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ABSTRACT 
 

RENORMALIZATION GROUP INVARIANTS IN 

MINIMAL SUPERSYMMETRIC STANDARD MODEL 

 

This thesis work is devoted to a detailed study of the renormalization group 

invariants (RG invariants) in minimal supersymmetric standard model (MSSM). The 

RG invariants are those Lagrangian parameters or combinations of the parameters, 

which exhibit no dependence on the energy scale up to the loop order with which the 

renormalization group equations (RGEs) are constructed.  

In this work, following an introductory chapter on standard model of 

electroweak and strong interactions as well as supersymmetry and supersymmetric 

field theories, we discuss construction of renormalization group equations in 

supersymmetric models, in particular, the minimal supersymmetric standard model 

with holomorphic and non-holomorphic soft terms. We finally concentrate on 

construction and phenomenological implications of the RG invariants in the minimal 

supersymmetric standard model with and without non-holomorphic supersymmetry 

breaking terms.  
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ÖZET 
 

M�N�MAL SÜPERS�METR�K STANDART MODELDE 

RENORMAL�ZASYON GRUP ENVARYANTLARI 

 

Bu tez çalı�ması minimal süpersimetrik standart modelde (MSSM) 

renormalizasyon grup envaryantların (RG envaryantları) ayrıntlı bir çalı�masıdır.  

Renormalizasyon grup envaryantları, renormalizasyon grup denklemlerinin 

olu�turdu�u halka mertebesine kadar enerji skalasına ba�ımlılık göstermeyen 

Lagrangian parametreleri yada bu parametrelerin kombinasyonudur. 

Bu çalı�mada, elektrozayıf ve kuvetli etlile�imlerin standart modelin yanı sıra 

süpersimetri ve süpersimetrik alan teorilerine giri� bölümünü takiben, süpersimetrik 

modelde renormalizasyon grup denklemlerini özellikle minimal süresimetrik standart 

modele özellikle holomorfik ve non-holomorfi�in yum�ak terimleri içeren minimal 

süpersimetrik standart modelde, renormalizasyon grup denklemlerinin 

olu�turulmasına çalı�tık. Son olarakta non-holomorfik süpersimetrik kırılmı� terimleri 

içeren ve içermeyen minimal süpersimetrik standart modelde renormalizasyon grup 

envaryantlarının olu�turulması ve fenomenolojik emplikasyonları üzerinde 

yo�unla�tık. 
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CHAPTER 1 

 

INTRODUCTION 
 

This thesis work is devoted to analysis and discussion of the renormalization 

group (RG) invariants in the minimal supersymmetric standard model (MSSM). 

Basically, Renormalization group equations (RGEs) determine how a given parameter 

in a Lagrangian field theory varies with the energy scale (or distance scale probed). 

Certain parameters or combinations of the parameters may turn out to be RG invariant 

(or, equivalently, scale invariant), that is, they do not vary with energy scale at all. 

Such parameters turn out to be viable probes of the underlying model since they 

express correlations among the model parameters in a way independent of the energy 

scale. This implies that measurements at different colliders (which run at different 

center of mass energies) of RG invariants must return the same answer. This 

requirement implies that such invariants can be used to test both experimental 

measurements and consistency of the underlying model up to the accuracy with which 

RGEs are obtained. In this work, we will make use of one-loop RGEs of the MSSM 

parameters to construct invariants out of them.   

In Chapter 2 below, we will give a brief introduction to supersymmetry by first 

reviewing the SM and then pointing out the problems it has in its scalar sector (Higgs 

sector). Then we give reasons for and basic structure of supersymmetry as a further 

symmetry principle to account for ultraviolet catastrophe that the SM Higgs sector 

faces. Basic concepts of a generic supersymmetric field theory i.e. superspace, 

superfields, construction of supersymmetric Lagrangians and superpotential all will be 

discussed in Chapter 2. 

In Chapter 3 we will introduce the MSSM by giving its particle spectrum, 

gauge structure, and superpotential. We will therein give also why and how 

supersymmetry is broken in a safe way so that problems encountered in the SM Higgs 

sector are not regenerated. We will, in particular, introduce soft supersymmetry 

breaking terms in Chapter 3, and discuss possibility of holomorphic and non-

holomorphic soft terms separately. By holomorphic soft terms we mean 

supersymmetry breaking, gauge invariant, mass-dimension three polynomials of 
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scalars, which consist of no conjugated fields (such supersymmetry breaking terms are 

usually a replica of the superpotential with superfields being replaced by their scalar 

components). The non-holomorphic soft terms are of similar structure; however, they 

contain hermitian-conjugates of scalars (except for fermion bilinears that they can 

contain) with no tension with gauge invariance. The MSSM with non-holomorphic 

soft terms is a more general model than the one with holomorphic soft terms and thus 

deserves of a separate analysis.  

  In Chapter 3, we will give a detailed discussion of RGEs for a general softly 

broken supersymmetric theory. Their applications to MSSM with holomorphic and 

non-holomorphic soft terms are given in Appendices.  

In Chapter 4, we will discuss derivations and possible applications of the RG 

invariants within MSSM with and without non-holomorphic soft supersymmetry 

breaking terms. We will discuss the two cases separately and discuss their 

phenomenological implications by examining certain RG invariants. It is worthy of 

noting that the two cases, holomorphic and non-holomorphic soft supersymmetry 

breaking terms, possess various RG invariants, which demonstrate their underlying 

structural differences. In a collider environment, these structures will give distinct 

structures.      

In Chapter 5 we conclude the work.  
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CHAPTER 2 

 

SUPERSYMMETRY 

 

In this chapter, we will give introduction to supersymmetric theories. We will 

first give a brief overview of the standard model of electroweak and strong 

interactions (SM) and then motivate and describe supersymmetric models, in 

particular, the minimal supersymmetric model which is nothing but a direct 

supersymmetrization of the SM. 

 

2.1. The Standard Model 
 

All known particle physics phenomena are well-described within the Standard 

Model (SM) of elementary particles and force carriers. The SM (Salam 1967, 

Glashow 1961, Weinberg 1967) provides an elegant theoretical framework and it has 

successfully passed several precision experiments. 

By elementary particles (the point-like constituents of matter) what are meant 

are those having no known substructure up to the present limits of m1918 1010 −− − . 

Broadly speaking, there are two types of particles known as matter particles and force 

carriers. The former refer to fermions of spin 21=s , and are classified into leptons 

and quarks. The known leptons are: the electron, e-, the muon, �-, and the tau, �- lepton 

with identical electric charges 1= −Q . The electrically neutral leptons i.e. the 

neutrinos are the electron neutrino, �e, the muon neutrino, �� and the tau neutrino, �� . 

The known quarks up, u, down, d, charm, c, strange, s, top, t and bottom, b  form six 

different flavors and have fractional electric charges 
2 1 2 1 2

, , , ,
3 3 3 3 3

= − −Q  and ,
3
1−  

respectively. 

The second kind of particles is interaction-mediating particles. By leaving 

apart the gravitational interactions, in the SM all interactions are mediated by force-

carrying spin 1=s  bosons. The photon, �, is the exchanged particle in the 

electromagnetic interactions, the three weak bosons, W±, Z are corresponding 
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intermediate bosons of the weak interactions. The eight gluons αg ; � = 1,...,8  mediate 

the strong interactions (Herrero 1998). 

The SM of fundamental interactions describes strong, weak and 

electromagnetic interactions of elementary particles. It is based on a gauge principle, 

according to which all the forces of Nature are mediated by exchanges of the gauge 

fields of the corresponding local symmetry group. The symmetry group of the SM is  

 

                                       ( ) ( ) ( )YLc USUSU 123 ⊗⊗                                      (2.1)                     

                                           
where each gauge group possesses a number of gauge bosons in accord with their 

number of generators. The gauge sector of the SM is composed of eight gluons aGµ  of 

color ( )CSU 3  (which has 32-1 = 8 generators), µB  boson of hypercharge ( )YU 1  

(which has a single generator),  iWµ  bosons of isospin ( )LSU 2  (which has 22-1 = 3 

generators).  

The scalar sector (the Higgs sector to be discussed below) realizes a 

spontaneous symmetry breakdown such that the local invariance in (2.1) reduces to  

 

                                                  ( ) ( ) emYL UUSU )1(12 →⊗                                       (2.2) 

 

so that electromagnetism with gauge invariance emU )1(  and color ( )CSU 3  are exact 

symmetries of the nature at low energies. The spontaneous breakdown of symmetries 

in (2.2) gives rise to massive vector bosons i.e. W+/- and Z bosons of electroweak 

theory. These bosons have already been in observed in Large Electron-Positron 

Collider (LEP) at CERN, Geneva. 

The fermion sector of the SM consists of leptons and quarks, which are 

organized, in three families with identical properties except for their masses. The 

gauge structure in (2.1) treats left- and right-handed fermions in a completely different 

fashion. We here note that for massless fermions helicity is physical, and left-handed 

fermions are assigned positive helicity i.e. their momenta and spins are parallel to 

each other. On the other hand, right-handed fermions do have negative helicity; their 

momenta and spins are anti-parallel to each other. In other words, SM exhibits a built-
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in left-right asymmetry. It is different at macroscopic scale in everyday life. In 

general, left- and right-handed components of a fermion field are defined via  

 

               ( ) ( )5 5

1 1
1 ; 1

2 2L Re e e eγ γ− − − −= − = +                        (2.3) 

 

where e- denotes the relativistic Dirac field of electron. Here  
5γ  is the usual chirality 

matrix, which involves multiplication of all four γ  matrices.  

The left-handed leptons are singlet under  ( )CSU 3  and doublet under  ( )LSU 2  

whereas the right-handed ones are singlet under both of these symmetries. In tabular 

form, we display them as (α =1, 2, and 3 being the generation index): 

 

                                      ,   ,       ;    ,    , RRRL

LLL

e
L eE

e
L τµ

τ
ν

µ
νν

α
τµ

α =��
�

�
��
�

�
��
�

�
��
�

�
��
�

�
��
�

�
=          (2.4) 

 

showing explicitly their chiral structure. We have a similar structure for quarks: 

 

           iRiRiR
i
RiRiRiR

i
R

L
i

i

L
i

i

L
i

i
i
L b ,s ,dD   ;t ,c ,uU   ;

b

t
,

s

c
,

d

u
Q ==��

�

�
��
�

�
��
�

�
��
�

�
��
�

�
��
�

�
= ααα       (2.5) 

 

         so that, for each generation α , the left-handed quarks are ( )LSU 2  doublets and right-

handed quarks are singlets. Clearly, irrespective of chirality and generation each quark 

flavor is a color triplet: i =1, 2, 3.  

The scalar sector of the SM i.e. the Higgs sector consists of a single ( )LSU 2  

doublet composed of a neutral ( 0H )  and charged ( −H ) scalar fields:  

 

                            �
�
�

�
�
�
�

�
= −H

H
H

0

                                                           (2.6) 
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where potential energy density of H   

 

                                      ( )22 † †

2HiggsL V m H H H H
λ= − = −                                    (2.7) 

 

is such that the neutral component 0H  picks up a non-vanishing vacuum expectation 

value (VEV) in the energetically-preferred state of the system. This non-vanishing 

VEV    

   

                                                λ/2202 mHv −==                                              (2.8) 

 

triggers the breakdown  of electroweak symmetry in (2.1)  in the way shown in (2.2). 

This reduction in symmetry of the system feeds masses to otherwise-massless gauge 

bosons and fermions. To see how those masses arise it may be useful to review the 

complete Lagrangian of the SM. As a quantum field theory, the SM. Lagrangian can 

be examined in terms of field gauge terms and interactions: 

HiggsYukawaGauge LLLL ++=  where HiggsL  refers to Higgs potential in (2.7) above. Here 

GaugeL  consists gauge terms of gauge fields, Higgs field and fermions: 

 

                          

( ) ( )†

1 1 1
4 4 4

a a i i
gaugeL G G W W B B

iL D L i D iE D E

iU D U iD D D D H D H

µν µν µν µν µν µν

µ µ µ
α µ α α µ α α µ α

µ µ
α µ α α µ α µ µ

γ γ γ

γ γ

= − − −

+ + +

+ + +

Q Q                      (2.9) 

 

where 

 
a a a abc b c

s

i i i ijk j k

G G G f G G

W W W W W

B B B

µν µ ν ν µ µ ν

µν µ ν ν µ µ ν

µν µ ν ν µ

ε

= ∂ − ∂ +

= ∂ − ∂ +

= ∂ − ∂

g

g                                   (2.10) 
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( )
2 2

2 6 2

2
3 2

1
2 2

i i

i i a as

a as

a as

D L i W i B L

D E i B E

D i W i B i G

D U i B i G U

D D i B i G D

µ α µ µ µ α

µ α µ µ α

µ α µ µ µ µ α

µ α µ µ µ α

µ α µ µ µ α

τ

τ λ

λ

λ

′� �= ∂ − +� �
� �

′= ∂ +

′� �= ∂ − − −� �
� �

� �′= ∂ − −� �
� �

� �′= ∂ + −� �
� �

g g

g

gg g

g
g

g
g

Q Q                     (2.11) 

 

with ',,s ggg  being the gauge couplings of ( )CSU 3 , ( ) YL USU )1(,2 , respectively. 

