

THE COMPARATIVE PERFORMANCE
ANALYSIS OF LATTICE BASED NTRU

CRYPTOSYSTEM WITH OTHER
ASYMMETRICAL CRYPTOSYSTEMS

A Thesis Submitted to
the Graduate School of Engineering and Science of

İzmir Institute of Technology
in Partial Fullfillment of the Requirements for the Degree of

MASTER OF SCIENCE

in Computer Software

by
Ali MERSİN

September 2007
İZMİR

We approve the thesis of Ali MERSİN

 Date of Signature

.. 10 September 2007
Assoc. Prof. Dr. Ahmet KOLTUKSUZ
Supervisor
Department of Computer Engineering
İzmir Institute of Technology

.. 10 September 2007
Prof. Dr. Şaban EREN
Department of Computer Engineering
Maltepe University

.. 10 September 2007
Dr. Serap ATAY
Department of Computer Engineering
İzmir Institute of Technology

.. 10 September 2007
Prof. Dr. Sıtkı AYTAÇ
Head of Department
Department of Computer Engineering
İzmir Institute of Technology

..
Prof. Dr. M. Barış ÖZERDEM
Head of the Graduate School

ACKNOWLEDGEMENT

Foremost, I would like to thank my advisor, Assoc. Prof. Dr. Ahmet Koltuksuz,

for his guidance, patience, and encouragement.

Furthermore, I would like to thank Dr. Serap Atay for lending her source code to

measure ECC timings; Hüseyin Hışıl for our CRYMPIX education and his contributions

for my cryptographic knowledge; my room mate Selma Tekir for her support and

patience.

I also would like to thank my room mate Mutlu Beyazıt for his huge support; if

he had not helped, this thesis would not be completed.

I would like to thank my parents for their support throughout my education as

well as in my graduate study.

Finally, I would like to thank my dear girl friend, Gönül Karahan, who always

stands by me. She is the one who ensured that I completed my graduate study.

 iv

ABSTRACT

THE COMPARATIVE PERFORMANCE ANALYSIS OF LATTICE
BASED NTRU CRYPTOSYSTEM WITH OTHER ASYMMETRICAL

CRYPTOSYSTEMS

Current popular asymmetrical cryptosystems are based on hardness of number

theoretic problems. In the future, these problems may become practically solvable with

the improvements of processing power, the development of quantum computation and

distributed computation. So the need for new cryptosystems which are not based on

these problems has risen. Researches on hardness of lattice problems have brought a

new candidate for asymmetrical cryptography: Lattice Based Cryptography. NTRU is

one of these cryptosystems. For practical use, the actual performance results of NTRU

with respect to current asymmetrical cryptosystems should be known. This thesis is

developed based on this purpose.

 v

ÖZET

KAFES TABANLI NTRU KRİPTOSİSTEMİNİN DİĞER ASİMETRİK
KRİPTOSİSTEMLERLE KARŞILAŞTIRMALI PERFORMANS

ANALİZİ

Günümüzde aktif olarak kullanılan asimetrik kriptosistemlerde güvenlik sayı teorisi

problemlerinin zorluklarına dayanmaktadırlar. İşlemci gücünün gün geçtikçe artması,

kuantum ve dağıtık hesaplamanın gelişmesiyle, sayı teorisi problemlerinin zorluğunu

temel alan kriptosistemlerin güvenilirlikleri gelecekte tehlike altına girebilecektir. Bu

nedenle asimetrik kriptografide kullanılabilecek, başka matematiksel problemleri

kullanan, yeni kriptosistemler üretilmeli ve bir alternatif olarak sunulmalıdır. Bu

amaçla, kafes problemlerinin zorlukları üzerine yapılan çalışmalar, “Kafes Tabanlı

Kriptografi”yi ortaya çıkarmış ve kafes tabanlı NTRU kriptosistemi geliştirilmiştir.

NTRU kriptosisteminin günümüz kriptosistemlerinin yerini alabilmesi için; NTRU

kriptosisteminin bu kriptosistemlerle karşılaştırmalı performans analizi yapılmalıdır ve

bu gereksinim tezimin hedefini oluşturur.

 vi

TABLE OF CONTENTS

LIST OF FIGURES ...viii

LIST OF TABLES... ix

CHAPTER 1 INTRODUCTION.. 1

CHAPTER 2 MATHEMATICAL BACKGROUND... 3

2.1. Lattice ... 3

2.1.1. Lattice ... 3

2.1.2. Modular Lattice .. 4

2.1.3. NTRU Lattice ... 5

2.2. Quotient Polynomial Ring.. 5

2.2.1. Addition on Quotient Polynomial Ring.. 5

2.2.2. Multiplication on Quotient Polynomial Ring 6

2.2.3. Modular Lattices and Quotient Polynomial Ring............................. 6

2.3. Hard Lattice Problems.. 7

2.3.1. The Shortest Vector Problem ... 7

2.3.2. The Closest Vector Problem... 7

2.3.3. The Smallest Basis Problem... 8

2.3.4. Notes on Lattice Problems.. 8

CHAPTER 3 ASYMMETRICAL CRYPTOGRAPHY AND THE HISTORY OF

LATTICE BASED CRYPTOGRAPHY.. 9

3.1. Asymmetrical Cryptosystems... 9

3.1.1. Introduction to Asymmetrical Cryptography 9

3.1.2. Some Asymmetrical Cryptosystems... 10

3.2. A Historical Perspective ... 12

CHAPTER 4 NTRU CRYPTOSYSTEM... 14

4.1. Domain Parameters and Some Definitions... 14

4.2. Key Generation... 16

 vii

4.3. Encryption .. 17

4.4. Decryption .. 17

4.5. Conditions... 18

4.6. Digital Envelope... 19

CHAPTER 5 IMPLEMENTATION OF NTRU .. 21

5.1. Instantiation of Cryptosystem... 21

5.1.1. Choosing Parameters .. 21

5.1.2. Choosing n.. 22

5.1.3. Choosing f, g, r and m... 22

5.1.4. Choosing p and q .. 23

5.1.5. Alternatives... 23

5.1.6. NAEP Encryption Scheme ... 24

5.1.6.1. Encryption .. 24

5.1.6.2. Decryption .. 25

5.2. Implementation Details .. 25

5.2.1. Programming Language ... 26

5.2.2. Representation of Polynomials ... 26

5.2.3. Memory Management... 26

5.2.4. Details of Some Instructions... 27

CHAPTER 6 PERFORMANCE ANALYSIS OF NTRU.. 29

6.1. Parameters of NTRU Used for Comparison... 29

6.2. Performance Comparison of NTRU with ECC and RSA 30

6.2.1. Comparison of Key Sizes ... 30

6.2.2. Comparison of Key Generation, Encryption and Decryption

Performance ... 31

CHAPTER 7 CONCLUSION .. 44

REFERENCES ... 46

 viii

LIST OF FIGURES
Figure Page

Figure 5.1. Add Operation. ... 27

Figure 5.2. Convolution Product Operation.. 28

Figure 6.1. Key Size Comparison Graph. ... 31

Figure 6.2. Key Generation Performance Graph (NTRU and RSA). 33

Figure 6.3. Encryption Performance Graph (NTRU and RSA)...................................... 33

Figure 6.4. Decryption Performance Graph (NTRU and RSA). 34

Figure 6.5. Key Size vs Key Generation Performance Graph (NTRU vs RSA). 34

Figure 6.6. Key Size vs Encryption Performance Graph (NTRU and RSA).................. 35

Figure 6.7. Key Size vs Decryption Performance Graph (NTRU and RSA). 35

Figure 6.8. Key Generation Performance Graph (NTRU ECC-b). 37

Figure 6.9. Encryption Performance Graph (NTRU and ECC-b). 37

Figure 6.10. Decryption Performance Graph (NTRU and ECC-b). 38

Figure 6.11. Key Size vs Key Generation Performance Graph (NTRU vs ECC-b)....... 38

Figure 6.12. Key Size vs Encryption Performance Graph (NTRU and ECC-b). 39

Figure 6.13. Key Size vs Decryption Performance Graph (NTRU vs ECC-b). 39

Figure 6.14. Key Generation Performance Graph (NTRU ECC-w)............................... 40

Figure 6.15. Encryption Performance Graph (NTRU and ECC-w). 40

Figure 6.16. Decryption Performance Graph (NTRU and ECC-w). 41

Figure 6.17. Key Size vs Key Generation Performance Graph (NTRU vs ECC-w)...... 41

Figure 6.18. Key Size vs Encryption Performance Graph (NTRU and ECC-w). 42

Figure 6.19. Key Size vs Decryption Performance Graph (NTUR and ECC-w). 42

 ix

LIST OF TABLES
Table Page

Table 6.1. NTRU Parameter Sets.. 29

Table 6.2. Public Key Sizes (in bits). ... 30

Table 6.3. Comparison of NTRU and RSA. ... 32

Table 6.4. Key Generation, Encryption and Decryption Times. 36

 1

CHAPTER 1

INTRODUCTION

The most popular public key cryptosystems like RSA and ECC are based on the

complexity of number theoretic problems and their security is highly dependable to the

distribution of prime numbers or based on the discrete logarithm problem on finite

fields. With the development of distributed computation, grid computing and quantum

computers the breaking times, even the brute force attacks, for these cryptosystems are

diminished. This can be dangerous for future use of the public key cryptography.

