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ABSTRACT

HIGHER CURVATURE GRAVITY IN LARGE EXTRA DIMENSIONS:

PHENOMENOLOGICAL IMPLICATIONS

This thesis is devoted to a detailed study of the higher curvature gravity and its

phenomenological implications in large extra dimensions. This work is intended as a dis-

cussion of effective interactions among brane matter induced by modifications of higher

dimensional Einstein gravity via the replacement of Einstein-Hilbert term with a generic

function f(R) of the curvature scalarR.

In this work, following the introductory chapters on extra dimensions and higher

curvature gravity in large extra dimensions, we derive the graviton propagator and then

we analyze impact of virtual graviton exchange on interactions among brane matter. We

find that f(R) gravity effects are best probed by high-energy processes involving massive

gauge bosons, heavy fermions or the Higgs boson. We perform a comparative analysis

of the predictions of f(R) gravity and of Arkani–Hamed, Dimopoulos and Dvali (ADD)

scenario, and find that the former competes with the latter when f ′′(0) is positive and com-

parable to the fundamental scale of gravity in higher dimensions (Demir and Tanyıldızı

2006). In addition, we briefly discuss graviton emission from the brane as well as its

decays into brane-localized matter and we find that they hardly compete with the ADD

expectations.

Consequently, we discussed that possible existence of higher-curvature gravita-

tional interactions in large extra spatial dimensions opens up various signatures to be

confronted with existing and future collider experiments.
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ÖZET

UZUN EK BOYUTLARDA YÜKSEK EĞRİLİKLİ ÇEKİM:

FENOMENOLOJİK UYGULAMALAR

Bu tez, uzun ek boyutlarda yüksek eğrilikli çekimin ve onun fenomenolojik uygu-

lamalarının ayrıntılı bir çalışmasına adanmıştır. Bu tez, Einstein-Hilbert terimindeki

eğrilik skaleri R yerine R’nin bir genel fonksiyonu olan f(R)’nin konulması yoluyla

yüksek boyutlu Einstein kütleçekiminin değiştirilmesiyle oluşan, zar maddeleri arasındaki

etkin etkileşimlerin bir tartışması olarak tasarlanmıştır.

Bu çalışmada, ek boyutlarla ve uzun ek boyutlarda yüksek eğrilikli çekimle ilgili

bölümleri takiben, graviton yayıcıyı türettik ve daha sonra parçacık etki- leşimlerindeki

sanal graviton alışverişinin gücünü çözümledik. f(R) kütleçekim etkilerinin, kütleli ayar

bosonlarını, ağır fermionları ya da Higgs bosonunu içeren yüksek-enerji yöntemleriyle

en iyi şekilde çözümlendiği sonucuna vardık. f(R) kütleçekim öngörülerinin ve

Arkani-Hamed-Dvali-Dimopoulos (ADD) senaryosu tahminlerinin karşılaştırmalı bir

çüzümlemesini canlandırdık ve f ′′(0) artı değerli ve yüksek boyutlardaki kütleçekiminin

temel ölçeğiyle karşılaştırılabilir olduğunda, birincisinin sonrakiyle çekiştiğini bulduk

(Demir ve Tanyıldızı 2006). Ayrıca, gravitonun zarda lokalize maddeye bozunumunun

yanısıra zardan graviton yayılmasını da kısaca tartıştık ve bunların ADD beklentileriyle

hemen hemen hiç çekişemediğini bulduk.

Son olarak uzun ek uzaysal boyutlarda yüksek eğrilikli kütleçekim etki-

leşimlerinin olası varlığının günümüzdeki ve gelecekteki çarpıştırıcı deneylerinde

karşılaşabileceğimiz çeşitli işaretler sunduğunu tartıştık.
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CHAPTER 1

INTRODUCTION

Problem of extra dimensions has been of great importance in high energy physics

during the last decade since this framework has given a new solution to the Higgs mass

problem without any contradiction with the expectations of physics below 1 TeV.

In this work, first, we step to explain what the extra dimensions are, then we

clarify the Kaluza–Klein approach to the unification of electromagnetism and gravitation,

and finally we emphasize the way that physicists prompt to think about, using the large

extra dimensions, to solve the Higgs mass problem.

The relative feebleness of gravity with respect to the weak force and its stability

under quantum fluctuations, the gauge hierarchy problem, has been pivotal for introduc-

ing a number of ’new physics’ models to complete the standard electroweak theory (SM)

above Fermi energies. The idea (Witten 1996, Horava and Witten 1996a, Horava and Wit-

ten 1996b, Antoniadis 1990) that the scale of quantum gravity can be much lower than the

Planck scale, possibly as low as the electroweak scale itself (Lykken 1996, Arkani–Hamed

et al. 1998, Arkani–Hamed et al. 1999) (see also the recent standard-like models found in

intersecting D-brane models (Cremades et al. 2002, Kokorelis 2004)) since this extreme

is not excluded by the present experimental bounds (Long et al. 1999, Long and Price

2003), has opened up novel lines of thought and a number of phenomena which possess

observable signatures in laboratory, astrophysical and cosmological environments.

The basic setup of the Arkani–Hamed–Dimopoulos–Dvali (ADD) scenario

(Arkani–Hamed et al. 1998, Arkani–Hamed et al. 1999) is that (1+3)–dimensional uni-

verse we live in is a field-theoretic brane (Rubakov and Shaposhnikov 1983) which traps

all flavors of matter except the SM singlets e.g. the graviton and right-handed neutrinos.

As long as the surface tension of the brane does not exceed the fundamental scale MD of

D–dimensional gravity, at distances � 1/MD the spacetime metric gAB remains essen-

tially flat. In other words, for singlet emissions (from brane) with transverse (to brane)

momenta |~pT | � MD the background spacetime is basically Minkowski. Therefore, it is

admissible to expand D–dimensional metric about a flat background

gAB = ηAB + 2M
1−D/2
D hAB (1.1)
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where ηAB = diag (1,−1,−1, · · · ,−1) and hAB are perturbations (see Chapter 4 and

Sec. 5.2). The gravitational sector is described by Einstein gravity

SADD =

∫
dDx

√
−g
{
−1

2
M

D−2

D R+ Lmatter (gAB, ψ)

}
(1.2)

where ψ collectively denotes the matter fields localized on the brane. There are various

ways (Arkani–Hamed et al. 1998, Arkani–Hamed et al. 1999) to see that the Planck scale

seen on the brane is related to the fundamental scale of gravity in higher dimensions via

MPl =
√
VδM

1+δ/2

D (1.3)

which equals (2πR)1/2M
1+δ/2

D when δ ≡ D−4 extra spatial dimensions are compactified

over a torus of radius R (see Chapter 4). Obviously, larger the R closer the MD to the

electroweak scale (Arkani–Hamed et al. 1998, Arkani–Hamed et al. 1999). Experimen-

tally, size of the extra dimensions, R, can be as large as a small fraction of millimeter

(Long et al. 1999, Long and Price 2003), and thus, quantum gravitational effects can al-

ready show up at experimentally accessible energy domains provided that the strength of

gravitational interactions on the brane drives from higher dimensional gravity as in (1.3).

Upon compactification, the higher dimensional graviton gives rise to a tower of massive

S, P and D states on the brane, and they participate in various scattering processes involv-

ing radiative corrections to SM parameters, missing energy signals as well as graviton

exchange processes. These processes and their collider signatures have been discussed in

detail in seminal papers (Giudice et al. 1999, Han et al. 1999).

The ADD mechanism is based on higher dimensional Einstein gravity with met-

ric (1.1). Given the very fact that general covariance does not forbid the action den-

sity in (1.2) to be generalized to a generic function f
(
R, �R, ∇AR∇AR, RABRAB,

RABCDRABCD, . . .
)

of curvature invariants, in this work we will derive and analyze ef-

fective interactions among brane matter induced by such modifications of higher dimen-

sional Einstein gravity, and compare them in strength and structure with those predicted

by the ADD mechanism. The simplest generalization of (1.2) would be to consider, as we

will do in what follows, a generic function f(R) of the curvature scalar. Such modified

gravity theories are known to be equivalent to Einstein gravity (with the same fundamental

scale) plus a scalar field theory with the scalar field

φ = M
(D−2)/2

D

√
D − 1

D − 2
log

∣∣∣∣ ∂f∂R
∣∣∣∣ (1.4)
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in a frame accessible by the conformal transformation gAB → (∂f/∂R)gAB (Barrow and

Cotsakis 1988, Kalara et al. 1990, Maeda 1989, Magnano and Sokolowski 1994). There-

fore, generalized action densities of the form f(R) are equivalent to scalar-tensor theories

of gravity, and thus, matter species are expected to experience an additional interaction

due to the exchange of the scalar field φ (Brans and Dicke 1961). This is the fundamental

signature of f(R) gravity compared to Einstein gravity for which simply f(R) = R.

Though remains outside the scope of this work, see the discussions of Lovelock higher-

curvature terms in (Rizzo 2005a, Rizzo 2005b).

In this work we study how f(R) gravity influences interactions among brane mat-

ter and certain collider processes to observe them. In Sec. 5.2 below we derive graviton

propagator and describe how it interacts with brane matter. Here we put special emphasis

on virtual graviton exchange. In Sec. 6.1 we study a number of higher dimensional op-

erators which are sensitive to f(R) gravity effects. In Chapter 6 we briefly discuss some

further signatures of f(R) gravity concerning graviton production and decay as well as

certain loop observables on the brane. Consequently, in Chapter 7 we conclude.

3



CHAPTER 2

EXTRA DIMENSIONS

There is no compelling reason to claim that spacetime is four and only four di-

mensional. It is actually a matter of system’s energetics to decide on dimensionality of

spacetime. A butterfly walking on a surface with jelly feels only a two–dimensional space

plus time. If it is energetic enough, however, it can escape from the surface and fly away.

In this case it starts feeling a 3–dimensional space plus time. It is in this sense that extra

dimensions can indeed exist but we may not feel them due to insufficient energy budget

we have. Therefore, extra dimensions can exits yet they can be too small to sense by

low-energy phenomena.

The surface with jelly mentioned above is an imperfect analogy of the concept of

”brane”. Brane localizes sources of all the force fields we know of . For example, electric

charges are localized on the brane and hence the electromagnetic field with its well-known

1/r2 behaviour.

In Nature, not all fields and forces are localized on a brane, however. In general

“neutral” (not necessarily in electromagnetic sense, i.e. neutral particle means the particle

transmits neutral current for its own symmetry law) particles cannot be localized on a

brane. Right-handed neutrino, being a complete singlet under Stantdard Model gauge

group, is free to wander in entire space. There is nothing special about brane for right-

handed neutrino. The other example is graviton which is a singlet under all gauge groups

and it is free to propagate in entire space. (Giudice et al. 1999 and Arkani–Hamed et al.

1998)

Consequently, we can drive entire matter as those that one localized on the brane

and those that are not. It is via singlets that we can probe the extra dimensions since

they are the fields which can sense the extra space off the brane. In particular, graviton

modulates gravitational interactions in 4– and higher–dimensional spacetimes.

