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ABSTRACT 
 

DETERMINATION OF GENETIC DIVERSITY IN NATIONAL OLIVE 

COLLECTION (Olea europaea L.) USING SSR AND SRAP MARKERS AND 

DEVELOPMENT OF SNP MARKER FOR TRACEABILITY OF MEMECIK OLIVE 

CULTIVAR 

 

In this study genetic diversity of the Turkish olive collection was successfully 

characterized by using 13 SSR and 12 SRAP markers. For SSR marker analysis, we 

also added 3 European accessions to the national cultivars and binominal microsatellite 

data were detected by Qiaxcel software and clustered by NTSYS program. The 

UPGMA dendrogram showed good fit with the distance matrix (r = 0.85). While the 

outgroups were clustered with 0.27 similarity to national accessions, Turkish accessions 

clustered with 0.55 minimum similarity. Using SRAP markers we found 0.66 minimum 

similarity among Turkish accessions with a good fit between the distance data and 

UPGMA dendrogram (r = 0.83). The SSR and SRAP distance matrices were compared 

and they were found to correlated at r =0.23. To support the tree, ordination tests (PCA) 

for each marker system were performed and similar clustering was seen as in the trees. 

The other aim of this research was to develop SNP markers for traceability of Memecik 

accessions. We sequenced the anthocyanidin synthase gene of 11 exported olive 

accessions and aligned using Biolign program. There was no unique SNP that could be 

used to separate Memecik from the other accessions so we used a combination of SNPs. 

By using two probes at the same time, Memecik accession was distinguished from the 

other 10 exported accessions. In addition to find the SNP marker to trace Memecik 

accession, we developed the SNP marker to trace Trabzon Yağlık accessions. 

 

 

 

 



v 
 

ÖZET 
 

ULUSAL ZEYTİN KOLEKSİYONUNDAKİ (Olea europaea L.) GENETİK 

ÇEŞİTLİLİĞİN SSR VE SRAP MARKÖRLERİ KULLANILARAK BELİRLENMESİ 

VE MEMECİK ZEYTİN ÇEŞİDİNİN İZLENEBİLİRLİĞİ İÇİN SNP 

MARKÖRLERİNİN GELİŞTİRİLMESİ 

 

Bu çalışmada, 13 SSR ve 12 SRAP işaretleyicisi kullanılarak Türk zeytin 

koleksiyonunu tanımlanmıştır. SSR işaretleyicilerine dayalı çeşitlilik çalışmada 3 

yabancı çeşitte eklenmiştir ve genetik çeşitlilik için iki terimli data Qiaxcel programında 

tespit edilmiştir ve NTSYS programında gruplanmıştır. Yabancı çeşitler, ulusal 

çeşitlerle 0.27 benzerlik ile gruplanırken Türk çeşitleri 0.55 benzerlikle gruplanmıstır ve 

0.85 R değeri vermiştir. SRAP işaretleyicileri kullanılarak, Türk çeşitleri arasında 0.83 

korelasyon ile minimum benzerlik 0.66 bulduk. Elde edilen 2 matrix (SSR ve SRAP 

matrixleri) karşılaştırıldı ve benzerlikleri 0.23 olarak bulundu. Çizilen filogenetik ağacı 

desteklemesi için ordination testleri (PCA) her iki marker sistemi için de 

gerçekleştirilmiştir ve ağaçlarında görülen ile aynı gruplanmıştır. Bir diğer amacımız 

Memecik çeşidinin izlenebilirlik testi için SNP işaretleyicisi geliştirmekti. İhraç edilen 

11 zeytin çeşidinin Anthocyanidin synthase genleri dizilendi ve Biolign program ile 

sıralandı. Memecik çeşidini bir kere de ayıran tek bir SNP bulunamadı bu yuzden ard 

arda kullanılmak üzere SNP kombinasyonu yapıldı. Bu sebeple aynı anda 2 prob 

kullanılarak Memecik çeşidi diğer ihraç edilen 10 çeşitten ayrıldı. Memecik çeşidini 

izlemek için SNP markörü bulmanın yanısıra Trabzon Yağlık Çeşidini izlemek için 

SNP markörü geliştirdik. 
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CHAPTER 1 

 

INTRODUCTION 

 
1.1. General Characteristics of Olea europaea L. 

 
Olive, Olea europaea  L., is one of the oldest known cultivated fruit tree crops 

and according to archeological evidence, it was domesticated 5.000 years ago in 

Palestine. By the third millenium B.C., olive had become a significant crop in the 

Eastern Mediterranean (Zohary and Spiegel-Roy 1975). Olive oil was valued during 

ancient times and is still values today because of its health benefits. Olive oil is 

preferred by many people for its high contents of monounsaturated fatty acids (oleic 

acid) (Grigg 2001), antioxidants such as carotenoids and phenolic compounds (Visioli, 

et al. 2002). Researches are also determined the reducing affect of first myocardial 

(Panagiotakos, et al. 2000). Today, approximately 17.5 million metric tons (Mt) of 

olives and 2.8 million Mt of oil are produced yearly on 9.3 million hectares of land 

worldwide (Faostat 2007) mostly in the Mediterranean Region but also in Australia, 

Canada, China, Peru, Chile, Argentina and United States.   

Olive is an outcrossing diploid species (2n=46) which is self incompatible 

depending on the cultivar (Cuevas 2001). Olive cultivars are widely produced by 

vegetative propagation so they are uniform but very heterozygous (Wu, et al. 2004).  

Therefore, traditional cultivars are still grown in most locations and very few new olive 

varieties have been bred. 

Olive cultivars and wild accesions are usually distinguished by their 

morphological and agronomic features such as fruit size, oil content and growth habit. 

However, such features can be affected by the environment. Utilization of these 

characters also requires that the plant reach reproductive age. Moreover, many wild and 

feral types are morphologically very similar to cultivars. Vast numbers of olive trees are 

grown in the world without true labelling because of the difficulties of characterization 

of accessions. This results in problems such as mislabelling in nomenclature; 

homonyms, synonyms and misidentity in olive (Barranco and Rallo 2000). Such types 

of problems can be resolved accurately by using DNA markers. 
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Accurate and easy identification of cultivars is necessary to manage breeding, to 

create variability and identify Turkish cultivar to the world for trade objectives and 

variety protection. Therefore, identification of olive cultivars is important not only to 

increase biodiversity in olive but also it is commercially important for export or import 

of olive cultivars and their olive oil. Labelling is an important issue in trade. Labelling 

has to be done correctly especially for export. Labelling matters include; location of 

olive trees, their accessions and their acidity. To determine such characteristics, we first 

need to know the features correctly. In Turkey, labelling is currently verified by 

morphological testing. However, in Europe, molecular marker systems such as SSR 

(simple sequence repeat) and SRAP (sequence-related amplified polymorphism) marker 

systems (fingerprinting) are used for identification of olive accessions. Both of them are 

important in terms of easy to use and cheap. However neither SRAP nor SSR makers 

are as sensitive as new generation marker system like SNPs. SNPs are single nucleotide 

polymorphisms. These mutations are inherited from parents to individuals and SNP 

polymorphisms are analyzed to distinguish accessions for labelling. Also separation of 

accessions is important so that the desired cultivation of the olive can be done to 

increase quality and yield.  
 

1.2. Distribution of Olea europaea L. Trees in Turkey 

 
In our country, olive trees can grow in 35 locations in the Karadeniz, Marmara, 

Aegean, Mediterranean and Southeast Anatolia Regions (Canozer 1991). Producers in 

Turkey and the world grow Olea europea subsp. sativa of Olea species. Each region of 

Turkey where olives are grown must have certain climatic and environmental features. 

For example, olives are only found in regions of the Karadeniz which are not very 

windy and have microclimate features suitable for production of olive trees. Therefore, 

only 0.6% of olive trees in Turkey are grown in this region and 0.5% of total yield 

comes from subcultivars such as Butko, Görele, Marantelli, Pastos, Otur, Salamuralık, 

Tuzlamalık, and Yağlık  which are cultivated in this region. 
In the Marmara Region, olive cultivation can only be done sheltered places. In 

this region, people prefer to grow and trade olive for its fruit instead of producing olive 

oil, so this region is important for the edible olive. Thus, 84% of total production in this 

region is for eating while the remaining low quality olives are processed for olive oil. 
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The Marmara Region has 9% of total trees and it provides 7% of the total olive 

production in Turkey. The most important accession in the Marmara Region is known 

as Gemlik which has black fruit and this accession constitutes 80% of all accessions. 

The other important accessions are Çelebi, Edincik Su, Karamürsel Su, and Samanlı 

with other cultivars including Beyaz Yağlık, Çizmelik, Erdek Yağlık, Eşek Zeytini, Şam 

and Siyah Salamuralık. 

The Aegean Region is the most important area for olive production and it has 

14% of the olive trees in Turkey. This region, supplies 75% of all olives in Turkey with 

86% of olives used in oil production and the rest as table olives. Important accessions in 

the Aegean Region are Ayvalık, Çakır, Çekişte, Çilli, Domat, Erkence, İzmir Sofralık, 

Kiraz, Memecik, Memeli and Uslu. Other olive accessions which are cultivated in this 

region are Ak Zeytin, Aşı Yeli, Dilmit, Eşek Zeytini, Girit Zeytini, Hurma Kaba, Hurma 

Karaca, Kara Yaprak, Taşarası, Yağ Zeytini and Yerli Yağlık.  

In the Akdeniz Region, vegetable cultivation is more valuable than olive and olive oil 

production, nevertheless 10% of total Turkey’s olive trees are found in this region and 

also it provides 12% of table olives. In this region, 68% of produced yield is used for 

olive oil production. Büyük Topak Ulak, Halhalı, Sarı Haşebi, Sarı Ulak, Saurani, 

Karamani, Küçük Topak Ulak and  Sayfi are the names of olive accessions commonly 

grown in the Akdeniz Region. 

The Southeastern Region of Turkey is exposed to the Akdeniz climate and 73% 

of total olive production in this region is used for oil production. This region is also 

known as a motherland of olive and it has a rich number of accessions. Significant 

accessions are Eğriburun, Kalembezi, Kan Çelebi, Kilis Yağlık, Nizip Yağlık and Yağ 

Çelebi. Other important accessions are Belluti, Halhalı Çelebi, Hamza Çelebi, Hırmalı 

Çelebi, Hursuki, İri Round, Mavi, Melkabazı, Tesbih Çelebi, Yağlık Çelebi, Yağlık Sarı 

Zeytin, Round Çelebi, Round Halhalı, Yün Çelebi and Zoncuk. 
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1.3. Differences in Turkish Olive Accessions  

 

1.3.1. Morphological Characteristics of Turkish Olive Cultivars 

 
Although olive trees are called the ‘wealthy plant of poor land’, it requires good 

conditions to get high yield in olive cultivation. For economical growth, soil 

characteristics, climate demands and temperature features have to be proper and meet 

the olive trees’ needs (Canozer 1991). In terms of soil features some factors limit olive 

cultivation such as bedrock level, soil without oxygen and heavy soil. Ideal soil for 

olive breeding should be deep, calcareous, sandy-loamy, loamy or argilaceous-loamy. 

