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Assist. Prof. Dr. Engin BÜYÜKAŞIK
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ABSTRACT

STRONGLY T-NONCOSINGULAR MODULES

This thesis is mainly concerned with the T-noncosingularity issue of a module.

Derya Keskin Tütüncü and Rachid Tribak introduced the T-noncosingular modules and

gave some properties of these modules. A module M is said to be T-noncosingular relative

to N if, for every nonzero homomorphism f from M to N , the image of f is not small

in N . Inspired by this study, we define a new kind of module, as a particular case of

T-noncosingular modules, and call it strongly T-noncosingular modules. We define M to

be strongly T-noncosingular relative to N if, for every nonzero homomorphism f from

M to N , the image of f is not contained in the radical of N . Obviously, if a module is

strongly T-noncosingular, then it is also T-noncosingular, but the converse is, in general,

not true. In an attempt to identify the situation when a T-noncosingular module is strongly

T-noncosingular, we give necessary and sufficient conditions in terms of the specific ring

structures as well as well-known module types.
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ÖZET

GÜÇLÜ T-EŞ TEKİL OLMAYAN MODÜLLER

Bu tez esas olarak modüllerde T-eş tekil olmama problemi ile ilgilidir. Derya

Keskin Tütüncü ve Rachid Tribak T-eş tekil olmayan modülleri tanımladılar ve bazı

özelliklerini verdiler.Bir M modülü ve M den N ye her sıfırdan farklı f homomorfiz-

ması için, f nin görüntüsü N de küçük alt modül değilse, bu M modülüne N modülüne

göre T-eş tekil olmayan modül denir. Biz de bu çalışmadan esinlenerek bir anlamda T-

eş tekil olmayan modüllerin özel bir durumu olarak güçlü T-eş tekil olmayan modülleri

tanımlıyoruz. Bir M modülünün başka bir N modülüne göre güçlü T-eş tekil olmayan

modül olmasını şöyle tanımlıyoruz: M den N ye sıfırdan farklı her f homomorfizması

için, f nin görüntüsünün N modülünün radikalinin içinde kapsanmamasıdır. Açıkça

eğer bir modül güçlü T-eş tekil olmayan modül ise aynı zamanda T-eş tekil olmayan

modüldür, ancak bu durumun tersi genel olarak doğru değildir. Bir T-eş tekil olmayan

modülün ne zaman güçlü T-eş tekil olmayan modül olacağı durumunu saptamak için bi-

linen modül örneklerinin yanısıra özel halka yapılarını da göz önünde tutarak gerekli ve

yeterli koşullar veriyoruz.
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SYMBOLS AND ABBREVIATIONS

R an associative ring with unit unless otherwise stated

Rp the localization of a commutative ring R at a prime ideal p of

R

Z, Z+ the ring of integers, the set of all positive integers

Q the field of rational numbers

Zp∞ the Prüfer (divisible) group for the prime p (the p-primary

part of the torsion group Q/Z)

R-Mod the category of left R-modules

HomR(M,N) all R-module homomorphisms from M to N

Ker f the kernel of the map f

Im f the image of the map f

T (M) the torsion submodule of the R-module M : T (M) = {m ∈

M | rm = 0 for some 0 ̸= r ∈ R} when R is a commutative

domain

Soc(M) the socle of the R-module M

Rad(M) the radical of the R-module M

⊆ submodule

≪ small (=superfluous) submodule

� essential(=large) submodule

End(M) the endomorphism ring of a module M

σ[M ] the full subcategory of the R-Mod subgenerated by M

vii



CHAPTER 1

INTRODUCTION

Singular and nonsingular modules and rings are of importance for developing

certain generalizations. Singular modules are the generalization of the torsion modules.

There are many approaches to this concept related to diverse module and ring types. On

the one hand cosingularity and noncosingularity became indispensable tools in module

and ring theory. The rigorous study of small modules and essential modules established

with the aid of singularity and cosingularity.

In this thesis, we deal with the strongly T-noncosingular modules. By a strongly

T-noncosingular module M relative to a module N , we mean a module M such that for

every nonzero homomorphism f : M −→ N , Im f * Rad (N). Main results will be

given in the last chapter.

Throughout this thesis all rings are associative and have an identity element. All

modules are unitary left modules.

We chased the following order when we constituted our work:

In Chapter 2, we begin with the necessary notions and useful theorems, lemmas

and propositions making up our thesis background.

In Chapter 3, the definitions and important properties of singular and cosingular

modules are given. This chapter explains us well what singular and cosingular modules

and rings are. We provide basic theorems stated about these modules.

Chapter 4 forms the main goal of our thesis. T-noncosingular and strongly T-

noncosingular modules are studied. We characterize the torsion strongly T-noncosingular

Z-modules. This chapter mentions also that any direct sum of strongly T-noncosingular

modules need not be a strongly T-noncosingular module with an example, we also give

a necessary and sufficient condition when the direct sum of strongly T-noncosingular

modules is strongly T-noncosingular. Finally, as our main theorem, we prove that, over

a commutative noetherian ring R, the condition that every T-noncosingular R-module is

strongly T-noncosingular R-module is equivalent to the condition that R is an artinian

ring.
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CHAPTER 2

PRELIMINARIES

This chapter of our thesis provides fundamental facts for us in module and ring

theory to introduce our definitions and main theorems. For the proofs, we refer to the

books being in references.

2.1. Noetherian, Artinian, Regular Rings and Some Basic
Module-Theoretic Concepts

The ring R is said to satisfy the descending chain condition (dcc) on left (right)

ideals if every descending chain of left (right) ideals I1 ⊇ I2 ⊇ I3 ⊇ . . . becomes

stationary after a finite number of steps, i.e. for some k ∈ N, we obtain

Ik = Ik+1 = Ik+2 = ... (2.1)

The ring R is said to satisfy the ascending chain condition (acc) on left (right)

ideals if every ascending chain of left (right) ideals I1 ⊆ I2 ⊆ I3 ⊆ . . . becomes

stationary after a finite number of steps, i.e. for some k ∈ N, we have (2.1) again.

Definition 2.1 A ring R is called left (right) noetherian if R satisfies the ascending chain

condition on left (right) ideals.

Definition 2.2 A ring R is called left (right) artinian if R satisfies the descending chain

condition on left (right) ideals.

With the aid of modules, noetherian and artinian rings has equivalent definitions.

Definition 2.3 A module M is a noetherian module if every non-empty family of sub-

modules of M has a maximal element.
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Definition 2.4 A module M is called an artinian module if every non-empty family of

submodules of M has a minimal element.

As we have mentioned before, with respect to the above definitions; a ring R is

left (right) noetherian if it is noetherian as a left (right) R-module and a ring R is

left (right) artinian if it is artinian as a left (right) R-module.

Theorem 2.1 (( Anderson & Fuller, 1992), 10.10.Proposition) Let M be an R-module

and A ⊆ M . Then the following are equivalent:

1. M is artinian.

2. A and M/A are artinian.

Theorem 2.2 (( Anderson & Fuller, 1992), 10.9.Proposition) Let M be an R-module

and A ⊆ M . Then the following statements are equivalent:

1. M is noetherian.

2. A and M/A are noetherian.

3. Every submodule of M is finitely generated.

An element a of the ring R is called regular if there is an element b ∈ R with

aba = a.

We call a ring R regular if every element a ∈ R is regular.