Experimentally, we are certain that the gravity obeys Newtonian inverse–square

law down to distances 10−4cm (Long et al. 1999, Long and Price 2003). However, New-

tonian behavior can fail below these distances due to extra dimensional effects. This

constitutes motivation as well as phenomenological relevance of extra dimensions. Be-

4



sides, there have been various theoretical motivations for considering of extra dimensions.

These may be summarize as follows:

• Unification of gravity and gauge interactions of elementary particles was the first

scientific exploration which has been proposed by Kaluza (Kaluza 1921) and Klein

(Klein 1926) (see Chapter 3). The theory of Kaluza–Klein is based on such an idea

that gravitational and electromagnetic interactions may be descendants of a com-

mon origin. Therefore, unification of gravity and gauge interactions of elementary

particles is the first reason of why extra dimensions are studied.

• String theory, believed to be the correct quantum theory of gravity, cannot be for-

mulated consistently without introduction of extra dimensions. In M theory, for

instance, one formulates an 11–dimensional supergravity as the quantum theory of

gravity. Hence, the second reason to study extra dimensions stems from quantiza-

tion of gravity.

• In standard model of electroweak interactions (SM), the Higgs boson mass diverges

quadratically with the ultraviolate (UV) scale. Arkani–Hamed, Dimopoulos and

Dvali in 1998 (Arkani–Hamed et al. 1998, Arkani–Hamed et al. 1999, Antoniadis

et al. 1998), addressed this problem in the framework of large extra dimensions – as

large as experiments permit. Another solution was proposed by Randall and Sun-

drum in 1999 (Randall and Sundrum 1999, Dvali et al. 2000). Thus the third reason

for considering extra dimensions stems from solving the Higgs mass problem.

In the next chapter we will mainly dwell on unification of gravity and electromag-

netism i.e. Kaluza–Klein approach. In other chapters to follow, we will discuss large

extra dimensions motivated by quadratic divergence of the Higgs boson mass. Quantum

theory of gravity and string theory will not be discussed in this thesis work.
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CHAPTER 3

KALUZA–KLEIN APPROACH

We consider the higher–dimensional unification from the general relativity per-

spective rather than the particle physics side. Ideas of Nordström (Nordström 1914) in

1914 and independently Kaluza (Kaluza 1921), which were inspired by the close ties

between Minkowski’s 4D–spacetime and Maxwell’s unification of electricity and mag-

netism, were the first attempts to unify gravity with electromagnetism in an extra dimen-

sional theory. According to their approach, the universe is a four–dimensional hypersur-

face in a five–dimensional spacetime.

Kaluza demonstrated that general relativity, which is interpreted as a five–

dimensional theory in vacuum (i.e. 5GAB = 0), contains four–dimensional general

relativity in the presence of an electromagnetic field (i.e. Gµν = T EM
µν , where µ, ν =

0, 1, 2, 3). That is to say, all derivatives with respect to x4 in five–dimensional spacetime

vanish due to an unknown physical reason (the infamous cylinder condition). These as-

sumptions provide very useful tools for obtaining the field equations of both electromag-

netism and gravity from the five–dimensional spacetime successfully. Kaluza’s realization

shows that five–dimensional general relativity contains both Einstein’s four–dimensional

theory of gravity and Maxwell’s theory of electromagnetism. The cylinder condition,

which he imposed as an artificial restriction on the coordinates, barred the direct appear-

ance of the fifth dimension in the laws of physics.

On the other hand, Klein’s idea (Klein 1926a, Klein 1926b) modifies Kaluza’s

five–dimensional scheme by introducing ’compactified extra dimension’ in that x4–

independence of physical phenomena in 4D is attributed to smallness and periodicity

of x4. In other words, his contribution was to make Kaluza’s restriction less artificial

through the compactification of the fifth dimension by suggesting a plausible physical ba-

sis for the theory. In this sense, extra spatial dimensions are thought to be curled-up, or

compactified. Going back to the example with the butterfly in Chapter 2, let us roll up the

jelly surface. The butterfly then starts crawling in the direction of the curvature. It will

eventually come back to the same point it started from. According to compactified extra

dimensional theories, we live in a universe where our three familiar spatial dimensions

6



are nearly flat, but there are additional dimensions which are curled-up very tightly so

that they have an extremely small radius.

According to the gauge-invariant point of view, Kaluza–Klein’s compactification

process effectively means that the isometries of the extra space, used in constructions

where one space is embedded in another space, such as rotational invariance, appears

as the continuous Kaluza–Klein invariance in 4–dimensions (see figure 3.1). Hence, an

electromagnetic field appears as a vector gauge field in 4–dimensions.

Figure 3.1. Full theory: M4 × S1 with rotational invariance on S1. In 4D: A tower

of Kaluza-Klein levels with U(1) invariance corresponding to S1 invariance along extra

dimension. Electromagnetic gauge symmetry is explained as a geometric symmetry of

five–dimensional spacetime.

3.1. Kaluza’s Approach to Higher–Dimensional Unification

Kaluza unifies gravity with Maxwell’s unification of electricity and magnetism,

applying Einstein’s general theory of relativity. Kaluza’s unification is an application

of Einstein’s general theory of relativity to a five–dimensional spacetime manifold. The

five–dimensional Einstein equations are derived, by varying the five–dimensional Einstein

action:

S = − 1

16π 5G

∫ √
− 5g 5R d4x dy (3.1)

where 5G is the five–dimensional gravitational constant.

Then the Einstein equations in 5D–spacetime are defined by:

5GAB ≡ 5RAB −
1

2
5gAB

5R = 0 (3.2)

7



where 5GAB is the five–dimensional Einstein tensor, 5RAB is the five–dimensional Ricci

tensor, 5R is the five–dimensional Ricci scalar and 5gAB is the five–dimensional metric

tensor.

The absence of an energy-momentum tensor implies the absence of the matter,

which in turn becomes the first assumption of Kaluza in 5D–spacetime. The assumption

is that the space in higher dimensions is empty.

The five–dimensional connection coefficients and Ricci tensor in terms of the five–

dimensional metric are defined as:

5ΓCAB =
1

2
5gCD

(
∂A

5gBD + ∂B
5gAD − ∂D

5gAB
)

(3.3)

and

5RAB = ∂C
5ΓCAB − ∂B

5ΓCAC + 5ΓCAB
5ΓDCD − 5ΓCAD

5ΓDBC (3.4)

Following Kaluza let’s consider five–dimensional Riemanian metric in a special

form:

5gAB =

 gµν + κ2φ2AµAν κφ2Aµ

κφ2Aν φ2

 (3.5)

where κ is a constant multiplicative factor in the action, Aα is the electromagnetic poten-

tial and φ is a scalar field.

After that, by applying the cylinder condition as the third assumption of Kaluza’s

unification approach, all derivatives with respect to the fourth spatial dimension are

dropped. Then, using the field equations (3.2), Ricci tensor (3.4) and gravitational field

(3.5) in five-dimensional representation, the corresponding field equations (Lessner 1982,

Thiry 1948) are found:

Gµν =
κ2φ2

2
T EM
µν − 1

φ
[∇µ (∂νφ)− gµν�φ]

∇µF[µ4] = −3
∂µφ

φ
F[µ4] , �φ =

κ2φ3

4
F44F

44 (3.6)

where

Gµν ≡ Rµν −
1

2
gµνR (3.7)

is the four–dimensional Einstein tensor,

T EM
µν =

1

4
gµνFλρF

λρ − F λ
µFνλ (3.8)

8



is the electromagnetic energy-momentum tensor,

Fµν = ∂µAν − ∂νAµ (3.9)

is the field strength tensor of the theory, and the scaling factor κ is identified as 4
√
πG

in terms of the four–dimensional gravitational constant. In addition, there are fifteen in-

dependent Einstein equations because of the fact that the chosen five–dimensional metric

is a symmetric tensor. Under these conditions, if the scalar field φ is chosen as a con-

stant over all spacetime manifold, the Einstein tensor and the unified Maxwell equations

become, respectively,

Gµν = 8πG φ2T EM
µν , ∇µFµν = 0 (3.10)

in four–dimensions. Indeed, the same thing has been done by some authors in subsequent

work employing special coordinate systems (Kaluza 1921). The equations (3.10) are orig-

inally obtained by Kaluza–Klein, where φ = 1. However, as FµνF µν = 0, the condition

of constant φ is only consistent with the equation

�φ =
κ2φ3

4
F44F

44 (3.11)

in the equation (3.6), as it was first pointed out by Jordan (Bergmann 1948, Jordan 1947)

and Thiry (Thiry 1948).

The same results can be obtained by variation of the action which includes only

four–dimensional Lagrange density. The Lagrange density can be obtained considering

the cylinder condition:

S =

∫
d4x
√
−g φ

(
− R

16πG
− 1

4
φ2FµνF

µν − 2

3

1

16πG

∂µφ∂µφ

φ2

)
(3.12)

where

5G = G

∫
dy (3.13)

is five–dimensional gravitational constant in terms of Newton’s gravitational constant.

Under the restriction of φ being a constant, the first two terms of the action (3.12) are the

Einstein-Maxwell action, which is scaled by φ, for gravity and electromagnetic radiation.

The third term is the action for the Klein-Gordon field equation with a massless scalar

field.
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The fact that action (3.1) leads to (3.12), or equivalently, the field equations (3.2)

without a source lead to (3.6) with a source, shows that the four–dimensional matter or

the electromagnetic radiation is generated from the geometry.

To complete the meaning of Kaluza–Klein’s ideas, we should emphasize the sit-

uation for vanishing Aµ = 0. If φ is a variable (rather than a spacetime constant) then

Kaluza’s five–dimensional theory contains an additional scalar field besides electromag-

netism. This would be no more than a choice of coordinates and would not entail any loss

of algebraic generality. Conversely, with the cylinder condition, by working in a special

set of coordinates, the theory is no longer invariant with respect to five–dimensional co-

ordinate transformations. As a consequence, Aµ = 0 becomes a physical restriction, and

it restricts us to the gravi-scalar sector of the Kaluza–Klein’s unification.

This is acceptable in the context which entails homogeneous and isotropic situa-

tions. For instance, this case could occur when off-diagonal metric coefficients pick up

preferred directions.

3.2. Klein’s Compactification Mechanism

Klein maneuvered the idea that extra dimensions do exist as new spatial coordi-

nates but they do not play a role in 4D physics. He did this with two assumptions: First

assumption is that the extra spatial dimension has a circular topology (S1) and second as-

sumption is that it is small, that is, one needs considerable amount of energy to detect or

feel them. Under the first assumption, any quantity f(xµ, y), where xµ = (x0, x1, x2, x3)

and y = x4, turns out to be a periodic function of extra spatial dimension. Therefore,

f(xµ, y) → f(xµ, y + 2πR) where R is the radius of the extra space S1. Here, from the

point of view of Kaluza–Klein, f is a generic field in five–dimensional spacetime. Due to

periodicity condition f admits a Fourier series expansion

f(xµ, y) =
+∞∑

n=−∞

f (n) (xµ) exp
[
i
n y

R

]
(3.14)

from which we infer that:

• The lowest mode n = 0 (the so–called zero–mode) is independent of y. This infer-

ence stems directly from the compact nature of the extra space i.e. S1 on which the

extra dimension y extends.