Moreover, ijkε  and abcf  stand for the structure constants of ( )LSU 2  and ( )CSU 3 , 

respectively. The kinetic term of the Higgs doublet gives rise to gauge boson mass-

squared terms. Indeed, one finds 2
2

2

2
vMW

g=  and 2222

4
1

v)'(M Z gg +=  which have 

been measured rather precisely at LEP experiments. 

The second part of the Lagrangian, YukawaL ,  refers to interaction terms between 

the Higgs doublet and fermions (quarks and leptons):  

 

                       †
2 . .L D U

YukawaL L E H D H U i H h cαβ α β αβ α β αβ α β τ= + + +y y yQ Q              (2.12)   

 

where i
αβy  are Yukawa matrices i.e. matrices in the space of fermion flavors 

( 321  , ,, =βα ) for the up-type quarks i=U, the down-type quarks i=D and leptons i = 

L. Once 0H  picks up a VEV the quarks and leptons acquire non-vanishing masses 

proportional to the associated Yukawa couplings. Indeed, one finds 

 

                                   vmvmvm DULL DU y  ,y  ,y αβαβαβαβαβαβ ===                            (2.13) 

 

for the masses of charged leptons, up-type quarks and down-type quarks, respectively. 
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e+ 

e- 

� � 

We have given a rather brief summary of what we call the SM – a quantum 

field theory based on three generations of leptons / quarks with the gauge symmetry 

(2.1). The SM has passed various precision tests at LEP and many other machines 

measuring the rare processes. The only experimentally lacking feature is the Higgs 

boson, h. Its mass-squared 22 2mmh =   (see eq. (2.7)) is expected to lie at the weak 

scale; however, this boson, which is a vital part of the whole idea of electroweak 

symmetry breaking, has not shown up in experiments. Discovery of h is the main goal 

of the Large Hadron Collider to start at CERN, Geneva in September 2007. Despite 

this good news, there is enough reason to believe that the SM must be extended in 

structure since even if we find Higgs field to weigh some value at this very day the 

conceptual questions do not end at all. The reason is that the potential energy density 

(2.7) of the Higgs doublet exhibits a serious sensitivity to quantum mechanical 

corrections, and this causes a complete destabilization of the whole idea of 

electroweak breaking. In the next subsection and onwards we will describe one 

possible way of stabilizing the Higgs sector: the supersymmetry.  

 

2.2. Why and How Supersymmetry? 
 

In order to appreciate the “bad” quantum behavior of the scalar sector of the 

SM, let us take a brief look at one-loop corrections in Quantum Electrodynamics 

(QED), the best understood ingredient of the SM (Drees 1996). 

 

   

   

    

 

Figure 2.1: The photon self-energy in QED 

 

Let us first investigate photon’s two-point function, which receives 

contributions due to the electron loop diagram of Fig. 2.1: 
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γγγγ 

e- 

( )
( )

( ) ( )

( )
( )

( )

4

4

2 24
2

4 2 2

0
2

2
4

2

0

e e

e

e

d k i i
  tr   ie ie

k m k m

k k k md k
e  

k m

µν µ ν
γγ

µ ν µν

π γ γ
π

π

� �
= − − −	 
/ /− −� �

− −
= −

−

=




g

                  (2.14) 

 

which implies that one-loop contribution to photon mass vanishes since two-point 

functions evaluated at vanishing external momentum gives radiative corrections to 

mass of the particle under consideration.  The result of (2.14) is a consequence of the 

fact that the photon remains massless at all orders of perturbation theory as a result of  

the electric charge conservation (electromagnetism can not be saved as a gauge 

symmetry for a massive photon) 

 

 

 

 

 

Figure 2.2: The electron self-energy in QED 

 

Next, let us consider the electron self-energy correction shown in Fig. 2.2: 

 

( )
( )

( ) ( )

( ) ( ) ( )

( ) ( )

4

4 2

4
2

4 2 2 2

4
2

4 2 2 2

0
2

1

2

1
4

2

ee
e

e
e

e
e

d k i i
ie ie

k m k

d k
e k m

k k m

d k
e m

k k m

µν

µ ν

µ
µ

π γ γ
π

γ γ
π

π

−= − −
/ −

/= − +
−

= −
−







g

                     (2.15) 

 

This integral has logarithmic divergence at large momenta. However, the 

corrections to the electron mass are themselves proportional to the electron mass, and 

if we replace the infinity by the largest scale in particle physics, the Planck scale, we 

find a correction:  
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                                  emδ ∼
e

Planck
e

em

m
M

m log2
π

α
                                        (2.16) 

 

which is quite modest. At a deeper level, this small correction can be understood from 

a symmetry: In the limit 0→em , the model becomes invariant under chiral rotations 

( )5expe eiψ γ ϕ ψ→  (Wess and Bagger 1992). If this symmetry were exact, the 

corrections in (2.16) would have to vanish. In reality this symmetry is broken by the 

electron mass, so the correction must itself be proportional to em . 

 

 

 

 

 

Figure 2.3: Fermion loop contribution to the self-energy of the Higgs boson 

 

Now consider the contribution of a heavy fermion loop correction to the 

propagator of the Higgs field  

 

                                              )(
2

1 0 vHh −=                                           (2.17)  

 

as depicted in Fig. 2.3. Let the hff  coupling be given by fλ  then  

 

( ) ( )
( )

( )
( ) ( )

( )
( ) ( )

4

4

2 24
2

4 22 2

24
2

4 2 2 22 2

0
2 22

2
2

21
2

2

f ff
hh

f f

f
f

f

f
f

f f

d k i i
N f tr i i

k m k m

k md k
N f

k m

md k
N f

k m k m

λ λ
π

π

λ
π

λ
π

� �� � � �
= − 	 
� � � �/ /− −	 
� � � �� �

+
= −

−

� �
	 
= − +
	 
− −� �







               (2.18) 

 

f 

f 

φφφφ φφφφ 
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Here, ( )fN  is a symmetry factor for the Feynman diagram. The first term in 

the last line of (2.18) is quadratically divergent. To regularize this divergence we cut 

off high momenta by introducing a scale Λ  so that 

 

 
2

2 2~ logarithmic corrections
4

f
hm

λ
π

Λ +                         (2.19) 

 
which grows quadratically with Λ . If Λ  is replaced by PlanckM  the resulting 

correction turns out to be some thirty  orders  of magnitude larger than the three-level 

Higgs boson mass (which is expected to weigh a few times the W mass). Note also 

that the correction itself is independent of hm . This is related to the fact that setting 

0hm =  does not increase the symmetry group of the SM.  

This divergence can be renormalized away in the usual way. However, for 

each order of perturbation theory, an extreme amount of fine-tuning would be needed 

to cancel the divergences. Additionally, that would still leave us with large finite 

corrections at each loop order. Furthermore, there would be a contribution similar to 

(2.19) due to any arbitrarily heavy particle that existed.  

 

Quantity Protecting Symmetry 

Photon Mass Gauge Invariance (Electric Charge Conservation) 

Electron Mass Chiral Symmetry 

Higgs Mass ??? 

 

Table 2.1.  A tabular summary of  Sec. 2.2 showing quantities and symmetries that protect 

them. 

 

We summarize this subsection by tabulating the quantities and symmetries that 

protect them in Table 2.1. The main goal of this thesis work is to provide a candidate 

symmetry (to replace questions marks in the table) that protects the Higgs boson mass, 

and discuss its phenomenological implications. 
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2.3. Taming the Higgs boson mass 
  
The hierarchy problem that is brought about by the ‘Higgs boson mass 

problem’ concerns protection of a given hierarchy against violent quantum 

corrections. Indeed, we do not have an explanation for why W boson weighs 16 

orders of magnitude smaller than the Planck mass PlM . However, we know from 

(2.19) that Higgs boson mass-squared grows quadratically with the UV scale of the 

effective theory under concern, and if the theory is valid up to PlM  then all massive 

vector bosons and fermions of the SM weigh near PlM  in a rather unrealistic way! 

The gauge hierarchy problem we discuss here is thus related to this quantum theoretic 

quadratic sensitivity of the Higgs boson mass. Saying differently, we are trying to 

stabilize the ratio /W PlM M  rather than explaining why it is such a tiny number. We 

are about to discuss a formalism that preserves this ratio giving, however, no 

explanation for its origin. 

We now pair Fig. 2.3 by importing a boson S  (not necessarily the Higgs 

boson itself) in the theory such that it possesses an hhSS  coupling identical to 2λ , as 

depicted in the upper line of Fig. 2.4.  Clearly, by spin-statistics theorem, the sum of 

the boson contribution and fermion contribution (similar to one in Fig. 2.3) add up to 

zero! We call the fermions and bosons with such correlated couplings to Higgs boson 

as ‘partners’ by which we mean ‘members of a symmetry multiplet’. As shown in the 

second line of Fig. 2.4 we can design a similar structure for a gauge boson loop by 

introducing a ‘partner’ to gauge boson i.e.  ‘gaugino’. In summary, the first line of 

Fig. 2.4 represents contributions of a scalar S its partner fermion. The second line 

represents the gauge interaction proportional to the gauge coupling constant g with 

contribution from the gauge boson and gaugino. In both the cases, the cancellations of 

the quadratic divergences take place.  
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Figure 2.4:  Cancellation of the quadratic divergence induced by boson and fermion loops 

where the boson and fermion exhibit correlated couplings to Higgs, as indicated. 

 

We call the symmetry that relates couplings of bosons and fermions (to the 

Higgs boson) in the way shown in Fig. 2.4 supersymmerty or SUSY, in short.  Indeed, 

for cancellations in Fig. 2.4 to happen the couplings must be related in a precise way. 

Any imprecision in their equality generates give rise to 2( )O Λ  contribution to the 

Higgs boson mass. In the absence of symmetry, these calculations would imply a huge 

fine-tuning between the boson and fermion couplings. What supersymmetry does is to 

treat given partners i.e. the pair (fermion, boson) as a single object in a gauge-

invariant way. In SUSY, partners or better superpartners do have identical quantum 

numbers except their spin; it differs by 21  unit between the members of the multiplet. 

This difference is in the heart of the cancellation mechanism depicted in Fig. 2.4. The 

other quantum numbers, such as the masses of the members of the multiplet, are 

identical. This implies, in particular,   

 

                                                    2 2

bosons fermion

m m=� �                                               (2.20) 

 

In Nature, SUSY, even if exists, must be a broken symmetry. This is because 

we have not observed these supersymmetric partners at all: No scalar field having the 

same mass as electron, no fermion (gaugino) having the same mass as photon! 

Therefore, symmetry should be a broken symmetry. This breaking can be realized in a 

g g g2 

λ λ λ2 

gaugino 

gauge  
boson 

fermion 
boson 

+ 

+ 

= 0 

= 0 
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simple way by making bosonic and fermionic members of a multiplet to differ from 

each other not only by their spins but also by their masses. In other words, 

 

                                         2 2 2
SUSY

bosons fermions

m m M− =� �                                         (2.21) 

 

where SUSYM  stands for ‘the scale at which supersymmetry is broken’. In other words, 

it for energies much larger than  SUSYM  that we recover supersymmetry. In the next 

subsection, we will covert the heuristic arguments of this subsection into a rigorous 

algebra or symmetry principle.   

 

2.4. Supersymmetry Algebra 
 

 The energy-momentum four-vector Pµ  and the angular momentum tensor 

M µν  are the charges carried by the conserved currents corresponding to invariances of 

physical systems under space-time translation and rotation, respectively. The famous 

Coleman-Mandula theorem states that there is no other charge with non-trivial 

transformation properties under Poincaré transformations (the Lorentz transformations 

plus translations).  For instance, one cannot devise a conserved symmetric tensor 

charge.  The charges Pµ  and  M µν  already facilitate proper scattering processes, and 

introduction of any further conserved charge over constrains possible interactions 

among particles. The Coleman-Mandula theorem thus puts stringent constraints on 

tensor charges. However, it does not put any constraint on spinor charges.  Indeed, let 

aQ  (where a =1, 2 corresponding to two independent components of the spinor Q) be 

the charge such that   

 

                                                     1 2a J J= ±Q                                                (2.22) 

 

for a state with angular momentum J .  