Theorem 2.3 (( Lam, 1991), (4.23)Theorem) For any ring R, the following are equiva-

lent:

1. For any a ∈ R, there exists x ∈ R such that a = axa.

2. Every principal left ideal of R is a direct summand of RR.

3. Every principal left ideal of R is generated by an idempotent.

4. Every finitely generated left ideal of R is a direct summand of RR.

5. Every finitely generated left ideal of R is generated by an idempotent.

3



Lemma 2.1 (( Anderson & Fuller, 1992), Corollary 2.12) Let M be a left R-module,

and let I be an ideal of R contained in the annihilator of M . Then M can be considered

to be an R/I-module naturally by defining (r + I)m = rm, where r ∈ R, m ∈ M ,

and a subgroup of M is an R-module iff it is an R/I-module. That is, the lattices of

R-submodules and R/I-submodules coincide.

Let R be an integral domain and M be an R-module. The submodule T (M) =

{m ∈ M | rm = 0 for some 0 ̸= r ∈ R} is called the torsion submodule of M . If

T (M) = M , then M is said to be a torsion module, and if T (M) = 0, then M is said to

be a torsionfree module.

Since Z-modules are exactly abelian groups, torsion Z-modules are just torsion

abelian groups. The following theorem is well-known from the theory of abelian groups:

Theorem 2.4 (( Fuchs, 1970), Theorem 8.4) Let T be a torsion Z-module. Then

T =
⊕

prime p

Tp

where Tp = {x ∈ T | pnx = 0 for some n ∈ Z+} . The Z-submodules Tp are called

p− components or torsion components of T .

2.2. Small and Essential Submodules

A submodule K of an R-module M is called superfluous or small in M , written

K ≪ M , if, for every submodule L ⊆ M , the equality K + L = M implies L = M .

A submodule L of a module M is called essential or large in M , written L�M ,

if for every submodule U ⊆ M , the equality L ∩ U = 0 implies U = 0.

Proposition 2.1 (( Warfield & Goodearl, 1989), Proposition 3.21)

• Let A, B and C be modules with A ⊆ B ⊆ C. Then A�C if and only if A�B and

B � C.

• Let A, B, C and D be submodules of a module C. If A � C and B � D, then

A ∩B � C ∩D.
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• Let A be a submodule of a module C and let f : B → C be a homomorphism. If

A� C, then f−1(A)�B.

• Let {Ai | i ∈ I} and {Bi | i ∈ I} be a collection of submodules of a module C.

If the Ai are independent, that is the sum of the Ai is a direct sum, and for each Ai,

Ai �Bi, then the Bi are independent and
⊕

i∈I Ai �
⊕

i∈I Bi.

Lemma 2.2 (( Kasch, 1982), 5.1.3.Lemma)

• If A ⊆ B ⊆ M ⊆ N and B ≪ M , then A ≪ N

• If Ai ≪ M , where i = 1, 2, ..., n, then
∑n

i=1 Ai ≪ M

• If A ≪ M and φ ∈ Hom(M,N), then φ(A) ≪ N

Lemma 2.3 (( Kasch, 1982), 5.1.4.Lemma) If M is a left R-module, then for any m ∈

M , Rm is not small in M if and only if there is a maximal submodule K ⊆ M with

m /∈ K.

Lemma 2.4 (( Kasch, 1982), 5.1.6.Lemma) Let N ⊆ M . Then we have N �M if and

only if for every 0 ̸= m ∈ M , there is an element r ∈ R such that rm ̸= 0 and rm ∈ N .

2.3. Injectivitiy, Divisibility, Essential Extensions and Injective Hull

A module I is injective in case whenever there is given the solid part of a diagram

0 // M
f //

g

��

N

h~~|
|

|
|

I

with exact row, there is a homomorphism h such that the whole diagram commutes; i.e.

hf = g.

Theorem 2.5 (( Alizade & Pancar, 1999), Theorem 8.11.) For a left R-module I , the

following are equivalent:

1. I is injective.

5



2. The functor Hom(. , I) is exact.

3. Every short exact sequence of the form

0 → I → A → B → 0

is splitting.

Any Z-module D is divisible provided that nD = D for all non-zero n ∈ Z.

Lemma 2.5 (( Warfield & Goodearl, 1989), Proposition 4.2)

• D is an injective Z-module if and only if it is divisible.

• Every Z-module is a submodule of a divisible module.

Theorem 2.6 (( Warfield & Goodearl, 1989), Theorem 4.4) Every module is a submod-

ule of an injective module.

Corollary 2.1 (( Warfield & Goodearl, 1989), Corollary 4.5) A module M is injective

if and only if it is a direct summand of every module that contains it.

A proper essential extension of a module N is any module M such that N �M while

N is a proper submodule of M .

Proposition 2.2 (( Warfield & Goodearl, 1989), Proposition 4.6) A module M is injec-

tive if and only if M has no proper essential extensions.

Let C be a module and A a submodule of C. We say that A is essentially closed

in C provided A has no proper essential extensions within C, that is, the only submodule

B of C for which A�B is A.

Proposition 2.3 (( Warfield & Goodearl, 1989), Proposition 4.7) Let A be a submod-

ule of an injective module E. Then A is injective if and only if A is essentially closed in

E.

An injective envelope for a module A is any injective module which is an

essential extension of A.

6



Theorem 2.7 (( Anderson & Fuller, 1992), 18.10.Theorem) Every module has an in-

jective envelope. It is unique to within isomorphism.

Proposition 2.4 (( Anderson & Fuller, 1992), 18.12.Proposition) Let M be an R-module

and E(M) be its injective hull. Then in the category of R-Mod :

1. M is injective if and only if M = E(M).

2. If M �N , then E(M) = E(N).

3. If M ⊆ Q , with Q injective, then Q = E(M)⊕ E ′ for some E ′.

4. If
⊕

α∈AE(Mα) is injective, then

E(
⊕
α∈A

Mα) =
⊕
α∈A

E(Mα)

A module M is simple if it has no non-trivial submodules.

Lemma 2.6 (( Büyükas.ık, 2005), Lemma 1.6.4.) For every non-zero module U , there

exists a non-zero homomorphism f : U −→ E, where E is the injective hull of a simple

module.

Theorem 2.8 (( Matlis, 1960), Proposition 3) Let M be a module over a commutative

noetherian ring R. Then the following are equivalent:

1. M has the descending chain condition.

2. M is a submodule of E1⊕E2⊕...⊕En, where Ei = E(R/Mi) with Mi a maximal

ideal of R.

2.4. Semisimple Modules

Let (Tα)α∈A be an indexed set of simple submodules of a module M . If M is the

direct sum of this set, then

M =
⊕
α∈A

Tα

7



is a semisimple decomposition of M . A module M is said to be semisimple in case it

has a semisimple decomposition.

Proposition 2.5 (( Anderson & Fuller, 1992), 9.1.Proposition) A left R-module T is sim-

ple if and only if T ∼= R/K for some maximal left ideal K of R.

Theorem 2.9 (( Anderson & Fuller, 1992), 9.6.Theorem) For a left R-module, the fol-

lowing statements are equivalent:

1. M is semisimple.

2. M is the sum of some set of simple submodules.

3. M is the sum of its simple submodules.

4. Every submodule of M is a direct summand.

Proposition 2.6 (( Kasch, 1982), 8.2.2 Corollary) For a ring R, the following are equiv-

alent:

1. R is semisimple.

2. Every left R-module is semisimple.

The following lemma is clear, we include it for completeness.

Lemma 2.7 Let M be an R-module. If M/N is semisimple, then N is the intersection of

some maximal submodules of M .