10



• Higher modes n 6= 0 (the so–called higher harmonics) depend explicitly on y with

a wavelength (or equivalently inverse–mass, in natural units) λ(n) = R/n for n–th

harmonic.

• The xµ–dependence of f(xµ, y) does not exhibit any periodicty at all because these

macroscopic dimensions are not compact; they extend to infinity in both directions.

Thus, the energy spectrum of f(xµ, y) in four–dimensional spacetime can be ex-

tracted via Fourier intergral rather than Fourier series, considering the case in this

item the fact depends on boundary conditions for field f(xµ, y).

It is clear that first item above, the one about the zero–mode, comprises Kaluza’s cylinder

condition. The second item, the other about the non–zero–modes, tells us that higher

harmonics can be hidden from present–day experiments as they may not have reached yet

the energies ∼ (n/R) which is the main reason behind assuming radius R to be small.

Therefore, components of metric can be Fourier-expanded as

gµν(x, y) =
+∞∑

n=−∞

g(n)
µν (x) exp

[
i
n y

R

]
, φ(x, y) =

+∞∑
n=−∞

φ(n) exp
[
i
n y

R

]

Aµ(x, y) =
+∞∑

n=−∞

A(n)
µ (x) exp

[
i
n y

R

]
(3.15)

where the (n) is the nth Fourier mode. Obviously, the zero–modes of gµν(x, y), Aµ(x, y),

φ(x, y) don’t carry a momentum into the extra space. However, every other mode in

the Kaluza–Klein theory carries a momentum of the order |~n|/R, through the extra di-

mension. If the radius of the extra dimension is small enough, the x4 component of the

momenta becomes sufficiently large even for n = 1.

The zero–modes of gµν(x, y) and Aµ(x, y) are nothing but the fields which have

already been established by experiments, that is, they are the fields which are strictly

bound to live in M4. On the other hand, their higher harmonics do have a sinusoidal

extension into the extra space with a wavelength decreasing with increasing Kaluza–Klein

index, n. For instance, to be able to disentangle effects of g(9)(x) on a physical process it

is necessary to have a collider with a characteristic energy ∼ 9/R apart from additional

effects that might come from strength of its coupling to colliding matter species.

The radius R is taken usually equal to the Planck length `Pl ∼ 10−35 m because it

is both a natural value and small enough to guarantee that the mass of any n 6= 0 Fourier

modes lies beyond the Planck mass MPl ∼ 1019 GeV.
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In the higher–dimensional unification, in the sense of metric decomposition (3.5)

and action (3.12) there are three key features (Overduin 1997, Puliçe 2006):

• The electromagnetic and gravitational fields are contained in the higher dimensional

Einstein tensor (4+δ)GAB, that is, in the metric and its derivatives. Therefore, there

is no need to have an explicit source of energy and momentum (4+δ)TAB. In this

sense, matter species in four–dimensions, follow from pure geometry.

• The simple S1 compactification illustrated above has extension to more extra di-

mensions assuming extra dimensions are curled up to form a compact manifold.

Having motivated by use and possible need to extra dimensions via Kaluza-Klein

approach to unifying gravity and electromagnetism, we now turn to another possible ap-

plication of extra dimensions, that is, their role in restricting existing gauge theories at the

electroweak scale.
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CHAPTER 4

EINSTEIN GRAVITY IN LARGE EXTRA

DIMENSIONS

In this chapter our goal is to provide an overview of Einstein’s theory of gravitation

in spacetimes with number of extra dimensions δ. The physical interest to this stems from

(Antoniadis et al. 1998, Arkani-Hamed et al. 1998) which have shown that large extra

dimensions (as large as experimental sensitivity to possible failure of Newtonian law of

attraction permits) can provide a novel solution for taming the quadratic UV-sensitivity

of the Higgs boson mass. The other famous solution to this problem, not mentioned in

length in this thesis work, refers to supersymmetry which protects Higgs boson mass

against quadratic divergences just like chiral symmetry does fermion masses. Therefore,

large extra dimensions, as proposed originally by Arkani-Hamed, Dvali and Dimopoulos,

provide a novel way of taming the Higgs mass, and predicts a number of phenomena not

expected in supersymmetric theories.

In the presence of extra dimensions, law of gravitational attraction between mas-

sive bodies is expected to deviate from 4-dimensional structure at distances comparable

to characteristic size of the extra dimensions. In fact, it turns out that we know very well

how gravity works at large distances. However, no one has tested how well known laws

of gravitational attraction works at distances less than about 1 mm. It is complicated to

study gravitational interactions at small distances. Objects positioned so close to each

other must be very small and very light, so their gravitational interactions are also small

and hard to detect (due to several noise sources such as electromagnetic effects or van

der Waals forces). While a new generation of gravitational experiments that should be

capable of probing Newton’s law at short distances (up to 1 micron) is under way, our

current knowledge about gravity stops at distances of the order of 1 mm. We currently

cannot say whether there are, or are not, possible extra dimensions smaller than 1 mm.

The fundamental novelty in ADD approach is to identify the electroweak scale

(∼ 1 TeV) with Newton’s constant of gravity (or fundamental scale of gravity) in higher

dimensions so that well-known Newton’s constant of gravitation (or Planck scale) in 4D

is just a derived concept, as detailed below. The most important issue is to relate New-
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ton’s constants of 4– and (4 + δ)–dimensional gravity theories. Following, the ADD

paper (Arkani-Hamed et al. 1999) we now provide two alternative ways to establish this

relation:

• The Einstein field equations follow from extremization of Eintein-Hilbert action

S4D =

∫
d4x
√
−g
{
−1

2
M2

PlR (x) + Lmatter
}

(4.1)

with respect to metric field gµν(x). This action describes relation between matter

distribution (whose lagrangian not shown here) and resulting gravitational field. It

remains stationary against fluctuations in metric field if Einstein field equations are

satisfied.

The analog of (4.1) in a higher dimensional spacetime reads as

S =

∫
d4xdδy

√
−g
{
−1

2
MD−2

D R (x, y)

}
(4.2)

where we separated coordinates pertaining to 4D (xµ, µ = 0, 1, 2, 3) from those

doing to extra dimensions (yi, i = 1, . . . , δ). Obviously, the curvature scalar is a

function of x and y. The difference from (4.1) is that every single field (metric and

suppressed matter fields) in the lagrangian density depends on both xµ and yi.

The details of integration over ~y in (4.2) depend on in what space ~y are taking val-

ues. In other words, geometry and topology of extra space are of prime importance.

Here, we follow ADD approach and consider the torus depicted in Fig. 4.1. The

Figure 4.1. Spacetime structure employed in ADD scenario.
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compactness of the extra space guarantees that there is a zero-mode for metric and

hence all geometrical fields. This enables one to make the reduction

S =

∫
d4x

∫ 2πR

0

dy1

∫ 2πR

0

dy2...

∫ 2πR

0

dyδ
√
−g
{
−1

2
MD−2

D R (x)

}
=

∫
d4x
√
−g
{
−1

2
MD−2

D (2πR)δRD (x)

}
(4.3)

by considering only the zero-mode. At this point, all one has to do is to compare

this very action with that of gravity in 4D, which gives

1

2
M2

Pl =
1

2
M δ+2

D (2πR)δ (4.4)

and hence

M2
Pl = M δ+2

D (2πR)δ . (4.5)

This result tells us that gravity in 4D proceeds with the well-known fundamental

constant MPl, and this very quantity is actually a derived one in that it is related to

volume of the extra space Vδ = (2πR)δ and fundamental scale of gravity in 4 + δ

dimensions, MD.

The basic claim of ADD scenario is that when MD ∼ 1 TeV one can find MPl

correctly for R ∼ 1 mm for relatively low values of δ.

• Another way to relate fundamental scales of gravity in 3D space and higher dimen-

sions proceeds via comparison of respective Newtonian laws of attraction. Indeed,

two bodies of masses m1 and m2 separated by a distance R attract each other via

F(3+δ) = GN(3+δ)
m1m2

Rδ+2

F(3) = GN(3)
m1m2

R2
(4.6)

in (3 + δ) and 3 dimensions, respectively.

This method is one of the easiest derivations, and is a trivial application of Gauss’

law. Let us compactify the new δ-dimensions yδ by making the periodic identi-

fication yδ ∼ yδ + L. Then assume that a point mass m is placed at the origin.

This situation can be reproduced in the uncompactified theory by placing ”mirror”

masses periodically in all the new dimensions. Of course, for a test mass at dis-

tances r � L from m, the ”mirror” masses make a negligibly small contribution to
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the force and we have the (3 + δ) dimensional force law. However, for r � L, the

discrete distance between the mirror masses cannot be discerned and they look like

an infinite δ spatial dimensional ”line” with uniform mass density. The problem is

analogous to finding the gravitational field of an infinite line of mass with uniform

mass per unit length, where Klein’s compactification and Gauss’ law give the an-

swer. Following exactly the same procedure, we consider a ”cylinder” C centered

around the δ dimensional line of mass, with side length l and end caps being three

dimensional spheres of radius r. We now apply the (3 + δ) dimensional Gauss law

which reads ∫
surface C

~F · ~dS = S(3+δ)GN(4+δ) ×Mass in C (4.7)

where D = 3 + δ

SD =
2πD/2

Γ
(
D
2

) (4.8)

is the surface area of the unit sphere in D spatial dimensions. Equating the two

sides, we find the correct 1/R2 force law and can identify

GN(4) =
S(3+δ)

(4π)δ
GN(4+δ)

Vδ
(4.9)

where Vδ = Lδ is the volume of compactified dimensions. This relation is identical

to (4.5) derived before.

The main lesson to be inferred from these two alternative methods of relating fundamental

scales of gravity in four and higher dimensions is that Planck’s constant MPl is a derived

quantity, and this depends exclusively on the compact nature of extra dimensions.

The purpose of this thesis work is not to review them. Rather, in what follows, an

analysis of gravitational theories with higher order curvature terms will be given.
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CHAPTER 5

HIGHER CURVATURE GRAVITY IN

LARGE EXTRA DIMENSIONS

The Einstein-Hilbert action from which Einstein field equations follow is based

on a lagrangian density linear in curvature scalar R. However, given that there is no

symmetry principle other than general covariance that governs structure of terms that

can contribute to action density one automatically realizes that Einstein-Hilbert term is

not necessarily unique. In other words, as far as general covariance is respected, any

combination of curvature tensors can and must be included in action density for a general

analysis of gravitational system. Therefore, a general action density involves not only

R but also a generic function f
(
R, �R, ∇AR∇AR, RABRAB, RABCDRABCD, . . .

)
of

curvature invariants. In this chapter we will discuss gravitational theories based on action

density f (R) rather thanR in large extra dimensions (an analysis of such theories in 4D

can be found in (Nunez and Solganik 2004)). More general structures involving invariants

constructed out of Riemann and Ricci tensors have been discussed in (Aslan and Demir

2006).

In analyzing f (R) theories of gravity, it is necessary first determine gravi–particle

content of the theory i.e. it is necessary first to identify propagating physical degrees of

freedom in the theory. Then, on the basis of these findings, one can establish a firm

analysis of particle spectrum and various scattering processes similar to ADD model.

