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ABSTRACT

A new linearly pretwisted rotating Timoshenko beam element, which has

two nodes and four degrees of freedom per node, is developed and subsequently

used for vibration analysis of pretwisted beams with uniform rectangular cross-

section. First, displacement functions based on two coupled displacement fields

(the polynomial coefficients are coupled through consideration of the differential

equations of equilibrium) are derived for pretwisted beams. Next, the stiffness and

mass matrices of the finite element model are obtained by using the energy

expressions. Finally, the natural frequencies of pretwisted rotating Timoshenko

beams are obtained and compared with previously published both theoretical and

experimental results to confirm the accuracy and efficiency of the present model.

The new pretwisted Timoshenko beam element has good convergence

characteristics and excellent agreement is found with the previous studies.
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ÖZ

İki düğümlü ve sekiz serbestlik dereceli yeni bir doğrusal burulmuş dönen

Timoshenko çubuğu sonlu elemanı geliştirilmiş ve düzgün dikdörtgen kesitli

önburulmalı çubukların titreşim analizinde kullanılmıştır. İlk olarak, yanal

yerdeğiştirmeleri iki düzlemde bağlaşık olan önburulmalı çubuklar için

yerdeğiştirme fonksiyonları (polinom sabitleri, sözü geçen diferansiyel denge

denklemlerinde bağlaşık olan) türetilmiştir. Sonra, enerji ifadeleri kullanılarak

sonlu eleman modelinin kütle ve direngenlik matrisleri elde edilmiştir. Son olarak

da oluşturulan modelin doğruluğunu ve yeterliğini kanıtlamak için önburulmalı

dönen Timoshenko çubukların doğal frekansları elde edilmiş ve daha önce

yayınlanmış teorik ve deneysel sonuçlarla karşılaştırılmıştır. Oluşturulan yeni

önburulmalı Timoshenko çubuk elemanı iyi yakınsama karakteristiği ve önceki

çalışmalarla mükemmel bir uyuşma göstermiştir.
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NOMENCLATURE

{ }a independent coefficient vector

3210 a,a,a,a polynomial coefficients of the linear displacement in xz plane

A cross-sectional area of the beam

3210 b,b,b,b polynomial coefficients of the linear displacement in yz plane

b breadth of the beam

210 c,c,c polynomial coefficients of the angular displacement about the

x axis

{ }d dependent coefficient vector

210 d,d,d polynomial coefficients of the angular displacement about the

y axis

E modulus of elasticity

G modulus of rigidity

h depth of the beam

xxI , yyI area moments of inertia of the cross-section about xx and yy

axes

xyI product moment of inertia of the cross-section about xx-yy

axes

xxI ′′ , yyI ′′ area moments of inertia of the cross-section about x'x' and

y'y' axes

k shear coefficient

[ ]eK element stiffness matrix

L length of the beam

( )zm mass of the beam according to the analysed nodal coordinate

om total mass of the beam

xM , yM bending moments about x and y axes

[ ]eM mass matrix

( )zP Axial force

{ }eq element displacement vector



x

[ ]eS geometric stiffness matrix

T kinetic energy

u linear displacement in xz plane

U strain energy

v linear displacement in yz plane

V strain energy due to axial force

xV , yV shear forces in x and y direction

w rotational speed

x , y principal axes through the centroid at root section

x′ , y′ principal axes through the centroid at any section

z co-ordinate distance measured along beam

elz co-ordinate of the element from the hub

θ twist angle per unit length

xθ angular displacement about the x axis

yθ angular displacement about the y axis

ρ density

0φ initial pretwist angle of the finite element

φ pretwist angle of the finite element

xψ , yψ shear angles about x and y axes

0Ω fundamental natural circular frequency of a untwisted beam

Ω natural circular frequency of a pretwisted beam

(  .  ) differentiation with respect to time

( ′  ) differentiation with respect to z
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Chapter 1

INTRODUCTION

The day that Dr. Gustaf Patrik de Laval, a Swedish engineer presented his

marine steam turbine to the World Columbian Exposition in 1893, marks the

beginning of the era of high speeds in rotating machinery. In the 1920’s the

turbine industry designed machines to operate at substantially higher loads and at

speeds above the lowest critical speed, and this introduced the modern-day rotor

dynamics problems.

Figure 1.1 Steam turbine

Since the advent of steam turbines and their application in various sectors

of industry, it is a common experience that blade failures are a major cause of

breakdown in these machines. Blade failures due to fatigue are predominantly

vibration related. When a rotor blade passes across the nozzles of the stator, it

experiences fluctuating lift and moment forces repeatedly at a frequency given by

the number of nozzles multiplied by the speed of the machine. The blades are very

flexible structural members, in the sense that a significant number of their natural

frequencies can be in the region of possible nozzle excitation frequencies.
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Figure 1.2 Typical blade cracks

It is very important for manufacturers of turbo machinery components to

know the natural frequencies of the rotor blades, because they have to make sure

that the turbine on which the blade is to be mounted does not have some of the

same natural frequencies as the rotor blade. Otherwise, a resonance may occur in

the whole structure of the turbine, leading to undamped vibrations, which may

eventually wreck the whole turbine.

Figure 1.3 Schematic view of a part of a steam turbine
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A single free standing blade can be considered as a pretwisted cantilever

beam with a rectangular cross-section. Vibration characteristics of such a blade

are always coupled between the two bending modes in the flapwise and chordwise

directions and the torsion mode. The problem is also complicated by several

second order effects such as shear deformations, rotary inertia, fiber bending in

torsion, warping of the cross-section, root fixing and Coriolis accelerations.

Figure 1.4 Pretwisted beam model

Many researchers analyzed uniform and twisted Timoshenko beams using

different techniques: Exact solutions of Timoshenko’s equation for simple

supported uniform beams were given by Anderson [1]. The general equations of

motion of a pretwisted cantilever blade were derived by Carnegie [2]. Then

Carnegie [3] extended his study for the general equations of motion of a

pretwisted cantilever blade allowing for torsion bending, rotary inertia and

deflections due to shear. Dawson et al. [4] found the natural frequencies of

pretwisted cantilever beams of uniform rectangular cross-section allowing for

shear deformation and rotary inertia by the numerical integration of a set of first

order simultaneous differential equations. They also made some experiments in

order to obtain the natural frequencies for beams of various breadth to depth ratios

and lengths ranging from 3 to 20 in and pretwist angle in the range 0°-90°. Gupta

and Rao [5] used the finite element method to determine the natural frequencies of

uniformly pretwisted tapered cantilever beams. Subrahmanyam et al. [6] applied

the Reissner method and the total potential energy approach to calculate the

natural frequencies and mode shapes of pretwisted cantilever blading including

shear deformation and rotary inertia. Rosen [7] presented a survey paper as an

extensive bibliography on the structural and dynamic aspects of pretwisted beams.