These kinds of soils are good for root development because they supply water 

permeability, water retention and aeration to plant. Purely sandy or argilaceous and 

humid soil is risky for olive breeding. Climate requirements of olive trees are also 

discriminating. Although olive trees can survive in an undesired climate, they cannot 

give adequate yield in such conditions. The natural cultivation environment of olive 

trees is at 30-45° northern-southern latitude. The Mediterranean climate zone in this 

latitude is best for olive growth, especially when olive is grown inshore of this region. 

Olives can also survive at more than 500m above sea level (Canozer 1991). Leaf, flower 

and fruit features of Turkish olive accessions have been determined and these data give 

one way to discriminate the Turkish olive accessions (Tables 1, 2 & 3) (Cirik 1988). In 

comparison with other Turkish olives, Memecik is better than Domat, which is another 

popular local accession, in terms of oil content. Also, Memecik olives have the best 

flesh value among commonly grown olives such as Ayvalık, Domat, Erkence, Gemlik 

and Uslu. Oil content and value of flesh of Turkish olive cultuvars is illustrated in Table 

1.3. 
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Table 1.1. Leaf features of Turkish olive accessions 
(Source: Cirik 1988) 

 
 

Accession name 

Leaf 

length(mm) 

Leaf 

width(mm) 

Leaf ratio 

(w/l) 

Stalk 

length  

(mm) 

 

Leaf shape 

Ayvalık 62.54 11.84 5.28 4.50 Long, narrow 

Büyük Topak Ulak 65.21 12.01 5.42 4.70 Long, narrow, elliptic 

Çakır 52.14 11.64 4.47 3.50 Mid-long, mid-broad, elliptic 

Çekişte 54.02 9.18 5.88 3.70 Mid-long, narrow, elliptic 

Çelebi 52.58 12.56 4.18 4.70 Mid-long, broad, elliptic 

Çilli 63.06 11.98 5.26 4.00 Long, narrow, elliptic 

Domat 68.58 12.20 5.61 4.00 Extra-long, narrow, elliptic 

Edincik Su 62.98 11.72 5.37 3.80 Long, narrow, elliptic 

Eğriburun 55.81 12.88 4.33 3.90 Mid-long, broad, elliptic 

Erkence 45.56 11.86 3.84 3.20 Short, broad, elliptic 

Gemlik 50.68 11.84 4.28 3.40 Short, broad, elliptic 

Halhalı 63.18 11.82 5.34 3.21 Long, narrow, elliptic 

İzmir Sofralık 71.00 11.60 6.12 6.50 Extra -long, narrow, elliptic 

Kalembezi 58.50 12.86 4.54 4.50 Mid-long, midbroad, elips 

Kan Çelebi 67.62 10.96 6.16 5.30 Extra-long, extra-narrow, elliptic

Karamursel Su 66.52 12.10 5.49 3.80 Extra-long, narrow, elliptic 

Kilis Yağlık 57.46 13.18 4.35 3.80 Mid-long, mid-broad, elliptic 

Kiraz 61.42 12.32 4.98 4.00 Long, mid-broad, elliptic 

Memecik 53.70 10.84 4.95 3.90 Mid-long, mid-broad, elliptic 

Memeli 57.38 11.08 5.17 3.60 Mid-long, mid-broad, elliptic 

Nizip Yağlık 58.48 14.06 4.25 3.70 Mid-long, broad, elliptic 

Samanlı 66.44 15.32 4.33 5.50 Extra-long, broad, elliptic 

Sarı Haşebi 52.22 12.50 4.17 3.70 Mid-long, broad, elliptic 

Sarı Ulak 53.38 13.38 3.98 3.10 Mid-long, broad, elliptic 

Saurani 52.73 12.32 4.28 3.80 Mid-long, broad, elliptic 

Tavşan Yüreği 59.60 9.20 6.47 4.30 Long, extra-narrow, elliptic 

Uslu 59.60 12.40 4.80 3.90 Long, mid-broad, elliptic 

Yağ Çelebi 52.84 12.10 4.36 3.60 Mid-long, broad, elliptic 
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Table 1.2. Flower features of Turkish olive accessions 
(Source: Cirik 1988) 

 
 

Accession name 

Inflorescence 

length(m) 

Aver.inflorescence  

length(mm) 

Inflorescence 

flower number 

Aver.flower 

number 

Flowering time 

Ayvalık 20-42 29.9 14-34 20 16.may- 09.jun 

Büyük Topak Ulak 25-32 26.8 7-18 12 12.may- 09.jun 

Çakır 7-26 20.20 5-15 8 13.may- 09.jun 

Çekişte 22-35 26.70 8-29 16 13.may- 09.jun 

Çelebi 21-42 30.50 16-42 24 12.may- 09.jun 

Çilli 16-25 20.60 8-15 11 13.may- 04.jun 

Domat 14-36 24.6 8-27 16 16.may- 06.jun 

Edincik Su 14-23 20.50 7-21 12 12.may- 12.jun 

Eğriburun 26-33 20.20 10-28 20 16.may- 04.jun 

Erkence 14-28 19.90 6-20 11 13.may- 09.jun 

Gemlik 15-26 20.30 10-23 14 12.may- 09.jun 

Halhalı 21-35 26.20 9-25 12 16.may- 03.jun 

İzmir Sofralık 18-33 24.30 1-17 10 16.may- 09.jun 

Kalembezi 18-27 24.00 11-23 15 16.may- 14.jun 

Kan Çelebi 24-45 38.00 11-28 19 15.may- 04.jun 

Karamursel Su 21-41 31.90 10-37 24 16.may- 12.jun 

Kilis Yağlık 20-40 29.70 14-30 20 20.may- 04.jun 

Kiraz 33-45 37.90 14-27 20 20.may- 09.jun 

Memecik 24-35 29.90 6-15 11 16.may- 06.jun 

Memeli 17-28 22 10-24 17 21.may- 09.jun 

Nizip Yağlık 14-31 24.40 10-30 17 15.may- 15.jun 

Samanlı 22-40 30.40 5-40 22 16.may- 09.jun 

Sarı Haşebi 15-21 18.60 6-16 11 13.may- 15.jun 

Sarı Ulak 16-27 22 1-28 17 15.may- 14.jun 

Saurani 13-18 14.80 8-15 10 16.may- 09.jun 

Tavşan Yüreği 14-22 22.70 8-15 11 20.may- 04.jun 

Uslu 24-34 28.90 6-19 11 12.may- 04.jun 

Yağ Çelebi 24-36 31.50 6-36 18 16.may- 09.jun 
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Table 1.3. Fruit features of Turkish olive accessions 
 (Source: Cirik 1988) 

 
 

Accession  

Name 

100 fruit 

weight 

(gr) 

100 fruit 

volume 

(cm3) 

Fruit 

number per 

kg. 

%  

Flesh

%  

Oil 

% Humidity Fruit shape 

Ayvalık 363.8 360 274 85.26 24.72 55.74 Nearly-round, cylindrical

Büyük Topak Ulak 484.3 480.5 206 88.31 20.20 52.02 Round 

Çakır 284.3 271.6 352 86.88 23.62 50.28 Pear-shaped 

Çekişte 542 530 185 85.23 26.89 50.40 Oval 

Çelebi 710.8 698.2 141 86.95 28.38 41.05 Long, cylindrical 

Çilli 490 470 204 88.97 20.55 53.11 Nearly-round, oval 

Domat 530.3 525.8 189 83.76 20.57 55.89 Cylindrical 

Edincik Su 494.2 476.8 202 89.41 16.71 61.16 Round 

Eğriburun 258 250 388 86.17 20.84 50.23 Oval 

Erkence 303.6 283 329 86.17 25.36 54 Oval 

Gemlik 372.8 370 268 85.86 29.98 45.05 Nearly-round, oval 

Halhalı 383.01 370.5 261 82.79 21.11 49.03 Nearly-round, oval 

İzmir Sofralık 750.2 1010 133 87.55 20.16 52.07 Oval 

Kalembezi 222 225 450 84.29 31.50 46.16 Nearly-round 

Kan Çelebi 615.1 620 163 88.90 16.90 52.03 Round 

Karamursel Su 710 680 141 87.07 18.60 59.20 Oval 

Kilis Yağlık 176.8 180 566 82.25 31.82 40.79 Round 

Kiraz 412.5 392 242 85.76 19.76 56.90 Round 

Memecik 478 465 209 88.28 24.50 52.60 Oval 

Memeli 463.8 460 216 88.57 20.20 58.55 Oval 

Nizip Yağlık 217.6 200 460 81.31 27.36 40.49 Nearly-round, cylindrical

Samanlı 396.4 390.2 252 84.51 20.77 52.59 Round 

Sarı Haşebi 293.8 274.6 340 85.53 24.72 50.37 Oval 

Sarı Ulak 376.52 330 266 71.85 18.84 52.86 Long, cylindrical 

Saurani 295.9 275.6 338 86.61 29.18 57.51 Cylindrical 

Tavşan Yüreği 608.17 595.8 164 86.43 20.20 56.50 Heard-shape 

Uslu 353.4 340 283 85.17 21.50 60.61  Oval 

Yağ Çelebi 442.15 430 226 84.57 21.10 53.40 Long, oval 

 

 

In research, olives and olive oil have been found to have a large variety of 

chemical compounds such as gallic acid, hydroxytyrosol, 2,3dihydroxybenzoic acid, 

tyrosol, 4hydroxybenzoic acid, 4hydroxyphenylacetic acid, vanillic acid, caffeic acid, 

vanillin, p-coumaric acid, ferulic acid, cinnamic acid, luteolin and apigenin (Ocakoglu 
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2007). All of these compounds are antioxidants which are essential for human health in 

terms of protecting humans from cancer (Visioli, et al. 2002) and aging (Tuck, et al. 

2002). Memecik olives contain high levels of hydroxytyrosol, luteolin, apigenin, p-

coumaric acid, cinnamic acid (Ocakoglu 2007). In these respects, Memecik is clearly 

beter than Gemlik, Ayvalık, Edremit and Nizip. Figure 1 illustrates the chemical 

composition of common Turkish olive oils. Approximate chemical composition values 

of Memecik accession can also be similarly obtained with Erkence (Ocakoglu 2007). 