Proof Let π : M → M/N be the canonical epimorphism. Since M/N is semisimple,

M/N =
⊕

i∈I Si, where Si is simple for each i ∈ I . Let Mi =
⊕

i ̸=j∈I Sj . Then,∩
i∈I Mi = 0M/N and by using the second isomoprhism theorem Mi is maximal in M/N .

We must show that the inverse images of the Mi for each i ∈ I is maximal in M . Since

Mi is maximal in M/N , it is of the form Mi = Xi/N , where Xi ⊆ M . By the third

isomorphism theorem, (M/N)/(Xi/N) ∼= M/Xi is simple by the maximality of Mi.

Therefore, Xi is maximal in M . Hence, (
∩

i∈I Xi)/N =
∩

i∈I Mi = 0M/N . That is∩
i∈I Xi = N . �

8



2.5. Radical, Socle and Projectivity

Let M be a left R-module. The radical of M is defined by

Rad (M) =
∩

{K ⊆ M | K is maximal in M}

=
∑

{L ⊆ M | L is small in M}

and the socle of M is defined by

Soc (M) =
∑

{K ⊆ M | K is minimal in M}

=
∩

{L ⊆ M | L is essential in M}

Lemma 2.8 (( Kasch, 1982), 9.1.3.Corollary)

• For m ∈ M , we have : Rm ≪ M if and only if m ∈ Rad (M).

• Soc (M) is the largest semisimple submodule of M .

Lemma 2.9 (( Kasch, 1982), 9.1.5.Corollaries)

1. Let M be an R-module and N ⊆ M , then Rad (N) ⊆ Rad (M) and Soc (N) ⊆

Soc (M).

2. Let M =
⊕

i∈I Mi, then Rad (M) =
⊕

i∈I Rad (Mi).

3. Let M =
⊕

i∈I Mi, then Soc (M) =
⊕

i∈I Soc (Mi).

Proposition 2.7 (( Anderson & Fuller, 1992), 9.14.Proposition) Let M and N be two

left R-modules and let f : M → N be a R-module homomorphism. Then f(Rad (M)) ⊆

Rad (N).

Lemma 2.10 If Rad (M) = M , then Rad (M/U) = M/U for any submodule U of M.

Proof Let f : M → M/U be the natural epimorphism with U ⊆ M . Clearly,

Rad (M/U) ⊆ M/U . On the other hand, f(Rad (M)) = f(M) = M/U ⊆ Rad (M/U)

by Proposition 2.7. So we have the desired equality Rad (M/U) = M/U .

�
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Lemma 2.11 (( Kasch, 1982), 9.3.1.Lemma) The following statements are equivalent for

A ⊆R R:

1. A ≪R R.

2. A ⊆ Rad (RR).

3. For every a ∈ A, 1− a has a right inverse in R.

4. For every a ∈ A, 1− a has an inverse in R.

Theorem 2.10 (( Kasch, 1982), 9.3.2.Theorem) Rad (RR) = Rad (RR)

Theorem 2.11 (( Kasch, 1982), 9.1.4.Theorem) Rad (M/RadM) = 0 and for every

submodule C of a module M , if Rad (M/C) = 0, then Rad (M) ⊆ C.

We denote the (Jacobson)radical of a ring R by J(R).

The following lemma is well-known:

Lemma 2.12 Let R be a commutative ring and Ω be the set of all maximal ideals of R.

Then for an R-module M , Rad (M) =
∩
p∈Ω

pM .

Proof For a maximal ideal p, we can consider M/pM as a module over R/p by

Lemma 2.1 because p ⊆ Annl M . M/pM is semisimple by Proposition 2.6, therefore

Rad (M) ⊆ pM by Lemma 2.7. Then we obtain Rad(M) ⊆
∩
p∈Ω

pM .

Conversely, let x ∈ M be such that x ̸∈ Rad (M). By Lemma 2.8, Rx is not small in

M and by Lemma 2.3, there is a maximal submodule K in M such that x ̸∈ K. M/K

is a simple module, so qM ⊆ K for some q ∈ Ω. Then we obtain x ̸∈ qM , hence

x ̸∈
∩
p∈Ω

pM , contradicting our assertion. �

Theorem 2.12 (( Kasch, 1982), 9.2.1 Lemma) Let M =R M , then we have:

1. If M is semisimple, then Rad (M) = 0.

2. J(R)M ⊆ Rad (M).

3. J(R) is a two-sided ideal of R.

4. If M is finitely generated, then Rad (M) ≪ M , in particular, J(R) ≪ R.

5. Let M be a finitely generated and A ⊆ J(R), then AM ≪ M .

10



A left R-module P is projective if the given solid part of a diagram

P

g

��

h

��~
~

~
~

B
f // C // 0

with exact row, there is a homomorphism h such that the whole diagram commutes, i.e.

fh = g.

Theorem 2.13 (( Anderson & Fuller, 1992), 16.11.Corollary) A direct sum
⊕

i∈I Pi of

modules Pi is projective iff each Pi is projective.

Theorem 2.14 (( Wisbauer, 1991), 22.3) Let P be a non-zero projective module. Then:

1. There are maximal submodules in P , i.e. Rad (P ) ̸= P .

2. If P = P1 ⊕ P2 with P2 ⊆ Rad (P ), then P2 = 0.

11



CHAPTER 3

SINGULAR AND COSINGULAR MODULES

In this chapter, we explain singular and cosingular modules in regard to our aims.

Singularity problem began with the right singular ideal of a ring and is introduced by

Johnson, R.E. in his paper ( Johnson, 1951). Later on he introduced the singular submod-

ule of a module in another paper ( Johnson, 1957). Although the proofs are able to be

found in the book “An Introduction to Noncommutative Noetherian Rings” ( Warfield &

Goodearl, 1989), we again give them here for the completeness of our study.

3.1. Singular and Nonsingular Modules

Let M be a left R-module. Consider the following set:

Z(M) = {x ∈ M | Ix = 0 for some I �R R} = {x ∈ M | Annl x�R R}

Lemma 3.1 (( Warfield & Goodearl, 1989), Lemma 3.25.) Z(M) is a submodule of M .

Proof Since R is an essential left ideal of itself, we get 0 ∈ Z(M). Given any x , y ∈

Z(M), there are essential left ideals I , J in R such that Ix = Jy = 0. Since I ∩ J is an

essential right ideal of R by Proposition 2.1 and x∓ y ∈ Z(M). Now for any t ∈ R and

x ∈ Z(M), we will show that tx ∈ Z(M). Consider the left ideal K = {r ∈ R | rt ∈ I}

is essential by Lemma 2.4, and we have Ktx ≤ Ix = 0, whence tx ∈ Z(M). Thus

Z(M) is a submodule of M . �

Definition 3.1 The submodule Z(M) defined in Lemma 3.1 is called the (maximal)singular

submodule of M . If Z(M) = M then M is said to be a singular module, whereas if

Z(M) = 0 then, M is said to be a nonsingular module.

For example, suppose R is a commutative domain. Then the essential ideals of

R are exactly the nonzero ideals, and so the singular submodule of any R-module is just

12



its torsion submodule. In this case the nonsingular R-modules are exactly the torsionfree

R-modules.

There is an alternative definition for Z(M) using trace but even if we regard this

definition, the definition of singular and nonsingular modules is the same again with that

of modules that we gave above:

Z(M) = Tr(A,M) =
∑

{Im f | f ∈ Hom(A,M), A ∈ A} (3.1)

where A is the class of all singular modules.

Proposition 3.1 (( Warfield & Goodearl, 1989), Proposition 3.26) A module M is sin-

gular if and only if M ∼= K/L for some module K and some essential submodule L of

K.