Chen and Keer [8] studied the transverse vibration problems of a rotating twisted

Timoshenko beam under axial loading and spinning about axial axis, and
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investigated the effects of the twist angle, rotational speed, and axial force on

natural frequencies by finite element method. Chen and Ho [9] introduced the

differential transform to solve the free vibration problems of a rotating twisted

Timoshenko beam under axial loading. Lin et al. [10] derived the coupled

governing differential equations and the general elastic boundary conditions for

the coupled bending-bending forced vibration of a nonuniform pretwisted

Timoshenko beam by Hamilton’s principle. They used a modified transfer matrix

method to study the dynamic behavior of a Timoshenko beam with arbitrary

pretwist. Banerjee [11] developed a dynamic stiffness matrix and used for free

vibration analysis of a twisted beam. Rao and Gupta [12] derived the stiffness and

mass matrices of a rotating twisted and tapered Timoshenko beam element, and

calculated the first four natural frequencies and mode shapes in bending-bending

mode for cantilever beams. Narayanaswami and Adelman [13] showed that a

straightforward energy minimization yields the correct stiffness matrix in

displacement formulations when transverse shear effects are included. They also

stated that in any finite element displacement formulation where transverse shear

deformations are to be included, it is essential that the rotation of the normal (and

not the derivative of transverse displacement) be retained as a nodal degree of

freedom. Dawe [14] presented a Timoshenko beam finite element that has three

nodes and two degrees of freedom per node, which are the lateral deflection and

the cross-sectional rotation. The element properties were based on a coupled

displacement field; the lateral deflection was interpolated as a quintic polynomial

function and the cross-sectional rotation was linked to the deflection by specifying

satisfaction of the moment equilibrium equation within the element. The effect of

rotary inertia was included in “lumped” form at the nodes. Subrahmanyam et al.

[15] analysed the lateral vibrations of a uniform rotating blade using Reissner and

the total potential energy methods. Another vibration analysis of rotating

pretwisted blades have been done by Yoo et al. [16]

The main purpose of this study is to create a new finite element model that

shows a better convergence character and more accurate results with respect to the

other finite element formulations in the literature to determine the natural

frequencies of the blade structure. In order to reach this purpose, a new finite

element model as an extension of Dawe’s study to pretwisted Timoshenko beam
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is derived. Elastic and geometric stiffness and mass matrices of the element are

obtained and used to reach the natural frequencies of the structure.

The results of our study show us that an excellent agreement with the

previous studies has obtained.
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Chapter 2

THEORY

There are two beam theories when dealing with transverse vibrations of

prismatic beams:

1. Euler-Bernoulli beam theory (Classical beam theory)

2. Timoshenko beam theory.

2.1. Euler-Bernoulli beam theory

The Euler-Bernoulli beam equation arises from a combination of 4 distinct

subsets of beam theory [23]:

1 Kinematic

2 Constitutive

3. Force resultant

4. Equilibrium

Kinematics describes how the beam’s deflections are tracked. Out-of-

plane displacement w , the distance the beam’s neutral plane moves from its

resting position, is usually accompanied by a rotation of the beam’s neutral plane,

defined as θ , and by a rotation of the beam’s cross-section, χ .

Figure 2.1 Kinematics of an Euler-Bernoulli beam
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What we really need to know is the displacement in the x-direction across

a beam cross-section, ( )yxu , , from which we can find the direct strain ( )yx,ε  by

the equation,

dx
du=ε (2.1)

To do so requires that we make a few assumptions on just how a beam

cross-section rotates. For the Euler-Bernoulli beam, the assumptions were given

by Kirchoff and dictate how the “normals” behave (normals are lines

perpendicular to the beam’s neutral plane and are thus embedded in the beam’s

cross-sections).

Kirchoff Assumptions

1. Normals remain straight (they do not bend)

2. Normals remain unstrecthed (they keep the same length)

3. Normals remain normal (they always make a right angle to the neutral plane)

With the normals straight and unstretched, we can safely assume that there

is negligible strain in the y direction. Along with normals remaining normal to the

neutral plane, we can make the x and y dependance in ( )yxu ,  explicit via a

simple geometric expression,

( ) ( )yxyxu χ=, (2.2)

With explicit x dependance in u, we can find the direct strain throughout

the beam,

( ) y
dx
dyx χε =, (2.3)
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Finally, again with normals always normal, we can tie the cross-section

rotation χ  to the neutral plane rotation θ , and eventually to the beam’s

displacement w ,

dx
dw−=−= θχ (2.4)

The Constitutive equation describes how the direct stress σ  and direct

strain ε  within the beam are related. Direct means perpendicular to a beam cross-

section; if we were to cut the beam at a given location, we would find a

distribution of direct stress acting on the beam face.

Figure 2.2 Direct stress distribution acting on the beam face

Beam theory typically uses the simple one-dimensional Hooke’s equation,

( ) ( )yxEyx ,, εσ = (2.5)

It can be noted that the stress and strain are functions of the entire beam

cross-section (i.e. they can vary with y).

Force resultants are a convenient means for tracking the important

stresses in a beam. They are analogous to the moments and forces of statics

theory, in that their influence is felt throughout the beam (as opposed to just a

local effect). Their convenience lies in them being only functions of x, whereas

stresses in the beam are functions of x and y. If we were to cut a beam at a point x,

we would find a distribution of direct stresses ( )yσ  and shear stresses ( )yxyσ ,

Figure 2.3 Direct and shear stress distributions on the beam cross-section
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Each little portion of direct stress acting on the cross-section creates a

moment about the neutral plane (y=0). Summing these individual moments over

the area of the cross-section is the definition of the moment resultant M,

( ) ( )∫ ∫= dydzyxyxM ,σ (2.6)

where z is the coordinate pointing in the direction of the beam width (out of page).

Summing the shear stresses on the cross-section is the definition of the shear

resultant V,

( ) ( )∫ ∫= dydzyxxV xy ,σ (2.7)

There is one more force resultant that we can define for completeness. The

sum of all direct stresses acting on the cross-section is known as N,

( ) ( )∫ ∫= dydzyxxN ,σ (2.8)

( )xN  is the total direct force within the beam at some point x, yet it does not play

a role in (linear) beam theory since it does not cause a displacement w. Instead, it

plays a role in the axial displacement of rods and bars.

