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ABSTRACT 
 

AN APPROACH TO SUMMARIZE VIDEO DATA IN COMPRESSED 

DOMAIN 

 

The requirements to represent digital video and images efficiently and feasibly 

have collected great efforts on research, development and standardization over past 20 

years. These efforts targeted a vast area of applications such as video on demand, digital 

TV/HDTV broadcasting, multimedia video databases, surveillance applications etc. 

Moreover, the applications demand more efficient collections of algorithms to enable 

lower bit rate levels, with acceptable quality depending on application requirements. In 

our time, most of the video content either stored, transmitted is in compressed form. The 

increase in the amount of video data that is being shared attracted interest of researchers 

on the interrelated problems of video summarization, indexing and abstraction.   

In this study, the scene cut detection in emerging ISO/ITU H264/AVC coded 

bit-stream is realized by extracting spatio-temporal prediction information directly in 

the compressed domain. The syntax and semantics, parsing and decoding processes of 

ISO/ITU H264/AVC bit-stream is analyzed to detect scene information. Various video 

test data is constructed using Joint Video Team’s test model JM encoder, and 

implementations are made on JM decoder.  The output of the study is the scene 

information to address video summarization, skimming, indexing applications that use 

the new generation ISO/ITU H264/AVC video.  
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ÖZET 
 

SIKI�TIRILMI� BÖLGEDE V�DEO VER�LER�N�N ÖZETLENMES� 

�Ç�N B�R YAKLA�IM 

 

Geçirdigimiz 20 yıl içerisinde, sayısal video ve görüntülerin verimli ve ucuz bir 

�ekilde ifade ihtiyacı büyük bir ara�tırma, geli�tirme ve standartla�tırma gayreti 

toplamistir. Bu gayretler sayisal yüksek standart televizyon yayınları, çokluortam video 

veritabanları, gözetim uygulamaları vb gibi çesitli uygulamaları hedeflemektedir. Bunun 

yaninda, bu uygulamalar bit hizlarını kabul edilebilir video niteli�i içerisinde dü�üren 

algoritmalar koleksiyonunlarına ihtiyaç duymaktadır. Günümüzde iletilen ya da 

kaydedilmi� video içeri�inin ço�u sıkı�tırılmıs biçimde bulunmaktadır. Video içeri�i 

sayısındaki büyüme video dizinleme, özetleme ve soyutlama gibi problem sahalarınına 

olan ara�tırma ilgisini arttırmı�tır.  

Bu çalı�mada do�u� sürecinde önemli yol almı� olan ISO/ITU H264/AVC 

standardında kodlanmı� bit dizisi içerisinde uzay-zamansal öngörme bilgisi sıkı�tırılmı� 

sahadan do�rudan çıkarılarak sahne geçi�leri sezimi gerçeklenmi�tir. ISO/ITU 

H264/AVC standardının sözdizim, anlamsal tanımları ve ayrı�tırma, kodçözme süreçleri 

sahne kesimi sezimi için incelenmi�tir. Çe�itli test verileri JM Referans Test Modeli 

kullanılarak olu�turulmu� ve JM Referans Kodçözme modeli üzerinde gerçekle�tirmeler 

yapılmı�tır. Bu çalı�manın çıktısı ISO/ITU H264/AVC kullanan video dizinleme, 

özetleme ve soyutlama gibi uygulamalarında kullanılabilecek sahne kesik bilgileridir. 
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CHAPTER 1 
 

INTRODUCTION 
 

1.1. Introduction 
 

The amount of multimedia content is growing larger to serve the usage of 

applications such as DVD Video, digital TV, and Video on demand applications, video 

databases, and digital libraries, so on.   

This huge information content requires automatic searching, summarizing 

applications and indexing operations to save time for a human operator. Traditionally a 

human operator needs to navigate through the whole content back and forward manually 

in order to acquire the portion of the video content which is the sequence of interest. 

This demand can be answered by automatic and efficient video browsing and 

summarizing system. A fundamental tool to accomplish this is to parse video sequence 

into a set of “shots”.  Shots are defined as “what is captured by the camera between 

recording start and stop”. Boundaries between shots are so called “scene changes” and 

the action of detection of the boundaries between shots is called “scene change 

detection” or scene cut detection. (Yeo and Lui 1995a) 

Scene cuts and scene changes can also be called as key-frames, because they can 

be used to represent a distinct shot. (Gargi et al. 1995) The scene changes may be in 

different forms such as direct cuts, fades, dissolves, wipes etc. (Mee-Sook et al. 1998) 

Video parsing is a combination of video segmentation and video indexing. 

Video segmentation is segmenting the video into shots and video indexing is the stage 

where labeling of the segmented elemental video element is done (Mee-Sook et al. 

1998) 

Many research activities are carried on to detect scene change scenarios to 

provide necessary tools for video parsing.  

The existing techniques and systems are carefully investigated and evaluated in 

(Gargi et al. 1995 and Aslandogan et al. 1999) 

The scene cut change methods have several different performance metrics. The 

computational cost, the ability to detect video shots containing camera operations such 

as zooming, tiling, panning etc. are some of them.  
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Based on the above metrics, several detection domains are used: Direct Pixel or 

Histogram Comparison, compressed domain features of video coding standards, text 

recognition and closed captions for video indexing.  

Generally, regardless of the domain used to detect scene cut; difference metrics 

are calculated to compare a global threshold to detect the case where the scene change 

of interest has been occurred.  

Pixel domain algorithms use color and luminance intensity distributions that 

differ from frame to frame. The degree of changes can be measured as a difference of 

color or luminance histograms.  

The pixel domain algorithms are discussed and compared in (Tse et al. 1995) 

(Yeo and Lui 1995a). The pixel domain algorithms use various comparison techniques 

such as gray level histograms, sum of gray level differences, the difference of color 

histograms, and 2x comparisons of color histograms.  

(Otsuji et al. 1991) uses luminance data to compute both frame-based histogram 

and pixel-based difference between consecutive frames. A cut is detected by searching a 

“seamed point” between frames.  

(Hsu and Harashima 1994) uses the collections of discontinuities to detect scene 

cuts in pixel domain. Characterization of activities is carried on by using statistical 

features such as Gaussian and mean curvature of spatio-temporal video elements.  

(Shahraray 1995) uses the motion information to detect scene changes by 

employing non-uniform content based temporal filtering approach. The block motion 

vectors are calculated, and a non-linear digital order statistical filter is used to combine 

block match values.  

In (Gunsel and Tekalp 1998), scene change problem is treated as a two-class 

classification problem, and automatic threshold is calculated and similar video elements 

are further characterized in one step. The statistical features used to define automatic 

threshold are also defined. These metrics are available to be used in both uncompressed 

and compressed   domain.  

The above methods use pixel data to detect the scene cuts. This introduces the 

complexity problem, because the compressed data needs to be fully decompressed into 

pixel domain prior to the detection step. Therefore, the scene change methods are 

carried on using statistical behavior of compressed domain feature elements.  

Particular scene change type detections are further investigated. For example 

(Fernando and Canagarajah 2000) examines fade-in and fade-out detection in 
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uncompressed domain. Again, histograms are used to combine the nature of fading with 

the distribution of the differences.  

For the image retrieval case, (Ruey-Feng et al. 2000) discusses the retrieval 

scenario with a direct feature extraction for JPEG (Wallace 1992) compressed images. 

This paper gives clues about using compressed data to detect scene changes.  

The algorithms that are used in compressed video domain can be classified 

according to the calculated statistical data. The data extracted from the compressed 

domain can be discrete cosine transform coefficients, (DC or AC components of macro-

blocks) (Yeo and Liu 1995b) (Lee et al. 2000) (Shen and Delp 1995),  DCT coefficients 

and motion vectors in combination (Mezaris et al. 2004) and, macro-block type 

information(Pei et al. 1999).  

(Gerek and Altunbasak 1997) combines various methods carried on MPEG 2 

compressed domain to detect scene cuts, detect zoom and pan, and gradual change 

detection.  

(Yeo and Liu 1995b) shows certain feature extraction schemes for shot boundary 

detection in MPEG compressed video domain and the comparison tests to achieve shot 

boundary.  

In this thesis, the scene cut detection is realized as an application to summarize 

H264/AVC (ITU-T REC H264  2003) compressed video data. H264 ISO/IEC 144496-

10 standard’s syntax and semantics, parsing, decoding process is analyzed. This 

information is used in order to extract direct information from H264/AVC compressed 

video sequence. 

H264 ISO/IEC 144496-10 is the emerging standard scalable for wide area of 

applications such as streaming over internet, DVD, High-Definition TV, Video on 

demand etc.  It is employed widely in applications ranging from television broadcast to 

video for mobile devices.   