Here is the question: can one construct a consistent algebraic scheme in which 

the fundamental tensor charges Pµ  and  M µν  combine with the spinorial charge aQ ? 
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The answer is affirmative (Gol’fand and Likthman 1971). The algebra here, as usual, 

refers to a set of commutation relations among the charges, which are generators of 

associated symmetry transformations. Since the spinorial charge aQ  is a symmetry 

operator, it must commute with the Hamiltonian (which is nothing but the temporal 

component of energy-momentum four-vector, 0H P= ) of the system, 

 

                                                       [ ], 0a H =Q                                                       (2.23)  

 

and so must anticommutator of two different components:  

 

                                                   { }, , 0a b H =� �� �Q Q                                                (2.24) 

 

This relation alone guarantees that (Aitchison 2005), 

         

                                               { },a bQ Q ∼ µP                                                    (2.25)  

 

since all components of Pµ  commute with each other. The result is that the anti-

commutator of the charges must be proportional to the energy-momentum four-vector. 

Namely, action of a b b a+Q Q Q Q  on a state vector amounts to a dragging of the state 

vector.  

The statements above can be put into a more concrete form by taking into 

account the spinorial structure of the charges. First of all, aQ  is a two-component 

spinor and thus the Dirac matrices should be split into 2x2 sub-matrices. Therefore, it 

is useful to introduce (1, ),  (1, )µ µσ σ σ σ= = −� �
 where σ�  are the usual Pauli matrices 

(See Appendix A.2). Then basic commutation relations among Pµ , M µν  and aQ  can 

be stated as (See Appendix A.4 for a detailed list of commutation relations):                                     
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      (2.26) 

   

where , 1,2α β =  are spinorial indices, , =0,...,3µ ν  are spacetime indices, and 

, 1,2,...i j =  are charges satisfying (2.21). In this thesis work we consider only N=1 

SUSY so that 1i j= = .  These commutation relations are added the ones occurring in 

Poincaré algebra of translations and rotations. The N=1 SUSY corresponds to a single 

spinor generator i
αQ  and the conjugated one i

α�Q . The algebra (2.26) is called the 

Super-Poincaré algebra-an algebra that combines tensor and spinor charges in a way 

consistent with symmetries of the S-matrix (Haag, Lopuszanski and Sohnius 1975).  

 

2.5. Superspace and Supertranslation 
 

In Nature, fields can be divided into bosonic (commuting) fields and fermionic 

(anti-commuting) fields. This is one of the fundamental discoveries of the quantum 

theory. The anti-commuting fields are described by spinors and the bosonic fields by 

tensors according to the spin statistics theorem. One can also introduce in addition to 

the usual coordinates xµ  anticommuting coordinates αθ . Then spacetime can be 

imagined to have been extended via ( , , )x xµ µ α
αθ θ→ �  by introducing extra 

dimensions composed of anti-commuting (Grassmann coordinates) αθ  and αθ � . The 

new spacetime with extra Grassmannian coordinates is called superspace. The 

Grassmann coordinates satisfy (See Appendix A.5 for details of calculation with 

Grassmann numbers) 

                                              

{ } { } 2, 0, , 0 0 and 02                 α β α α αβθ θ θ θ θ θ= = → = =�� �                 (2.27) 
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where , 1, 2, ,   α β α β =�� . A function in superspace i.e. a supersymmetric group 

element can be constructed in superspace in the same way as ordinary translation in 

usual spacetime:  

 

                                  ( ) { }( ), , expG x i x Pµ
µθ θ θ θ= − + +Q Q                               (2.28) 

 

which induces the translations 

  

                         

,

,

,

x         x i i

         

         

µ µ µ µθσ ε εσ θ
θ θ ε
θ θ ε

→ + −

→ +
→ +

                                (2.29) 

 

where ε  and ε  are Grassmannian transformation parameters. The supercharge is may 

then be represented by a differential operator acting in the superspace:  

 

                                            i µ α
α α αα µσ θ= ∂ − ∂��Q                                                    (2.30) 

 

where ,    
xα µ µ

αθ
∂ ∂∂ = ∂ =

∂ ∂
 with µσ  being Pauli matrices for � = 1, 2, 3, and the 

unit matrix for � = 0.  Similarly to charge, the conjugate supercharge is given by  

  

                                         i µ
α α α αα µθ σ= −∂ + ∂� � �Q                                                 (2.31) 

 

which is a direct hermition conjugation of (2.30). The differential representations 

(2.30) and (2.31) provide an explicit representation for supercharge, and they satisfy 

the supersymmetry algebra (See Appendix A for all relativistic notations and 

representations).  
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2.6. Superfields 
 

Superfields are objects defined in the superspace. In general, a superfield 

( )θθΦ ,,x  is just a scalar function in rigid superspace. It has a finite Taylor expansion 

in power of ,α
αθ θ �  as it should according to (2.27). This finite expansion reflects itself 

in the component expansion of the field: 

 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

, ,x f x x x m x n x

V x x x d xµ
µ

θ θ θφ θχ θθ θθ

θσ θ θθ θλ θθ θψ θθ θθ

Φ = + + + +

+ + + +
         (2.32) 

 

where all higher powers obviously vanish by (2.27). Clearly, the component fields do 

have varying transformation properties under Poincaré group. Here, 

( ) ( ) ( ), ,x x xφ χ λ  and ( )xψ  are fermionic fields; they are anti-commute with each 

other and Grassmann coordinates ,θ θ . On the other hand, 

( ),  ( ),  ( ) and  ( )f x m x n x d x  are scalar fields, and ( )V xµ  is a vector field.  

To compute the effect of an infinitesimal supersymmetric transformation on a 

general scalar superfield, we need the explicit representations of ,Q Q  as differential 

operators. For ordinary scalar fields the translation generator Pµ  is represented by the 

differential operator i µ∂ . Let αξ  be a constant Grassmann-valued complex Weyl 

spinor, and consider the effect of multiplication by a supertranslation generator 

( ),G y ξ  on an arbitrary element ( ), ,x θ θΩ : 

 

( ) ( ) [ ]( ) [ ]( )
( ) ( ) ( ) [ ] [ ]

( )( )  (2.33)                                                  

x-iy-iexp

ξθξθξθσθξσΩ

θξθξξθξθ

θθξξθθΩξ

µµµµ

α
ααα

αα
µ

µµ

µ
µ

µ
µ

+++−+=
�
�
�

�
�
�



�

�
	
�

� +++++++−=

++++=

,,iiyx

,
2
i

,
2
i

Pyxiexp

PexpP,,x,yG

QQQQQQ

QQQQ

�

��  

 

 

 

 



 19 

where the third line is obtained via the commutation relations  

 

                                         

, 2

, 2

P

P

µ
µ

µ
µ

ξ θ ξσ θ

ξ θ θσ ξ

� � =� �

� � = −� �

Q Q

Q Q

                                              (2.34) 

 

where use has been made of the differential representations of the charges in (2.30) 

and (2.31).  Equation (2.33) shows that the net effect of supertranslation operation on 

any supersymmetry element in the superspace is to shift each coordinate by 

appropriate translation. Under a SUSY transformation, the general scalar superfield in 

(2.32) changes by an amount:        

The supertranslation in (2.33) is generated by a left-multiplication with 

( ),G y ξ . Had we used right-multiplication we would find that the induced motion in 

superspace is generated by the differential operators: 

 

                                                D i µ α
α α αα µσ θ= ∂ + ∂��                                                (2.35) 

 

                                                D i α µ
α α αα µθ σ= −∂ − ∂� � �                                              (2.36) 

 

which anticommute with the supercharges   and α α�Q Q .  

Broadly speaking, we will deal exclusively with two kinds of fields: chiral 

superfields and vector superfields. Having defined a general scalar superfield and its 

transformation properties in the superspace now we go on defining chiral and vector 

superfields, which are of important phenomenological relevance.  

The chiral superfields are characterized by the condition 

 

                                                         0DαΦ =�                                                          (2.37)  
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which is thus a special  class of general scalar superfields. This condition is rather 

easy to solve since  

 

 ( ) 0  and   0D x i Dµ µ
α αθσ θ θ+ = =� �  (2.38) 

 
 so that any function of these two variables satisfy (2.37) automatically. In fact, one 

finds  

 

 ( ) 2 ( ) ( )A y y F yθψ θθΦ = + +  (2.39) 

 

where y x iµ µ µθσ θ= + . Here A  is scalar field, ψ  a fermion field and F  is an 

auxiliary field that closes supersymmetry transformations of Φ .  It may be instructive 

to find the transformation properties of the component fields separately. Let us 

consider the infinitesimal transformations of A  and ψ : 

 

 ( )  ;  ( )A Aζ ζδ ζ ζ δ ψ ζ ζ ψ= + = +Q Q Q Q  (2.40) 

such that  

 

 ( ) 2 ( )A i Aµ µ
ζ η η ζ µδ δ δ δ ησ ζ ζσ η− = − − ∂  (2.41) 

 

so that transformations close on themselves. For transformations in (2.40) to close on 

themselves in the sense of (2.41) one finds  

 

 2F i µ
ζ µδ ζσ ψ= ∂  (2.42) 

 

which is a total derivative. In this sense, A  is the lowest and F  is the highest spin  

component in a chiral superfield. In general, the highest component in any superfield 

transforms into a total spacetime derivative (Wess and Bagger 1990). There can not be 

any component higher than F  in a chiral superfield. 
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One notes that multiplication of any two chiral superfields is again a chiral 

superfied: 

 

 
( ) ( ) 2 [ ( ) ( ) ( ) ( )]

         [ ( ) ( ) ( ) ( ) ( ) ( )]
i j i j i j i j

i j i j i j

A y A y y A y A y y

A y F y F y A y y y

θ ψ ψ
θθ ψ ψ

Φ Φ = + +

+ + −
 (2.43) 

 
whose scalar, fermion and auxiliary components are combinations of those belonging 

to  and i jΦ Φ . Notice that now auxiliary component consists of a bilinear of the 

fermion fields i.e.  mass term for a fermion. 

Unlike (2.43), multiplication of a chiral superfield and hermitian conjugate of 

another chiral superfield is not a chiral superfield: 
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*

* *

* *
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          + 
2

i j j i
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i j i j

i j i j

x A x x F x

i
x A x x A x F x

F x F x A x A x

A x A x A x A x

i

α
µ α

α µ α α
αα µ µ α

µ
µ

ψ ψ

θθθ σ ψ ψ ψ

θθθθ

− ∂ −

− ∂ − ∂ +

− ∂ ∂

+

� �

�

� �

( ) ( ) ( ) ( )]
2i j i j

i
x x x xµ µ

µ µψ σ ψ ψ σ ψ∂ − ∂  (2.44) 

 

which is given in x  basis rather than y  basis. It is clear that this expression has 

almost nothing common with (2.42) which is a perfect chiral superfield. One notices 

that the highest spin component of i j
+Φ Φ  consists of kinetic terms of the scalar, 

fermion and auxiliary components of the two chiral superfields. Moreover, there are 

terms involving 0, 1, 2, 3 and 4 powers of  or θ θ .  

In these, expression Φ  is a chiral superfield i.e. it consists of a fermion with 

fixed chirality. For instance, left-handed fermions may be assigned into chiral 
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superfields discussed so far. Besides this, the anti-chiral superfields consist of right-

handed fermions. In particular, if ( ),y θΦ  is a chiral superfield, then †Φ  is an 

antichiral superfield; it satisfies † 0Dα Φ = with ( )† † † ,y θΦ = Φ  and † y x iµ µθσ θ= − . 

Therefore, interesting thing about i j
+Φ Φ  is that it combines chiral superfields of 

different chirality. In constructing supersymmetric theories, we prefer to work with a 

single chirality (left-handed), and arrange right-handed superfields into charge-

conjugates of left-handed superfields.                                           

The chiral superfields we have discussed above describe spin-0 and spin-1/2 

fields. The examples are superfields consisting of leptons, quarks and Higgs bosons. 