5.1. Conformal Transformations

In this section we determine physical particle spectrum of f (R) gravity by a con-

formal transformation to reduce theory to Einstein gravity. The action of higher curvature

gravity theory is

S =

∫
dDx

√
−g
{
−1

2
M

D−2

D f (R) + Lmatter (gAB, ψ)

}
(5.1)

where ηAB = diag (1,−1,−1, · · · ,−1).
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A conformal transformation implies a local change of length scale. It means also

that the transformation is on the same event. The conformal transformations are realized

by multiplying metric by a local positive-definite function
(
eφ(x)

)2 of spacetime:

g̃AB(x) = e2φ(x)gAB(x) (5.2)

with inverse transformation

g̃AB(x) = e−2φ(x)gAB(x) . (5.3)

The main objective of this section, as will be seen below, is to find an appropriate scalar

(and dimensionless) function φ(x) such that geometrical part of (5.1) reduces to Einstein

gravity.

Before looking at how conformal transformations change the geometrical quan-

tities in spacetime, let us first show that a conformal transformation leaves light cone

invariant. We can do this by showing that null–curves remain invariant under conformal

transformations. Then if xA(λ) is a null curve with respect to gAB, it will also remain as a

null curve with respect to g̃AB. Reminding that a curve xA(λ) is null iff its tangent vector

d xA(λ)/d λ is null

gAB(x)
dxA(λ)

dλ

dxB(λ)

dλ
= 0 (5.4)

we find that

g̃AB(x)
dxA(λ)

dλ

dxB(λ)

dλ
= e2φ(x)gAB(x)

dxA(λ)

dλ

dxB(λ)

dλ
= 0 (5.5)

which guarantees that a null vector remains null under (5.2).

Under a conformal transformation connection coefficients change as

Γ̃CBD =
1

2
g̃CF (∂B g̃DF + ∂Dg̃FB − ∂F g̃BD)

=
1

2
ω−2gCF

[
2ω(∂Bω

2)gDF + 2ω(∂Dω
2)gFB − 2ω(∂Fω

2)gBD
]

+
1

2
ω−2gCF

[
ω2∂BgDF + ω2∂DgFB − ω2∂FgBD

]
= ω−1

(
δCD∂Bω + δCB∂Dω − gCFgBD∂Fω

)
+ ΓCBD (5.6)

where use has been made of ∇̃Aω = ∇Aω = ∂Aω and ω(x) = eφ(x). Thus

Γ̃CBD = ω−1
(
δCD∇Bω + δCB∇Dω − gCFgBD∇Fω

)
+ ΓCBD (5.7)
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which has the form

Γ̃CAB = ΓCAB + ∆C
AB (5.8)

where Γ̃CAB and ΓCAB are both non-tensors so that ∆C
AB is necessarily a tensor field. From

(5.7) we identify

∆C
AB = ω−1

(
δCB∇Aω + δCA∇Bω − gCDgAB∇Dω

)
(5.9)

so that Riemann tensor transforms as

R̃C
DAB = ∂AΓ̃CBD − ∂BΓ̃CAD + Γ̃CAEΓ̃EBD − Γ̃CBEΓ̃EAD

= RC
DAB +∇A∆C

BD −∇B∆C
AD + ∆C

AE∆E
BD −∆C

BE∆E
AD

(5.10)

or equivalently

R̃C
DAB = RC

DAB − 2
(
δCAδ

E
Bδ

F
D − δCBδ

E
Aδ

F
D + gDBδ

E
Ag

CF − gDAδ
E
Bg

CF
)
ω−1 (∇E∇Fω)

+ 4
(
δCAδ

E
Bδ

F
D − δCBδ

E
Aδ

F
D + gDBδ

E
Ag

CF − gDAδ
E
Bg

CF

+
1

2
gDAδ

C
Bg

EF − 1

2
gDBδ

C
Ag

EF
)
× ω−2 (∇Eω) (∇Fω) (5.11)

where we introduced ω(x) = eφ(x), for compactness of notation. As usual, contracting

first and third indices of R̃C
DAB one finds the Ricci tensor

R̃DB = RDB −
[
(D − 2)δEDδ

F
B + gDBg

EF
]
ω−1 (∇E∇Fω)

+
[
2(D − 2)δEDδ

F
B − (D − 3)gDBg

EF
]
ω−2 (∇Eω) (∇Fω) (5.12)

where δAA = D gives number of spacetime dimensions.

Further contraction of R̃DB with g̃DB yields the Ricci scalar

R̃ = ω−2
{
R− 2(D − 1)gABω−1 (∇A∇Bω)

− (D − 1)(D − 4)gABω−2 (∇Aω) (∇Bω)
}
. (5.13)

where ω−2 in front follows from use of inverse metric g̃DB.

Consequently, after conformal transformations, Einstein tensor takes the form

G̃AB = GAB − ω−1 (∇C∇Dω) (D − 2)
(
δCAδ

D
B − gABg

CD
)

+ ω−2 (∇Cω) (∇Dω) (D − 2)

[
2δCAδ

D
B +

1

2
(D − 5) gABg

CD

]
(5.14)
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which will serve as central object for transforming f (R) gravity to Einstein gravity.

This result must be compared with Einstein equation for f (R) gravity:

GAB = f ′ (R)RAB −
1

2
gABf (R) + (gAB�−∇A∇B) f ′ (R) (5.15)

which involves f (R) itself and its derivatives with respect to R and xA. Substitution of

this expression into (5.14) and enforcement of G̃AB into Einstein-Hilbert form yields the

correct transformation rule

gAB →
(
∂f(R)

∂R

)
gAB (5.16)

as also mentioned elsewhere (Kalara et al. 1990, Maeda 1989, Magnano and Sokolowski

1994). In fact, the scalar field φ(x) takes the form (now redefined to be a dimensionful

field)

φ = M
(D−2)/2

D

√
D − 1

D − 2
ln

∣∣∣∣ ∂f∂R
∣∣∣∣ (5.17)

which appears to be an additional physical degree of freedom in the theory and ∂f/∂R 6=

0 due to condition in 5.35. To see this in a clearer way, one notes that the original f (R)

gravity action (5.1) transforms into

S =

∫
dDx

√
−g̃
{
−1

2
M

D−2

D R̃+ gAB∇̃Aφ∇̃Bφ− Ṽ (φ)

}
(5.18)

where

Ṽ (φ) =
1

D

[(
∇̃φ
)2
(

1− D

2

)
− T

]
(5.19)

The action (5.18) describes Einstein gravity (with metric g̃AB plus a scalar field theory.

Consequently, (5.1) is equivalent to Einstein gravity plus a self-interacting scalar field

theory such that matter couplings are modified via the conformal transformation (5.16).

Consequently, f (R) gravity is made up of a massless graviton (as in Einstein gravity) and

a presumably massive scalar field φ with modified couplings between matter and gravity.

5.2. Graviton Propagator and Gravitational Interactions From f(R)

Gravity

In this section we will expand (5.1) into small perturbations around flat back-

ground and determine graviton propagator. Our results will confirm findings of previous
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section in that propagator will consist of a massless tensorial exchange atop a massive

scalar exchange.

We start with a derivation of equations of motion for f (R) gravity by extremizing

(5.1) with respect to variations in metric field gAB(x):

δS =

∫
dDx

√
−g
[
1

4
gABM

D−2

D f(R)− 1

2
gABLmatter +

δLmatter
δgAB

]
δgAB

+

∫
dDx

√
−g
[
−1

2
M

D−2

D RAB
∂f(R)

∂R
− 1

2
M

D−2

D gCD
δRCD

δgAB
∂f(R)

∂R

]
δgAB

=

∫
dDx

√
−g
[
1

4
gABM

D−2

D f(R)− 1

2
M

D−2

D RAB
∂f(R)

∂R

]
δgAB

+

∫
dDx

√
−g
[
−1

2
gABLmatter +

δLmatter
δgAB

]
δgAB

+

∫
dDx

√
−g
[
−1

2
M

D−2

D gCD
δRCD

δgAB
∂f(R)

∂R

]
δgAB (5.20)

where use has been made of

δ
√
−g = −1

2

√
−g gABδgAB . (5.21)

To proceed, we need to compute variation of connection coefficients with respect to gAB

to derive δRCD in the fifth line of (5.20).

The variation ofRC
DAB with respect to metric tensor can be derived by first varying

the connection coefficient with respect to metric, and then substituting into Riemann ten-

sor. However, arbitrary variations, δΓCBD, of the connection coefficients are tensors (they

are differences between two connection coefficients), and thus, variation of the Riemann

tensor can be arranged in terms of the covariant derivatives of δΓCBD:

∇A(δΓCBD) = ∂A(δΓCBD) + ΓCAEδΓ
E
BD − ΓEABδΓ

C
ED − ΓEADδΓ

C
BE (5.22)

so that variations of Riemann and Ricci tensors take the form

δRC
DAB = ∇A

(
δΓCBD

)
−∇B

(
δΓCAD

)
δRDB = ∇C

(
δΓCBD

)
−∇B

(
δΓCCD

)
(5.23)

whose substitution in (5.20) gives for the fifth line

δSfifth line =

∫
dDx

√
−g
{
−1

2
M

D−2

D gCDδRCD

}
∂f(R)

∂R

=

∫
dDx

√
−g
{
−1

2
M

D−2

D gCD
[
∇E

(
δΓEDC

)
−∇D

(
δΓEEC

)]} ∂f(R)

∂R

=

∫
dDx

√
−g
{
−1

2
M

D−2

D ∇A

[
gCD

(
δΓACD

)
− gCA

(
δΓEEC

)]} ∂f(R)

∂R
.
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At this step, using

δΓACD = −1

2

[
gEC∇D

(
δgEA

)
+ gED∇C

(
δgEA

)
− gCEgDF∇A

(
δgEF

)]
(5.24)

one finds

δSfifth line =

∫
dDx

√
−g
{
−1

2
M

D−2

D (gAB�−∇A∇B)
∂f(R)

∂R

}
(5.25)

where ∇A∇A = �.

Having done with geometrical sector, we now turn to matter lagrangian in (5.1).

As usual, its variation with respect to gAB yields the energy-momentum tensor of matter:

TAB = − 2√
−g

δ(
√
−gLmatter)
δgAB

= − 2√
−g

[
δ
√
−gLmatter
δgAB

−
√
−gδLmatter
δgAB

]
. (5.26)

Therefore, equation of motion for metric takes the form

f ′ (R)RAB −
1

2
f (R) gAB + (gAB�−∇A∇B) f ′ (R) = − TAB

M
D−2

D

(5.27)

where prime denotes differentiation with respect toR.

The equation of motion (5.27) does not tell much about the set-up we will use to

explore extra dimensions. The essence of the dynamics arises when we restrict energy

momentum tensor to

TAB = δδ(~y)δµAδ
ν
BTµν(z) (5.28)

which explicitly expresses the fact that entire matter is localized on a 3-brane situated

at the origin of extra space i.e. ~y = 0. In this expression, zµ stands for coordinates

on the brane. One notes that conservation of energy-momentum in (4 + δ) dimensions,

∇ATAB = 0, is guaranteed by conservation law on the brane ∇µTµν = 0.