By inverting the definitions of the force resultants, we can find the direct

stress distribution in the beam due to bending,

( )
I

Myyx =,σ (2.9)

It is obvious that the bending stress in beam theory is linear through the

beam thickness. The maximum bending stress occurs at the point furthest away

from the neutral axis, y=c,

I
Mc=maxσ (2.10)
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What about the other non-linear direct stresses shown acting on the beam

cross-section? The average value of the direct stress is contained in N and does

not contribute to beam theory. The remaining stresses (after the average and linear

parts are subtracted away) are self-equilibrating stresses. By a somewhat circular

argument, they are self-equilibrating precisely because they do not contribute to

M or N, and therefore they do not play a global role. On the contrary, self-

equilibrating loads are confined to have only a localized effect as mandated by

Saint Venant’s Principle.

[Saint-Venant's Principle can be stated as follows: If a set of self-

equilibrating loads are applied on a body over an area of characteristic dimension

d, the internal stresses resulting from these loads are only significant over a

portion of the body of approximate characteristic dimension d. Note that this

principle is rather vague, as it deals with ``approximate'' characteristic

dimensions. It allows qualitative rather than quantitative conclusions to be drawn.]

The Equilibrium equations describe how the beam carries external

pressure loads with its internal stresses. Rather than deal with these stresses

themselves, it is chosen to work with the resultants since they are functions of x

only (and not of y).

To enforce equilibrium, consider the balance of forces and moments acting

on a small section of beam,

Figure 2.4 Force and moment equilibrium of the beam

Equilibrium in the y direction gives the equation for the shear resultant V,

p
dx
dV −= (2.11)
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Moment equilibrium about a point on the right side of the beam gives the equation

for the moment resultant M,

V
dx

dM = (2.12)

It can be noted that the pressure load p does not contribute to the moment

equilibrium equation.

The outcome of each these segments is summarized here:

Kinematics:  
dx
dw−=−= θχ

Constitutive: ( ) ( )yxEyx ,, εσ =

Resultants: ( ) ( )∫ ∫= dydzyxyxM ,σ

( ) ( )∫ ∫= dydzyxxV xy ,σ

Equilibrium: V
dx

dM = p
dx
dV −=

To relate the beam’s out-of-plane displacement w to its pressure loading p,

the results of the 4 beam sub-categories are combined in the order shown,

Kinematics -> Constitutive -> Resultants -> Equilibrium = Beam Equation

This hierarchy will be demonstrated by working backwards. First, the two

equilibrium equations are combined to eliminate V,

p
dx

Md −=2

2

(2.13)

Next the moment resultant M is replaced with its definition in terms of the direct

stress σ ,

[ ] pdydzy
dx
d −=∫ ∫ σ2

2

(2.14)
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The constitutive relation is used to eliminate σ  in favour of the strain ε , and then

kinematics is used to replace ε  in favour of the normal displacement w,

[ ] pdydzyE
dx
d −=∫ ∫ ε2

2

pdydzy
dx
dE

dx
d −=



 ∫ ∫ 2

2

2 χ

pdydzy
dx

wdE
dx
d =








∫ ∫ 2

2

2

2

2

(2.15)

As a final step, recognizing that the integral over y2 is the definition of the

beam’s area moment of inertia I,

∫ ∫= dydzyI 2 (2.16)

allows us to arrive at the Euler-Bernoulli beam equation,

p
dx

wdEI
dx
d =








2

2

2

2

(2.17)

2.2. Timoshenko beam theory

Flexural wave speeds are much lower than the speed of either longitudinal

or torsional waves. Therefore flexural wavelengths which are less than ten times

the cross-sectional dimensions of the beam will occur at much lower frequencies.

This situation occurs when analysing deep beams at low frequencies and slender

beams at higher frequencies. In these cases, deformation due to transverse shear

and kinetic energy due to rotation of the cross-section become important. In

developing energy expressions which include both shear deformation and rotary

inertia, the assumption that plane sections which are normal to the undeformed

centroidal axis remain plane after bending, will be retained. However, it will no

longer be assumed that these sections remain normal to the deformed axis [22].

The classical Euler-Bernoulli theory predicts the frequencies of flexural

vibration of the lower modes of slender beams with adequate precision. However,

because in this theory the effects of transverse shear deformation and rotary
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inertia are neglected the errors associated with it become increasingly large as the

beam depth increases and as the wavelength of vibration decreases.

Timoshenko, a highly qualified engineer from Russia but had worked for

an US turbine company Westinghouse, had made the corrections to the classical

beam theory and developed the energy expressions which include both shear

deformation and rotary inertia effects.

2.2.1 Kinematics

We consider a prismatic beam, symmetric cross-section with respect to

(w.r.t.) z-axis (Figure 2.5).

Figure 2.5 Kinematics of the Timoshenko Beam Theory

Apply ( )2/, hzxTz =  traction (Figure 2.6), uniform along y-direction, so

that the applied transverse load will be,

( ) ( )2/,hxbTxg z= (2.18)
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Figure 2.6 Application of uniform traction along y-direction

Assumptions

(1) Plane sections such as ab, originally normal to the centerline of the beam

in the undeformed geometry, remain plane but not necessarily normal to the

centerline in the deformed state.

(2) The cross-sections do not stretch or shorten, i.e., they are assumed to act

like rigid surfaces.

(3) All displacements and strains are small, i.e., hw << , ( )ijjiij uu ,,2/1 +=ε

Assumption (2) implies that;

( )xwuz =  or 0, == zzzz uε (2.19)

Assumption (1) implies that there exist constant (through the thickness) shear

strains, i.e.,

( ) 0≠= xxzxz γγ (2.20)

Now, writing down the shear strain in the x-z plane

z

b

x

g(x)
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xzxxzzxxz wuuu ,,,, +=+=γ (2.21)

Now, solving Equation (2.21) for zxu ,

xxzzx wu ,, −= γ (2.22)

and integrating w.r.t. z

( ) ( )xfwzu xxzx +−= ,γ (2.23)

Evaluating xu  at the centerline z = 0 we have;

( ) ( ) ( )xuxfzxux === 0, (2.24)

where ( )xu  denotes displacement in the x-direction of any point on the centerline.

Replacing ( ) ( )xuxf =  into Equation (2.23) we have;

( ) ( ) ( )xxzx wzxuzxu ,, −+= γ (2.25)

where we note that ( )xxzxz γγ =  and ( )xww = .