However, we also have to describe the spin-1 gauge bosons of the SM. The vector 

superfields are defined via the reality condition   

 

                                                           †V V=                                                          (2.45)  

  

which should be understood as a power series in  and θ θ . This reality condition 

restricts V  to have the following form: 

 

             

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

, ,

2 2

2

1 1
2 2 2

V x C x i x i x

i i
M x iN x M x iN x

i
x i x x

i
i x x D x C x

µ µ
µ µ

µ
µ

θ θ θχ θχ

θθ θθ

θσ θν θθθ λ σ χ

θθθ λ σ χ θθθθ

= + −

+ + − −� � � �� � � �

� �− + + ∂	 
� �

� � � �− + ∂ + +	 
 	 
� � � �
�

      (2.46) 

 

Here, the component fields , , ,C D M N  and µν  are real and vector scalars and ,χ λ  

are Weyl spinors. The vector field µν  lends its name to the entire multiplet. This 

particular form of V is dictated by the hermitian quantity +Φ + Φ constructed out of 

the scalar superfields. In fact, one can implement a supersymmetric generalization of 

gauge invariance by requiring V  to be invariant under V V +→ + Φ + Φ . This special 

gauge choice is known as Wess-Zumino-Landau gauge. This gauge breaks 
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supersymmetry; however, it reduces vector superfield into a more restricted form with 

powers 

 

            

( ) ( ) ( ) ( ) ( )

( )
( )

1

2

3

1
, ,

2
1

, ,
2

, , 0

V x x i x i x D x

V x v v

V x

µ
µ

µ
µ

θ θ θσ θν θθθλ θθθλ θθθθ

θ θ θθθθ

θ θ

= − + − +

= −

=

     (2.47) 

 

form which we see that  λ  is the lowest spin component in V . We have to construct a 

chiral and gauge invariant superfield out of V . This can be done by introducing a new 

superfield via 

 

 
1 1

;   
4 4

W DDD V W DDD Vα α α α= − = −� �  (2.48) 

 

which are seen to be chiral superfields since 0;   0D W D W
α αββ = =

�
� . Since Wα  is chiral 

its θθ  component must transform into a total spacetime derivative i.e. part of a gauge-

invariant Lagrangian. In fact, one finds that 

 

                              ( ) 21
2

2 4
i

W W i v v D v vα µ µν µν
α µ µν µνθθ

λσ λ= − ∂ − + − �                  (2.49) 

 

 where µνν  is field strength tensor of µν  and µν~ . From (2.49) it is straightforward to 

construct the Lagrangian density  

  

           ( ) ( ) 21 1 1
4 4 2vectorL W W W W v v i Dα α µν µ

α α µν µθθ θθ
λσ λ� �= + = − − ∂ +

� �
�

�          (2.50) 

 

 which is nothing but complete Lagrangian for a vector field µν  and  its 

supersymmetric partner i.e.  gaugino λ . One notes that ( )D x  plays the role of 

interaction potential. It is traditionally called gauge potential or D-term contribution. 

The D-term contribution, like F-term contribution for chiral superfields, represents an 
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auxiliary field needed to close the supersymmetry transformations. It goes to a total 

space derivative under supersymmetry transformations. The form of the vector 

superfield in (2.47) is precisely what is expected of a supersymmetric generalization 

of a gauge field to contain.  

 

 2.7. Supersymmetric Lagrangians 
 

The physical systems are described by an action that is extremized by the 

classical trajectory, which obeys the equations of motion. Consider writing an action 

for some combinations of the superfields. It will necessarily contain an integration 

over the usual spacetime xµ  and over the anti-commuting coordinates  and  θ θ . Then 

question is: how to construct a Lagrangian for matter and gauge fields? The remedy 

comes from the following observation: Given some combination of the superfields 

then it is that piece which transforms into a total spacetime derivative that can 

contribute to a field theory defined on spacetime. The reason is that addition of a total 

derivative to action density does not change physics, and thus, such terms are 

effectively invariants under both Poincaré and supersymmetry transformations. This 

can be illustrated by working out a generic and simple model. Given some set of 

scalar superfields, which exhibit linear, quadratic as well as trilinear couplings. Then 

their Lagrangian density must have the form:   

 

 ( ) 1 1
. .

2 3chiral i i ij i j ijk i j k i iL m g h h c
θθθθ

θθ

+ � �= Φ Φ + Φ Φ + Φ Φ Φ + Φ +	 
� �
 (2.51) 

 

where summation of repeated indices is implied. Here subscripts under each term 

imply extracting that specific component of the superfields contained in that term. For 

instance, 

 

 ( ) 2 2  i i i id d
θθθθ

θ θ+ +Φ Φ = Φ Φ  (2.52) 

 

where one keeps in mind that integration and differentiation are equivalent operations 

for Grassmann coordinates (See Appendix A.5).  
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It is instructive to check the explicit form of the Lagrangian (2.48): 

 

 

* *

1
        ( ) ( ) . .

2

chiral i i i i i i

ij i j i j ijk i j k i j k i i

L i A A F F

m A F A A F A h F h c

µ
µψ σ ψ

ψ ψ ψ ψ

= ∂ + +

� �+ − + − + +	 
� �

�

g
 (2.53) 

 
where iF  is clearly an auxiliary field since it has no kinetic term at all. In fact, its 

equation of motion completely determines it in terms of other fields: 

 

 * * * * * *
* 0k k ik i ijk i j

k

L
F h m A A A

F
∂ = + + + =

∂
g  (2.54) 

 
so that the Lagrangian (2.50) takes the form 

 

                       
* *

* * *

1 1
2 2

        

chiral i i i i ij i j ij i j

ijk i j k ijk i j k k k

L i A A m m

A A F F

µ
µψ σ ψ ψ ψ ψ ψ

ψ ψ ψ ψ

= ∂ + − −

− − −

�

g g
                      (2.55) 

 

which is nothing but complete Lagrangian for  a scalar field iA  and a massive fermion 

iψ  interacting through the terms in the second line. The explicit form of the last term 

is read off from (2.51) by eliminating iF . 

The Lagrangian (2.51) can be understood in a more systematic way. Indeed, let 

us introduce 

 

                                    kjiijkjiijii mhW ΦΦΦΦΦΦ g
3
1

2
1 ++=                              (2.56) 

 

which is a holomoprhic function of the superfields (it does not contain the hermitian 

conjugate of iΦ ).  Now, it is easy to see that one can organize (2.51) in terms of W as 

follows: 

 

                   
22

* . .chiral i i i i i j
i j k

W W
L i A A h c

A A A
µ

µψ σ ψ ψ ψ
� �∂ ∂= ∂ + − + −	 
∂ ∂ ∂	 
� �

�                (2.57) 
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which implies that W  in (2.53) with iΦ  replaced by its scalar component iA  

completely determines the interaction terms in the Lagrangian. Here W is called 

superpotential by tradition, and interactions among chiral fields in a supersymmetric 

theory are entirely governed by giving W . Every W  which has to be gauge-invariant 

and of the mass dimension three defines a supersymmetric theory. 

In general, the interaction potential for chiral superfields is given by the F-term 

contribution in (2.54) and that of vector fields is given by the D-term contribution in 

(2.50). The results above complete the analysis of supersymmetric Lagrangians to be 

heavily utilized in the following chapters. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 27 

CHAPTER 3 
 

THE MINIMAL SUPERSYMMETRIC STANDARD 

MODEL (MSSM) 
 

In this chapter, we present a basic introduction to the minimal supersymmetric 

standard model (MSSM) which is nothing but a direct supersymmetrization of the SM 

field content. We will first describe interactions, which respect supersymetry by 

introducing the Lagrangian in Sec. 3.2. Then we will consider supersymmetry 

breaking by introducing the relevant Lagrangian in Sec. 3.3. 

 The MSSM is defined to be the minimal supersymmetric extension of the SM, 

and hence is an ( ) ( ) ( )YLC USUSU 123 ⊗⊗  supersymmetric gauge theory with a 

general set of supersymmetry-breaking terms. The known matter and gauge fields of 

the SM are promoted to superfields in the MSSM. 

                   

3.1. Particle content and Superpotential 
 

The MSSM is the minimal supersymmetric extension of the SM. It is 

introduced with the minimal number of new particles. In a supersymmetric extension 

of the SM, each of the known fundamental particles is assigned into either a chiral or a 

vector superfield, and has a superpartner with spin differing by 21  units. All of the 

SM fermions are members of the (left-handed or right-handed) chiral supermultiplets; 

because chiral supermultiplets can contain fermions whose left-handed parts transform 

differently under the gauge group than their right-handed parts. The spin-0 partners of 

the quarks and leptons are constructed by adding an “s”, which is short for ‘scalar’. 

Thus, generically they are called squark and slepton. The left-handed and right-

handed components of quarks and leptons are separate two component Weyl fermions 

with different gauge transformation properties. For example, the superparners of the 

left-handed and right-handed parts of electron are called left-handed selectron, Le~  and 

right-handed selectron Re~ , respectively. The neutrinos that are shown in Table 3.1 are 

always left-handed, so the snuetrinos are denoted by τµ ννν ~,~,~
e . A similar 
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nomenclature applies for smuons and stuas: RLRL ττµµ ~,~,~,~ . As seen in Table 3.1, the 

Higgs fields are also included in a chiral multiplet, and their partners are called 

higgsinos with spin 21 .  

In the Standard Model, each fermion must have its own complex scalar 

partner, but these partners are not included in the SM spectrum; they need new 

additional states making up a supersymmetric field theory.  

 

Table 3.1:  Chiral superfields in the MSSM 

 

Superfields Spin 0 Spin 1/2 ( ) ( ) ( )YLC U,SU,SU 123  

(squark, quark) 

(×  3 families) 
u

d

Q

 

( )
( )
( )RL

RL

LL

dd

uu

du

~~

~~

~
,~

 

( ),L Lu d  

Lu ∼ ( )c
Rd  

Ld ∼ ( )c
Rd  32      

34-     

31     ,

1,     ,3

1,     ,3

2     3,

 

(slepton, lepton) 

(×3 families) e

L
 

( )
( )RL

LeL

ee

e
~~

~,~ν
 

( ),eL Leν  

Le ∼ ( )c
Re  2     

1-     

1,     1,

2,     1,
 

(higgs,higgsino) 
u

d

H

H
 

( )
( )−

+

dd

uu

HH

HH

,

,
0

0

 
( )
( )−

+

dd

uu

HH

HH
~

,
~

~
,

~

0

0

 
1-     

1     

2,     1,

2,     1,
 

 

The vector bosons of the SM are placed in gauge supermultiplets. By now, we 

know that their fermionic superpartners are generically referred to as gauginos. The 

( )CSU 3  color gauge interactions of QCD are mediated by the gluon, whose 

supersymmetric partner is the gluino with spin 21 .  The gauge bosons of the 

electroweak gauge symmetry ( ) ( )YL USU 12 ⊗  have spin 1, and their superpartners are 

called winos and bino which have spin 21  (Martin 1999). They are all shown on 

Table 3.2. 
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Table 3.2:  Gauge superfields in the MSSM 

 

Superfield Spin 1/2 Spin 1 ( ) ( ) ( )YLC USUSU 1,2,3  

(gluino, gluon) g~  g  0     1,     8,  

(wino, W boson) 
0,W W±� �  0,WW ±  0     3,      1,  

(bino,  B boson) B
~  B  0      1,      1,  

 

As for any supersymmetric theory, the Lagrangian is based on the 

“superpotential”- a holomorphic function of the chiral superfields. It has mass 

dimension three. It provides the Yukawa interactions, and the so-called F-term 

contributions in the Lagrangian. The renormalizable interactions of the MSSM are 

encoded as terms of two and three dimensions in the superpotential of the theory. The 

superpotential terms include the Yukawa couplings of the quarks and leptons to the 

Higgs doublets, as well as a mass term which couples uH  and dH . Explicitly: 

 

                    ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆc c c
u i uij j d i dij j d i eij j d uW H Y U H Y D H L Y E H Hα β α β α β α β

αβε µ� �= − + + −� �Q Q               (3.1) 

 

 where i  and j  are family indices, and α  and β  are ( )2
L

SU  indices. Here 

2( )iαβ αβε σ=  is the usual ‘metric’ in superspace; it is necessary to contract  ( )2
L

SU  

doublets into singlets.  

The superpotential of the MSSM dictates all of the supersymmetric couplings 

of the theory, aside from the gauge couplings. The superpotential and gauge couplings 

thus dictate the couplings of the Higgs potential of the theory – a feature not found in 

the SM. This would appear to reduce the number of independent parameters of the 

MSSM. 

