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ABSTRACT 
 

THE COMPARATIVE PERFORMANCE ANALYSIS OF LATTICE 
BASED NTRU CRYPTOSYSTEM WITH OTHER ASYMMETRICAL 

CRYPTOSYSTEMS 
 

Current popular asymmetrical cryptosystems are based on hardness of number 

theoretic problems. In the future, these problems may become practically solvable with 

the improvements of processing power, the development of quantum computation and 

distributed computation. So the need for new cryptosystems which are not based on 

these problems has risen. Researches on hardness of lattice problems have brought a 

new candidate for asymmetrical cryptography: Lattice Based Cryptography. NTRU is 

one of these cryptosystems. For practical use, the actual performance results of NTRU 

with respect to current asymmetrical cryptosystems should be known. This thesis is 

developed based on this purpose. 
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ÖZET 
 

KAFES TABANLI NTRU KRİPTOSİSTEMİNİN DİĞER ASİMETRİK 
KRİPTOSİSTEMLERLE KARŞILAŞTIRMALI PERFORMANS 

ANALİZİ 
 

Günümüzde aktif olarak kullanılan asimetrik kriptosistemlerde güvenlik sayı teorisi 

problemlerinin zorluklarına dayanmaktadırlar. İşlemci gücünün gün geçtikçe artması, 

kuantum ve dağıtık hesaplamanın gelişmesiyle, sayı teorisi problemlerinin zorluğunu 

temel alan kriptosistemlerin güvenilirlikleri gelecekte tehlike altına girebilecektir. Bu 

nedenle asimetrik kriptografide kullanılabilecek, başka matematiksel problemleri 

kullanan, yeni kriptosistemler üretilmeli ve bir alternatif olarak sunulmalıdır. Bu 

amaçla, kafes problemlerinin zorlukları üzerine yapılan çalışmalar, “Kafes Tabanlı 

Kriptografi”yi ortaya çıkarmış ve kafes tabanlı NTRU kriptosistemi geliştirilmiştir. 

NTRU kriptosisteminin günümüz kriptosistemlerinin yerini alabilmesi için; NTRU 

kriptosisteminin bu kriptosistemlerle karşılaştırmalı performans analizi yapılmalıdır ve 

bu gereksinim tezimin hedefini oluşturur. 
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CHAPTER 1 
 

 

INTRODUCTION 
 

 

The most popular public key cryptosystems like RSA and ECC are based on the 

complexity of number theoretic problems and their security is highly dependable to the 

distribution of prime numbers or based on the discrete logarithm problem on finite 

fields. With the development of distributed computation, grid computing and quantum 

computers the breaking times, even the brute force attacks, for these cryptosystems are 

diminished. This can be dangerous for future use of the public key cryptography. 

Putting all the cryptographic eggs to the same basket is a risky situation, so there should 

be an alternative for the future. So cryptosystems which are not based on the same 

problems, for example cryptosystems based on geometrical problems etc., will be, at 

least, our reserve for future failures of current cryptosystems. 

Researches on complexity of lattice problems have raised a new candidate for 

public key cryptography. Based on hardness of lattice problems, several cryptosystems 

have been developed such as Ajtai-Dwork (Ajtai and Dwork 1997), Goldreich-

Goldwasser-Halevi (Goldreich et al. 1997) and NTRU (WEB_1 2006) cryptosystems. 

With key complexity of ( )nΟ  instead of ( )2nΩ , NTRU has the best performance 

among the other lattice based cryptosystems (Hoffstein et al. 1998). Today, extensive 

researches have been going on concerning the NTRU and no crucial security issue has 

been found so far. 

NTRU uses a special lattice called NTRU Lattice. Actually an NTRU lattice is a 

special version of a convolution modular lattice. If a convolution modular lattice 

contains a short vector, then it is called as NTRU Lattice. 

There are several hard lattice problems which are; 

• “shortest vector problem”,  

• “closest vector problem”,  

• “shortest basis problem and their variations”.  

The security of NTRU cryptosystem is conjectured to be equivalent to the 

hardness of the shortest vector problem and the closest vector problem. The shortest 
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vector problem (SVP) is the problem of finding the vector, other than the zero vector, 

that has the smallest L2 norm; while the closest vector problem (CVP) is the problem of 

finding a lattice vector which has the smallest L2 norm of distance with a given vector. 

It is known that the shortest vector problem is NP-Hard under randomized reduction 

hypothesis (Ajtai 1998). It is also known that the closest vector problem is NP-hard and 

the solution for this problem is at least as hard as the solution of the shortest vector 

problem (Nguyen and Stern 2001).  

To be a candidate for public key cryptography, the comparative performance 

results for NTRU should be known. So this thesis is intended to clarify the performance 

values of such cryptosystems with a comparative way.  

We begin with the mathematical background for lattice cryptography in Chapter 

2. In Chapter 3 we give the basics of the asymmetrical cryptosystems that we compared 

with NTRU and the history of lattice based cryptography. We explain the NTRU 

cryptosystem in Chapter 4 while we give the details of implementation in Chapter 5. 

The results for comparison of cryptosystems are given in Chapter 6 and the thesis is 

concluded in Chapter 7.  
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CHAPTER 2 
 

 

MATHEMATICAL BACKGROUND 
 

 

This chapter provides the basics of mathematics which will be needed for the 

rest of the thesis. Section 2.1 describes the fundamentals of Lattices while Section 2.2 

covers Quotient Polynomial Ring. Section 2.3 describes the Hard Lattice Problems on 

which the cryptosystems (see the related sections in Chapter 3) are based. This chapter 

is a summary of mathematical background will be needed throughout this thesis; for 

further and detailed information the reader is referred to (Micciancio and Goldwasser 

2002, WEB_7 2007). 

 

 

2.1. Lattice 
 

 

Throughout the rest of this thesis there will be need for lattice and some special 

lattices -like modular lattice and NTRU lattice-. This section aims to define the lattice 

concept and special lattices. 

 

 

2.1.1. Lattice 
 

 

A lattice is the set of all integral combination of n linearly independent vectors, 

1, , nb b… , in m-dimensional Euclidean space, m
R . Let Z be the set of integers, a lattice 

is denoted by  

( )1
1

, , :
n

n i i i

i

x x
=

 
= ∈ 
 
∑b b b… ZL . 

The vectors, 1{ , , }nB = b b… , represent the basis (or base) of the lattice. The integers, n 

and m are called as the rank and dimension of the lattice, respectively. When the rank 

and the dimension are equal, the lattice is called as full rank. Throughout the rest of this 
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thesis, all the lattices are full rank and all the coefficients of the base vector are integers; 

unless stated otherwise.  

 The L
2 norm and centered L

2 norm of a vector 0 1 1[ ]nv v v −=v …  is 

respectively defined as follows: 

1
2

2

0

n

i

i

v
−

=

= ∑v  

( )
1

2
2

0

n

i

i

v v
−

=

= −∑v  , 
1

0

1 n

i

i

v v
n

−

=

= ∑ . 