Putting all the cryptographic eggs to the same basket is a risky situation, so there should

be an alternative for the future. So cryptosystems which are not based on the same

problems, for example cryptosystems based on geometrical problems etc., will be, at

least, our reserve for future failures of current cryptosystems.

Researches on complexity of lattice problems have raised a new candidate for

public key cryptography. Based on hardness of lattice problems, several cryptosystems

have been developed such as Ajtai-Dwork (Ajtai and Dwork 1997), Goldreich-

Goldwasser-Halevi (Goldreich et al. 1997) and NTRU (WEB_1 2006) cryptosystems.

With key complexity of ()nΟ instead of ()2nΩ , NTRU has the best performance

among the other lattice based cryptosystems (Hoffstein et al. 1998). Today, extensive

researches have been going on concerning the NTRU and no crucial security issue has

been found so far.

NTRU uses a special lattice called NTRU Lattice. Actually an NTRU lattice is a

special version of a convolution modular lattice. If a convolution modular lattice

contains a short vector, then it is called as NTRU Lattice.

There are several hard lattice problems which are;

• “shortest vector problem”,

• “closest vector problem”,

• “shortest basis problem and their variations”.

The security of NTRU cryptosystem is conjectured to be equivalent to the

hardness of the shortest vector problem and the closest vector problem. The shortest

 2

vector problem (SVP) is the problem of finding the vector, other than the zero vector,

that has the smallest L2 norm; while the closest vector problem (CVP) is the problem of

finding a lattice vector which has the smallest L2 norm of distance with a given vector.

It is known that the shortest vector problem is NP-Hard under randomized reduction

hypothesis (Ajtai 1998). It is also known that the closest vector problem is NP-hard and

the solution for this problem is at least as hard as the solution of the shortest vector

problem (Nguyen and Stern 2001).

To be a candidate for public key cryptography, the comparative performance

results for NTRU should be known. So this thesis is intended to clarify the performance

values of such cryptosystems with a comparative way.

We begin with the mathematical background for lattice cryptography in Chapter

2. In Chapter 3 we give the basics of the asymmetrical cryptosystems that we compared

with NTRU and the history of lattice based cryptography. We explain the NTRU

cryptosystem in Chapter 4 while we give the details of implementation in Chapter 5.

The results for comparison of cryptosystems are given in Chapter 6 and the thesis is

concluded in Chapter 7.

 3

CHAPTER 2

MATHEMATICAL BACKGROUND

This chapter provides the basics of mathematics which will be needed for the

rest of the thesis. Section 2.1 describes the fundamentals of Lattices while Section 2.2

covers Quotient Polynomial Ring. Section 2.3 describes the Hard Lattice Problems on

which the cryptosystems (see the related sections in Chapter 3) are based. This chapter

is a summary of mathematical background will be needed throughout this thesis; for

further and detailed information the reader is referred to (Micciancio and Goldwasser

2002, WEB_7 2007).

2.1. Lattice

Throughout the rest of this thesis there will be need for lattice and some special

lattices -like modular lattice and NTRU lattice-. This section aims to define the lattice

concept and special lattices.

2.1.1. Lattice

A lattice is the set of all integral combination of n linearly independent vectors,

1, , nb b… , in m-dimensional Euclidean space, m
R . Let Z be the set of integers, a lattice

is denoted by

()1
1

, , :
n

n i i i

i

x x
=

= ∈

∑b b b… ZL .

The vectors, 1{ , , }nB = b b… , represent the basis (or base) of the lattice. The integers, n

and m are called as the rank and dimension of the lattice, respectively. When the rank

and the dimension are equal, the lattice is called as full rank. Throughout the rest of this

 4

thesis, all the lattices are full rank and all the coefficients of the base vector are integers;

unless stated otherwise.

 The L
2 norm and centered L

2 norm of a vector 0 1 1[]nv v v −=v … is

respectively defined as follows:

1
2

2

0

n

i

i

v
−

=

= ∑v

()
1

2
2

0

n

i

i

v v
−

=

= −∑v ,
1

0

1 n

i

i

v v
n

−

=

= ∑ .

2.1.2. Modular Lattice

A modular lattice is the lattice that is spanned by the rows of the following

matrix

b

q

=

I Η
L

0 I

and denoted by LML = rowspan(L). Here ,b q ∈Z and the elements of matrix 2n-

dimensional L, are n x n matrices. I and 0 represents identity and 0 (zero) matrix,

respectively. All elements of matrix H are reduced modular q.

 Let H be defined as follow

0 1 1

1 0 2

1 2 0

n

n n

h h h

h h h

h h h

−

− −

 =

H

…

…

� � � �

…

,

in this case LML is called as convolution or circulant modular lattice and denoted by

LCML. H is the circulant matrix of vector h, 0 1 1[]nh h h −=h … and denoted by Mh. It

is obvious that Mh is obtained by shifting h cyclically. Furthermore, if the vector

0 1 1 0 1 1[]n na a a b b b− −… … is an element of convolution modular lattice than

any vector of form 1 1 1 1[]k k k k k ka a a b b b+ − + −… … , 1, , 1k n= −… is also an

element of that convolution modular lattice.

 5

2.1.3. NTRU Lattice

Consider the convolution modular lattice

CML

b
L rowspan

q

= =

hI M
L

0 I
,

If this lattice also contains a short vector like

0 1 1 0 1 1[] []n nf f f g g g− −=f g … …

then, this lattice is called as NTRU Lattice and denoted as LNTRU. Here b is called the

balancing constant.

2.2. Quotient Polynomial Ring

Throughout this thesis, the ring [] ()/ 1nR X x= −Z will be used. An element of

this ring f can be written as a polynomial or a vector as follow

[]
1

0 1 1
0

, ,...,
n

i

i n

i

f f x f f f
−

−

=

= =∑ .

2.2.1. Addition on Quotient Polynomial Ring

Addition operation on quotient polynomial is traditional polynomial addition.

When one tries to add two ring elements, he/she has to add just the coefficients

respectively.

 6

2.2.2. Multiplication on Quotient Polynomial Ring

Multiplication operation on quotient polynomial ring is called as convolution

product and also called as star multiplication. Throughout this thesis star multiplication

will be denoted as ‘*’. The star multiplication is defined as

*f g h= with
1

0 1 (mod)

l n

l i k i i n l i i j

i i l i j l n

h f g f g f g
−

− + −
= = − + ≡

= + =∑ ∑ ∑ .

In ring R when a multiplication modulo q is done, it means that the coefficients of

resultant polynomial are reduced modulo q. The result lies in [] ()/ , 1nX q x −Z .

2.2.3. Modular Lattices and Quotient Polynomial Ring

Let []() qM X X∈Z be a monic polynomial of degree N. Then each element of

the quotient ring [] /(())q X M XZ , say ()h X , can generate a modular lattice Lh by the

following equation:

[] () () ()(){ }, : * [] /h qL F G F X h X in Z X M X= .

In other words, the lattice Lh is formed from all polynomials () () [],F X G X X∈Z

satisfying () () () ()()*F X h X G X modulo q and M X= .

If ()h X is chosen properly, the generated lattice will contain a pre-selected

vector [],f g . In order to do this ()h X must be of form:

() () () ()()1
*h X f X g X modulo q and M X

−
= . (It is assumed that ()f X is

invertible in the ring ()()[] /qZ X M X).

 7

2.3. Hard Lattice Problems

In order to propose a cryptosystem one needs a ring and hard problem(s) on that

ring. Previous section has defined the ring and the next chapter will introduce several

hard problems on lattices.

2.3.1. The Shortest Vector Problem

The shortest vector problem (SVP) is the problem of finding the vector –other

than the zero vector- that has the smallest L2 norm. A variation of the shortest vector

problem –a simpler one- is called as approximate short vector problem (apprSVP)

which is to search a lattice vector 0v ≠ that satisfies v uγ≤ for all lattice vectors

0u ≠ . It is obvious that when 1γ = apprSVP is SVP. It is known that the shortest

vector problem is NP-hard under randomized reduction hypothesis. It is also showed

that approximation of SVP within some constant like 2γ < is as hard as SVP in

(Micciancio 1998).

2.3.2. The Closest Vector Problem

The closest vector problem (CVP) is the problem of finding a lattice vector

which has the smallest L2 norm of distance with a given vector. In other words, let t be

a target vector –not necessarily a lattice vector-. One has to find a lattice vector v which

satisfies v t u t≤− − for all lattice vectors u . A variation of the closest vector problem

–a simpler one- is called as approximate close vector problem (apprCVP). In this

problem it is enough that v t u tγ≤− − is satisfied. It is known that the closest vector

problem is NP-hard. Also it is shown that the solution of the CVP is as hard as SVP in

(Nguyen and Stern 2001).

 8

2.3.3. The Smallest Basis Problem

The definition of the smallest basis problem can vary as the small basis defined.

In general the smallest basis problem is trying to choose the set of base vectors which

has the longest vector or the vector with the biggest L2 norm with the minimum length

among other basis or minimizing the product of the lengths of the basis vectors.

2.3.4. Notes on Lattice Problems

One can easily compute a close vector for a given lattice point but without extra

information, a short vector, the closest vector for that computed vector can not be found.

This property builds a trapdoor for lattice based cryptography.