With the exception of the Higgs sector, the MSSM particle content, which is 

listed in Table 3.1 and Table 3.2, includes only the known SM fields and their 

superpartners. Supersymmetric theories with additional matter and gauge content can 

of course easily be constructed. 
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3.2. Lagrangian of the MSSM 
 

In the exact supersymmetry it is dictated that every superpartner is degenerate 

in mass with its corresponding Standard Model (SM) particle, which is completely 

ruled by experimental results, because no superparticle has found near the energy 

scales of its SM partners. That is the reason why the supersymmetry is thought to be 

“broken” at low energies. However, this breaking cannot occur in a arbitrary fashion 

because there is always a danger of regenerating the quadratic divergences, discussed 

in Chapter 2, in the Higgs boson mass. In general, the supersymmetric Lagrangian 

consists of two different parts: the ‘supersymmetric part’ plus ‘softly-broken 

supersymmetric part’: 

                                                       

MSSM SUSY SoftL L L= +                                               (3.2) 

  

where supersymmetric Lagrangian respects supersymmetry transformations whereas  

the soft Lagrangian violates supersymmetry them. 

  

3.2.1. Supersymmetric Part  
 

In this section, we will describe the construction of supersymmetric 

Lagrangians. Our aim is to arrive at a sort of recipe, which will allow us to write down 

the allowed interactions of a general supersymmetric theory. The full supersymmetric 

Lagrangian is  

 

SUSY Kinetic Gauge Yukawa D FG
L L L L V V Vψψ= + + − − −                       (3.3)  

 

The Yukawa interactions, which is obtained from the superpotential, just by 

replacing two of the superfields by their fermionic components setting the third to its 

scalar component: 
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h.c.

c c c
Yukawa ij i eij j d i dij j d i uij j u u d

c c c
ij i eij j d i dij j d i uij j u

c c c
ij i eij j d i dij j d i uij j u

L E Y L H D Y H U Y H H H

E Y L H D Y H U Y H

E Y L H D Y H U Y H

α β α β α β α β

α β α β α β

α β α β α β

ε µ

ε

ε

� �= + + +� �

� �+ + +� �

� �+ + +� �

+

� �

� � � � � �

� � � � � �

Q Q

Q Q

Q Q
            (3.4) 

 

The second type of interactions are obtained by the first computing the F-

terms, 
i

W
F

ϕ
∂=
∂

; and squaring: 

 

( ) 2

F
i i

W
V

ϕ
ϕ

∂
=

∂�                                                    (3.5) 

 

iϕ  being the scalar components of the superfields.  

The gauge interactions introduce two kinds of interaction terms in (3.3). The 

first is related to gaugino-matter-smatter interactions: 

 

( )2 h.c.a a
G a k lkl

V i Tψψ ϕ λ ψ= +g                                     (3.6) 

 

where ( )ψϕ ,  are the (spin- 0 , spin-1/2) components of the chiral superfields, 

respectively. aT  is generator of the gauge group, aλ  is the gaugino field and ag  its 

coupling constant. This structure is repeated for each gauge group. 

Next, one has D-term contributions coming from gauge sector. This 

contribution does not involve gauge bosons, instead gauge quantum numbers of 

scalars are involved: 

 

1
2

a a
DV D D= �                                                  (3.7) 

with 

( )a a a
i jij

D Tϕ ϕ∗= g                                                  (3.8) 

where again iϕ  are the scalar components of the superfields. 
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From the Lagrangian (3.3) we can obtain the full supersymmetric Lagrangians 

of the MSSM, as well as their interactions which contain the usual gauge interactions, 

the fermion-Higgs interactions (Gunion et al. 1990), and the pure SUSY interactions. 

A very detailed treatment of this Lagrangian and the process of derivation of the 

fortcoming results can be found in (Simonsen 1995). 

 

3.2.2. Soft Supersymmetry Breaking  
 

In general, in unbroken SUSY theory, the masses of the particles contained in 

the Standard Model and their superpartners (sparticles) do have identical masses. This 

is not realistic. In fact, no superpartners have been discovered until now. This defines 

a lower limit for the masses of the superpartners to be ~ TeV.  Thus, SUSY must be a 

broken symmetry of Nature. This implies the appearance of supersymmetry-breaking 

terms in the Lagrangian. An immediate question is wether such terms spoil 

supersymmetry’s elegant solution to the hierarchy problem or not. As generic 

quantum field theories with scalars generally have hierarchy problem, if all 

supersymmetry breaking terms consistent with other symmetries of the theory are 

allowed the dangerous UV divergences may indeed be reintroduced. 

Fortunately, such dangerous divergences are not generated at any order of 

perturbation theory if only a certain subset of supersymmetry breaking terms are 

present in the theory. Such operators are said to break supersymmetry softly, and their 

couplings are collectively denoted as soft parameters. The part of the Lagrangian 

which contains these terms is generically called the soft supersymmetry breaking 

Lagrangian S o ftL , or simply the soft Lagrangian.  

 

                                        Higgs gaugino sfermion
Soft Soft Soft SoftL L L L= + +                                        (3.9) 

 

The soft supersymmetry breaking is parameterized by various soft terms 

belonging to Higgs, gaugino and scalar fermion sectors: 
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[ ]2 † 2 †

3,2,1

† 2 2 † 2 † 2 † 2 †

h.c.

1
h.c.

2

h.c.

u d

Higgs
Soft H u u H d d u d

gaugino a a
Soft a

a

sfermion
Soft U D L E

A A A
u u d d e d

L m H H m H H BH H

L M

L m Um U Dm D Lm L Em E

UY H DY H EY LH

µ

λ λ
=

− = + + +

� �− = +� �

− = + + + +

� �+ + + +� �

�

� � � � � � � �� �

� � � �� �

QQ Q

Q Q

                     (3.10) 

 

where A
e,d,uY , like Yukawa themselves, are non-hermitian flavor matrices whereas the 

sfermion mass-squareds 2
, ,Em �Q  are all hermitian. These matrices span a 3x3 flavor 

space. 

The interactions contained in (3.10) exhibits mixing of various flavors in soft 

terms. We focus only on the flavor diagonal interactions due to the fact that flavor 

mixings generically prohibit the construction of RG invariants except for those 

parameters which depend on traces or determinants of the flavor matrices. 

Consequently, we switch off flavor mixings in all soft parameters to obtain 

 

2 2

2 2 2

2

0 0 0 0 0 0 0 0 0
0 0 0 , 0 0 0 , 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0 0 0 0
0 0 0 , 0 0 0 , 0 0 0
0 0 0 0 0 0

0 0 0 0

0 0 ,

0 0

L L

L

L

u d e

t b

A A A
u d e

t t b b

u e

Q c L

t

Y Y Y

h h h

Y Y Y

h A h A h A

m m

m m m

m

τ

τ τ

� � � � � �
� � � � � �= = =� � � � � �
� � � � � �
� � � � � �

� � � � � �
� � � � � �= = =� � � � � �
� � � � � �
� � � � � �

� �
� �

= =� �
� �� �
� �

� �

�

�

2

2

22 2

2 2 2 2 2 2

2 2 2

0 0

0 0

0 00 0 0 0

0 0 , 0 0 , 0 0

0 0 0 0 0 0

L

L

R R R

R R R

RR R

u d e

U c D s E

t b

m

m

mm m

m m m m m m

m m m

µ

τ

µ

τ

� �
� �
� �
� �� �
� �

� �� � � �
� �� � � �

= = =� �� � � �
� �� � � �� �� � � �

� �� � � �

�

�� �

� � �

� � �

        

(3.11) 
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where 2222
LLLL s~c~d

~u~ mm,mm ==  and 22

LL b
~t~ mm = by gauge invariance. Note that light 

fermion Yukawa couplings are totally neglected. This reduction scheme for flavor 

mixing sets up the notation and framework for the fermion sector.  

 

3.2.2.1. Soft Supersymmetry Breaking: Holomorphic Case 
 

Supersymmetry is broken because these terms contribute explicitly to masses 

and interactions of winos or squarks but not their superpartners. How supersymmetry 

breaking is transmitted to the superpartners is encoded in the parameters of S o ftL . All 

of the quantities in S o ftL  receive radiative corrections and thus are scale-dependent, 

satisfying known renormalization group equations.  

The soft supersymmetry breaking Lagrangian is defined to include all the 

allowed terms that do not introduce quadratic divergences in the theory: all gauge 

invariant and Lorentz invariant terms of dimensions two and three. The terms of S o ftL  

can be categorized as follows: 

� Soft trilinear scalar interactions: 
1

h.c.
3! ijk i j kA φ φ φ +� . 

� Soft bilinear scalar interactions: 
1

h.c.
2 ij i jb φ φ + . 

� Soft scalar mass-squares: 2
ij i jm φ φ+ . 

� Soft gaugino masses: 
1

h.c.
2

a a
aM λ λ + . 

Finally, the soft supersymmetry breaking Lagrangian S o ftL takes the form 

 

3 2 1

2 22 2 2

2 2 2 2

1
2

h.c.

d u

Soft

c c c
d u u i uij j d i dij j d i eij j

H d H u i ij j

c c c c c c
i Lij j i Uij j i Dij j i Eij j

L M gg M WW M BB

bH H H A U H A D H L A E

m H m H m

L m L U m U D m D E m E

α β α β α β α β
αβ

α α

α α

ε

∗

∗ ∗ ∗ ∗

� �− = + +� �

� �+ − − + + +� �

+ + +

+ + + +

� � � �� �

� � �� � � �� �

� �

� � � � � � � �

Q

Q Q

Q Q

   (3.12) 
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in the MSSM. The soft parameters here are to be taken as strictly diagonal matrices in 

the flavor space, as mentioned in the previous section.  

The soft terms in (3.12)  are said to be ‘holomorphic’ by which we mean that 

all trilinear interactions are nothing but the replica of the superpotential in that they do 

not contain hermitian conjugates of any scalar fields. This is a holomorphic structure 

in that all fields (complex numbers) are taken without hermition conjugation (complex 

comjugation). Indeed, as we will see in the next section, one may devise additional 

terms in softL  which respect gauge invariance but violate holomorphicity. 

 

3.2.2.2. Soft Supersymmetry Breaking: Non-Holomorphic Case 
 

The MSSM Lagrangian is usually claimed to include all possible soft 

supersymmetry breaking terms, terms which split the masses and couplings of 

particles and their superpartners, but which do not remove the supersymmetric 

protection against large radiative corrections to scalar masses.  

However, the statements above are not exhaustive at all. Indeed, one can 

consider adding to (3.12) additional terms which  

� respect the gauge symmetry 

� are soft 

� are non-holomorphic. 

Such additional terms are known to be perfectly soft (non-dangerous) as longs 

as the model under concern does not contain pure singlets under gauge group (like 

MSSM). In this sense for a complete understanding of the MSSM phenomenology (as 

well as its astrophysical and cosmological implications) one has to resort to non-

holomorphic structures. Possible non-homomorphic structures consist of, as its name 

shows, hermitian conjugate of at least one MSSM scalar: These non-analytic terms 

include novel trilinear couplings as well as Dirac mass terms for Higgsinos:     

 

. .non hol u d e
ij u i j ij d i j ij d i j u dL C H U C H D C H L E H H c cµ− ∗ ∗ ∗= + + + +� ��Q Q               (3.13) 
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where j,i  are family indices, and weak isospin, spinor, and colour indices are 

suppressed. f
ijC  and µ�  are new trilinear and µ -like soft supersymmetry breaking 

couplings.  

The non-holomorphic SUSY breaking terms to be added to the MSSM 

Lagrangian are given in (3.13). Using the usual formula for extracting the full 

Lagrangian from the superpotential, the following terms are those involving 2
u dHm , the 

Higgs soft masses, µ , the Higgs bilinear superpotential term, and the non-

holomorphic soft supersymmetry breaking couplings: 

 

( ) ( ) ( )
( ) ( ) ( )

2 22 2 2 2

      

      . .

u du d H u H d

u d e
ij uij d i j ij dij d i j ij eij d i j

L H H m H m H

C Y H U C Y H D C Y H L E

c c

µ µ µ µ

µ µ µ∗ ∗ ∗

= + − + + + +

+ − + − + −

+

��

Q Q       (3.14) 

 

where eijdijuij Y,Y,Y  are the Yukawa couplings. One notices that the usual structures 

, ,
ij

u d eYµ  are modified by the corresponding non-holomorphic couplings. It is 

interesting that the F-term contributions assume a certain form of independence from 

rest of the soft-breaking Lagrangian due to these non-holomorphic contributions.  