 

 

2.1.2. Modular Lattice 
 

 

A modular lattice is the lattice that is spanned by the rows of the following 

matrix  

b

q

 
=  
 

I Η
L

0 I
 

and denoted by LML = rowspan(L). Here ,b q ∈Z  and the elements of matrix 2n-

dimensional L, are n x n matrices. I and 0 represents identity and 0 (zero) matrix, 

respectively. All elements of matrix H are reduced modular q.  

 Let H be defined as follow 

0 1 1

1 0 2

1 2 0

n

n n

h h h

h h h

h h h

−

− −

 
 
 =
 
 
 

H

…

…

� � � �

…

, 

in this case LML is called as convolution or circulant modular lattice and denoted by 

LCML. H is the circulant matrix of vector h, 0 1 1[ ]nh h h −=h …  and denoted by Mh. It 

is obvious that Mh is obtained by shifting h cyclically. Furthermore, if the vector 

0 1 1 0 1 1[ ]n na a a b b b− −… …  is an element of convolution modular lattice than 

any vector of form 1 1 1 1[ ]k k k k k ka a a b b b+ − + −… … , 1, , 1k n= −…  is also an 

element of that convolution modular lattice. 

 

 



 5 

2.1.3. NTRU Lattice 
 

 

Consider the convolution modular lattice 

CML

b
L rowspan

q

  
= =  

  

hI M
L

0 I
, 

If this lattice also contains a short vector like  

0 1 1 0 1 1[ ] [ ]n nf f f g g g− −=f g … …  

then, this lattice is called as NTRU Lattice and denoted as LNTRU. Here b is called the 

balancing constant. 

 

 

2.2. Quotient Polynomial Ring 
 

 

Throughout this thesis, the ring [ ] ( )/ 1nR X x= −Z  will be used. An element of 

this ring f can be written as a polynomial or a vector as follow 

[ ]
1

0 1 1
0

, ,...,
n

i

i n

i

f f x f f f
−

−

=

= =∑ . 

 

 

2.2.1. Addition on Quotient Polynomial Ring 
 

 

Addition operation on quotient polynomial is traditional polynomial addition. 

When one tries to add two ring elements, he/she has to add just the coefficients 

respectively. 
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2.2.2. Multiplication on Quotient Polynomial Ring 
 

 

Multiplication operation on quotient polynomial ring is called as convolution 

product and also called as star multiplication. Throughout this thesis star multiplication 

will be denoted as ‘*’. The star multiplication is defined as 

*f g h=  with 
1

0 1 (mod )

l n

l i k i i n l i i j

i i l i j l n

h f g f g f g
−

− + −
= = − + ≡

= + =∑ ∑ ∑ . 

In ring R when a multiplication modulo q is done, it means that the coefficients of 

resultant polynomial are reduced modulo q. The result lies in [ ] ( )/ , 1nX q x −Z . 

 

 

2.2.3. Modular Lattices and Quotient Polynomial Ring 
 

 

Let [ ]( ) qM X X∈Z  be a monic polynomial of degree N. Then each element of 

the quotient ring [ ] /( ( ))q X M XZ , say ( )h X , can generate a modular lattice Lh by the 

following equation: 

[ ] ( ) ( ) ( )( ){ }, : * [ ] /h qL F G F X h X in Z X M X= . 

In other words, the lattice Lh is formed from all polynomials ( ) ( ) [ ],F X G X X∈Z   

satisfying ( ) ( ) ( ) ( )( )*F X h X G X modulo q and M X=  .  

If ( )h X  is chosen properly, the generated lattice will contain a pre-selected 

vector [ ],f g . In order to do this ( )h X  must be of form: 

( ) ( ) ( ) ( )( )1
*h X f X g X modulo q and M X

−
= . (It is assumed that ( )f X  is 

invertible in the ring ( )( )[ ] /qZ X M X ). 
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2.3. Hard Lattice Problems 
 

 

In order to propose a cryptosystem one needs a ring and hard problem(s) on that 

ring. Previous section has defined the ring and the next chapter will introduce several 

hard problems on lattices. 

 

 

2.3.1. The Shortest Vector Problem 
 

 

The shortest vector problem (SVP) is the problem of finding the vector –other 

than the zero vector- that has the smallest L2 norm. A variation of the shortest vector 

problem –a simpler one- is called as approximate short vector problem (apprSVP) 

which is to search a lattice vector 0v ≠  that satisfies v uγ≤  for all lattice vectors 

0u ≠ . It is obvious that when 1γ =  apprSVP is SVP. It is known that the shortest 

vector problem is NP-hard under randomized reduction hypothesis. It is also showed 

that approximation of SVP within some constant like 2γ <  is as hard as SVP in 

(Micciancio 1998).  

 

 

2.3.2. The Closest Vector Problem 
 

 

The closest vector problem (CVP) is the problem of finding a lattice vector 

which has the smallest L2 norm of distance with a given vector. In other words, let t  be 

a target vector –not necessarily a lattice vector-. One has to find a lattice vector v  which 

satisfies v t u t≤− −  for all lattice vectors u . A variation of the closest vector problem 

–a simpler one- is called as approximate close vector problem (apprCVP). In this 

problem it is enough that v t u tγ≤− −  is satisfied. It is known that the closest vector 

problem is NP-hard. Also it is shown that the solution of the CVP is as hard as SVP in 

(Nguyen and Stern 2001). 



 8 

2.3.3. The Smallest Basis Problem 
 

 

The definition of the smallest basis problem can vary as the small basis defined. 

In general the smallest basis problem is trying to choose the set of base vectors which 

has the longest vector or the vector with the biggest L2 norm with the minimum length 

among other basis or minimizing the product of the lengths of the basis vectors.  

 

 

2.3.4. Notes on Lattice Problems 
 

 

One can easily compute a close vector for a given lattice point but without extra 

information, a short vector, the closest vector for that computed vector can not be found. 

This property builds a trapdoor for lattice based cryptography.  

In order to balance the solutions of the shortest and closest vector problems, the 

value of balancing constant b  can be changed properly. Even though the resultant 

lattice and the solutions are changed, they can be modified properly (WEB_4 2006, 

WEB_7 2007)1. 

All the problems mentioned before can be defined on other norms. Besides the 

solutions the problems are getting harder as the dimension of the lattice increases 

(Micciancio and Goldwasser 2002, Cai 2000)2.  

                                                 
1 WEB_7 2007 pp. 48-49. 
2 Micciancio and Goldwasser 2002 pp. 17-22. 
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CHAPTER 3 
 

 

ASYMMETRICAL CRYPTOGRAPHY AND THE 
HISTORY OF LATTICE BASED CRYPTOGRAPHY 

 

 

This chapter provides basic information about asymmetrical cryptosystems 

besides lattice based cryptosystems and a look at lattice based cryptography from a 

historical point of view. Section 3.1 describes the basics of asymmetrical cryptography 

and several asymmetrical cryptosystems. Section 3.2 will give a look at the history of 

lattice.  