Obviously, the equations of motion (5.27) reduce to Einstein equations when

f(R) = R. In general, for analyzing dynamics of small oscillations about a background

geometry, gAB = g0
AB with curvature scalar R0, f(R) must be regular at R = R0. In

particular, as suggested by (5.27), f(R) must be regular at the origin and f(0) must van-

ish (i.e. bulk cosmological constant must vanish) for f(R) to admit a flat background

geometry.
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For determining how higher curvature gravity influences interactions among the

brane matter, it is necessary to determine the propagating modes which couple to the

matter stress tensor. This requires expansion of the action density in (5.1) by using (1.1)

up to the desired order in small perturbations hAB:

gAB = ηAB + 2M
1−D/2
D hAB (5.29)

which proves to be a useful expansion as long as surface tension of brane does not exceed

fundamental scale of gravity in (4 + δ) dimensions:

TAB
M∗

� 1 . (5.30)

In other words, if matter energy-momentum is small enough we can interpret the curved

geometry expressed by gAB as a small folding of the flat background. Physically, matter

bends the spacetime, and non-flat spacetime influences matter in the form of gravitational

force.

In expanding the action (5.1) via (5.29) the zeroth order term vanishes by f(0) = 0

i.e. vanishing of the cosmological term. The terms linear in hAB cancel out by equations

of motion (5.27). The quadratic terms yield an effective action of the form

Sh =

∫
dDx

[
1

2
hAB(x)OABCD(x)hCD(x)− 1

M
(D−2)/2

D

hAB(x)T (x)AB

]
(5.31)

such that propagator of hAB(x), defined via the relation

OABCD(x)DCDEF (x, x′) =
1

2
δD(x− x′)

(
δEAδ

F
B + δEBδ

F
A

)
, (5.32)

takes the form (Demir and Tanyıldızı 2006)

−iDABCD(p2) = −
(

f ′(0) + 2f ′′(0)p2

(D − 2)f ′(0) + 2(D − 1)f ′′(0)p2

)
1

f ′(0)p2
ηABηCD

+
1

2f ′(0)p2

(
ηACηBD + ηADηBC

)
+

2f ′′(0)p2

(D − 2)f ′(0) + 2(D − 1)f ′′(0)p2

1

f ′(0)p4

(
ηCDpApB + ηABpCpD

)
+

(ξ − 1)

2f ′(0)p4

(
ηBDpApC + ηDApCpB + ηACpBpD + ηCBpDpA

)
+

2(D − 2)f ′′(0)p2

(D − 2)f ′(0) + 2(D − 1)f ′′(0)p2

1

f ′(0)p6
pApBpCpD (5.33)
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in momentum space, where

OABCD(p2) = f ′(0)
{(

−p2 +
p2

3ξ
− 2f ′′(0)

f ′(0)
p4

)
ηABηCD +

p2

2
(ηACηBD + ηADηBC)

+

(
−1

ξ
+ 1 +

2f ′′(0)

f ′(0)
p2

)
(ηCDpApB + ηABpCpD)

+

(
−1

2
+

1

2ξ

)
(ηBDpApC + ηDApCpB + ηACpBpD + ηCBpDpA)

− 2f ′′(0)

f ′(0)
pApBpCpD

}
. (5.34)

Here momentum pA refers to momentum in (4 + δ) dimensions. The factor of i in the

propagator follows from requirement of positive definite transition amplitude (Peskin and

Schröeder 1997).

The small perturbations hAB will henceforth be interpreted as gravitational wave

though we have not applied and will not apply at all any quantization procedure. The

reason for this ignorance is that one cannot directly quantize gravitational interactions as

in gauge forces (Peskin and Schröeder 1997); at each order of perturbation theory there

appear new types of divergences which cannot be included in a redefinition of tree-level

parameters of the theory, that is, theory is not renormalizable (Stelle 1977). However,

for analyzing certain processes involving tree-level hAB exchange the formalism at hand

suffices and we can call hAB to be graviton.

It is clear that

f ′(0) > 0 (5.35)

as otherwise all graviton modes become ghost (residues of various poles become nega-

tive). Therefore, if one is to prevent ghosty modes participating in physical processes it is

necessary to keep f ′(0) positive definite. The parameter ξ in (5.33) arises from the gauge

fixing term

Lg =
f ′(0)

ξ
ηAC

(
∂BhAB −

1

2
∂Ah

B
B

)(
∂DhCD −

1

2
∂Ch

D
D

)
(5.36)

added to the hAB action density in (5.31). The gauge-fixing term, as in gauge theories

(Peskin and Schröeder 1997), is needed for lifting degeneracy of system under diffeomor-

phism invariance.

In the expression above, f ′(0) is introduced to match the terms generated by Lg
with the ones in (5.31). The propagator (5.33) depends explicitly on the second derivative
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of f(R) evaluated at the origin, and it correctly reduces to the graviton propagator in Ein-

stein gravity (Giudice et al. 1999, Han et al. 1999) when f ′′(0) = 0 and f ′(0) = 1. The

specific choice ξ = 1 corresponds to de Donder gauge frequently employed in quantum

gravity. Obviously, one can probe f(R) with higher and higher precision by computing

higher and higher order hAB correlators. Indeed, for probing f ′′′′(0), for instance, it is

necessary to expand the action density in (5.1) up to quartic order so as to compute the

requisite four-point function. Rather generically, higher the order of correlators higher

the dimensions of the operators they induce. The propagator (5.33) induces a dimension-

8 operator via graviton exchange between two matter stress tensors (Giudice et al. 1999,

Giudice and Strumia 2003). On the other hand, four-point function induces a dimension-

16 operator via graviton exchange among four matter stress tensors.

The scattering processes which proceed with graviton exchange do exhibit new

features as one switch from ADD setup to f(R) gravity. Indeed, single graviton ex-

change influences various processes including 2 → 2 scatterings, particle self-energies,

box diagrams and as such. The tree level processes are sensitive to virtual states associ-

ated with the propagation of graviton in the bulk. On the other hand, loop level processes

involve particle virtualities both on the brane and in the bulk. In this sense, tree level

processes offer some degree of simplicity and clarity for disentangling the graviton con-

tribution (see (Giudice and Strumia 2003) for a through analysis of the virtual graviton

exchange effects) from those of the SM states. Hence, in the following, we will restrict

our discussions exclusively to tree level processes.

By imposing compactness of the extra space and taking its shape to be a torus as

in the ADD mechanism the energy-momentum tensor (5.28) takes the form

TAB(x) =
+∞∑

n1=−∞

· · ·
+∞∑

nδ=−∞

∫
d4p

(2π)4

1√
Vδ
e−i(k·z−

~n·~y
R )δµAδ

ν
BTµν(k) (5.37)

where (n1, . . . , nδ) is a δ-tuple of integers. Given this Fourier decomposition of the stress

tensor, the amplitude for an on-brane system a to make a transition into another on-brane

system b becomes

A(k2) =
1

M
2

Pl

∑
~n

T (a)
µν (k)Dµνλρ

(
k2~n · ~n

R2

)
T

(b)
λρ (k) (5.38)

where use has been made of (1.3) in obtaining 1/M
2

Pl factor in front. Though we are deal-

ing with a tree-level process the amplitude involves a summation over all Kaluza-Klein
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levels due to the fact that these states are inherently virtual because of their propagation

off the brane.

Conservation of energy and momentum implies that only the first two terms in

the propagator (5.33) contributes to (5.38). Therefore, after performing summation the

transition amplitude (5.38) takes the form

A(k2) =
Sδ−1

(2π)δ
1

M
4

Df
′(0)

(
Λ

MD

)δ−2

R

(
Λ√
k2

)(
T (a)
µν T

(b)µν − 1

δ + 2
T (a)µ
µ T (b) ν

ν

)

+
(δ + 4)

2(δ + 2)(δ + 3)

Sδ−1

(2π)δ
1

M
4

Df
′(0)

(
Λ

MD

)δ−2

R

(
Λ√
k̃2

)
T (a)µ
µ T (b) ν

ν (5.39)

which exhibits a huge enhancementO
(
M

2

Pl/M
2

D

)
compared to (5.38) due to the contri-

butions of finely-spaced Kaluze-Klein levels (Arkani-Hamed et al. 1998, Arkani-Hamed

et al. 1999). Here Sδ−1 = (2πδ/2)/Γ(δ/2) is the surface area of δ-dimensional unit

sphere, k̃2 = k2−m2
φ (see below eq. (18) for definitions), and Λ (which is expected to be

O
(
MD

)
since above MD underlying quantum theory of gravity completes the classical

treatment pursued here) is the ultraviolet cutoff needed to tame divergent summation over

Kaluza-Klein levels. In fact, A(k2) exhibits a strong dependence on Λ, as suggested by

(see also series expressions of R
(
Λ/
√
k2
)

derived in (Giudice et al. 1999, Han et al.

1999))

R

(
Λ√
k2

)
= −iπ

2

(
k2

Λ2

) δ
2
−1

+
π

2

(
k2

Λ2

) δ
2
−1

cot
πδ

2

− 1

δ − 2
2F1

(
1, 1− δ

2
, 2− δ

2
,
k2

Λ2

)
(5.40)

for 0 ≤ k2 ≤ Λ2, and

R

(
Λ√
k2

)
=

1

δ

Λ2

k2 2F1

(
1,
δ

2
, 1 +

δ

2
,
Λ2

k2

)
(5.41)

for k2 < 0 or k2 > Λ2, where 2F1 are hypergeometric functions. The imaginary part

of R, relevant for the timelike propagator (5.40), is generated by exchange of on-shell

gravitons i.e. those Kaluza-Klein levels satisfying k2 = ~n · ~n/R2. On the other hand,

its real part follows from exchange of off-shell gravitons. For spacelike propagator, the

scattering amplitude (5.41) is real since in this channel Kaluza-Klein levels cannot come

on shell.