The same increased luteolin and apigenin levels were detected in most of the Spanish, 

Italian and Portugues virgin olive oils (Vinha, et al. 2005)  

 

 

 

Figure 1.1 HPLC chromatogram of EVOO of harvest year at 280 nm. (IS) gallic acid; (1) 
hydroxytyrosol (Hyt); (2) 2,3dihydroxybenzoic acid (Dba); (3) tyrosol (Tyr); 
(4) 4 hydroxybenzoic acid (Hdba); (5) 4 hydroxyphenylacetic acid (Hpha); (6) 
vanillic acid(Va); (7) caffeic acid (Ca); (8) vanillin (Val); (9) unidentified; (10) 
p-coumaric acid (Pcoa);  (11) ferulic acid (Fa); (12) unidentified; (13) 
unidentified; (14)unidentified; (15) cinnamic acid (Cina);(16) luteolin (Lut); 
(17) unidentified; (18) apigenin (Apg) (Source: Ocakoglu 2007). 
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1.3.2. Molecular Genetic Approaches to Discriminate Turkish Olive 
Accessions 

 
Molecular markers which reveal polymorphisms at the DNA level, have been 

playing an increasing role in molecular breeding. Types of DNA markers include bi-

allelic dominant markers such as RAPDs (random amplification of polymorphic DNA) 

(Fabbri, et al. 1995) and AFLPs (amplified fragment polymorphism); bi-allelic co-

dominant markers, such as RFLPs (restriction fragment length polymorphisms); and 

multiallelic co-dominant markers, such as microsatellites and SRAPs (sequence-related 

amplified polymorphism), (Li and Quiros 2001). DNA markers are the most widely 

used markers in molecular breeding. In addition to the above markers, a sequence-based 

marker system, Single Nucleotide Polymorphisms (SNPs) is very informative. SNPs are 

in most cases bi-allelic, co-dominant markers (Kwok 2001). 

 

1.3.2.1.  Simple Sequence Repeat Approaches 

 
SSR primers are evolutionary conserved sequences which are designed to 

amplify simple sequence repeat or microsatellite regions. These microsatellites are 

composed of 2 to 5 bp repeated nucleotides and these main motifs are repeated 9-30 

times. A small genomic library of Olea europaea L., immensely enriched in (GA/CT)n  

repeats was used to identify SSRs in olive (Weising, et al. 1998).  

SSR markers are efficient markers which can be used to identify and 

differentiate accessions (Carriero, et al. 2002). SSR markers’ efficiency is based on their 

high polymorphism contents, codominance, ease of detection and repeatability among 

researchers (Aranzana, et al. 2003). Therefore, to summarize the advantages of SSR 

markers, they are easy to use, show Mendelian inheritance and are highly informative. 

In addition, a great number of SSR primer pairs are publicly available and SSRs are cost 

effective per genotype.  

Primer pairs are generally 15-31 DNA bases in length and PCR products are 90-

300 base pairs, depending on the SSR primers. After amplification, separation using 

capillary electrophoresis is more effective because of its highly sensitive resolution 

which can be used to detect 3-5 bp differences which cannot be seen using agarose gel 

electophoresis. 
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SSR markers are used for comparing germplasm with other competitors by seed 

companies to protect their yield specificity, to develop core germplasm collections to 

avoid high storage costs and to check homogeneity (uniformity) among individuals or to 

increase biodiversity and retain the resistance capacity of plants. In olive, SSR markers 

have been used to differentiate some olive varieties. According to Tunisian researchers, 

SSR markers were useful for finding mislabelling and eliminating redundacy in 

molecular breeding studies (Taamalli, et al. 2008). 

Hitherto, classical agarose electrophoresis was used to determine SSR locus 

size. Recently, capillary electrophoresis systems are used for size separation and 

quantification of DNA fragments. Thanks to the negative charge of nucleic acids, each 

sample is loaded automatically into individual capillary by positively charging the 

capillary terminus. The working procedure of capilary systems is closely related to 

agarose gel electrophoresis. They both separate the alleles based on the principle that 

low molecular weight molecules migrate faster than high molecular weight molecules. 

In contradiction to agarose electrophoresis, the capillary system has a detector that 

detects and measure the signal of the DNA molecules passing through the capillary.  

The emission signal data collected from the photomultiplier detector is then converted 

to electronic data (electropherogram and a gel image) by BioCalculator software. We 

preferred the capillary system by reason of its a number of advantages over traditional 

gel electrophoresis such as higher detection sensitivity, fast and automated analysis of 

up to 96 samples. 
 

1.3.2.2. SRAP Molecular Markers 

 
SRAP markers were developed (Li and Quiros 2001) to amplify the open 

reading frames (ORFs) in Brassica oleracea. This system is based on a two primer 

system, each of which is 17-21 nucleotide in length. Primers consist of core sequences, 

three selective nucleotides and the core sequences contain ‘filler’ sequences (non-

specific constitution) and specific sequences. The forward primer is 17 bp (10 bp filler + 

CCGG + three selective nucleotides) while the reverse primer is 18 bp (11 bp filler + 

AATT + three selective nucleotides). They can pair with exons and promoters or 

introns, respectively. Polymorphisms are the result of different lengths of introns or 

promoters among individuals. SRAPs generate a large number of polymorphic 
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fragments in each reaction, are simple to use, are applicable to any species and are 

highly reproducible. These markers have been applied to several crops (Li and Quiros 

2001) such as potato (Solanum tuberosum), rice, lettuce (Lactuca sativa), Chinese 

cabbage (Brassica rapa), rapeseed (Brassica napus), garlic (Allium sativum), apple 

(Malus domestica), Citrus, and celery (Apium graveolens). 

 

1.3.2.3. Single Nucleotide Polymorphisms, SNPs 

 
 A SNP is technically defined as a single nucleotide variation at a specific 

location which is found in more than 1% of the population. Therefore, SNPs do not 

include insertion or deletion polymorphisms. However, in practice this definition is not 

applied correctly, some biallelic variations, including insertions, deletions and 

variations with less than 1% allele frequency, are called SNPs (Brookes, et al. 1999). 

Both SNP markers and SNP marker sets are developed using a single base change in 

DNA sequences, which is usually an alternative of two possible nucleotides at a defined 

position. These kinds of single base differences between homologous DNA fragments 

can be near or in a gene, so their effect on function may be difficult to illustrate. SNPs 

can change the function of DNA, RNA and proteins. Therefore, they can affect protein 

amino acid sequence synonymously or non-synonymously. 

 SNPs are divided into 2 main group SNPs can result in change of protein 

function or change only in structure if they occur in regulatory regions which affect the 

gene expression level or translation of a gene product. Also, SNPs are not only found in 

regulatory regions which result in vital change in gene or protein level but also another 

kind of SNPs are called as a non-synonnymous SNPs found in intronic region which are 

informative and important evolutionary and the results are used in traceability or origin 

studies. SNPs are given different names based on their effect on protein function. SNP 

classes are shown in Table 1.5 (Mooney 2005).  
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Table 1.4. SNPs functional classes 
Coding SNPs cSNP Positions that fall within the coding regions of genes 

Regulatory SNPs rSNP Positions that fall in regulatory region of genes 

Synonymous SNPs sSNP 
Positions in exon that do not change the codon to 

substitude an amino acid 

Non-synonymous SNPs nsSNP Positions that incur an amino acid substitution 

Intronic SNPs iSNP Positions that fall within introns 

 

 

After the discovery of millions of DNA sequence variants of the human genome 

in the Human Genome Project, SNPs were noticed as an important source of genetic 

variation (Collins 1997). At the end of 2000, over 1,5 million SNPs were found as a 

result of this project. These resources have been commonly used in population genetics, 

evolutionary genomics, pharmacogenomics and association studies. In this way the 

molecular basis of many genetic diseases were illustrated (Reale, et al. 2006). Several 

examples of SNP databases are shown in Table 1.4. According to NIH, there are more 

than 24,5 million candidate SNPs in the human genome (www.ncbi.nlm.nih.gov) 

Because SNP markers are abundant in the genome and inherited, SNPs are a very 

popular and powerful DNA marker system (Chakravarti 1998). Understanding the 

effects of genetic differences such as amino acid changes in the genome is possible 

using single nucleotide polymorphisms (SNP). Finding the polymorphisms among 

accessions is based on sequence comparison and after that a detection strategy is used. 
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Table 1.5. SNP databases 

 
 
1.3.2.3.1.  Application of SNPs in Plant Breeding 

 
SNPs are becoming of more interest in agricultural breeding programmes as high-

throughput methods (Gupta, et al 2008). SNP method is used in plants for many 

molecular genetic marker applications. These applications include high-resolution 

genetic map construction, linkage disequilibrium-based association mapping, genetic 

diagnostics, genetic diversity analysis, cultivar identification, phylogenetic analysis, and 

characterization of genetic resources (Rafalski 2002). The use of SNPs will become 

more widespread with the increasing availability of crop genome sequence, the 

reduction in cost, and the increased throughput of SNP assays. Genetic diversity studies 

in maize were performed using SNPs at 21 loci along chromosome 1 (Tenaillon, et al. 

2002). This study facilitated an understanding of the forces contributing to genetic 

diversity in maize. Similar approaches have been used for cultivar identification in 

URL Comments 

Genome resources  

dbSNP  http://wwww.ncbi.nlm.nih.gov/projects/SNP SNPs from the complete genome 

HapMap Consortium http://hapmap.org/cgi-perl/gbrowse Whole genome SNPs in four 

population 

GoldenPath http://genome.ucsc.edu/ Genome database 

JSNP http://snp.ims.u-tokyo.ac.jp/ Common SNPs within Japanese 

population 

Mutation repositories   

HGMD http://www.hgmd.org/ Mutation database with many 

annotations 

Swiss-Prot http://us.expasy.org/ Protein database with extensive 

variant annotations 

HGVbase http://gvsbase.cgb.ki.se/ SNPs from the complete genome 

 PharmGKB http://www.pharmgkb.org Genes involved in drug 

metabolism 

SNP500Cancer http://snp500cancer.nci.nih.gov/home..1.cfm Genes involved in cancer 

Tools   

SNPper http://snpper.chip.org/ Novel software for SNP analysis 

BioPerl http://www.bioperl.org/ A programming application 

program interface (API) for 

bioinformatics analysis 
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malting barley (Sato and Takeda 2009) and wheat cultivars (Somers, et al. 2003). These 

assays have given rise to distinctness, uniformity and stability testing and assessment of 

plant breeding studies (Chiapparino, et al. 2004). 

In addition to human genetic databases, some databases for important plants have been 

developed like (http://bioinf.scri.sari.ac.uk/barleysnpdb/contact.html) as  Barley SNP 

Database and Wheat SNP Database (http://wheat.pw.usda.gov/ITMI/WheatSNP/), and 

Potato Database (https://www.gabipd.org/projects/Pomamo/). 
 