 

 

3.1. Asymmetrical Cryptosystems 
 

 

This section will give basic theory and information about asymmetrical 

cryptography and cryptosystems. The subsection 3.1.1 will give the basic definitions 

and ideas of asymmetrical cryptography, while the subsection 3.1.2 will focus on 

asymmetrical cryptosystems like RSA and ECC. 

 

 

3.1.1. Introduction to Asymmetrical Cryptography 
 

 

The word cryptography is originated from the Greek words kruptein and 

graphein which mean to hide and to write respectively. Very basically one can think 

that the cryptography is to transform things into other things which are meaningless 

without some information. Formally a cryptosystem is a family T of transformations on 

Plaintext and Ciphertext. A “key” is the family index member which determines 

plaintext transforms into which ciphertext.  

The process of transforming plaintext into ciphertext is called encryption while 

the process of transforming ciphertext into plaintext is called decryption. In symmetrical 
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cryptography; the family index is called key which is used in both encryption and 

decryption process. In asymmetrical cryptography the family member index that is used 

in encryption is called public key and the other one that is used in decryption is called 

private key. 

The idea of public key (asymmetrical) cryptosystems is to differentiate the 

encryption key and the decryption key. It solves the key distribution problem. When one 

wants to use encryption he/she only announce his/her public key. Anyone, desiring to 

message with him/her, just encrypts the messages by the announced public key. The 

most critical property of public key cryptography is it should not be possible to retrieve 

the private key from the public key.  

One way and trapdoor functions are used in order to construct asymmetrical 

cryptosystems. A one way function is a function that; it is easy to compute but it is hard 

to invert. Here “easy” means that the function is computable in probabilistic polynomial 

time, hard means that the function is easy to invert only for a negligible fraction of the 

inputs. A trapdoor function is actually a one way function with an additional property. 

The trapdoor functions are easy to invert if additional information (trapdoor) is 

provided. 

 

 

3.1.2. Some Asymmetrical Cryptosystems 
 

 

RSA cryptosystem is the one of the earliest public key cryptosystems (Rivest et 

al. 1978). The hard problem that the cryptosystem gets its strength is the integer 

factorization problem. The following steps are the key generation steps for RSA. 

• Select two primes p and q;  

• calculate n pq= ;  

• compute phi of n which is ( ) ( )( )1 1n p qΦ = − − ;  

• choose an integer e where { ( )( )gcd , 1e nΦ = ; ( )1 e n< < Φ };  

• compute ( )( )1 modd e n
−= Φ .  

After this procedure the public key is the pair e, n and the private key is d.  
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One has to compute (mod )ec m n=  in order to obtain the ciphertext c from the 

plaintext m where m n< . Similarly (mod )dm c n=  is the decryption operation. 

An elliptic curve E is defined by 2 3 2y x ax bx c= + + +  over a Galois field Fp. p 

is prime and p > 3. Any pair (x, y) – x and y are modulo p - which is a solution for this 

equation, is said to be a point over the elliptic curve. There is a rule, called the “chord-

and-tangent” rule, for adding two points on an elliptic curve E(Fp) to give a third elliptic 

curve point. From this rule the following operations can be extracted (Hankerson et al. 

2004)3: 

Let ( )1 1,P x y , ( )2 2,Q x y  and , ( )
p

P Q E F∈ where P Q≠ ±  

• Point addition ( )3 3,P Q R x y+ =  

• Point doubling ( )3 32 ,P R x y=  

The order of elliptic curve is defined by # ( )
p

E F n= . The n is the count of the 

points over the elliptic curve when the point counting is started any base point P over 

the curve until this point counting operation riches to the point at infinity. n should be a 

prime. Elliptic curve cryptosystem is based on the Elliptic Curve Discrete Logarithm 

Problem [ECDLP]. Let ,P Q E∈ , ECDLP is the problem of finding integer k such that 

Q kP=  where 0 1k n< < − .  

 Let GF  be a finite Galois field, E be an elliptic curve defined over GF  and P 

be a base point on E. Key generation is defined as: generate a random integer k  where 

p
k ∈Z  and p is prime, calculate Q kP= . Now the public key is Q  and the private key 

is k . 

 The following is Elliptic Curve Encryption System and works as follows:  

• The message is divided into pairs ( )1 2,m m  such that 1m GF∈ and 2m GF∈ .  

• A random integer a is selected and points ( )1 1,x y aP=  and ( )2 2,x y aQ= . 

• ( )1 2,m m  and ( )2 2,x y  are combined into field element ( )1 2,c c .  

• The ciphertext is ( )1 1 1 2, , ,em x y c c= .  

                                                 
3 Hankerson et al. 2004 pp. 79-81. 
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In the decryption process  

• ( ) ( )2 2 1 1, ,x y k x y=  is calculated where k is the private key.  

• The plaintext ( )1 2,m m  is obtained by ( ) ( )1 2 2 2, ,c c x y− . 

 

 

3.2. A Historical Perspective 
 

 

The history of lattice reduction goes back to the theory of quadratic forms 

developed by Lagrange, Gauss, Hermite, Korkine-Zolotareff and others (Lagrange 

1773, Gauss 1801, Hermite 1850, Korkine and Zolotareff 1773)4 and to Minkowski’s 

geometry of numbers (Minkowsi 1910). 

With algorithmic number theory, the subject had attention around 1980. With 

the works the two famous problems have occurred: the shortest vector problem and the 

closest vector problem.  

The very famous algorithm LLL computes a so-called reduced basis of a lattice 

and provides a partial answer to SVP. It runs in polynomial time and approximates the 

shortest vector within a factor of 2n/2. The name of this algorithm comes from the 

initials of the authors of the paper where the algorithm is proposed (Lenstra et al. 1982). 

This algorithm was the result of Lentra’s work on integer programming (Lenstra 1983)5. 

Schnorr proposed a refinement for LLL algorithm which improved the above factor 

( )1 nε−  (Schnorr 1987, Schnorr 1988). Babai developed an algorithm that approximates 

the closest vector by a factor of ( )1 2
n

 (Babai 1986).  

After these works lattice reduction started to take place in cryptography. Shamir 

proposed a polynomial time algorithm (Shamir 1982) breaking the Merkle-Hellman 

public key cryptosystem (Merkle and Hellman 1978) which was by then a unique 

alternative to RSA. Shamir used Lenstra’s integer programming then Adleman extended 

Shamir’s work by treating the cryptographic problem as a lattice problem rather than a 

linear programming problem (Adleman 1983). Lattice reduction has also been applied 

to other cryptographic context: against a version of Blum’s protocol for exchanging 

secrets (Frieze et al. 1988), against cryptosystems based on truncated linear congruential 
                                                 
4 Lagrange 1773, pp. 265-312. 
5 The results concering LLL were used before the work is published (around 1979). 
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generators (Frieze et al. 1988, Stern 1987), against cryptosystems based on rational 

numbers (Stern and Toffin 1990) or modular knapsacks (Joux and Stern 1991, Chee et 

al. 1991) and RSA with exponent 3 (Coppersmith 1996). 