The first line of A(k2) in (5.39), except for the overall 1/f ′(0) factor in front,

is identical to the single graviton exchange amplitude computed within the ADD setup
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(Giudice et al. 1999, Han et al. 1999). In fact, operators T (a)
µν T (b)µν and T

(a)µ
µ T

(b) ν
ν

are collectively induced by exchange of J = 2 and J = 0 modes of gravity waves hAB

(Giudice et al. 1999, Han et al. 1999). The second line at right-hand side, on the other

hand, is a completely new contribution not found in ADD setup. The structure of the

induced interaction, T (a)µ
µ T

(b) ν
ν , implies that it is induced by exchange of a scalar field,

different than the graviscalar which induces the same type operator in the first line of

(5.39). The sources of this additional interaction is nothing but the scalar field φ defined

in (1.4). Therefore, the main novelty in A(k2) lies in the second line at right-hand side

of (5.39) which is recognized to be generated by the exchange of a scalar field with non-

vanishing bare mass-squared

m2
φ = − δ + 2

2(δ + 3)

f ′(0)

f ′′(0)
(5.42)

so that k̃2 = k2 −m2
φ in (5.39). The nature of the scalar field φ depends on sign of f ′′(0):

φ is a real scalar for f ′′(0) < 0 and a tachyon for f ′′(0) > 0. Moreover, when f ′′(0) = 0

it is clear that f(R) gravity remains Einsteinian up to O(R3) and this reflects itself by

decoupling of φ from propagator (5.33) and transition amplitude (5.38) since now φ is

an infinitely massive scalar. On the other hand, when f ′′(R) is singular at the origin the

bare mass of φ vanishes and thus A(k2) simplifies to the first line of (5.39) such that

coefficient of T (a)µ
µ T

(b) ν
ν changes from −1/(δ+ 2) to −1/(2(δ+ 3)). A tachyonic scalar,

m2
φ < 0, decouples from the transition amplitude (5.39) as k2 − m2

φ → ∞. This can

be seen from the asymptotic behavior of (5.40) by noting that on-shell graviton graviton

exchange is shut off for k2 −m2
φ ≥ Λ2. Similarly, a true scalar, m2

φ > 0, also decouples

from the transition amplitude (5.39) when k2−m2
φ → −∞ as suggested by the asymptotic

behavior (5.41). In the next section we will study higher dimensional operators induced

by f(R) gravity and their collider signatures.
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CHAPTER 6

COLLIDER EFFECTS OF HIGHER CURVATURE

GRAVITY

In this section we will discuss certain phenomena in which hAB plays a role. These

will include certain scattering amplitudes or higher-dimensional operators which influ-

ence low-energy processes.

6.1. Higher Dimensional Operators From f(R) Gravity

The impact of f(R) gravity on the transition amplitude (5.39) is restricted to oc-

cur via the dimension-8 operator T (a)µ
µ T

(b) ν
ν . This operator involves traces of the stress

tensors of both systems a and b. In general, trace of the energy momentum tensor, at tree

level, is directly related to the sources of conformal breaking in the system (Bekenstein

and Meisels 1980, Gross and Wess 1970, Polchinski 1988). It may be instructive to de-

termine stress tensors and their traces for fundamental fields. The energy and momentum

of a massive vector field Aµ is contained in the conserved stress tensor

T (J=1)
µν = ηµν

(
1

4
F λρFλρ −

1

2
M2

AAλA
λ

)
−
(
F ρ
µFνρ −M2

AAµAν
)

(6.1)

whose trace

T (J=1)µ
µ = −M2

AAµA
µ (6.2)

demonstrates that vector boson mass breaks conformal invariance explicitly. On the other

hand, conserved energy-momentum tensor for a massive fermion reads as

T (J=1/2)
µν = −ηµν

(
ψi∂ψ −mψψψ

)
+
i

2
ψ (γµ∂ν + γν∂µ)ψ

+
1

4

[
2ηµν∂

λ
(
ψiγλψ

)
− ∂µ

(
ψiγνψ

)
− ∂ν

(
ψiγµψ

)]
(6.3)

whose trace

T (J=1/2)µ
µ = mψψψ (6.4)
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shows that fermion mass breaks conformal invariance explicitly. In contrast to vector

fields and spinors, trace of the stress tensor for a scalar field is not directly related to its

mass term. In fact, T (J=0)µ
µ is nonzero even for a massless scalar. For a scalar field Φ

to have T (J=0)µ
µ to be proportional to its mass term it is necessary to introduce gauging

�Φ → (�− ζcR) Φ with ‘gauge coupling’ ζc = (D− 2)/(4(D− 1)) (Demir 2004, Iorio

et al. 1997). The curvature scalar serves as the gauge field of local scale invariance. This

gauging gives rise to additional terms in the stress tensor of Φ, and they do not vanish

even in the flat limit. More explicitly, for a massive complex scalar with quartic coupling

the stress tensor reads as

T (J=0)
µν = −ηµν

[
∂ρΦ†∂ρΦ−M2

ΦΦ†Φ− λ
(
Φ†Φ

)2]
+ ∂µΦ

†∂νΦ + ∂νΦ
†∂µΦ

+ 2ζ (ηµν�− ∂µ∂ν) Φ†Φ (6.5)

whose trace

T (J=0)µ
µ = −2(1− 6ζ)

[
∂ρΦ†∂ρΦ− λ

(
Φ†Φ

)2]
+ 4 (1− 3ζ)M2

ΦΦ†Φ (6.6)

reduces to T (J=0)µ
µ = 2M2

ΦΦ†Φ for ζ = ζc ≡ 1/6, as desired. For ζ 6= ζc, say ζ = 0,

T
(J=0)µ
µ involves kinetic term, self-interaction potential λ

(
Φ†Φ

)2 as well as mass term

of the scalar field. The terms proportional to ζ in (6.5) might be regarded as either fol-

lowing from coupling of Φ to curvature scalar as discussed above, or as a field-theoretic

technicality to improve properties of the dilatation current (Callan et al. 1970).

The stress tensor traces (6.2), (6.4) and (6.6) with ζ = 1/6 show that effects of

graviscalar exchange (the operator T (a)µ
µ T

(b) ν
ν in the first line of (5.39)) and f(R) gravity

(the operator in the second line of (5.39)) can show up only in those scattering processes

which involve massive brane matter at their initial and final states. Their phenomeno-

logical viability depends on how heavy the brane states compared to MD. For instance,

high-energy processes initiated by e+e− annihilation or γγ scattering or pp annihilation

cannot probe the operator T (a)µ
µ T

(b) ν
ν in (5.39). On the other hand, scattering processes

which involve heavy fermions (e.g. bottom and top quarks, muon and tau lepton), weak

bosons W±, Z, and Higgs boson h are particularly useful for probing the gravitational

effects. Each of these processes provides an arena for probing effects of scalar graviton

exchange in general, and f(R) gravity effects in particular. It might be instructive to de-

pict explicitly how A(k2) differs from that computed within the ADD setup by a number

of specific scattering processes.
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Concerning 2 → 2 scattering of weak bosons one can consider, for instance, the

process Zα(p1)Zβ(p2)→ Zγ(k1)Zλ(k2) which is described by the amplitude

AZZ→ZZ(k2) = ASM(k2) +
1

f ′(0)
AADD(k2)

+
(δ + 4)

2(δ + 2)(δ + 3)

Sδ−1

(2π)δ
M4

Z

M
4

Df
′(0)

(
Λ

MD

)δ−2

×
{
R

(
Λ√
s̃

)
ηαβηγλ +R

(
Λ√
t̃

)
ηαγηβλ +R

(
Λ√
ũ

)
ηαληβγ

}
× εαZ(p1)ε

β
Z(p2)ε

? γ
Z (k1)ε

? λ
Z (k2) (6.7)

after using (6.1) in (5.39). In this expression, s = (p1 + p2)
2 = (k1 + k2)

2, t = (k1− p1)
2

and u = (k2 − p1)
2 = 4M2

Z − s − t are Mandelstam variables, and εµZ stands for the

polarization vector of Z boson. The amplitudes ASM(k2) and AADD(k2) can be found

in (Atwood et al. 2000). Obviously, f(R) gravity effects get pronounced when MD lies

close to MZ . Clearly, σ (ZZ → ZZ) feels f(R) gravity via square of the third term in

(6.7) and its interference with SM and ADD contributions.

The fermion scattering ψ1(p1)ψ1(p2)→ ψ2(k1)ψ2(k2) is described by

Aψ1ψ1→ψ2ψ2(k
2) = ASM(k2) +

1

f ′(0)
AADD(k2)

+
(δ + 4)

2(δ + 2)(δ + 3)

Sδ−1

(2π)δ
mψ1mψ2

M
4

Df
′(0)

(
Λ

MD

)δ−2

× R

(
Λ√
s̃

)
ψ1(p1)ψ1(p2)ψ2(k1)ψ2(k2) (6.8)

after using (6.3) in (5.39). If ψ1 and ψ2 are identical fermions then t and u channel

contributions must also be included. The SM and ADD pieces in this amplitude can be

found in (Giudice et al. 1999, Han et al. 1999). The heavy fermion scatterings (e.g.

tt → tt, bb → tt, ττ → tt) are potential processes for highlighting effects of f(R)

gravity. The 2 → 2 scattering of Higgs bosons provides another interesting channel to

probe f(R) gravity effects. Indeed, after expanding (6.5) around the electroweak vacuum

Φ = (v + h, 0)/
√

2 with v ' 246 GeV, the amplitude for h(p1)h(p2) → h(k1)h(k2)

scattering takes the form

Ahh→hh(k
2) = ASM(k2) +

1

f ′(0)
AADD(k2)

+
(δ + 4)

8(δ + 2)(δ + 3)

Sδ−1

(2π)δ
m4
h

M
4

Df
′(0)

(
Λ

MD

)δ−2

×
{
R

(
Λ√
s̃

)
+R

(
Λ√
t̃

)
+R

(
Λ√
ũ

)}
(6.9)
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Figure 6.1. The dependence of Re [Q(k2)] on m2
φ for k2 = (1 TeV)2, Λ = MD = 5 TeV,

and δ = 3 (solid curve), δ = 5 (dot-dashed curve) and δ = 7 (short-dashed curve). We

vary m2
φ from −(30 TeV)2 up to +(30 TeV)2.

where m2
h = −2M2

Φ is the Higgs boson mass-squared. It is clear that size of f(R) gravity

effects depends crucially on how close MD is to mh. Calculations (He 2000) within

ADD setup show that graviton exchange can have significant impact on h(p1)h(p2) →

h(k1)h(k2), and thus, resulting deviation from the SM expectation might be of observable

size.

The 2 → 2 scattering processes mentioned above illustrate how f(R) gravity

influences certain observables to be measured in collider experiments. Beyond these,

there are, of course various observables which can sense f(R) gravity. For instance,

hZZ coupling, which is crucial for Higgs boson search via Bjorken process, gets also

modified by graviton exchange (Choudhury et al. 2003) via T (J=0)
µν T

(J=1)
λρ correlator. The

discussions above show that, independent of what brane matter species are taking part

in a specific process, entire novelty brought about by f(R) gravity is contained in the

second line of (5.39), and thus, it proves useful to carry out a comparative analysis of this

contribution with the same structure present in the ADD setup, for completeness. In fact,
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Figure 6.2. The same as in Fig. 6.1 but for Im [Q(k2)].

ratio of the coefficients of T (a)µ
µ T

(b) ν
ν in (5.39)

Q(k2) = − (δ + 4)

2(δ + 3)

R

(
Λ√ek2

)
R
(

Λ√
k2

) (6.10)

is a useful quantity for such a comparative analysis. For determining how finite f ′′(0)

influences the scattering processes it suffices to determine m2
φ dependence of Q(k2) for

given values of k2, δ and Λ ∼MD. In accord with future collider searches, one can take,

for instance, k2 = (1 TeV)2 and Λ = MD = 5 TeV, and examine m2
φ dependencies of

Re [Q(k2)] and Im [Q(k2)] separately. In fact, depicted in Figs. 6.1 and 6.2 are, respec-

tively, the variations of Re [Q(k2)] and Im [Q(k2)] with m2
φ. In the figures 6.1 and 6.2, m2

φ

varies from −(30 TeV)2 up to +(30 TeV)2 for each number of extra dimensions consid-

ered: δ = 3 (solid), δ = 5 (dot-dashed) and δ = 7 (short-dashed). As suggested by (5.42),

positive and negative m2
φ values in the figures correspond, respectively, to negative and

positive values of f ′′(0) since f ′(0) has already been restricted to take positive values to

prevent graviton becoming a ghost (see the propagator (5.33). On the other hand, ifA(k2)

in (5.39) exhibits a timelike (k̃2 > 0) or spacelike (k̃2 < 0) propagation depends on how

k2 compares with m2
φ. With the values of parameters given above, the figures illustrate

cases where k2 > 0 yet k̃2 varies over a wide range of values comprising spacelike and
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timelike behaviors as well as a heavy φ i.e.
∣∣m2

φ

∣∣� Λ2.