In order to balance the solutions of the shortest and closest vector problems, the

value of balancing constant b can be changed properly. Even though the resultant

lattice and the solutions are changed, they can be modified properly (WEB_4 2006,

WEB_7 2007)1.

All the problems mentioned before can be defined on other norms. Besides the

solutions the problems are getting harder as the dimension of the lattice increases

(Micciancio and Goldwasser 2002, Cai 2000)2.

1 WEB_7 2007 pp. 48-49.
2 Micciancio and Goldwasser 2002 pp. 17-22.

 9

CHAPTER 3

ASYMMETRICAL CRYPTOGRAPHY AND THE
HISTORY OF LATTICE BASED CRYPTOGRAPHY

This chapter provides basic information about asymmetrical cryptosystems

besides lattice based cryptosystems and a look at lattice based cryptography from a

historical point of view. Section 3.1 describes the basics of asymmetrical cryptography

and several asymmetrical cryptosystems. Section 3.2 will give a look at the history of

lattice.

3.1. Asymmetrical Cryptosystems

This section will give basic theory and information about asymmetrical

cryptography and cryptosystems. The subsection 3.1.1 will give the basic definitions

and ideas of asymmetrical cryptography, while the subsection 3.1.2 will focus on

asymmetrical cryptosystems like RSA and ECC.

3.1.1. Introduction to Asymmetrical Cryptography

The word cryptography is originated from the Greek words kruptein and

graphein which mean to hide and to write respectively. Very basically one can think

that the cryptography is to transform things into other things which are meaningless

without some information. Formally a cryptosystem is a family T of transformations on

Plaintext and Ciphertext. A “key” is the family index member which determines

plaintext transforms into which ciphertext.

The process of transforming plaintext into ciphertext is called encryption while

the process of transforming ciphertext into plaintext is called decryption. In symmetrical

 10

cryptography; the family index is called key which is used in both encryption and

decryption process. In asymmetrical cryptography the family member index that is used

in encryption is called public key and the other one that is used in decryption is called

private key.

The idea of public key (asymmetrical) cryptosystems is to differentiate the

encryption key and the decryption key. It solves the key distribution problem. When one

wants to use encryption he/she only announce his/her public key. Anyone, desiring to

message with him/her, just encrypts the messages by the announced public key. The

most critical property of public key cryptography is it should not be possible to retrieve

the private key from the public key.

One way and trapdoor functions are used in order to construct asymmetrical

cryptosystems. A one way function is a function that; it is easy to compute but it is hard

to invert. Here “easy” means that the function is computable in probabilistic polynomial

time, hard means that the function is easy to invert only for a negligible fraction of the

inputs. A trapdoor function is actually a one way function with an additional property.

The trapdoor functions are easy to invert if additional information (trapdoor) is

provided.

3.1.2. Some Asymmetrical Cryptosystems

RSA cryptosystem is the one of the earliest public key cryptosystems (Rivest et

al. 1978). The hard problem that the cryptosystem gets its strength is the integer

factorization problem. The following steps are the key generation steps for RSA.

• Select two primes p and q;

• calculate n pq= ;

• compute phi of n which is () ()()1 1n p qΦ = − − ;

• choose an integer e where { ()()gcd , 1e nΦ = ; ()1 e n< < Φ };

• compute ()()1 modd e n
−= Φ .

After this procedure the public key is the pair e, n and the private key is d.

 11

One has to compute (mod)ec m n= in order to obtain the ciphertext c from the

plaintext m where m n< . Similarly (mod)dm c n= is the decryption operation.

An elliptic curve E is defined by 2 3 2y x ax bx c= + + + over a Galois field Fp. p

is prime and p > 3. Any pair (x, y) – x and y are modulo p - which is a solution for this

equation, is said to be a point over the elliptic curve. There is a rule, called the “chord-

and-tangent” rule, for adding two points on an elliptic curve E(Fp) to give a third elliptic

curve point. From this rule the following operations can be extracted (Hankerson et al.

2004)3:

Let ()1 1,P x y , ()2 2,Q x y and , ()
p

P Q E F∈ where P Q≠ ±

• Point addition ()3 3,P Q R x y+ =

• Point doubling ()3 32 ,P R x y=

The order of elliptic curve is defined by # ()
p

E F n= . The n is the count of the

points over the elliptic curve when the point counting is started any base point P over

the curve until this point counting operation riches to the point at infinity. n should be a

prime. Elliptic curve cryptosystem is based on the Elliptic Curve Discrete Logarithm

Problem [ECDLP]. Let ,P Q E∈ , ECDLP is the problem of finding integer k such that

Q kP= where 0 1k n< < − .

 Let GF be a finite Galois field, E be an elliptic curve defined over GF and P

be a base point on E. Key generation is defined as: generate a random integer k where

p
k ∈Z and p is prime, calculate Q kP= . Now the public key is Q and the private key

is k .

 The following is Elliptic Curve Encryption System and works as follows:

• The message is divided into pairs ()1 2,m m such that 1m GF∈ and 2m GF∈ .

• A random integer a is selected and points ()1 1,x y aP= and ()2 2,x y aQ= .

• ()1 2,m m and ()2 2,x y are combined into field element ()1 2,c c .

• The ciphertext is ()1 1 1 2, , ,em x y c c= .

3 Hankerson et al. 2004 pp. 79-81.

 12

In the decryption process

• () ()2 2 1 1, ,x y k x y= is calculated where k is the private key.

• The plaintext ()1 2,m m is obtained by () ()1 2 2 2, ,c c x y− .

3.2. A Historical Perspective

The history of lattice reduction goes back to the theory of quadratic forms

developed by Lagrange, Gauss, Hermite, Korkine-Zolotareff and others (Lagrange

1773, Gauss 1801, Hermite 1850, Korkine and Zolotareff 1773)4 and to Minkowski’s

geometry of numbers (Minkowsi 1910).

With algorithmic number theory, the subject had attention around 1980. With

the works the two famous problems have occurred: the shortest vector problem and the

closest vector problem.

The very famous algorithm LLL computes a so-called reduced basis of a lattice

and provides a partial answer to SVP. It runs in polynomial time and approximates the

shortest vector within a factor of 2n/2. The name of this algorithm comes from the

initials of the authors of the paper where the algorithm is proposed (Lenstra et al. 1982).

This algorithm was the result of Lentra’s work on integer programming (Lenstra 1983)5.

Schnorr proposed a refinement for LLL algorithm which improved the above factor

()1 nε− (Schnorr 1987, Schnorr 1988). Babai developed an algorithm that approximates

the closest vector by a factor of ()1 2
n

 (Babai 1986).

After these works lattice reduction started to take place in cryptography. Shamir

proposed a polynomial time algorithm (Shamir 1982) breaking the Merkle-Hellman

public key cryptosystem (Merkle and Hellman 1978) which was by then a unique

alternative to RSA. Shamir used Lenstra’s integer programming then Adleman extended

Shamir’s work by treating the cryptographic problem as a lattice problem rather than a

linear programming problem (Adleman 1983). Lattice reduction has also been applied

to other cryptographic context: against a version of Blum’s protocol for exchanging

secrets (Frieze et al. 1988), against cryptosystems based on truncated linear congruential

4 Lagrange 1773, pp. 265-312.
5 The results concering LLL were used before the work is published (around 1979).

 13

generators (Frieze et al. 1988, Stern 1987), against cryptosystems based on rational

numbers (Stern and Toffin 1990) or modular knapsacks (Joux and Stern 1991, Chee et

al. 1991) and RSA with exponent 3 (Coppersmith 1996).

Ajtai discovered a connection between the worst-case complexity and the

average-case complexity of some well known lattice problems (Ajtai 1996). Ajtai and

Dwork proposed a cryptosystem using this theorem (Ajtai and Dwork 1997). The same

year Goldreich, Goldwasser and Halevi proposed another cryptosystem based on lattice

problems (Goldreich et al. 1997). Nguyen and Stern have broken the Ajtai-Dwork

cryptosystem (Nguyen and Stern 1998). Later Nguyen proposed the cryptanalysis of the

Goldreich, Goldwasser and Halevi cryptosystems (Nguyen, 1999).

Recently NTRU, firstly proposed by Hoffstein, Pipher and Silverman (Hoffstein

et al. 1998), is being discussed under IEEE’s 1363-1 standard named Draft Standard for

Public-Key Cryptographic Techniques Based on Hard Problems over Lattices (WEB_7

2007). Researches are being continued on NTRU and no crucial security issue is found.

 14

CHAPTER 4

NTRU CRYPTOSYSTEM

This chapter is intended to provide the theoretical background on the lattice-

based public key cryptosystem NTRU6. Section 4.1 describes domain parameters and

some definitions for NTRU while section 4.2, section 4.3 and section 4.4 cover key

generation, encryption and decryption operations respectively. Section 4.5 focuses on

some considirations and finally the last section covers a propsed digital envelope for

NTRU.

4.1. Domain Parameters and Some Definitions

The main parameters of NTRU cryptosystem are integers n, p and q.7 These

values are used to define the following polynomial rings:

• [] ()1nR X X= −Z which specifies the polynomials modulo 1nX −

with integer coefficients.

• ()[] ()1n

p
R p X X= −Z Z which specifies the polynomials

modulo 1nX − whose coefficients are reduced modulo p.

• ()[] ()1n

q
R q X X= −Z Z which specifies the polynomials

modulo 1nX − whose coefficients are reduced modulo q.

