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ABSTRACT 

 

SPECIATION OF CHROMIUM IN WATERS  
VIA SOL-GEL PRECONCENTRATION  

PRIOR TO ATOMIC SPECTROMETRIC DETERMINATION  
 

Chromium occurs in natural samples in two relatively stable valence states, i.e. 

in the form of Cr(III) and Cr(VI) species. Their concentration in natural waters is 

usually very low, in the order of a few µg/L. This low concentration necessitates either 

the use of very sensitive analytical techniques or the application of suitable 

preconcentration methods prior to instrumental determination. 

In the present study, a resin having immobilized mercapto or amino functional 

groups was prepared by reacting silica gel with 3-mercaptopropyltrimethoxysilane,      

3-aminopropyltrimethoxysilane, L-glutamic acid dimethyl ester, aminophenol, 

aminothiophenol and aminobenzothiazol for the preconcentration of Cr(III) and Cr(VI) 

species in waters prior to their determination by flame atomic absorption spectrometry 

(FAAS). Characterization of the novel sorbents were performed using scanning electron 

microscopy (SEM/EDS), thermo gravimetric analysis (TGA) and elemental analysis. 

Among the sorbents synthesized, amino sol-gel and silica amino have been shown to be 

efficient in terms of sorption capacity. The applicability of the new sorbents for the 

preconcentration of Cr(III) and Cr(VI) species in waters was examined by batch 

method. After pH 4, silica amino could quantitatively sorb both Cr(III) and Cr(VI) 

whereas amino sol-gel sorbed only Cr(III). Effect of the amount of silica amino and 

amino sol-gel was examined at the optimum pH. The optimum amount of silica amino 

for quantitative sorption was found to be 0.1 g for 20.0 mL of 1.0 mg/L Cr(III) and 

Cr(VI) solutions whereas that of amino sol-gel was 0.05 g for 20.0 mL of 1.0 mg/L for 

both species. The effect of Cr(III) and Cr(VI) concentrations on amino sol-gel and silica 

amino were investigated at the initial concentrations of 1.0, 10.0, 25.0 and 50.0 mg/L. 

Elution was realized with 2.0 M HCl, and the percent recovery values changed between 

60 and 80%. 
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ÖZET 

 

ATOMİK SPEKTROMETRİK TAYİN ÖNCESİ  

SOL-JEL ÖNDERİŞTİRME YARDIMIYLA 

SULARDAKİ KROMUN TÜRLENMESİ 
 

Krom doğal örneklerde iki kararlı yapıda, Cr(III) ve Cr(VI) formlarında, 

bulunur. Doğal sulardaki krom derişimi genellikle birkaç µg/L seviyesindedir. Bu düşük 

derişim ya yüksek duyarlığa sahip analitik teknikler kullanımını ya da enstrümental 

tayin basamağından önce uygun ön-deriştirme metotlarına başvurmayı gerektirir. 

Bu çalışmada alevli atomik absorpsiyon spektrometri (FAAS) tayini öncesi 

silika jel ile 3-merkaptopropiltrimetoksisilan, 3-aminopropiltrimetoksisilan, L-glutamic 

asit dimetil ester, aminofenol, aminotiofenol ve aminobenzotiazol tepkimeye sokularak, 

yüzeyinde merkapto veya amino fonksiyonel grupları bulunan bir reçine hazırlanmıştır. 

Sentezlenen tutucu yüzeyin karakterizasyonu taramalı elektron mikroskobu 

(SEM/EDS), termal gravimetrik analiz (TGA) ve elemental analiz metotları ile 

yapılmıştır. Sentezlenen sorbentler arasında silika amino ve amino sol-jelin en yüksek 

tutma kapasitesine sahip olduğu gözlenmiştir. Adsorbanın çeşitli çözeltilerdeki Cr(III) 

and Cr(VI) türlerinin ön-deriştirilmesi çalışmalarına uygunluğu kesikli (batch) metot 

tutturma deneyleri ile test edilmiştir. pH 4’ten sonra silika aminonun Cr(III) ve Cr(VI) 

formlarının her ikisini, amino sol-jelin ise sadece Cr(III)’ü tuttuğu gözlenmiştir. Silika 

amino ve amino sol-jel miktarının tutunmaya etkisi optimum pH’de incelendi ve 0.05 g.  

amino sol-jelin 20 mL 1.0 mg/L Cr(III) ve Cr(VI) çözeltisi için % 100 tutunma 

sağladığı belirlendi. Aynı deney silika amino ile tekrarlandı ve gerekli miktar 0.1 g. 

olarak bulundu. Amino sol-jel ve silika aminonun Cr(III) ve Cr(VI)’nın başlangıç 

derişimlerinden ne şekilde etkilendiği, 1.0, 10.0, 25.0 and 50.0 mg/L standart 

çözeltilerle incelendi. Eluent olarak 2.0 M HCl kullanıldı ve geri kazanım değerlerinin 

% 60 ile 80 arasında değiştiği saptandı.  
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CHAPTER 1 

 

INTRODUCTION 

 
Speciation analysis can be described as a measurement process, which gives 

quantitative and qualitative information on the chemical forms of an element in various 

samples. Speciation analysis mostly involves two steps; separation and determination. 

Differentiation is realized between oxidation states, simple and coordinated ions, 

cationic, neutral and anionic forms, protonated and unprotonated, monomeric and 

polymeric species. 

Chromium speciation has been an important task in recent decades due to 

extensive use of this metal in various industries such as metallurgical (steel, ferro- and 

nonferrous alloys), refractories (chrome and chrome-magnesite) and chemical 

(pigments, electroplating, tanning and other). Chromium compounds are discharged in 

liquid, solid, and gaseous wastes into the environment and can have adverse biological 

and ecological effects (Kotas and Stasicka 2000). 

There are two common oxidation states of chromium present in the environment, 

Cr(III) and Cr(VI). These two forms show different chemical, physicochemical and 

biochemical reactivity. Cr(VI) compounds are known to be more soluble, mobile and 

bioavailable than Cr(III) species. Because of these differences in chemistry, 

biochemistry, physicochemistry of Cr(III) and Cr(VI) species, determination of total Cr 

concentrations in a variety of samples does not give the necessary information to 

evaluate the effects of species.  

When the concentration of Cr species is very low, they may undergo alteration 

during sample handling and analysis, especially in preconcentration procedures. Atomic 

spectrometric detection, both alone or coupled with other techniques to preconcentrate 

and separate the two main chromium species, Cr(III) and Cr(VI), is the most widely 

employed methodology reported in the literature (De la Guardia and  Morales-Rubio 

2003). Although the determination of chromium is directly possible with sufficient 

sensitivity by analytical techniques such as ICP-MS etc., separation/preconcentration 

methods may still be needed for matrix removal.  
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In this context, the aim of this thesis is to develop a suitable sorbent for the 

matrix separation/preconcentration purposes in the speciation and determination of 

chromium by atomic spectrometric techniques.  

 

1.1. Chromium Chemistry 

 
Chromium was discovered in 1797 by the French chemist Louis Vauquelin. It was 

named chromium (Greek chroma, “color”). Because its compounds are found in many 

different colors. Chromium is the Earth’s 21st most abundant element and the sixth 

most abundant transition metal (Mohan and Pittman 2006). It has four stable isotopes: 
50Cr, 52Cr, 53Cr and 54Cr with relative abundance of 4.31, 83.76, 9.55 and 2.38%, 

respectively (De la Guardia and Morales-Rubio 2003). 

Chromium can exist in several chemical forms displaying oxidation numbers from 

0 to 6. Metallic chromium (chromium 0) can mainly be found in alloys, such as stainless 

steel and in chrome-plated objects. It is used as materials with new properties, such as a 

resistance to corrosion, wear, temperature and decay, strength, hardness, permanence, 

hygiene and color. 

Cr(III) in natural waters is in hydrolyzed Cr(H2O)4OH+
2 form and complexes, and 

even adsorbed on colloidal matter. Cr(III) is an essential element in mammalian 

metabolism. In addition to insulin, it is used to reduce blood glucose levels and control 

certain cases of diabetes. It is also responsible for reducing blood cholesterol levels by 

diminishing the concentration of low density lipoproteins “LDLs” in the blood. 

(Anderson 1989, Mohan and Pittman 2006). Nieboer and Jusys developed an hypothesis 

that supports the tolerance factor (CrGTF) containing Cr(III), nicotinic acid, glycine, 

glutamic acid, and cysteine. Cr(III) is also used in a number of commercial products, 

including dyes, paint pigments and salts for leather tanning. 

Cr(VI) is a strong oxidizing agent and shows chronic toxic effects including 

carcinogenic property and it induces dermatitis. Occupational exposure to Cr(VI) 

compounds leads to a variety of clinical problems. Inhalation and retention of Cr(VI)-

containing materials has been reported to cause perforation of the nasal septum, asthma, 

bronchitis, pneumonitis, inflammation of the larynx and liver and increased incidence of 

bronchogenic carcinoma. Skin contact of Cr(VI) compounds can induce skin allergies, 

dermatitis, dermal necrosis and dermal corrosion (Gad 1989, Lee et al. 1989). A 
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significant concentration of Cr(III) can cause adverse effects, because its high capability 

to coordinate various organic compounds results in inhibition of some metallo-enzyme 

systems. Cr(III)  is used in textile (printing, dying), tannery and industrial processes 

(chrome plating) (Gomez  and Callao 2006). Cr(VI) dominates in wastewater from the 

metallurgical industry, metal finishing industry (Cr hard plating), refractory industry 

and production or application of pigments (chromate colour pigments and corrosion 

inhibition pigments) (Nriagu 1988). 

Cr(III) and Cr(VI) are stable enough to occur in the environment. Cr(IV) and Cr(V) 

form only unstable intermediates in reactions of trivalent and hexavalent oxidation 

states with oxidizing and reducing agents, respectively. The Cr(III) oxidation state is the 

most stable (Figure 1.1). Energy would be required to convert it to lower or higher 

states. The negative standard potential (Eo) of the Cr(III)/Cr(II) metal ion couple 

signifies that Cr(II) is readily oxidized to Cr(III), and Cr(II) species are stable only in 

the absence of any oxidant (Kotas and Stasicka 2000). The reduction potential of Cr(II) 

is -0.91V and that of Cr(III) is -0.74 V (De la Guardia and  Morales-Rubio 2003). 