Proof We may assume that M is a left module over a ring R. First suppose that M ∼=

K/L for some left R-modules L � K. Given any k ∈ K, the left ideal I = {r ∈ R |

rk ∈ L} is essential in R by Lemma 2.4, and I(k + L) = 0K/L. Thus K/L, and hence

M , is singular.

Conversely, assume that M is singular, and write M ∼= F/K for some free left

R-module F and some submodule K ⊆ F . Choose a basis {xj | j ∈ J} for F . For

each j ∈ J , there is an essential left ideal Ij in R such that Ijxj ⊆ K, because F/K is

singular. By Proposition 2.1,
⊕

Ijxj �
⊕

Rxj = F , and thus K � F . �

Proposition 3.2 (( Warfield & Goodearl, 1989), Proposition 3.27) Let N be a submod-

ule of a nonsingular module M . Then M/N is singular if and only if N �M .

Proof We may assume that M is a left module over a ring R. If N �M , then M/N is

singular by Proposition 3.1. Conversely, assume that M/N is singular. Given a nonzero

submodule L ⊆ M , choose a nonzero element x ∈ L, since M/N is singular, there is

some I �RR such that Ix ≤ N . As M is nonsingular, Ix ̸= 0, whence N ∩ L ̸= 0.

�
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Proposition 3.3 If f : M → N is a homomorphism of left R-modules, then f(Z(M)) ⊆

Z(N).

Proof Let x ∈ Z(M). Then there exists an essential left ideal of R such that Ix = 0.

That is for every a ∈ I , ax = 0, so f(ax) = af(x) = 0 for every a ∈ I , that is I ⊆

Annl (f(x)). Since I �R, by Proposition 2.1, Annl (f(x))�R, so we get f(x) ∈ Z(N),

which was to be shown. �

Corollary 3.1 If N is a submodule of a module M , then Z(N) ⊆ Z(M).

Proof This is clear from Proposition 3.3. �

Lemma 3.2 If N is a submodule of a module M , then Z(M) ∩N = Z(N).

Proof By Corollary 3.1, Z(N) ⊆ Z(M) and Z(N) = Z(N) ∩ N ⊆ Z(M) ∩ N .

Conversely, let x ∈ Z(M) ∩ N . Then there is an essential left ideal I such that Ix = 0,

on the other hand, x ∈ N , so x ∈ Z(N). �

Proposition 3.4 (( Warfield & Goodearl, 1989), Proposition 3.28)

1. All submodules and sums(direct or not) of singular modules are singular.

2. All submodules, direct products and essential extensions of nonsingular modules

are nonsingular.

3. Let N be a submodule of a module M . If N and M/N are both nonsingular, then

M is nonsingular.

Proof

1. It is easily seen by definition that all submodules and factor modules of singular

modules are singular. If {Mi | i ∈ I} is a family of submodules of a module M ,

and each Mi is singular, then Mi is contained in Z(M), whence
∑

i∈I Mi ⊆ Z(M)

and so
∑

i∈I Mi is singular.

2. Obviously all submodules of nonsingular modules are nonsingular. Given a fam-

ily {Mi | i ∈ I} of modules, by Proposition 3.3, each of the projections
∏

i∈I Mi →

Mj maps Z(
∏

i∈I Mi) into Z(Mj). Thus if each Mj is nonsingular, then Z(
∏

i∈I Mi)

is contained in the kernel of all the projections
∏

i∈I Mi → Mj , whence Z(
∏

i∈I Mi) =

0.
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If N is a submodule of a module M , then, by Lemma 3.2, N ∩ Z(M) = Z(N).

Therefore if M is nonsingular, then N ∩ Z(M) = 0, whence if N �M we deduce

that Z(M) = 0.

3. Consider the canonical epimorphism M → M/N . This epimorphism carries Z(M)

into Z(M/N) by Proposition 3.3. Since Z(M/N) = 0, we have Z(M) ⊆ N , and

since N is also nonsingular, it follows that Z(M) = 0

�

Generally speaking, the essential extensions of singular modules does not have to

be singular. The subsequent example shows this case:

Example 3.1 If R = Z/4Z and M = 2R, then M is a singular R-module and R is an

essential extension of M , but R is not a singular R-module (even though it is singular as

a Z-module). Also, R/M is a singular module.

Definition 3.2 The right singular ideal of a ring R is the ideal Zr(R) = Z(RR), and the

left singular ideal of R is the ideal Zl(R) = Z(RR).

Definition 3.3 A right(left) nonsingular ring is any ring whose right(left) singular ideal

is zero. Of course, a nonsingular ring is a ring which is both right and left nonsingular.

For instance, every domain is a nonsingular ring. Also, every semisimple ring R is nonsin-

gular. (Since R has no proper essential one-sided ideals, all R-modules are nonsingular).

Proposition 3.5 (( Warfield & Goodearl, 1989), Proposition 3.29) Let R be a left non-

singular ring. Then,

1. For every left R-module M , the factor module M/Z(M) is nonsingular.

2. If N is a submodule of a left R-module M such that N and M/N are both singular,

then M is singular.

3. All essential extensions of singular left R-modules are singular.

Proof

1. Let N/Z(M) = Z(M/Z(M)). We first claim that Z(M)�N . If K is a submodule

of N such that Z(M)∩K = 0, then K is nonsingular. On the other hand, K embeds
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in the singular module N/Z(M), whence K is singular. Consequently K = 0,

which proves that Z(M)�N .

Now consider any x ∈ N , and set I = Annl x. If J is any left ideal of R for which

I ∩ J = 0, then J ∼= Jx. Since Z(Jx) = Jx∩Z(M)� Jx∩N = Jx, we see that

Z(J) � J . However, Z(J) = 0 because RR is nonsingular, whence J = 0. Thus

I �R R, and so x ∈ Z(M).

Therefore N/Z(M) = 0, and hence M/Z(M) is nonsingular.

2. Since N is singular, N ⊆ Z(M), whence M/N maps onto M/Z(M), and so

M/Z(M) is singular. On the other hand, M/Z(M) is nonsingular by (1), and

hence M/Z(M) = 0. Thus M is singular.

3. Let N be an essential submodule of a left R-module M , and suppose that N is

singular. By Proposition 3.1, M/N is singular, and so (2) shows that M is singular.

�

We finish singular modules here, for further information we refer to the book

“An Introduction to Noncommutative Noetherian Rings” as we stated in the beginning of

this chapter and the papers of Johnson, R.E. [( Johnson, 1951) and ( Johnson, 1957)] in

references.

3.2. Cosingular and Noncosingular Modules

Dual to the notion of singular submodule of a module M , Z(M) is defined by

Talebi and Vanaja in the paper ( Talebi & Vanaja, 2002) as follows:

Z(M) = Rej(M,S) =
∩

{Ker f | f ∈ Hom(M,K), K ∈ S} (3.2)

where S denotes the class of all small modules.

Definition 3.4 A module M is called cosingular if Z(M) = 0 and is called noncosingular

if Z(M) = M .
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Actually, the definition 3.2 considers the category R-Mod, while Talebi and Vanaja

work in the full subcategory σ[M ] of R-Mod subgenerated by M . But we will pertain

to cosingular modules in R-Mod.

Now we are going to resume basic properties of cosingular modules that can be

proven readily.