The overall behaviors of both figures suggest that f(R) gravity effects fade away

for large
∣∣m2

φ

∣∣, as expected. Both real and imaginary parts of Q(k2) exhibit a narrow

peak at m2
φ = −(24 TeV)2 which corresponds to resonating of the transition amplitude

by Kaluza-Klein levels with mass-squared = k2−m2
φ = Λ2. From Fig. 6.1 it is clear that

Re [Q(k2)] becomes significant at large δ and negative m2
φ. This is also seen to hold for

Im [Q(k2)] from Fig. 6.2. Obviously, f(R) gravity predictions differ from ADD ones for

moderate (with respect to scale Λ) negative m2
φ or equivalently for sufficiently small and

positive f ′′(0) (see eq.(5.42) for details). Indeed, for positive values ofm2
φ or equivalently

for negative f ′′(0) the strength of f(R) gravity contribution remains significantly below

the ADD one.

6.2. Yet More Signatures of f(R) Gravity

So far we have focussed mainly on higher dimensional operators induced by tree-

level virtual graviton exchange. Clearly, effects of higher dimensional gravity on brane

matter are not restricted to such processes: graviton can contribute to self-energies, ef-

fective vertices or box diagrams of brane matter; graviton can be emitted off the brane

matter; and graviton can decay into brane matter. In this section we will discuss such

processes briefly for illustrating how f (R) gravity effects (Demir and Tanyıldızı 2006)

differ from those found in the ADD setup.

First of all, as suggested by (5.1), couplings of the gravity waves hAB(x) to brane

matter are identical in ADD and f (R) gravity setups. Therefore, distinction between

the two frameworks rests mainly on the additional scalar field (1.4) imbrued in the f (R)

gravity dynamics. Consequently, detection of f (R) gravity effects requires scattering

processes on the brane to be sensitive to the new energy threshold mφ not found in the

ADD setup.

Let us consider first role of f (R) gravity on brane-localized loops. The simplest

of such processes is the self-energy of a brane particle. One may consider, for instance,

self-energy of the Z boson (or any of the massive SM fields mentioned in the last section).
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At the level of a single graviton exchange one finds

−iΠ (q) = −iΠSM (q)− i
1

f ′(0)
ΠADD (q)− iΠseagull

(
q2
)

− M4
Z

M
2

Plf
′(0)

δ + 4

(δ + 2)(δ + 3)

×
∑
~n

∫
d4k

(2π)4

1

k2 −m2
φ − ~n·~n

R2 + iε

1

(q + k)2 −M2
Z + iε

(6.11)

where contribution of the four-point vertex that binds gravitons and Z bosons is contained

in the seagull contribution. The summation and integration involved in this expression

are difficult to evaluate analytically, and therefore, one may eventually need to resort

some numerical techniques (Han et al. 1999). However, at least for vanishing external

momentum, one can show that f (R) gravity contribution in the second line of (6.11) is

diminished at large |mφ|2, and is particularly pronounced when |mφ|2 ∼M2
Z andm2

φ < 0.

Therefore, when f ′′(0) ∼ 1/M2
Z one expects observable enhancements in theZ boson self

energy (see (Giudice et al. 2001) and (Han et al. 1999) for analyses of the Higgs boson

self energy).

Having discussed effects of f (R) gravity on brane-localized loops we now turn

to an analysis of production and decays of the graviton. In these processes graviton is a

physical particle described by asymptotically free states connected by the S-matrix ele-

ments. Therefore, the scalar field φ imbrued in f (R) dynamics must be endowed with

a positive mass-squared for its decays and productions to be observable. Consequently,

f (R) gravity effects on graviton production and decay exist within m2
φ > 0 domain.

However, as suggested by Figs. 6.1 and 6.2, f (R) gravity contribution, the second line

of (5.39), stays significantly below the corresponding contribution in ADD setup. This

implies, in particular, that production and decay of φ graviton are suppressed relative to

those of the J = 2 and J = 0 gravitons.

The above observation is confirmed by the fact that when the looping particles

come on their mass shells, as dictated by the optical theorem, the Z boson self-energy

(6.11) above represents the Drell-Yan production of graviton and Z boson at lepton (via

e+e− → Z? → graviton + Z annihilation) or hadron (via qq → Z? → graviton + Z

annihilation) colliders. The main novelty brought about by f (R) gravity is the production

of φ (in addition to J = 0 and J = 2 gravitons) when the center-of-mass energy of the

collider is sufficiently large i.e. s ≥ m2
φ + M2

Z . This phenomenon reflects itself by a
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sudden change in the number of events (similar to opening of W+W− channel at LEP

experiments). The dominant contribution to graviton emission comes from Kaluza–Klein

levels in the vicinity of R2(M2
Z − m2

φ). The emission of gravitons from the brane is

not restricted to such 2 → 2 processes, however. Indeed, massive brane localized states

can decay into gravitons, including φ itself, and this reflects itself as an increase in their

invisible widths (see, for instance, (Giudice et al. 2001) for a detailed discussion of the

Higgs boson width).

There are, of course, inverse processes to graviton emission. Indeed, gravitons

propagating in the bulk can decay into brane matter when they land on the brane. The

graviton decay channels can open only if their Kaluza–Klein level is high enough (Han et

al. 1999). The only exception to this is the φ graviton which can decay into brane matter

even at zeroth Kaluza–Klein level provided that its mass, mφ, is larger than those of the

daughter particles. Detailed discussions of the production and decays of gravitons (as

well as those of the right-handed neutrinos propagating in the bulk (Demir et al. 2002)) in

the framework of ADD mechanism can be found in (Arkani–Hamed et al. 1998, Arkani–

Hamed et al. 1999).

This section is intended to provide a brief summary of what impact f (R) grav-

ity can have on processes involving brane-loops, missing energy signals in brane matter

scatterings, and population of brane via the graviton decays. These processes are of great

importance for both collider (Giudice et al. 1999, Han et al. 1999) and cosmological

(Arkani–Hamed et al. 1998, Arkani–Hamed et al. 1999, Demir et al. 2002) purposes, and

discussions provided in this section is far from being sufficient for a proper description

of what effects f (R) gravity can leave on them. From this brief analysis, combined with

results of the previous section, one concludes that f (R) gravity effects on decays and

emissions of graviton cannot compete with the ADD expectations.
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CHAPTER 7

CONCLUSION

In this thesis work we have provided an introduction to notion of extra dimensions

together with experimental limits and theoretical motivations for them. We have provided

a review of Kaluza-Klein approach to illustrate an important scenario where extra dimen-

sions are needed. Then, we have also reviewed the infamous ADD model where extra

dimensions play a crucial role in taming quadratic divergences in Higgs boson mass.

Having summarized existing scenarios involving extra dimensions we have ex-

plored certain salient features and phenomenological implications of f(R) gravity in large

extra dimensions. In Sec. 5.1 we have determined particle content of this higher-curvature

gravity theory by applying conformal transformations. In Sec. 5.2 we have derived gravi-

ton propagator about flat Minkowski background, and have determined how it influences

interactions among the brane matter. In Sec. 6.1 we have listed down a set of higher di-

mensional operators which exhibit an enhanced sensitivity to f(R) gravity (compared to

those operators involving light fermions or massless gauge fields). Therein we have also

performed a comparative study of ADD and f(R) gravity predictions and determined

ranges of parameters where the latter dominates over the former. The analysis suggests

that f(R) gravity theories with finite and positive f ′′(0) induce potentially important ef-

fects testable at future collider studies. In Sec. 6.2 we have discussed briefly how f(R)

gravity influences loop processes on the brane as well as decays and productions of gravi-

tons.

The analysis in this work can be applied to various laboratory, astrophysical and

cosmological observables (see (Arkani–Hamed et al. 1998, Arkani–Hamed et al. 1999)

for a detailed discussion of major observables) for examining non-Einsteinian forms of

general relativity in higher dimensions. The discussions presented here are far from being

complete in their coverage and phenomenological investigations. The rule of thumb to be

kept in mind is that higher curvature gravity influences scatterings of massive (sufficiently

heavy compared to the fundamental scale of gravity) brane matter.
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APPENDIX A

NOTATIONS AND CONVENTIONS

Units are ~ = c = 1 then [length] = [time] = [energy]−1 = [mass]−1. Indices of

4D–spacetime are

µ, ν = 0, 1, 2, 3 (A.1)

and indices of D–dimensional spacetime are

A,B = 0, 1, 2, 3, 4, · · · , D (A.2)

and signature of this work is

ηAB = diag(+1,−1,−1, · · · ,−1) . (A.3)
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APPENDIX B

SPACETIME AND METRIC

The special relativity is a model that invokes a particular kind of spacetime, with

no curvature and hence no gravity, such that the particular spacetime is the Minkowski

(flat 4D) spacetime. Minkowski’s spacetime is a four–dimensional set established by three

spatial dimensions and a temporal dimension as time. An individual point in spacetime is

named as event. Then any path is a curve through spacetime, called the worldline and the

curve is parameterized as a set of events (B.1).

Figure B.1. Spacetime diagram.

According to the description of the time as a dimension, there is an important

difference between Newtonian mechanics and special relativity, caused by the notion of

simultaneity defined in Newtonian mechanics. In principle the notion of simultaneity

includes the fact that there is a basic division of spacetime into well-defined slices of all

of space at a fixed moment in time. In other words when two events occur at the same

time, simultaneity is naturally defined in Newtonian mechanics. Moreover, there isn’t

such a thing as a limit on the relative velocity of the particles in Newtonian case. On
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the other hand, in special relativity there is no well-defined notion of two separate events

occurring at the same time. In this case, we might define a new light cone at every event.

As another tool, the lightcone is the locus of worldlines through spacetime, as in the B.2

figure.

Figure B.2. A lightcone, portrayed on a spacetime diagram.

Obviously, the surface of each cone is the boundary for each subsequent event,

then the particles can travel along only paths which always remain inside the cones. In this

point, we may understand why the surface of the light cone is the boundary of spacetime.

The idea comes from the fact that speed of light is constant and constitutes the maximum

relative speed between all objects in Nature. Indeed as a hypothetical way, to define

the 4D–spacetime metric is possible by assuming that c is some fixed conversion factor

between space and time. Such that, conventionally the velocity c is fixed to 1 in this work.