1.3.2.3.2.  Allelic Discrimination Method for SNPs 

 
There are a great many methods used to detect SNPs including both sequence 

specific and sequence-nonspecific (by measuring molecular weight based- mass 

spectrometry) ways. Both methods are utilized for detection of polymorphisms or 

mutations and all mechanisms are effective but each has its pros and cons. Sequence-

nonspecific detection is depend on the capture, cleavage or mobility change during  

electrophoresis or liquid chromotography of mismatched heteroduplexes formed among 

allelic DNA molecules which has different size and/or conformation (Kwok and Chen 

1998). However, the reliability of sequence-specific detection methods is higher. 

Mainly four general mechanisms are used for allelic discrimination: allele-specific 

hybridization, allele-specific nucleotide incorporation, allele-specific oligonucleotide 

ligation, and allele-specific invasive cleavage (Kwok and Chen 2003). 

Melting curve genotyping is useful for single nucleotide polymorphism (SNPs) 

detection and uses real time PCR. Different thermal characteristics of mutant or wild 

type PCR amplicons are used by the Light Cycler 480 System (Roche Applied Science). 

Sequence knowledge is needed to design specific probes to a specific region and 

detection is implemented based on the theory that labelled probes that bind with 

different alleles or allele combinations in an SNP-containing region. Region contained 

mismatches of probe and target and fully matched regions give the different profile on 

melting curve analysis by SimpleProbes. SimpleProbes are used as the hybridization 

probes because they hybridize to a target sequence containing the SNP of interest. 

Hybridized probes emit a fluorescent signal that is used to discriminate fully bound 

probes (wild-type) or floppily bound (mutant-type). The ability to detecting the 

fluorescent signal change resulting from mismatches between mutant and probe allow 
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sensitivity to detect  one nucleotide differences. Thus, SimpleProbe probes are an 

efficient tool for SNP genotyping and useful for identifying heterozygous samples in 

addition to determining the wild types and mutant types. SimpleProbes have an 

advantage because of their highly efficient labeling and single step nature.  

Heterozygote, homozygote mutant and wild type samples have been separated in 

melting curve analysis as shown in Figure 1.2. In this figure, the data are based on 

Melting Curve Analysis (MCA), the gene polymorphism was analyzed with 

SimpleProbe probes and the three genotypes (homozygous C/C and T/T, heterozygous 

C/T) are shown. As to the working principle of MCA, the best match between probe and 

target requires a higher melting temperature because of the difficulty of breaking 

hydrogen bonds. So, the samples in the figure which are dyed with green, represent the 

homozygous wild type target and red ones show the mutant samples (the lowest H 

bonds interaction between sample and probes), blue marked samples have both strength 

(heterozygous samples). 
 

 

 
 

Figure 1.2. SNP analysis methods on the LightCycler®480 System. 

 

1.4. Goals 

 
The one of the aim of us was to make characterization of Turkish Olive cultivars 

by using SSR and SRAP markers. Morphological characterization and patrimony 

selection may make Turkish olive accessions genetically closer/identical that can in a 
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bottleneck effect for breeding efforts. Therefore, before such breeding efforts can be 

begun, the genetic diversity of Turkish accessions should be determined. The data can 

then be used in choosing new lines for breeding or for preservation of established 

varieties. 

The other aim was to use SNPs in olive accessions to find unique 

polymorphism(s) to distinguish the Memecik accession among other Turkish olive 

accessions. In another word we tried to make traceability test for Memecik olive 

accessions. We chosed the Memecik accessions because approximately, 45% of total 

Turkish olive oil production depends on Memecik accessions. Moreover, when this oil 

is exported to Europe, some registration procedures are necessarily needed like a 

traceability test to verify purity. Thus, it was hoped that SNP(s) could be used for a 

traceability test of Memecik olive using its oil. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

17

CHAPTER 2 

 

MATERIALS AND METHODS 

 
2.1. Materials 

 

2.1.1. Olive Materials 

 
The 66 olive accessions’ leaf samples and their oil were collected from Alata 

and Ataturk Central Horticultural Research Institutes, Yusufeli, Milas Agricultural 

Office, Hatay, Kilis City Office of Agriculture. Six individuals were sampled from 

Black Sea Region and 9 from Marmara, 10 from Mediterranean, 18 from Southeast 

Anatolia Region and the last 23 from Aegean Region. Three samples were also chosen 

as outgroups which are Manzanilla (Spain), Ascolana (Italy) and Lucques (France) to 

determine their genetic diversity using DNA-based markers. The morphological 

features of the varieties are described in the introduction and their localization in Turkey 

is provided in Table 2.1.  

 

Table 2.1. Turkish Olive Cultivars and outgroup genotype use and localization list 
G

enotype 
num

ber

G
enotype 

U
se 

C
ity, 

R
egion 

G
enotype 

num
ber 

G
enotype 

U
se 

C
ity, 

R
egion 

1 Trabzon 
yağlamalık  

Table&oil Trabzon, 
Blacksea 

36 İri yuvaklak Table Tatayn (Urfa),  
South Anatolia 

2 Samsun  
yağlık 

Oil Samsun, 
Blacksea 

37 Yağ çelebi Oil Tatayn (Urfa),  
South Anatolia 

3 Pastos Table Trabzon, 
Blacksea 

38 Zoncuk Table Derik (Mardin),  
South Anatolia 

4 Otur Table&oil Artvin, 
Blacksea 

39 Halhalı Table&oil Derik (Mardin),  
South Anatolia 

5 Satı Table Artvin, 
Blacksea 

40 Hursuki Oil Derik (Mardin),  
South Anatolia 

6 Siyah 
salamuralık 

Table Tekirdağ, 
Marmara 

41 Belluti Table&oil Derik (Mardin),  
South Anatolia 

7 Samsun 
tuzlamalık 

Table Samsun, 
Blacksea 

42 Melkabazı Oil Derik (Mardin),  
South Anatolia 

(cont. on next page) 
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Table 2.1. (cont.) 
 

8 Beyaz 
yağlık 

Oil Tekirdağ, 
Marmara 

43 Mavi Table Derik (Mardin),  
South Anatolia 

9 Çizmelik Table Tekirdağ, 
Marmara 

44 Ayvalık 
yağlık 

Oil Ayvalık 
(Balıkesir), 
Marmara 

10 Erdek 
yağlık 

Oil Erdek (Balıkesir), 
Marmara 

45 Hurma 
karaca 

Table İzmir, Aegean 

11 Edincik Table Edincik 
(Balıkesir), 
Marmara 

46 Hurma kaba Table İzmir, Aegean 

12 Eşek 
zeytini 

Table&oil Ödemiş (İzmir), 
Aegean 

47 Erkence Oil İzmir, Aegean 

13 Trilye Table&oil Bursa, 
Marmara 

48 Çilli Table  İzmir, Aegean 

14 Samanlı Table İznik, Marmara 49 İzmir sofralık Table İzmir, Aegean 

15 Çelebi Table&oil İznik, Marmara 50 Çakır Oil İzmir, Aegean 

16 Büyük 
topak ulak 

Table Tarsus, 
Mediterranean 

51 Memeli Table&oil İzmir, Aegean 

17 Sarı ulak Table Tarsus, 
Mediterranean 

52 Dilmit Oil Bodrum (Muğla), 
Aegean 

18 Çelebi Table Silifke(Mersin), 
Mediterranean 

53 Girit zeytini Table&oil Bodrum (Muğla), 
Aegean 

19 Halhalı Table&oil Hatay, 
Mediterranean 

54 Tavşan 
yüreği 

Table Milas (Muğla), 
 Aegean 

20 Sarı çelebi Table&oil Hatay, 
Mediterranean 

55 Ak zeytin Table&oil Ödemiş (İzmir), 
Aegean 

21 Saurani Oil Hatay, 
Mediterranean 

56 Çekişte Table 
&oil 

Ödemiş (İzmir), 
Aegean 

22 Sayfi Oil Hatay, 
Mediterranean 

57 Kara yaprak Oil Kuşadası (Aydın), 
Aegean 

23 Karamani Oil Hatay, 
Mediterranean 

58 Yağ zeytini Oil Kuşadası (Aydın), 
Aegean 

24 Elmacık Oil Hatay, 
Mediterranean 

59 Yerli Yağlık Oil Kuşadası (Aydın), 
Aegean 

25 Yağlık sarı 
zeytin 

Oil K. Maraş, 
Mediterranean 

60 Aşı yeli Table&oil Aydın, Aegean 

26 Kilis yağlık Oil Kilis, 
Mediterranean 

61 Taş arası Table&oil Aydın, Aegean 

27 Nizip 
yağlık 

Table&oil Nizip (Antep), 
South Anatolia 

62 Taş arası Table&oil Kuşadası (Aydın), 
Aegean 

28 Kan çelebi Table Nizip (Antep), 
South Anatolia 

63 Memecik Table&oil Milas (Muğla), 
Aegean 

29 Halhalı 
çelebi 

Table&oil Hatay, 
Mediterranean 

64 Domat Table Manisa, Aegean 

30 Hamza 
çelebi 

Oil Nizip (Antep), 
South Anatolia 

65 Kiraz Table&oil Manisa, Aegean 

31 Yuvaklak 
halhalı 

Oil Nizip (Antep), 
South Anatolia 

66 Uslu Table Manisa, Aegean 

32 Yağlık 
çelebi 

Oil Nizip (Antep), 
South Anatolia 

67 Manzanilla Table Spain 

33 Yün çelebi Oil Nizip (Antep), 
South Anatolia 

68 Ascollana Oil Italy 

34 Eğriburun Table Nizip (Antep), 
South Anatolia 

69 Lucques Table&oil France 

35 Eğriburun  Table Tatayn (Urfa), 
South Anatolia 
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2.1.2. SSR Primers 

 
PCR amplification primers and conditions were performed by taking cognizance 

of previously published articles. In this research, 13 polymorphic SSR primers were 

used to determine to diversity of Turkish Olive accessions and draw the phylogenetic 

tree. These 13 primers and reference articles were illustrated in Table 2.2 

 

Table 2.2. SSR primers used to characterize genetic diversity in olive 

 
2.1.3. SRAP Primers 

 
For SRAP analysis, all combinations of EM1 to EM17 forward primers and 

ME1 to Me14 reverse primers were surveyed using the PCR conditions: 94 °C for 5 min 

for denaturation followed by 5 cycles at 94°C for 1 min, 35 °C for 1 min, 72°C for 1 

min and followed by 35 cycles at 94°C for 1 min,  55 °C for 1 min, 72°C for 1 min 

followed by elongation at 72°C for 10 min. Then 12 highly polymorphic SRAP primer 

combinations: EM1-ME4, EM3-ME13, EM3-ME14, EM6-ME13, EM7-ME1, EM8-

ME8, EM8-EM6, EM11-ME2, EM12-ME8, EM12-ME9, EM12-ME13, EM13-ME7 

were tested on Turkish olive cultivars. For 20 volume PCR, 100 ng of genomic DNA, 2 

pmol of forward and reverse primers, 1x PCR buffer, 3 mM Mg++ , 0.7 µM dNTPs, 1 U 

Taq Polymerase were used (Mukhlesur 2007). The amplified DNA fragments were 

Locus Repeat sequence Annealing 

Temperature 

Ref. primers 

Dca3 (GA)19 60 °C Sefc.et.al. 2000 

Dca4 (GA)16 55 °C Sefc.et.al. 2000 

Dca7 (AG)19 60°C Sefc.et.al. 2000 

Dca11 (GA)26(GGGA)4 58°C Sefc.et.al. 2000 

Dca14 (CA)18A6(TAA)7 60 °C Sefc.et.al. 2000 

Dca18 (CA)4CT(CA)3(GA)19 55 °C Sefc.et.al. 2000 

Emo90 (CA)10 60 °C De la Rosa R. et al.2002 

Gapu71b GA(AG)6(AAG)8 60 °C F.Carriero et al 2002 

Gapu 101 (GA)8(G)3(AG)3 60 °C F.Carriero et al 2002 

Udo9 (AG)16 55 °C Cipriani G.et al.2002 

Udo24 (CA)11(TA)2(CA)4 56 °C Cipriani G.et al.2002 

Udo28 (CA)23(TA)3 67.9 °C Cipriani G.et al.2002 

Udo43 (GT)12 58°C Cipriani G.et al.2002 
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separated using 4% agarose gel and stained by ethidium bromide (1:20.000 v:v) and 

electrophoresed at 1 V cm-1 for 180 min and photographed under a UV transilluminator 

(BIO-RAD, The discovery series).  
 