Ajtai discovered a connection between the worst-case complexity and the 

average-case complexity of some well known lattice problems (Ajtai 1996). Ajtai and 

Dwork proposed a cryptosystem using this theorem (Ajtai and Dwork 1997). The same 

year Goldreich, Goldwasser and Halevi proposed another cryptosystem based on lattice 

problems (Goldreich et al. 1997). Nguyen and Stern have broken the Ajtai-Dwork 

cryptosystem (Nguyen and Stern 1998). Later Nguyen proposed the cryptanalysis of the 

Goldreich, Goldwasser and Halevi cryptosystems (Nguyen, 1999). 

Recently NTRU, firstly proposed by Hoffstein, Pipher and Silverman (Hoffstein 

et al. 1998), is being discussed under IEEE’s 1363-1 standard named Draft Standard for 

Public-Key Cryptographic Techniques Based on Hard Problems over Lattices (WEB_7 

2007). Researches are being continued on NTRU and no crucial security issue is found. 
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CHAPTER 4 
 

 

NTRU CRYPTOSYSTEM 
 

 

This chapter is intended to provide the theoretical background on the lattice-

based public key cryptosystem NTRU6. Section 4.1 describes domain parameters and 

some definitions for NTRU while section 4.2, section 4.3 and section 4.4 cover key 

generation, encryption and decryption operations respectively. Section 4.5 focuses on 

some considirations and finally the last section covers a propsed digital envelope for 

NTRU. 

 

 

4.1. Domain Parameters and Some Definitions 
 

 

The main parameters of NTRU cryptosystem are integers n, p and q.7 These 

values are used to define the following polynomial rings: 

•  [ ] ( )1nR X X= −Z  which specifies the polynomials modulo 1nX −  

with integer coefficients. 

•  ( )[ ] ( )1n

p
R p X X= −Z Z  which specifies the polynomials 

modulo 1nX −  whose coefficients are reduced modulo p. 

•  ( )[ ] ( )1n

q
R q X X= −Z Z  which specifies the polynomials 

modulo 1nX −  whose coefficients are reduced modulo q. 

For secure implementation of NTRU, the parameters should also satisfy 

( )gcd , 1p q =  where p q>  and n should be chosen as a prime number due to the 

reasons discussed in (Gentry 2001). 

                                                 
6 http://www.ntru.com. 
7
 In fact, it is possible to choose p to be a polynomial if the parameters are properly defined. However, we 

shall slightly ignore this case since our forthcoming discussion makes use of p as a fixed integer value of 
2. 
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f
L , 

g
L , 

m
L  and 

r
L  are also parameters which represent some special subsets of 

the polynomial ring R  from which particular polynomials are chosen to be used in key 

generation, encryption and decryption. 

Throughout this thesis, all polynomials under our consideration have integer 

coefficients and generally belong to the ring R . In order to perform key generation, 

encryption and decryption operations, we need to specify some operations on 

polynomials. 

Let u, v be arbitrary polynomials and m be a positive integer, then we can define 

following operations: 

• [ ]
m

u  or ( )modu m , is reducing the coefficients of u to a specified 

interval of length m, generally [0, m). However, we may take this 

interval to be [ ],A A m+ , for some integer A, in order to properly center 

the polynomial in some part of the decryption process. 

• ( )* modu v m  or equivalently ( ). mod , 1nu v m X −  is called (cyclic) 

convolution product or star multiplication. Here the point [.] is the usual 

polynomial multiplication, and ( )mod , 1nm X −  means reducing the 

polynomial modulo 1nX −  and coefficients modulo m. 

• For 1
0 1 1... n

n
u u u x u x

−

−= + + + , we define 

Max max
i

u u= , Min min
i

u u=  and Width Max Minu u u= − . 

• L2-norm and centered L2-norm of the polynomial u gives idea on the 

smallness or the length of u and are defined as 

( )
1 1 12

2
2 2

2
0 0 0

1
and where

n n n

i i i

i i i

u u u u u u u
n

− − −

= = =

= = − =∑ ∑ ∑ (Micciancio 

and Goldwasser 2002), (WEB_7 2007)8. 

For detailed information on domain parameters and their effect on the 

cryptosystem’s security and performance the reader is referred to (WEB_7 2007). 

 

 

                                                 
8 Micciancio and Goldwasser 2002 p. 8, WEB_7 2007 p. 45. 
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4.2. Key Generation 
 

 

To create an NTRU public key, one chooses two polynomials such that 
f

f L∈  

and
g

g L∈ . Here, polynomials in 
f

L  and 
g

L  have small widths. Also, the polynomial f 

should have inverses modulo p and q. In other words, one should be able to calculate 

1
pf
−  and 1

qf
− such that  

1 1* 1 (mod ) and * 1 (mod )p qf f p f f q
− −≡ ≡ . 

Private key is composed of the polynomials f and 1
pf
− . After choosing the 

polynomials appropriately, public key can be computed as  

 

 

( )1 * modqh pf g q
−≡ . (Eq. 4.1) 

 

 

The following is a numerical example for key generation operation. Domain 

parameters are as follows:  

11 32 3N q p= = =  

We choose a polynomial f such that it is invertible in both modulus p and.q.Also 

we choose the polynomial g which will be used in public key generation. 

2 4 6 9 101f x x x x x x= − + + − + + −  and 2 3 5 8 101g x x x x x= − + + + − −  

 Next step is to calculate the inverses of f in modulus p and q namely fp and fq: 

3 4 5 7 8 91 2 2 2 2 2pf x x x x x x x= + + + + + + +  and 

2 3 4 5 6 7 8 9 105 9 6 16 4 15 16 22 20 18 30qf x x x x x x x x x x= + + + + + + + + + +  

 f is the private and the public key h is calculated as follows: 

( )2 3 4 5 6 7 8 9 10* 8 25 22 20 12 24 15 19 12 19 16 mod 32qh pf g x x x x x x x x x x= = + + + + + + + + + +
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4.3. Encryption 
 

 

In order to perform encryption, one chooses a polynomial m representing the 

message such that 
m

m L∈ , and a random polynomial 
r

r L∈ . Later the polynomial 

corresponding to the ciphertext is computed as  

 

 

( )* mode r h m q≡ + . (Eq. 4.2) 

 

 

As in key generation, 
r

L and 
m

L  are special sets of the polynomials in R, having 

small widths. 

 The following is a numerical example representing how the encryption process 

works. 

 In order to encrypt a message we need a public key h (we use the one which is 

calculated in the previous section) and a random polynomial r besides the message 

polynomial m. So we choose the random r and the message m as: 

2 3 4 5 71r x x x x x= − + + + − −  and 3 4 8 9 101m x x x x x= − + − − + +  

 The following operation calculates the encrypted message (chipertext) e: 

( )2 3 4 5 6 7 8 9 10* 14 11 26 24 14 16 30 7 25 6 19 mod 32e r h m x x x x x x x x x x= + = + + + + + + + + + +

 

 

4.4. Decryption 
 

 

One can carry out the decryption by computing the polynomial 

 

 

[ ] ( )1 * * mod
p q

d f f e p
−≡ . (Eq. 4.3) 
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However, in some cases decryption may not be successful. The condition for 

successful decryption and its effects on the choice of parameters are briefly discussed in 

the next section. 