Proposition 3.6 (( Talebi & Vanaja, 2002), Proposition 2.1) Let M and N be R-modules,

and {Mi | i ∈ I} be a collection of modules. Then we have the following:

1. If M ⊆ N , then Z(M) ⊆ Z(N) and Z(N/M) ⊇ (Z(N) +M)/M .

2. If f : M → N is a homomorphism, then f(Z(M)) ⊆ Z(N).

3. Z(M/Z(M)) = 0.

4. Z(
⊕

i∈I Mi) =
⊕

i∈I Z(Mi).

5. Z(
∏

i∈I Mi) ⊆
∏

i∈I Z(Mi).

Corollary 3.2 (( Talebi & Vanaja, 2002), Corollary 2.2) For any ring R, the class of all

cosingular R-modules is closed under submodules, direct products and direct sums.
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CHAPTER 4

STRONGLY T-NONCOSINGULAR MODULES

In this final chapter, initially we will give the definition of T-noncosingular mod-

ule introduced by Tütüncü, D.K. and Tribak, R. within the paper “On T-noncosingular

Modules” and then we mention some significant properties of this kind of a module. This

module is origin of the “Strongly T-noncosingular module” introduced by us in this chap-

ter .

4.1. T-noncosingular Modules

In this section we will give the definition and basic properties of T-noncosingular

modules defined by Tütüncü, D.K. and Tribak, R. (Tütüncü & Tribak 2009)).

Definition 4.1 Let M be an R-module. M is called T-noncosingular relative to N if,

for every nonzero homomorphism f : M → N , Im f is not small in N . If M is T -

noncosingular relative to M , we say that M is T -noncosingular .The ring R is said to be

right(left) T-noncosingular if the right(left) R-module R is T-noncosingular.

In previous section, we gave the following set defined by Talebi and Vanaja :

Z(M) = Rej(M,S) =
∩

{Ker f | f ∈ Hom(M,K), K ∈ S}

As in (Tütüncü & Tribak 2009)), consider the set ∇(M) = {f ∈ End(M) |

Im f ≪ M}. Observe that ∇(M) is an ideal of the endomorphism ring of M . With the

help of this notation, the T − noncosingularsubmodule of M is defined by:

ZT (M) =
∩

φ∈∇(M)

Kerφ (4.1)
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Proposition 4.1 ((Tütüncü & Tribak 2009)), Proposition 2.2) Let M be an R-module.

Then we have:

1. M is T-noncosingular if and only if ZT (M) = M ,

2. ZT (M) is a fully invariant submodule of M ; moreover, Z(M) ⊆ ZT (M),

3. If M =
⊕

i∈I Mi, then ZT (M) ⊆
⊕

i∈I ZT (Mi).

Proposition 4.2 ((Tütüncü & Tribak 2009)), Proposition 2.3) Let M be a T-noncosingular

module and let N be a direct summand of M . Then N is T-noncosingular.

In general, a direct sum of T-noncosingular modules is not a T-noncosingular mod-

ule, as the following example shows. A dedekind domain R is proper if it is not a field.

R(P∞) will denote the P -primary component of the torsion R-module K/R, where K is

the quotient field of R.

Example 4.1 ((Tütüncü & Tribak 2009)), Example 2.12) Let R be a proper Dedekind

domain. Let P be any nonzero prime ideal of R. Consider the module M = R(P∞) ⊕

R/P and the endomorphism f : M → M defined by f(x+y) = cy with x ∈ R(P∞) , y ∈

R and c is a nonzero element of R(P∞) such that cP = 0. It is clear that Im f = cR

which is nonzero and small in M . So M is not a T-noncosingular module. In particular,

for any prime integer p, the Z-module Z(p∞)⊕Z/pZ is not a T-noncosingular Z-module.

Proposition 4.3 ((Tütüncü & Tribak 2009)), Proposition 2.11) Let {Mi}i∈I be a fam-

ily of modules. Then M =
⊕

i∈I Mi is a T-noncosingular module if and only if Mi is a

T-noncosingular module relative to Mj for all i, j ∈ I .

4.2. Strongly T-noncosingular Modules

Definition 4.2 Let M and N be two R-modules. We call M strongly T-noncosingular

relative to N if, for every nonzero homomorphism f : M → N , Im f * Rad (N). If M is

strongly T-noncosingular relative to M , we call M strongly T-noncosingular.
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Motivated by T-noncosingular modules we define the following set :

∇rad(M) = {f ∈ End(M) | Im f ⊆ Rad (M)}

and ∇rad(M) is an ideal of End(M) as ∇(M) is.

Proposition 4.4 If M is a strongly T-noncosingular module and N is a direct summand

of M , i.e. M = N ⊕K for some K ⊆ M , then N is a strongly T-noncosingular module

as well.

Proof Let M = N ⊕ K and a homomorphism f : N → N for which Im f ⊆

Rad (N). Let us look at the following homomorphism

f ⊕ 0K : N ⊕K → N ⊕K

by f ⊕ 0K(n+ k) = f(n), where n ∈ N , k ∈ K. This is an endomorphism of M . From

this we have (f ⊕ 0K)(N ⊕ K) = f(N) ⊆ Rad (M), but by assumption that M is a

strongly T-noncosingular, we obtain f ⊕ 0K = 0 and thus f = 0. This is what we wish to

prove. �

Proposition 4.5 If M is strongly T-noncosingular module, then M is also T-noncosingular

module.

Proof By definitions ∇rad(M) = {f ∈ End(M) : Im f ⊆ Rad (M)}, ∇(M) =

{f ∈ End(M) : Im f ≪ M} we immediately get ∇(M) ⊆ ∇rad(M), but since M is a

strongly T-noncosingular, then ∇rad(M) = 0 and hence ∇(M) = 0, consequently M is

a strongly T-noncosingular module implies that M is a T-noncosingular module.

�

Proposition 4.6 For a module M with Rad (M) ≪ M , the following are equivalent:

1. M is strongly T-noncosingular.

2. M is T-noncosingular.
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Proof (1 ⇒ 2): This obviously follows from Proposition 4.5.

(2 ⇒ 1): Let M be a T-noncosingular module and let f ∈ End(M) with Im f ⊆

Rad (M), since Rad (M) ≪ M , it follows that Im f ⊆ Rad (M) ≪ M , this implies

that f = 0 since M is a T-noncosingular module. Thus M is strongly T-noncosingular

module.

�

We call an R-module M π-projective (or co-continuous) if, for every two sub-

modules U, V of M with U + V = M , there exists f ∈ End(M) with

Im f ⊆ U and Im (1− f) ⊆ V

By this definition we obtain the following proposition:

Proposition 4.7 Let M be a π-projective module, and suppose that M is a strongly T-

noncosingular module. Then Rad (M) ≪ M .

Proof We wish to show that K + Rad (M) = M implies that K = M . By π −

projectivity of M , there exists an α ∈ End(M) such that α(M) ⊆ K and (1−α)(M) ⊆

Rad (M), since ∇rad(M) = 0, obtaining 1−α = 0 and hence α(M) = M ⊆ K, but this

forces K = M .

�

There is a natural question as to whether any direct sum of strongly T-noncosingular

modules is again a strongly T-noncosingular module or not. The answer is no generally

and the following example shows that any direct sum of strongly T-noncosingular mod-

ules does not have to be strongly T-noncosingular module.

Example 4.2 Let

M =
∑

prime p

1

p
Z
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Then we have

M/Z = (
∑

prime p

1

p
Z)/Z =

∑
prime p

(
1

p
+ Z)/Z =

∑
prime p

Z/pZ

That is M/Z is semisimple. Thus Rad (M/Z) = 0 by Theorem 2.12, Rad (M) ⊆ Z by

Theorem 2.11. On the other hand, for any prime q, qM ⊇ Z. Now by Lemma 2.12,

Rad (M) ⊇ Z and so we have Rad (M) = Z. Let f : M −→ M be an endomorphism of

M with Im f ⊆ Rad (M) = Z.