2.1.4.  Ant and Cyc Primers for SNP Detection 

 
For SNP discovery in our olive cultivars, the cycloartenol synthase and 

anthocyanidin synthase loci were chosen (Reale, et.al.2006). NCBI accession numbers 

of cycloartenol synthase and anthocyanidin synthase are AB025344 and AF384050, 

respectively. For cycloartenol synthase gene, the sequences of forward and reverse 

primers are GCCCATTTCAGATTGCAC and GGGATTCTCAGGTCAGGA, 

respectively. Forward and reverse primers of anthocyanidin synthase gene are 

GCCCAGCAACAAGTGAGTATGCAAAAC, 

AACCCAATTTTTCAACTCATTTTTCTTC ACC, respectively. 

 

2.2. Methods 

 

2.2.1. DNA Extraction 

 
Common methods of DNA isolations which are used successfully in plant 

research resulted in dirty, yellow and highly viscose DNA for olive leaves and oil. The 

organic content of olive such as phenolics, polysaccharides and other organic substance 

has to be separated from the DNA. To successfully isolate DNA some modifications 

were tried. 

 

2.2.1.1.  DNA Isolation from Olive Oil  

 
Olive fruit of the 69 accessions were collected and their oil extracted without 

hexane treatment  by the Ozaltin Oil Company, Aydın. Cold-press extraction was 

preferred to avoid degradation of the DNA. To isolate DNA, a cetyltrimethyl-

ammonium bromide (CTAB)-based method was performed by using 1 ml unfiltered 

cold-press olive oil. The same method was also repeated with the addition of 1% PVP. 
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Promega Wizard Kit was tested and Qiagen QIAamp DNA stool Kit was successfully 

used (Testolin, et al. 2005).  

 

2.2.1.2. DNA Extraction from Leaves 

 
Total DNA extraction from leaf materials was performed with previously 

published methods (Doyle and Doyle 1990) with some modifications included grinding 

with liquid nitrogen and using 1.5 g ground tissue instead of 400 mg. The chloroform 

step of extraction was done twice because of high phenolic content. After DNA 

extraction, quality and quantity of DNA for each sample were measured by using a 

Nanodrop spectrophotometer and the quantities obtained are given in Table 2.1. 

Although the Nanodrop measurements suggested that the DNA was not of excellent 

quality, no problems were encountered with PCR and sequencing. The 11 samples 

which were used in sequence analysis were also cleaned up by ethanol precipitation 

method (as described in the Beckman Coulter QuickStart sequence analysis kit). 

 

2.2.2.  Data Analysis 

 

2.2.2.1.  PCR Analysis of SSR Primers and Capillary Electrophoresis 

 
PCR reactions were carried out in 25 µl volume containing: 40 ng of DNA, 1 

pmol of forward and reverse primers, 1x PCR buffer, 3 mM Mg ++, 0.125 mM dNTPs, 1 

U Taq Polymerase and PCR conditions at 94 0C for 3 min followed by 36 cycles at 940C 

for 30s, 45 s at annealing temperature (Table2.2) and 72 0C for 45 s, finally 7 min at 72 
0C. PCR reactions were performed in Eppendorf Mastercycler Epgradient S. Before the 

ultimate fragment analyses PCR products (only 5 µl) were checked on 2% agarose gels 

containing ethidium bromide (1:20.000 v:v) and electrophoresed at 1 V cm-1 for 30 min 

and photographed under a UV transilluminator (BIO-RAD, the discovery series).  

After PCR products were seen on the agarose gel, the fragments were separated using 

the high resolution kit of a Qiagen Capillary electrophoresis device. OL500 method was 

chosen according to size and concentration of target PCR products. To determine the 

size of PCR fragments, QX Alignment Marker 15 bp/3 kb was preferred and QX DNA 
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Size Marker 100 bp/3kb which correlated with the alignment marker was used for per 

reaction 

 

2.2.2.2.  SRAP Marker Based Analysis  

 
Twelve SRAP primer combinations were used to amplify the 66 Turkish genotypes. The 

PCRs were performed (Ferriol, et al. 2003) with some modifications. PCR was 

performed in10 µl reaction volume containing 0.75 ml of 1mM each of forward primer 

and reverse primer, 1µl of 25mM MgCl2, 1µl of 10X PCR buffer, 1µl of 2.5mM dNTPs 

(Promega, Madison, WI), 0.2ml of 5U Taq DNA polymerase and 2µl of 100 ng of 

genomic DNA. The thermal cycler profile for PCR amplifications in the Eppendorf 

Mastercycler Epgradient S was as follows: denaturation at 94˚C for 4 min, followed by 

five cycles of denaturing at 94 ˚C for 1 min, annealing temperature at 35˚C for 1 min 

and elongation at 72˚C for 1 min. In the remaining 30 cycles, the annealing temperature 

was increased to 50 ˚C for 1 min with a final elongation step at 72˚C for 7 min (Ferriol 

et al., 2003). The amplified fragments were separated on 4 % agarose gel with ethidium 

bromide (1:20.000 v:v). Digital images of the gel were saved onto a computer and 

scored manually. 

 

2.2.2.3. Sequence Analysis  

 
To determine the SNPs to use in traceability test of Memecik accessions, 11 

accessions were chosen among 66 Turkish olive accessions for sequence analysis. 

These 11 accessions were chosen based on region. Sequence analysis was performed 

three times for each  DNA sample. Chosen accessions are given in the Table 2.3. 
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Table 2.3. Sample names and their regions, used for sequence analysis 
Genotype number Genotype name City, Region 

1 Trabzon Yağlık Trabzon, Blacksea 

19 Samsun Tuzlamalık Samsun, Blacksea 

23 Erdek Yağlık Balıkesir, Marmara 

24 Edincik Balıkesir, Marmara 

58 Eğriburun  Antep,Southeast Anatolia. 

75 Ayvalık Yağlık Balıkesir, Marmara 

78 Erkence İzmir, Aegean 

94 Memecik Aydın, Aegean 

95 Domat Manisa, Aegean 

96 Kiraz Manisa, Aegean 

97 Uslu Manisa, Aegean 

 

 

Each reaction was repeated to prevent sequence errors from Taq polymerase-

based mistakes and reading errors of the sequencer detector. All reactions were 

performed using both forward and reverse primers to avoid the misnomer of nucleotides 

by detector reading false. 

Anthocyanidin and cycloartenol synthase genes were amplified by PCR 

reactions with 100 µl volume which included 100 ng of DNA, 0.3 pmol of forward and 

reverse primers, 1x PCR buffer, 1.5 mM Mg ++, 0.125 mM dNTPs, 1 U Taq Polymerase 

and PCR conditions at 94 0C for 3 min followed by 36 cycles at 94 0C for 30s, 45 s at 58 
0C annealing temperature and 72 0C for 45 s, 7 min at 72 0C. PCR reactions were 

completed in Eppendorf Mastercycler Epgradient S. PCR products were purified by 

High Pure PCR Product Purification Kit of Nucleospin Extract II Kit. Cycle-sequence 

PCR included, 8 µl Master mix, 1 µl primer, 0.6- 6 µl template (for 10 ng/ µl) and 5-10 

µl dH2O per reactions, reagents were supplied by Beckman Coulter Quickstart 

Sequence Kit. After the reactions were completed, samples were loaded with 40 µl 

sample loading solution to CEQTM 8800 Genetic Analysis System and LFR-1 method 

was chosen based on PCR product size. Also the same reactions were performed at the 

Biotechnology Center of İzmir Institute of Techonology, İzmir. Sequences were aligned 

and compared using the BioLign Programme. Probes were designed for allelic 

discrimination using LCPDS2 programme support from Roche Company. 
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2.2.2.4. Real Time-PCR Optimization 

 
To find the working concentration of MgCl++, two concentration: 1.5 mM and 3 

mM were used. Each 20 µl reaction volume contained 1X master mix (supported by 

Light Cycler 480 probe master kit), 0.2 mM primer forward and reverse, 1.5 / 3 mM 

MgCl++, 75 ng DNA. SimpleProbe option was chosen as the software detection format. 

The real-time PCR profile for PCR amplifications were as follows: denaturation for 1 

cycle with no analysis, for 45 cycles with quantification, melting for 1 cycles with 

melting curve analysis and cooling for machinery utility. Condition details of the 

melting curve analysis are given in Table 2.4. Acquisition mode means the frequency 

with which fluorescence data was acquired. Single option means it acquired 

fluorescence data once at the end of this segment in each cycle (recommended for 

quantification tests). Hold options depicts the length of time to hold the target 

temperature in hours: minutes: seconds format. Ramp Rate (˚C/s) describes as the rate at 

which the instrument heats up or cools down to target temperature. And the last option 

was acquisitions per ˚C , so it was vital to arrange the number of data measurements 

taken per temperature point. 
 