 The following is a numerical example to demonstrate the decryption operation. 

One can compute the temporary polynomial a as follows: (The chipertext, private key f 

and the inverse of private key fp is provided from previous sections) 

( )2 3 4 5 6 7 8 9 10* 3 7 10 11 10 7 6 7 5 3 7 mod 32a f e x x x x x x x x x x= = − − − + + + + + − −  

The next step is to reduce the coefficients of a to modulo p. a results in polynomial a′ : 

( ) ( )2 3 4 5 7 8 10mod mod 3a a p x x x x x x x x′ = = − − + + + + − −  

Next we need to move the next step to calculate the plaintext: 

( )3 4 8 9 10* 1 mod 3pc f a x x x x x′= = − + − − + +  

 

 

4.5. Conditions 
 

 

Consider the polynomial 

 

 

[ ] ( )* * * mod
q

f e pr g f m q≡ + . (Eq. 4.4) 

 

 

For different parameter sets ( ), , , , , ,
f g r m

n p q L L L L  it is probable that we will have the 

right hand side of equation 4.4 in the interval [ ),A A q+ , 0A ≠ . Therefore, we need to 

center the value of [ ]*
q

f e  by reducing its coefficients into the correct interval in order 

to satisfy equation 4.5. 

 

 

[ ]* * * *
q

pr g f m pr g f m+ = + , (Eq. 4.5) 
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which guarantees the success of decryption. 

Let * *t pr g f m= + . In some cases, the polynomial t may not be obtained 

easily due to the fact that it is not properly centered. This is called decryption failure. 

Although the probability of occurrence of decryption failure is significantly small for 

appropriately chosen parameter values, as discussed in (WEB_1 2006) and (WEB_13 

2006), they should not be ignored (WEB_5 2006). 

(WEB_12 2006) discusses different types of wrap and gap failures which are 

different types of decryption failures. (WEB_13 2006) calculates the probability of 

failures, and discusses methods in order to correctly center the polynomial t to eliminate 

the wrapping failures. However, gap failures still remains untreated. On the other hand, 

(Yu and He 2005) gives an algorithm to overcome all decryption failures. Furthermore, 

the same paper outlines an analysis relating the NTRU parameters to the decryption 

failures and presents the conditions for choosing the parameter values which prevents 

all decryption failures. 

 

 

4.6. Digital Envelope 
 

 

The original NTRU (Hoffstein et al. 1998), which is mainly outlined so far, 

considers the plaintext directly as the polynomial m. However, this scheme is vulnerable 

to some certain types of attacks and in particular, if decryption failure occurs (WEB_12 

2006). For example, if the attacker is allowed to send a large number of messages and 

observe which ones are accepted as valid he/she can easily recover the messages. 

Therefore, calculation of the polynomial m is modified as in (WEB_1 2006) in order to 

improve the security of the cryptosystem. 

Let ( )pP n k−  is the set of polynomials in 
p

R  having degree at most 1n k− − , 

and let ( )pm P n k′∈ −  be the plaintext polynomial. Then, during the encryption, one can 

compute the polynomial m as follows: 

 

[ ]( ) [ ]( )* , * n k

p p
p

m m G r h H m r h X
− ′ ′= + +

 
. (Eq. 4.6) 
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Here, ( ) ( ): p pG P n P n→  and ( ) ( ) ( ): p p pH P n P n P k× →  are generating function and 

hashing function respectively. 

In order to obtain m′  in the decryption process, after computing m, we need to 

calculate the values [ ] ( )and
p p

x e m y m G x= − = −   . It should be noted that in a 

valid decryption we expect the following equalities to hold [ ]*
p

x r h=  and 

[ ]( ), * n k

p
y m H m r h X

−′ ′= + . Later, we extract two polynomials ( )py P n k′∈ −  and 

( )py P k′′∈  from y as 

 

 

n ky y y X −′ ′′= + . (Eq. 4.7) 

 

 

If ( ),y H y x′′ ′= , it implies that [ ]( ), *
p

y H m r h′ ′= . Therefore, we conclude y m′ ′=  

and decryption is valid. 

Here, k is defined to be the security parameter of NTRU which provides 

resistance to some certain types of attacks and according to the chosen value of k, the 

probability of forging a valid ciphertext is kp− (WEB_11 2006). 

Lastly, similar and more secure padding schemes like the one discussed above 

are also designated in (WEB_2 2006, WEB_3 2006) and (WEB_5 2006) for particular 

chosen set of parameters. 
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CHAPTER 5 
 

 

IMPLEMENTATION OF NTRU 
 

 

This chapter aims to cover the details of how the parameters are chosen, the 

details of encryption scheme implemented and the details of our design of NTRU 

cryptosystem.  

 

 

5.1. Instantiation of Cryptosystem 
 

 

In this section, we outline some conditions which vitally affect the way the 

parameters are chosen. Also, we briefly mention the latest recommended and the 

alternative choices of the parameters in order to provide efficient and secure realizations 

of the cryptosystem. However, we do not cover any of these in full detail. For a 

complete discussion, one should refer to (WEB_5 2006), NAEP encryption scheme, and 

(WEB_6 2006), SVES-3 an instantiation of NAEP. 

 

 

5.1.1. Choosing Parameters 
 

 

Since NTRU is first proposed, the recommended parameter values have been 

subject to changes. Many different parameter choices are discussed in the literature in 

order to provide different levels of efficiency and security, and in general, for each 

proposed set of parameters and defined security levels, the parameter p is fixed to be a 

small integer or polynomial value. 

In order to realize efficient implementation of NTRU at least one polynomial in 

the convolution product should be binary, whose coefficients are in the set { }0,1 , or 

trinary, whose coefficients are in { }1,0,1− . Therefore, in the rest of our discussion we 
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shall define 
z

d  to be the number of coefficients in the polynomial binary or trinary 

polynomial z which are equal to 1. 

 

 

5.1.2. Choosing n 
 

 

If the message is binary, n is the number of bits that can be transported. In order 

to provide k bits of security9 and prevent some particular (birthday-like) attacks, 2k bits 

can be transported. In addition, SVES-3 uses k bits of random padding to gain security 

against enumeration attacks in case some low-entropy messages are transported. 

Therefore, we set n to be the first prime number greater than 3k. It should be noted that 

n might need being changed if one cannot find appropriate values of the remaining 

parameters. 

 

 

5.1.3. Choosing f, g, r and m 
 

 

Let F, g and r to be binary polynomials with 
f

d , 
g

d  and 
r

d  number of 1s 

respectively. We take 1f pF= +  so that the second convolution product in the 

decryption can be eliminated since 1
pf
− . Furthermore, since security increases when h is 

invertible, we also take g to be invertible and set / 2
g

d n=  to obtain the best lattice 

security, and choose smallest 
F

d , 
r

d  and 
m

d  such that 

1 / 2
2

/ 2
kn

dn

 
≥ ′ 

 

where { }, ,F r md d d d′∈ . Here, we can take 
F r

d d d= =  in order to equalize the 

combinatorial security levels of F and r. Moreover, the message representative 

polynomial m is chosen in such a way that it does not contain very few 1s or very few 

0s. Also, 
2

m  should be sufficiently large to provide resistance against attacks which 

stems from information leakage from the encrypted message, and we should have the 

                                                 
9 Bits of Security (also known as Security Strength): Number of operations to break a cryptosystem. 
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probability of being rejected due to having insufficient security, 
reject

P , very small, for 

instance less than 402− . 

