio. However it is expected to be used especially in industrial
environments.

1. Performance-cost ratio is relatively higher than the similar products.
2. The total number of digital inputs and outputs is quite high compared to many other

products.
3. It includes the necessary interfaces such as relays and opto-couplers for digital

operations inside the enclosure.
4. Pentium based processor makes it possible to handle many complicated tasks in real-

time.
5. Despite the high number of total inputs and outputs, it has a very compact structure,

which provides ease of montage in electrical cabins.
6. It has also all features of a desktop Pc.

!:::IU.", '~. ., iJsk.l
----._-- .,----_ .." .._~

Where the number of digital or analog inputs and outputs of a controller is insufficient in an
application, there may be two options to overcome this problem; connecting expansion
modules to the controller to enhance the inputs and outputs, or using another controller
communicating with the other controllers. The second option is most preferable in many
aspects. Therefore, the next step of this project should be plugging an ethernet card into the
controller so that all the controllers in an applications or in a factory may communicate
with eachother and any desired computer. This feature provides increasing the inputs and
outputs, a remote-control and also transferring the necessary information on the network
such as some environmental measurements during a batch production, in order for user to
determine the disturbing inputs so as to increase the total quality in that production.

The other requirement is a programmable gain amplifier for amplifying the low voltage
signals. For example, a thermocouple needs to be amplified before the measurement.
Therefore, in case of using a programmable gain amplifier, there is no need to use external
amplifier circuits, which means more compact structure.

The last thing which has to be done in control systems is providing analog outputs for
controlling some devices such as proportional valves. These works can be regarded as some
possible future works for this project.

This thesis dealt with the definition of the fundamentals and the requirements of data
acquisition and control applications in industrial environments and designing a new PC
based embedded controller in respond to these requirements. The developed embedded
controller will be able to be suitable for many applications, meeting the requirements
discussed in this thesis such as real-time requirements. The developed controller is
expected to be a good alternative to the existing controllers in many aspects.

OZET

Bu tezde endustride veri toplama ve kontrol uygulamalannm temelleri anlatilml~, bu
uygulamalann gereksinimleri tammlanml~, ve bu gereksinimlere cevap olarak ta yeni bir
ki~isel tabanlt kontrol cihazl tasarlanml~tlr. Geli~tirilen bu kontrol cihazl endustrideki bir
yok uygulama iyin uygun olup, geryek zamanda yalt~abilmek gibi gereksinimleri
kar~t1ayabilecek yapldadlr. Bir yok ayldan, geli~tirilen bu cihazm endustride kullamlmakta
olan benzer cihazlara iyi bir alternatif olacagl du~unulmektedir.

[1] Auzas, Eric. Design Considerations For The Embedded PC Embedded Systems
Conference California, 1995.

[2] Laplante, Phillip A. Real-Time Systems Design and Analysis An Engineer's
Handbook. New York: IEEE Press, 1993.

[3] IBM Corporation. Personal Computer Hardware Reference Library, Technical
Reference, First Edition. March 1984.

[5] Son, Sang H. Advances in Real-Time Systems. New Jersey: Prentice Hall, Inc.,
1995.

[6] Tindell, Kenneth W. Fixed Priority Scheduling of Hard Real-Time Systems. Dept.
of Computer Science, University of York, UK

[7] Schuler, Charles A. & McNamee, William L Modern Industrial Electronics.
Macmillan/McGraw-Hili, 1993.

[10] ADS7803 12 bit Analog to Digital Converter Data Sheet. Burr-Brown Corporation,
]993.

[11] 40 W DC/DC Converter IMR-40 Family Data Sheet. Edition 3111.97/IN 1.98 - ©
Melcher AG.

[12] Tanenbaum, Andrew S. Operating Systems Design and Implementation. Prentice
Hall, 1987.

[13] Silberschatz, Abraham & Galvin, Peter B. Operating System Concepts. Addison-
Wesley Publishing Comp., 1994

[14] See, Deborah & Thurlo, Clark. Managing Data in an Embedded System. Flash
Software Development Group, Intel Corporation, 1995.