Now introducing a variable called the bending rotation, ( )xθ , we can write

( ) xxz wx ,−= γθ (2.26)

from which

θγ += xxz w, (2.27)

and Equation (2.25) becomes

( ) θzuzxux +=, (2.28)
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and

( ) ( )xwzxuz ≈, (2.29)

Equations (2.28) and (2.29) represent the components of the displacement vector

{ } { }zx uuu =  of the Timoshenko beam. (It is noted as before that 0=yu , i.e., all

deformations along y-axis are neglected).

2.2.2 Strain – Displacement Relations

The only nonzero strains are;

00,,, xxxxxxxx zkzuu +=+== εθε (2.30)

where

xx u ,0 =ε  (centerline axial strain) 

and xxk ,0 θ= (bending curvature) (2.31)

and the transverse shear strain

θγ += xxz w, (2.32)

Hooke’s Law (Stress-Strain Relations)

( )zzyyxxxx E σσνεσ ++= (2.33)

xzxz Gγτ = (2.34)

The underlined term is generally neglected since it is much smaller than the first

term. We then have:
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( ) ( )xxxxxxxx zuEzkEE ,,00 θεεσ +=+== (2.35)

( )θγτ +== xxzxz wGG , (2.36)

2.2.3 Equilibrium Equations

The following integrals are defined:

∫∫=
A

xxx dAN σ (2.37)

∫∫=
A

xzx dAV τ (2.38)

∫∫=
A

xxx zdAM σ (2.39)

where xN  is the axial force, xV  is the shear force and xM  is the bending moment.

The application of Principles of Virtual Work results the following equilibrium

equations in the range  Lx <<0   for the Timoshenko beam:

0, =xxN (2.40)

0, =+ gV xx (2.41)

0, =− xxx VM (2.42)

These three equations can be simplified further,

If we differentiate Equation (2.42) w.r.t. x and substitute Equation (2.41) into

Equation (2.42):

0, =+ gM xxx  (bending) (2.43)

0, =xxN  (axial) (2.44)

also, Equation (2.42) gives:

xxx MV ,=  (bending) (2.45)
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2.2.4 Constitutive Equations

With reference to Equation (2.37),

( )∫∫ ∫∫ +==
A A

xxxxx dAzuEdAN ,, θσ

0, xxx EAEAuN ε==  (2.46)

( )∫∫ ∫∫ +==
A A

xxxxx dAzuEzzdAM ,, θσ

xxx EIEIkM ,0 θ== (2.47)

∫∫=
A

dAzI 2

Shear force:

Substituting Equation (2.36) into Equation (2.38) yields

xz
A

xzx GAkdAGV γγ 2≅= ∫∫ (2.48)

where

GA  = Shear rigidity
2k  = nondimensional coefficient, referred to as a shear correction factor.

Bending Equilibrium Equations in terms of the Kinematic Variables of

Timoshenko Beam Theory

Substituting the constitutive Equations (2.47) and (2.48) into Equations (2.41) and

(2.42) gives:

( )[ ] ( ) 0,
2 =++ xgwGAk

dx
d

x θ (2.49)

( ) ( ) 0,
2

, =+− θθ xx wGAkEI
dx
d (2.50)
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Assuming GA  and EI  are constant, the above two equations can be

readily reduced to a single equation in terms of w  only, i.e.,

( ) gg
GAk

EIEIw xx =




+ ,2

4 (2.51)

The strain energy stored in the element is the sum of the energies due to

bending and shear deformation; which is given by

∫ ∫+=
V V xyxyxx dVdVU γτεσ 5.05.0 (2.52)

The kinetic energy of the straight beam consists of kinetic energy of

translation and kinetic energy of rotation which is expressed as

∫ ∫+=
L L

dxIdxwAT
0 0

22 5.05.0 θρρ && (2.53)

2.3 Equations for pretwisted Timoshenko beam

The elastic potential energy of the pretwisted Timoshenko beam is given

as [3];

( ) ( ) ( )( ){ }∫ −+−+++=
L

xyyyyyxxyxxx dzvukAGIIIEU
0

2222 '''''2'5.0 θθθθθθ (2.54)

where, the symbol “ ′ ” represents differentiation with respect to z which is the

longitudinal axis of the beam. The kinetic energy of the pretwisted thick beam is

given as follows [3];

( ) ( ){ }∫ ++++=
L

yyyyxxyxxx dzIIIvuAT
0

2222 25.0 θθθθρ &&&&&& (2.55)
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The differential equations of motion of the pretwisted beam with uniform

rectangular cross-section are given as follows [3, 4];

( ) xxxyx IVM
dz
d θρ &&=− , ( ) yyyxy IVM

dz
d θρ &&=− (2.56, 2.57)

( ) uAV
dz
d

x &&ρ= , ( ) vAV
dz
d

y &&ρ=  (2.58, 2.59)

where

yxyxxxx EIEIM θθ ′+′= , xxyyyyy EIEIM θθ ′+′= (2.60, 2.61)

yx kAGV ψ= , xy kAGV ψ= (2.62, 2.63)

in which

xx v θψ −′= , yy u θψ −′= (2.64, 2.65)

In the above equations; Mx and My represents bending moments about x and y

axes, Vx and Vy represents shear forces in x and y directions, xψ  and yψ

represents shear angles about x and y axes.



21

Chapter 3

FINITE ELEMENT VIBRATION ANALYSIS

3.1 Introduction

The Finite Element Method (FEM) is a numerical procedure that can be

used to obtain solutions to a large class of engineering problems involving stress

analysis, heat transfer, electromagnetism, fluid flow and vibration and acoustics.

In FEM, a complex region defining a continuum is discretized into simple

geometric shapes called finite elements (see Figure 3.1). The material properties

and the governing relationships are considered over these elements and expressed

in terms of unknown values at element corners, called nodes. An assembly

process, duly considering the loading and constraints, results in a set of equations.

Solution of these equations gives us the approximate behaviour of the continuum.

Figure 3.1 Description of the “finite element”
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Basic ideas of the FEM originated from advances in aircraft structural

analysis. The origin of the modern FEM may be traced back to the early 20th

century, when some investigators approximated and modelled elastic continua

using discrete equivalent elastic bars. However, Courant has been credited with

being the first person to develop the FEM. He used piecewise polynomial

interpolation over triangular subregions to investigate torsion problems in a paper

published in 1943. The next significant step in the utilisation of Finite Element

Method was taken by Boeing. In the 1950’s Boeing, followed by others, used

triangular stress elements to model airplane wings. But the term finite element

was first coined and used by Clough in 1960. And since its inception, the

literature on finite element applications has grown exponentially, and today there

are numerous journals that are primarily devoted to the theory and application of

the method.