Table 2.4. conditions of Melting Curve Anaysis 

 
Target 

(˚C) 

Acquisition 

mode 

Hold 

(hh:mm:ss) 

Ramp rate 

(˚C/s) 
Acquisitions (per ˚C) 

Denaturation 95 None 00:10:00 4.4 - 

Cycling 95 None 00:00:10 4.4. - 

 57 Single 00:00:15 2.2 - 

 72 None 00:00:10 4.4 - 

Melting Curve 95 None 00:00:01 4.4 - 

 40 None 00:00:30 2.2 - 

 85 Continuous - 0.10 6 

Cooling 40 None 00:00:30 2.2 - 
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CHAPTER 3 

 

RESULTS AND DISCUSSION 

 
3.1. DNA Extraction 

 
DNA extraction of 66 Turkish accessions and 3 outgoups were performed and 

their DNA concentrations are listed in Table 3.1. Also, their 230/260 and 260/280 ratios 

were checked to see the protein or phenol/ethanol contamination, ratios were in the 

proper interval (data not shown). However, 11 samples which were used in sequence 

analysis were cleaned up by ethanol precipitation to get an absorbance value of 2.00 for 

measurements at 230/260 and 260/280. 

  

Table 3.1. DNA concentration of samples 
Genotype Location DNA 

amount 

ng/µl 

Genoype Location DNA 

amount 

ng/µl 

Genotype Location DNA 

amount2 

Trabzon 

yağlamalık  

Trabzon  267.1  Çelebi İznik 1156  İri 

yuvaklak 

Tatayn 500.4  

Samsun 

yağlık 

Samsun  420.8  Büyük topak 

ulak 

Tarsus 228.5  Yağ çelebi Tatayn  730.4  

Pastos Trabzon 1032  Sarı ulak Tarsus 491.3  Zoncuk Derik  408.2  

Tuzlamalık Samsun  713.7 Çelebi Silifke 765.2  Halhalı Derik 414.6  

Otur Artvin  618.4  Halhalı Hatay 476.8  Hursuki Derik 327.8 

Satı Artvin 1215 Sarı çelebi Hatay 1162.8  Belluti Derik 590.6  

Tuzlamalık Samsun 229.7  Saurani Hatay 820.5  Melkabazı Derik 797.5  

Siyah 

salamuralık 

Tekirdağ 724.8  Sayfi Hatay 443.3  Mavi Derik 847.8  

Samsun 

tuzlamalık 

Samsun 851.1  Karamani Hatay 1031.7  Samsun 

tuzlamalık 

Samsun 713.7  

Beyaz 

yağlık 

Tekirdağ 487.2  Hurma kara İzmir 470.9  Ayvalık 

yağlık 

Ayvalık 911.3  

Çizmelik Tekirdağ 664.7  Yağlık sarı 

zeytin 

K.Maraş 405.4  Hurma 

karaca 

İzmir 846.4  

Erdek yağlık Erdek 653.9 Kilis yağlık Kilis 574.3  Elmacık Hatay 582.4  

Edincik Edincik 548.6   Nizip yağlık Nizip 645.6  Erkence İzmir 527.1  

(cont. on next page) 
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Table 3.1. (cont.) 
 

Eşek zeytini Ödemiş 474.5   Kan çelebi Nizip 1032.3 Çilli İzmir 706.3 

Trilya İznik 412.2  Halhalı çelebi Hatay 945.2  İzmir 

sofralık 

İzmir 655.7 

Samanlı İznik 723.8  Hamza çelebi Nizip 343.5  Çakır İzmir 520.5 

Taş arası Aydın 464.4  Yuvaklak 

halhalı 

Nizip 466.3  Memeli İzmir 984.4 

Taş arası Kuşadası 924.0  Yağlık çelebi Nizip 720.3  Dilmit Bodrum 674.4 

Memecik Milas 767.2  Yün çelebi Nizip  720.6 Girit zeytini Bodrum 698.9 

Domat Akhisar 622.7  Eğriburun Nizip 530.9 Tavşan 

yüreği 

Milas 587.7 

Kiraz Akhisar 816.5  Eğriburun  Tatayn 487.5 Ak zeytin Ödemiş 466.2 

Uslu Akhisar 848.1  Yerli yağlık Kuşadası 1060.4 Çekişte Ödemiş 700  

Yağ zeytini Kuşadası 663.0 Aşı yeli Aydın 728.6  Kara yaprak Kuşadası 699.5 

Manzanilla Spain 520  Lucques France 900  Ascollana Italy 1010 

  

After DNAs of the Turkish olive cultivars were obtained, the SSR and SRAP 

marker systems were used to determine the diversity. Qiaxcel Capillary Electrophoresis 

system was used to genotype the PCR products which were amplified by SSR primers. 

Also SRAP primers were used to amplify ORFs (open reading frames) of our lines and 

the amplified fragments were analysed on agarose gel system.  

 

3.2. Genotyping Using Molecular Markers 

 

3.2.1. SSR Primers Based Characterization on Capillary 
Electrophoresis  

 
A total of 13 polymorphic SSR markers were used to determine genetic diversity 

of the 69 olive accessions. After each locus was amplified by PCR, capillary 

electrophoresis was used to assign the sizes of the fragments. A total of 119 

polymorphic regions were detected by Qiaxcel software. The polymorphic regions were 

analysed on the Qiaxcel software, peaks for each fragments were converted the 

binomial data first by software and then given peaks and gel images were checked 

visually. An example of these peaks is illustrated for one SSR locus of a individual in 

figure 3.1. For this locus and individual, there are two fragments which were sized as 

164 bp and 182 bp, respectively as shown in figure 3.1. Binomial data were not only 
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obtained by program using peaks but also the data were analysed by examination of gel 

images. One of our gel images can be seen in figure 3.2. Thanks to this system our olive 

population was, characterized for marker polymorphism as shown in figure 3.2. 

 

 

 
 

Figure3.1. Capillary electrophoresis result for udo24 marker of one individual.         
Separation range was defined by using first and last peaks which are called 
alignment marker and occur at 15 bp and 5000 bp. respectively. 

 

 

 
 

Figure 3.2. Gel image of polymorphic SSR marker on capillary electrophoresis The last         
cloumn was loaded with size marker to measure the size of fragments. 

 



 
 

28

3.2.1.1.  Genetic Similarity Test Using SSR Primers 

 
The 13 SSR markers and their alleles are listed in Table3.1. All 13 SSR markers 

were polymorphic and produced 119 alleles with an average number of 9.15 alleles. The 

average PIC value was 0.235. For individual alleles, PIC values ranges from 0.074 to 

0.391. DCA7, DCA14, EMO90 and GAPU71B had the highest average PIC values 

ranging from 0.288 for DCA14 to 0.391 for EMO90. UDO9 and UDO24 had the lowest 

PIC values 0.063 and 0.150, respectively.  

 

Table 3.2. PIC values for each SSR primer 

 
Locus No.alleles PIC±standard error Range Ref. primers 

DCA3 9 0.318±0.054 0.083-0.493 1 

DCA4 13 0.171±0.045 0.029-0.493 1 

DCA7 8 0.289±0.061 0.227-0.497 1 

DCA11 8 0.187±0.047 0.059-0.454 1 

DCA14 10 0.288±0.053 0.029-0.499 1 

DCA18 6 0.248±0.076 0.056-0.498 1 

EMO90 8 0.391±0.027 0.277-0.498 2 

GAPU71B 9 0.294±0.056 0.056-0.499 3 

GAPU101 20 0.233±0.033 0.028-0.464 3 

UDO9 8 0.074±0.020 0.028-0.161 4 

UDO24 6 0.150±0.071 0.029-0.499 4 

UDO28 6 0.276±0.062 0.110-0.487 4 

UDO43 8 0.279±0.069 0.029-0.487 4 

 

 

 The SSR data for the 66 Turkish olive accessions and three outgroups was used 

to draw a dendrogram based on DICE matrix and UPGMA arithmetical averages in 

SHAN module using NTSYS-pc version 2.2. Programme. The dendrogram is shown in 

Figure.3.2. 

 Based on a Mantel test, the correlation between the dendrogram and distance 

matrix was r = 0.85 (P = 1.0) indicating a good fit between the tree and distance data 

(Rohlf 1994). This dendrogram revealed a minimum genetic similarity coefficient of 

0.45 for the Turkish olive accessions. Turkish accessions were mainly grouped into 
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eight clusters with ~56% similarity and the outgroups from Italy, Spain and France were 

separated in a different cluster. 

 The European accessions clustered outside of the Turkish ones with 0.27 

similarity among outgroups and the Turkish olives. The largest cluster of Turkish 

accessions, B, contained 43 accessions which subdivided into two main and three 

smaller groups at 0.59 similarity. Cluster B1 contained 13 accessions with ‘Halhali 

Celebi and ‘Yuvarlak Halhali’ the most similar (0.90). Cluster B2 contained 23 

accessions with three pairs of accessions having genetic similarity of 0.88 to 0.89 

(‘Celebi Silifke’ and ‘Halhali Hatay’, ‘Hurma Kara’ and ‘Yerli Yaglik’, ‘Asi Yeli’ and 

‘Memecik’). The second largest cluster was cluster A with 11 accessions.  These 

accessions were more genetically distinct than those in clusters B1 and B2. The 

remaining five clusters of accessions (from cluster C to H) had one to three accessions 

each with a maximum similarity of 0.71 in these clusters. Interestingly cluster F 

consisted of accessions from the Aegean region and these three accessions (‘Memeli’, 

‘Domat’ and ‘Kiraz’) had nearly as much genetic diversity (0.57) as the three European 

accessions which originated from widely dispersed locations (Italy, Spain and France). 

As with other crop plants, local olive varieties are often named based on their 

morphological appearance. Thus, ‘Kiraz’ which means cherry in Turkish was probably 

named because its fruit is round and chery-red when ripe. Others are named based on 

their use and/or location such as ‘Trabzon Yaglik’ and ‘Samsun Yaglik,’ both of which 

are used for their oil and are grown in two different Black Sea provinces. Although 

these names may reflect morphological or other similarities, our results show that such 

similarities do not correspond to molecular genetic similarity. For example, two 

‘Egriburun’ accessions were analyzed, both of which are from the South Anatolia 

region. Despite their identical names and similar geographical origins, these accessions 

were only 45% genetically similar.  Similarly, the two ‘Celebi’ and two ‘Tasarasi’ 

accessions were only 54 and 52% similar, respectively.  

 We saw localization-specific separation in our SSR based phylogenetic tree. In 

group A most of the accessions were from the Black Sea and Marmara Regions.  Both 

of these regions are in the north of the Turkey and their climate and agricultural geology 

is not same but closer to each other than to the other regions. Sub-clusters of B1 were 

divided into 3 groups as the South Anatolia and Mediterranean-based accessions, 

Aegean-based and South Anatolian-based accessions. Similar sub-grouping was seen in 

group F which includes 3 İzmir accessions.. 
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 Relationships among the 69 olive accessions was also examined by principal 

component analysis (PCA). PCA indicated that the first Eigen vector explained 49.5% 

of the genotypic variance while the second and third vectors each accounted for only 

~3% of the variance. The PCA plot showed that the European outgroups clustered away 

from the Turkish accessions. The Turkish varieties formed a fairly uniform cluster with 

a few accessions plotted away from the main cluster. These accessions included Erdek 

Yağlık (10), Otur (4), Eğriburun (35), Domat (64).and Kiraz (65). These accessions also 

clustered away from the main groups in the dendrogram. The ordination test supported 

the UPGMA-based tree, accessions from Black Sea Region and Marmara Region 

accounted for several accessions plotted above the main cluster and the other accessions 

that plotted away from the main group were Aegean and South Anatolian accessions. 
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Figure 3.3. Dendrogram was drawn based on SSR markers of  Turkish olive cultivars.     