 

 
 

Figure 1.1. The Frost diagram for chromium species in acidic solution 

(Source: Shriver et al. 1994). 

 

In acidic solution Cr(VI) demonstrates a very high positive redox potential (Eo 

within 1.33 and 1.38 V, Figure 1.2) (Greenwood and Earnshaw 1984, Shriver et al. 
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1994, Ball and Nordstrom 1998) which denotes that it is strongly oxidizing and unstable 

in the presence of electron donors. As the HCrO4
- reduction is accompanied by the H+ 

consumption (Reaction 1), decrease in acidity decreases the formal potential (Figure 

1.2). The reduction potential of hydrogen chromate ion to Cr(III) is 1.35 V in strong 

oxidizer acidic medium. In more basic solution the reduction of CrO4
2- (Reaction 2), 

generates OH- against a gradient (Nieboer and Jusys 1988). The reduction potential of 

chromate to Cr(III) hydroxide is -0.13 V in basic medium.  

 

 

         
                            

The equlibrium data, different oxidation states and chemical forms have been 

showed in specified Eh and pH ranges by Pourbaix diagram (Figure 1.2.). The solid and 

dissolved species is associated with the dissolution of chromium in water. All of the 

known species containing Cr, O and H exist in equilibrium with water at atmospheric 

pressure. The +2 ,+3, +4 and +6 valence states of chromium are known to exist at 

equilibrium in water. The concentration of total chromium is 10-8 M. 
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Figure 1.2. A simplified Pourbaix diagram for chromium species at 150 °C and       

                   [Cr(aq)]tot=10-8 (Source: Ball and Nordstrom 1998, Richard and Bourg           

                   1991, Nieboer and Jusys 1988). 

 

1.1.1. Chromium Speciation 

 

1.1.1.1. Cr(III) 
 

Cr(III) presence, concentration and forms in the environment depend on 

different chemical and physical processes, such as hydrolysis, complexation, redox 

reactions and adsorption. In the absence of complexing agents, Cr(III) was suggested to 

exist as hexa-aquachromium (3+) and its hydrolysis products (Figure 1.3). 
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Cr(H2O)6

3+
 is a moderately strong acid (pK ~4) (Reaction 3) and its deprotonated 

forms formulated shortly as CrOH2+aq, Cr(OH)2
+aq and Cr(OH)3aq are dominating 

successively within pH 4-10. Trihydroxochromium is sparingly soluble within a pH 

range of 5.5-12 (minimum between pH 6.5 and 11.5; Richard and Bourg 1991, Ball and 

Nordstrom 1998), and overlaps considerably the pH range of natural waters (Figure 

1.3.). Dominant forms of Cr(III) are  the hydroxo complexes, Cr(OH)2
+aq and 

Cr(OH)3aq in the environment. 

Cr(OH)3aq shows amphoteric behaviour. At higher pH, it is transformed into the 

soluble tetrahydroxo complex, Cr(OH)4
- [pK=15.4 or 18.3]. 

 
At more concentrated Cr(III) solutions (>10-6 M) the polynuclear hydrolytic 

products, Cr2(OH)2
4+, Cr3(OH)4

5+, Cr4(OH)6
6+, could also be expected (Kotas and 

Stasicka 2000). 
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Figure 1.3. Cr(III) speciation as a function of pH (ionic strength of about 0.01 M and      

                   Cr(III)conc.= 1.0 mg/L) (Source: visual MINTEQ program). 

 6



1.1.1.2. Cr(VI)  

 

Cr(VI) can form several species, namely Cr(VI) is found as CrO4
2-, HCrO4

- or 

Cr2O7
2-, depending on both pH of the medium and total Cr(VI) concentration. The 

dependence on pH is illustrated in Figure 1.4. H2CrO4 is the strong acid (Sperling et al. 

1992a). At pH>1 deprotonated forms of Cr(VI)  is seen. Above pH 7 only CrO4
2- ions 

exist in solution through out the concentration range. In the pH between 1 and 6, 

HCrO4
- is predominant (Cotton and Wilkinson 1980, Greenwood and Earnshaw 1984, 

Nieboer and Jusys 1988). 

 

 
Cr(VI) compounds are quite soluble, and  thus, mobile in the environment. 

However, Cr(VI) oxyanions are readily reduced to trivalent forms by electron donors 

such as organic matter or reduced inorganic species, which are ubiquitous in soil, water 

and atmospheric systems (Stollenwerk and Grove 1985). 
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Figure 1.4. Cr(VI) speciation as a function of pH (ionic strength of about 0.01 M and  

                   Cr(VI)conc.= 1.0 mg/L) (Source: visual MINTEQ program). 
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1.2.  Environmental Distribution of Chromium 

 

1.2.1   Water  

 

As mentioned before, chromium exists in its two stable oxidation states 

including Cr(III) and Cr(VI) in natural waters. The presence and ratio between these 

two forms is dependent on chemical and photochemical redox transformation, 

precipitation/dissolution and adsorption/desorption reactions.  

Cr(III) should be the only form under anoxic or suboxic conditions. Cr(III) 

species are stable at pH≤6, whereas at pH≥7 the CrO4
2- ions should predominate in 

oxygenated aqueous solutions (Campanella 1996). At intermediate pH values, the 

Cr(III)/Cr(VI) ratio depends on O2 concentration. In oxygenated surface waters, pH, O2 

concentration, the presence and concentration of reducers and complexing agents is 

important for the occurrence of significant Cr(III) quantities (Pettine et al. 1991, Kieber 

and Helz 1992). The predominant species is sometimes important for it. At the same 

time, Cr(III) is easily oxidized to Cr(VI) in the presence of manganese oxides under the 

conditions prevalent in natural waters (Pettine and Millero 1990, Johnson and Xyla 

1991, Richard and Bourg 1991). 

 Cr(III) forms many different complexes with naturally occurring organic 

compounds, such as amino, fulvic, humic and other acids. Aqua/hydroxo complexes of 

Cr(III) speciation are dominant in surface waters (Kaczynski and Kieber 1994, 

Masscheleyn et al. 1992). In natural waters, the complexation decreases commonly the 

Cr(OH)3aq precipitation in the pH conditions (Figure 1.2). But Cr(III) is immobilized 

by macromolecular compounds and thus removed from the solution in most of these 

complexes. Moreover, aqua/hydroxo Cr(III) complexes is strongly adsorbed by solids 

(Masscheleyn et al. 1992). It decreases Cr(III) mobility and bioavailability in waters. 

Aqua/hydroxo complexes of Cr(III) speciation are so easily oxidized than Cr(III) 

complexes with organic ligands. Therefore Cr(III) is better stabilized by ligands other 

than H2O and/or OH-. Cr(VI) species are only weakly sorbed to inorganic surfaces. It is 

also the most mobile form of Cr in the environment. 

Cr forms in wastewater have quite different nature and behaviour from those 

present in natural waters. Because physicochemical conditions of the wastes vary about 

various industrial sources. The presence and concentration of Cr forms depend mainly 
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on the Cr compounds applied in the technological process, on pH and on organic and/or 

inorganic wastes coming from the material processing. Cr forms with various inorganic 

and organic ligands is determined by effecting their pH value, solubility, sorption and 

redox reactions. The poorly soluble Cr(OH)3aq should be predominant under acidic or 

neutral pH conditions in wastewater. However, a high content of organic matter is 

effected in soluble organic Cr(III) complexes (Stein and Schwedt 1994, Walsh and 

O'Holloran 1996a, b). 

 

1.2.2. Soil 

 
In natural soils, chromium is the main source. The average amount of chromium 

in various kinds of soils ranges from 0.02 to 58 μmol/g (Coleman 1988, Richard and 

Bourg 1991). 

In soils, chromium is present mostly as insoluble Cr(OH)3aq or as Cr(III). The 

dominant chromium form is dependent strongly on pH; in acidic soils (pH<4) it is 

Cr(H2O)6
3+, whereas at pH<5.5 it is its hydrolysis products, mainly Cr(OH)2+aq (Ritchie 

and Sposito 1995). Macromolecular clay compounds can easily adsorb both of these 

forms. 

Cr(VI) is present mostly in soluble such as Na2CrO4 in neutral to alkaline soils. 

CaCrO4, BaCrO4 and PbCrO4 are examples of moderately soluble chromates (James 

1996). A dominant form of Cr(VI) in more acidic soils (pH<6) is suggested to be 

HCrO4
-.   

The most mobile forms of chromium in soils are CrO4
2- and HCrO4

- ions. They 

can be taken up by plants and easily leached out into the deeper soil layers, thus, leading 

to ground and surface water pollution (Calder 1988 and Handa  1988).  

Cr(VI) is reduced to Cr(III) in reduction reactions, or Cr(III) is oxidized to 

Cr(VI) in oxidation reactions. The pH, oxygen concentration, the presence and 

concentration of reducers are important in these processes (Figure 1.5). James and 

Bartlett suggested that Cr(VI) mobile forms that are HCrO4
- and CrO4

2-, can be reduced 

by different inorganic reducers such as Fe(II) or S2- (James and Bartlett 1998) This 

process called `dechromification'  is quite important. In the absence of such a process, 

all atmospheric oxygen could be converted into chromate(VI) which would pose a 

threat to life on earth (James and Bartlett 1988). 
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Figure 1.5. The chromium oxidation-reduction cycle in soils 

(Source: James and Bartlett 1988, James 1996). 