 

3.3. Renormalization Group Equations (RGEs) 
  
In this section, we will illustrate derivation of the renormzalization group 

equations (RGEs) for a general supersymmetric theory with soft supersymmetry 

breaking terms. In general, RGEs govern the evolution of a Lagrangian parameter or 

field with the energy scale. The RGEs are first order differential equations in the scale 

parameter, and typically exhibit a coupled nature depending on the gauge charges of 

the fields. 
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As mentioned in the previous section, the scalar potential of a softly-broken 

supersymmetric theory has form SoftSUSY VVV += . These can be expanded as  

 

( )

2

2

1
2

h.c.

A A
SUSY a

a b
Soft b a

V f D D

V m z z �

= +

= + +

                                         (3.15) 

 

where the scalar components of the chiral fields aφ  are denoted by az  with the 

convention 

 

( )   and  a
a a a

f
z z f

z

∗ ∂= =
∂

                                     (3.16)                       

 

where f  stands for superpotential (with superfields are replaced by their scalar 

components) 

 

                                         cba
abc

ba
ab

z
a zzzfzzzlf

6
1

2
1 ++= µ                                 (3.17) 

  

 D  is the D-term contribution or the gauge potential 

  

                                                    b
Ab

a
a

A
A zTzD g=                                                 (3.18) 

 

 and η  stands for soft-breaking terms which are replica of the superpotential: 

   

                                    cba
abc

ba
ab

a
a zzzzzMzL ηη

6
1

2
1 ++=                               (3.19) 

 

where ( , ),  ( , ) and  ( , )a a ab ab abc abcl L M fµ η  are, respectively, the linear, bilinear and 

trilinear couplings in the superpotential and soft-breaking lagrangian (Grisaru and 

Girardello 1982). 
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The crucial input for the derivation of RGEs is the one-loop renormalized 

effective potential (Weinberg 2005). The one-loop effective potential, specifically in 

the Wess-Zumino-Landau gauge, is given by   

 

 kSTrM-hSTrMVV 42
Loop +=1                                  (3.20) 

 

where 
2 2

2 2

ln
 and  

32 64
h k

π π
Λ Λ= =  with Λ  being the UV cutoff. Here Λ  independent 

finite terms like 24
264

1
MlnSTrM

π
 has been omitted since they are irrelevant for 

RGEs which derive from nothing but derivative of a given quantity with respect to Λ . 

All one has to do is to first form the mass matrix M  of all the fields present in the 

spectrum, and then take its square and fourth power and plug in (3.20). In (3.20) we 

have defined p(2 j 1)(2 1) (-1) ( )p
p

STr j Tr+= +�Q Q  as a trace operation over a mass 

matrix with appropriate spin weighting. Generically, the mass-matrices of different 

spin multiplets are given by  

  

( )2
1 1

2

2
2
0 2

2
 ;   

2

ab Ba
AB Aa B A Ba

a a Ab AB
A

ac Ba B Ba B a abc Ba Bb ab
cb b b b c

c B B cb B Bb Bb B a
abc a b ab ac a a b

f i D
M D D D D M

i D

f f D D D D m  f f D D
M

f f D D f f D D D D m

              

µ δ

η
η

� �
= + = � �

� �
� �

� �+ + + + +
= � �+ + + + +� �

   (3.21)  

       

Using these mass matrices, we get  

 

( )[ ]
( ) ( )[ ]

( )

� +−

−++

+++−+

++=

A
A

a
AAA

ab
ab

cb
ac

a
b

abc
abca

aAAA
a

aAA

AAa
bb

a
AA

b
aSUSY

Trm

zaCffm

ffzfaCzaC

DDzzaCmSTrMSTrM

44

2222

22

2244

42

1624

h.c.282

4

µ

µηη

ηµη

g

gg

g

      (3.22) 
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and 

   

( )[ ]
( ) { }[ ]

( ) ( )[ ] BB
AAA

ba
ba

Aba

b
A

aA
bAa

baAA

ac
ca

ac
aca

a
AASUSY

DD.AdjCzTfXf

DzT,XzzTzaC

ffzzffffaCSTrM

322

4

42

2

3

24

−++

−+

−−−=

g

gg

g

                  (3.23) 

 

where Adj. is mean of Adjoint representation.Then we have introduced 

 

                              ( ) ( )
( ) ( )

2 2

22 2

a acd
b bcd

AB Aa Bb A B
A A b a A

a
a Aa Ac A

A A b c b A
b

X f f

T z D D Tr T T

C a D D T

δ

δ

=

= =

� �= = 	 
� �

g g

g g

                               (3.24) 

 

where derivations of various quantities are detailed in Appendix B.  

Renormalizability means that the bare and radiatively-corrected Lagrangians 

are of the same form, and divergences can be included in redefinitions of the fields 

and parameters. These renormalizations of fields and parameters are found by solving 

the following equation: 

 

( ) ( )zVẑV̂ Loop 1=                                                     (3.25) 

 

where V̂  is the tree-level potential V  with bare parameters are replaced by the 

renormalized ones. Let us consider first the supersymmetric part of the Lagrangian. 

The renormalization constants are found by solving (Barbieri 1982): 

 

( ) ( ) 4
SUSYSUSYSUSY kSTrMzVẑV̂ −=                                       (3.26) 
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with the result: 

 

( )( )
( )( )
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g
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     (3.27) 

 

where again renormalized parameters are denoted by a hat a top. The remaining task is 

the solution of SoftV̂  which can be done by a comaprison of the coefficients of the 

powers of z  and ∗z :  

 

( ) ( )44
SUSYSoftSoft STrMSTrMkVẑV̂ −−=                               (3.28) 

 

The first order gives: 

 

( )( ) { ( )

}

2 2
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2

a
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The second order gives: 
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And  third order gives: 
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The RGEs are obtained by differentiating the relations (3.27) - (3.31) with 

respect to Λ  and requiring that the renormalized parameters are independent of Λ . 

Thus, all RGEs are first order differential equations   
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We now list down RGEs for various Lagrangian parameters. All these 

differential equations are obtained by following the procedure outlined above. 

Following the conventions of (Falck 1985) they are given by: 

 

1.  Superpotential Parameters 
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2. Soft Breaking Parameters 
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3. Gauge Couplings and Gaugino Masses 
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where one notes that the last equation cannot be achieved by using the effective 

potential alone, since scalar potential does not contain gaugino mass terms. Therefore, 

the RGEs of gaugino masses follow from diagrammatic calculations, and of course 

they exhibit a strong similarity to those of the gauge couplings.  Finally, we note that 

the linear terms involving ( , )a al L  can exist only in those models which contain a 

gauge singlet. However, non-holomorphic terms in such models are dangerous as they 

cause destabilization of the Higgs sector. 
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CHAPTER 4 

 

RENORMALIZATION GROUP INVARIANTS  
 

By Renormalization Group Invariants (RG invariants) we mean those 

quantities iQ  for which 

 

 0idQ
dt

=  (4.1) 

 
with one-loop accuracy. In other words, we take one-loop RGEs (eventually for the 

MSSM with and without non-holomorphic soft terms) computed in Chapter 3, and 

construct certain quantities iQ  whose derivatives with respect to the scale variable t 

vanishes. 

  Our motivation for studying RGEs is as follows. The RGEs, which can be 

used to relate measurements at the electroweak scale to physics at ultra high energies, 

provide important information about high-scale physics due to the scale invariance of 

the quantities. Since the coupled nature of the RGEs disturbs analytical solutions it 

would be beneficial to know if one can construct certain invariants that give relations 

among the spectrum of supersymmetric particles. Indeed, RG invariants may provide 

a direct and accurate way of testing the internal consistency of the model and 

determine the mechanism which breaks the supersymmetry. Such quantities prove 

highly useful not only for projecting the experimental data to high energies but also 

for deriving certain sum rules which enable fast consistency checks of the model. Let 

us suppose that there is a measurement, which reveals a specific relation between 

some of the soft masses then with the help of scale-independent relations coming from 

RG invariants one can arrive at certain inferences about the mechanism that breaks 

SUSY. 

In interpreting the RGEs, we neglect modifications in the particle spectrum 

and RGEs coming from decoupling of the heavy fields. In other words, we assume 

that all soft masses are approximately equal to SUSYM ∼ 1TeV in logarithmic sense. 

This scale sets the infrared (IR) boundary for exact superymmetric RG flow. The UV 
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boundary lies just beneath the scale of string territory, and we will take it to the scale 

of gauge coupling unification in the MSSM: GUTM ∼ 1610 GeV. Therefore, in our 

framework the RG invariance of a given quantity means its scale independence in 

between IR and UV scales above. Here, we combine the RGEs of individual quantities 

until we arrive at a RG invariant observable within one loop accuracy. In general, 

there is no guarantee of maintaining RG invariance of a given quantity at higher loop 

levels. Moreover, we note that flavor mixings prohibit construction of RG invariants, 

and therefore we restrict ourselves to limiting case of no flavor violation. In other 

words, we work in the basis in which equation (3.11) holds.   

 In the following sections, we will discuss RG-invariant observables in 

supersymmetry with holomorphic and non-holomorphic soft terms (The  methods of 

finding these RG-invariants and associated examples are given in Appendix C).  

  

4.1. RG Invariants in the MSSM with Holomorphic Soft Terms 
 

The RGEs of the MSSM, as follows from the results of Chapter 3, are listed in 

Appendix B.1.  By using the RGEs for gauge couplings, we derive an invariant  
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where 1c  and 2c  are arbitrary constants. These constants may be related by using 

values of gauge couplings at SUSYM  and GUTM  where 0g  is the common value of the 

gauge couplings at the unification scale GUTM :  
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From the RGEs of Yukawa couplings and the µ  parameter, we obtain the 

invariant: 

 

                     
611

3373
1

102127

3256
3

9
2

2 ��
�

�
��
�

�
=

g
gg

τ

µ
hhh

I
bt

                                       (4.4) 

 

where exponents of gauge and Yukawa couplings follow from group-theoretic factors 

in their RGEs. This invariant enables one to determine the value of, say, µ  at any 

scale in terms of Yukawa and gauge couplings.  Indeed, for any scale 

[ ],SUSY GUTM M∈Q  we find 
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                 (4.5) 

 

which makes it manifest that µ  at any scale Q depends on the strong coupling 3g  

although its RGE does not exhibit such a direct dependence at all. This exemplifies 

one interesting aspect of the RG invariants: They establish manifest direct relations 

among otherwise unrelated or uncorrelated model parameters. This aspect makes them 

quite important for consistency check of the model. By putting 2 SUSYM=Q  and 

1 GUTM=Q  one finds that the ratio ( ) ( )GUTSUSY MM µµ , which is one of the most 

crucial factors that determine the amount of fine tuning needed to achieve the correct 

value of the Z boson mass, is entirely determined by the interplay between the IR and 

UV values of the rigid parameters i.e. gauge and Yukawa couplings.  In fact, (4.5) 

shows that the strongest dependence is on the strong coupling constant not on the 

isospin and hypercharge ones.  
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The RGEs of the gauge couplings and gaugino masses admit a further 

invariant  

 

                                             ( )3 2 , 1 2 3a
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which shows that the ratio of the gaugino mass to fine structure constant of the same 

group is an RG invariant. This invariance property guarantees that  
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so that knowing two of the gaugino masses at a scale Q suffices to know the third if 

gauge coupling unification holds. This very relation also shows that 

( ) ( )GUTSUSY MMMM 33  is much larger ( ) ( )GUT,SUSY, MMMM 2121  due to asymptotic 

freedom. In fact, in minimal supergravity for instance, typically gluino is the first 

superpartner to decouple from the light spectrum. 

From the RGEs of the trilinear couplings and Higgs bilinear mass B  we arrive 

at another invariant: 
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by which one can express B  at any scale Q in terms of other dimension–one soft 

masses after using (4.7): 
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which clearly shows how strong the dependence on the gluino mass. 

 The RGE of B  parameter is independent of the gluino mass; however, the 

expression in (4.8) does. This revealing of 3M  dependence is again a consequence of 

the RG invariants that give rise to explicit dependences in a otherwise implicit relation 

among parameters.  

Having completed the discussion of the rigid and dimension-one soft 

parameters of the theory, we now start analyzing the scale invariant combinations of 

the scalar mass-squareds. They are given by 
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All these invariants are combinations of the scalar masses (squarks, sleptons 

and Higgses) and gaugino masses. The gauge and Yukawa couplings i.e. the rigid 

parameters of the theory do not appear in these invariants. They are purely formed by 

the soft masses of scalars and gauginos. Each invariant puts forward a specific relation 

among masses of scalars and gauginos. For instance, the invariant 13I  fixes the mass-

squared parameter of selectron in terms of the hypercharge gaugino mass up to a 

constant. On the other hand, invariant 8I  expresses the difference between the mass-

squareds of left-handed and right-handed top and bottom squarks in terms of the 

isospin and hypercharge gaugino masses. 