As a practical example, HD channels are in broadcast in the 1080i or 720p 

formats in SES Astra and Eurobird 1 satellites at 28.2E and 28.5E, using new DVB 

standard, DVB-S2. (WEB_1 2006) (WEB_2 2006) 

The above discussions are just few examples of the emerging H264/AVC 

standard’s practical usage area. This builds the motivation of selecting the H264/AVC 

coded video bit-stream under study.  

The information extracted from H264/AVC coded the bit-stream is in forms of 

macro-block type of information. This information provides a statistical nature to 
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automatically detect various events on video data, such as abrupt scene changes, gradual 

scene changes.   

The encoder’s decisions during encoding given video sequence, directly reflects 

on the compressed bit-stream in terms of syntax elements, and this information is 

collected to gather quantitative information for the decision process. The partial 

decoding procedure in compressed domain reduces the computational cost.  

The deliverables of this study are tools for video summarization. Examples of 

video summarization can be found in (Li et al. 2006). The shot information can give the 

user the overview of the scene for a quick understanding. This summary sequence 

provides users an overview of the entire video. 

The output of this study is targeted for H264/AVC coded video skimming 

applications. The purpose is to provide low-level features of scene cut information, 

motion information of the scene. Video skimming is the process of representing the 

original video in the form of a short video clip. A video skimming system is illustrated 

in Figure 1.1. A typical video skimming is formed of 3 layers. In the first layer, low 

level features of shot information are derived. At layer 2, high level semantic 

information is derived, by means of face detection, audio classification, video text 

detection, event detection etc. The third layer is responsible for assembling the user 

controlled clips, and represents final video abstraction. This study can be considered in 

Layer 1 of above discussion, where the input video is  H264/AVC coded bit-stream, and 

output is scene cut information. Audio, and text recognition is out of the scope of this 

study.  
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Figure 1.1. Video skimming process  
(Source: Li et al. 2006) 

 

1.2. Structure of the Thesis 
 

 This study is organized as follows. In chapter 2, the digital representation of 

video and video compression basics will be described. This will combine the principles 

and concepts underlying the hybrid DCT based video codecs. After this discussion, the 

standardization efforts of international organizations will be described. This chapter will 

form the basis of the video codec H264 ISO/IEC 144496-10 which will follow in 

chapter 3. The background information given in the first three chapters is followed by 

Chapter 4 which includes a discussion of compressed domain processing. In Chapter 5 

the scene change detection methods will be discussed with an emphasis on video 

summarization. The proposed work will deeply use the knowledge and researches 

discussed in these chapters. The proposed work, the tools, algorithms and experimental 

results with the future work will be the topic of Chapter 6. The properties of spatial and 

temporal models will be described. The syntax and semantics of the H264 ISO/IEC 

144496-10 bit-stream, the encoder internals forms the basis of the scene cut methods.  
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CHAPTER 2 
 

BASICS OF VIDEO CODING AND STANDARDS 
 

2.1. Introduction 
 

Video coding is the process of compressing a video sequence into smaller 

number of the bits (Richardson 2003b). Prior to the discussion of fundamentals of video 

coding principles that will form the background in understanding the hybrid block based 

video codec internals, and their applied versions defined in the standards, the codec 

model and the information theoretic definitions are made.. This chapter first discusses 

temporal and spatial operations that are applied to enable compression. Then the 

concept of entropy coding is described, and finally the hybrid block based video codec 

is constructed.  

 

2.2. Encoder/Decoder Model  
 

 Encoder works as a compressor to form a bit-stream in the defined syntax prior 

to storage or transmission, and the decoder decompresses the bit-stream back into the 

representation domain, typically in pixels. This pair is generally called CODEC. 

(Richardson 2003a) 

 

 
 

Figure 2.1. Encoder-Decoder Model 
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2.3. Video Coding Principles  
 

This section will briefly explain the fundamental video coding principles. First, a 

short review on probability and information theory will be given in the following 3 sub-

sections. This discussion will explain the entropy definition and its properties as a 

background for the bounds provided by the information theory.  

In following section 2.4, video codec internals are described. This description is 

based on spatio-temporal codec model, with an emphasis on entropy coding. 

 

2.3.1. Probability and Information Theory for Video Coding 
 

In video coding, or in any source coding model, the signal is treated as a 

realization of a random process. Random process and source can be used 

interchangeably.  

The source is a random sequence. Let { }nF=F  be sequence of random 

variables nF  of n-th sample. nf is the actual value that nF takes in. nF can be multi-

dimensional vector or scalar. If nF  takes only symbols from a finite alphabet, 

1 2{ , ,..., }nA a a a= , then nF  is called a discrete random variable (RV). If nF takes 

values in continuous range the source is a continuous RV.   

For the case of motion video, where sequences are in three dimensions, spatial 

domain i.e., image points ,x y  and temporal time domain t ; nF  is a 3D random vector, 

and if the corresponding bit-depth is 8 -bits, digital video sequence is a discrete source 

with an alphabet of 3256 . For the case of analog video, nF is a continuous amplitude 

random process.  

It should be noted that nF  is a stationary process, where nF  does not depend on 

the index variable n , and joint distribution of a group of N samples is invariant with 

respect to a common shift in the index.  

For the discrete case ( )Fn
p f represents the probability mass function, and 

, ,..., 11 2 2( , ,..., )F F F Nn Nn n
p f f f

++ +
 is used for joint probability mass function    (Wang et al. 

2002) 
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2.3.2. Entropy and Mutual Information for Discrete Sources 
 

Entropy and mutual information are two important notions in information 

theory. They are used in image/video compression to describe the bounds on the 

minimal bit-rates. 

The Entropy of a discrete random variable F  with an alphabet A  and discrete 

probability mass function ( )Fn
p f is defined as follows;  

 

 [2 ( )]( ) ( ) log FnF p fH f p f
f A

= − �
∈

 (1) 

 

 0 ( ) 1Fnp f< <   (2) 

 

Logarithm can be at any base. Since a digital system is under discussion, base-2 

case is considered.  

Entropy of a random sequence is always non-zero because of (2).  

Entropy defines a measure to represent uncertainty for the sequence nF . It 

depends directly on the probabilistic model. In the case where nF can take any value in 

alphabet with equal probability, it has the maximum entropy. In contrast, if nF  takes a 

unique symbol with a probability of 1, it has no uncertainty, so it has zero entropy.  

Thus this information is the measure to define minimum number of bits to 

convey random sequence nF .  (Wang et al. 2002) 

 

2.3.3. Bounds for Lossless and Lossy Coding 
 

The theoretical foundations on information theory established bounds on 

minimal bit-rate required to realize lossless and lossy coding.  

Scalar lossless coding refers to assigning binary codeword cn for each sample 

fn to realize sequence { fn } of a discrete source nF . This requires pre-designed code-

book 1 2{ ( ), ( ),..., ( )}LC c a c a c a= . Here ( )ic a  is codeword for symbol ia . Due to this 

mapping, code word for fn is cn=c(ai). The coded sequence is decodable if this 
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mapping is one-to-one, i.e; sequence of code words corresponds to one and only one 

possible sequence of source symbols. Let ( )il a to be the length of the bits (i.e., the 

number of bits). Thus the bit rate is defined as;  

 

 ( ) ( )p a l ai i
a Ai

R �
∈

=  (3) 

 

The minimum bit-rate required to represent a discrete stationary source F  by 

assigning a codeword to each sample satisfies  

 

 11 1

_
( ) ( ) ( ) 1H F R F H F≤ ≤ +  (4) 

 

The lower bound can be achieved when the pmf of source is a power of two. 

That is, there exists a set of integers { 1 2, ,..., Lm m m } such that ( ) 2i

mip a
−

= . In this 

case it can be noted that;
2

( ) log ( )i i il a p a m= − = . 

The above theorem describes the first order entropy of discrete source 

1( )H F determines the range of minimum bit-rate for scalar coding source.  

In lossy coding case, the N dimensional vector 1 2{ , ,..., }Nf f f  representing the 

original source F is mapped to the quantized vector ( )Q=g f . The vector g  must 

belong to a pre-designed reconstruction code book of a finite size 1 2, { , ,..., }LL C g g g= .  

Using fixed bit length coding, each quantized vector is represented by ( )log2 L  

bits. So the bit-rate of the coded sequence is; (Wang et al. 2002). 

 

 
2

log ( )
1

N
R L

N
=  (5) 
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2.4. The Video CODEC Internals  
 

The data compression is done using the statistical dependency of the video 

components in spatial and temporal domains. There are three fundamental redundancy 

principles: (Richardson 2003a) 

Spatial Redundancy: Among the pixels within picture.  

Temporal redundancy: Among successive differences 

Entropy coding: Redundancy in compressed data symbols, generally using 

variable length coding techniques.  (Ghanbari 2003) 

 

 
 

Figure 2.2. Mother Daughter Sequence Showing Spatial and Temporal Redundancies 
  

As it can be seen from the above image, there is a high correlation between the 

successive frames, or in temporal domain. This correlation is relatively higher if the 

temporal sampling rate is high. (Richardson 2003a). 