 

1.2.3. Atmosphere 
 

Chromium in the atmosphere has been reviewed by Seigneur and Constantinou 

(1995). According to the authors, most of it originates from anthropogenic sources 

which account to 60-70% of its total abundance. Chromium also originates from natural 

sources which account for the remaining 30-40%. The main human activities involving 

chromium include metallurgical industries, refractory brick production, electroplating, 

combustion of fuels and production of chromium chemicals, mainly chromates and 

dichromates, pigments, chromium trioxide and chromium salts. The other potential 

sources of atmospheric chromium are of less importance such as the cement industry, 

production of phosphoric acid in a thermal process and combustion of refuse and sludge 

(Nriagu et al. 1988). The main natural sources are volcanic eruptions and erosion of 

soils and rocks. Other less important natural sources of chromium include airborne sea 

salt particles and smoke from forest wildfires (Pacyna and Nriagu 1988). 

The concentrations of chromium (5-13 pg/m3) are observed as the lowest over the 

South Pole. Average atmospheric concentrations of this metal are higher. The range of 

chromium is observed from 1 ng/m3 in rural to 10 ng/m3 in polluted urban areas (Nriagu 

et al. 1988). The amount of chromium is dependent on the intensity of industrial 

processes, proximity to the sources, the amount of chromium released and 

meteorological factors. 
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1.3. Methods for Chromium Determination 
 

Chromium speciation is very important in different branches of natural sciences. 

Therefore, total chromium measurements alone cannot determine the actual 

environmental impact. This requires speciation techniques with sufficient selectivity 

and high sensitivity. 

The determination of chromium at trace level usually requires separation and/or 

preconcentration stages prior to instrumental determinations (Balarama Krishna et al. 

2005). Although chromium ions can be directly determined in water using sensitive 

analytical techniques, such as ETAAS or ICP-MS; flame atomic absorption 

spectrometry (FAAS) and inductively coupled plasma optical emission spectrometry 

(ICP-OES) are preferred for their low cost and economic use (Duran et al. 2007). 

Figure 1.6. shows the mostly used pretreatments for speciation of chromium. The 

most frequent pretreatments used are complex formation (about 38%) and 

preconcentration by column/ionic exchange (about 23%). About 14% of the 

pretreatments are based on oxidation-reduction reactions that can convert Cr(III) to 

Cr(VI) and vice versa to determine the total chromium in one of these forms. In some 

cases, one species and total chromium are determined together and the other species is 

calculated by the difference between the two. Only 3% of the pretreatments are 

determined by digestion and separation processes, because in liquid samples the species 

are usually solubilized. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 1.6.  Pretreatment methods used for the speciation of chromium 

(Source: Marqués et al. 2000). 
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All the techniques employed to determine Cr(VI) and/or Cr(III) are summarized 

in Figure 1.7. The most frequently used techniques are atomic spectrometric techniques 

in the form of either flame or furnace AAS (23%), inductively coupled plasma atomic 

emission spectrometry (2.5%) or different hyphenated techniques (9%). Other 

techniques such as UV-VIS spectrometry (33%) or chromatographic techniques (11%) 

have also often been used to determine these chromium species. Each technique has its 

limitations, but inductively coupled plasma optical emission spectrometry (ICP-OES) is 

one of the well-established technique with good sensitivity, low detection limits and 

rapid sample analysis. Inductively coupled plasma mass spectrometry (ICP-MS) is used 

when more sensitive determinations are required. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.7. Techniques employed in the determination of Cr(VI) and/or Cr(III) 

(Source: Marqués et al.  2000). 

 

1.3.1. Spectrophotometric Methods 

 
Spectrophotometric methods can be used for routine determination of the 

different chromium species using reagents in order to form absorbing species that 

present selectivity in the response. The most common method for determining Cr(VI) in 

aqueous solutions is based on the reaction of diphenylcarbazide (DPC) with Cr(VI) at a 

pH of 1.0 ± 0.3. As stated by many researchers, diphenylcarbazide (DPC) is an 

inexpensive and  very sensitive color reaction with Cr(VI) in acid solution and Cr(III)-
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diphenylcarbozone complex presents (Tunçeli and Türker 2002, Gomez 2006, Andersen 

1998). 

 

1.3.2. Atomic Spectrometric Methods 

 
FAAS or ETAAS are the most commonly used techniques in the determination of 

chromium traces, the low level of chromium concentration in parenteral solutions is not 

compatible with the detection limit of FAAS. The LODs can range from ng/L to µg/L. 

In order to achieve accurate, reliable and sensitive results, preconcentrations and 

separations are needed when the concentrations of analyte elements in the sample are 

too low to be determined directly by FAAS. On the other hand, FAAS is widely applied 

in routine laboratories due to its lower cost and greater simplicity as compared with 

ETAAS. LOD value range is 0.8-200 ng/mL for Cr(VI) and 0.2-80 ng/mL for Cr(III) in 

FAAS. 

 

1.3.3. Plasma–Source Methods 

 
Most commercial plasma source instruments use an argon ICP as in inductively 

coupled plasma optical emission spectrometry (ICP-OES) and inductively coupled 

plasma mass spectrometry (ICP-MS). In plasma source instruments, liquid samples are 

employed. Solid samples are decomposed and solubilized prior to introduction to the 

plasma by a proper nebulization device. ICP-MS achieves more lower LOD value than 

ICP-OES. LOD value range is 0.06 and 5.5 ng/mL for Cr(VI)  and 0.06 and 0.3 ng/mL 

in ICP-MS. It is  0.2 and 61 ng/mL for Cr(VI)  and 1.4 and 45 ng/mL for Cr(III) in ICP-

OES (De la Guardia and  Morales-Rubio 2003).   

 

1.4. Synthesis of New Sorbent for Chromium Speciation 
 

There are studies on chromium determination using various sorbents like 5-

palmitoyl oxine-functionalized XAD-2 resin (Filik et al. 2003), Amberlite XAD-7 resin 

impregnated with Aliquat 336 (Saha et al. 2004), a XAD sorbent derivatized with 

shellac (Yalçın and Apak 2006), 4-(2-Thiazolylazo)-resorcinol (TAR) and Amberlite 
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XAD-16 (Wuilloud et al. 2006), 1,5-diphenylcarbazone complex on amberlite XAD-16 

resin (Tunçeli and Türker 2002), Amberlite XAD-2010 (Bulut et al. 2006), a maleic 

acid-functionalized XAD sorbent (Yalçın and Apak 2004), Means of Melamine-Urea-

Formaldehyde Resin (Demirata 2001), on Chromotrope 2R coated Amberlite XAD-

1180 (2R-1180) resin (Saracoğlu et al. 2002), Ambersorb 563 resin (Narin et al. 2006), 

Dowex 50W-X8 resin loaded with 2-amino-benzenethiol (Veni et al. 2006), 

Saccharomyces cerevisiae immobilized on sepiolite (Bag et al. 2000), on Bacillus 

sphaericus loaded diaion SP-850 resin (Tüzen et al. 2006), and chitin, chitosan, ion 

exchanger; Purolite CT-275 (Purolite I), Purolite MN-500 (Purolite II) and Amberlite 

XAD-7 (Baran et al. 2003). 

The adsorption of trace elements onto stationary phase has proved to be a valuable 

separation preconcentration techniques because of very high concentration factors 

compraed to other techniques. Silica-gel is used as an adsorbent and as a supporting 

material various chelating agents. Because of its ion-exchange property, the low acidity 

of silanol groups and the less pronounced donor properties of the surface oxygen, 

interaction between most of the metal ions and the silica-gel surface is rather weak. 

Therefore, the use of unmodified silica for this purpose is not popular. Instead, silica-gel 

is modified with organofunctional groups. 

There are several organic functional groups modified silica gel surface in 

preconcentration studies. For example, Ekinci and Köklü used 3-aminopropyltriethoxy- 

silane modified silica-gel for the separation and preconcentration of V, Ag, Mn and Pb 

prior to their determination by GFAAS. Hassanien et al. functionalised with 

aminopropyltrimethoxysilane obtaining the aminopropyl silica gel (APSG). The APSG 

was reacted subsequently with morin yielding morin-bonded silica gel (morin-APSG) 

for separation and preconcentration of Ag(I), Au(III), Pd(II), Pt(II) and Rh(III) from 

aqueous medium. The obtained silica was subjected to surface modification using N-2-

(aminoethyl)-3-aminopropyltrimethoxysilane in order to increase adsorptive properties 

of the silica surface (Jesionowski 2003). Volkan and Ataman developed a mercapto 

modified silica-gel for pre-concentration of arsenite from natural waters. Körez et al. 

developed speciation and preconcentration method utilising a mercapto modified silica 

microcolumn for determination of trace amounts of inorganic tellerium in waters by 

hydride generation atomic absorption spectrometry. Göktürk et al. determined ultra-

trace amounts of germanium on mercapto modified silica-gel by using hydride 

generation flame atomic absorption spectrometry (HGAAS). Alcântara et al. used 2-
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mercaptobenzimidazole (MBI) modified a silica gel surface by homogeneous and 

heterogeneous routes in removing Hg(II) from aqueous media. P´erez-Quintanilla et al. 

used 2-mercaptothiazoline modified mesoporous silica for mercury removal from 

aqueous media. Shiraishi et al. investigated the extraction and separation of transition 

metals using several inorganic adsorbents modified with ethylenediaminetetraacetic 

acid (EDTA) and diethylenetriaminepentaacetic acid (DTPA) as chelating ligands. Pu et 

al. prepared 2-mercaptobenzothiazole modified silica-gel for flow injection on-line 

preconcentration separation of silver by flame atomic absorption spectrometry. Safavi et 

al. used directly silica bonded analytical reagents: synthesis of 2-mercaptobenzo- 

thiazole silica gel and its application as a new sorbent for preconcentration and 

determination of silver ion using solid-phase extraction method. Evangelista et al. 

described hexagonal mesoporous silica modified with 2-mercaptothiazoline for 

removing mercury from water solution. Jamali et al. prepared thiophene-2-carbaldehyde 

modified mesoporous silica as a new sorbent for separation and preconcentration of 

palladium prior to inductively coupled plasma atomic emission spectrometric 

determination. In other work, chemically modified silica gel with aminothioamido- 

anthraquinone was used for solid phase extraction and preconcentration of Pb(II), 

Cu(II), Ni(II), Co(II) and Cd(II) (Ngeontae et al. 2007). Macarovscha et al. applied 

silica modified with zirconium oxide for on-line determination of inorganic arsenic 

using a hydride generation-atomic absorption system. Maltez and Carasek used  

zirconium(IV) and zirconium(IV) phosphate chemically immobilized onto silica surface 

using a flow system for chromium speciation and preconcentration. 
 