 

 

5.1.4. Choosing p and q 
 

 

It is already noted that p and q should be relatively prime. p is fixed to be the 

integer value of 2 so that we can work with binary polynomials. Also, q must have a 

higher order modulo n, i.e. the order of divisors of 1nX −  modulo q should be high, for 

example ( )1n −  or ( )1 2n − . In addition, to achieve better lattice security we must keep 

f and g as large as possible relative to q. Though, for combinatorial security, it is better 

to increase p, it causes an increase in q and so decreases lattice security. As a result, we 

can select q as a prime number such that  

( ) ( ).min , 1 .min , 2
r g f

q p d d p d n≤ + +  

and  

order of q modulo ( )1 2n n≥ − . 

This choice gives us the best lattice security and zero probability of decryption 

failure. 

 

 

5.1.5. Alternatives 
 

 

It is possible to choose f not to be of form 1 pF+  in order to decrease q. On the 

other hand, F and r can be chosen in the product form 1 2 3*f f f+  in order to obtain 

further performance benefits and slightly increased bandwidth. 

We can also choose p and q values differently. Let s be the first power of 2 such 

that 

( ) ( ) ( ) ( )1 .min , 1 1 .min , 2
r g f

s p d d p d n≥ + +  

Then for a small integer or polynomial value of 2p X= +  or 3p = , in which 

cases we work with binary or trinary polynomials respectively, one can choose q = s. 
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This speeds up the reductions modulo q. However, with the larger values of p lattice 

security worsens due to the fact that q gets larger. In addition, we can also speed up 

these reductions by choosing q to be the largest prime such that q s≤  for 2p =  at the 

expense of lattice security. 

As a last note, allowing the probability of decryption failures to be greater than 0 

reduces q, thus improves the lattice security and the bandwidth. 

 

 

5.1.6. NAEP Encryption Scheme 
 

 

Let 
n

B  be the set of binary polynomials whose degree is less than n, and ( )nB d  

be the subset of 
n

B  with polynomials having d number of 1s. Furthermore, let G and H 

be two hashing functions such that 

( ): n k k n rG B B B d− × →  

: .
n n

H B B→  

These functions should be chosen such that each of them has a very small 

probability of variation in running time, since the running time variations may cause 

leakage of information about the private key (WEB_14 2007). 

 

 

5.1.6.1. Encryption 
 

 

During encryption we choose a random polynomial 
k

b B∈ , and then we 

calculate the polynomial ( ),r G m b′∈ , where m′  is the plaintext polynomial. Message 

representative polynomial m is given 

 

 

( ) [ ]( ) ( )* modn k

q p
m m bX H r h p

−  ′≡ + +
 

. (Eq. 5.1.) 
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At this point, one should check whether m has the expected level of combinatorial 

security. If not the operation should be performed with a different and randomly chosen 

b. 

For properly computed m, encryption is performed as defined before: 

( )* mod .e r h m q≡ +  

 

 

5.1.6.2. Decryption 
 

 

In decryption, one, first, calculates the polynomial m as described before: 

[ ]1 * *
p q p

m f f e
− =

 
. 

Of course, the polynomial [ ]*
q

f e  should be centered if decryption failure occurs. 

In order to obtain m′ , we need to calculate the values 

x e m= −  and [ ]( )q p
p

y m H x
  = −   

. 

Later, we extract two polynomials 
n k

y B −
′∈  and 

k
y B′′∈  from y as 

n ky y y X −′ ′′= + . 

If the conditions 

( ), *
q

x G y y h′ ′′=    and ( )n k my B d−
′∈  

are satisfied, the ciphertext is valid and y m′ ′= is the plaintext. 

 

 

5.2. Implementation Details 
 

 

The source code for this thesis is developed compatible with IEEE’s 1363.1 

standard namely “Draft Standard for Public-Key Cryptographic Techniques Based on 

Hard Problems over Lattices” (WEB_7 2007). Eclipse with CDT10 plugin is used as the 

development environment for this project.  

                                                 
10 http://www.eclipse.org and http://www.eclipse.org/cdt. 
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5.2.1. Programming Language 
 

 

ANSI C is selected as development language. The practical performance for the 

project is very important and it is obvious that the more the programming language is 

low level the more performance we gain. Pointer arithmetic, structural features and 

portability of ANSI C were the main factors for us to choose ANSI C as our 

programming language. Also the fact that CRYMPIX (Hışıl 2005) is developed using 

ANSI C, played a very huge role for us to choose ANSI C for compatibility reasons. 

 

 

5.2.2. Representation of Polynomials 
 

 

In the polynomial structure the number of coefficients, the degree of the 

polynomial and the array that containing the actual coefficients are stored.  

 

 

5.2.3. Memory Management 
 

 

Allocation and deallocation of objects bring a huge overhead to software in 

terms of runtime performance. So one has to get rid of this overhead to provide better 

runtime performance. To eliminate these types of performance losses a memory 

management model called Static Memory Management (Mersin and Beyazıt 2007) for 

this implementation is used. In this model, a defined number of memory slots, used as 

polynomials for this project, are allocated before the application begins and stored in a 

memory slot stack. When ever one needs a polynomial, the initialization process starts 

and an available memory slot is provided to the user (developer) (This can be imagined 

as a pop stack operation). In deallocation of a polynomial, one return the polynomial to 

the software, this memory slot is put back to the stack; from now on this particular 

memory slot is available for further use. (This can be imagined as a push stack 

operation) Static Memory Model is used for this implementation because, for this thesis, 
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the main concern is the performance. The assumption here is that we do not have 

memory restrictions. 

 

 

5.2.4. Details of Some Instructions 
 

 

The following Figure 5.1 and Figure 5.2 illustrate the two core operation of the 

NTRU cryptosystem. Those are addition and convolution product operations. 

 

 

 

 

Figure 5.1. Add Operation. 