Input to encoder is the uncompressed sequence of raw data, as described in 

video basics section. The video codec implements temporal model for temporal 

redundancies, and spatial model for spatial redundancies. The core objective of the 

model is to supply bit-rate efficiency with an acceptable quality.  

As described at the beginning of the section, three models exist for full 

compression: Temporal, spatial and entropy coder. The blocks input output relation is 

readily seen below.  
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Figure 2.3. Encoder Blocks 
(Source: Richardson 2003a) 

 

2.4.1. Temporal Model 
 

The core objective of the temporal model is to reduce temporal redundancy 

between transmitted frames by forming a predicted frame and making a subtraction 

from the current frame. The output of this process is residual data represented with the 

possible amount of energy. The residual is encoded and sent to decoder. Decoder re-

creates this prediction frame, adds the decoded residual and constructs the current 

frame.  

It is important to model the motion that is observed through consecutive images 

to represent the temporal sequence efficiently. Motion estimation and compensation 

methods are used for this purpose.  

 

2.4.1.1. Motion Model  
 

 A fundamental tool for prediction in temporal domain is using the previous 

frame as a predictor for the current frame. In Figure 2.4, the left frame is frame 

numbered 1, where the frame in the middle is frame 2. Frame 2 is to be predicted from 

Frame 1. The residual is formed by direct subtraction. Difference between the pixel 

values can be absorbed in residual image. It can be noted that, there is considerable 

amount of energy.  
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Figure 2.4. The Difference of Two Consecutive Frames 
 

The sources of the changes between the frames in a sequence of picture are 

object motion in the image, camera motion (zoom, panning, and rotation) and lighting 

changes. In the first two cases the cause is pixel movements in the image. The overall 

pixel movements in the image can be globally described by an optical flow field, which 

is a set of displacement vectors.  

Practically, it is costly to predict the movement of each pixel. This problem can 

be alleviated by considering the movements of the blocks of size 8x8 or 16x16 instead 

of pixels.  

   

2.4.1.2. Block Based Motion Estimation and Compensation 

 

Practically, instead of predicting each pixel movement, image is partitioned into 

blocks. To achieve motion estimation and compensation this widely used procedure is used:  

1. Search an area in the reference frame (past or future frame, previously coded 

and transmitted) to find a ‘matching’ M × N-sample region. This is carried out by 

comparing the M × N block in the current frame with some or all of the possible M × N 

regions in the search area (usually a small region centred on the current block position) 

and finding the position that gives the ‘best’ match. A popular matching criterion is 

based on minimizing the energy in the residual formed by subtracting the candidate 

region from the current M × N block. The candidate position that minimises the residual 

energy is chosen as the best match. This process of finding the best match is known as 

motion estimation. 

2. The chosen block at the candidate position becomes the predictor for the 

current M × N block and is subtracted from the current block to form a residual M × N 

block i.e., motion compensation.  
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3. The residual block is encoded and transmitted and the offset between the 

current block and the position of the candidate region (motion vector) is also transmitted 

(Richardson 2003a). 

The information derived from the above discussion is used by the decoder to re-

create the predicted region, after decoding the residual frame the predicted region is 

added and the original frame is constructed.  

Using block based motion estimation provides an efficient form for practical 

implementations, and traceability but it introduces blocking artifacts. 

The arrangement of a macroblock can be seen below. A macroblock has 16x16 

pixel Y-luminance blocks, and 8x8 blocks for chrominance samples, if the sampling 

scheme is 4:2:0.  

 

 
 

Figure 2.5. Macro-block Structure, 4:2:0 Sampling Lattice 
 

As described earlier, finding the best match of replacement of a macro-block in 

reference frame is motion-estimation. The reference frame can be previous or next 

frame, regardless of display order.  

The best-match macro-block is subtracted from the reference frame to produce a 

residual macro-block. This residual macro-block is encoded with an appropriate motion-

vector assigned to it. In the encoder, there is a reverse path to decode this residual 

information with associated motion vector to produce a reference frame. This also 

ensures the reference pictures are valid for both decoder side, and the encoder side.  

An also important trade off in the motion estimation and compensation is 

between block-size and complexity. Smaller block sizes provide better motion 

compensation, because it approximates the ideal condition of pixel-wise optical flow in 

a more precise level.   
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Another important opportunity to enhance motion estimation is using the sub-

pixel positions for mid-level integer values by using interpolation. This provides a more 

precise best match search operation, and better energy compaction.  

The following Figure 2.6 shows the concept of “quarter-pixel” motion 

estimation is illustrated in Figure 2.6. 

 

 
 

Figure 2.6. Integer, Half-Pel, Quarter-Pel Motion Estimation  
(Source: Richardson 2003a) 

  

 In the first stage, motion estimation finds the best match on the integer sample 

grid (circles). The encoder searches the half-sample positions immediately next to this 

best match (squares) to see whether the match can be improved and if required, the 

quarter-sample positions next to the best half-sample position (triangles) are then 

searched. The final match (at an integer, half- or quarter-sample position) is subtracted 

from the current block or macroblock. 

 

2.4.2. Spatial Model 
 

As discussed earlier, video sequence is formed of images. There is a 

considerable redundancy in spatial domain. It is not efficient to compress a still image 

using a simple entropy coding scheme, because of the natural behavior of the still 

images. If we consider the auto-correlation function of a typical 2D image, we can 

observe a high spatial correlation. Note that; autocorrelation indicates the similarity 

between the original image and a spatially-shifted copy of itself. (Richardson 2003a). 

The autocorrelation function corresponding to a still image can be seen in Figure 2.7. 
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Figure 2.7. Autocorrelation function of a still image  
(Source: Richardson 2003a) 

 

 As noted earlier, the motion compensated residual compacts the energy of the 

motion, therefore the correlation between the pixels in residual data is weaker. This 

effect can be seen in Figure 2.8. 

 

 
 

Figure 2.8. Autocorrelation Function of a Residual  
(Source: Richardson 2003a) 
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 The function of image model is to de-correlate the residual image further to so 

that the entropy coder can further compress this data. To achieve such objective, an 

image model has three blocks; transform coder, quantizer, and re-order mechanism.  

 

2.4.2.1. Predictive Image Coding 
 

Predictive image coding in spatial domain is similar to motion compensation in 

temporal domain. In predictive image coding, the previously sent samples may be used 

to predict the current picture element in the same image. This prediction method is 

generally called Differential Pulse Code Modulation.  

 

2.4.2.2. Transform Coding 

 

The main objective of transform coding stage in a video encoder is to transform 

image pixel data or residual data to another domain. The main features of the transform 

should be:   

1.  Data in the transform domain should be decorrelated (separated into 

components with minimal inter-dependence) and compact (most of the energy in the 

transformed data should be concentrated into a small number of values). 

2. The transform should be reversible. 

3.  The transform should be computationally tractable (low memory 

requirement, achievable using limited-precision arithmetic, low number of arithmetic 

operations, etc.). 

In most of the still scenes, the energy is concentrated on low frequency region. 

In order to achieve higher compression rates, transform coding transforms the spatial 

values into transform domain.  
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Figure 2.9. The Effect of Transforming  
(Source: Ghanbari 2003) 

 

In Figure 2.9, 1x  and 2x has the pixel number distribution in 1 2x x  Cartesian 

space. Although pixel values can take values between 0 and 255 when quantized to 8 

bits, they are likely to take values in terms of their similarity. In the above figure, their 

distribution lies on top of the 45 degrees line. If the 1 2x x axis is rotated by 45 degrees to 

1 2y y  axis, the quantity to represent the same data is getting smaller.  

The transformation matrix T , is rotates the axis by 45 degrees. 

  

cos 45 sin 45 1 1
sin 45 cos 45 1 12

1
T

� � � �
= =� � � �− −� � � �

 

 

This makes the resulting axis, transform coefficients 1 2, yy are:  

 

1 1 2 2 1 2( ) ( ), and 
2 2

1 1y x x y x x= + = −  

 

According to the Perseval’s theorem (Oppenheim and Schafer 1989); the signal 

energy is preserved due to the transformation. This statement holds for the above 



 

 18 

transform pair, where
2

1
is the normalization factor. The signal energy in pixel domain 

is equal to the signal energy in transform domain.  

Elements of the transform matrix are called ‘basis vectors’. They are used to de-

correlate level of transform coefficients, leaving part of coefficients significant, and 

making the remaining parts small in quantity.   

 

2.4.2.3. DCT Transform  
 

Discrete cosine transform, first designed for the area of digital processing for the 

purposes of pattern recognition and Wiener filtering (Oppenheim and Schafer 1989).  

DCT is defined by:  

 

 ,
(2 1)( )cos , 0,1,..., 1

2k n
n ku k n N

N
πα += = −  (1) 

 

 

1
              0

1
    k=1,2,...,N-1

( )
k
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N
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� 	=
 

 

� �

 


 

 �

=  (2) 

 

2D DCT Transform operates on a block of N N× samples to create a matrix Y .  