1.4.1. Surface Modificiation of Silica Surface 
 

Modification of silica surface relates to all the processes that change in chemical 

composition of the surface. Surface can be modified either by physical treatment that 

leads to change in ratio of silanol and siloxane concentration of the silica surface or by 

chemical treatment that leads to change in chemical characteristics of silica surface. The 

adsorption properties are significantly affected by the modification. 

The systematic use of immobilization of organofunctional groups has increased in  

recent years, mainly on silica, because this support offers pronounced advantages over 

other organic/inorganic supports, such as high surface area, a narrow average pore size 

distribution, mechanical resistance, and rigidity. 
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Silica gel surface can be modified by two distinct processes organo- 

functionalization, where the modifying agent is an organic group, and inorgano- 

functionalization, in which the group anchored on the surface can be an organometallic 

composite or a metallic oxide (Jal et al. 2004). 

 

1.4.2. Amino/Mercapto Modified Sol-gel 
 

The chemical modification of the silica gel surface is a well-known and 

convenient method for combining silica gel with an organic molecule. Among the more 

promising highly developed surfaces are the silica attached organosilanes which are 

widely used in various technologies. Amino/mercapto functional group attached to 

silica is used in order to increase the chemical (mainly adsorptive) reactivity of the 

silica. Speciation and preconcentration of chromium with amino/mercapto modified 

silica gel surface (Sil-NH2)/(Sil-SH)  in aqueous solutions was investigated prior to their 

determination by flame atomic absorption spectrometry. 

 

1.5. The Aim of this Work 
 

One of the goals of this study was to investigate speciation of Cr(III) and Cr(VI) in 

waters via sol-gel preconcentration prior to Atomic Spectrometric determination. 

Firstly, a suitable sorbent surface for preconcentration of Cr(III) and Cr(VI) is 

investigated.  

The other goal was to develop a suitable sorbent surface for pre-concentration of 

Cr(III) and Cr(VI) containing water samples. For this purpose an inorganic support 

material, like our synthesized sol-gel and commercial silica-gel, was functionalized with 

3-mercaptopropyltriethoxysilane, 3-aminopropyltriethoxysilane, L-glutamic acid 

dimethyl ester, 2-aminobenzothiazole, 2-aminothiophenol and 2-aminophenol. The 

newly synthesized materials were characterized by SEM/EDS, TGA, and elemental 

analysis.  
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CHAPTER 2  

 

EXPERIMENTAL  

 

2.1. Chemicals and Reagents  

 

All reagents were of analytical grade. Ultra pure water (18 MΩ) was used 

throughout the study. Glassware and plasticware were cleaned by soaking in 10% (v/v) 

nitric acid and rinsed with distilled water prior to use.  

1. Standard Cr(III) stock solution  (1000 mg/L):  Prepared by dissolving 1.924 g  of 

chromium nitrate (Cr(NO3)3.9H2O) (Merck, Germany) in 250 mL ultra pure 

water and acidified with 1% (v/v) HNO
3 
(Merck, Germany).  

2. Standard Cr(VI) stock solution  (1000 mg/L):  Prepared by dissolving 0.7072 g 

of potassium dichromate (K2Cr2O7) (Merck, Germany) in 250 mL ultra pure 

water and acidified with 1% (v/v) HNO
3 
(Merck, Germany).  

3. Calibration standards:  Lower concentration standards were prepared daily from 

their stock standard solutions. 

4. pH adjustment: NH
3 

(Merck) (0.1-1.0 M) and HNO3 (Merck) (0.1-1.0 M) were 

used.  

5. Silica-gel: (60 mesh; Merck) was used in the preparation of functional group 

modified silica. 

6. 3-mercaptopropyltrimethoxysilane (Fluka) and 3-aminopropyltrimethoxysilane 

(Fluka) were used as the functional groups modified silica-gel.  

7. 3-Chloropropyltriethoxysilane 97% (Alfa Aesar) was used for chloro 

functionalization of silica-gel. 

8. Dry Toluene (Merck, Germany), Diethyl ether (Merck, Germany), extra pure 

Toluene (Merck, Germany) were used as solvents  
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2.2. Instrumentation and Apparatus  
 

2.2.1. Apparatus 
 

In sorption studies with batch method, Yellowline OS 10 basic orbital shaker 

was used to provide efficient mixing. The pH values were measured with InoLab Level 

1 pH meter supplied with a combined electrode. 

 

2.2.2. Flame Atomic Absorption Spectrometry (FAAS) 

 
An atomic absorption spectrometer, Thermo Elemental Solaar M6 Series with 

air acetylene/nitrous oxide burner was applied for the measurements throughout the 

study using chromium hollow cathode lamp with a maximum current of 10 mA at the 

wavelengths of 357.9 nm. A deuterium (D2) hollow cathode lamp was used for 

background correction and the monochromator slit was kept at 0.5 nm.  

 

2.2.3. Inductively Coupled Plasma Optical Emission Spectrometry  

          (ICP-OES) 
 

A Varian Liberty Series II Axial view ICP-OES instrument was operated with 

plasma gas flow rate of 15 L/min, incident power of 1.2 kW and auxiliary gas flow rate 

of 1.5 L/min. Continuous nebulization was realized by means of a concentric glass 

nebulizer with cyclonic chamber. The sampling flow rate was 1.0 mL/min. The 

wavelengths, namely, 267.716 and 357.869 nm were employed in the measurements.  

 

2.2.4. Inductively Coupled Plasma Mass Spectrometry (ICP-MS) 

 
Chromium determination was made with Agilent 7500 ICP-MS.  The data were 

collected by monitoring m/z 53, and m/z 54 using peak jump mode. The instrument was 

operated with coolant gas flow rate of 15 L/min, auxiliary gas flow rate of 0.90 L/min 

forward power of 1.2 kW, reflected power of 1W, sample uptake time of 25 sec. and 

integration time of 100 msec. 

 18



2.3. Synthesis of the New Sorbents for Chromium Speciation 

 

2.3.1. Synthesis of Sol-gel 

 
 25.0 mL TEOS, 27.0 mL ethanol and 8.0 mL H2O were mixed immediately. 

After adjusting the pH to 4.5 with 2.10-4 M HCl, the mixture was stirred 30 minutes. 

Then, it was allowed to gel at room temperature for 3 days in a closed container. It was 

dried to constant weight at 60 °C for approximately one week. After drying, the glasses 

were crushed in a porcelain cup (Eroğlu T. 1996). 

 

2.3.2. Synthesis of Amino Sol-Gel Resin  

 
25.0 mL TEOS, 27.0 mL ethanol and 8.0 mL H2O was mixed immediately. 

After adjusting the pH 4.5 with 2.10-4 M HCl, 2750 µL 3-aminopropyltrimethoxysilane 

was added drop by drop. The rest was the same as described in section 2.3.1.      
 

2.3.3. Synthesis of 3-Aminopropyltrimethoxysilane Modified Silica-Gel  

          (Silica-amino) 

  
A 5.0 g of silica-gel was washed in 100 mL of 0.01 M acetic acid under vacuum 

for 10 min. to wet its pores. After washing, the silica-gel was filtered from a suction 

pump and placed into 25.0 mL of toluene solution. Then 3.0 mL of 3-

aminopropyltrimethoxysilane was added dropwise by vigorous magnetic stirring to 

prevent self polymerization (Göktürk et al. 2000). About 0.15 mL of concentrated acetic 

acid was added dropwise such that a 0.1 M solution was obtained in toluene. The 

mixture was stirred overnight. Then, 0.15 mL portion of acetic acid was added dropwise 

and mixture was refluxed at approximately 60 °C for 2 h with magnetic stirring. Finally, 

samples were filtered using a vacuum pump and washed well with toluene before being 

left overnight in an oven at 80 °C. The proposed functionalization reaction way is 

illustrated in Figure 2.1. 
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Figure 2.1. Schematic illustration of modification on the silica-gel with 3-aminopropyl-  
                    trimethoxysilane. 
 

 

 2.3.4. Synthesis of 3-Mercaptopropyltrimethoxysilane Modified Silica  

           –Gel (Silica-mercapto) 

 
A 5.0 g of silica-gel was washed in 100 mL of 0.01 M acetic acid under vacuum 

for 10 min. to wet the pores of it. After washing, the silica-gel was filtered through a 

suction pump and placed into 25.0 mL of toluene solution. Then 3.0 mL of 3-mercapto-

propyltrimethoxysilane was added dropwise to prevent self polymerization by vigorous 

magnetic stirring (Göktürk et al. 2000). The rest was the same as describe in section 

2.3.3. The proposed functionalization reaction way is illustrated in Figure 2.2. 
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Figure 2.2. Schematic illustration of modification on the silica-gel with 3-mercapto-  
                 propyltrimethoxysilane.   

 

 

 20



  

 2.3.5. Synthesis of 3-Mercaptopropyltrimethoxysilane Modified Sol- 

         Gel (Sol-gel mercapto) 

 

erization (Göktürk et al. 2000). The rest was the same as 

escribed in section 2.3.3.     

mic Acid Dimethyl Ester Modified Silica-Gel  

        (Silica-aminoacid)  

 

 toluene. After dissolving L-glutamic acid dimethyl ester, it 

was ad

d under vacuum. Thus L-

glutam

  

A 5.0 g of synthesized sol-gel was washed in 100 mL of 0.01 M acetic acid 

under vacuum for 10 min. to wet its pores. After washing, the synthesized sol-gel was 

filtered through a suction pump and placed into 25.0 mL of toluene solution. Then 3.0 

mL of 3-mercaptopropyltrimethoxysilane was added dropwise by vigorous magnetic 

stirring to prevent self polym

d

 

2.3.6. Synthesis of L-gluta

  

A 5.0 g of silica-gel was activated at 160 °C under vacuum for 5 h. The activated 

mesoporous silica was suspended in 50.0 mL of dry toluene and 5.0 mL (20.76 mmol) 

of 3-chloropropyltriethoxysilane (CPTS) were added. The mixture was stirred for 48 h 

at about 100 °C under reflux and in N2 atmosphere. The resulting product (Si-Cl) was 

filtered off and washed with ethanol (2×30 mL), diethyl ether (2×30 mL) and dry 

toluene (2×30 mL). The product was evaporated for 4 h at 70 °C in 150 mbar, and then 

immersed in 50 mL of dry

ded to the mixture.  