Outgroups and Turkish cultivars are clearly separated. 
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Figure 3.4. PCA analysis of SSR based data 

 

3.2.2. Genotyping Using ORF-Based Markers, SRAPs 

 
To determine the diversity of Turkish olive population we combined 17 EM 

forward primers and 14 ME reverse primers and then the most efficient 12 primers were 

chosen to apply to the population.  

 

 

 

 

 

Out 
groups 
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3.2.2.1. Genetic Similarity Test Using SRAP Markers 

 
Totally 185 alleles were detected and 103 of them were polymorphic. 

Polymorphic bands were converted to1 - 0 binomial data, by visual inspection. 

Binomial data were used to draw a dendrogram of our olive cultivars. For each locus 

PIC values were calculated and PIC ranges are shown in Table 3.2. EM12-ME8, EM8-

ME8, EM3-ME13 primer combinations gave the maximum PIC values 0.401, 0.332, 

0.328, respectively, while the EM11-ME2 primer combination gave the lowest PIC 

value, 0.063. 

 

Table 3.3. SRAP data PIC value 
Locus No. 

Alleles 

PIC Range 

EM1-ME4 14 0,228 ± 0.04 0.03-0.43 

EM3-ME13 9 0,328 ± 0.05 0.03-0.49 

EM3-ME14 5 0,235 ± 0.08 0.08-0.49 

EM6-ME13 21 0,294 ± 0.03 0.02-0.49 

EM7-ME1 10 0,215 ± 0.04 0.05-0.43 

EM8-ME8 7 0,332 ± 0.05 0.02-0.48 

EM9-ME16 7 0,217 ± 0.07 0.02-0.47 

EM11-ME2 4 0,063 ± 0.06 0.03-0.16 

EM11-ME11 1 0,204 ± 0 0.20 

EM12-ME8 6 0,401 ± 0.21 0.28-0.48 

EM12-ME9 9 0,156 ± 0.06 0.26-0.49 

EM12-ME13 8 0,27 ± 0.03 0.17-0.45 

EM13-ME7 2 0,245 ± 0.13 0.49-0.56 

 

The tree was drawn on the basis of DICE matrix and then UPGMA (Unweighted 

Pair Group Method) arithmetical averages in SHAN module using NTSYS-pc version 

2.2. Correlation among the binomial data produced with the SRAP markers’ alleles was 

carried out using the Mantel test. Correlation between the data matrix and the tree was 

found to be 0.83, a good fit. The dendrogram was scaled from 0.66 to 0.96. According 

to the dendrogram Turkish olive accessions divided into 12 groups with 0.82 similarity 

(shown in Figure 3.6). The largest group, group A, was composed of 3 subgroups which 

were called A1,A2 and A3. A1 included accessions from Black Sea Region and 

Marmara Region in one group, Mediterranean accessions were found in a different 
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cluster and one cluster carried the Aegean accessions. A2 included Aegean accessions 

in general. Geologically closer types also occurred in other small clusters. Supported by 

the SSR- based tree, in SRAP-based tree, the same accessions were found as the most 

diverse group. We also performed the ordination test with the SRAP data and the most 

diverged accessions (gathered from South Anatolia and Aegean accessions) were seen 

to plot away from the others. 

 

 
 

Figure 3.5. Dendrogram of Turkish olive cultivars, based on SRAP primers 
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The first three PCA axes was extracted and the first eigen value was 56.49% and 

4.03% and 3.65% were seen as the second and third eigen values. Cumulative eigen 

value of the first three axes was calculated as 64.17% A 2-dimentional plot of the first 

two dimensions was compared to separation of the UPGMA tree (figure 3.7.). 

According to both SSR and SRAP marker systems, Black Sea and Marmara regions’ 

accessions were gathered into the same branches of clusters or in unique clusters while 

Mediterranean Region-specific accessions were found closer to South Anatolian 

accessions. Generally, specific accessions for South Anatolia and Aegean were found in 

separate clusters and distal for both marker system results. 

 

 
Figure 3.6. PCA analysis, 2-D plot of SRAP primer based data 
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3.2.3. Genotyping Using Both SRAP and SSR Markers 

 
The13 SSR primer and 12 SRAP primer data were combined and used to 

consider the entire genome from intronic and non-intronic but conservative regions to 

draw the tree of Turkish olive cultivars. 

 Using SM matrix and UPGMA (Unweighted Pair Group Method) arithmetical 

averages in SHAN module the tree was drawn with NTSYS-pc version 2.2. Tree is 

shown in Figure 3.9. The tree clustered into 12 arms with 0.82 similarity. Each cluster 

included nearly the same accessions with the most diverged ones seen to be the same as 

in the separate SSR and SRAP analyses. Mantel test was done to illustrate the 

correlation among the binomial data produced by both SSR and SRAP markers. A good 

correlation was found (r = 0.80121), for the combined SSR-SRAP based data. Therefore 

these two types of marker work efficiently together and comprehend more of the 

genome in terms of including both ORFs and microsatellite regions. Also to compare 

both marker systems, Mantel test was performed for the two different distance matrices. 

The R value was calculated as 0.227 (p=0.999). This r value was found as what we 

expected because of working principle of these two markers are very different. SSR 

markers amplify the microsatellite regions of genome so it is possible to see both 

insertion-deletion and other mutations in noncoding of the genome. However, SRAP 

markers were amplified from the open reading frames so some of the mutations (or 

insertion/deletion) may have more vital consequences and passed to the next generation. 

To sum up, less diversity was seen as expected in more conserved SRAP marker. Our 

results were confirmed with this common knowledge, while the SSR-based dendrogram 

scaled from 0.45 to 0.90 similarity, the SRAP-based dendrogram had 0.66 minimum 

similary and 0.96 maximum similarity.  Indicating that the SSR (microsatellite) based 

marker had better separation power because of polymorphic nature. Nevertheless, these 

two types of markers separated the cultivars into nearly the same clusters with region 

specific accessions. 

 Principle component analysis was performed for assembled data (SSR and 

SRAP marker based) as the ordination test. The first Eigen vector explained 78.1% of 

the genotypic variances while the second and third vectors accounted for 1.5% and 

1.3% respectively. Cumulatively, the first 3 vectors accounted for 80.9% of variance. 2-
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Dimensional and 3-Dimensional matrix plots were constructed as seen in Figure 3.8 for 

2-D one. The most diverged accessions were marked on the 2-D  illustration of 

ordination test and geographical region of sample were compared to see that Aegean 

and South Anatolian accessions had special diversity with supported the first two 

solitary trees of SSR’s and SRAP’s. Therefore the ordination test supported the identity 

of the most divergent accessions as determined by the SSR and SRAP marker results. 

 

 
 

Figure 3.7. 2-D of SSR and SRAP based data 
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Figure 3.8. Dendrogram of Turkish olive cultivar using SSR and SRAP markers 
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3.2.3.1.  Genome Searching for Memecik-Specific SNPs 

 
Sequence analysis was performed successfully for each concentration of the 11 

chosen samples using both cycloartenol synthase and anthocyanidin synthase genes. 

Electropherograms for each sample were checked by visually by Beckman Coulter 

software and also Finch Tv programme software. Obtained sequences were compared 

with each other and potential SNPs were determined using sequence result of 11 

samples on alignment programme, BioLign. Using National Center for Biotechnology 

Information database, gathered sequences were blasted with previous sequences and 

each other. Sequences belong to Memecik accessions sequenced with forward and 

reverse primers were compared to the published anthocyanidin synthase gene. In figure 

3.10, sequence of Memecik olive accessions by forward primer (8F), 

(gi|14550121|gb|AF384050.1|) and reverse primer(8R) are illustrated. 
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                                                                                                           (cont. on next page) 

Figure 3.9. Complete illusturation of SNPs on ant. gene. Memecik accession’s forward 
sequence 8R_sample Memecik accession’s reverse sequence (in reverse 
complement format), and the gi|14550121|gb|AF384050.1 | reference 
sequence obtained from blast,NCBI (Olea europaea anthocyanidin 
synthase gene). Primers are marked by purple color, green and yellow 
markes show the homozygous alleles and sequence borders are shown by 
grey line. 
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Figure 3.9. (cont.)                                                                        (cont. on next page) 



 
 

42

 
Figure 3.9. cont 

 

 

 Forward 5’ 3’and reverse 3’ 5’primer of ant. gene are marked as purple line. 

SNPs are marked either green or yellow, green ones are genotypically homozygous with 

wild type (or ancestor allele), yellow ones are heterozygous genotype with altering 

allele. Below the alignment the possible alleles of the SNPs are written and the 

localization of SNP on gene is written above the alignment. Grey marked bases show 

the borders of the sequences, beyond these points sequences were not well determined 

from the chromatogram files. By looking the ‘ * ’ signs of alignment, sequence of 2 

were matched perfectly. 
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 Using the Biolign programme both forward and reverse sequences for each 

sample were compared with forward/ reverse sequence and SNPs were detected among 

11 samples. Putative SNPs are shown in Table 3.3. Sample numbers of accessions are 

given in Table 3.3, the name of numbered accessions and their localization can be seen 

in Table 2.3. The 17 identified SNPs and their localization in the genome are given in 

Table3.3. The numbers before the nucleotide change refer to localization of SNPs which 

were written in the downstream region of primers. 

 

Table 3.4. Sequence result based-nucleotidic substitutions and their localization for each   
 genotype 

 

 1 2 Probe1 

3 4 5 6 7 Probe2 

8 9 10 

11 

12 Probe3 

13 

14 

15 Probe4 

16 

17 

SN
Ps 

11 T/C
 

42 A
/C

 

96 A
/C

 

105 T/C
 

144 A
/G

 

151 A
/G

 

159 G
/T 

280 A
/C

 

233 C
/G

 

306 T/A
 

312 T/C
 

321 G
/C

 

377 G
/T 

415 C
/T 

450 A
/G

 

458 G
/A

 

495 C
/T 

G
enotye 

num
bere 

Nucleotidic Substitutions 

S1 T/C
 

C
/C

 

A
/C

 

C
/C

 

A
/G

 

G
/G

 

G
/G

 

G
/G

 

C
/A

 

T/A
 

T/C
 

G
/G

 

G
/G

 

C
/C

 

G
/G

 

G
/G

 

C
/C

 

 

S19 
T/T 

C
/C

 

A
/A

 

T/T 

A
/A

 

G
/G

 

G
/T 

G
/G

 

A
/A

 

T/T 

C
/C

 

C
/C

 

G
/G

 

T/T 

A
/A

 

G
/G

 

T/T 

 

S23 

T/C
 

A
/C

 

A
/C

 

T/T 

G
/A

 

G
/A

 

G
/G

 

G
/C

 

A
/C

 

T/A
 

T/C
 

G
/G

 

G
/T 

C
/C

 

G
/G

 

G
/G

 

C
/C

 

 

S24 

T/T 

A
/C

 

A
/A

 

T/T 

G
/G

 

G
/A

 

G
/G

 

G
/G

 

A
/A

 

A
/A

 

T/T 

G
/G

 

G
/G

 

C
/C

 

G
/G

 

G
/G

 

C
/C

 

 

S58 

T/C
 

C
/C

 

A
/C

 

T/C
 

G
/A

 

G
/G

 

G
/G

? 