Now f(1) = f(p
p
) = pf(1

p
), so that p | f(1), where f(1) ∈ Z, for every prime p. Thus

f(1) ∈
∩

prime p

pZ = 0

and thus f(1)=0. From this f(1) = pf(1
p
) = 0, so that f(1

p
) = 0 for every prime p since

Z is an integral domain and p ̸= 0. Now pick any element m ∈ M , which is of the form

m =
a1
p1

+
a2
p2

+ . . .+
an
pn

then

f(m) = a1f(
1

p1
) + . . .+ anf(

1

pn
) = 0

therefore we have f=0. So M is a strongly T-noncosingular module.

After this identification, we will be able to form the diagram below to obtain an endomor-

phism of M ⊕ Z,

M ⊕ Z πZ−→ Z ı1
↪→ M

ı2
↪→ M ⊕ Z,

where πZ : M ⊕ Z −→ Z by (x, y) 7→ y, ı1 : Z −→ M by y 7→ y,
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ı2 : M −→ M ⊕ Z by y 7→ (y, 0) .

Letting φ = ı2ı1πZ, we obtain an endomorphism of M ⊕ Z i.e.

φ : M ⊕ Z −→ M ⊕ Z

φ(x, y) −→ (y, 0). But on the other hand, by Lemma 2.9, Rad (M ⊕ Z) = Rad (M) ⊕

Rad (Z) = Z⊕ 0 and so Imφ ⊆ Rad (M ⊕ Z). Hence we have found an endomorphism

of M ⊕ Z being different than zero with Imφ ⊆ Rad(M ⊕ Z), M ⊕ Z is not a strongly

T-noncosingular module though M and Z are so.

Lemma 4.1 Let {Mi}i∈I be a family of modules.Then M = ⊕i∈IMi is a strongly T-

noncosingular module if and only if Mi is a strongly T-noncosingular module relative to

Mj for all i, j ∈ I

Proof (⇒) Let (i, j) ∈ I×I and f ∈ Hom(Mi,Mj) with Im f ⊆ Rad (Mj). Consider

the homomorphism ϕ : Mi ⊕ Mj −→ Mi ⊕ Mj defined by ϕ(xi + xj) = f(xi) , where

xi ∈ Mi , xj ∈ Mj , so Imϕ = f(Mi) ⊆ Rad (Mi ⊕Mj), now by Proposition 4.4,

Mi⊕Mj is a strongly T-noncosingular module since it is a direct summand of M , but our

hypothesis says that ϕ = 0, so f = 0, concluding this direction.

(⇐) Let f ∈ End(M) with Im f ⊆ Rad (M). We have homomorphisms πi : M →

Mi (the ith projections) and φi : Mi → M (the inclusion mappings).

Consider the following diagram

M
πi−→ Mi

φi−→ M
f−→ M

πj−→ Mj

We observe that Im πjfφi ⊆ Im fφi ⊆ Im f ⊆ Rad (Mj) and from this πjfφi =

0 because of πjfφi ∈ Hom(Mi,Mj) and our assumption. Let x ∈ M , then consider

f(φi(πi(x))) by our diagram:

M
πi−→ Mi

φi−→ M
f−→ M

πj−→ Mj

f(φi(πi(x))) = f(φi(xi)) = f(xi), where xi ∈ Mi, from this composition we obtain

πj(f(φi(πi(x)))) = 0 for all i, j ∈ I since πjfφi = 0, now passing to the sums, (which
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are, of course, finite)

∑
j∈J

πjf(x) =
∑
j∈J

πj(f(
∑
i∈I

xi))

=
∑
j∈J

∑
i∈I

πj(f(xi))

=
∑
i∈I

∑
j∈J

πj(f(xi))

=
∑
i∈I

∑
j∈J

πj(f(φi(πi(x))) = 0

for all j ∈ J . Therefore we get f(x) = 0 for any x ∈ M and thus f = 0. Hence M is a

strongly T-noncosingular module. �

Proposition 4.8 ((Tütüncü & Tribak 2009)), Proposition 2.14) Let M be a T-noncosingular

module. If N ⊆ X , X/N ≪ M/N and N is direct summand of M , then N is unique.

Lemma 4.2 Let M be a strongly T-noncosingular module,if N ⊆ X is a direct summand

of M with X/N ⊆ Rad (M/N), then N is unique. That is, if K ⊆ X is a direct summand

in M such that X/K ⊆ Rad (M/K), then K = N .

Proof Suppose that X/N1 ⊆ Rad (M/N1) , X/N2 ⊆ Rad (M/N2) , M = N1 ⊕ P1 =

N2 ⊕ P2 and N1 ̸= N2 , i.e. N1 * N2 or N2 * N1. Without loss of generality, we

can assume that N1 * N2. We try to make up a non-zero endomorphism φ of M by

projections πN1 : M −→ N1 and πP2 : M −→ P2 as follows:

M
πN1−→ N1

ı1−→ M
πP2−→ P2

ı2−→ M

If we let φ′ = πP2ı1πN1 , then Imφ = Imφ′. Now let us see what happens to M under

φ′.(φ′ is nonzero, or else πN1 = N1 ⊆ Ker πP2 = N2, contradicting our assertion).

φ′(M) = φ′(N1 ⊕ P1) = πP2πN1(N1 ⊕ P1) = πP2(N1) = (N1 + N2) ∩ P2. To see

this, let n′
1 = n′

2 + p′2. Then p′2 = n′
1 − n′

2 ∈ (N1 + N2) ∩ P2, and by projection

πP2(n
′
2 + p′2) = p′2 = n′

1 − n′
2 ∈ (N1 +N2) ∩ P2.

We also have Imφ = Imφ′ = (N1 +N2) ∩ P2 ⊆ X ∩ P2. Since M = N2 ⊕ P2,

we have X ∩ M = X = N2 ⊕ (X ∩ P2). Since also X/N2 ⊆ Rad (M/N2), it follows

24



that X ∩P2 ⊆ Rad (P2) with the help of isomorphisms. From these, Imφ ⊆ Rad (P2) ⊆

Rad (M) implies that φ = 0 since M is a strongly T-noncosingular module, hence we

have obtained a contradiction with assumption above pertaining to φ that φ is non-zero.

Consequently N1 = N2.

�

A submodule N of a module M is said to be a fully invariant if, for every

endomorphism f ∈ End(M), f(N) ⊆ N .

Proposition 4.9 ((Tütüncü & Tribak 2009)), Proposition 2.16) Let M be a T-noncosingular

module and X fully invariant in M . Let N ⊆ X such that X/N ≪ M/N and N a direct

summand of M . Then N is unique fully invariant submodule in M

Motivated by Proposition 4.9, we have the following lemma for strongly T-noncosingular

modules:

Lemma 4.3 Let M be a strongly T-noncosingular module and X be a fully invariant in

M . Let N ⊆ X such that X/N ⊆ Rad (M/N) and N be a direct summand of M . Then

N is unique fully invariant submodule in M .