To dissolve L-glutamic acid dimethyl ester, 4.83 g (22.84 mmol) of L-glutamic 

acid dimethyl ester hydrochloride and 4.25 g of Na2CO3 were dissolved in 40 mL water. 

Then the mixture was extracted for three times with 30 mL ethylacetate to separate 

organic phase. The organic phase was washed with 40 mL of brine solution (NaCl). It 

was dried with MgSO4. The solvent (EtOAc) was remove

ic acid dimethyl ester was prepared from its HCl salt. 

The mixture of chloride functionalized silica with dissolved L-glutamic acid 

dimethyl ester was stirred for 11 h at room temperature under a nitrogen atmosphere 

and then at 80 °C for an additional 18 h. The resulting modified silica (silica-aminoacid) 

was filtered off and washed with toluene (2×30 mL), ethanol (2×30 mL) and diethyl 
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ether (2×30 mL). Finally, the resulting product was concentrated under vacuum. 

(P´erez-Quintanilla et al. 2006). The proposed functionalization reaction way is 

lustrated in Figure 2.3. 
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Figure 2.3. Schematic illustration of modification on the silica-gel with dissolved L-  

d Silica-Gel  

                    glutamic acid dimethyl ester. 

 

2.3.7. Synthesis of 2-aminobenzothiazole, 2-aminothiophenol and  

          2-aminophenol Modifie

 
As described in section 2.3.6., silica-gel was chlorinated by using 10.0 g of 

silica-gel and 10 mL of CPTS. Then, obtained silica chloride is divided to three parts. 

3.5 g of the obtained silica chloride was taken and then immersed in 35.0 mL of dry 

toluene. 2.40 g of 2-aminobenzothiazole was added and the mixture stirred for 39 h 
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under reflux conditions under N2 atmosphere (about 110 °C). The resulting product 

(Silica 2-aminobenzothiazole) with a white colour was filtered off and washed with 

toluene

 whereas the other product with 2-aminophenol (Silica 2-

aminophenol) had a red colour. The proposed functionalization reaction ways are 

illustrated in Figure 2.4-2.6. 

 

, ethanol and diethyl ether until a colourless washing solution was obtained. 

Finally, the resulting product was dried for 4 h at 70 0C in 150 mbar. 

The other two parts of obtained silica chloride was used for modification of 

silica gel with 2-aminothiophenol and 2-aminophenol. In each case 3.5 g of silica 

chloride was taken and the same procedure was followed as described above. (1.71 mL 

(15.99 mmol) of 2-aminothiophenol or 1.74 g of 2-aminophenol was added instead of 2-

aminobenzothiazole) The resulting product obtained with 2-aminothiophenol (Silica 2- 

aminothiophenol) was yellow
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igure 2.5. Schematic illustration of modification on the silica-gel with 2-aminophenol. 

ation of the Synthesized Sorbent 

uced. Characterization of the sorbents was carried out by using 

Scanni

t the modification of the 

silica-gel and synthesized sol-gel. If the functional groups (-SH or -NH2) had not been 

ttached to the support, it would not have shown any sorption. 

 

 

F

 

 

2.4. Characteriz

 
Firstly, a number of characterization experiments were performed to test the 

success of modification procedure; that is whether the functional groups were attached 

to the sol-gel prod

ng Electron Microscopy (SEM/EDS), Thermo Gravimetric Analysis (TGA) and 

elemental analysis. 

In addition to the characterization experiments mentioned above, the sorption 

behaviour of the novel sorbents gave valuable information abou

a
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Figure 2.6. Schematic illustration of modification on the silica-gel with 2-amino-  

                   thiophenol. 

 
 

2.4.1. Scanning Electron Microscopy (SEM/EDS)  

 
SEM/EDS characterization was performed using a Philips XL-30S FEG type 

instrument at the Center of Material Research at İzmir Institute of Technology. Prior to 

analysis, solid samples were sprinkled onto adhesive aluminium/carbon tapes supported 

on metallic disks. Images of the sample surfaces were then recorded at different 

magnifications. Energy-dispersive X-ray Spectroscopy (EDS) analysis was performed at 

randomly selected areas on the solid surfaces and back-scatter electron (BSE) detector 
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was utilized during SEM analysis. It is used for the elements having a large atomic 

number difference between each other. During the measurements, EDS mapping was 

carried out at magnification of specified values (1000x, 1200x) and applied the voltage 

was 18 kV under vacuum conditions of 3.5x10-5 mbar. 

.  

2.4.2. Elemental Analysis 

 
An elemental analyzer, Leco CHNS-932 was used to determine  the percentage 

of C, H, N and S in unmodifed and modified silica-gel (silica amino, amino sol-gel, 

silica mercapto, sol-gel mercapto, silicaamino acid, silica 2-aminophenol, silica 2- 

aminothiophenol and silica 2-aminobenzothiazole).  

 

2.4.3. Thermo Gravimetric Analysis (TGA) 

 
The thermogravimetric analyses were carried out using a thermogravimetric 

analyzer from TA instruments (Model Perkin Elmer Diamond TG/DTA) at the Center 

of Material Research at İzmir Institute of Technology. The samples were heated from  

25 °C (room temperature) to 800 °C with heating rate of 10 °Cmin−1 under a flux of 

argon gas. 

 

2.5. Determination of Cr(III) and Cr(VI) 

 
Cr(III) and Cr(VI) sorption behaviour of silica-gel, amino sol-gel, silica 2-

aminobenzothiazole, silica 2-aminothiophenol and silica 2-aminophenol were evaluated 

using all three methods, namely FAAS, ICP-MS and ICP-OES for 2 days. 1.0 mg/L 

solutions of Cr(III) and Cr(VI) were prepared separately and the pH of the solutions was 

adjusted to the desired value using NH3 (0.1 M-1.0 M) and HNO3 (0.1 M-1.0 M). The 

data in ICP-MS were collected by monitoring m/z 53, and m/z 54 using peak jump 

mode. In ICP-OES, two wavelengths were chosen for chromium, namely 267.716 and 

357.869 nm. 
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2.5.1. Calibration Curves for Chromium with FAAS 

 
In order to plot the calibration curves of chromium, standard solutions from 0.1 

mg/L to 2.0 mg/L were prepared from 1000 mg/L chromium standard with simple 

dilution. All standards contained 1% HNO3 (v/v). 

 

2.5.2. Speciation and Preconcentration Studies 

 

2.5.2.1. Sorption Studies of Cr(III) and Cr(VI) 

 
A separation/preconcentration step is necessary especially for difficult matrices 

to provide chromium determination at low concentrations. Using batch process, the 

appropriate sorbent for preconcentration/speciation of chromium, various adsorbents 

such as ion exchangers and chelating resins were tried. As an initial experiment, 1.0 

mg/L (20.0 mL) solutions of Cr(III) and Cr(VI) was prepared from their stock solutions 

separately. First, sorption experiments were performed in pure water. The pH of these 

solutions was adjusted between 1.0 and 9.0. About 0.05 g sorbent was added to the each 

solutions. Each mixture was shaken manually for 1.0 minute and then placed on the 

shaker for 30 minutes at room temperature. At the end of the shaking period, the 

mixture was filtered through filter paper and the filtrate was acidified to have 1% HNO3 

(v/v) before sample introduction. Then Cr(III) and Cr(VI) concentrations were 

determined by FAAS using the optimum conditions. 

 

2.5.2.1.1.  Types of Sorbents 

 
As mentioned above, to find the suitable sorbent for the speciation and 

preconcentration of chromium speciation were chosen by educated guess from the 

adsorbents that exist in our laboratory. The investigated sorbents for Cr(III) and Cr(VI) 

sorption are given in Table 2.1.  

 

 

 

 27



Table 2.1. Properties of the sorbents investigated for Cr(III) and Cr(VI) sorption. 
 

Type                                      Sorbent                                Functional Group 
Adsorbents                             Amberlite XAD-2                Polyaromatic 
                                               Amberlite XAD-4                Polyaromatic 
                                               Duolite-XAD-761                Methylol 
                                               Supelite DAX-8                   Acrylic ester 
                                               Celite C-545 AW                 Calcined Diatomaceous Silica 
 
Anion Exchangers                  Duolite A-7 Resin                Polyamine     
 
Chelating Resins                    Duolite C-467                      Amino-phosphoric 
 

 

  2.5.2.2. Studies with Synthesized Sorbents  

 
The chromium sorption studies with synthesized sorbent were performed with 

the same procedure as described above. The extent of chromium sorption was tested on 

the synthesized sol-gel, silica-gel, amino sol-gel, silica mercapto, sol-gel mercapto, 

silica-amino, silica amino acid, silica 2-aminobenzothiazole, silica 2-aminothiophenol 

and silica 2-aminophenol. 

 

2.5.2.2.1. Effect of Solution pH  

 

 To see the change in sorption behavior of the sorbents in a wide pH range 

(1.0-10.0), 1.0 mg/L solutions of Cr(III) and Cr(VI) were prepared separately and the 

pH of the solutions was adjusted to the desired value (1.0-10.0) using NH3 (0.1 M-1.0 

M) and HNO3 (0.1 M-1.0 M). The percent sorption of the solutions was determined by 

the same procedure mentioned above. 