 

input: a, b, m 
output: Returns c = a + b (coefficient mod m) 
 
if a→n > b→n then 
    n = a→n, sn = b→n. 
    for i = sn to n do 
        c→coef[i] = a→coef[i]. 
    end 
else 
    n = b→n, sn = a→n. 
    for i = sn to n do 
        c→coef[i] = b→coef[i]. 
    end 
for i = sn tao n do 
    c→coef[i] = a→coef[i] + b→coef[i] (mod m). 
end 
 
return c. 
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Figure 5.2. Convolution Product Operation. 

input: a, b, n, m 
output: Returns c = a * b (coefficient mod m) (degree mod n) 
 
for i = 0 to a→n do 
    for j = 0 to b→n do 
        cur_i = i + j (mod n). 
        co_a = a→coef[i]. 
        co_b = b→coef[i]. 
        c→coef[cur_i] =c→coef[cur_i] + (co_a * co_b (mod m)) (mod m). 
    end 
end 
 
return c. 
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CHAPTER 6 
 

 

PERFORMANCE ANALYSIS OF NTRU 
 

 

The underlying theory implies that NTRU can be yet another popular public key 

cryptosystem residing with ECC11, RSA12 and the likes. Nevertheless, it is important to 

make detailed discussion of these cryptosystems in order to better comprehend how 

NTRU performs. This section intends to show the comparative performance analysis of 

lattice based NTRU cryptosystem with respect to popular public key cryptosystems; like 

RSA and ECC. Next subsections will give the results of this analysis in terms of key 

size and key generation, encryption and decryption timings. 

 

 

6.1. Parameters of NTRU Used for Comparison 
 

 

Using the conditions for recommended parameters in Chapter 5, one can obtain 

the following sets for the parameter values in Table 6.1. 

 

Table 6.1. NTRU Parameter Sets. 

 

k  
(bit 

security) 

( )3n k≥
 

(degree) 

p  
(small 

modulus) 

q  
(large 

modulus) 

( )f r
d d d= =

 
(number of 

1s in f and r) 

( )2
g

d n=     
(number of 

1s in g) 

( )
0m md d≤

 
(number 

of 1s in m) 

80 251 2 197 48 125 70 

112 347 2 269 66 173 108 

128 397 2 307 74 198 128 

160 491 2 367 91 245 167 

192 587 2 439 108 293 208 

256 787 2 587 140 393 294 

 

                                                 
11 http://www.certicom.com. 
12 http://www.rsa.com. 
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It should be noted that, besides complying the discussion we made so far, the 

parameter values in Table 6.1. are also recommended as SVES parameter choices in 

(WEB_7 2007), the latest IEEE draft standard (currently draft 9) for public key 

cryptosystems based on hard problems over lattices. 

In the rest of our study, while making comparison of NTRU with other public 

key cryptosystems, we shall refer to NTRU instantiated with these sets of parameters. 

 

 

6.2. Performance Comparison of NTRU with ECC and RSA 
 

 

6.2.1. Comparison of Key Sizes 
 

 

In ECC and RSA, public and private keys can be chosen of approximately equal 

lengths, whereas NTRU public key size differs from private key size with a ratio 

of log 1
p

n
q to

n k
− −

−
. The public key size of a cryptosystem gives useful insight on the 

bandwidth usage if the cryptosystem is intended to be used in key exchange schemes. 

Table 6.2. gives corresponding NTRU, ECC and RSA keys sizes for equivalent security 

levels ( k ) of 80 bits, 112 bits and 128 bits etc (WEB_9 2007, WEB_6 2006). 

 

Table 6.2. Public Key Sizes (in bits). 

 

Public Key Sizes (bits) 
Security Level (bits) 

NTRU ECC RSA 

80 2008 160 1024 

112 3033 224 2048 

128 3501 256 3072 

160 4383 320 4096 

192 5193 384 7680 

256 7690 521 15360 
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Key Sizes (NTRU vs ECC vs RSA)
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Figure 6.1. Key Size Comparison Graph. 

 

From Table 6.2. and Figure 6.1., one can observe that ECC, among the three, 

makes the best use of bandwidth and NTRU's bandwidth usage becomes more efficient 

with respect to RSA as the security level increases. 

 

 

6.2.2. Comparison of Key Generation, Encryption and Decryption 

Performance 

 

 

Though RSA is the most studied, tested and scrutinized cryptosystem (among 

the three), the latest debates, such as in (WEB_9 2007), point out that ECC gained 

significant trust over time, and now, many security vendors are including ECC modules 

in their own products. 

Accordingly, we find it useful to give timing comparisons with ECC. On the 

other hand, preliminary timing comparisons with RSA can be found in Table 6.3 

(WEB_1 2006). Figure 6.2., Figure 6.3. and Figure 6.4. give the graphical 

representation of key generation, decryption and encryption performance comparisons 

of NTRU and RSA respectively. 
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Table 6.3. Comparison of NTRU and RSA.13 

 

System 
Security 

(MIPS years) 

Public Key Size 

(bits) 

Create Key 

(msec) 

Encrypt 

(blks/sec) 

Decrypt 

(blks/sec) 

RSA 512 4.00 105 512 260 2441 122 

NTRU 167 2.08 106 1169 4.0 5941 2818 

RSA 1024 3.00 1012 1024 1280 932 22 

NTRU 263 4.61 1014 1841 7.5 3676 1619 

RSA 2048 3.00 1021 2048 4195 310 3 

RSA 4096 2.00 1033 4096 - - - 

NTRU 503 3.38 1035 4024 17.3 1471 608 

 

 

Notes for Table 6.3.14 

• Security is measured in MIPS-years required to break the system. 

• NTRU encryption, decryption, and key creation performed using Tao Group's 

Tumbler implementation of the NTRU algorithm, programmed in C and running 

on a 300 MHz Pentium II operating under Linux. 

• RSA key creation is done on a 255 MHz Digital AlphaStation. 

• RSA encryption/decryption programmed in Microsoft Visual C++ 5.0 

(optimized for speed, Pentium Pro code generation), and run on a Pentium II 

266MHz machine under Windows NT 4.0. RSA encryption uses exponent 17 to 

increase speed. 

 

Figure 6.2., Figure 6.3. and Figure 6.4. give information about how NTRU acts 

against RSA. For another point of view, Figure 6.5., Figure 6.6. and Figure 6.7. 

show the key size versus performance graphs. 

                                                 
13 WEB_1 2006. 
14 The reader is referred to WEB_1 2006 p. 10 for further details on Table 6.3. 
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Figure 6.2. Key Generation Performance Graph (NTRU and RSA). 
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Figure 6.3. Encryption Performance Graph (NTRU and RSA). 
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Decryption (NTRU vs RSA)
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Figure 6.4. Decryption Performance Graph (NTRU and RSA). 
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Figure 6.5. Key Size vs Key Generation Performance Graph (NTRU vs RSA). 
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Key Size vs Encryption
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Figure 6.6. Key Size vs Encryption Performance Graph (NTRU and RSA). 
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Figure 6.7. Key Size vs Decryption Performance Graph (NTRU and RSA). 

 

From Table 6.3 one can drive that NTRU has better performance values than RSA. 

From Figure 6.2, Figure 6.3 and Figure 6.4 it is easy for us to conclude that NTRU has 

better performance. Figure 6.5., Figure 6.6 and Figure 6.7. show that for same key sizes 

NTRU can encrypt / decrypt more message in a second than RSA, also key generation 

for same key sizes is faster in NTRU. 
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We make use of C code implemented in GMP15, which is the outcome of (Atay 

2006), while measuring key generation, encryption and decryption times of ECC. The 

curves used are NIST and/or SEC - Certicom recommended elliptic curves over prime 

fields (WEB_8 2006, WEB_10 2006), and encryption and decryption measurements are 

taken in several coordinate systems such as, affine, projective, Jacobian, Chudnovsky, 

and modified Jacobian. 