If X is the matrix with the samples, Y is the coefficients matrix and A  is 

N N× transform matrix, the forward, backward transforms and elements of A is 

defined as follows: (Drake et al. 1967) 

Forward Transform:   TY = AXA  

Inverse Transform:    TX = A YA   

i

(2 1) 1 2
cos    where ( 0),   C ( 0)

2ij i i

j i
C C i i

N N N

π+
= = = = >A  

Recall that, basis functions are real, which makes DCT relatively easy to 

implement. 
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Figure 2.10. DCT Basis Functions Images  
(Source: Richardson 2003a) 

 

In the figure below, DCT coefficients of a 4 4× block of an image is shown.  

 

 
 

Figure 2.11. DCT Example  
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2.4.2.4. Quantization 

 

Quantization technique is a mapping from X to a quantized signal with a 

reduced range of Y. The quantized signal Y has fewer bits to represent X. A scalar 

quantiser maps one sample of the input signal to one quantised output value and a 

vector quantiser maps a group of input samples (a ‘vector’) to a group of quantised 

values. 

Such mapping is seen on uniform threshold quantiser is seen below. It has equal 

step sizes with reconstruction values pegged to the centriod of the steps  (Ghanbari 

2003).  

 

 
 

Figure 2.12. Uniform Threshold Quantiser (UTQ) threshold value th and the step size q  
(Source: Ghanbari 2003) 

 

A further two subclasses of UTQ can be identified within the standard codecs, 

namely those with and without a dead zone. These are illustrated in Figure 2.13 and will 

be hereafter abbreviated as UTQ-DZ and UTQ, respectively. The term dead zone 

commonly refers to the central region of the quantiser, whereby the coefficients are 

quantised to zero. (Ghanbari 2003) 
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Figure 2.13. Quantization Schemes  
(Source: Ghanbari 2003) 

  

The quantization resolution is defined by quantiser parameter QP. If the step size 

is large, the number of output values if quantiser is small, so a better compression can 

be achieved. However due to the coarse quantization, loss in the image quality 

decreases.  

The inverse operation of quantization is inverse quantization. Inverse 

quantization is frequently referred as “scaler” or “rescaler”.  

Quantisation may be used to reduce the precision of image data after applying 

a transform such as the DCT or wavelet transform removing insignificant values such as 

near-zero DCT or wavelet coefficients. The forward quantiser in an image or video 

encoder is designed to map insignificant coefficient values to zero whilst retaining a 



 

 22 

reduced number of significant, nonzero coefficients. The output of a forward quantiser 

is typically a ‘sparse’ array of quantised coefficients, mainly containing zeros. 

Another type of quantization is vector quantization, where quantiser maps a 

vector of inputs to a single value (codeword), at the decoder side, the codeword maps to 

approximations of original input. The codebook contains the necessary collection of 

codewords in both decoder and encoder.  

Vector quantization works as follows:  

1. Partition the original image into regions (e.g. M × N pixel blocks). 

2. Choose a vector from the codebook that matches the current region as closely 

as possible. 

3. Transmit an index that identifies the chosen vector to the decoder. 

4. At the decoder, reconstruct an approximate copy of the region using the 

selected vector. (See following figure) 

 

 
 

Figure 2.14. Vector Quantization Technique  
(Source: Ghanbari 2003) 

 

A critical part of designing a successful scheme is to design codebook for 

appropriate codeword mapping.  
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2.4.2.5. Reordering and Zero Encoding 
 

 After transform, and quantization step, the coefficients are to be further 

processed before being transmitted. The output of transform and quantization includes 

many zeros, and has a sparse structure.  

 Reordering is the process of preparing the data to entropy coding. The 

distribution of the transform coding will be described below.  

 

2.4.2.5.1. DCT Coefficient Distribution and Run-Level Encoding 
 

The DC coefficients represent the zero frequency information of the 

corresponding macro-block and it is located at DC(0,0) of the macro-block. The 

distribution of the non-zero coefficients is seen in the below figure 14.  

 

 
 
Figure 2.15. The Distribution of a Residual Macro-blocks (Non zero Coefficients in 

lighter gray) (Source: Richardson 2003a) 
 

2.4.2.5.2. Run-Level Encoding 
 

The output of the reordering process is an array that typically contains one or 

more clusters of nonzero coefficients near the start, followed by strings of zero 

coefficients. The large number of zero values may be encoded to represent them more 

compactly, for example by representing the array as a series of (run, level) pairs where 



 

 24 

run indicates the number of zeros preceding a nonzero coefficient and level indicates the 

magnitude of the nonzero coefficient. 

 

2.4.2.6. Entropy Coding  
 

Entropy coder is the latest step in encoder block. Its output is the compressed 

bit-stream, ready to send or store in an appropriate format, which is not the topic 

discussed in this section. Inputs can be of type motion vectors, quantized transform 

coefficients, markers, headers for data in the stream, supplementary information for 

robustness for streaming etc.  

 

2.4.2.6.1. Predictive Coding  
 

Whether spatial or temporal data is input to the entropy coder, redundancy can 

still exist a in the bit-stream to be sent. Especially small macro-block replacement 

vectors are temporally correlated. Compression of the motion vector field may be 

improved by predicting each motion vector from previously-encoded vectors. 

(Richardson 2003a) 

 

2.4.2.6.2. Variable-length Coding 
 

A variable-length encoder maps input symbols to a series of codewords (variable 

length codes or VLCs). Each symbol maps to a codeword and codewords may have 

varying length but must each contain an integral number of bits. Frequently-occurring 

symbols are represented with short VLCs whilst less common symbols are represented 

with long VLCs. Over a sufficiently large number of encoded symbols this leads to 

compression of the data. 

 

2.4.2.6.3. Huffman Coding 
  

Huffman coding assigns a VLC to each symbol based on the probability of 

occurrence of different symbols.  
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The optimal number of bits to be used for each symbol is - log2 p, where p is the 

probability of a given symbol.  

To generate the Huffman code for symbols with a known probability of 

occurrence, the following steps are carried out: 

• Rank all the symbols in the order of their probability of occurrence 

• Successively merge every two symbols with the least probability to form a 

new composite symbol, and re-rank order them; this will generate a tree, where each 

node is the probability of all nodes beneath it 

• Trace a path to each leaf, noting the direction at each node. 

An example can be seen below, where symbols are from A-G, and their 

probability is in descending order in the third column. The smallest probabilities are 

coded and combined probability makes the column reorder. The process goes to end of 

columns to a last probability of 1. Starting from the last column, the bottom 

probabilities are assigned 1, and top ones are assigned to 0, the corresponding codeword 

(shown in the first column) is read off by following the sequence from right to left.  

 

 
 

Figure 2.16. Example of Huffman Code for 7 Symbols 
(Source: Ghanbari 2003) 
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2.4.2.6.4. Arithmetic Coding  
 

The variable length coding schemes described in previous section share the 

fundamental disadvantage that assigning a codeword containing an integral number of 

bits to each symbol is sub-optimal, since the optimal number of bits for a symbol 

depends on the information content and is usually a fractional number. Compression 

efficiency of variable length codes is particularly poor for symbols with probabilities 

greater than 0.5 as the best that can be achieved is to represent these symbols with a 

single-bit code. (Richardson 2003a) 

In arithmetic coding, a code string is created, such that this string represents a 

fractional value on the number line in interval [0,1]. It separates the data and encoding 

information with respect to the model. Each symbol is translated to integral number of 

bits, thereby improving coding efficiency. It catches the entropy bound effectively. 

(Ghanbari 2003) 

Modeling forms the basis of arithmetic coding. It can be defined as the action of 

calculating the distribution of probabilities for the next symbol to be coded in any given 

concept. In models, the probabilities are represented in integer frequencies. There are 

two types of arithmetic coding; fixed and adaptive.  

In the fixed model, both encoder and decoder know the probability assigned to 

each symbol. These probabilities can be determined by measuring frequencies in 

representative samples to be coded and the symbol frequencies remain fixed. Fixed 

models are effective when the characteristics of the data source are close to the model 

and have little fluctuation. 

In the adaptive model, the assigned probabilities may change as each symbol is 

coded, based on the symbol frequencies seen so far. Each symbol is treated as an 

individual unit and hence there is no need for a representative sample of text. Initially, 

all the counts might be the same, but they update, as each symbol is seen, to 

approximate the observed frequencies. The model updates the inherent distribution so 

the prediction of the next symbol should be close to the real distribution mean, making 

the path from the symbol to the root shorter. 

For example, suppose the symbol sequence of “eaii!“ from the symbol elements 

{a, e, i, o, u, ! } is to be encoded.  
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In table below, each symbol, its probability of occurrence and range that 

corresponds to its probability of appearance in the cumulative density function is noted. 

 

Table 2.1. Example Table of Prob. For Different Symbols 
 

Model for alphabet a, e, i, o, u, !   