 

2.5.2.2.2. Effect of Shaking Time 

 

In order to obtain quantitative sorption, the effect of shaking time was 

investigated. For this purpose, 20.0 mL of 50.0 mg/L Cr(III) and Cr(VI) solutions, 

separately were shaken with 0.05 g of silica-gel, amino sol-gel and silica amino from 1 
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min to 240 minutes. After filtration, the resultant solutions were made acidic with 1% 

HNO3 v/v and were analyzed by FAAS using the optimum conditions. 

 

2.5.2.2.3. Effect of Sorbent Amount 

 
The amount of sorbent is an important factor for quantitative sorption of the 

analytes from a given solution. For this purpose, 20.0 mL of 50.0 mg/L Cr(III) and 

Cr(VI) solutions were shaken with varying amounts of silica-gel, amino sol-gel and 

silica-amino (0.01g to 0.10 g) for 30 minutes. After filtration, the resultant solutions 

were analyzed by FAAS as stated before. 

 

2.5.2.2.4. Effect of Initial Cr(III) or Cr(VI) Concentration 

 
The effect of Cr(III) and Cr(VI) concentrations on amino sol-gel and silica 

amino were investigated at the initial concentration of 1.0, 10.0, 25.0 and 50.0  mg/L, 

while keeping the mixing time fixed at 30 minutes. Appropriate amount of amino sol-

gel and silica amino (0.05 g) added into each solution (20.0 mL) and the mixtures were 

shaken as before. After filtration of the mixtures, the resultant solutions were analyzed 

by FAAS as stated before. 

 

2.5.2.2.5. Desorption from the Amino Sol-Gel and Silica-amino 

 
After collection of Cr(III) and Cr(VI) by sorbent, their release was investigated 

using eluent HCl range 0.1-2.0 M. For this purpose, 20.0 mL of 1.0 mg/L Cr(III) and 

Cr(VI) solutions were prepared and 0.05 g of sorbent was added to amino sol-gel, 

whereas 0.1 g of sorbent was added to silica amino. After shaking for 30 minutes, the 

mixture was filtered and the sorbent was taken into the eluent (20.0 mL). The new 

mixture was shaken once again for 15 minutes. At the end of this period, the solution 

was filtered and the filtrate was analyzed for their Cr(III) and Cr(VI) contents using 

FAAS. 
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CHAPTER 3 

 

RESULTS AND DISCUSSION 

 

3.1. Characterization of the Synthesized Sorbents 

 

3.1.1. SEM/EDS Measurements 

 
In order to check the success of modification (or mobilization) procedure, the 

surface of the synthesized sorbents was examined under SEM with surface mapping 

program. The distribution of the elements N and S was followed and was assumed to be 

representing the functional groups, namely amino and mercapto, respectively. To 

understand the morphology of the sorbent, EDS mapping microimages are investigated 

for silica amino, amino sol-gel, sol-gel mercapto, silica mercapto and silica 2-

aminothiophenol; which are shown in Figure 3.1.-3.5.  

 

 

O

NSi 

 

 

 

 

 

 

 

 

 

 
Figure 3.1. EDS mapping microimages of Silica amino (2500x). 
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O

SSi  
Figure 3.2. EDS mapping microimages of Silica Mercapto (8000x). 

 

As can be seen from Figure 3.1, The O, Si and N atoms are dispersed 

homogeneously. The silica mercapto and sol-gel mercapto contains S atoms which are 

dispersed homogenously as shown in Figure 3.2. and 3.3. The N, O, and Si atoms in 

amino sol-gel are also dispersed homogenously.  

 

 

 

 

 

 
O 

 

 

 

 

 

 Si S
 

Figure 3.3. EDS mapping microimages of Sol-gel Mercapto (2500x). 
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O

Si N
 

 

Figure 3.4. EDS mapping microimages of Amino sol-gel (8000x). 

 

Si O

S N Cl
 

 

Figure 3.5. EDS mapping microimages of Silica 2-aminothiophenol (2500x). 

 

The silica 2-aminopthihenol contains both S and N atoms which are dispersed 

homogenously as shown in Figure 3.5. According to EDS mapping, the sorbent contains 

Cl atoms in addition to the other atoms. This can be due to the intermediate reaction in 

silica 2-aminothiophenol synthesis where CPTS was used. 
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The energy-dispersive spectrometry (EDS) spectra of sol-gel, amino sol-gel and 

sol-gel mercapto are seen in Figure 3.6. EDS mapping analysis has detected the 

presence of  S atoms which are homogenously distributed along with the matrix 

constituents, namely, Si and O. The presence of N, along with Si and O of the amino 

sol-gel are also detected by EDS elemental analysis. 

 

       

 (a)                                                  (b) 

 

                                                        

 

 

 

 

 

 

 

 

 

 

                                                                      (c)      

Figure 3.6. EDS spectra of a) sol-gel (2000x); b) sol-gel mercapto (2000x) and              

                    c) amino sol-gel (1200x). 
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(a) (b)   

 

 

 

 

 

 

 

 

 

 

 

      (c) 

Figure 3.7. EDS spectra of a) silica-gel (1000x); b) silica amino (2500x) and c) silica  

                   mercapto (800x). 

 

The EDS mapping analysis of silica mercapto (Figure 3.7) has shown the 

presence of S, along with Si and O of the silica mercapto. It can also be seen that S 

atoms are homogenously distributed as the matrix constituents. 

Figure 3.8. shows the EDS spectra of silica amino acid, silica 2-amino-phenol, 

silica 2-aminothiophenol and silica 2-aminobenzothiazole. Similarly, N and S atoms 

appear to be homogenously distributed as the matrix constituents, Si and O of the silica. 

Presence of Cl atom must be due to the intermediate reaction in synthesis of sorbents. 
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       (a)             (b)  

 

 

 

 

 

 

 

 

 

 

      (c)             (d) 

Figure 3.8. EDS spectra of a) silica amino acid (1200x); b) silica 2-amino- phenol  

                    (1000x); c) silica 2-aminothiophenol (1000x) and d) silica 2-amino   

                    benzothiazole (1200x).  

 

3.1.2. Elemental Analysis 

 
It is possible to calculate the amount of attached molecules onto silica-gel and 

sol-gel surface from the percentage of nitrogen for synthesized sorbents containing N, 

the percentage of sulphur for synthesized sorbents containing S. Silica amino, amino 

sol-gel, sol-gel mercapto, silica mercapto, silica amino acid, silica 2-aminophenol, silica 

2-aminothiophenol and silica 2-aminobenzothiazole were investigated in terms of 
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functionalization capacity. The molar content of the synthesized sorbents was calculated 

from N and S content of samples and is given in the Table 3.1-3.3. 

 

Table 3.1. Elemental analysis results of synthesized sorbents with N functional group. 
 

Sorbents % C 
(w/w) 

% N 
(w/w) 

Calculated mmol of 
attached N / g sample 

Silica-amino 10.07 3.20 2.29 
Amino sol-gel 7.44 2.76 1.97 
Silica amino acid 9.98 2.19 1.56 
Silica 2-aminophenol 10.56 1.15 0.82 
 

 

Table 3.2. Elemental analysis results of synthesized sorbents with S functional group. 
 

Sorbents % C  
(w/w) 

% S 
(w/w) 

Calculated mmol of 
attached S / g sample 

Sol-gel mercapto 5.84 5.35 1.67 
Silica mercapto 4.33 3.56 1.11 

 

 

Table 3.3. Elemental analysis results of synthesized sorbents with both S and N   

                  functional groups. 
 

Sorbents % C 
(w/w) 

% S 
(w/w) 

% N 
(w/w) 

Calculated 
mmol of 

attached S / 
g sample 

Calculated 
mmol of 

attached N / g 
sample 

Silica 2-aminobenzothizole 7.08 0.65 0.56 0.20 0.20 
Silica 2-aminothiophenol 7.55 0.56 0.28 0.18 0.20 

 

 

As can be seen from Table 3.1., the highest N content after functionalization was 

obtained for silica amino. Sol-gel mercapto contained the highest value of sulphur 

among the synthesized sorbents containing sulphur group. There is no significant 

difference, in terms of functionalization ratios of N, between silica 2-

aminobenzothiazole and silica 2-aminothiophenol. The functionalization ratio for 

sulphur content is the smallest on silica 2-amino thiophenol and silica 2-

aminobenzothiazole. 
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3.1.3. TGA Analysis  

 
 Thermal stability of the modified silica-gel has been established by 

thermogravimetric analysis. The TGA profiles indicate a comparable stability of the 

new materials, regardless of the synthetic method employed. The thermogravimetric 

curve of the silica-gel, sol-gel, amino sol-gel, silica amino, silica mercapto, sol-gel 

mercapto, silica amino acid, silica 2-aminothiophenol, silica 2-aminobenzothiazole and 

silica 2-aminophenol are shown in Figures 3.9-3.11. As can be seen from Figure 3.9, an 

initial 6.6% weight loss at 25-114 °C is attributed to physically adsorbed water on the 

surface. The following loss of mass of 2.4% reached at 529.23 °C is related to the 

condensation of free silanol groups on the surface to form siloxane groups. The 

thermogravimetric curve of silica-gel is similiar to that of sol-gel. For amino sol-gel, a 

second loss of mass of 9.5% reached at 654 °C, is probably due to decomposition of 

organic groups covalently bonded on the silica surface. A loss of mass at specified 

temperature range occured for silica mercapto, silica amino acid, silica 2-

aminothiophenol, silica 2-aminophenol and silica 2-aminobenzothiazole. All these 

thermogravimetric results showed a direct relationship between the loss of mass to the 

amount of organic molecules anchored on silica gel surfaces. 
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Figure 3.9. Thermogravimetric data for a) silica-gel and b) sol-gel 
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Figure 3.10. Thermogravimetric data for a) amino sol-gel; b) silica amino; c) sol-gel mercapto and d) silica mercapto.
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      Figure 3.11. Thermogravimetric data for a) silica amino acid; b) silica 2-aminophenol; c) silica 2-aminobenzothiazole and 

                                    d) silica 2-aminothiophenol.  
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3.2. Determination of Cr(III) and Cr(VI) 

 
As explained in section 2.5., sorption behaviour of the sorbents towards Cr(III) 

and Cr(VI) species were evaluated using three atomic spectrometric methods, namely 

FAAS, ICP-MS and ICP-OES. The results were evaluated in terms of the 

reproducibility of the results, the agreement between the measurement techniques, and 

the change of the results in two consecutive days (Table 3.4 and 3.5). In ICP-OES 

measurements, two wavelengths (267.716 and 357.869 nm); and in ICP-MS 

measurements, two isotopes of Cr (m/z=53 and 54) were used. The sorption results were 

very close for the three techniques which demonstrated that any of them can be applied 

for Cr determination. In addition, the repeatability of the results were acceptable in 

almost all cases. Approximately 20 % sorption of Cr(VI) on silica gel at the pH values 

investigated could not be repeated in later experiments and therefore was assumed to be 

measurement error during the analysis. The results did not change from the first day of 

the measurement to the second which showed the stability of the solutions for at least 

one day. This was important especially for the situations where it was not possible to 

analyze the solutions immediately after preparation.     