3.2 Finite element vibration analysis

Here are the steps in finite element vibration analysis:

1. Discrete and select element type

2. Select a displacement function

3. Derive element stiffness and mass matrices

4. Assemble the element matrices and introduce BC’s

5. Solve the eigenvalue problem and obtain the natural frequencies

A uniformly pretwisted constant cross-sectional beam is shown in Figure

3.2. Differential equations of the motion of pretwisted Timoshenko beam with

uniform rectangular cross-section are given in the preceding chapter. The finite

element model derived here is based on explicit satisfaction of the homogeneous

form of Equations (2.56-2.59). In Equations (2.56-2.59), eliminating three

parameters from the set {u, v, θx, θy} in turn gives,

04

4

=
dz

ud , 04

4

=
dz

vd , 03

3

=
dz

d xθ , 03

3

=
dz

d yθ
     (3.1- 3.4)
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The Equations (3.1 - 3.4) result in an element with constant shear forces along its

length, linear variation of moments, quadratic variation of cross-sectional

rotations and cubic variation of transverse displacements. Therefore, the general

solutions of these four equations are chosen as polynomials in z as follows:

( ) 3
3

2
21 zazazaazu o +++= (3.5)

( ) 3
3

2
21 zbzbzbbzv o +++= (3.6)

( ) 2
21 zczccz ox ++=θ (3.7)

( ) 2
21 zdzddz oy ++=θ (3.8)

Figure 3.2 Uniformly pretwisted constant cross-sectional beam

Using homogeneous form of Equations (2.56-2.57), the relationships are obtained

linking u, v, θx and θy in the form;

( ) ( ) 0=−′+′+′ xyxyxxx vkAGEIEI
dz
d θθθ (3.9)

( ) ( ) 0=−′+′+′ yxxyyyy ukAGEIEI
dz
d θθθ (3.10)

The area moments of inertia of the cross-section should be noted as follows:

( ) ( ) ( )zIzIzI yyxxxx φφ 22 sincos ′′′′ +=

x′ y′ 
x 

y 

L 

z 
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( ) ( ) ( )zIzIzI xxyyyy φφ 22 sincos ′′′′ += (3.11)

( ) ( ) ( )zIIzI yyxxxy φ2sin5.0 ′′′′ −=

where ( ) zz θφφ += 0

By using the Equations (3.5-3.10) the coefficients c0, c1, c2, d0, d1 and d2 can be

expressed in terms of the coefficients a0, a1, a2, a3, b0, b1, b2 and b3 by equating

coefficients of the powers of z. This procedure yields:

342313221 bbbaaco ββββ ++++= ,

362351 2 bbac ββ ++= ,

32 3bc = (3.12)

3221382710 bbaaad ββββ ++++= ,

353921 2 baad ββ ++= ,

32 3ad =

where

xyI
kAG

E ′= 2
1β

( ) xyyyxxxy I
kAG

EIII
kAG

E





+′+′′





= 66

2

2β

xxI
kAG

E '2
3 =β

( ) xxxyxx I
kAG

EII
kAG

E





+′+′





= 66 22

2

4β

xyI
kAG

E '6
5 =β (3.13)

xxI
kAG

E '6
6 =β

yyI
kAG

E '2
7 =β
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( ) yyxyyy I
kAG

EII
kAG

E





+′+′





= 66 22

2

8β

yyI
kAG

E ′= 6
9β

in which

( ) ( )zIII xxyyxx φθ 2sin′′′′ −=′

( ) ( )zIII yyxxyy φθ 2sin′′′′ −=′ (3.14)

( ) ( )zIII yyxxxy φθ 2cos′′′′ −=′

It is convenient to express the Equation (3.12) in the matrix form:

{ } [ ]{ }aBd =  or in open form 































































=































3

2

1

0

3

2

1

0

59

2187

65

4321

2

1

0

2

1

0

00003000
000200

0010
30000000

200000
1000

b
b
b
b
a
a
a
a

d
d
d
c
c
c

ββ
ββββ

ββ
ββββ

 (3.15)

where {a} and {d} are named as independent and dependent coefficient vectors,

respectively.

Similar procedure was applied to untwisted Timoshenko beam by Narayanaswami

and Adelman [13] and Dawe [14].

3.3 Mass and stiffness matrices of the finite element

The new Timoshenko beam finite element has two nodes and four degrees

of freedom per node, namely, two transverse deflections and two rotations (Figure

3.3). The element displacement vector can be written as:



26

{ } { }T
yxyxe vuvuq 22221111 θθθθ= (3.16)

Figure 3.3 Finite element model

Then, by using Equations (3.5-3.8) and (3.12), {qe} can be expressed in terms of

the independent coefficient vector as follows:

{ } [ ]{ }aCqe = (3.17)

( ) ( ) ( )
( ) ( ) ( ) 




































































++++
++++

=





































3

2

1

0

3

2

1

0

521
2

987

2
643521

32

32
2187

4321

2

2

2

2

1

1

1

1

003210
321000

10000
00001

0010
1000

00010000
00000001

b
b
b
b
a
a
a
a

LLLL
LLLL

LLL
LLL

v
u

v
u

y

x

y

x

ββββββ
ββββββ

ββββ
ββββ

θ
θ

θ
θ

The linear and angular displacement functions can be written by using the

independent and dependent coefficient vectors, respectively, as follows:

( ) [ ]{ } [ ]{ }azzzaPzu u 00001 32== (3.18)

( ) [ ]{ } [ ]{ }azzzaPzv v
3210000== (3.19)

( ) [ ]{ } [ ]{ }dzzdPz
xx 0001 2== θθ (3.20)

  y 

x 

θx2 

u2 

v2 

θy2 

z 
2 1 
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( ) [ ]{ } [ ]{ }dzzdPz
yy

21000== θθ (3.21)

Now, Equations (3.20) and (3.21) can be expressed by using Equation (3.15) as

follows:

( ) [ ] [ ] { }aBPz
xx θθ = (3.22)

( ) [ ] [ ] { }aBPz
yy θθ = (3.23)

The elastic potential energy of the finite element in Figure 3.3 is written as [3]:

( ) ( ) ( )( ){ }∫ −+−+++=
L

xyyyyyxxyxxx dzvukAGIIIEU
0

2222 '''''2'5.0 θθθθθθ (3.24)

where, the symbol “ ′ ” represents differentiation with respect to z. Substituting

Equations (3.11), (3.18), (3.19), (3.22) and (3.23) into Equation (3.24) gives

}{ [ ] }{ ee
T

e qKqU 5.0= (3.25)

where [Ke] is the element stiffness matrix given by

[ ] [ ] [ ] [ ]{ }∫ −−=
L

T
e dzCkCK

0

1 (3.26)

in which

[ ] [ ] ( ) [ ] [ ] ( ) [ ] [ ] ( ) [ ] [ ] [ ] [ ]( ){ }[ ]BPPPPzIPPzIPPzIEBk
xyyxyyxx