Symbol Probability Range 
a  0.2 [0.0, 0.2) 

e  0.3 [0.2, 0.5) 

i  0.1 [0.5, 0.6) 

o  0.2 [0.6, 0.8) 

u  0.1 [0.8, 0.9) 

!  0.1 [0.9, 1.0) 

   
 

Arithmetic coding process starts with the first symbol “e” (in the sequence eaii!). 

It is in the range [0.2, 0.5). The next coming symbol “a” has a range [0.0, 0.2) but the 

new sub range is the symbol restricted by the range of “e”.  The process can be seen in 

the below figure. The final range represents the message. Any number x, which falls 

into the range of 0.23354 � x < 0.2336, represents the sequence “eaii! “. 

 

 
 
Figure 2.17. Process of Arithmetic Coding Interval. Scaled up at each stage for the 

message eaii! (Source: Ghanbari 2003) 
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Generally decoding can be done using 1
n n

n
n n

R L
U L

R +
−=
−

, where nR is the code in 

the range defined by lower value nL , and upper value nU (Ghanbari 2003). 

 

2.4.2.6.5. Binary Arithmetic Coding 
 

The common pitfall of arithmetic coding described above is observed on the 

long sequences, because as the length of the sequence increases, the interval where the 

encoded signal is presented is getting smaller. This leads to a need for technique to 

define an computer arithmetic friendly upper bound, i.e., the interval [0, 1) is scaled up 

to [0, MAX_VAL] where MAX_VAL is the largest integer that computer can handle.   

More complex examples can be seen on (Ghanbari 2003) and (Richardson 

2003a) 

 

2.4.2.6.6. Context-Based Arithmetic Coding 
 

A popular method for adaptive arithmetic coding is to adapt the assigned 

probability to a symbol, according to the context of its neighbors. This is called context-

based arithmetic coding.   

Assume that binary symbols of a, b and c, which may take values of 0 or 1, are 

the three immediate neighbors of a binary symbol x, as shown in  Figure 17.  

 

 
 

Figure 2.18. Three Neighbors of symbol x   
 

There is a high correlation between the symbols in the image data. If the 

neighboring symbols “a, b and c” are mainly 1, then it is logical to assign a high 

probability for coding symbol x, when its value is 1. Conversely, if the neighboring 

symbols are mainly 0 the assigned probability of x = 1 should be reduced. Thus we can 

define the context for coding a 1 symbol as: 
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2 1 02 2 4 22 c b a c b acontext + + = + +=  

 

For the binary values of a, b and c; the context has a value between 0 and 7. 

Higher values of the context indicate that a higher probability should be assigned for 

coding of 1, and a complementary probability, when the value of x is 0. 

 

2.5. The Hybrid Block Based Video Codec  

 

This chapter so far described the internal blocks of the hybrid block based video 

codec. The layout of the encoder which combines these blocks is in Figure 2.19.  

 

 
 

Figure 2.19. Dataflow in encoder  
(Richardson 2003a) 

 

The data flow in the encoder can be summarized as below:  

1. An input video frame Fn is presented for encoding and is processed in units of 

a macroblock (corresponding to a 16 × 16 luma region and associated chroma samples).  

2. Fn is compared with a reference frame, for example the previous encoded 

frame (Fn−1). 

A motion estimation function finds a 16 × 16 region in Fn−1 (or a sub-sample 

interpolated version of Fn−1) that ‘matches’ the current macro-block in Fn (i.e. is similar 

according to some matching criteria). The offset between the current macroblock 

position and the chosen reference region is a motion vector MV. 

3. Based on the chosen motion vector MV, a motion compensated prediction P is 

generated (the 16 × 16 region selected by the motion estimator). 
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4. P is subtracted from the current macroblock to produce a residual or 

difference macroblock D. 

5. D is transformed using the DCT. Typically, D is split into 8 × 8 or 4 × 4 sub-

blocks and each sub-block is transformed separately. 

6. Each sub-block is quantized. 

7. The DCT coefficients of each sub-block are reordered and run-level coded. 

8. Finally, the coefficients, motion vector and associated header information for 

each macroblock are entropy encoded to produce the compressed bitstream (Richardson 

2003a). 

 

 
 

Figure 2.20. Data Flow in the Decoder 
 

The Decoder works in the inverse order of encoder, receiving Coded Bit-stream, 

as seen in Figure 2.20. The reconstruction process is summarized below.  

1. Acompressed bitstream is entropy decoded to extract coefficients, motion 

vector and header for each macroblock.  

2. Run-level coding and reordering are reversed to produce a quantised, 

transformed macroblock X. 

3. X is rescaled and inverse transformed to produce a decoded residual Dn. 

4. The decoded motion vector is used to locate a 16 × 16 region in the decoder’s 

copy of the previous (reference) frame Fn−1. This region becomes the motion 

compensated prediction P. 

5. P is added to Dn to produce a reconstructed macroblock. The reconstructed 

macroblocks are saved to produce decoded frame Fn. 
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CHAPTER 3 
 

OVERVIEW OF H264/AVC STANDARD 
 

3.1. Introduction 
 

H264/AVC standard has been developed to provide two main goals: 

Compression efficiency and network friendliness. It has been developed by 

combinational efforts of ITU-T Video Coding Experts Group (VCEG) and ISO/IEC 

Moving Picture Experts Group (MPEG). The addressed applications can be grouped to 

“conversational” applications; such as video conferencing/telephony and “non-

conversational” applications; such as storage, broadcast or streaming. The new standard 

also provides tools to enhance rate-distortion efficiency compared to the existing video 

coding standards.  

This chapter will form the basis of the H264/AVC internals. The discussions 

here applies directly on next chapters, because the application directly uses the behavior 

of the encoder’s output i.e., predictions that are embedded in the bit-stream.  

  In Part 2 of this chapter, the purpose and the history of the standards will be 

briefly mentioned as a background for the new challenges provided by the H264/AVC 

standard. Then the working model of the standard is described. The design goals of the 

standard form a motivation for the necessary features of this codec architecture.  

 Part 2 also gives necessary background on Network Abstraction Layer which 

defines a format to carry coded video elements. Part 3 illustrates the video coding layer 

sitting on top of NAL layer. Finally, Part 4 describes the profiles and levels that 

illustrate the tools of H264/AVC appropriate for application domain.  

  

3.2. History and Overview of the Video Coding Standards 

 

Efficient digital representation of image and video signals was an active research 

and development area, and resulted many developments in video coding standards. 

Standards give the opportunity to define interoperability between devices. The 

applications covered video on demand, digital television, video database systems etc.  
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Moving Picture Expert Group was formed to develop standards on video coding 

technology in 1988. The studies collected many efforts on image and video coding 

algorithms together to meet the needs of interoperability and scalability. Although this 

was the economical goal, technically the ultimate objective was to lower the bit rates. 

The first output of the committee was MPEG-1, which was issued in 1992. The standard 

defined representation of video with associated audio at 1.5 Mbits/s bit rates for storage 

and retrieval applications. This standard did not cover  carrying  video information at 

higher bit rates, e.g. PAL/NTSC resolutions. Also interlaced video handling was another 

issue not covered in MPEG 1 standard. So in 1994, this demand resulted in MPEG 2 

standard, which was available to handle such higher video representation either 

interlaced or progressive with associated audio. The application areas are extended to 

packet video networking, digital television over satellite or terrestrial broadcasting 

techniques, digital tape recorder applications. 

MPEG video compression algorithms rely on the collection of techniques in 

spatial and temporal video domain based on hybrid DCT, as described in Chapter 2. 

(See Figure 2.19).  

MPEG 1, (also MPEG 2) are based on macro-blocks, which is the fundamental 

unit. Each macro-block consists of four 8x8 luminance blocks and two 8x8 chrominance 

blocks(1 U and 1 V). Macro-blocks are the units for motion-compensated compression. 

Blocks are used for DCT compression.  

Frames can be encoded in three types: intra-frames (I-frames), forward predicted 

frames (P-frames), and bi-directional predicted frames (B-frames). 

An I-frame is encoded as a single image, with no reference to any past or future 

frames. The encoding scheme used is similar to JPEG compression. A P-frame is 

encoded relative to the past reference frame. A reference frame is a P- or I-frame. The 

past reference frame is the closest preceding reference frame. Each macro-block in a P-

frame can be encoded either as an I-macro-block or as a P-macro-block. An I-macro-

block is encoded just like a macro-block in an I-frame. A P-macro-block is encoded as a 

16x16 area of the past reference frame. To specify the 16x16 area of the reference 

frame, a motion vector is included. A B-frame is encoded relative to the past reference 

frame, the future reference frame, or both frames. The future reference frame is the 

closest following reference frame (I or P). The encoding for B-frames is similar to P-

frames, except that motion vectors may refer to areas in the future reference frames. A 
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typical frame dependency pattern for MPEG 1 can be shown in Figure 3.1. These 

definitions are also valid for MPEG 2 standard.  