More explicitly, 8I  gives  
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          (4.11)  

                 

which shows that mass-splitting between left- and right- handed squarks in third 

generation is a function only of the isospin and hypercharge gauginos. The evolution 

of these masses are milder than the strong coupling so that one does not expect a large 

hierarchy between these two left-and right-handed sectors. Indeed, by taking 

2 SUSYM=Q  and 1 GUTM=Q  one finds ( ) ( )2 2
2 10.97 0.08GUT GUTM M M M− +  for the 

right-hand side of (4.11). This result shows that the quantity in (4.11) is mainly 

governed by the isospin gaugino mass at the GUT scale.  

Each invariant in (4.10) provides a relation among soft masses of scalars and 

gauginos. As for any RG invariant, their combinations are also invariants. In this 

sense, one can for instance, construct invariants, which involve only the scalar mass-

squareds: 
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(4.12) 

 

where 0m  is the common scalar mass at the unification scale GUTM . These 

expressions correlate Higgs soft mass-squareds with the soft mass-squareds of squarks 

and sleptons. Since  and  W Z  masses are eventually fixed by the masses of the Higgs 

doublets, (4.12) is an expression of how sizes of various soft mass-squareds be tuned 

to generate their experimentally observed values.  

Another phenomenologically useful observation is that  

 

2 2 21
3R RR

u ed
m m m− −�� �                                            (4.13) 

 

which puts a correlation between the mass-squared of the right-handed selectron and        

right-handed up and down squark masses. These, seemingly unrelated sectors are tied 

up by this invariant. 

The RG invariants above can be useful for various purposes:  

� They reveal correlations among otherwise unrelated quantities such as  equation 

(4.5) which correlates µ  and strong coupling 3g . Normally, the RGE of  µ  is 

independent of 3g . However, RGEs of the Yukawa couplings transmit 3g  

dependence, and invariant (4.4) thus exhibits an explicit dependence on 3g . 

� They serve as consistency checks of the underlying model. For instance, a 

measurement of masses of top and bottom squarks of either chirality must satisfy 

(4.11) otherwise model turns out to be some other model possibly an extension of 

the MSSM involving new gauge groups and thus new gauginos. 

� They serve as finding certain undetermined parameters in terms of the measured 

ones in a scale-independent way as long as the underlying model keeps becoming 

MSSM. For example, right-handed up squark mass can be computed in terms of 



 50 

the right-handed selectron and down squark masses via (4.13) provided that we 

know the integration constant in the equation. 

In the next section, we will discuss RG invariants in the MSSM with non-

holomorphic soft terms. 

 

4.2. RG Invariants in the MSSM with Non-Holomorphic Soft Terms 
 

In this section, we will discuss RG invariants in the MSSM with non-

holomorphic soft terms given in equation (3.13). We base discussions on the same 

assumptions made in Sec.4.1 above, that is, the Lagrangian parameters are scale 

dependent objects obeying the RGEs in Appendix B.2 such that the non-holomorphic 

MSSM holds in between the IR scale ( )2=Q Q  and the UV scale ( )1=Q Q . These IR 

and UV scales may be taken to be ZM  and GUTM  for applications relating 

measurements at the electroweak scale to high-scale models at the unification (or 

string) scale.   

The RGEs for rigid parameters i.e. gauge and Yukawa couplings can be 

combined with that of the µ′  parameter (a seemingly-hard actually-soft mass 

parameter for Higgsinos) to find  
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                                    (4.14) 

 

as the one-loop RG invariant corresponding to 1I  in (4.4). In fact, this is identical to 

the RG invariant (4.4) with obvious implication given in (4.5). This direct similarity 

stems from the fact that gauge and Yukawa structures are kept unchanged when going 

to non-holomorphic MSSM.   

We continue our analysis with the construction of the RG invariants of the soft 

parameters of the theory. Of this sector, a well-known RG invariant is the ratio of the 

gaugino masses to fine structure constants 
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which is identical to the RG invariant 2I  in equation (4.6) of the previous section. The 

reason is that non-holomorphic soft terms do not influence the running of the gaugino 

masses.  

Another invariant of mass dimension-one is related to the B  parameter for 

which we obtain: 
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with arbitrary coefficients ic  such that in the limit , , ,t bA τ µ µ′ ′ →  it reproduces the 

well- known MSSM invariant in (4.8).  One notices that the ‘soft’ nature of  µ′  makes 

it getting involved with the RG invariants of the soft masses like B  in (4.16). 

Concerning scalar mass-squareds, we obtain a general invariant  
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where ic are arbitrary real parameters. In the limit all parameters but 765 ,,c  are non-

zero we obtain:  
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which is obviously invariant in the limit µ→µ′′ τ ,A ,b,t . By varying coefficients of 

various soft masses in (4.18) we obtain several forms of RG invariants. Let us 

consider, for example, setting all coefficients to zero except 13 41 =−= c,c . Then we 

find  
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which correlates left-and right-handed selectron mass-squareds with those of the 

isospin and hypercharge gaugino. Furthering this kind of analysis, we find more 

invariants that combine mass-squareds of scalars and gaugino masses:  
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(4.20) 

 

which should be contrasted with the RG invariants of the previous section. One lesson 

to be inferred from these is that µ′parameter is consistently involved in all invariants 

with appropriate coefficient. This, compared to ones in equation (4.10) of previous 

section, shows that µ′  is a soft parameter and its evolution influences those of the 

other soft terms. The difference between (4.10) and (4.20) is a striking example of 

showing how RG invariants depend on the underlying model. The comments at the 

end of Sec. 4.1 above are also valid for this chapter. One, however, keeps in mind that 
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µ  is a perfect rigid parameter in the MSSM with holomorphic soft terms, µ′  exhibits 

a soft nature as can be seen from (4.20). 
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CHAPTER 5 

 

CONCLUSION 
 

In this thesis work, we have analyzed RG invariants in the MSSM with and 

without non-holomorphic soft terms. In Chapter 2 we have provided a brief summary 

of the SM followed by an introduction to phenomenological necessity and basic 

structure of the supersymmetry. Basic concepts of a generic supersymmetric field 

theory i.e. superspace, superfields, supersymmetric Lagrangians and superpotential 

are all included in Chapter 2. 

In Chapter 3 we have discussed the MSSM by giving its particle spectrum, 

gauge structure and superpotential. We have investigated the manner in which 

supersymmetry breaking takes place, and examined structures of the soft 

supersymmetry breaking terms. We have, therein, also discussed holomorphic and 

non-holomorphic soft terms in a comparative fashion.  We have also discussed RGEs, 

and gave their complete derivation in a softly broken supersymmetric theory (which is 

directly applicable to all models such as the MSSM).  

In Chapter 4 we have discussed construction of various RG invariants and 

their implications for phenomenology of the underlying model. 

We have listed several basic relations, definitions as well as RGEs in 

appendices.  

Before concluding this thesis work, we emphasize that RG invariants can be 

utilized to:  

i. test the internal consistency of the model while fitting to the experimental data, 

ii. rehabilitate poorly known parameters by supplementing the well-measured ones, 

iii. have clues on what kind if supersymmetry breaking mechanism is in operation, 

iv. separate analysis of trilinear couplings (in both holomorphic and non-

holomorphic cases) from scalar mass-squareds.  

v.     determine if the model assumed is self-consistent. Indeed, one may find that 

correlations suggested by certain invariants are indeed satisfied by experimental 

values of the parameters in a future collider environment like LHC; however, 

certain parameters may not match to any invariant relation at all. Then one can 
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infer that the assumptions about the underlying model are false, and goes on 

correcting it. The correction may require non-holomorphic structures or more 

extended  gauge structures. The interesting aspect is that all such invariants differ 

model to model (compare, for instance, the RG invariants (4.9) and (4.19)) in a 

distinctive fashion.   

vi. However, as mentioned in the introduction, the power of RG invariants is limited 

by their sensitivity to higher loop corrections (in which case certain expressions 

get modified by additional terms involving at least one loop factor) and flavor 

mixings. Indeed, when flavor mixings are switched on the mass-squared 

parameters pertaining to slepton and squark sectors develop non-trivial flavor 

structures, and their RGEs do not admit any RG invariants even at one loop level. 

However, experimental data collected so far about rare processes have already 

started to imply that flavor violation effects must be limited if not forbidden by some 

yet-to-be found symmetry.  

This thesis work, mainly based on two publications (Demir 2005, Çakir 2005), 

is intended to give a further impetus to phenomenological relevance of the RG 

invariants.  
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APPENDIX A 
 

BASICS 
 

A.1. Relativistic Notation 
 

The notation and conventions used in this thesis work are taken from 

(Simonsen 1995). 

In this report we will adopt standard relativistic units, i.e. 

 

                                                                   1c= =�                                                (A. 1) 

 

A general contravariant and covariant four-vector will be denoted by 

 

                                                
( ) ( )
( ) ( )

0 1 2 3 0

0 1 2 3 0

; , , ;

; , , ,

A A A A A A A

A A A A A A A

µ

µ

= =

= = −
                               (A. 2) 

 

The compact “Feynman slash” notation 

 

                                                                A Aµ
µγ/ =                                                  (A. 3) 

 

will be used. The metric tensor µνg , which connects Aµ  and Aµ , is defined by 

 

                                                   ( )1, 1, 1, 1diagµν = − − −g                                        (A. 4) 

 

Moreover, we will use the (relativistic) summation convention which states 

that repeated Greek indices , , , ,µ ν ρ σ τ , are summed from 0 to 3 and Latin indices 

run from 1 to 3 unless specifically indicated to the contrary. 
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The Minkowski product (the four-product) will be denoted by AB  and defined 

as 

 

                                                     0 0 ABAB A B A Bµ
µ≡ = −                                    (A. 5) 

  

Practical notation for the four-gradients, µ∂  and µ∂ , will be used 

 

                                                     

;

;

x t

x t

µ

µ

µ µ

∂ ∂� �∂ ≡ = −∇� �∂ ∂� �

∂ ∂� �∂ ≡ = ∇� �∂ ∂� �

                                         (A. 6) 

 

The totally antisymmetric Levi-Civita tensors in three and four dimensions are 

respectively defined by 

 

                            �
�

�
�

�

−

+

=

otherwise       ,0

 nspermutatio oddfor         ,1

3 2 1 of nspermutatioeven for         ,1

ijkε
                            (A. 7) 

 

                          

1,           for  even  permutations  of 0 1 2 3 

1,            for  odd  permutaions
0,           otherwise

µνρσε
+�
�= −�
�
�

                (A. 8) 

 

where 

 

                                                     
µνρσ

µνρσ εε

εε

−=

−= ijk
ijk

                                                   (A. 9) 
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A.2. Pauli Matrices 
 

The well known Pauli Matrices are defined by 

 

                  1 2 30 1 0 1 0
,                 ,                 

1 0 0 0 1
i

i
σ σ σ

−� � � � � �
= = =� � � � � �−� � � � � �

        (A. 10) 

 

and satisfy the commutator relation 

 

                               , 2 ,               1 2 3i j ijk ki   i, j, k, , ,σ σ ε σ� � = =� �                        (A. 11)         

 

From this definition it is evident that  

 

                                                 

( )
( )
( )

2

,            1, 2,3

1

0

ti i

i

i

i

Tr

σ σ

σ

σ

= =

=

=

                              (A. 12) 

 

For later use, we also introduce 

 

                                         0 1 0
0 1

σ � �
= � �
� �

                                             (A. 13) 

 

and a useful arrangement of these matrices is 

 

                                              ( ) ( )0 0 1 2 3; ; , ,µσ σ σ σ σ σ σ= =�
                              (A. 14) 

 

The index structure of the σ - matrices is given by  

 

                                                             µ µ
αασ σ� �= � ��                                               (A. 15) 
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We now introduce some “Pauli related” matrices defined by 

 

                                                  µαα µαα αβ αβ µ
ββσ σ ε ε σ≡ = �� � �

�                                     (A. 16) 

 

where the “matrices” ε  and ε  have been used. By direct computations, one can 

establish the following relations  

 

                                                    
0 0

,           1,2,3i i i

σ σ

σ σ

=

= − =
                                  (A. 17) 

 

Moreover, the following relations are true 

                                                               

( )
( )

2                                                              (A. 18)

2                                                                  (A. 19)

2           

Tr

µ ββ β β
αα µ α α

µ ν µν

βµ ν ν µ µν β
αα

σ σ δ δ

σ σ

σ σ σ σ δ

=

=

+ =

� �

� �

g

g

( )
( ) ( )

                                                   (A. 20)

2                                                              (A. 21)

2                    

αµ ν ν µ µν α
ββ

µ ν ρ ρ ν µ µν ρ νρ µ µρ ν

σ σ σ σ δ

σ σ σ σ σ σ σ σ σ

+ =

+ = + −

�
�

��
g

g g g

( ) ( )
( ) ( )

           (A. 22)

2                               (A. 23)

2                (A. 24)Tr i

µ ν ρ ρ ν µ µν ρ νρ µ µρ ν

µ ν ρ σ µν ρσ µσ νρ µρ νσ µνρσ

σ σ σ σ σ σ σ σ σ

σ σ σ σ ε

+ = + −

= + − −

g g g

g g g g g g

 

 

Most of the above relations are easily proved by direct computations. Besides, 

they (Müller-Kristen and Wiedemann 1987) have proved most of them and in 

particular (A. 24) which is the most difficult one. 