TT
xy

T
yy

T
xx

T
θθθθθθθθ ′′+′′+′+′′=

[ ] [ ] [ ] [ ]( ) [ ] [ ] [ ] [ ] [ ]( )[ ]( ){ }BPPPPBPPPPkAG
xxyy

TTT
v

T
vu

T
u θθθθ ++′′+′′+

[ ] [ ] [ ] [ ] [ ]( )( ) [ ] [ ] [ ] [ ]( )[ ]( ){ }BPPPPPPPPBkAG
xyxy

T
v

T
uv

T
u

TT
θθθθ ′+′+′+′− (3.27)
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In order to examine the effect of rotational speed on the natural frequencies, the

system shown in Figure 3.4 is considered. The strain energy due to axial force can

be written as follows:

( )( )∫ ′+′=
l

dzvuzPV
0

22
2
1 (3.28)

where

( ) ( ) ( )zzwzmzP el += 2 (3.29)

and

( ) ( )zzmzm elo +−= µ (3.30)

in which om  is the total mass of the beam and µ  is the “mass/unit length” of the

beam. Substituting the derivations of Equations (3.18) and (3.19) with the

Equations (3.29) and (3.30) into (3.28) gives:

{ } [ ]{ }ee
T

e qSq.V 50= (3.31)

where [ ]eS  is the element geometric stiffness matrix given by

[ ] [ ] ( )[ ] [ ] [ ] [ ]( ) [ ] 1

0

−−








′′+′′= ∫ CdzPPPPzPCS

l

v
T

vu
T

u
T

e (3.32)

The kinetic energy of the pretwisted thick beam is given as follows [3]:

( ) ( ){ }∫ ++++=
L

yyyyxxyxxx dzIIIvuAT
0

2222 25.0 θθθθρ &&&&&& (3.33)
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where the use of the overdot is a compact notation for differentiation with respect

to time. Substituting Equations (3.11), (3.18), (3.19), (3.22) and (3.23) into

Equation (3.33) gives

{ } [ ] { }ee
T

e qMqT &&5.0= (3.34)

Figure 3.4 Model for rotation effect

where [Me] is the element mass matrix given by

[ ] [ ] [ ][ ]{ }∫ −−=
L

T
e dzCmCM

0

1

(3.35)

in which

[ ] [ ] [ ] [ ] [ ]( )v
T

vu
T

u PPPPAm &&&& += ρ

[ ] ( ) [ ] [ ] ( ) [ ] [ ] [ ] [ ]( ) ( ) [ ] [ ]( )[ ]{ }BPPzIPPPPzIPPzIB
yyxyyxxx

T
yy

TT
xy

T
xx

T
θθθθθθθθρ &&&&&&&& ++++

(3.36)

ze

Finite element under
consideration

y

z

w

r

Hub

l

L
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3.4 Numerical integration

In order to compute [ ]eK , [ ]eS  and [ ]eM  in the Equations (3.26), (3.32)

and (3.35), Gauss-Legendre 4-point numerical integration is used.  The n-point

approximation is given by the following formula [19];

( ) ( ) ( ) ( )nn fwfwfwdfI ξξξξξ +++≈= ∫
−

...
1

1
2211 (3.37)

where w1, w2, w3 and w4 are the weights and 1ξ , 2ξ , 3ξ  and 4ξ  are the sampling

points or Gauss points. The idea behind Gaussian quadrature is to select the n

Gauss points and n weights such that Equation (3.37) provides an exact answer for

polynomials ( )ξf  of as large a degree as possible.

The Gauss points and weights for 4-point Gauss-Legendre numerical

integration is given in Table 3.1. In our analysis the integration starts from 0 to the

length of the finite element, so a modification should be needed for the Gauss

points and weights [18].

( ) ( )∑∫
=

≈=
n

i
ii

b

a

fwdfI
1

ξξξ (3.38)

( )
ii wabw

2
−= (3.39)

( ) ( )
ii

abba ξξ
22
−++= (3.40)

Point number Gauss points Weights

1 -0.8611363116 0.3478548451

2 -0.3399810436 0.6521451549

3 0.3399810436 0.6521451549

4 0.8611363116 0.3478548451

Table 3.1 Gauss points and weights for 4-point Gaussian quadrature
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3.5. Assembling of the element matrices

The global mass and stiffness matrices are obtained by assembling the

element matrices given in Equations (3.26), (3.32) and (3.35). The assembling

process is carried out by the computer program developed in MatLAB. The

connectivity table for the 10 element solution is given in Table 3.2 to give an idea

about how the computer connects the element matrices. Every node in an element

has both a local coordinate and a global coordinate.

Local CoordinatesElement

Number 1 2 3 4 5 6 7 8

1 1 2 3 4 5 6 7 8

2 5 6 7 8 9 10 11 12

3 9 10 11 12 13 14 15 16

4 13 14 15 16 17 18 19 20

5 17 18 19 20 21 22 23 24

6 21 22 23 24 25 26 27 28

7 25 26 27 28 29 30 31 32

8 29 30 31 32 33 34 35 36

9 33 34 35 36 37 38 39 40

10 37 38 39 40 41 42 43 44

G
lo

ba
l C

oo
rd

in
at

es

Table 3.2 Connectivity Table

3.6. Determination of the natural frequencies

By using the well-known procedures of vibration analysis, the eigenvalue

problem can be given as [17];

[ ] [ ]( ) { } 02 =Ω− qMK (3.41)



32

where [ ]K  and [ ]M  are global stiffness (geometric stiffness matrix included) and

mass matrices, respectively, and { }q  is global displacement vector, and Ω  is the

natural circular frequency. The eigenvalue problem given in Equation (3.41) is

solved by using computer programs developed in MatLAB.
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Chapter 4

RESULTS AND DISCUSSION

In order to validate the proposed finite element model for the vibration

analysis of pretwisted Timoshenko beam, various numerical results are obtained

and compared with available solutions in the published literature.

4.1. Simply supported untwisted beam

The first example to be considered is the case of lateral vibrations of a

non-rotating untwisted rectangular cross-section beam with both ends simply

supported. In Table 4.1, comparison of the analytical results obtained from closed-

form solution derived by Anderson [1], finite element solution with 20 and 40

elements given by Chen and Keer [8] and the present model with 10 elements is

made. Excellent agreement is observed. The physical properties of the beam are

given in Table 4.1.