 

 
 

Figure 3.1. Typical MPEG 1 Frame Order  
(Source: WEB_7, 2007) 

 

MPEG-1 video sequence is a layered structure. Each video sequence is 

composed of a series of Groups of Pictures (GOP's). A GOP is composed of a sequence 

of pictures (frames). A frame is composed of a series of slices. A slice is composed of a 

series of macro-blocks, and a macro-block is composed of 6 or fewer blocks (4 for 

luminance and 2 for chrominance) and possibly a motion vector. This structure is also 

valid for MPEG 2 standard.  

MPEG 1 was supporting video sequence (possibly decimated from the original) 

of about 352 by 240 frames by 30 frames/s. MPEG-1 was optimized for CD-ROM or 

applications at about 1.5 Mbit/sec. Video non-interlaced (i.e. progressive). MPEG 2 is 

the superset of MPEG 1. It provides scalability by defining different profiles and levels 

supporting interlaced video formats and a number of other advanced features, including 

features to support HDTV. This profile aims to support applications such as compatible 

terrestrial TV/HDTV, packet-network video systems, backward-compatibility with 

existing standards (MPEG-1 and H.261), and other applications for which multi-level 

coding is required. MPEG-2 Video builds on the completed MPEG-1 Video Standard. 

(WEB_7, 2007) (Tekalp. 1995)  
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3.3. H264 Video Coding Standard  

 

3.3.1. The Scope of the Standard 

 

The scope of H264/AVC ISO/IEC Part-10 Standard is similar to the purpose of 

the previous standards. The focus of the standard is on the central decoder part as 

illustrated in the below figure:  

 

 
 

Figure 3.2. The Scope of the standard 
(Source: Richardson 2003a) 

  

The standard defines the restrictions on the bit-stream and syntax, decoding 

process, parsing process of syntax elements as the previous standards are organized. 

This assures that every decoder that is compliant with the standard will produce similar 

pixel output from coded video data. The purpose of this working model is to bring 

freedom to those who implements encoder according to the application needs. Note that 

there is a trade-off in between compression quality, bit-rate, and implementation 

complexity etc. In short, the responsibility of the encoder is to produce compliant bit-

stream output.  

 

3.3.2. Applications and New Features of H264/AVC 
 

H264/AVC standard is designed to meet the requirements of very broad 

application areas. The most common application field can be listed as the following:  

• Broadcast over cable, satellite, cable modem, DSL, terrestrial 

• Interactive applications on Storage Media such as optical, magnetic devices 

etc.  

• Conversational services  
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• Video on demand and multimedia streaming services  

• Wireless application scenarios, Multimedia Messaging services, Ethernet.  

The standard is capable of supporting network infrastructures, as it is going to be 

described in the next part. To enable such flexibility, it is necessary to understand the 

structure of the encoder top level architecture, which is shown on Figure 3.2.  

 

 
 

Figure 3.3. The H264 Layers  
(Source: Richardson 2003a) 

 

Enhancement in coding efficiency compared to previous standards is accomplished 

by the prediction algorithms that can be summarized by the following items:  

- Variable block-size motion compensation with small sizes 

- Motion compensation with quarter sample accuracy 

- Motion vectors over picture boundaries.  

- Multiple reference picture motion compensation 

- Decoupling of reference order from display order 

- Decoupling of picture presentation methods from picture referencing  

- Weighted prediction  

- Improved “skipped” and direct motion reference 

- Directional spatial prediction for intra coding.  

- In loop de-blocking filter  

Other tools improving the coding efficiency increasing methods:  

- Small size block transform  

- Hierarchical block transform 
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- Short word length transform  

- Exact match inverse transform 

- Arithmetic entropy coding: CABAC  

- Context adaptive entropy coding 

 

Robustness to data errors/losses plus flexibility opportunities arise by employing 

following concepts:  

- Parameter set structure: gives necessary header information for conveyance. 

This forms key information for the decoder to detect losses such as sequence header or 

picture header.  

- NAL unit syntax structure: NAL unit forms a structure where the syntax 

structure of H264/AVC fits in. as the name indicates, it forms an abstraction to the 

transport layer by forming a packet scheme.  

- Flexible slice size  

- Flexible Macro-block ordering FMO:  

- Arbitrarily slice ordering  

- Redundant Pictures 

- Data partitioning  

- SP/SI Synchronization/Switching Pictures 

 

3.3.3. Network Abstraction Layer  
 

This chapter will discuss the network abstraction layer concept. In order to 

isolate the underlying packet based transport medium, the standard defines a Network 

Abstraction Layer (see Figure 3.2). A coded H.264 video sequence consists of a series 

of NAL units, each containing an RBSP (Raw Byte Sequence Payload). Coded video 

elements are directly embedded in this sequence. (See Figure 3.4) 

 

 
 

Figure 3.4. Sequence of NAL units each combined with NAL Header and RBSP Data 
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There are different types of NAL units. Each type is identified by an ID and the 

types are detailed in Table 7.1 of the standard document (ITU-T REC H264 2003). In 

order to decode H264/AVC video to the video coding layer, NAL unit semantics are to 

be followed. This is because the encoder’s output (see Figure 2.19), which are 

compressed video elements are directly fed to the NAL stage of H264 encoder. This 

layer can be thought as the virtual transport medium of H264/AVC elements, because it 

abstracts the underlying transport environment.  

 

3.3.4.  Video Coding Layer Concepts of H.264/AVC 
 

H.264 Standard follows a hybrid block based video coding scheme. The building 

blocks of this scheme are macro-blocks, which are formed of corresponding luminance 

and chrominance samples. The encoder uses temporal statistical redundancies between 

consecutive frames using inter prediction in temporal domain and transform based 

coding in spatial domain. This forms a hybrid block based structure to code video.  

To improve compression efficiency, H.264/AVC uses a collection of methods. 

There is not a single method to be able to compress video most efficiently.     

The H.264/AVC defines three sets of profiles each combines a set of coding tools. 

Profile is the specified set of syntax. Performance limits are controlled by the level 

information; these are the constraints for the syntax elements. The Baseline Profile 

supports intra and inter-coding (using I-slices and P-slices) and entropy coding with 

context-adaptive variable-length codes (CAVLC). The Main Profile includes support 

for interlaced video, inter-coding using B-slices, inter coding using weighted prediction 

and entropy coding using context-based arithmetic coding (CABAC). The Extended 

Profile does not support interlaced video or CABAC but adds modes to enable efficient 

switching between coded bitstreams (SP- and SI-slices) and improved error resilience 

(Data Partitioning). Potential applications of the Baseline Profile include 

videotelephony, videoconferencing and wireless communications; potential applications 

of the Main Profile include television broadcasting and video storage; and the Extended 

Profile may be particularly useful for streaming media applications. Figure 3.5 briefly 

shows the relations of profiles. (Richardson 2003a).  
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Figure 3.5. Three Profiles of the H264/AVC 
(Richardson 2003a) 

 

The video coding layer is again highly hierarchical as the previous video coding 

standards. Group of pictures are composed of sequential frames formed of slices and 

slices contain macro-blocks in pre-defined scan order, macro-blocks contain either 

transform domain information, or prediction information. This hierarchical encapsulated 

video ordering can be seen on Figure 3.6. Associated decoding layer function can be 

seen next to the layer of the video element.  
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Figure 3.6. Encapsulated video coding elements and Associated Decoding Function 
 

A video picture is coded as one or more slices, each containing an integral 

number of macro-blocks from 1 (1 MB per slice) to the total number of macro-blocks in 

a picture (1 slice per picture). The inter and intra prediction modes are directly results 

different kinds of slices and macro-block types. Slice types, descriptions and associating 

profile is shown in Table 3.1. 

 

Table 3.1. Slice Types, Descriptions, Profiles 
(Source: Richardson 2003a) 
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Slice type information is directly collected by the information stored in sequence 

information of video data. This procedure is described in Chapter 4 with example video 

sequence.  

 A macroblock contains coded data corresponding to a 16 × 16 sample region of 

the video frame (16 × 16 luma samples, 8 × 8 Cb and 8 × 8 Cr samples) and contains 

the syntax elements described in Table 3.2. Macroblocks are numbered (addressed) in 

raster scan order within a frame (Richardson 2003a). 

 Macro-block syntax elements are shown in Table 3.2.  

 

Table 3.2. Macro-Block Syntax Information  
(Source: Richardson 2003a) 

 

 
 

This section discussed the video coding layer concepts. It should be noted that 

the whole coding elements of H.264/AVC has a large collection of algorithms in spatial, 

temporal and entropy coding perspectives, readers are referred to (Richardson 2003a 

and Richardson 2003b) and (ITU-T REC H264  2003) for a detailed discussion of new 

coding techniques listed in Section 3.3.2. 
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CHAPTER 4 
 

PROPOSED WORK, RESULTS AND FUTURE WORK 
 

4.1. Working Environment and Test Data 

 

In order to experiment on different test scenarios, some existing tools are used, 

and constructed. This section describes the generation of H264 coded test data by using 

these tools.  