We need a limited relative velocity, because it will provide us the spacetime interval which

is invariant under changes of inertial coordinates. In this sense an interval

(∆s)2 = (∆x0)2 − (∆x1)2 − (∆x2)2 − (∆x3)2 (B.1)
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will remain invariant as in the form

(∆s)2 = (∆x0′)2 − (∆x1′)2 − (∆x2′)2 − (∆x3′)2 (B.2)

where x0 = c t is temporal dimension and x1, x2 and x3 are spatial dimensions. To

see that the velocity of light is limited and in consequence to realize that any spacetime

interval is to be zero for light, we should setup a transformation which release the interval

invariant, in 4D–spacetime. Then the transformation matrix is

ηµν =


1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

 (B.3)

It is called as the spacetime metric (in particular, Minkowski metric, here). Consequently,

special relativity is a theory of Minkowski spacetime which is defined by metric (B.3).
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APPENDIX C

CURVATURE TENSOR

In the general case of a space, the infinitesimal parallel displacement of a vector

is defined as displacement in which the components of the vector are not changed along

the given infinitesimal closed curve in the coordinate system which is galilean.

If xµ = xµ(s) is the parametric equation of an infinitesimal (in particular closed)

curve where s is the arc length measured from some point and the tangent unit vector

to the curve is Aµ = dxµ/ds. If the considered curve is a geodesic, along the curve

DAµ equal to zero. In other words, following the vector Aµ is subjected to a parallel

displacement from a point xµ on the geodesic curve to the point xµ + dxµ on the same

geodesic curve, the parallel transport leaves the vector Aµ + dAµ parallel to the tangent

line at the point xµ+dxµ on the geodesic curve. Therefore the tangent is displaced parallel

to itself, when the tangent to a geodesic moves along the curve. In other words, during

the parallel displacement of a vector along any geodesic curve on the space, the angle

between the vector and the tangent to the geodesic doesn’t change.

As a result, we may say that the parallel displacement of a vector, which is in a

non-flat space, from a given point to another causes appearance of different vectors if it is

moved along different paths. In particular, if a vector is displaced parallel to itself along

some closed curve (closed contour), it will lost the original value.

In order to illuminate the case, let us consider two dimensional flat space, see

figure C.1. In moving along the line (dashed curve) AB, BC and CA, the vector Aµ,

always retaining its angle with the curve unchanged, goes over into the vector Aν which

is coincide with Aµ.

Then let us consider two dimensional non-flat space, see figure C.2. In moving

along the lines AB, BC and CA consecutively, the vector Aµ, always retaining its angle

with the curve unchanged, goes over into the vector Aν which is not coincide with its

original value.

The general formula for the change in the vector may be derived following parallel

displacement around the infinitesimal closed curve. This change ∆Aµ may be written in
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Figure C.1. In flat space: Total change in Aµ ∝ (α+ β + γ − 180o) = 0 , δAµ = 0 .

Figure C.2. In curved space: Total change in Aµ ∝ (α+ β + γ − 180o) > 0 , δAµ 6= 0 .

the form:

∆Aµ =

∮
δAµ (C.1)

where the integral is taken over the infinitesimal closed curve in figure C.2. Substituting

in place of

δAµ = ΓνµλAνdx
λ (C.2)

the integration, we obtain

∆Aµ =

∮
ΓλµνAλdx

ν (C.3)
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where the vector Aλ, which appears here, as the vector Aµ is moved along the closed

curve.

The values of the vector Aλ depend on the path along which we approach the

particular point. It means that they are not unique at points inside the curve. However the

non-uniqueness is related to second-order terms. Therefore, with the first-order accuracy

which is sufficient for the transformation, it is regarded that the components of the vector

Aλ at points inside the infinitesimal closed curve as being uniquely determined by their

values on the contour itself by the formulas (C.2), by the derivatives

∂Aλ
∂xν

= ΓρλνAρ . (C.4)

Applying Stoke’s theorem:∮
Aλdx

λ =

∫
dfµλ

∂Aλ
∂xµ

=
1

2

∫
dfλµ

(
∂Aµ
∂xλ

− ∂Aλ
∂xµ

)
(C.5)

where dxλ → dfµλ(∂/∂xµ), to the integral (C.3) and considering that the area enclosed

by the closed curve has the infinitesimal value ∆f νβ , it is obtained that

∆Aµ =
1

2

[
∂
(
ΓλµβAλ

)
∂xν

−
∂
(
ΓλµνAλ

)
∂xβ

]
∆f νβ

=
1

2

[
∂Γλµβ
∂xν

Aλ −
∂Γµν

∂xβ
Aλ + Γλµβ

∂Aλ
∂xν

− Γλµν
∂Aλ
∂xβ

]
∆f νβ (C.6)

Hence the total change ∆Aµ is obtained in the form:

∆Aµ =
1

2
Rλ
µνβAλ∆f

νβ (C.7)

substituting the values of the derivatives (C.4), where Rλ
µνβ is the Riemann curvature

tensor:

Rλ
µνβ =

∂Γλµβ
∂xν

−
∂Γλµν
∂xβ

+ ΓλρνΓ
ρ
µβ − ΓλρβΓ

ρ
µν (C.8)

The total change δAµ between the values of vectors at one and the same point is a vector,

in this sence it is clear thatRλ
µνβ is a tensor.

It is easy to obtain a similar formula for a contravariant vector Aµ using the fact

that a scalar doesn’t change under parallel displacement, ∆(BµAµ) = 0. Considering the
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equation (C.7):

∆ (AµB
µ) = Bµ∆Aµ + Aµ∆B

µ

=
1

2
BµAλRλ

µνβ∆f
νβ + Aµ∆B

µ

= Aµ

(
1

2
BλRµ

λνβ∆f
νβ + ∆Bµ

)
= 0 (C.9)

and an arbitrary choosing of the vector Aµ provides us

∆Bµ = −1

2
Rµ
λνβB

λ∆f νβ . (C.10)

As a vector Aλ is differentiated covariantly with respect to xµ and xν , the result

depends on the order of differentiation, on the contrary for ordinary differentiation the

result does not depend on the order of differentiation. In this sense, the difference appear

as the form:

∂Aλ
∂xµ∂xν

− ∂Aλ
∂xν∂xµ

= AρRρ
λµν (C.11)

considering the direct calculation in the local-geodesic coordinate system. For the con-

travariant form of a vector, the formula above takes the form:

∂Aλ

∂xµ∂xν
− ∂Aλ

∂xν∂xµ
= AρRλ

ρµν . (C.12)

Clearly, in flat space the curvature tensor is zero, the coordinates may be chosen

such that over all space all Γλµν = 0, and therefore also Rλ
µνβ = 0. This situation is

related to the fact that parallel displacement is a single-valued operation in a flat space.

Hereby the vector doesn’t change in moving on a closed curve in flat space. Additionally,

Rλ
µνβ = 0 means that the space is flat, as the converse theorem.

Consequently, we can propose that vanishing or nonvanishing of the curvature

tensor is a criterion to determine whether a space is flat or non-flat, also the Galilean

coordinate system can be presumed over an infinitesimal region in a space.

We may obtain the Ricci tensor and Ricci scalar by using our definitions and

Einstein’s summation convention.

Rλ
µλβ = Rµβ , gµβRµβ = R (C.13)

where,Rµβ is Ricci tensor which is symmetric andR is Ricci scalar.
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To give a physical example in which the Riemann curvature tensor appears, let us

consider a free relativistic particle. According to Newton’s first law, it obeys

d2ξα(τ)

dτ
= 0 (C.14)

which implies a straight line trajectory, as expected. Here, dτ 2 = ηαβdξ
αdξβ is particle’s

eigentime and ηαβ = diag.(+1,−1,−1,−1) is the flat space metric. Now let us switch to

another coordinate system, xµ, which may be cartesian, curvilinear, accelerated, rotating,

whatever is imagined. The two coordinate systems are related via an invertible relation:

ξα ≡ ξα(x) ⇐⇒ xµ = xµ(ξ) . (C.15)

In this coordinate system (C.14) takes also the form which forms an invertible relation

called as ”geodesic equation”:

d2xλ

dτ 2
+ Γλµν

dxµ

dτ

dxν

dτ
= 0 (C.16)

where

Γλµν =
∂xλ

∂ξα
∂2ξα

∂xµ∂xν
(C.17)

are the connection coefficients. Under a general coordinate transformation from xµ to

(x′)µ ≡ xµ
′ the connection coefficients transform as

Γλ
′

µ′ν′ =
∂xλ

′

∂xλ
∂xµ

∂xµ′

∂xν

∂xν′ Γ
λ
µν︸ ︷︷ ︸+

∂xλ
′

∂xλ
∂2xλ

∂xµ′∂xν′︸ ︷︷ ︸ (C.18)

tensorial piece non-tensorial piece

which is clearly a non-tensorial object. Indeed, the connection coefficients must not be

tensors for them to represent gravitational force which changes from frame to frame.

Therefore, Γλµν is not a tensor. The non-tensorial piece can be expanded as, considering

the invertibility relation as in (C.15),

∂2xλ
′

∂xµ∂xν
=
∂xλ

′

∂xλ
Γλµν −

∂xµ
′

∂xµ
∂xν

′

∂xν
Γλ

′

µ′ν′ . (C.19)

This is a defining relation between the inhomogeneous term and connection coefficients

in
{
xµ
}

and
{
xµ

′
}

frames.

Let us try to eliminate inhomogeneous term. It is simply impossible since both

sides are symmetric in
{
µ, ν
}

and there seems to be no symmetry relation to eliminate it.
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Let us, therefore, consider derivatives of this relation with the hope that the left-hand side

can be eliminated at some stage. In this sense, following the derivation of (C.19) with

respect to xβ , we make β ↔ ν changing (possible to chose β ↔ µ), then we see the left

hand side is symmetric:

∂xλ
′

∂xβ∂xµ∂xν
− ∂xλ

′

∂xν∂xµ∂xβ
= 0 (C.20)

Hence, the right hand side must be

0 =
∂xλ

′

∂xλ

(
∂Γλµν
∂xβ

−
∂Γλµβ
∂xν

+ ΓλβθΓ
θ
µν − ΓλνθΓ

θ
µβ

)

− ∂xµ
′

∂xµ
∂xν

′

∂xν
∂xβ

′

∂xβ

(
∂Γλ

′

µ′ν′

∂xβ′ −
∂Γλ

′

µ′β′

∂xν′ + Γλ
′

β′θ′Γθ
′

µ′ν′ − Γλ
′

ν′θ′Γθ
′

µ′β′

)
(C.21)

Consequently, first derivation of (C.19) implies that

Rλ′

µ′ν′β′ =
∂xµ

∂xµ′

∂xν

∂xν′

∂xβ

∂xβ′

∂xλ
′

∂xλ
Rλ
µνβ (C.22)

which is a clear-cut tensor transformation law. Here,

Rλ
µνβ =

∂Γλµν
∂xβ

−
∂Γλµβ
∂xν

+ ΓλβθΓ
θ
µν − ΓλνθΓ

θ
µβ (C.23)

is called the Riemann curvature tensor as we said before. It is a measure of whether a

given manifold is curved or not. It, however, does not carry any information on what the

source of curvature is in physical manner.
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