Proof By Lemma 4.2, such a submodule N is unique, so that we have to show that N is

fully invariant submodule of M . Suppose for contradiction that N is not a fully invariant

submodule of M . Then there exists an endomorphism f ∈ End(M) and an element

x ∈ N with f(x) /∈ N . Since N is a direct summand in M , there are projections πP and

πN subject to the decomposition M = N ⊕ P , πP : M −→ P , πN : M −→ N , look at

the following diagram

M
πN−→ N

f−→ M
πP−→ P

If we put α = πPfπN , then α is non-zero. Indeed if we assume contrary that α = 0, then,

for m = x+p, where x ∈ N , p ∈ P , we have πPfπN(x+p) = πPf(x) = f(x) = 0 ∈ N ,

a contradiction with f(x) /∈ N . (f(x) ∈ P since f(x) /∈ N and M = N ⊕ P ).

Now let us identify Imα, i.e. Im πPfπN , for this πPfπN(M) = πPf(N) ⊆

πPf(X) ⊆ πP (X) since X is a fully invariant submodule of M . Because M = N ⊕ P ,

X∩M = X = X∩(N⊕P ) = N⊕(X∩P ) by modular law. From this πP (X) = X∩P

and X/N ∼= X ∩P ⊆ Rad (M/N) ∼= Rad (P ) ⊆ Rad (M), combining these together to
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obtain Imα ⊆ Rad (M), but on the other hand M is a strongly T-noncosingular module,

this forces α = 0, a contradiction. Consequently, N is fully invariant in M . �

Theorem 4.1 For any torsion Z-module T, the following are equivalent:

1. T is a strongly T-noncosingular module.

2. T is a semisimple module.

Proof (2 ⇒ 1): This is obvious because of Rad (T ) = 0 by Theorem 2.12.

(1 ⇒ 2): Since T is torsion Z-module, by Theorem 2.4, there is a decomposition

T =
⊕

prime p

Tp

where Tp’s are torsion components of T , that is to say,

Tp = {x ∈ T | pnx = 0 for some n ∈ Z+}

Let x ∈ Tp for a prime number q, consider qTp, if q ̸= p, then, (q, p) = 1 and we

get (q, pn) = 1, so there exists u, v ∈ Z such that qu+ pnv = 1, multiplying by both side

by x, we have xqu + pnxv = x, implying x = xqu ∈ qTp, thus Tp = qTp. If q = p, then

qTp = pTp. Now we have

Rad (Tp) =
∩

prime q

qTp = pTp

Therefore, there is an endomorphism of Tp:

f : Tp → Tp

x → px ,
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where px ∈ pTp, so that Im f = pTp = Rad (Tp), but according to our assumption and

Proposition 4.4, Tp is also strongly T-noncosingular module, thus we have

Im f = pTP = 0

We see easily that pZTp = 0 since pTp = 0; therefore Tp is also Z/pZ-module by

Lemma 2.1. Since Z/pZ is a field, and thus simple ring Tp is a semisimple module by

Proposition 2.6 . We are through. (In fact, Tp is a Z/pZ-vector space) �

Proposition 4.10 Let M be a module over a commutative ring R with unique maximal

submodule, then M is strongly T-noncosingular module if and only if M is simple module

Proof (⇐): This is clear since Rad (M) = 0 by Theorem 2.11.

(⇒): Since M has a unique maximal submodule, this unique maximal submodule is

Rad (M) itself, since also M/Rad (M) is simple and so is cyclic, we get M/Rad (M) ∼=

R/P for some maximal ideal P of R by Proposition 2.5. Because of P (R/P ) = (PR+

P )/P = 0, P (R/P ) = 0 = P (M/Rad (M)) = (PM + Rad (M))/Rad (M). This

implies

PM ⊆ Rad (M) (4.2)

Since P is contained in the annihilator of M/PM , M/PM is also an R/P -module by

Lemma 2.1. Because R/P is simple, M/PM is a semisimple R/P -module by Propo-

sition 2.6. Since M/PM is semisimple, it follows that PM is the intersection of some

maximal submodules of M by Lemma 2.7. We thus obtain

Rad (M) ⊆ PM (4.3)

From (4.2) and (4.3), PM = Rad (M).

Let now f : M −→ M be an endomorphism of M defined by f(m) = rm,

where r ∈ P . Then Im f = rM ⊆ PM , that is Im f ⊆ Rad (M). On the other hand,

by assumption that M is strongly T-noncosingular module, we must have f = 0, and
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rM = 0 for any r ∈ P , this means that PM = 0 = Rad (M), now returning to the

beginning of the proof, we have M/Rad (M) ∼= M is simple as desired.

�

Proposition 4.11 Let M be a left R-module such that End(M) is Von Neumann regular

and let P (M) = {N ⊆ M | Rad (N) = N}. If P (M) = 0, then M is a strongly

T-noncosingular module.

Proof Let f ∈ End(M) with Im f ⊆ Rad (M). Since End(M) is regular, there

exists an endomorphism g ∈ End(M) such that f = fgf , so fg is an idempotent

and the decomposition M = Im fg ⊕ Ker fg exists by Theorem 2.3. From Im fg ⊆

Im f ⊆ Rad (M) and applying modular law to Rad (M) = Rad (Im fg ⊕Ker fg) =

Rad (Im fg)⊕ Rad (Ker fg), we obtain, Im fg ∩ Rad (M) = Im fg = Rad (Im fg) ⊕

(Im fg ∩ Rad (Ker fg)) and so, Im fg = Rad (Im fg). Therefore Im fg ∈ P (M) = 0,

so Im fg = 0 from this, fg = 0, and thus f = 0, but this says that M is a strongly

T-noncosingular module. �

Corollary 4.1 Every non-zero projective module whose endomorphism ring is Von Neu-

mann regular is a strongly T-noncosingular module.

Proof Let f ∈ End(P ) with Im f ⊆ Rad (P ). By the process exploited in Proposition

4.11, we have a direct decomposition P = Im fg⊕Ker fg with respect to the idempotent

fg, and Rad (Im fg) = Im fg. On the other hand, both direct summand are projective

since P is projective by Theorem 2.13. Now by Theorem 2.14, Im fg = 0 since Im fg ⊆

Im f ⊆ Rad (P ) and so f = fgf = 0; therefore P is a strongly T-noncosingular module.

�

Proposition 4.12 Any regular module is a strongly T-noncosingular module.

Proof Let M be a regular module, then for any x ∈ M , we have M = Rx⊕N for some

N ⊆ M . We claim that Rad (M) = 0. In order to prove this, suppose for contradiction

that Rad (M) ̸= 0, then there is a non-zero element x ∈ Rad (M) and by Lemma 2.8,

Rx ≪ M but M is regular so this leads to Rx = 0 for every r ∈ R, so x = 0, a

contradiction. Thus Rad (M) = 0. Therefore from this M is a strongly T-noncosingular

module clearly. �
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4.3. Commutative Noetherian Max Rings are Artinian

At the end of this section we shall state and prove our main theorem. Although

the proof of the following proposition is clear, we include it for completeness.

Proposition 4.13 If M is a strongly T-noncosingular module, then Rad (M) ̸= M

Proof Let M be a strongly T-noncosingular module and suppose for the contrary

Rad (M) = M . Let f ∈ End(M) be any non-zero endomorphism of M , then Im f ⊆

M = Rad (M), now by assumption f = 0, a contradicton. Therefore Rad (M) ̸= M . �

Lemma 4.4 Let M be an R-module such that Rad (M) = M and Rad (U) ̸= U for

every non-zero proper submodule U of M . Then M is T-noncosingular module, but not

strongly T-noncosingular.