 

 

3.2.1. Calibration Curves for Cr(III) and Cr(VI) 

 
Absorbance versus concentration plots were obtained for commercial Cr 

standard, Cr(III) standard prepared from Cr(NO3)3 and Cr(VI) standard prepared from 

Cr(NO3)3.9H2O as shown in Figure 3.12. All three calibration plots have very similar 

sensitivities and were linear at least up to 2.0 mg/L. The limit of detection (LOD) based 

on 3s (3 times the standard deviation above the blank value) for Cr(III) standard was 

0.01 mg/L.  

 

 

 

 

 



Table 3.4. Sorption of Cr(III) and Cr(VI) by various sorbents (ICP-OES, ICP-MS and FAAS were used in the measurements (Analysis was  

                  performed in the day of preparation) 

 

  
ICP-OES  

(λ=267.716 nm) 
ICP-OES  

(λ=357.869 nm) 
ICP-MS  
(m/z=53) 

ICP-MS  
(m/z=54) FAAS 

pH Cr(III) Cr(VI) Cr(III) Cr(VI) Cr(III) Cr(VI) Cr(III) Cr(VI) Cr(III) Cr(VI) 
silica-gel % sorption  

3 32 (±4) 22 25 20 34 (±4) 0 21 (±5) 0 33 (±7) 0 
4 86 (±2) 20 (±13) 84 (±3) 18 (±12) 87 (±1) 0 78 0 88 (±1) 0 
5 98 (±1) 18 (±4) 97 (±1) 16 (±4) 99 (±1) 0 89 (±1) 0 98 0 
9 88 (±1) 16 (±1) 86 (±1) 15 (±1) 88 0 78 (±1) 0 88 0 

amino sol-gel % sorption 
3 67 (±4) 96 (±1) 65 (±4) 95 (±1) 67 (±4) 96 (±1) 58 (±4) 88 (±1) 65 (±6) 97 (±1) 
9 89 (±5) 18 (±1) 88 (±4) 18 (±1) 88 (±4) 0 79 (±5) 0 88 (±6) 0 

aminobenzothiazole % sorption 
5 76 (±2) 85 (±1) 74 (±1) 84 (±1) 78 (±2) 82 (±1) 70 (±1) 73 (±2) 77 (±2) 80(±2) 
9 99 20 (±3) 98 (±1) 19 (±4) 100 (±1) 0 91 0 100 0 

aminothiophenol % sorption 
9 92 (±2) 17 (±1) 92 (±2) 17 (±3) 93 (±3) 0 82 (±1) 0 92 (±2) 0 

aminophenol % sorption 
4 85 97 84 95 87 97 79 88 86 100 
9 94 9 93 10 94 9 85 0 94 0 
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Table 3.5. Sorption of Cr(III) and Cr(VI) by various sorbents (ICP-OES, ICP-MS and FAAS were used in the measurements (Analysis was  

                  performed one day after the preparation) 

 

  
ICP-OES 

(λ=267.716 nm) 
ICP-OES  

(λ=357.869 nm) 
ICP-MS  
(m/z=53) 

ICP-MS 
(m/z=54) FAAS 

pH Cr(III) Cr(VI) Cr(III) Cr(VI) Cr(III) Cr(VI) Cr(III) Cr(VI) Cr(III) Cr(VI) 
Silica-gel % sorption  

3 36 (±6) 7 (±1) 34 (±5) 3 (±1) 32 (±5) 0 23 (±4) 0 31 (±2) 0 
4 88 (±1) 1 (±1) 87 (±1) 0 86 (±2) 0 77 (±2) 0 86 (±1) 2 (±2) 
5 98 1 (±1) 98 (±1) 0 99 0 88 (±1) 0 96 20 (±6) 
9 89 (±1) 0 88 (±1) 0 88 (±1) 0 77 (±2) 0 87 (±1) 22 (±4) 

amino sol-gel % sorption  
3 70 (±4) 96 (±1) 70 (±4) 96 62 (±6) 96 52 (±6) 85 67 (±4) 77 (±2) 
9 89 (±4) 5 (±4) 89 (±9) 1 88 (±5) 0 73 (±7) 0 89 (±4) 4 (±1) 

aminobenzothiazole % sorption  
5 80 (±1) 85 (±1) 79 (±2) 83 (±1) 75 (±3) 79 (±2) 64 (±1) 67 (±2) 80 (±2) 77 
9 99 (±1) 6 (±1) 99 1 100 0 88 0 98 (±1) 0 

aminothiophenol % sorption  
9 93 (±2) 6 (±1) 92 (±1) 0 92 (±3) 0 77 0 92 (±1) 0 

aminophenol % sorption 
4 88 97 87 97 85 96 74 84 86 100 
9 94 16 95 8 95 0 81 0 94 0 
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Figure 3.12. Calibration curves for Cr obtained with (♦) commercial Cr(III) standard  

                     (y = 0.0111x + 0.0005, R2 = 0,997), ( ) Cr(III) standard prepared from    

                     Cr(NO3)3.9H2O  (y = 0.0115x + 0.0008, R2 = 0,9999), (Δ) Cr(VI) standard   

                     prepared from K2Cr2O7 (y = 0.0116x + 0.0009, R2 = 0.9998). All standard  

                     solutions contained 1% (v/v) HNO3. 

 

 

3.2.2. Speciation and Preconcentration Studies 

 

3.2.2.1. Sorption Studies of Cr(III) and Cr(VI) 

 

3.2.2.1.1. Types of Sorbents 

 
As explained in section 2.5.2.1.1., various sorbents were investigated for Cr(III) 

and Cr(VI) sorption using batch process. The percent sorption graphs for Cr(III) and 

Cr(VI) are given in Figures 3.13. and 3.14., respectively. Nearly all of the sorbents offer 

significant results for the sorption of Cr(III) at pH’s greater than 3. Except for Duolite 

A-7 resin, the materials investigated has shown low sorption affinity for Cr(VI) under 

the studied conditions. Both Cr(III) and Cr(VI) species on Duolite A-7 resin shows high 

percentage sorption between pH 3 and 7, whereas only Cr(III) is sorbed at pH 9. In 
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further studies, -SH and/or –NH functionalization of silica-gel and sol-gel was tested for 

sorption of Cr(III) and Cr(VI). After synthesis and characterization of the novel 

sorbents, the subsequent experiments were realized with these sorbents. 

 

0

20

40

60

80

100

120

0 1 2 3 4 5 6 7 8 9

pH

%
 S

or
pt

io
n

Amberlite XAD-2 Amberlite XAD-4 Celİte C-545
Duolite XAD-761 Supelite DAX-8 Duolite A-7 Resin

 
 

 

 

 

 

 

 

 

 

 
Figure 3.13. Cr(III) sorption as a function of pH on different sorbents 

(20.0 mL of 1.0 mg/L solution, sorbent amount: 0.05 g). 
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Figure 3.14. Cr(VI) sorption as a function of pH on different sorbents 

(20.0 mL of 1.0 mg/L solution, sorbent amount: 0.05 g). 
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3.2.2.2. Studies with Synthesized Sorbents 

 

3.2.2.2.1. Effect of Solution pH 

 
Cr(III) and Cr(VI) sorption studies with the novel sorbents (silica-gel, sol-gel, 

amino-sol-gel, silica-amino, silica-mercapto, sol-gel mercapto, silica amino acid, silica 

2-aminobenzothiazole, silica 2-aminothiophenol and silica 2-aminophenol) were 

performed using the same procedure as described in section 2.5.2.1.1. The percent 

sorption graphs for Cr(III) and Cr(VI) species at different pH values are shown in 

Figures 3.15-3.22, respectively. 
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Figure 3.15. Cr(III) and Cr(VI) sorption on silica-gel and silica amino as a function of  

                      pH (20.0 mL of 1.0 mg/L solution, sorbent amount: 0.05 g). 
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Figure 3.16. Cr(III) and Cr(VI) sorption on silica-gel and amino sol-gel as a function of  

                      pH (20.0 mL of 1.0 mg/L solution, sorbent amount: 0.05 g). 
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Figure 3.17. Cr(III) and Cr(VI) sorption on sol-gel and sol-gel mercapto as a function  

                     of pH (20.0 mL of 1.0 mg/L solution, sorbent amount: 0.05 g). 
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Figure 3.18. Cr(III) and Cr(VI) sorption on silica-gel and silica mercapto as a function  

                     of pH (20.0 mL of 1.0 mg/L solution, sorbent amount: 0.05 g). 
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Figure 3.19. Cr(III) and Cr(VI) sorption on silca-gel and silica-amino acid as a function  

                     of pH (20.0 mL of 1.0 mg/L solution, sorbent amount: 0.05 g). 
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Figure 3.20. Cr(III) and Cr(VI) sorption on silica-gel and silica 2-aminobenzothiazole  

                      as a function of pH (20.0 mL of 1.0 mg/L solution, sorbent amount:  

                      0.05 g). 
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Figure 3.21. Cr(III) and Cr(VI) sorption on silica-gel and silica 2-aminothiophenol as a  

                      function of pH (20.0 mL of 1.0 mg/L solution, sorbent amount: 0.05 g). 
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Figure 3.22. Cr(III) and Cr(VI) sorption on silica-gel and silica 2-aminophenol as a  

                      function of pH (20.0 mL of 1.0 mg/L solution, sorbent amount: 0.05 g). 