Digital video data in various formats is converted to uncompressed YUV data. 

The uncompressed YUV output is then used as a source for the encoder to generate 

H264/AVC Coded bit-stream. The proposed test data generation scheme is illustrated in 

Figure 4.1.   

MPEG 2 data contained in Program Stream format or Transport Stream format 

is converted to yuv4mpeg (WEB_3 2006) using “mplayer“(WEB_4 2006) which 

utilizes a collection of various codecs. Yuv4mpeg is a planar uncompressed video 

sequence data file format, with header information and planar 4:2:0 sampled YUV color 

spaced video. An application is also provided to convert yuv4mpeg data to YUV data 

without any header information.  

Various test streams are available in [38]. In order to use these well-known test 

sequences, an application called “myuv2yuv” is constructed. This utility program is 

built for such purposes from scratch. The program converts uncompressed Yuv4mpeg 

with header information to raw yuv YV12 format.  An application which appends two 

YUV file is also used to generate raw, uncompressed data. This tool is used to construct 

appended test streams, therefore a scene cut.   

Uncompressed data structure is YV12 format. (WEB_5 2006) 

The selected images are at QCIF, CIF, SIF, and PAL resolution type.  

In order to generate H264/AVC Coded bit-streams, JM Reference Codec is used. 

(WEB_6 2006 and Suhring 2005)  

The output of the encoding process is raw H264 coded bit-stream. This setup 

lets to exercise on various H264 bit-streams derived from various types of video 

sources.  
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Figure 4.1. Test Data Generation Process for the Proposed Study 
 

4.2. Proposed Work and Results 
 

The test streams are constructed according to the Figure 4.1. The output is at 

main profile, using CABAC entropy coding and the sequence is in  IPBPBPBP... form 

sequence.  The number of B frames between P frames is decided by the encoder.  

As discussed in Chapter 1, Scene cut detection is an important tool for video 

summarization proposes. The scene cuts are transitions between two consecutive shots. 

In order to detect abrupt scene changes, the macro-block type information in P slices are 

examined. The occurrence of a scene change coexists with the case where the encoder 

can not predict the current image by a reference to previous or forward slices, so the 

encoder is more likely to use intra prediction. This means a high number of Intra coded 

macro-blocks are inserted in P type slice.  
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In order to analyze the macroblocks, the decoding process of H264/AVC coded 

bitstream is done as follows:  

 

4.2.1. Extracting Slices from NAL Unit Stream 
 

The H264 bit-stream is formed of series of Network Abstraction Layer (NAL) 

units. Each NAL unit contains variable size of Raw Byte Sequence Payload. RBSP data 

may contain coded Video Coding Layer data, sequence or picture information header.  

NAL unit types are detailed in Table 7.1 of (ITU-T REC H264  2003).    

An example NAL unit sequence is seen in Figure 4.2. The decoder collects 

information about the incoming stream by sequence parameter set, and then picture 

parameter set. The interest is contained in coded Non-IDR picture, because the RBSP 

data contains the slice header and slice data. The hierarchical view of slice data, and 

macro-blocks is shown on Figure 3.6.  

 

 
 

Figure 4.2. NAL Unit Types of A typical H.264/AVC Stream 
 

4.2.2. Extracting Slice and Macro-block Information From Bit-stream 

 

In order to collect statistics of macro-block distribution, the below decoding 

procedure is applied. 

Once the slice data is extracted from NAL layer, the slice header gives 

information about the slice type. (See Figure 3.6) Slice types can be one of the 

following:  

Intra (I) Type Slice: Contains only I type of macro-blocks.  

Predicted (P) Type Slice: Contains P macro-blocks and/or I macro-blocks 

Bi-prediction (B) Type Slice: Contains B type macro-blocks.  

Switching P (SP) Type Slice and Switching I (SI) are used in extended profile. 

(Defined in previous Chapter) 
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The slice data contains the macro-blocks, each containing mb_type data, 

mb_prediction data, and the coded residual data. If FMO, is not used, each slice 

contains (img_height (in pixels) x img_width (in pixels)) / (16)2 macro-blocks. So if the 

image is QCIF, i.e., 176x144 pixels, there are 99 total macroblocks in each slice.  

 

Slice data syntax and macro-block layer syntax is given on pp 38 and 39 in 

(ITU-T REC H264 2003), respectively. In order to extract mb_type from the stream, 

Ex-golomb coded macro-block header information is read by ue(v) call.  (sub-clause 9.1 

(ITU-T REC H264  2003)) 

The above decoding process is given for describing the activity to collect 

information about the macro-block type distribution for defined slice types.  

 

4.2.3. Detecting Scene Cuts 
 

As discussed earlier, macro-block type’s distribution is used to detect abrupt 

scene changes. For experimental purposes, two YUV test sequences are combined, and 

encoded for scene change study. The sequence “Suzie” at QCIF resolution is appended 

to “Trevor” sequence at QCIF resolution.  

The algorithm counts the Intra coded macro-blocks in P type slices. A fixed 

threshold is used to detect the frames where scene cut is observed. Because the motion 

estimation does not help in encoding, the P type slice contains I type macro-blocks.  

The program result can be seen below. Originally, Trevor sequence is 150 

frames, and the Susie sequence starts at frame 151. Trevor sequence has a scene cut at 

frame number 59.  

The I macro-block count vs frame number can be seen in Figure 4.3.  
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Figure 4.3. I Type Macro-block counts vs Frame Number forTrevor + Suzie Sequence 
 

Applying a global thresholding, the frame numbers where the scene cuts has 

occurred can be easily detected from Figure 4.3. The frames where the mb_count 

exceeds the threshold, are possible candidates for the scene cuts. In this work, we 

specify the threshold pδ as / 2TOTALMB , where TOTALMB is the total number of macro-

blocks in one slice.  

A further look in Figure 4.3 can give the idea of motion’s effect in detecting 

scene cut. The distribution of I macro-blocks exists on the neighbourhood of frame 200, 

but not detected as scene cut. This underlines the importance of selecting the threshold.  

In order to detect scene cuts automatically, a patch, which is responsible to 

collect mb_type information located in P slice, is added to JM reference decoder. The 

output of the program is the scene cut summary in a single jpeg file, and scene cut frame 

numbers. A snapshot of the program output is as follows:  

 
Possible Scene Cut @ 0 V= 99 THR= 13 
Possible Scene Cut @ 60 V= 81 THR= 49 
Possible Scene Cut @ 152 V= 86 THR= 49 

 

The initial frame contains I type macro-blocks, so noted. Frame numbers 60 and 

152 are where the scene cuts are occurred, as illustrated in Figure 4.5.  
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The program also outputs the scene summary in a single jpeg file as follows, the 

frames 60 and 152 are marked by the program, and the marked frames are extracted 

from the decoded stream.  

 

 
 

Figure 4.4. The output of The program for Trevor and Suzie Sequence  
  

The second test stream is constructed from the movie Barry Lyndon, 1975. The 

stream contains a duel shot, with a long zoom-in, and sharp scene cuts between the actor 

close-ups. The I type macro-block distribution along the P type slices can be seen in 

Figure 4.5.; the program output is listed below the figure.  

 

 
 

Figure 4.5. I Type MB’s in P type Slices with Scene cuts as peaks 
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Possible Scene Cut @ 0 V= 99 THR= 13 
Possible Scene Cut @ 2 V= 80 THR= 49 
Possible Scene Cut @ 1098 V= 85 THR= 49 
Possible Scene Cut @ 1318 V= 87 THR= 49 
Possible Scene Cut @ 2028 V= 67 THR= 49 
Possible Scene Cut @ 2108 V= 93 THR= 49 
Possible Scene Cut @ 2524 V= 77 THR= 49 
Possible Scene Cut @ 2730 V= 87 THR= 49 

   

The program successfully finds the frame cuts in beginning, 1098, 1318, 2028, 

2108, 2524, and 2730. The summary of the movie sequence is seen in Figure 4.6.  

 

 
 

Figure 4.6. The Summary of a Video Sequence from Barry Lyndon (1975) Movie 
 

The two examples discussed above contain direct, sharp scene cuts. These are 

called abrupt scene cuts. But many movies contain gradual scene cuts where a new 

scene begins with a fade in, or the previous scene fades out, in other words dissolves.  

A dissolving sequence and its analysis is seen in Figure 4.7. The sequence is 

recorded from a live TV discussion programme.  

 

 
 

Figure 4.7. A Dissolve Example 
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The scene change slowly occurs. When the macro-blocks for this change is 

analyzed, it can be noted that the number of I macro blocks increases as the frame 

number increases, reaches a top and decreases again. In this case, we need to detect the 

beginning and end frames of the dissolving segment. Figure 4.8 illustrates this effect.  