Proof Let f ∈ End(M) be a non-zero endomorphism of M with Im f ≪ M . Then

Im f ̸= M and so Im f is a proper submodule of M . By assumption Rad (Im f) ̸=

Im f . On the other hand, M/Ker f ∼= Im f , now by Lemma 2.10, Rad (Im f) = Im f ,

a contradiction. Therefore f = 0. So M is a T-noncosingular module. Since M =

Rad (M), M is not strongly T-noncosingular by Proposition 4.13. �

A right, left or two-sided ideal I of a ring R is called a nil ideal, resp. nilpotent

ideal if, for every a ∈ I , there exists an n ∈ N such that an = 0, resp. In = 0. A subset

I of a ring R is a left T − nilpotent in case for every sequence a1 , a2 , ..., in I , there is

an n such that a1a2..., an = 0. If I is an ideal, then I is called left T − nilpotent ideal.

Observe that if I is a left or right T-nilpotent then it is nil because a , a , a , a , ... , is a

sequence in I whenever a ∈ I .

Not every left T-nilpotent ideal is a nilpotent ideal, but the subsequent lemma is

useful for this transition,

Lemma 4.5 (( Kasch, 1982), Corollary 9.3.7) If the left R-module R is noetherian, then

every two-sided nil ideal is nilpotent.

A ring R is said to be semilocal if R/Rad (R) is a left artinian ring, or, equiva-

lently, R/RadR is a semisimple ring.

Lemma 4.6 (( Lam, 1991), Proposition 20.2) For a ring R, consider the following two

conditions:
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1. R is semilocal.

2. R has finitely many maximal left ideals

We have, in general, (2) ⇒ (1), but the converse holds if R/Rad (R) is commutative.

Theorem 4.2 (( Anderson & Fuller, 1992), Theorem 15.20) Let R be a ring with Rad (R) =

J(R). Then R is left artinian if and only if R is noetherian, semilocal and J(R) is nilpo-

tent.

Proposition 4.14 (( Anderson & Fuller, 1992),Remark 28.5) If every left R-module has

a maximal submodule, then J(R) is left T − nilpotent.

We call a module M max module if every nonzero submodule has a maximal submodule,

and we say that RR is a max module if every nonzero left ideal contains a maximal

submodule.

Lemma 4.7 (( Clark, 2006), 2.19(1)) Let M be an R-module, then M is a max module if

and only if Rad (N) ̸= N (or Rad (N) ≪ N ) for every non-zero N ⊆ M

Lemma 4.8 (( Büyükas.ık & Yılmaz, 2009), Lemma 6.1) Let R be a ring and A be a

finitely generated ideal of R. Let X =
∏

i∈I Xi be the direct product of the R-modules Xi.

Suppose that Xi = AXi for all i ∈ I . Then X = AX

Lemma 4.9 Let R be a commutative ring such that every maximal ideal is finitely gen-

erated. Suppose R has infinitely many distinct maximal ideals say {Pi}i∈I with I infinite

index set. Set Si = R/Pi. Then the module,

M = (
∏
i∈I

Si)/(
⊕
i∈I

Si)

has no maximal submodules, i.e. Rad (M) = M .

Proof Let P be a maximal ideal of R. Since P ∈ {Pi}i∈I , P = Pi for some i ∈

I , Then PSi = 0 and PSj = Sj for all i ̸= j and i , j ∈ I . From this, we can write

P (
∏
i∈I

Si) = P [(
∏
j ̸=i

Sj)⊕ Si] = P (
∏
j ̸=i

Sj) + PSi = P (
∏
i̸=j

Sj) =
∏
i ̸=j

Sj
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by Lemma 4.8. Now

P (
∏
i∈I

Si) + (
⊕
i∈I

Si) = P (
∏
j ̸=i

Sj) + (
⊕
i∈I

Si) = (
∏
j ̸=i

Sj) + Si =
∏
i∈I

Si

Therefore

PM = [P (
∏
i∈I

Si) + (
⊕
i∈I

Si)]/
⊕
i∈I

Si = (
∏
i∈I

Si)/(
⊕
i∈I

Si)

We have found PM = M for each maximal ideal P of R. Hence, by Lemma 2.12,

Rad (M) = M . �

Lemma 4.10 Let R be a commutative, noetherian and max ring, then R is semilocal.

Proof By Lemma 4.6, it is enough to show that R has finitely many maximal ideals.

Suppose that R has infinitely many distinct maximal ideals {Pi}i∈I , then for Si = R/Pi,

the module

M = (
∏
i∈I

Si)/(
⊕
i∈I

Si)

has no maximal submodules by Lemma 4.9, but, on the other hand R is a max ring, hence

M = 0, and so

∏
i∈I

Si =
⊕
i∈I

Si

that is I is finite, therefore R has finitely many maximal ideals. �

The proof of the following theorem can be found in the paper of Ross, M. Hamsher

(Theorem 1), but we shall give another proof by using Lemma 4.10.

Theorem 4.3 Let R be a commutative, noetherian ring. Then the following are equiva-

lent:

1. Every nonzero R-module has a maximal submodule.
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2. R is artinian.

Proof (1 ⇒ 2) Suppose that every nonzero R-module has a maximal submodule, i.e.

R is a max ring. By Lemma 4.10, R is semilocal, and by Proposition 4.14, J(R) is left

T-nilpotent and by Lemma 4.5, J(R) is nilpotent. Finally by Theorem 4.2, R is artinian.

(2 ⇒ 1) Trivial.

�

Theorem 4.4 Let R be a commutative, noetherian ring. The following statements are

equivalent:

1. Every T-noncosingular module is strongly T-noncosingular module.

2. R is artinian ring.

Proof (1 ⇒ 2): First of all, we show that R is a max ring (that is every non-zero

R-module has a maximal submodule) and then by Theorem 4.3, the result will follow.

Let (1) hold and suppose for contradiction that R is not a max ring, then there exists

a non-zero module M with Rad (M) = M . By Lemma 2.6, there exists a non-zero

homomorphism f : M −→ E(S), where E(S) is an injective hull of a simple module

S. Since M/Ker f ∼= Im f and Rad (M) = M , by Lemma 2.10, Rad (M/Ker f) =

M/Ker f and so Rad (Im f) = Im f . Now by Theorem 2.8, E(S) is artinian and Im f

is artinian by Theorem 2.1 because of Im f ⊆ E(S).

Let Ω = {N ⊆ f(M) | Rad (N) = N andN is nonzero}. This set is non-empty

since f(M) ∈ Ω. Because f(M) is artinian, Ω has a minimal element K, say. By Lemma

4.4, K is a T-noncosingular module, but not strongly T-noncosingular. Thus we have

found a T-noncosingular module which is not strongly T-noncosingular. This contradicts

(1). Accordingly R is a max ring, now Theorem 4.3 finishes the proof.

(2 ⇒ 1): Suppose that R is an artinian ring. By Theorem 4.3, every R-module

has a maximal submodule, i.e. R is a max ring. Then Rad (M) ≪ M by Lemma 4.7. By

Proposition 4.6, every T-noncosingular module is also a strongly T-noncosingular module.

This concludes the proof. �
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Özcan, A.Çiğdem (2005). Modules with Small Cyclic Submodules in Their Injective
Hulls,Communications in Algebra, Volume 30, Issue 4, April (2002), pages 1575-
1589.

Rayar, M. (1982). On Small and Cosmall Modules, Acta Math. Acad. Sci. Hungar.,
39(4), 389-392

Ross, M. Hamsher (1966). Commutative,Noetherian Rings Over which every module
has a Maximal Submodule, Proc. Amer. Math. Soc., Vol.17, No.6 (Dec., 1966), pp.
1471-1472.

Talebi, Y. and Vanaja, N. (2002). The Torsion Theory Cogenerated by M-Small Mod-
ules, Communications in Algebra, 30: 3, 1449-1460.
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