Chen, Keer FEM [8]

Mode Anderson
Analytical [1] 20 elements 40 elements

Present FEM
10 elements

Difference
between

Analytical and
Present %

1 114,78 115,14 114,87 113,99 0,69
2 333,46 334,44 333,70 331,21 0,67
3 453,49 459,01 454,86 450,55 0,65
4 1000,38 1027,41 1007,03 995,81 0,46
5 1216,72 1229,63 1219,92 1211,76 0,41

Data: length of beam = 101.6 cm, width = 5.08 cm, thickness = 15.24 cm,
shear coefficient = 5/6,    E = 206.8 Gpa, G = 79.3 Gpa,
mass density = 7860 kg/m3.

Table 4.1 Comparison of coupled bending-bending frequencies of an untwisted, simple

supported rectangular cross-section beam
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4.2. Cantilever pretwisted beam (twist angle = 45°°°°)

The second example is concerned with a cantilever pretwisted beam

treated experimentally by Carnegie [2] and by theoretical means by Lin et al. [10]

and Subrahmanyam et al. [6]. The properties of the beam are given in Table 4.2.

To show efficiency and convergence of the proposed model, the first four

frequencies of the second example are calculated. For comparison, the present

results as well as those given by other investigators are tabulated in Table 4.2. It is

observed that the agreement between the present results and results of the other

investigators is very good. The natural frequencies calculated by the proposed

model converge very rapidly. Even when the number of the element is only 10,

the present fundamental frequency is converged.

Mode numberNumber of element 1 2 3 4

2 64,3 465,5 1087,7 1921,6
4 62,3 327,3 1041,7 1226,2
6 62,0 313,6 986,3 1179,2
8 61,9 309,3 965,4 1178,3

10 61,8 307,3 956,1 1181,9
12 61,8 306,3 951,2 1185,4
14 61,8 305,6 948,3 1188,1
16 61,8 305,3 946,6 1190,2
18 61,8 305,0 945,4 1191,7
20 61,8 304,8 944,5 1193,0

Lin et al. [10] 61,7 300,9 917,0 1175,1
Subrahmanyam et al. [6] 62,0 305,1 955,1 1214,7
Subrahmanyam et al. [6] 61,9 304,7 937,0 1205,1

Carnegie [2] 59,0 290,0 920,0 1110,0

Data: length of beam = 15.24 cm, breadth = 2.54 cm,
depth = 0.17272 cm, shear coefficient = 0.847458, E = 206.85 Gpa,
G = 82.74 Gpa, mass density = 7857.6 kg/m3, twist angle = 45°.

Table 4.2. Convergence pattern and comparison of the frequencies of a cantilever

pretwisted uniform Timoshenko beam (Hz).
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4.3. Cantilever pretwisted beam (various twist angle, length, breadth

to depth ratio)

This example is considered to evaluate the present finite element

formulation for the effects of related parameters (e.g. twist angle, length, breadth

to depth ratio) on the natural frequencies of the pretwisted cantilever Timoshenko

beams treated experimentally by Dawson et al. [4]. The natural frequencies are

prescribed in terms of the frequency ratio Ω / Ω0, where Ω is the natural

frequency of pretwisted beam and Ω0 is the fundamental natural frequency of

untwisted beam. The natural frequency ratios for the first five modes of vibration

are obtained for two groups of cantilever beams (Table 4.3) of uniform

rectangular cross-section by using 10 elements.

Table 4.3. Two groups of cantilever beams for the analysis of the effect of

various parameters on the natural frequencies.

 First group includes the sets of beams of breadth 0.0254 m and length

0.3048 m and various breadth to depth ratios and pretwist angle in the range 0-

90°. The results for first group are shown in Tables 4.4, 4.5, 4.6 and in Figures

4.1, 4.2, and 4.3.

Second group contains the sets of beams of breadth 0.0254 m and breadth

to depth ratio 8/1 and length ranging from 0.0762 m to 0.508 m and pretwist angle

in the range 0-90°. The results for second group are shown in Figures 4.1, 4.4, 4.5,

and 4.6. It can easily be checked out from the Figures of the second group that the

natural frequencies increase as the beam length decreases.

Length
7,62 cm 15,24 cm 30,48 cm 50,8 cm

8/1 x x x x

4/1 x x x xb/d

2/1 x x x x
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Mode Numbers
Frequency Ratio (b/d=8/1), Length=12 inTwist

Angle
1 2 3 4 5

Analysis
Types

0 1,0 6,3 8,0 17,5 34,3
30 1,0 5,3 9,4 17,1 34,0
60 1,0 4,2 11,7 16,1 33,0
90 1,0 3,4 12,8 16,3 31,7 Pr

es
en

t (
10

El
em

en
ts

)

0 1,0 6,2 8,0 17,7 35,1
30 1,0 5,2 9,4 17,2 34,6
60 1,0 4,2 11,7 16,5 33,6
90 1,0 3,1 12,9 16,8 32,2 C

he
n,

 K
ee

r
[8

] (
25

El
em

en
ts

)

0 1,1 6,4 7,7 17,2 34,0
30 1,1 5,3 9,2 16,5 33,4
60 1,1 4,2 11,3 15,7 32,3
90 1,1 3,4 12,4 16,2 30,8 D

aw
so

n 
et

 a
l.

[4
]

0 1,0 6,1 7,8 17,3 34,1
30 1,0 5,0 9,1 16,7 33,7
60 1,0 4,3 11,6 16,1 32,7
90 1,0 3,3 12,1 16,5 31,1 C

he
n,

 H
o 

[9
]

Table 4.4 Result I for the first group of beams
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Figure 4.1. Frequency ratio vs twist angle. Length 30.48 cm, breadth 2.54 cm, b/h = 8/1.
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Mode Numbers
Frequency Ratio (b/d= 4/1), Length=12 inTwist

Angle
1 2 3 4 5

Analysis
Types

0 1,0 4,0 6,3 17,5 24,2
30 1,0 3,7 6,7 16,6 25,4
60 1,0 3,3 7,7 15,0 27,9
90 1,0 2,8 8,9 13,5 29,4

Pr
es

en
t

0 1,0 4,0 6,2 17,2 24,5
30 0,9 3,6 6,3 16,4 25,2
60 1,0 3,2 7,2 14,6 27,3
90 0,9 2,8 8,3 13,2 28,9 D

aw
so

n 
et

 a
l.