For secure implementation of NTRU, the parameters should also satisfy

()gcd , 1p q = where p q> and n should be chosen as a prime number due to the

reasons discussed in (Gentry 2001).

6 http://www.ntru.com.
7
 In fact, it is possible to choose p to be a polynomial if the parameters are properly defined. However, we

shall slightly ignore this case since our forthcoming discussion makes use of p as a fixed integer value of
2.

 15

f
L ,

g
L ,

m
L and

r
L are also parameters which represent some special subsets of

the polynomial ring R from which particular polynomials are chosen to be used in key

generation, encryption and decryption.

Throughout this thesis, all polynomials under our consideration have integer

coefficients and generally belong to the ring R . In order to perform key generation,

encryption and decryption operations, we need to specify some operations on

polynomials.

Let u, v be arbitrary polynomials and m be a positive integer, then we can define

following operations:

• []
m

u or ()modu m , is reducing the coefficients of u to a specified

interval of length m, generally [0, m). However, we may take this

interval to be [],A A m+ , for some integer A, in order to properly center

the polynomial in some part of the decryption process.

• ()* modu v m or equivalently (). mod , 1nu v m X − is called (cyclic)

convolution product or star multiplication. Here the point [.] is the usual

polynomial multiplication, and ()mod , 1nm X − means reducing the

polynomial modulo 1nX − and coefficients modulo m.

• For 1
0 1 1... n

n
u u u x u x

−

−= + + + , we define

Max max
i

u u= , Min min
i

u u= and Width Max Minu u u= − .

• L2-norm and centered L2-norm of the polynomial u gives idea on the

smallness or the length of u and are defined as

()
1 1 12

2
2 2

2
0 0 0

1
and where

n n n

i i i

i i i

u u u u u u u
n

− − −

= = =

= = − =∑ ∑ ∑ (Micciancio

and Goldwasser 2002), (WEB_7 2007)8.

For detailed information on domain parameters and their effect on the

cryptosystem’s security and performance the reader is referred to (WEB_7 2007).

8 Micciancio and Goldwasser 2002 p. 8, WEB_7 2007 p. 45.

 16

4.2. Key Generation

To create an NTRU public key, one chooses two polynomials such that
f

f L∈

and
g

g L∈ . Here, polynomials in
f

L and
g

L have small widths. Also, the polynomial f

should have inverses modulo p and q. In other words, one should be able to calculate

1
pf
− and 1

qf
− such that

1 1* 1 (mod) and * 1 (mod)p qf f p f f q
− −≡ ≡ .

Private key is composed of the polynomials f and 1
pf
− . After choosing the

polynomials appropriately, public key can be computed as

()1 * modqh pf g q
−≡ . (Eq. 4.1)

The following is a numerical example for key generation operation. Domain

parameters are as follows:

11 32 3N q p= = =

We choose a polynomial f such that it is invertible in both modulus p and.q.Also

we choose the polynomial g which will be used in public key generation.

2 4 6 9 101f x x x x x x= − + + − + + − and 2 3 5 8 101g x x x x x= − + + + − −

 Next step is to calculate the inverses of f in modulus p and q namely fp and fq:

3 4 5 7 8 91 2 2 2 2 2pf x x x x x x x= + + + + + + + and

2 3 4 5 6 7 8 9 105 9 6 16 4 15 16 22 20 18 30qf x x x x x x x x x x= + + + + + + + + + +

 f is the private and the public key h is calculated as follows:

()2 3 4 5 6 7 8 9 10* 8 25 22 20 12 24 15 19 12 19 16 mod 32qh pf g x x x x x x x x x x= = + + + + + + + + + +

 17

4.3. Encryption

In order to perform encryption, one chooses a polynomial m representing the

message such that
m

m L∈ , and a random polynomial
r

r L∈ . Later the polynomial

corresponding to the ciphertext is computed as

()* mode r h m q≡ + . (Eq. 4.2)

As in key generation,
r

L and
m

L are special sets of the polynomials in R, having

small widths.

 The following is a numerical example representing how the encryption process

works.

 In order to encrypt a message we need a public key h (we use the one which is

calculated in the previous section) and a random polynomial r besides the message

polynomial m. So we choose the random r and the message m as:

2 3 4 5 71r x x x x x= − + + + − − and 3 4 8 9 101m x x x x x= − + − − + +

 The following operation calculates the encrypted message (chipertext) e:

()2 3 4 5 6 7 8 9 10* 14 11 26 24 14 16 30 7 25 6 19 mod 32e r h m x x x x x x x x x x= + = + + + + + + + + + +

4.4. Decryption

One can carry out the decryption by computing the polynomial

[] ()1 * * mod
p q

d f f e p
−≡ . (Eq. 4.3)

 18

However, in some cases decryption may not be successful. The condition for

successful decryption and its effects on the choice of parameters are briefly discussed in

the next section.

 The following is a numerical example to demonstrate the decryption operation.

One can compute the temporary polynomial a as follows: (The chipertext, private key f

and the inverse of private key fp is provided from previous sections)

()2 3 4 5 6 7 8 9 10* 3 7 10 11 10 7 6 7 5 3 7 mod 32a f e x x x x x x x x x x= = − − − + + + + + − −

The next step is to reduce the coefficients of a to modulo p. a results in polynomial a′ :

() ()2 3 4 5 7 8 10mod mod 3a a p x x x x x x x x′ = = − − + + + + − −

Next we need to move the next step to calculate the plaintext:

()3 4 8 9 10* 1 mod 3pc f a x x x x x′= = − + − − + +

4.5. Conditions

Consider the polynomial

[] ()* * * mod
q

f e pr g f m q≡ + . (Eq. 4.4)

For different parameter sets (), , , , , ,
f g r m

n p q L L L L it is probable that we will have the

right hand side of equation 4.4 in the interval [),A A q+ , 0A ≠ . Therefore, we need to

center the value of []*
q

f e by reducing its coefficients into the correct interval in order

to satisfy equation 4.5.

[]* * * *
q

pr g f m pr g f m+ = + , (Eq. 4.5)

 19

which guarantees the success of decryption.

Let * *t pr g f m= + . In some cases, the polynomial t may not be obtained

easily due to the fact that it is not properly centered. This is called decryption failure.

Although the probability of occurrence of decryption failure is significantly small for

appropriately chosen parameter values, as discussed in (WEB_1 2006) and (WEB_13

2006), they should not be ignored (WEB_5 2006).

(WEB_12 2006) discusses different types of wrap and gap failures which are

different types of decryption failures. (WEB_13 2006) calculates the probability of

failures, and discusses methods in order to correctly center the polynomial t to eliminate

the wrapping failures. However, gap failures still remains untreated. On the other hand,

(Yu and He 2005) gives an algorithm to overcome all decryption failures. Furthermore,

the same paper outlines an analysis relating the NTRU parameters to the decryption

failures and presents the conditions for choosing the parameter values which prevents

all decryption failures.

4.6. Digital Envelope

The original NTRU (Hoffstein et al. 1998), which is mainly outlined so far,

considers the plaintext directly as the polynomial m. However, this scheme is vulnerable

to some certain types of attacks and in particular, if decryption failure occurs (WEB_12

2006). For example, if the attacker is allowed to send a large number of messages and

observe which ones are accepted as valid he/she can easily recover the messages.

Therefore, calculation of the polynomial m is modified as in (WEB_1 2006) in order to

improve the security of the cryptosystem.

Let ()pP n k− is the set of polynomials in
p

R having degree at most 1n k− − ,

and let ()pm P n k′∈ − be the plaintext polynomial. Then, during the encryption, one can

compute the polynomial m as follows:

[]() []()* , * n k

p p
p

m m G r h H m r h X
− ′ ′= + +

. (Eq. 4.6)

 20

Here, () (): p pG P n P n→ and () () (): p p pH P n P n P k× → are generating function and

hashing function respectively.

In order to obtain m′ in the decryption process, after computing m, we need to

calculate the values [] ()and
p p

x e m y m G x= − = − . It should be noted that in a

valid decryption we expect the following equalities to hold []*
p

x r h= and

[](), * n k

p
y m H m r h X

−′ ′= + . Later, we extract two polynomials ()py P n k′∈ − and

()py P k′′∈ from y as

n ky y y X −′ ′′= + . (Eq. 4.7)

If (),y H y x′′ ′= , it implies that [](), *
p

y H m r h′ ′= . Therefore, we conclude y m′ ′=

and decryption is valid.

Here, k is defined to be the security parameter of NTRU which provides

resistance to some certain types of attacks and according to the chosen value of k, the

probability of forging a valid ciphertext is kp− (WEB_11 2006).

Lastly, similar and more secure padding schemes like the one discussed above

are also designated in (WEB_2 2006, WEB_3 2006) and (WEB_5 2006) for particular

chosen set of parameters.

 21

CHAPTER 5

IMPLEMENTATION OF NTRU

This chapter aims to cover the details of how the parameters are chosen, the

details of encryption scheme implemented and the details of our design of NTRU

cryptosystem.

5.1. Instantiation of Cryptosystem

In this section, we outline some conditions which vitally affect the way the

parameters are chosen. Also, we briefly mention the latest recommended and the

alternative choices of the parameters in order to provide efficient and secure realizations

of the cryptosystem. However, we do not cover any of these in full detail. For a

complete discussion, one should refer to (WEB_5 2006), NAEP encryption scheme, and

(WEB_6 2006), SVES-3 an instantiation of NAEP.