 

 
 

Figure 4.8. Example of a Dissolve, I Type MB’s vs Frame Number 
 

In order to detect gradual scene changes, the following ramp is detected by the 

following algorithm, which is shown in Figure 4.6.  

The algorithm buffers the number of  potential I type macro-block activity in P 

slices. Potential I type macro-block activity are points where gradual scene cut, 

dissolves, fade in or outs are observed, as shown in Figure 4.8.   

A graphical user interface is developed, which summarizes the scene 

information as shown in Figure 4.7. This program enables the user to click on the scene 

of interest to play the movie starting from that scene using an external YUV sequence 

viewer. This program can give useful summary of the scenes under investigation. A 

screen shot is available in Figure 4.9.  
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Figure 4.9. Example Video Summarization Application 
 

4.2.4. Future Work 
 

Based on the same idea of collecting direct information from compressed media 

more information can be collected by observing the analysis being taken on the syntax 

elements of the coded video. This section briefly discusses ideas that might be adapted 

to the study.  

 

4.2.4.1. Zoom Detection 
 

Ideal zoom pattern is depicted in Figure 4.10. The zoom detection method can 

be adapted to our case is proposed by (Gerek and Altunbasak 1997). The variance of 

number of motion vectors versus motion vectors ‘angle histogram is calculated, and the 

flatness of the angle is investigated. More flat variance means a zoom. However, it is 

also necessary to investigate the distribution of the I type macro-blocks in P slices.  It 

can be noted that from Figure 4.7, there is a I macro-block activity during a zoom-out in 

the original sequence.  
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Figure 4.10. Ideal Zoom Pattern  
(Gerek and Altunbasak 1997) 

 

The zoom information between scene shots can be informed to the user in the 

application depicted in Figure 4.10.  

 

4.2.4.2. Pan Detection 
 

Like the zoom case, a statistical pattern is also extractable form the direction 

distribution of motion vectors. For an ideal pan, the directions of motion vectors are in 

the same relatively in the same direction. 

 

 
 

Figure 4.11. Ideal Pan (Left) and Angle of Motion vectors (right) 
(Source: Gerek and Altunbasak 1997) 
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Figure 4.12. Panning When a Moving Object is on Focus 
(Source: Gerek and Altunbasak 1997) 

 

If panning is done when a moving object is in focus; the distribution of motion 

vectors is seen like seen in Figure 4.12. The object seems motionless so the motion 

vector magnitude is distributed as follows.  

An ideal pan is detected, if the variance of number of motion vectors versus 

angle histogram is impulsive as seen on the right side of Figure 4.11.    

The above discussions panning can be added to the program illustrated in Figure 

4.11 for a more compact representation of the sequence to be summarized.  
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CHAPTER 5 

 

CONCLUSIONS 
 

In this study, H264/AVC coded bit-stream is analyzed in terms of CODEC 

internals, to provide an approach to summarize the video into meaningful scenes.  

The application gives top level summary information about the scenes. This 

gives the user the opportunity to visualize the highlighted excerpts from a H264/AVC 

coded video. As a codec, H264/AVC is selected because of the increasing popularity of 

the codec as a result of the accomplishments of the codec in reducing bit rates, 

scalability, and supportability in various environments from packet video networks, to 

wireless networks, from high definition video to video on demand.   

The video analysis is heavily dependent to the parsing, decoding processes of 

the video codec. The syntax and semantics descriptions in the standard are the crucial 

definitions used by the study, and getting more familiar with such well standardized 

data set, applications may take shorter time to be developed.  

An important part of the study is that the video analysis is directly taken on 

compressed video data. In terms of computational costs, this makes the application 

computation efficient. This logic may be carried to network layer 3 devices, who are 

responsible to manage packet network traffic management, by understanding the video 

data distribution by directly looking at the bit-stream itself without fully decompressing 

the data. The study also gave the chance to get more familiar with compressed domain 

video understanding techniques. The study may also be combined with advanced 

pattern recognition and learning algorithms and techniques to yield more robust and 

extended studies, since the data extracted in different forms of syntax elements forms a 

statistical nature which can be processed in a decision making or classification.  

The performance of the study depends on the selected metric of threshold. The 

motion in the video introduces I type coded macro-blocks in P type slices, so the 

threshold should be selected such that these kind of I type macro-block activity is 

eliminated to give correct results of scene cuts in the scene. 
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The idea lying under this study can be implemented to hybrid block based video 

codec scheme; whereas H264 AVC standard provides P type slices formed of I type 

macro-blocks, this flexibility which is provided by the standard is used in this study.  

The application can be enhanced by adding, zoom, panning, fading in/out 

detection functionalities. By working on more test data, provided by an automatic 

testing environment will make the application more robust. More notes can be added to 

the user interface of the output of the project. The interactivity, portability and user 

friendliness of the application is open to develop. This study can serve as a starting 

point for video analysis, indexing or skimming system, noting that there will be a great 

need for video skimming applications since the amount of the content of digital video 

increases dramatically in the following years.  
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APPENDIX A 

 

CODE IMPLEMENTATION 
 

The study requires an implementation on JM Reference Software decoder. More 

information about this software is included in WEB_6, 2005.  

The selected platform is Pentium® 4 CPU Running at 2.4 GHz. The Operating 

System selected is Suse Linux 10.1 (i586 Compliant, Kernel version is Linux 2.6.16.13-

4. The implementation language is C Programming Language.  

Additionally, the program uses the external executables to provide a jpg output 

which contains listed below, so in order to compile the source code without error, the 

following executables must be in correct path :  

Extractyuv: Executable that extracts a single frame from an uncompressed yuv 

sequence, this code is written from scratch. Extractyuv application works as follows:  

extractyuv [-n] { | {[-i bitstream.yuv] [-o output.yuv] 
 
## Parameters 
 
## Options 
   -n  :  Number of frame to extract 
   -i  :  Input file name. 
   -r  :  Input file name. 
   -o  :  Output file name. If not specified default output is set as output.yuv 
 
## Supported video file formats 
   Input : .yuv -> YUV bitstream sequence . 
   Input : integer -> The number of Frame in the sequence 
   Input : res -> resolution of the image 
   Output: .yuv -> RAW file. Single Frame. 
 
## Examples of usage: 
   extractyuv 
   extractyuv  -n 
   extractyuv  -i bitstream.y4m -n framenum -r CIF -o output.yuv 

 

Convert: An application provided by (WEB_8, 2007) to convert a single yuv file 

to jpeg file.  

Montage: An application provided by (WEB_8, 2007) to montage several jpg 

files to a single jpeg file.  
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Mplayer : A general open-source multimedia player running on Linux Plays 

uncompressed. 

The main part of the code is implemented in ldecod.c, image.c, macroblock.c 

files.  

In the bottom level, void decode_one_slice(struct img_par *img,struct inp_par 

*inp) function in image.c file is where the macroblocks are processed so this function is 

where Scene Cuts are processed via call to following ProcessSceneCuts function, listed 

below. Threshold variable is derived from Frame Size. When the I type activity 

excesses threshold, the index is written to text file “scene_cuts.txt”, via call fprintf(img-

>fp_scene_write,"%d \n",index);  

 

int ProcessSceneCuts(int sample,int index) 
{  
 
if(sample > Threshold) 
{ 
 printf("Possible Scene Cut @ %d V= %d THR= 
%d\n",index,sample,Threshold); 
    fprintf(img->fp_scene_write,"%d \n",index);//,(img->FrameSizeInMbs  / 2)); 
} 
 

 

When whole decoding is done to the end of stream, marked with EOS, 

“scene_cuts.txt” text file is used to extract frames by using a system call made to 

extractyuv application as follows.  

 
strcpy(jpgfiles," "); 
img->fp_scene_read = fopen("scene_cuts.txt","r"); 
  
while(read_return != EOF) 
{ 
read_return = fscanf(img-fp_scene_read,"%d",&possible_scene_cut); 
sprintf(extractyuvbuf,"./extractyuv -i test_dec.yuv -o scene_%d.yuv -r QCIF -n 

%d \n",scene_count,possible_scene_cut); 
 
system(extractyuvbuf);          
sprintf(convertbuf,"convert -size 176x144 scene_%d.yuv 

scene_%d.jpg\n",scene_count,scene_count); 
system(convertbuf); 
printf(">>>>Possible scene cut at %d\n",possible_scene_cut);   
scene_count++; 
} 
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sprintf(jpgfiles,"montage *.jpg  scene_summary.jpg\n"); 
system(jpgfiles); 
  
 sprintf(mplayerbuf,"mplayer test_dec.yuv -demuxer rawvideo -rawvideo 

w=176:h=144:fps=25\n");//, scene_w,scene_h);     
   
system(mplayerbuf);  
 
With the last system call, the program outputs are constructed in the location of 

the executable, and the system(mplayerbuf); system call plays the clip.  

 