 

Several functional groups as amino/mercapto were tried to be immobilized onto 

silica surface. Therefore silica was assumed to be blank in these pH graphs. Among the 

sorbents tried, amino sol-gel gave the most promising results for the speciation of Cr. 

When Cr(III) species on amino sol-gel shows high percentage sorption at any pH except 

pH 3, Cr(VI) species on amino sol-gel shows nearly no sorption. At pH 3, both Cr(III) 

and Cr(VI) species show quantitative sorption. As can be seen from Figure 3.15, any pH 

values greater than 4 can be used for an efficient sorption. The efficieny of sorption on 

silica amino acid and sol-gel mercapto is similar to that of silica-gel. The percentage 

sorption of Cr(III) and Cr(VI) on Silica 2-aminobenzothiazole and silica 2-amino- 

thiophenol is nearly similiar to each other. However, amino sol-gel and silica amino 

were quite suitable in the study.  

 

3.2.2.2.2. Effect of Shaking Time 

 
Effect of shaking time on the sorption of Cr(III) and Cr(VI) by silica-gel, amino 

sol-gel and silica-amino was examined as explained in 2.5.2.2.2. The sorption rate for 

Cr(VI) species was rapid (Figure 3.23); an interaction period of 15 minutes supplied 

89% sorption whereas the equilibrium was reached after 60 minutes. For Cr(III) species, 

an interaction period of 120 minutes led to a limited sorption level (21 %).  
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Figure 3.23. Cr(III) and Cr(VI) sorption on silica-amino as a function of shaking time 

    (20.0 mL of 50.0 mg/L solution, sorbent amount: 0.05 g, pH=4). 
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Figure 3.24. Cr(III) and Cr(VI) sorption on amino sol-gel as a function of shaking time 

                     (20.0 mL of 50.0 mg/L solution, sorbent amount: 0.05 g, pH=3). 

 

3.2.2.2.3. Effect of Sorbent Amount 

 
As explained in section 2.5.2.2.3, the optimum amount of the sorbent for 

maximum sorption was determined by increasing the amount of silica-gel, silica amino 

and amino sol-gel added into 20.0 mL of 50.0 mg/L Cr(III) and Cr(VI) solutions. As 

can be seen from Figure 3.27., an efficient sorption of Cr(VI) was obtained with 100.0 
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mg. of sorbent. However, in Figure 3.26., an efficient sorption of Cr(III) was obtained 

with 50.0 mg. of amino sol-gel (the V/m ratio was kept at 50.0 in all experiments) and 

50.0 mg. of this sorbent was used in the following experiments. The sorption capacity of 

Cr(III) on silica-gel was obtained as 1.84 mg Cr(III)/g sorbent. The sorption capacity of 

Cr(III) and Cr(VI) on silica-amino were obtained as 4 mg Cr(III)/sorbent and 4.8 mg 

Cr(VI)/g sorbent. For amino sol-gel, the sorption capacity of Cr(III) and Cr(VI) were 

6.8 mg Cr(III)/g sorbent and 8.4 mg Cr(III)/g sorbent. 
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Figure 3.25. Percent sorption versus the amount of silica-gel (pH=3; Cr(III)   

                     concentration = 50.0 mg/L, solution volume = 20.0 mL and  

                     shaking time = 30 min.) 
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Figure 3.26. Percent sorption versus the amount of amino sol-gel (pH=3; Cr(III) and  

                     Cr(VI) concentration = 50.0 mg/L, solution volume = 20.0 mL and 

                     shaking time = 30 min.). 
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Figure 3.27. Percent sorption versus the amount of silica amino (pH=4; Cr(III) and  

                     Cr(VI) concentration = 50.0 mg/L, solution volume = 20.0 mL and          

                     shaking time = 30 min.). 

 

3.2.2.2.4. Effect of Initial Cr(III) or Cr(VI) Concentration 

 
As explained in the experimental part, sorption studies with silica amino and 

amino sol-gel were performed for Cr(III) and Cr(VI) species. Appropriate amount of 

amino sol-gel and silica amino (0.05 g) added into each solution (20.0 mL). The range 

of concentration of Cr(III) and Cr(VI) species were varied from 1.0 to 50.0 mg/L. As 

can be seen from Figure 3.28., the percentage sorption of silica-gel decreases with 

increasing the concentration of Cr(III). The same result is obtained for the concentration 

of Cr(III) and Cr(VI) species on silica-amino and amino sol-gel. Here, a prominent 

finding is that, silica amino and amino sol-gel can be used for the sorption of higher 

concentrations of Cr(III) and Cr(VI) whereas the silica (blank) works only for lower 

concentrations of Cr(III). 

 
 
 
 

 

 

 

 53



 

0

20

40

60

80

100

1.0 10.0 25.0 50.0

concentration (mg/L)

%
 so

rp
tio

n

0

20

40

60

80

100

1.0 10.0 25.0 50.0

concentration (mg/L)

%
 s

or
pt

io
n

Cr(III) Cr(VI)

Cr(III)

 

 

 

 

 

 

 

 

 

 
Figure 3.28. Percent sorption with silica-gel versus the initial concentration of Cr(III)   

                     (pH =3, solution volume = 20.0 mL, sorbent amount = 50.0 mg and    

                     shaking time = 30 min.) 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.29. Percent sorption with amino sol-gel versus the initial concentration of  

                    Cr(III) and Cr(VI) (pH = 3 for Cr(VI) and pH = 4 for Cr(III); solution  

                    volume = 20.0 mL, sorbent amount = 50.0 mg and shaking time = 30 min.) 
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Figure 3.30. Percent sorption with silica amino versus the initial concentration of  

                     Cr(III) and Cr(VI) (pH = 4; solution volume = 20.0 mL and sorbent  

                     amount = 50.0 mg and shaking time = 30 min.) 

 

3.2.2.2.5. Desorption from the Amino Sol-Gel and Silica-amino 

 

In order to study the desorption behaviour of Cr(III) and Cr(VI) species from the 

amino sol-gel and silica-amino, HCl was used as eluent and examined at different acid 

concentrations (0.1-2.0 M). Recovery studies were first performed using batch process. 

After the usual sorption process (mixing and shaking 20.0 mL of 1.0 mg/L Cr(III) and 

Cr(VI) species with 0.05 g of amino sol-gel and with 0.1 g of silica amino), the mixture 

was filtered through filter paper and the resin was taken into the eluent. The mixture 

was shaken for another 15 minutes and at the end of this period, the contents were 

filtered and the filtrate was analyzed by FAAS. The eluent concentrations and the 

corresponding recoveries are given in Table 3.6. These values of Cr(VI) on both 

sorbents were between 60-80% with 2.0 M HCl giving a maximum recovery of 80%. 

Therefore, 2.0 M HCl was chosen as the desorption solution (eluent).  

 

 

 

 

 55



 
Table 3.6. Desorption of sorbed Cr(III) and Cr(VI) from sorbents (n=2). 

 
 % Recovery 
  amino sol-gel silica amino 
Eluent Cr(III) Cr(VI) Cr(III) Cr(VI) 
0,1 M HCl 51 (±2) 39 (±1) 4 (±1) 20 (±4) 
0,5 M HCl 51 (±1) 51 (±2) 6 (±1) 39 (±2) 
1 M HCl 55 56 (±2) 8 (±2) 74 (±2) 
2 M HCl 55 (±2) 60 (±3) 15 (±6) 79 (±4) 
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CHAPTER 4 

 

CONCLUSION 

 

The purpose of this study was to develop a speciation and/or preconcentration 

method for Cr(III) and Cr(VI) in waters. For this purpose, the initial part of the study 

has focused on the search of an appropriate commercial sorbent. The relevant 

experiments employed Amberlite XAD-2, Amberlite XAD-4, Duolite XAD-761, 

Supolite DAX-8, Celite C-545 AW), anion exchanger (Duolite A-7) and chelating 

resins (Duolite C-467). These materials exhibited high sorption capacity for Cr(III), but 

not for Cr(VI). 

In addition to the investigated commercial sorbents, a resin having immobilized 

mercapto or amino functional groups was prepared by modifying silica gel with 3-

mercaptopropyltrimethoxy silane, 3-aminopropyltrimethoxy silane, L-glutamic acid 

dimethyl ester, aminophenol, aminothiophenol and aminobenzothiazole for the 

preconcentration of Cr(III) and Cr(VI) species in waters prior to their determination by 

FAAS. The characterizations of new sorbents were performed with SEM/EDS, TGA 

and elemental analysis. 

After synthesis and characterization of the new sorbents, optimum application 

conditions for separation and/or preconcentration of Cr(III) and Cr(VI) species were 

investigated by batch method. The choice of the adsorbent will be based on the working 

pH. After pH 4, silica amino could quantitatively sorb both Cr(III) and Cr(VI) whereas 

amino sol-gel sorbed only Cr(III). Effect of the amount of silica amino and amino sol-

gel was examined at the optimum pH. Silica amino has a better sorption performance 

for small amounts (<100 mg). The optimum amount of silica amino for quantitative 

sorption was found as 0.1 g for 20.0 mL 1.0 mg/L Cr(III) and Cr(VI) solutions whereas 

that of amino sol-gel was 0.05 g for 20.0 mL 1.0 mg/mL. The effect of Cr(III) and 

Cr(VI) concentrations on amino sol-gel and silica amino were investigated at the initial 

concentrations of 1.0, 10.0, 25.0 and 50.0 mg/L. The percentage sorption of silica amino 

and amino sol-gel decreased with increasing the concentration of Cr(III) and Cr(VI) 

species. Elution was realized with 2.0 M HCl, and the percent recovery values (after 

sorption and elution steps) changed between 60 and 80 %. 
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