5.1.1. Choosing Parameters

Since NTRU is first proposed, the recommended parameter values have been

subject to changes. Many different parameter choices are discussed in the literature in

order to provide different levels of efficiency and security, and in general, for each

proposed set of parameters and defined security levels, the parameter p is fixed to be a

small integer or polynomial value.

In order to realize efficient implementation of NTRU at least one polynomial in

the convolution product should be binary, whose coefficients are in the set { }0,1 , or

trinary, whose coefficients are in { }1,0,1− . Therefore, in the rest of our discussion we

 22

shall define
z

d to be the number of coefficients in the polynomial binary or trinary

polynomial z which are equal to 1.

5.1.2. Choosing n

If the message is binary, n is the number of bits that can be transported. In order

to provide k bits of security9 and prevent some particular (birthday-like) attacks, 2k bits

can be transported. In addition, SVES-3 uses k bits of random padding to gain security

against enumeration attacks in case some low-entropy messages are transported.

Therefore, we set n to be the first prime number greater than 3k. It should be noted that

n might need being changed if one cannot find appropriate values of the remaining

parameters.

5.1.3. Choosing f, g, r and m

Let F, g and r to be binary polynomials with
f

d ,
g

d and
r

d number of 1s

respectively. We take 1f pF= + so that the second convolution product in the

decryption can be eliminated since 1
pf
− . Furthermore, since security increases when h is

invertible, we also take g to be invertible and set / 2
g

d n= to obtain the best lattice

security, and choose smallest
F

d ,
r

d and
m

d such that

1 / 2
2

/ 2
kn

dn

≥ ′

where { }, ,F r md d d d′∈ . Here, we can take
F r

d d d= = in order to equalize the

combinatorial security levels of F and r. Moreover, the message representative

polynomial m is chosen in such a way that it does not contain very few 1s or very few

0s. Also,
2

m should be sufficiently large to provide resistance against attacks which

stems from information leakage from the encrypted message, and we should have the

9 Bits of Security (also known as Security Strength): Number of operations to break a cryptosystem.

 23

probability of being rejected due to having insufficient security,
reject

P , very small, for

instance less than 402− .

5.1.4. Choosing p and q

It is already noted that p and q should be relatively prime. p is fixed to be the

integer value of 2 so that we can work with binary polynomials. Also, q must have a

higher order modulo n, i.e. the order of divisors of 1nX − modulo q should be high, for

example ()1n − or ()1 2n − . In addition, to achieve better lattice security we must keep

f and g as large as possible relative to q. Though, for combinatorial security, it is better

to increase p, it causes an increase in q and so decreases lattice security. As a result, we

can select q as a prime number such that

() ().min , 1 .min , 2
r g f

q p d d p d n≤ + +

and

order of q modulo ()1 2n n≥ − .

This choice gives us the best lattice security and zero probability of decryption

failure.

5.1.5. Alternatives

It is possible to choose f not to be of form 1 pF+ in order to decrease q. On the

other hand, F and r can be chosen in the product form 1 2 3*f f f+ in order to obtain

further performance benefits and slightly increased bandwidth.

We can also choose p and q values differently. Let s be the first power of 2 such

that

() () () ()1 .min , 1 1 .min , 2
r g f

s p d d p d n≥ + +

Then for a small integer or polynomial value of 2p X= + or 3p = , in which

cases we work with binary or trinary polynomials respectively, one can choose q = s.

 24

This speeds up the reductions modulo q. However, with the larger values of p lattice

security worsens due to the fact that q gets larger. In addition, we can also speed up

these reductions by choosing q to be the largest prime such that q s≤ for 2p = at the

expense of lattice security.

As a last note, allowing the probability of decryption failures to be greater than 0

reduces q, thus improves the lattice security and the bandwidth.

5.1.6. NAEP Encryption Scheme

Let
n

B be the set of binary polynomials whose degree is less than n, and ()nB d

be the subset of
n

B with polynomials having d number of 1s. Furthermore, let G and H

be two hashing functions such that

(): n k k n rG B B B d− × →

: .
n n

H B B→

These functions should be chosen such that each of them has a very small

probability of variation in running time, since the running time variations may cause

leakage of information about the private key (WEB_14 2007).

5.1.6.1. Encryption

During encryption we choose a random polynomial
k

b B∈ , and then we

calculate the polynomial (),r G m b′∈ , where m′ is the plaintext polynomial. Message

representative polynomial m is given

() []() ()* modn k

q p
m m bX H r h p

− ′≡ + +

. (Eq. 5.1.)

 25

At this point, one should check whether m has the expected level of combinatorial

security. If not the operation should be performed with a different and randomly chosen

b.

For properly computed m, encryption is performed as defined before:

()* mod .e r h m q≡ +

5.1.6.2. Decryption

In decryption, one, first, calculates the polynomial m as described before:

[]1 * *
p q p

m f f e
− =

.

Of course, the polynomial []*
q

f e should be centered if decryption failure occurs.

In order to obtain m′ , we need to calculate the values

x e m= − and []()q p
p

y m H x
 = −

.

Later, we extract two polynomials
n k

y B −
′∈ and

k
y B′′∈ from y as

n ky y y X −′ ′′= + .

If the conditions

(), *
q

x G y y h′ ′′= and ()n k my B d−
′∈

are satisfied, the ciphertext is valid and y m′ ′= is the plaintext.

5.2. Implementation Details

The source code for this thesis is developed compatible with IEEE’s 1363.1

standard namely “Draft Standard for Public-Key Cryptographic Techniques Based on

Hard Problems over Lattices” (WEB_7 2007). Eclipse with CDT10 plugin is used as the

development environment for this project.

10 http://www.eclipse.org and http://www.eclipse.org/cdt.

 26

5.2.1. Programming Language

ANSI C is selected as development language. The practical performance for the

project is very important and it is obvious that the more the programming language is

low level the more performance we gain. Pointer arithmetic, structural features and

portability of ANSI C were the main factors for us to choose ANSI C as our

programming language. Also the fact that CRYMPIX (Hışıl 2005) is developed using

ANSI C, played a very huge role for us to choose ANSI C for compatibility reasons.

5.2.2. Representation of Polynomials

In the polynomial structure the number of coefficients, the degree of the

polynomial and the array that containing the actual coefficients are stored.

5.2.3. Memory Management

Allocation and deallocation of objects bring a huge overhead to software in

terms of runtime performance. So one has to get rid of this overhead to provide better

runtime performance. To eliminate these types of performance losses a memory

management model called Static Memory Management (Mersin and Beyazıt 2007) for

this implementation is used. In this model, a defined number of memory slots, used as

polynomials for this project, are allocated before the application begins and stored in a

memory slot stack. When ever one needs a polynomial, the initialization process starts

and an available memory slot is provided to the user (developer) (This can be imagined

as a pop stack operation). In deallocation of a polynomial, one return the polynomial to

the software, this memory slot is put back to the stack; from now on this particular

memory slot is available for further use. (This can be imagined as a push stack

operation) Static Memory Model is used for this implementation because, for this thesis,

 27

the main concern is the performance. The assumption here is that we do not have

memory restrictions.

5.2.4. Details of Some Instructions

The following Figure 5.1 and Figure 5.2 illustrate the two core operation of the

NTRU cryptosystem. Those are addition and convolution product operations.

Figure 5.1. Add Operation.

input: a, b, m
output: Returns c = a + b (coefficient mod m)

if a→n > b→n then
 n = a→n, sn = b→n.
 for i = sn to n do
 c→coef[i] = a→coef[i].
 end
else
 n = b→n, sn = a→n.
 for i = sn to n do
 c→coef[i] = b→coef[i].
 end
for i = sn tao n do
 c→coef[i] = a→coef[i] + b→coef[i] (mod m).
end

return c.

 28

Figure 5.2. Convolution Product Operation.

input: a, b, n, m
output: Returns c = a * b (coefficient mod m) (degree mod n)

for i = 0 to a→n do
 for j = 0 to b→n do
 cur_i = i + j (mod n).
 co_a = a→coef[i].
 co_b = b→coef[i].
 c→coef[cur_i] =c→coef[cur_i] + (co_a * co_b (mod m)) (mod m).
 end
end

return c.

 29

CHAPTER 6

PERFORMANCE ANALYSIS OF NTRU

The underlying theory implies that NTRU can be yet another popular public key

cryptosystem residing with ECC11, RSA12 and the likes. Nevertheless, it is important to

make detailed discussion of these cryptosystems in order to better comprehend how

NTRU performs. This section intends to show the comparative performance analysis of

lattice based NTRU cryptosystem with respect to popular public key cryptosystems; like

RSA and ECC. Next subsections will give the results of this analysis in terms of key

size and key generation, encryption and decryption timings.

6.1. Parameters of NTRU Used for Comparison

Using the conditions for recommended parameters in Chapter 5, one can obtain

the following sets for the parameter values in Table 6.1.

Table 6.1. NTRU Parameter Sets.

k
(bit

security)

()3n k≥

(degree)

p
(small

modulus)

q
(large

modulus)

()f r
d d d= =

(number of

1s in f and r)

()2
g

d n=
(number of

1s in g)

()
0m md d≤

(number

of 1s in m)

80 251 2 197 48 125 70

112 347 2 269 66 173 108

128 397 2 307 74 198 128

160 491 2 367 91 245 167

192 587 2 439 108 293 208

256 787 2 587 140 393 294

11 http://www.certicom.com.
12 http://www.rsa.com.