Table 6.4. gives timing measurements for NTRU and ECC cryptosystems where the 

code is compiled (with no optimizations) and run on a personal computer with Windows 

XP Professional OS, P4 2.80 GHz CPU and 1 GB RAM. Figure 6.5., Figure 6.6. and 

Figure 6.7. respectively give the graphical representation of key generation, decryption 

and encryption performance comparisons of NTRU and the best timing results of ECC 

among five coordinate systems while Figure 6.8., Figure 6.9. and Figure 6.10. give the 

graphical representation of key generation, decryption and encryption performance 

comparisons of NTRU and the worst timing results of ECC among five coordinate 

systems. 

 

Table 6.4. Key Generation, Encryption and Decryption Times. 

 

Cryptosystem 
Security Level 

(bits) 

Key Generation* 

(msec) 

Encryption* 

(msec) 

Decryption* 

(msec) 

NTRU-251 80 75.65 1.68 8.22 

ECC-192 between 80 - 112 57.87 – 152.73 37.81 – 116.39 19.15 –57.68 

NTRU-347 112 144.16 3.11 15.70 

ECC-224 112 234.11 – 367.98 52.52 – 164.50 26.35 – 81.52 

NTRU-397 128 188.92 3.97 20.26 

ECC-256 128 478.22 – 656.63 68.72 – 223.29 35.00 – 111.16 

NTRU-491 160 288.31 5.97 30.96 

NTRU-587 192 412.10 8.42 44.42 

ECC-384 192 947.43 – 1429.11 182.35 – 586.20 90.61 – 290.94 

NTRU-787 256 738.75 14.49 79.48 

ECC-521 256 2055.04 – 3175.87 423.25 – 1257.56 211.35 – 626.33 

                                                 
15 http://www.swox.com/gmp. 
* ECC timings are given as minimum - maximum of the values observed over all coordinate systems. In 
key generation minumum values are in Affine coordinate system while maximum values are in Madified 
Jacobian coordinate system. In both encryption and decryption, minimum values are in Chudnosky 
coordinate system and maximum values are in Affine coordinate system. 
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Figure 6.8. Key Generation Performance Graph (NTRU ECC-b16). 
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Figure 6.9. Encryption Performance Graph (NTRU and ECC-b). 

 

 

                                                 
16 ECC-b: minimum values of ECC timings observed. 
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Decryption (NTRU vs ECC)
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Figure 6.10. Decryption Performance Graph (NTRU and ECC-b). 
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Figure 6.11. Key Size vs Key Generation Performance Graph (NTRU vs ECC-b). 
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Key Size vs Encryption
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Figure 6.12. Key Size vs Encryption Performance Graph (NTRU and ECC-b). 
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Figure 6.13. Key Size vs Decryption Performance Graph (NTRU vs ECC-b). 
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Figure 6.14. Key Generation Performance Graph (NTRU ECC-w17). 
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Figure 6.15. Encryption Performance Graph (NTRU and ECC-w). 

 

 

                                                 
17 ECC-w: maximum values of ECC timings observed. 
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Figure 6.16. Decryption Performance Graph (NTRU and ECC-w). 
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Figure 6.17. Key Size vs Key Generation Performance Graph (NTRU vs ECC-w). 
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Key Size vs Encryption

0

200

400

600

800

1000

1200

0,00 500,00 1000,00 1500,00

Encryption (msec)

P
u

b
li

c 
K

e
y

 S
iz

e
 (

b
it

s)

NTRU

ECC

 

 

Figure 6.18. Key Size vs Encryption Performance Graph (NTRU and ECC-w). 
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Figure 6.19. Key Size vs Decryption Performance Graph (NTUR and ECC-w). 

 

As one can derive from Table 6.4, NTRU seems faster than ECC with respect to 

all the security levels defined above. This mainly stems from the fact that NTRU 

operations are relatively simple and not as demanding as ECC's. For instance, they do 

not even require the use of multiprecision arithmetic in the sense ECC operations do. In 

addition, though the timing measurements can be affected by many things such as 

runtime environment, compiler options, code optimizations and, in case of ECC, the 
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pros and cons of using a general purpose multiprecision arithmetic library etc., it is 

highly unlikely that ECC has better runtime performance. 

Figure 6.8., Figure 6.9. and Figure 6.10. show that NTRU has better 

performance values compared with ECC best performance values. Also Figure 6.11., 

Figure 6.12. and Figure 6.13. indicate that for the same key sizes NTRU has better 

performance. Figure 6.14., Figure 6.15., Figure 6.16., Figure 6.17., Figure 6.18. and 

Figure 6.19. show that NTRU has better, naturally, performance values than ECC’s 

worst performance values. 
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CHAPTER 7 
 

 

CONCLUSION 
 

 

In this study, we aimed to gain the knowledge of lattice based cryptography and 

investigate the performance of lattice based cryptography. As the study continued, we 

noticed that NTRU is the only, for now, candidate to be used as a secure and affordable 

public key cryptosystem among all lattice based cryptosystems. So we concentrate on 

the performance comparisons of NTRU and other popular public key cryptosystems, 

namely RSA and ECC. In order to achieve these goals; we coded NTRU cryptosystem 

compatible with “IEEE 1363.1 Draft Standard for Public-Key Cryptographic 

Techniques Based on Hard Problems over Lattices” standard. We used ANSI C as our 

programming language. 

From Chapter 6 one can derive that among all three ECC has the best key size. 

At lower security levels RSA has smaller key sizes than NTRU’s. But as the security 

level increases; the key size of RSA increases more than NTRU’s. From key size point 

of view ECC has the best results where for lower security levels RSA is better than 

NTRU. 

When the time has come to the actual performance analysis, we obtained that for 

the same security levels NTRU has better performance than ECC’s and RSA’s. Though 

the timing measurements can be affected by many things such as runtime environment, 

compiler options, code optimizations and, in case of ECC and RSA, the pros and cons 

of using a general purpose multiprecision arithmetic library etc., it is highly unlikely 

that ECC and RSA have better runtime performance.  

Throughout the study we outlined NTRU and demonstrated, in basic terms, how 

it performs against RSA and ECC. 

Many researchers have been scrutinizing NTRU since the time it proposed for 

the first time. There has been serious amount of analysis on the security and 

performance issues, and NTRU seems to be quite a decent public key cryptosystem 

which will be useful in the field of security for many years to come. 

At last NTRU is a promising alternative for the future of public key 

cryptography. The nature of the problem which NTRU is based on (Geometrical 



 45 

problems) is completely different than the current popular public key cryptosystems’ 

(Number theoretic problems). Because of this reason even though current public key 

cryptosystems are broken, NTRU will be the reserve for the future use. NTRU is a 

relatively new cryptosystem and it seems that we can not replace ECC or RSA with 

NTRU so easily. There is more way to go for this purpose.  
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