G
/G

 

A
/C

 

T/A
 

T/C
 

G
/G

 

G
/T 

C
/C

 

G
/G

 

G
/A

 

C
/C

 

 

S75 

T/T 

A
/A

 

A
/A

 

T/C
 

G
/G

 

A
/A

 

G
/G

 

G
/G

 

A
/A

 

A
/A

 

T/T 

G
/G

 

G
/G

 

C
/C

 

G
/G

 

G
/G

 

C
/C

 

 

S78 

T/T 

A
/C

 

A
/A

 

T/T 

G
/G

 

A
/G

 

G
/T 

G
/G

 

A
/A

 

A
/T 

T/C
 

G
/G

 

G
/G

 

C
/T 

G
/A

 

G
/G

 

C
/T 

 

S94 

T/T 

C
/C

 

A
/A

 

T/T 

G
/G

? 

G
/G

 

G
/G

 

G
/G

 

A
/A

 

A
/T 

T/C
 

G
/C

 

G
/G

 

C
/T 

G
/A

 

G
/G

 

C
/T 

 

S95 

T/C
 

A
/C

 

A
/C

 

T/C
 

G
/A

 

G
/A

 

G
/T 

G
/C

 

A
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 Ambiguous nucleotides were written with red colour in Table3.3 using results of 

sequence alignment. We could not find one SNP to separate the Memecik accession 

from others.  For this reason, we designed 4 different SimpleProbe which were located 

on the 42 nd 159th 321th 450nd nucleotide of the gene to use in combination. 

The probes were designed with regard to the Tm of probe and  primer and possible loop 

formation by Roche Company using the LCPDS2 program. Probes and primer 

localization on the Ant. gene region are illustrated in Figure 3.11. 
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                                                                                                           (cont. on next page)              

Figure 3.10. Probe & primer sequences and illustration on the gene 
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Figure 3.10. (cont.)                                                          46 
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On the gene illustration, deep blue arrows and grey shading mark the primers while 

orange arrows and yellow shading mark 3’-FL labeled probes and blue arrows and blue 

shading were adduced the 5’-LC labeled probes. Red arrows, yellow shaded or red 

boxes were used to locate the position of TaqMan probes (SimpleProbe). 

 

3.2.3.2. Genotyping Using the Designed Four Probes on  LightCycler 
480 

 
After we performed the detection of SNPs based on sequence results and 

designed the proper probes, the genotyping was done using the probes on real-time-PCR 

to separate Memecik accession among Turkish olive cultivars. According to the real 

time-PCR working principle, strong interaction between probe and PCR product result 

in higher Tm ˚C, so we saw the high Tm for specific interaction of probes with PCR 

products and we assumed that samples which had peaks for higher melting ˚C were wild 

type. The peaks for probe1 (on the 42nd nucleotide) are illustrated in the Figure 3.12. 

 

 
 

Figure 3.11. Real time PCR results of probe42 
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Three genotypes are illustrated in Figure 3.12. Green line shows the Memecik 

accessions which has 2 peaks at 56˚C and 63˚C. This means Memecik accession has A 

allele (at 63 ˚C) and C allele (at 56 ˚C). The 2 red lines show a different sample, one of 

them has only A allele and the other one has only C allele.  

As I mentioned before, the higher melting temperature is seen at higher 

temperature. Therefore, for genotyping, melting peaks were used. Based on the 

principle of this analysis, the higher temperature peak was wild types and the lower 

peaks were from the mutants and if there were two peaks for one sample they were 

classified as heterozygous because one of DNA peaks was from the wild type and the 

other one was mutant allele. In Table 3.4., probes, the nucleotide assumed as wild type,  

complementary nucleotides, and their melting temperatures (˚C ) are listed. 

 

Table 3.5. Probe-Tm based nucleotide analysis 
 

Probe localization, 
nucleotide substitution 
and its name 

Arbiter nucleotide for 
designing probe  
  

Complementer 
nucleotide (probe 
binds this nucleotide) 

Melting temperatures  
and alleles 

42, A/C , OL1SpA 
T A 

High temp.(63 ˚C)→A (wild type) 

Low temp.(56 ˚C)→C (mutant) 

159, G/T, OL2SpT 
T A 

High temp.(62˚C) →T. (wild type) 

Low temp.(49˚C)→ G (mutant) 

321, G/C, OL3Sp G 
 C G 

High temp.( 59˚C)→G (wild type) 

Low temp. (49˚C)→C (mutant) 

450, A/G, OL4SpG 
C G 

High temp.(65˚C) →G (wild type) 

Low temp.(57˚C)→A (Mutant) 

 

We tried our four probes on all accessions and probe-based results are given in 

Table 3.5. Also the expected results are included in this table and marked with ‘•’ 

symbol. 
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Table 3.6. Real time PCR results and sequence results of the probe binding regions 
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To exhibit nucleotides which were detected with sequence analysis and compare 

with real-time PCR results, Table 3.5 was prepared can be explained by the following 

comments. 
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*1→ As to sequence analysis, there could be C/C but there was T with noise doubt on    

reverse sequence.. 

*2→ T/T on real time PCR but there was doubt on sequence analysis with noise doubt. 

*3→ G/G without artifact on sequence analysis. 

*4→ There was G peak clearly on sequence analysis with artifact T base doubt.  

*5→ Clearly G/G there were A and T base as noise but not C. 

*6 → As to forward sequence there was C base like noise 

*7 → It was clearly G/G. 

*8 → G/G sequences with A and C artifacts. 

Therefore, we have tried four probes. We separated the accessions which  

were numbered 1(Trabzon Yağlık), 19 (Samsun Tuzlamalık), 58 (Eğriburun-Antep) and  

94 (Memecik) from the others by probe1 (on 42th nucleotide).  

Using probe2 (on the 159 th nucleotide), 94 (Memecik), 78 (Erkence) were 

determined to fall into the same group. Probe3 located on 312nd separated 94(Memecik), 

23(Erdek Yağlık), 58 (Eğriburun-Antep), 78 (Erkence), 96 (Kiraz) accessions from the 

rest and the 4th probe separated  genotype 94 (Memecik), 58 (Eğriburun-Antep) 78 

(Erkence) which carried G/A alleles. Our first aim was to find a single probe to 

determine Memecik accessions among the others.  

However we could not find the Memecik-specific SNP so we designed more 

than one probe to make a diagnostic combination. According to our result, if we used 

159th probe and 42nd probe one after another only Memecik accessions would give C/C 

alleles for 42th probe and G/T alleles for 159th probe as shown in Table 3.6. 

 

Table 3.7. Genotypes whcih have the same alleles 
Genotype Probe 42 Genotype Probe 

159 

Genotype Probe 

321 

Genotype Probe 

450 

1 C/C 78 G/T 23 G/C 58 G/A 

19 C/C 94 G/T 58 G/C 78 G/A 

58 C/C   78 G/C 94 G/A 

94 C/C   94 G/C   

    96 G/C   

 

  

According to the results we determined Memecik accessions among the 

sequenced accessions using two probes simultaneously. But when we examined all 
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cultivars (66 Turkish accessions and 3 outgroups)  without previous sequence 

knowledge and comparison, we found more than one sample which had the same 

mutations at the same SNP, so the probe combination was not useful to trace the 

Memecik accessions among all Turkish cultivars (data not shown). 

 Also, Trabzon Yağlık accession gave the A/A alleles by probe450 so, it is 

separated from the rest sequenced accessions by one step and then, Probe450 was 

applied to 66 Turkish accessions and 3 outgroups as a result, only Trabzon Yağlık 

accession gave the A/A alleles among 69 accessions. In other words, we developed SNP 

marker to trace Trabzon Yağlık accessions in olive oil. 
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CHAPTER  4 

 

CONCLUSIONS 

 
 Olive accessions in Turkey are named based on their phenotypic features but we 

know the environment effect on phenotype so visually selection and breeding may 

possibly cause mislabeling of them. In addition, there is no concern to breed different 

olive accessions which have special taste or low acidity by Turkish agriculturists. 

Anatolia is called the origin of olive trees however no Turkish accession stands in the 

forefront for olive oil in the world. Maybe this is because most producers mix the olive 

before pressing and there is no specific taste for one accessions. 

 To resolve some of these issues firstly we tried to characterize the Turkish olive 

cultivars by using SSR and SRAP markers. We drew trees for each marker system and 

nearly the same clusters were found. 13 SSR marker were used to determine the 

diversity and the tree was scaled from 0.45 (min.) to 0.90 (max.) similarity while the 

SRAP marker–based tree had 0.66. minimum similarity. This difference is explained by 

the conservative nature of SRAP markers which amplify open reading frames instead of 

microsatellite regions like SSR markers. The distance matrix of two marker was 

compared to see the correlation and it was found to be low as expected because SRAP 

markers calculate the closer relationship among cultivar. In both trees, nearly the same 

accessions were found to be most diverged from the majority of Turkish olive 

accessions. To support the data, ordination test was performed and it gavee 2-D matrix 

comparison results similar to what we expected based on dendrogram results.  

To develop a traceability test for Memecik oil, we sequenced the 11 olives which are 

exported as oil and found the single nucleotide polymorphisms and then designed the 

SimpleProb to use melting curve analysis. We separated the Memecik accession from 

the other important exported olives. Also we performed the analysis for all cultivars but 

there were other accessions which had the same single nucleotide polymorphisms as 

Memecik. This was expected because it is known that growers may carry olives from 

region to another regions where a different phenotype may be seen because of 

environment effects. As a result the olive may be renamed over time but still retain high 

genetic similarity with the original cultivar. Also, we found Trabzon Yağlık accession 
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specific single nucleotide substitution called as probe4 (probe450) for 11 exported 

accessions and also we applied this probe to all cultivar and only Trabzon Yağlık gave 

us the A/A alleles. Therefore, probe4 (probe450) can be used to determine Trabzon 

Yağlık accession as one step SNP marker. 
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