 30

It should be noted that, besides complying the discussion we made so far, the

parameter values in Table 6.1. are also recommended as SVES parameter choices in

(WEB_7 2007), the latest IEEE draft standard (currently draft 9) for public key

cryptosystems based on hard problems over lattices.

In the rest of our study, while making comparison of NTRU with other public

key cryptosystems, we shall refer to NTRU instantiated with these sets of parameters.

6.2. Performance Comparison of NTRU with ECC and RSA

6.2.1. Comparison of Key Sizes

In ECC and RSA, public and private keys can be chosen of approximately equal

lengths, whereas NTRU public key size differs from private key size with a ratio

of log 1
p

n
q to

n k
− −

−
. The public key size of a cryptosystem gives useful insight on the

bandwidth usage if the cryptosystem is intended to be used in key exchange schemes.

Table 6.2. gives corresponding NTRU, ECC and RSA keys sizes for equivalent security

levels (k) of 80 bits, 112 bits and 128 bits etc (WEB_9 2007, WEB_6 2006).

Table 6.2. Public Key Sizes (in bits).

Public Key Sizes (bits)
Security Level (bits)

NTRU ECC RSA

80 2008 160 1024

112 3033 224 2048

128 3501 256 3072

160 4383 320 4096

192 5193 384 7680

256 7690 521 15360

 31

Key Sizes (NTRU vs ECC vs RSA)

0

50

100

150

200

250

300

0 5000 10000 15000 20000

Key Size (bits)

S
e

cu
ri

ty
 (

b
it

s)

NTRU

ECC

RSA

Figure 6.1. Key Size Comparison Graph.

From Table 6.2. and Figure 6.1., one can observe that ECC, among the three,

makes the best use of bandwidth and NTRU's bandwidth usage becomes more efficient

with respect to RSA as the security level increases.

6.2.2. Comparison of Key Generation, Encryption and Decryption

Performance

Though RSA is the most studied, tested and scrutinized cryptosystem (among

the three), the latest debates, such as in (WEB_9 2007), point out that ECC gained

significant trust over time, and now, many security vendors are including ECC modules

in their own products.

Accordingly, we find it useful to give timing comparisons with ECC. On the

other hand, preliminary timing comparisons with RSA can be found in Table 6.3

(WEB_1 2006). Figure 6.2., Figure 6.3. and Figure 6.4. give the graphical

representation of key generation, decryption and encryption performance comparisons

of NTRU and RSA respectively.

 32

Table 6.3. Comparison of NTRU and RSA.13

System
Security

(MIPS years)

Public Key Size

(bits)

Create Key

(msec)

Encrypt

(blks/sec)

Decrypt

(blks/sec)

RSA 512 4.00 105 512 260 2441 122

NTRU 167 2.08 106 1169 4.0 5941 2818

RSA 1024 3.00 1012 1024 1280 932 22

NTRU 263 4.61 1014 1841 7.5 3676 1619

RSA 2048 3.00 1021 2048 4195 310 3

RSA 4096 2.00 1033 4096 - - -

NTRU 503 3.38 1035 4024 17.3 1471 608

Notes for Table 6.3.14

• Security is measured in MIPS-years required to break the system.

• NTRU encryption, decryption, and key creation performed using Tao Group's

Tumbler implementation of the NTRU algorithm, programmed in C and running

on a 300 MHz Pentium II operating under Linux.

• RSA key creation is done on a 255 MHz Digital AlphaStation.

• RSA encryption/decryption programmed in Microsoft Visual C++ 5.0

(optimized for speed, Pentium Pro code generation), and run on a Pentium II

266MHz machine under Windows NT 4.0. RSA encryption uses exponent 17 to

increase speed.

Figure 6.2., Figure 6.3. and Figure 6.4. give information about how NTRU acts

against RSA. For another point of view, Figure 6.5., Figure 6.6. and Figure 6.7.

show the key size versus performance graphs.

13 WEB_1 2006.
14 The reader is referred to WEB_1 2006 p. 10 for further details on Table 6.3.

 33

Key Generation (NTRU vs RSA)

0

20

40

60

80

100

120

140

0 1000 2000 3000 4000 5000

Time (msec)

S
e

cu
ri

ty
 (

lo
g

2
(M

IP
S

 y
e

a
rs

)

NTRU

RSA

Figure 6.2. Key Generation Performance Graph (NTRU and RSA).

Encryption (NTRU vs RSA)

0

20

40

60

80

100

120

140

0 2000 4000 6000 8000

Action (blks/sec)

S
e

cu
ri

ty
 (

lo
g

2
(M

IP
S

 y
e

a
rs

)

NTRU

RSA

Figure 6.3. Encryption Performance Graph (NTRU and RSA).

 34

Decryption (NTRU vs RSA)

0

20

40

60

80

100

120

140

0 500 1000 1500 2000 2500 3000

Action (blks/sec)

S
e

cu
ri

ty
 (

lo
g

2
(M

IP
S

 y
e

a
rs

)

NTRU

RSA

Figure 6.4. Decryption Performance Graph (NTRU and RSA).

Key Size vs Key Generation

0

1000

2000

3000

4000

5000

0 1000 2000 3000 4000 5000

Key Generation (msec)

P
u

b
li

c
K

e
y

 S
iz

e
 (

b
it

s)

NTRU

RSA

Figure 6.5. Key Size vs Key Generation Performance Graph (NTRU vs RSA).

 35

Key Size vs Encryption

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 2000 4000 6000 8000

Action (blks/sec)

P
u

b
li

c
K

e
y

 S
iz

e
 (

b
it

s)

NTRU

RSA

Figure 6.6. Key Size vs Encryption Performance Graph (NTRU and RSA).

Key Size vs Decryption

0

1000

2000

3000

4000

5000

0 500 1000 1500 2000 2500 3000

Action (blcks/sec)

P
u

b
li

c
K

e
y

 S
iz

e
 (

b
it

s)

NTRU

RSA

Figure 6.7. Key Size vs Decryption Performance Graph (NTRU and RSA).

From Table 6.3 one can drive that NTRU has better performance values than RSA.

From Figure 6.2, Figure 6.3 and Figure 6.4 it is easy for us to conclude that NTRU has

better performance. Figure 6.5., Figure 6.6 and Figure 6.7. show that for same key sizes

NTRU can encrypt / decrypt more message in a second than RSA, also key generation

for same key sizes is faster in NTRU.

 36

We make use of C code implemented in GMP15, which is the outcome of (Atay

2006), while measuring key generation, encryption and decryption times of ECC. The

curves used are NIST and/or SEC - Certicom recommended elliptic curves over prime

fields (WEB_8 2006, WEB_10 2006), and encryption and decryption measurements are

taken in several coordinate systems such as, affine, projective, Jacobian, Chudnovsky,

and modified Jacobian.

Table 6.4. gives timing measurements for NTRU and ECC cryptosystems where the

code is compiled (with no optimizations) and run on a personal computer with Windows

XP Professional OS, P4 2.80 GHz CPU and 1 GB RAM. Figure 6.5., Figure 6.6. and

Figure 6.7. respectively give the graphical representation of key generation, decryption

and encryption performance comparisons of NTRU and the best timing results of ECC

among five coordinate systems while Figure 6.8., Figure 6.9. and Figure 6.10. give the

graphical representation of key generation, decryption and encryption performance

comparisons of NTRU and the worst timing results of ECC among five coordinate

systems.

Table 6.4. Key Generation, Encryption and Decryption Times.

Cryptosystem
Security Level

(bits)

Key Generation*

(msec)

Encryption*

(msec)

Decryption*

(msec)

NTRU-251 80 75.65 1.68 8.22

ECC-192 between 80 - 112 57.87 – 152.73 37.81 – 116.39 19.15 –57.68

NTRU-347 112 144.16 3.11 15.70

ECC-224 112 234.11 – 367.98 52.52 – 164.50 26.35 – 81.52

NTRU-397 128 188.92 3.97 20.26

ECC-256 128 478.22 – 656.63 68.72 – 223.29 35.00 – 111.16

NTRU-491 160 288.31 5.97 30.96

NTRU-587 192 412.10 8.42 44.42

ECC-384 192 947.43 – 1429.11 182.35 – 586.20 90.61 – 290.94

NTRU-787 256 738.75 14.49 79.48

ECC-521 256 2055.04 – 3175.87 423.25 – 1257.56 211.35 – 626.33

15 http://www.swox.com/gmp.
* ECC timings are given as minimum - maximum of the values observed over all coordinate systems. In
key generation minumum values are in Affine coordinate system while maximum values are in Madified
Jacobian coordinate system. In both encryption and decryption, minimum values are in Chudnosky
coordinate system and maximum values are in Affine coordinate system.

 37

Key Generation (NTRU vs ECC)

0

50

100

150

200

250

300

0,00 500,00 1000,00 1500,00 2000,00 2500,00

Time (msec)

S
e

cu
ri

ty
 L

e
v

e
l

(b
it

s)

NTRU

ECC

Figure 6.8. Key Generation Performance Graph (NTRU ECC-b16).