[4
]

Table 4.5 Result II for the first group of beams

Figure 4.2. Frequency ratio vs twist angle. Length 30.48 cm, breadth 2.54 cm, b/h = 4/1.
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Mode Numbers
Frequency Ratio (b/d=2/1), Length=12 inTwist

Angle
1 2 3 4 5

Analysis
Types

0 1,0 2,0 6,2 12,1 17,2
30 1,0 2,0 6,3 11,8 17,6
60 1,0 1,9 6,5 11,2 18,6
90 1,0 1,8 6,9 10,4 20,0

Pr
es

en
t

0 1,0 2,0 6,0 11,6 16,3
30 1,0 1,9 5,9 11,4 16,8
60 1,0 1,7 6,2 10,7 18,0
90 1,0 1,8 6,5 9,8 19,7 D

aw
so

n 
et

 a
l.

[4
]

Table 4.6 Result III for the first group of beams

Figure 4.3. Frequency ratio vs twist angle. Length 30.48 cm, breadth 2.54 cm, b/h = 2/1.
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Mode Numbers
Frequency Ratio (b/d=8/1), Length=3 inTwist

Angle
1 2 3 4 5

Analysis
Results

0 1,0 6,2 7,4 17,2 33,2
30 1,0 5,2 8,8 16,8 32,8
60 1,0 4,1 10,8 15,6 31,8
90 1,0 3,3 11,8 15,1 29,8 Pr

es
en

t (
10

El
em

en
ts

)

0 1,0 6,0 7,2 16,7 32,7
30 1,0 5,1 8,6 16,0 31,8
60 1,0 4,0 10,4 14,8 30,3
90 1,1 3,1 11,4 15,3 28,7 D

aw
so

n 
et

 a
l.

[4
]

Table 4.7 Result I for the second group of beams

Figure 4.4. Frequency ratio vs twist angle. Length 7.62 cm, breadth 2.54 cm, b/h = 8/1.
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Mode Numbers
Frequency Ratio (b/d=8/1), Length=6 inTwist

Angle
1 2 3 4 5

Analysis
Results

0 1,0 6,3 7,8 17,5 34,1
30 1,0 5,3 9,3 17,0 33,8
60 1,0 4,2 11,4 16,0 32,9
90 1,0 3,4 12,6 16,1 31,4 Pr

es
en

t (
10

El
em

en
ts

)

0 1,0 6,2 7,4 17,1 33,7
30 1,0 5,3 8,7 16,7 33,3
60 1,0 4,3 10,8 15,6 31,9
90 1,1 3,3 12,1 15,7 30,6 D

aw
so

n 
et

al
. [

4]

Table 4.8 Result II for the second group of beams

Figure 4.5. Frequency ratio vs twist angle. Length 15.24 cm, breadth 2.54 cm, b/h = 8/1.
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Mode Numbers
Frequency Ratio (b/d=8/1), Length=20 inTwist

Angle
1 2 3 4 5

Analysis
Types

0 1,0 6,3 8,0 17,5 34,4
30 1,0 5,3 9,5 17,1 34,0
60 1,0 4,2 11,8 16,1 32,9
90 1,0 3,4 12,8 16,5 31,6 Pr

es
en

t (
10

El
em

en
ts

)

0 1,0 6,2 8,0 17,6 34,4
30 1,0 5,4 9,7 17,0 33,8
60 1,0 4,3 11,9 16,1 32,6
90 1,1 3,4 12,8 16,9 31,3 D

aw
so

n 
et

 a
l.

[4
]

Table 4.9 Result III for the second group of beams

Figure 4.6. Frequency ratio vs twist angle. Length 50.8 cm, breadth 2.54 cm, b/h = 8/1.
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4.4 Untwisted rotating cantilever beam

In this example, the case of a rotating untwisted cantilever beam is

considered. The first three natural frequencies has been determined and compared

with the results of Subrahmanyam and Kulkarni [15] and shown in Table 4.9. The

properties of the beam is shown below:

L = 91.948 mm

A = 82.580 mm2

ρ = 0.0073 kg/cm3

E = 206.85 Gpa

Ixx = 577.729 mm4

w = 540.350 rad/sec

r = 263.652 mm

G = 82.74 Gpa

κ = 0.85

Mode Number I II III

Present 5747.12 33836.19 89263.57

[15] 5608.84 33664.2 87323.28

Table 4.10 Comparison of bending frequencies of an untwisted rotating cantilever beam

The average difference between the present results and the theoretical

results [15] is only 1.73 %, it is possible to say that the created FE model shows

accurate results even when the rotation effect is included.

4.5 Twisted rotating cantilever beam

Lastly, the accuracy of the present model needs to be confirmed for the

twisted rotating cantilever case. The lowest two natural frequencies has been

determined and compared with the results of Yoo et al [16] in Table 4.10.
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The properties of the beam is shown below:

L = 15 mm

a = 20 mm (breadth)

b = 1 mm (thickness)

ρ = 7830 kg/m3

E = 206.85 Gpa

T = (ρAL/(EI))

w = γ/T

r = 100 mm

G = 82.74 Gpa

κ = 0.85

θ = 45º

First natural frequency Second natural frequencyγ
Present Reference[16] Present Reference[16]

0.0000 0,1763 0,1763 0,9888 0,9825
0.0882 0,2132 0,2200 1,0209 1,0203
0.1763 0,2963 0,3157 1,1115 1,1253

0.2645 0,3955 0,4288 1,2472 1,2796

Table 4.11 Comparison of natural frequencies of a twisted rotating cantilever beam

An average of 3% difference is observed, it can be also found that the

natural frequencies obtained by the present modelling method are lower than

those obtained in reference [16]. Thus, the present modeling method provides

more accurate results.



45

Chapter 5

CONCLUSION

A new linearly pretwisted rotating Timoshenko beam finite element, which

has two nodes and four degrees of freedom per node, is developed and

subsequently used for vibration analysis of pretwisted beams with uniform

rectangular cross-section. The finite element model developed is based on two

displacement fields that couple the transverse and angular displacements in two

planes by satisfying the coupled differential equations of static equilibrium. This

procedure means that the rotary inertia term is ignored in the moment equilibrium

equation within the element but the effect of rotary inertia will be included in

“lumped” form at the nodes.

The present model is verified for various parameters ( such as twist angle,

length, breadth to depth ratio) in different range on the vibrations of the twisted

beam treated experimentally by Carnegie [2] and Dawson et al. [4] and

theoretically by other investigators [1, 6, 8, 9, 10, 15, 16] even with ten elements.

The new pretwisted both non-rotating and rotating Timoshenko beam element has

shown good convergence characteristics and excellent agreement is found with

the previous studies. The effects of pretwist angle, beam length and breadth to

depth on the natural frequencies are also studied.
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