 

( )

( )
4

4

i

i

µν µ ν ν µ

µν µ ν ν µ

σ σ σ σ σ

σ σ σ σ σ

= −

= −
                                   (A. 25) 
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By utilizing the index structure of the σ - matrices, it is easily seen that µνσ  

and µνσ  must have the index structure ( )βµν µν
α

σ σ� �= 	 
� �
 and ( )βµν µν

α
σ σ� �=

	 
� �

�

�
. In fact 

µνσ  and µνσ  are the generators of ( )C,SL 2  in the spinor representations �
�

�
�
�

� 0
2
1

,  and 

�
�

�
�
�

�

2
1

0,  respectively. The proofs together with the establishment of the below formulae 

can be found in (Ramond 1990): 

 

                                                                  (A. 26)

1
                                                      (A. 27)

2
1

                           
2

t

i

i

µν µν

µν µνρσ
ρσ

µν µνρσ
ρσ

σ σ

σ ε σ

σ ε σ

=

=

= −

( ) ( )
( ) ( )

( ) ( )

                        (A. 28)

0                                                    (A. 29)

1
                           (A. 30)

2 2
1
2 2

Tr Tr

i
Tr

i
Tr

µν µν

µν ρσ µρ νσ νρ µνρσ

µν ρσ µρ νσ νρ µνρ

σ σ

σ σ ε

σ σ ε

= =

= − +

= − −

��

��

g g g g

g g g g                            (A. 31)σ

 

 

A.3. Dirac Matrices 
 

The Dirac γ - matrices are defined by the anticommutation (Cliford Algebra) 

relations 

 

{ }, 2µ ν µνγ γ = g                                            (A. 32) 

 

From the four γ -matrices above, it is possible to define a “fifth- γ - matrix” by  

 
5 0 1 2 3

5 iγ γ γ γ γ γ≡ ≡                                              (A.33) 

 

 

 



 65 

It possesses the following properties which follows easily from the definitions 

(A.32) and (A.33) 

 

{ }
( )

5

25

, 0                                                    (A. 34)

1                                                     (A. 35)

µγ γ

γ

=

=
 

 

We will now state three explicit represented of the γ - matrices, namely the so-

called Dirac representation, the Majorana representation, and finally the Chiral 

representation. 

 

A.3.1. Representations  
 

 The lowest non-trivial representation of these matrices is of dimension four, 

and we will concentrate on this representation. From now on, we will assume that a 

four dimensional representation is used. 

 

A.3.1.1. The Dirac Representation or Canonical Basis 

 

In this particular representation the γ - matrices read 

 

0

0
5

0

1 0
                                                        (A. 36)

0 1

0
                1, 2,3                         (A. 37)

0

0
                                      

0

i
i

i
i

γ

σγ
σ

σγ
σ

� �
= � �−� �

� �
= =� �
� �

� �
= � �
� �

                (A. 38)

 

 

Where 1 denotes the 22 ×  identity matrix and µσ  and µσ  are the Pauli 

matrices defined in the previous section. 
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A.3.1.2. The Majorana Representation 

 

In this representation all γ - matrices are pure imaginary and have the explicit 

form: 

 

2
0

2

3
1

3

2
2

2

0
                                                   (A. 39)

0

0
                                                    (A. 40)

0

0
                                 

0

i

i

σγ
σ

σγ
σ

σγ
σ

� �
= � �−� �

� �
= � �
� �

� �−
= � �−� �

1
3

1

                (A. 41)

0
                                                  (A. 42)

0
i

i

σγ
σ

� �−
= � �
� �

 

 

and finally  

 

2
5

2

0
0

σγ
σ

� �
= � �−� �

                                                     (A. 43) 

 

A.3.1.3. The Chiral Representation or Weyl Basis 

 
The basis is of particular interest to persons doing SUSY. In this representation 

the γ - matrices take on the explicate form  

 

5

0
                                                   (A. 44)

0

1 0
                                                       (A. 45)

0 1

µ
µ

µ

σγ
σ

γ

� �
= � �
� �

−� �
= � �
� �
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A.4. SUSY Algebra  
 

In this section, notation and conventions conform to those of (Wess and 

Bagger 1990).  

General 4-dimensional SUSY algebra: 

 

{ }
{ }

{ }

, 2                                                                (A. 54)

,                                                                  (A. 55)

,

A A
BB

A B lAB
l

A lABB

P

a B

a B

µ
α µβ αβ

α β αβ

α αββ

σ δ

ε

ε ∗

=

=

= −

� �

�� �

Q Q

Q Q

Q Q                                                                (A. 56)

, , 0                                                            (A. 57)

,                   

l

A A

A A

P P

M

α µ α µ

β
α µν µνα βσ

� � � �= =� � � �

� � =� �

�Q Q

Q Q                                                  (A. 58)

,                                                                     (A. 59)

, 0                                  

A AM

P P

α α β
µν µνβ

µ ν

σ� � =� �

� � =� �

�� �

�Q Q

                                            (A. 60)

,                                                       (A. 61)

,               (A

M P i P P

M M i M M M M

µν ρ νρ µ µρ ν

µν ρσ µρ νσ µσ νρ νρ µσ νσ µρ

η η

η η η η

� � � �= −� � � �

� � � �= − − − +� � � �

[ ]

. 62)

,                                                                       (A. 63)

,                                                                   (A. 64)

,

A A B
l l B

B
A l lA B

l k

B S

B S

B B

α α

α α
∗

� � =� �

= −� �� �� �

Q Q

Q Q

                                                                     (A. 65)

, , 0                                                          (A. 66)

j
lk j

l l

iC B

P B M Bµ µν

=

� � � �= =� � � �

 

 

Where Pµ  is the energy-momentum four-vector, M µν  is the angular momentum 

tensor and lB  are the Ableian generators. Here, the la  are antisymmetric matrices, 

and ll a,S  must satisfy the intertwining relation: 

                                     (A. 67) 

    

Note also the perverse but essential conception implicit in (Wess and Bagger 1990), 

 
l
AB

lAB aa −=                                                    (A. 68) 

 

BA CBk ACk l
l C CS a a S ∗= −
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1=N  SUSY algebra in 4 dimensions 

 

{ }
{ } { }

, 2                                                                      (A. 69)

, , 0                                                               (A. 70)

, , 0  

P

P P

µ
α µβ αβ

α β α β

α µ α µ

σ=

= =

� � � �= =� � � �

� �

��

�

Q Q

Q Q Q Q

Q Q                                                             (A. 71)

,                                                                      (A. 72)

,                  

M

M

β
α µν µνα β

α α β
µν µνβ

σ

σ

� � =� �

� � =� �
�� �

�

Q Q

Q Q                                                      (A. 73)

, 0                                                                                (A. 74)

,                

P P

M P i P P

µ ν

µν ρ νρ µ µρ νη η

� � =� �

� � � �= −� � � �

( )
[ ]

                                        (A. 75)

,                (A. 76)

,                                                                             (A. 77

M M i M M M M

R r

µν ρσ µρ νσ µσ νρ νρ µσ νσ µρ

α α

η η η η� � = − − − +� �

=Q Q )

,                                                                          (A. 78)

, , 0                                                             (A. 79)

R R

P R M R

α α

µ µν

= −� �� �

� � � �= =� � � �

� �Q Q

 

 

where the R  is the ( )1U  generator. 

 

A.5.  Anti-commuting Coordinates  
 

Grassmann numbers θ  and η  are anti-commuting objects: 

 

                                                            θη ηθ= −                                                    (A.80) 

 

and hence 2 0θ =  (Berezin 1987). Because of this, the most general function of a 

single Grassmann variable θ   is given uniquely by: 

 

                                                          ( )f A Bθ θ= +                                              (A.81) 

 

with ,A B C∈ .  Integral over Grassmann variables are defined by  
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                                                        [ ] BBAd =+ :θθ                                          (A.82)                  

 

which is called the Berezin integral. 

a) Defining the derivative  

 

                                    ( )1,           0            
d d

A A C
d d

θ
θ θ

= = ∈                    (A.83) 

 

These show that Berezin integral of total derivative is zero and that the Berezin 

integral is translation invariant, i.e. 

 

                                                        ( ) 0
d

d f
d

θ θ
θ

=                                           (A.84) 

 

                                                 ( ) ( )d f a d fθ θ θ θ+ =                                      (A.85) 

 

for a C∈ . These properties of ordinary integrals of the type ( )
∞

∞

xdxf  is the 

motivation for the unusual definition (A.84). For the Grassmann variables, integration 

and differential are equivalent operations. 

b) If one has several linearly independent Grassmann variables ( )1, ,i i nθ = � ,  

where  

 

                                                            i,ji j j iθ θ θ θ= − ∀                                           (A.86)   

then  

                                                ( ) cfd...d in = θθθ1                                                (A.87) 

 

where c  is the coefficient in front of the 1 1n nθ θ θ− �  -term in ( )if θ : 

 

                                                   1 1n nf cθ θ θ−= +� �                                             (A.88)  
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APPENDIX B 

 

RENORMALIZATION GROUP EQUATIONS 
 

B.1.  Renormalization Group Equations in the MSSM with 

Holomorphic Soft Terms 
 

In this Appendix we list down the RGEs in the MSSM by extending to cases 

with finite bottom and tau Yukawas in a way including all three generations of 

sfermions. The one-loop RGEs of the gauge couplings are given by 
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                                                   (B. 1) 

 

where  ( ) 24 ln ,  3. GUT Ft M Nπ −≡ =Q  

The evolutions of the superpotential parameters are given by 
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The gaugino masses envolve as  
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The RG evolutions of the trilinear couplings are given by  
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where B  is the Higgs bilinear coupling in its potential. The scalar soft mass-squared 

parameters evolve according to 
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        (B. 6) 

 

When writing the RGEs for scalar mass-squareds we assumed that they unify 

at some scale, preferably, at the GUT scale. 
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B.2.  Renormalization Group Equations in the MSSM with non-

Holomorphic Soft Terms 
 

For the non-holomorphic soft terms one-loop RGEs can be found from (Jack, 

Jones and Kord 2004). We also present them here for the sake of completeness. 
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here 1,2,3

33
,1, 3

5
b � �= −� �

� �
  for hypercharge, isospin and color gauge groups, respectively.  
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APPENDIX C 

 

RENORMALIZATION GROUP INVARIANTS 
 

We determine RG invariants by combining the RGEs of various parameters. We here 

provide some examples with certain sample calculations. 

 

Exp.1) We know from RGEs of the gauge couplings that 

 

3
3

3

3
2

2

3
1

1

3

5
33

g
g

g
g

g
g

−=

=

=

dt
d

dt
d

dt
d

                                                    (C.1) 

 

The above equations can be written as; 
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                       (C.2) 

 

If we combine them to find invariant, 
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Equation (C.3) is invariant, when the right part is equal to zero. 
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Exp.2) We know from RGEs of the scalar soft mass-squared parameters that 
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where, after forming a combination of the form 
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However, we know from RGEs of the gaugino masses that 
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and if we replace (C.10) in (C.9) we can find a new invariant  
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which  yields the invariant 7I , after using (C.10), 
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These sample calculations can be extended to all other parameters of the 

model to find invariants (Demir 2005).   

 

 

 

 

 

 

 

                                                                                                                     

                                                                                                                                                                                                 