Encryption (NTRU vs ECC)

0

50

100

150

200

250

300

0,00 100,00 200,00 300,00 400,00 500,00

Time (msec)

S
e

cu
ri

ty
 L

e
v

e
l

(b
it

s)

NTRU

ECC

Figure 6.9. Encryption Performance Graph (NTRU and ECC-b).

16 ECC-b: minimum values of ECC timings observed.

 38

Decryption (NTRU vs ECC)

0

50

100

150

200

250

300

0,00 50,00 100,00 150,00 200,00 250,00

Time (msec)

S
e

cu
ri

ty
 L

e
v

e
l

(b
it

s)

NTRU

ECC

Figure 6.10. Decryption Performance Graph (NTRU and ECC-b).

Key Size vs Key Generation

0

200

400

600

800

1000

1200

0,00 500,00 1000,00 1500,00 2000,00 2500,00

Key Generation (msec)

P
u

b
li

c
K

e
y

 S
iz

e
 (

b
it

s)

NTRU

ECC

Figure 6.11. Key Size vs Key Generation Performance Graph (NTRU vs ECC-b).

 39

Key Size vs Encryption

0

200

400

600

800

1000

1200

0,00 100,00 200,00 300,00 400,00 500,00

Encryption (msec)

P
u

b
li

c
K

e
y

 S
iz

e
 (

b
it

s)

NTRU

ECC

Figure 6.12. Key Size vs Encryption Performance Graph (NTRU and ECC-b).

Key Size vs Decryption

0

200

400

600

800

1000

1200

0,00 50,00 100,00 150,00 200,00 250,00

Decryption (msec)

P
u

b
li

c
K

e
y

 S
iz

e
 (

b
it

s)

NTRU

ECC

Figure 6.13. Key Size vs Decryption Performance Graph (NTRU vs ECC-b).

 40

Key Generation (NTRU vs ECC)

0

50

100

150

200

250

300

0,00 500,00 1000,00 1500,00 2000,00 2500,00 3000,00 3500,00

Time (msec)

S
e

cu
ri

ty
 L

e
v

e
l

(b
it

s)

NTRU

ECC

Figure 6.14. Key Generation Performance Graph (NTRU ECC-w17).

Encryption (NTRU vs ECC)

0

50

100

150

200

250

300

0,00 500,00 1000,00 1500,00

Time (msec)

S
e

cu
ri

ty
 L

e
v

e
l

(b
it

s)

NTRU

ECC

Figure 6.15. Encryption Performance Graph (NTRU and ECC-w).

17 ECC-w: maximum values of ECC timings observed.

 41

Decryption (NTRU vs ECC)

0

50

100

150

200

250

300

0,00 200,00 400,00 600,00 800,00

Time (msec)

S
e

cu
ri

ty
 L

e
v

e
l

(b
it

s)

NTRU

ECC

Figure 6.16. Decryption Performance Graph (NTRU and ECC-w).

Key Size vs Key Generation

0

200

400

600

800

1000

1200

0,00 1000,00 2000,00 3000,00 4000,00

Encryption (msec)

P
u

b
li

c
K

e
y

 S
iz

e
 (

b
it

s)

NTRU

ECC

Figure 6.17. Key Size vs Key Generation Performance Graph (NTRU vs ECC-w).

 42

Key Size vs Encryption

0

200

400

600

800

1000

1200

0,00 500,00 1000,00 1500,00

Encryption (msec)

P
u

b
li

c
K

e
y

 S
iz

e
 (

b
it

s)

NTRU

ECC

Figure 6.18. Key Size vs Encryption Performance Graph (NTRU and ECC-w).

Key Size vs Decryption

0

200

400

600

800

1000

1200

0,00 50,00 100,00 150,00 200,00 250,00

Decryption (msec)

P
u

b
li

c
K

e
y

 S
iz

e
 (

b
it

s)

NTRU

ECC

Figure 6.19. Key Size vs Decryption Performance Graph (NTUR and ECC-w).

As one can derive from Table 6.4, NTRU seems faster than ECC with respect to

all the security levels defined above. This mainly stems from the fact that NTRU

operations are relatively simple and not as demanding as ECC's. For instance, they do

not even require the use of multiprecision arithmetic in the sense ECC operations do. In

addition, though the timing measurements can be affected by many things such as

runtime environment, compiler options, code optimizations and, in case of ECC, the

 43

pros and cons of using a general purpose multiprecision arithmetic library etc., it is

highly unlikely that ECC has better runtime performance.

Figure 6.8., Figure 6.9. and Figure 6.10. show that NTRU has better

performance values compared with ECC best performance values. Also Figure 6.11.,

Figure 6.12. and Figure 6.13. indicate that for the same key sizes NTRU has better

performance. Figure 6.14., Figure 6.15., Figure 6.16., Figure 6.17., Figure 6.18. and

Figure 6.19. show that NTRU has better, naturally, performance values than ECC’s

worst performance values.

 44

CHAPTER 7

CONCLUSION

In this study, we aimed to gain the knowledge of lattice based cryptography and

investigate the performance of lattice based cryptography. As the study continued, we

noticed that NTRU is the only, for now, candidate to be used as a secure and affordable

public key cryptosystem among all lattice based cryptosystems. So we concentrate on

the performance comparisons of NTRU and other popular public key cryptosystems,

namely RSA and ECC. In order to achieve these goals; we coded NTRU cryptosystem

compatible with “IEEE 1363.1 Draft Standard for Public-Key Cryptographic

Techniques Based on Hard Problems over Lattices” standard. We used ANSI C as our

programming language.

From Chapter 6 one can derive that among all three ECC has the best key size.

At lower security levels RSA has smaller key sizes than NTRU’s. But as the security

level increases; the key size of RSA increases more than NTRU’s. From key size point

of view ECC has the best results where for lower security levels RSA is better than

NTRU.

When the time has come to the actual performance analysis, we obtained that for

the same security levels NTRU has better performance than ECC’s and RSA’s. Though

the timing measurements can be affected by many things such as runtime environment,

compiler options, code optimizations and, in case of ECC and RSA, the pros and cons

of using a general purpose multiprecision arithmetic library etc., it is highly unlikely

that ECC and RSA have better runtime performance.

Throughout the study we outlined NTRU and demonstrated, in basic terms, how

it performs against RSA and ECC.

Many researchers have been scrutinizing NTRU since the time it proposed for

the first time. There has been serious amount of analysis on the security and

performance issues, and NTRU seems to be quite a decent public key cryptosystem

which will be useful in the field of security for many years to come.

At last NTRU is a promising alternative for the future of public key

cryptography. The nature of the problem which NTRU is based on (Geometrical

 45

problems) is completely different than the current popular public key cryptosystems’

(Number theoretic problems). Because of this reason even though current public key

cryptosystems are broken, NTRU will be the reserve for the future use. NTRU is a

relatively new cryptosystem and it seems that we can not replace ECC or RSA with

NTRU so easily. There is more way to go for this purpose.

 46

REFERENCES

Adleman, L. M., 1983. “On Breaking Generalized Knapsack Public Key

Cryptosystems”, Proceedings of the 15th ACM Symposium on Theory of Computing,

pp. 402-412, ACM Press.

Ajtai, M., 1996. “Generating Hard Instances of Lattice Problems”, Proceedings of the

28th ACM Symposium on Theory of Computing, Philadelphia, USA, pp.99-108,

ACM Press.

Ajtai, M., 1998. “The Shortest Vector Problem in L2 is NP-hard for Randomized

Reductions”, Proceedings of the 30th Annual ACM Symposium on Theory of

Computing, New York, USA, pp. 10-19, ACM Press.

Ajtai, M. and Dwork, C., 1997. “A Public Key Cryptosystem with Worst-Case /

Average-Case Equivalence”, Proceedings of the 29
th

 Annual ACM Symposium on

Theory of Computing, El Paso, Texas, United States, pp. 284-293, ACM Press.

Atay, S., 2006. “Performance Issues of Elliptic Curve Cryptographic Implementations”,

Unpublished Ph.D. Dissertation Thesis, Ege University, Graduate School of Natural

and Applied Sciences.

Babai, L., 1986. “On Lovasz Lattice Reduction and the Nearest Lattice Pint Problem”,

volume 9 of Combinatorica, pp. 1-13.

Cai, J. Y., 2000. “The Complexity of Some Lattice Problems”, Proceedings of the 4th

International Symposium on Algorithmic Number Theory, volume 1838 of Lecture

Note in Computer Science, pp. 1-32, Springer-Verlag.

Chee, Y. M., Joux, A. and Stern, J., 1991. “The Cryptanalysis of a New Public Key

Cryptosystem Based on Modular Knapsacks”, Proceedings of Crypto'91, volume 576

of LNCS, pp. 204-212, Springer-Verlag.

 47

Coppersmith, D., 1996. “Finding a Small Root of a Univariate Modular Equation”,

Proceedings of EUROCRYPT '96 volume 1070 of Lecture Note in Computer Science,

pp. 155-165, IACR, Springer.

Frieze, A. M., Hastad, J., Kannan, R., Lagarias, J. C. and Shamir, A., 1988.

“Reconstructing Truncated Integer Variables Satisfying Linear Congruences”, SIAM

Journal on Computing, volume 17, no. 2, pp. 262-280.

Gauss, C. F., 1801. “Disquisitiones arithmeticae”, (Leipzig)

Gentry, C., 2001. “Key Recovery and Message Attacks on NTRU-Composite”,

Proceedings of EUROCRYPT '01: the International Conference on the Theory and

Application of Cryptographic Techniques, London, UK, pp. 182-194, Springer-

Verlag.

Goldreich, O., Goldwasser, S. and Halevi, S., 1997. “Public Key Cryptosystems from

Lattice Reduction Problems”, Proceedings of CRYPTO '97: the 17th Annual

International Cryptology Conference on Advances in Cryptology, London, UK, pp.

112-131, Springer-Verlag.

Hankerson, D., Menezes, A. and Vanstone, S. 2004. “Guide to Elliptic Curve

Cryptography” (Springer-Verlag, New York).

Hermite, C., 1850. “Extraits de Lettres de M. Hermite à M. Jacobi sur Différents Objets

de la Théorie des Nombres, Deuxième Lettre”, (J. Reine Angew) pp. 279-290.

Hışıl, H., 2005. “A Distributed Multiprecision Cryptographic Library Design”,

Unpublished MS. Thesis, İzmir Institute of Technology, The Graduate School of

Engineering and Science.

Hoffstein, J., Pipher, J. and Silverman, J.H., 1998. “NTRU: A Ring Based Public Key

Cryptosystem”, Proceedings of ANTS III, Portland, Oregon, USA, volume 1423 of

Lecture Note in Computer Science, pp. 267-288, Springer-Verlag.

 48

Howgrave-Graham, N., Nguyen, P.Q., Pointcheval, D., Proos, J., Silverman, J.H.,

Singer, A. and Whyte, W., (2003). “The Impact of Decryption Failures on the

Security of NTRU Encryption”, volume 2729 of Lecture Note in Computer Science,

pp. 226-246, Springer-Verlag.

Joux, A. and Stern, J., 1991. “Cryptanalysis of Another Knapsack Cryptosystem”,

Proceedings AsiaCrypt’91, volume 739 of Lecture Note in Computer Science, pp.

470-476, Springer-Verlag.

Korkine, A. and Zolotarev, G., 1873. “Sur les Formes Quadratiques” volume 261 of

Mathematische Ann. pp. 336-389

Langrange, L., 1773. “Recherches d’Arithmétique”, (Nouv. Mém. Acad., Berlin).

Lenstra, A.K, Lenstra, Jr. H.W. and Lovász, L., 1982. “Factoring Polynomials with

Rational Coefficients” volume 261 of Mathematische Ann., pp. 513-534.

Lenstra, Jr. H. W., 1983. “Integer Programming with a Fixed Number of Variables”,

volume 8 of Mathematics of Operations Research, pp. 538-548.

Merkle, R. C. and Hellman, M. E., 1978. “Hiding Information and Signatures in

Trapdoor Knapsacks”, volume 24 no 5 of IEEE Transactions on Information Theory,

pp. 525-530, IEEE.

Mersin, A. and Beyazıt, M., 2007. “A Memory Management Model for Cryptographic

Software Libraries”, In Proceedings of International Conference on Security of

Information and Networks, Gazimagusa, TRNC, to be published.

Micciancio, D., 1998. “The Shortest Vector in a Lattice is Hard to Approximate to

Within Some Constant”, Proceedings of the 30
th

 IEEE Symposium on Foundations of

Computer Science, pp. 92-98, IEEE.

Micciancio, D. and Goldwasser S. 2002. “Complexity of Lattice Problems a

Cryptographic Perspective”, (Kluwer Academic Publishers, USA).

 49

Minkowski, H., 1910. “Geometrie der Zahlen”, (Teubner, Leipzig).

Nguyen, P., 1999. “Cryptanalysis of the Goldreich-Goldwasser-Halevi Cryptosystem”,

Proceedings of Crypto ’97, volume 1666 of Lecture Note in Computer Science, pp.

288-304, Springer-Verlag.

Nguyen, P. and Stern, P., 1998. “A Converse to the Ajtai-Dwork Security Result and Its

Cryptographic Implications”, submitted to Symposium on Theory of Computing 98.

Nguyen, P. and Stern, J., 2001. “The Two Faces of Lattices in Cryptology”, volume

2146 of Lecture Note in Computer Science, pp. 146-180, Springer-Verlag.

Rivest, R., Shamir. A. and Adleman, L., 1978. “A Method for Obtaining Digital

Signatures and Public Key Cryptosystems”, volume 21 Issue 8 of Communications of

the ACM, pp. 120-126, ACM Press.

Schnorr, C.P., 1987. “A Hierarchy of Polynomial Lattice Basis Reduction Algorithms”,

volume 53 of Theoretical Computer Science, pp. 201-224.

Schnorr C.P., 1988. “A More Efficient Algorithm For a Lattice Basis Reduction”,

volume 9 of Journal of Algorithms, pp. 47-62.

Shamir, A., 1982. “A Polynomial Time Algorithm For Breaking the Basic Merkle-

Hellman Cryptosystem”, Proceedings of the 23
rd

 IEEE Symposium on Foundations

of Computer Science, pp. 145-152, IEEE.

Stern, J., 1987. “Secret Linear Congruential Generators are not Cryptographically

Secure”, Proceedings of the 28
th

 IEEE Symposium on Foundations of Computer

Science, pp. 421-426, IEEE.

Stern, J. and Toffin, P., 1990. “Cryptanalysis of a public-key cryptosystem based on

approximations by rational numbers”, Proceedings of Eurocrypt'90, volume 473 of

LNCS, pp. 313-317, Springer-Verlag.

 50

WEB_1, 2006. Hoffstein, J., Lieman, D., Pipher, J. and Silverman, J.H., 1999. “NTRU:

A Public Key Cryptosystem”, 15/04/2006.

http://grouper.ieee.org/groups/1363/lattPK/submissions.html#NTRU1

WEB_2, 2006. Hoffstein, J. and Silverman, J.H., 2000. “Protecting NTRU Against

Chosen Ciphertext and Reaction Attacks”, NTRU Cryptosystems Technical Report

016, Version 1, 15/04/2006. http://www.ntru.com/cryptolab/tech_notes.htm#016

WEB_3, 2006. Hoffstein, J. and Silverman, J., 2000. “Optimizations for NTRU”,

NTRU CryptoLab Articles, 15/04/2006. http://www.ntru.com/cryptolab/articles.htm

WEB_4, 2006. Hoffstein, J., Silverman, J., H. and Whyte, W., 2003. “Estimated

Breaking Times for NTRU Lattices”, NTRU Cryptosystems Technical Report, No.

12, Version 2, 15/04/2006. http://www.ntru.com/cryptolab/tech_notes.htm#012

WEB_5, 2006. Howgrave-Graham, N., Silverman, J.H., Singer, A., Whyte and W.,

2003. “Provable Security in the Presence of Decryption Failures”, 15/04/2006.

http://www.ntru.com/cryptolab/articles.htm#2003_3

WEB_6, 2006. Howgrave-Graham, N., Silverman, J.H. and Whyte, W., 2005.

“Choosing Parameter Sets for NTRUEncrypt with NAEP and SVES-3”, Cryptology

ePrint Archive, Report 2005/045, 15/04/2006. http://eprint.iacr.org

WEB_7, 2007. IEEE P1363.1 Draft Download “Draft Standard for Public-Key

Cryptographic Techniques Based on Hard Problems over Lattices”, 10/01/2007.

http://grouper.ieee.org/groups/1363/lattPK/draft.html

WEB_8, 2006. “Fips 186-2 Digital Signature Standard” 15/05/2006.

http://www.itl.nist.gov/fipspubs/fip186.htm

WEB_9, 2007. “The Case For Elliptic Curve Cryptography”, 15/01/2007.

http://www.nsa.gov/ia/industry/crypto_elliptic_curve.cfm.

 51

WEB_10, 2006: “Recommended Elliptic Curves Domain Parameters”, 30/08/2006.

http://www.secg.org/index.php?action=secg,docs_secg

WEB_11, 2006. Silverman, J.H., 2000. “Plaintext Awareness and the NTRU PKCS”,

NTRU Cryptosystems Technical Report 007, Version 2, 15/04/2006.

http://www.ntru.com/cryptolab/tech_notes.htm#007

WEB_12, 2006. Silverman, J.H., 2001. “Wraps, Gaps and Lattice Constants”, NTRU

Cryptosystems Technical Report 011, Version 2, 15/04/2006.

http://www.ntru.com/cryptolab/tech_notes.htm#011

WEB_13, 2006. Silverman, J. and Whyte, W., 2003. “Estimating Decryption Failure

Probabilities for NTRUEncrypt”, NTRU Cryptosystems Technical Report 018,

Version 1, 15/04/2006. http://www.ntru.com/cryptolab/tech_notes.htm#018

WEB_14 2007. Silverman, J.H. and Whyte, W., 2006. “Timing Attacks on

NTRUEncrypt via Variation in the Number of Hash Calls”, NTRU Cryptosystems

Technical Report 021, 15/01/2007.

http://grouper.ieee.org/groups/1363/lattPK/submissions.html#2006-06

Yu, W. and He, D., 2005. “Study on NTRU Decryption Failures”, Proceedings of

ICITA '05: the Third International Conference on Information Technology and

Applications Volume 2,Washington, DC, USA, pp. 454-459, IEEE Computer Society.

